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D Abstract

[t 1s well known that random test lengths can be reduced by erders of magnituds using biased random patierns. But there are
also some arcuits resistant to optimizing. In this paper it 18 shown that this problem can be solved using seversl distnbutions
instead of a mnogle one. Firstly we computs bounds of the error caused by the assumption that fault detection consiats of
completaly independant events Secondly we prove a sharp estimation of the error caused by aseuming the random proparty
instead of the pseudo-random property of shift reqister sequences. Finally a heunstic s presented 1o order to compute an
optimal sumber of random patiern sets, where sach set has its specific distnbution and ita specific size.

2) Test langths

Lat now F be a set of faults of the combinational aircuit C with taputs I, with the oaly restriction that no sequential behavior 1s1n-
duced The probabihty that sach single fault of P (s detected by N random patterns et least once often 1s estimated by the formuls
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where pr 18 the detection probabahity of the fault f & F Of course formula (1) only halds if we sssums that the detection of some

fsults by N patterns forme completely independent events It neglects such relations ss fault dominance and fault
equvalence. Therefore some authors try W computs an exact value by means of Markov-theory [BaSae83], but the next theorem
shows that formula (1) 18 1ndeed & very precse estimation.

Iheorxm L: Lat G be the probabihity that each fault of F is detacted at lesst once by N random pattsrns Then we have
In-(1Ipintdn) £ G < I ln(dy).

An immaediate corcllary of this theorem 18
Corpllary I: Formula (1) anderestimates the confidence of a random test less than In(Jy), and for the more dangercus case
formula (1) overustimates less than (1-JyNaldy).

Broof of theorem L Lat <f;>1q, be an enumeration of F where | < j imphies pg < pgy The notation PIAN) denotes the probabihity to
detact all faults in the set A by N random petterns. Then it 1a sufficent to show
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Using the Bayesian formula we have
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Theorem 1 and Corollary 1 indicats that the independence assumption 1s sufficient for statistical investigation. For 1nstance if
we have 3 faults with ppy = 107, ppy = 510-7 and ppy = 108 then umng formula (1} we would need N = 69 106 patterns 1n order to
detect ali faults with probability 0 899 The estimation of theorem 1 yields

0999 - 10718 < Iy, £, fy) N) S0 999 + 1018

Using theoram 1 1t is sasily shown that only the few faults with lowest detection probabihity have 1mpact on the necessary test
length This fact has already been observed 1n [BaSa83] In [WuB7) it 1s remarked that all faults can be neglected with detection
probability more than 10 timea larger than the mimimal detection probabahty

Often 1t 1s discussed that tha pseudo-randorn property has to be conmdered, and there are some papers published on this topic
[WAGNB7] But for realistic circwts the difference between the test lengths for random tests and for pseudo-random tests 1s
seghigible. This fact 19 an immediate consequence of theorem 2 It holds for circuits wath a realistic number of prmary 1nputs,
where all possible input patterns cannot be enumeratad exhaustively Only 1n this csse a random test makes sense, and the
random pattern set will be a very small part of all patterns.

Theorem 2: Lot p be the detection probabihty of ¢ fanlt f1n a combinational ciremat wnth 1 1nputs, and let e be the escape
probabnlity that £1a nesther detected by N' random patterns nor by N peeudo-random patterns For 2¥2: Nwehave N= N

Proof Fault detection by random patterns follows the binormal distribution, and we have e = (1 - p¥¥ or In{e) = Nln(1 - p). Esta-
mations with precision of O(p?) meld -1n{e) « p N Fault detection by pseudo-random patterns follows hypergeometnc
distnbution, that s
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As a consequence we can use the random assumption without any loss of generality for those curcunts where an exhaustive test
18 impoesible For instance if we have to apply less than 8OO0 patterns, for all arcuits wnth more than 25 pnmary 1nputs,
random and pseudo-random pattern sets will exactly have the same mze.

Until now we have seen that one of the main concepts of random tests 18 the computation of fault detection probabilitiea. Many
tools and algorithms were proposed dunng the past years estmating these probabilities (e.g {BDS83], [AgJaB4], [WuB5],
[ChHu86], [AaMeBT]. But their preamon 1s'himted, eince the problem 1a at least np-hard, which is a simple consequence of the
ap-completeness of the fault detection problem [[bSa75] Furthermore sstimating {ault detection probabilities is #-complete, that
18, one cannot expect s stochastical algonthm with a sample mze bounded by a polynomial in the reciprocal of the relstive
esstimation error This result 1 derived umng slementary concepts of complexity theory found 1n [GeJe78]

Both facts point out that we cannot expect tools sstimating fault detection probabilities with arbatrary high precision naither
analytically nor stochastically The intnnsic error also makes useless algonthms computing random test lengths in a very
sophisticated way, and the esttmations based on theorem 1 and thecrem 2 are justified.

Alrsady 1n [Shed77] 1t has been observed that the necessary number of random patterns hnearly increases with the reaprocal of
the minimal fault detection probability Thus 1n a conventional random test the muze of a test set can grow exponentially with
the number of inputs. For instance consider an AND32 (£g. 1) where sach input is set to "1™ with probability .
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Figure Lk 32 Input AND

Thea an arbitrary stuck-at-0 fault is detactsd wath probabihity x32, and sach of the 32 stuck-at-1 faults with probability 1.x)x31,
For x = 0 5 and test confidence 0 999 formula (1) yields

0999 = (1.0 S
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and N = 4481010 But uxing unsquiprobable patterns, i.s. x » 0.5, test lengths can be reduced drastically (Wua5), (BGS8ED. For
sxample setting
1 =y5y

we would need approximately N = 610% patterns.
In [Wo87) an efficent procedurs computing optimised 1aput probebilities was presented But some drcuits are resistant to
optumining For the connection of an AND32 and an OR32 in fig. 2 ne solution better than = 0.5 exista.

Y
]

P t: Not random-tesiable circuit

Thus problem is solved by applying firstly 600 patterns with x = 0.5133, and then 600 patterns with x := 1.0.5132_ For the rest of
this paper we are deahng with the problem to computs ssveral distributions for rendom petierns 1n order to minimize the over-
all test length.

$) Optimizing inpat probabdities

Let X = <y, 3> @ [0.1H be a tupsl of real numbers, 0oe number for sach primary input. Thess input probebilities determins
the probabihty for each primary input of being "1°, and for each fault they determione its fault detection probabulity pdX) and the
probability to detect all faclts:

o

1= [Ta-a-poo
ter
Now we can try to formulate our problem:

Optimizing problem: Lat G be the probebility to detect all faults. Find & aumber k. k distributions X!, and k numbers Nj.1 =
1..k, such that

Oina .I=Iu .,‘cx'))n") -dN-zﬂl‘h-hhd
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Immediately it ta seen that the problem is solved if we set k equal to the minimal number of deterministic test patterns, that is
the size of the smallest possible test sst. Then sach X! ¢ (0,1 P represents a test pattern, we have N = 1 for sach pattern, end Nu ko
But the problem to find a minimal test set has besn proven to be np-complete [AKKr8S4), hence there is no bope to develop an
efficent CAD tool based cn a solution for this problem. Therefore cur goal is oot an optimal soluticn, but we are content to find
an eofficient optimizing procedure. Figure 2 indicates that optimizing input probabilities can be preventsd by contradietory
requirements of some faults. Therefors we formulate our problem as follows:
Weakened optimizing problem: let G and k be given. We are searching a partition <F,...Fy> of ¥ = Fy u.. v F}, distri-
butions X!, Xk and numbers N; ... N}, such that

(¢ )]
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15 sufficdently small.

For k := 1 this problem has already been solved in [Wui7), and we now list some besic results of thia paper For the input
probubihitiss X = <x;,...2,> @ [0,1 we have for all faults {

w e pelry 2y ) 0350y o 2g) ¢ X Ay - Xy 1By 7)< PR - 310085 Xp))

This is a straightforward consequence of Bhannon's formula.

o )
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By formula (4) and (5) we can computas the fault detaction probability and its partial derivative for an arbitrary value of x;, if we

know the valuss under the conditions that input i is constant "0” and constant "1". By some straightforward approximations
formula (3) leads to
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We call 2 tupel X « [01 P pptimal , if the objective function
@
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is minimal Obwicusly this corresponds to the fact that the probability to detect all faults by N patterns is maximal. Mintmizing
the objective function would need exponential effort in general. But a sufficient heuristic is found, mince the first partial
derivative of the cbyective function can be computed explicitly.
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The pext step shows that the second denvative 18 positive everywhere:
™

2 AKX ON
s Eﬁ’-(p‘(xl. .ll_.l.l.l"|.. a) -p,(xt... .xH.O.xM... .xl)) e >0

Thus the obsective function 18 strictly convex with reepect to a single vanablc, and the exphcit formula of (8) can be vsed to find
the optumal valus for x; by the bisection method, the regula falm or the Newton iteration. The complete optimizing procedure is.

Procedure Optimize (F Faultsets, X Startvector)
Od= 2 BX)

New = "(I)
While Old>New+ ¢ do
Gd -Nl"'
Fori el wondo
Search optimal value y for input i
L=y
New = §(X)
In the next sectrons we discuss the extension to muluple distnbutions
4) Partioning of a fault set

Let P be a fault set, and let X & [01)' be a tupel of input probabihities. In thus section it 18 discussed how to find two tupels Vi.Vp €
(021 and s partition Fy U F3 = F, such that

RTINS L L O
uF, faF,

For each F* C F the objective function

&

may be multimodal and 1ts global mimmization would need exponential effort. For this reason we do not try to compute a
global mimmum, but we are looking for & direction, where starting from a tupel X; the decrease of the objective function ik

maximal. The next theorem will give & helpful hint.
Theorem 3: 1ot U ¢ R® beconvex, U — R, and let
() = (-ﬁ.—)““‘

be the gradient of §. For each zg & U the vector -grad(EXxy) \ndicates the direction of strongest decrease If £ is linear a Jocal
minimum 1s found on the line 25 - agrad({Xxy), a 20
Prooft Mathematical calculus
Even though 3] 1a not & linear function, theorem 3 clums that -grad(5f; XX,)
18 the required direction. Thuos we define the new function

G :R'U{0} — R

Gy o) = By (X - & grad B XX
The formula
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D(F*.N,X,0) = ©

u_ucﬁ; measures the decreass of our objective function 1n 1ta optimal direction Thae solution of

an XF* NXog)=0
provides input probainhities
X, - rpld(ﬂ:- XY
defining & mimimum potnt 1n this direction Thersfore our partitioning problem ts solved by F) and Fy such that
12) D(Fy NXp.0) + D(F3.N.X5.0) >0

1s manmal. It should be notad that for hnear functions this proceeding would be optimal indeed.

For the rest of this section the tasks necessary for partitiening are discussed These tasks have o be done only for the amall
subset of faults with lowest detection probabthty

The gradient
41,0

el L
]
can be computed exphaitly umng formula (7) If edditionally formula (4) 10 used, 1t 10 immediately soen, that we only have to
compute pX) and pdxy. 21.0.X;,q.- .Xy) 0F pAxy, Xy y.1.3y,q....0,) for this purpose

In order to partition F, for each fault let

40Xy = / 2,«%’;‘-3“,)1‘ - 8 gradip XX )
=l ]

be the Euchdian norm of the gracient of pdx) in x5, and let <f>(; be an enumeration of F wath
15k = a,‘(xo) 2z d'.(xo)

Now we are locknng for a starting partitioning F,. Fy,

9] 8-;?.,]1-0

2) For1 =1tokdo ’
if D(F, v )N X5,0) + DXFy.N Xq.0) > D(F N X0.0) + D(F, v {f).N X.0)
then F, =P, u (f;l else Fy = Fyu if)

Starting with this already good partitioning elements are exchanged between F, and Fy such that the valus of v =
D(P N X5,0) + D(Fy N X(,.0) s maximized. For small fault sets F a ssarch tree T can be constructed computing an optimal
partitioning

After parttioning we have to compute new distnbutions, one for sach new subset of faults Since the gradient of

8,00
13 already computed, formula (11) is solved by a bisection method, and subsequently the procedure OPTIMIZE of section 3 19
used. If the gradient 18 unknown this 1s done immediately

5) Multiple optimal distributions

Of course partitioning 18 not restncted to two sets But instead of partitioning 1nto m sets at one time, expenence has shawn
better results by s successive procedure

Muhiple_Optimire (F Faulests, X Startvector, m Number of distributions)
Mj.aF
Xi1) =X
For{ =l tam-1 do
Find fauk f with lowest dstaction probability
Lat | s -1 be such that fe F{jL
Partition F{j) into F,, F,.
Optimize (F,_x{).x,) and Optimize (F_x{j) x,) as mentioned in sect. 4¢)
P =F alfl ax Fll=F, ol =x,
8) Applications and results
The mentioned tools estimating fault detaction probebilities are mainly used to predict the necessary test length for a random
test. It can be carriad out by s built-in self-test structure lika a BILBO [KOEN79) Bince a large class of circuits is resistant to

such s conventional random test, optimised input probabilities were computed. They can also be implementad s self-test using
& 0 called GURT (Generator of Unequiprobable Random Tests) [Wu87a). But even this way not all circuits can be dealt with.

The presented method of computing multiple distributions 18 applicable to all conventional circuits, but unfortunately there 19
no obvious way to implement them by a BIST technique. But of course they can be used for a s0 calied L3SD or scan-path random



83

test ((EiLiB3a), [BaMcB4]D, where the patterns are applied to the scan path and to the external inputs of a arcuit by an external
chip. Currently such a chip 18 being processed, 1t 1s programmable 10 order to support 4 different distributions.

In table 1 optimising results arp shown based on PROTEST [WuB5] The results shghtly differ from the results reported in
(Wu87), mince some parameters of the testablility meesure have been changed in order to speed up optimining. For the
wellknown benchmark arcuits [Brgi86), k = 1, 2 and 4 optimized input probabilities have been computed The first column
denotes the circuits name, the second one the neceesary number of not optimized, equiprobable random patterns, and the
following columns contain the necessary number of random patterns for sach distribution and its sum The first example is the
ANDOR32-cireuit of fig 2. It is seen that all arcuits can be made random testable requinng only few thousands of patterns.
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Table L Distributions and test sizes

For the small dreuit C17 the marked distributions degenerste to deterministic test patterns. For different circuits thers is a
different osumber of distributions tn ordsr to minimize the test length. Table 2 shows for each circuit the optimal number of
distributions and the percentage of the sizs of an optimized random tast set in terms of a conventional one.
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Table X: Optimal number of distributions and test sizes
Condosion

Several facts about testing by random patterns have been proven. It has been shown, that the number of random patterns
required for & certain fault coverage can be computed without regarding the pseudo-random property and with the independence
assumption for fault detection

An efficient method has been presented to compute multiple distributions for random patterns, which have to be applied
succesmively. Using multiple distnbutions, all circmits can be mads random testable. The differently distributed random test
sats can be spphed to scan path dircuits using an external chip, combining the advantages of a low cost test and high fault
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