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Q Abstract 

Self testing of inlegraled circ uits by random patterns has several 
t ~c:hnic:al anti ecnnnmicl'l i l'Itlvantag~s. But ther~ exis.1S a large 
number of circui ts which cannot be randomly tes ted, since the 
fault coverage achieved that way would be too low. In this paper 
we show that this problem can be solved by unequiprobable 
random p allems, and an efficient procedure is presented compu -
ting the specific optimal probability for each primary input of a 
combinational network. 

Those optimized random pallems can be produced on the chip 
during self test or off the chip in order to accelerate fault simu -
lation and test pauem generation. 

Keywords: Optimized random test, self test , fault detection 
probabilities, fault simulation. 

Introduction 

For application specific integrated circuits in small and medium 
sized charges the COSts of the pnxluction test can reach more than 
60% fBen(84) or even 70% rWi1l861 of the overall chip COSts. 
One way 10 handle Ihis problem may be testing by random pat -
terns. 

Here we can dispense with the time consuming automatic test 
pattern generation. and the application of those patterns n~eds no 
expensive test equipment, since it can be done by linear feedback 
shift registers (LFSR) during sclf test. This is possible in high 
speed, and therefort; many technology dependent dynamic faults 
are detecled in addition ([Tsai831. IWuR086) . 

Since a randomly generated test set is larger than a deterministic 
one, the detection TIlle or logical faults nOt in the fault model, 
mulriple fauhs for instance. will be higher. 

Now let a be the confidence of a random test of length N. thaI is 
the probability to detect all faults fe F of the fault model F by 
applying N randomly generated paltems. If we assume that the 
detection of some faults by a pattern set of size N forms 
completely independent events, then we have 

~nni5Sion to copy .... ithout fcc .11 or part of this m~lerial is granted 
provid«l !hat tile: copies we not made or distributed fordirttt commercial 
advantag~. the ACM CQpyright notice and the tj tJ~ of the publication and 
its date appear, and notice is given that copying is by permission of Ihc 
Association for Computin& Machinery . To copy otherwisc. OJ to 
u::publish , requiu::s a fcc andlor spec ifi c permission. 

(1) 

Ii = IT( l-(I-p/) 
". 

where Pr is the detection probability of the faul! f. 

For large N the assumption of independence is asymptotically 
fu lfilled, but in general computing the necessary test length N by 
formula (1) will only provide an upper bound . Regarding 
correlated faul ts we would have 10 modify (I) slightly (Tyr086]. 
but there is no efficient procedure known to compute those COITe -
lations. But for OUf purposes it is sufficient 10 compute an upper 
bound of the test length. 

Funherroore we need not consider the bias of fonn ula (I) due to 
~-random testing (ChCI85] . sincC'_ for patterns wi th large 
bit width the difference is minimum . Thus fonnula (I) is precise 
enough, and it can be evaluated by tools computing fault detec-
tion probabil ities for combinational circuits. 

For circuits with tree structures such algorithms were presented 
by P. and V. D. Agrawal [AgAg75], and Itle general case was 
solved by Parker and McCluskey (McPa75]. But the laller 
procedure shows an exponential time and storage complexity due 
to the NP-complete ness of the underlying fault detection pro· 
blem. Therefore in recent years much work was done to estimaJe 
those probabilities. 

The cutti ng algorithm [BDS84) det~nnines upper and lower 
bounds for the probabilities, PROTEST ([Wu84], [Wu85J), and 
a new version o f PREDlcr (ABS86) estimate by an analysing 
procedure, and STA FAN (AgJa84] uses counting of signal 
values during simulation. 

But now it turn.<: OUl that there are many circuits which cannOI be 
randomly tested due to faults wi th low detection probabilitites. 
Table I shows, for some circuits, the necessary tes t lengths 
based on the estimations of PROTEST. 

I filS research was supported by the BMFT (Bundesministerium fLir 
Forschung und T echnologie) of the Federal Republ ic of Germany 
under gr.d.nl NT 2809 A 3 
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I Circuit Required test length 
I 
I • Sl 5.6*108 
I • S2 2.0*1011 
I C432 2.5*103 
I C499 1.9*103 
I C880 3.7*l()4 
I C1355 2.2*106 
I CI908 6.2*1()4 
I • C2670 1.1*101 
I C3540 2.3 "' 1()6 
I C53lS 5.3"'104 
I C6288 1.9*103 
I • C7552 4.9*1011 
I 

L1Id<.L Necessary test lengths for a conventional random 
test (by PROTEST). 

The circuits C<n> are the well known benchmarks of the 
ISCAS'8S lest session (BRGL8S], the circuil 5 1 is a 24-bit 
comparator constructed by six Texas Instruments comparators 
SN 7485 lTl80), where some redundancies are removed, and 
52 is the com binationai pan of a 32 bit divider [KuWu85}, .. 
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In table 1 the marked (*) circuits need an exorbitant size of the 
random tes t set, and those predictions of PROTEST are 
confmned by fault simulation: 

Circuit 

• Sl • S2 • C2670 
• C7552 

Test length Faull coverage 

12,000 
12,000 
4.000 
4,096 

80.7 % 
77.2 % 
88.0 % 
93.9 % 

TiiI21el.: Fault coverage by simulation of conventional 
random pattcrns. 

It should be noted that an estimation with the e;>;acI value 0 or 1 
of a signal probability by PROT EST is a proof (not an 
estimation!) of redundancy. Bm of course not in all cases a fixed 
signal value can be detected this way, and therefore there may be 
redundancies left wh.ich cannot be found by PROTEST. 

The fault coverage in table 2 is computed only with respeCt to 
those faults wh ich are not proven to be undetectable due to re-
dundancy. This explains the difference to the results of Carter et 
al. [CART85], where the fault coverage was even lower. The 
table indicates that self testing of those circuits may need several 
hours, preventing an economical use of random patterns . 

But PROTEST suggests also specific probabilities to set each 
primary input to logical " I ". Using such optimized input proba-
bi�ities PROTEST proposes the lesl lengths listed in table 3: 

C ircuit 

• • 
• 
• 

Required test lengt h 

Sl 
S2 
C2670 
C7552 

J.5*1Q4 
4.0*JQ4 
6.9*J04 
1.2*105 

Necessary test lengths for optimized random tests 
(by PROTEST) . 

The results of fault simulation listed in table 4 prove that such op-
timized random patterns yield a higher fault coverage indeed. A 
suspicious reader may verify this by random patterns generated 
with respect to the: optimize:d input probabilities listed in the 
appendi1l.. 

I 
I 
I • 
I • 
I • 
I • 
I 

Circuit Test length Fault coverage 

Sl 12,000 99.7 % 
S2 12,000 99.7 % 
C2670 4,000 99.7 % 
C7552 4,000 98.9 % 

Fault coverage by simulation of optimized random 
pallems 

For the rest of this paper we are dealing with the optimizing 
problem. In section 2 we introduce an objective function for 
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input probabilities, and in section 3 we discuss its mathematical 
propenies. In section 4 we describe the implemented optimizing 
procedure. Some applications, the limits of the approach, and the 
performance are discussed in se<:tion 5. 

The examination are based on the assumption that there is a tool 
avaitable computing or estimating fault detection probabilities 
efficiently. For the reported resuhs the estimation procedures of 
PROTEST have been used, but with slight modifications 
PREDlcr or STAFAN will presumably work as well. 

2 An ohirrliye ("nctiQn [or jnpu. probabilities 

2. 1 Some definitions 

The most widely used self test techniques configure the circuit 
reiisters to linear feedback shift registers in order to produce and 
to evaluate test panems. Therefore we can restrict our e:urrll -
nations 10 combim!!jonal networks. 

A combinational network C has nodes K:= <kl,_ .. ,kr>. some 
special nodes I := <i l •...• is>, the primary inputs. and some 
special nodes 0:= <01 ..... 01>' the primary outputs. We define 
an jnn!!! variable x of a combinational network C as a boolean 
random variable. and P(x) is the probability that x is true. The 
tupel X :'" <xiliE 1> defines for each primary input an inpm 
variable. we assume that those variables are completely indepen -
dent 

For three boolean random variables we have 

(2) P(--,x) 

(3) P(x&y&z) 

The set of boolean functions 

I-pex) 

P(x)P(y)P(z). if x. y and z 
are independent; 
P(y&z). if x=y; 
else additional informations 
are required. 

{fb:{TRUE. FALSE)n --t {TRUE, FALSE} I ntoN) 

is isomorphically mapped into the set of arithmetical functions 

{f<I:(O,I)n --+(0,111 ntoN) 

by the following rules: 

(4) TRUE 
FALSE 
xb&yb 
~,b 

1 
o ,', 
1-, 

Let Xl •... ,Xn be boolean random variables with P(xi) :: Pi and 
let Yt'''''Yn be two-valued arithmetical variables from 
{O,l} with P(n=l) '" Pi. Then the expectation values are 
E(Yi) = Pi. and the probability of a boolean function being true is 
equal to the expectation value of the corresponding arithmetical 
function: 

(5) 
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An arithmetical embedding of a boolean function 

fb:{TRUE, FALSE}n -7 {TRUE, FALSE} 

is the real function f: [O,I)n --+ (0,1], defined by 

(6) 

where the completeley independent boolean random variables 
have the probability P(Xi) '" Zj. 

NotmiQn" Let Z:", <z\",zn>, and y e [0,1]. We 
write f(Z,y1 i):= f(ZI, ...• Zi_!.y.Zi+I> .... Zn). 

lemma /. For each arithmetical embedding f we have 

(7) 

f.r.u!JL By the Shannon expansion. 

The input variables Xi detennine the boolean random variables xk 
for all nodes ke K with the ~ probabilities P(x0. The input 
probabilities are the signal probabilities at the primary inputs. 

Let f be an arbirrary fault changing a gate function into another 
combinational function, and let X be a tupel of input variables. 
The fault detection probabj!jJy p,(X) of f is the probability 
that f is detected by a raooom patlern generated according to the 
distributions of X. 

22 Preliminary work by other autbop; 

P. and V. D. Agrawal proposed an algorithm which computes in-
put probabilities of reconvergent free networks maximizing the 
probability of path seBtizing [AgAg75a]. For the general case 
Agrawal and Seth tried to optimize input probabilities by infor -
mation theoretic means ((AgraSl], [AgSe82) , which has the 
disadvantage that the real fault model and fault coverage are nOI 
directly involved. Lieberherr compared two optimizing ap -
proaches {LkbS4]: On the one hand optimizing path sen· 
silization, on the other hand the generation of patterns setting al -
ways k inputs to logical " I ", and finding an optimal k. He didn't 
present optimizing procedures. 

In the following we define a new objective function based on the 
real circuit structure and on the real fault model. 

2 3 The definition of the objective funCiion 

Throughout the paper we assume an arbitrary but fixed combi . 
national fault model F. This is adequale for the large number of 
circuits in bipolar technologies. ill liMOS pull-dowil uc:;ign:;. in 
dynamiC nMOS and domino CMOS (WuR086J. However the 
treatment of 5equential sl-open faults in static CMOS and nMOS 
pass transistor designs would require some modifications. F may 
contain an arbitrary number of such faults. and it must contain all 
stuck-at-O and stuck-at-I faults at the primary inputs. Funher-
more aU faults of F must be detectable. 

For each fault fe F the detection probability pf{X) depends on the 
tupel of input probabilities X:: <XiliE I>. Therefore formula (I) 
turns into 



(8) 

0N(X) = n(l-( l -p,(X))\ 
<oF 

This fonnula expresses the probability that all faults are detected 
by N panems with the distributions of X. Using some well 
known approximations (8) is transformed into 

(9) 

'" N '" -N"Xl In(o,.(X)) - -L.,(i-p,(X)) - -,,;;.,e 

'" <oF 

Formula (9) describes our objective fu nction and we call a tupel 
X ofinpul probabilities optimal with respect \0 N. if 

(10) 

IN(X):= L.e-NP~X) 
,. F 

is minimum at X E [0,1]1 

3. Mathematical properties of tbe objective WncliQn 

3.1 Classification of the Qptimizin~ problem 

In the (O,l I-space ellpectalion value and probability coincide, 
and the stochasticaJ optimizing problem reduces to a detenninistic 
one. But tnis is only a modest simplification, since one imrne-
dialely nOlices that the objective func lion is nOI a member of the 
well known linear or quadralicaJ optimizing problems. 

Examining only Ihe stuck-at faults at the primary inputs 
AO,' .. ,A23. BOo" .,Bn of circuit Slone can easily verify that the 
objective function will have at least 224 minimum points. Thus in 
general the objective function will nOt be convex Of even uni -
modal. Our optimizing probLem is a member of tne general class 
of smooth multi-extremal problems, which have an exponential 
average case complexity with respect to the number of variables, 
and to the required precision [NeYu83J. 

Furthermore the known global optimizing procedures like the 
Newton or the gradient method will fail to handle large circuits 
with hundreds or thousands of input variables resulting from 
scan designs. Therefore we don't try to find a global optimum, 
but we use some approximations to search a relative one. Here 
the fundamental means are provided by the next section. 

3.2 Optimization with respect to one variable 

We will show that the objective funct ion is strictly convex with 
respect to one single vanable. Hence for each [b::ed Xt •... ,xi_ l , 
xi+I, ... ,x n there exists exactly one xie [0,1] with mini-
mum IN(xl, ... ,Xj, ... x n). First we define again 
IN(X,y1i) := IN(x' ... ,Xi_]>Yj,Xj+I .... xn). Then we observe: 

Umma 2: For all Xe]O,I[1 and all sufficiently large N we have 

(11) 

PrQKC If N is sufficiently large fo rmula (9) yields 
1 .. N(X) "" exp(-lN(X», and thus IN(X) '" O. But if for 
instance Xj =1, then tbe stuck-at- l fault at Xi is not detectable, 
has detection probability O. and Ihus IN<X) ~ l. 

Now we use a well known convexilY criterium: 

Lemma 3: For all ie t we have 

(12 ) 

, 
dy 

and therefore IN(X,ylj) is Strictly convex: in y. 

bJlJl!;.. Using Lemma 1 we have 

Hence 

(13) 

and 

(14) 

pf{X) = pf{X,Olj) + Xj(pf{X, I lj)-pf{X.Olj». 

dJ,(X,yl,) 
dy 

'" .Np/X .)'1.) 
L,,-N(p/X,ll)-p,(X,OI,))e ' 

The> holds since we assume irredundancy, and at some 
primary input we have pr(X,llj)-pIX.Ol j) "" O. 

And no we have by Lemma 2 and Lemma 3: 

For each Xe [0,1]' there exislS c:xactly one y E 
[0,1] with dlN(X,ylj)/dy = 0 and IN(X,ylj) has 
mere its minimum. 

This minimum point can be computed by a simple iteration; 

(15) 

dJN(X,yl) 
• dy 

Y := Y - 2 
d I N(X,yl) 

2 
dy 
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4. The optimizing procedure 

In this section we discuss some implemented procedu-res mini· 
mizing the objective function. First we observe twO facts with 
very imponam impact 10 the efficiency: 

(I) Already Bardell and Savir lBaSi84] noticed that only 
the hardest detectable faults are relevant to the neces-
sary test length N. If N satisfies fomlula (7). we 
have IN(X) = ~ .. 0. and for instance, if there are 
two faults f and g with Pr '" to"'Pg. then exp(-Np~ 
+ exp(-N*lOpg) ~ ~ holds. T hus exp(-Ngg) ~ P 
and exp(-Npf) '" eKp(-N.IOpg) = exp(-Npg)1 ~ plO. 

(2) 

Therefore Pr doesn't contribute any numerically 
computable value to the objective function. Hence 
during one optimizing step we have only to deal with 
the small subset F of the hardest detectable faul ts of 
F. (But caution! The order of the detection proba -
bilities may change during optimization). 

Formula (15) needs the values of pr(X.O i) and 
pr(X, I i), fe P. They can be compllled before the 
iteration. by an effort which is less than twice of the 
testability analysis. Thus the minimizing procedure 
itself is nearly independent of the circuit size! 

Now we discuss the implemented procedures in deeper detail: 

SORT (F), 

Outplll is the soned fault list fJII.fn in the order of increasing 
probabilities, where n is the total number of faults, and all 
known redundancies are removed. 

NORMALIZE(N,nf): 

If a soned fault list is given the procedure computes the minimum 
number N of random patterns to satisfy (7), nf will be the 
number of faults with low detection probabilities, that is 
F= (fl II .fnrl. Roughly the algorithm is like this: 

Set Q;= 10(0), and define the function 
~ -,M 

I(z, M) := L.J! ~ 
lSiSz 

which is a lower bound of JM(X). Set 
-p,.M 

u(z, M) := l (z,M) + (n-z)e 

which is an upper bound of JM(X)' We already remarked that for 
fixed M only few z are needed to check J(z.M) > Q or 
u(z,M) < Q. In the fIrst case the desired N must be larger than 
M, in the second case we have N < M. Hence using intervall 
sections we find an N and an integer z with u(z.N-l) < Q and 
l(z,N) > Q. Now we set nf:= Z. 

ANALYSIS (X,F): 

Using the input probabilitieS X the list r of detection 
probabilities is computed by PROTEST. 
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Input: 

Output: 

Begin 

end; 

PREPARE (X,i,nf,F,F _0_1): 

X (Input probabilities) 
i {Input number to be optimized } 
nf (Number of relevant faults) 
F {Sorted fault list}; 

F _0_1 (List of p,{X,Oj) and pf{X.lj) for all fe F} 

YO := (X,Oi); 
F_O;= F; 
ANALYSIS (YO, F _0); 
Yl := (X,li); 
F_l := F; 
ANALYSTS (VI, F _ I); 
F_O_l:= Ordered list with thecorres-

ponding pairs of F _0 and F _ I. 

This procedure implements the iteration of formula (15). Y will 
be the minimizing value for Xi' 

Begin 

end; 

OPTiMIZE: 

X := Staning vector; 
ANALYSIS (X,F); 
SORT(F) 
NORMALlZE(N_new.nf) 
N_old := the maximum possible value of N; 
While (N_old NJ1ew) > (! do 

Begin 

end; 

{a is user definded l 

N_old := N_new; 
For i=1 to INP do 
Begin 

end; 

PREPARE (X,i.nf,F,F _O_ I); 
MINIMIZE (F_O_l,NJ1ew.y); 
xi := Y; 
ANALYSIS(X,F); 
SORT(F); 
NORMALlZE(N_new,nf); 

In the next section we discuss the perfonnance and some appli -
cations. 

S. Practical e"perience 

5,1 Perfonnance 

During the optimization of an primary input i Ihe~ANALYSIS 
procedure is called three times, but each time with the same 
values X except for Xj. If ANALYSIS takes this into account 
then optimizing one input variable will take less effort than a 
complete testability analysis in most cases. 



Table 5 lists the performance statistics for the circuits mentioned 
in section 1. The results are achieved by a SIEMENS 7561 
computer, a machine with approximately 2.5 MIPS. 

• 
• 
• 
• 

Circuit CPU time (sec) 

S I 300 
S2 600 
C2670 1.200 
C7552 2.000 

CPU lime fOT optimil.ing inpm prohabiliti e..<;. hy 
PROTEST 

52 Sjm!!lmjQn 

Self test by random patterns is the main goal of the optimizing 
approach. A self lest modul similar 10 the well known BlLBO is 
presented in fWu86] and [Wu87]. 

But the optimizing procedure can also support detenninistic lest 
pattern generation, since the computing time of optimizing and 
simulation together is less than computing test panetns by the D-
algorithm. Fault simulation of optimized patterns can provide 
nearly complete fault coverage in economical time. Fig. 2 
illustrates the increase of fault coverage for optimized and 
conventiona] random panems. 

Fault 
covarage 
(~) 

'00 

95 

15 

" 
71) 
60 
50 

Fault coverage vs. panem count (S I) 

53 The limits of the approach 

Up to now al1 examined circuits could be made random pattern 
testable by optimizinl;. For all circuits by the input probabilities 
thai cou ld be found, an optimized random self test needs less 
than 1 ieC. tcSt time. But of course circuits can be consrructed, 
which cannol be processed by optimization. This is the case if 
there are pairs of faults with the following two properties: 

each of the faults has a very low detection probability, 
and 

the Hamming distance between the test setS of these both 
faults is very large. 

This situation prevents the successfull optimizing for roth faults 
simultaneously. The problem can be solved by partitioning the 
fault sel, and by computing different optimal input probabilities 
for each pan_ But unlil now such pathological circuits didn't 
occur, and thus the additional procedure wasn't implemented yet. 

6 Coorll' s iOQ 

Using optimized, unequiprobable random patterns the fault 
coverage can increase and the necessary test length can decrease 
by orders of magnitude. Hence the c lass of random testable 
circuits is enlarged distinctly this way. 

Based on tools estimating fault detection probabilities an efficient 
procedure was presented, which computes foc each primary input 
its optimal input probability. 

The optimized random patterns can be applied during self lest or 
during fault simulation. 
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