Synthesis, Structure, and Chemical Reactivity of a Stable $\mathrm{C}_{5} \mathrm{Me}_{5}$-Substituted Phosphanylium lon: (Pentamethylcyclopentadienyl)(t-butylamino)phosphanylium Tetrachloroaluminate \dagger

Dietrich Gudat, Martin Nieger, and Edgar Niecke *
Anorganisch-Chemisches Institut der Universitat Bonn, Gerhard-Domagk-Strasse 1, 5300 Bonn 1, Federal Republic of Germany

Stable phosphanylium salts of $\left[\mathrm{P}\left(\mathrm{NHBu}^{+}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]^{+}(4)$ were obtained via different routes, viz. (i) $\mathrm{Al}_{2} \mathrm{Cl}_{6}$-promoted halide abstraction from a chlorophosphane precursor, (ii) displacement of chloride by the nucleofugic anion, $\mathrm{OSO}_{2} \mathrm{CF}_{3}{ }^{-}$, and (iii) protonation of an iminophosphane precursor. A crystalline product was isolated in case of the tetrachloroaluminate of (4), and its structure was investigated by X-ray diffractometry. The results confirm the presence of discrete cations, featuring η^{2} attachment of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ligand to phosphorus in the solid state. In solution, according to the results of n.m.r. spectroscopic studies, the cation exhibits a fluxional structure with all five ring atoms becoming equivalent. Investigations of the chemical reactivity of (4) include acid-base reactions and studies of the co-ordination chemistry. In addition to activity as both Lewis acid and base, which is a common feature for phosphanylium ions, (4) is the first two-co-ordinate phosphorus cation which was shown to react as a Bronsted acid. Deprotonation initially gives the iminophosphane, $\mathrm{P}\left(=\mathrm{NBu}^{\mathrm{t}}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$, which further reacts with (4) to yield a polycyclic cation, (14), the structure of which was determıned by X-ray diffraction. Reactions of (4) with transition metals involve oxidative addition of complex metal hydrides and co-ordination to reactive metal centres to give cationic complexes which are isolobal to transition metal carbene complexes. No evidence was obtained in these reactions to indicate any activation of the $\mathrm{C}_{5} \mathrm{Me}_{5}-$ phosphorus bonds.

Compared with diamıno- and amino-substituted phosphanylrum tons (1) and (2). pentamethylcyclopentadienyl-substituted derivatives (3) were found to be adequately stable Cowley and

(1)

(2)

(3)
co-workers ${ }^{1.2}$ reported the generation of phosphanylium ions of the general formula [PR' $\left.\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]^{*}\left[\mathrm{R}^{\prime}=\mathrm{NMe}_{2} . \mathrm{CMe}_{3}\right.$. or $\mathrm{CH}\left(\mathrm{SiMc}_{3}\right)_{2}$] None of the products could be isolated. but nevertheless they were unequivocally characterized by means of n.m.r. spectroscopy and even when $R^{\prime}=$ alkyl were found to be stable for some time Based on spectroscopic evidence and molecular orbital calculatoons, the stabilization caused by the $\mathrm{C}_{5} \mathrm{Me}_{5}$ was attributed to multihapto-bonding between the $\mathrm{C}_{5} \mathrm{Me}$, moiety and phosphorus, giving rise to a delocalization of the positive charge on the ring. ${ }^{1}$ Results of semiempirical calculations on cations $\left[\mathrm{PR}^{\prime}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{*}\left(\mathrm{R}^{\prime}=\right.$ NH_{2} or Me$)^{1.2}$ as well as an ah intrio study on $\left[\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)_{2}\right]^{-3}$ both imply that η^{2} - or η^{3}-co-ordination of the ring is energetically favoured compared with η^{5} attachment. which has been verified for metallocenes of the elements Si, Ge, or Sn. ${ }^{4}$
Apart from the bonding situation of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ substituent. $\mathrm{C}_{\text {, }} \mathrm{Me}_{\text {s }}$-substituted two-co-ordinate phosphorus compounds are of considerable interest because of the ability of the ligand to

[^0]behave as a functıonal group. Thus, nucleophilic substitution of $\mathrm{C}_{5} \mathrm{Me}_{5}$ has been reported for a diphosphene, $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{P}=\mathrm{P}\left(\mathrm{C}_{5}\right.$. $\left.\mathrm{Me}_{5}\right)^{5}$ and activation of the $\mathrm{P}-\mathrm{C}_{5} \mathrm{Me}_{5}$ bond by transition metals gives simple access to transition-metal substituted phospha-alkenes ${ }^{6}$ and iminophosphanes. ${ }^{7}$

In this paper we report on the synthesis, structure, and reactivity of the first isolated $\mathrm{C}_{5} \mathrm{Me}_{5}$-substituted phosphanylium salt. $\left[P\left(\mathrm{NHBu}^{t}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]\left[\mathrm{AlCl}_{4}\right]$. The cation is unique in that it features not only a potentially reactive $\mathrm{P}-\mathrm{C}_{5} \mathrm{Me}_{5}$ unit, but also a primary amino ligand. In addition to reactivity as both Lewis acid and base, which is well established for the aminosubstituted cations (1) and (2). ${ }^{8}\left[\mathrm{P}\left(\mathrm{NHBu}^{t}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]^{+}$(4) is also the conjugate acid of the corresponding iminophosphane, $\mathrm{P}\left(=\mathrm{NB}_{4}{ }^{\prime}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)(5)$. and is therefore expected to behave as a Bronsted acid.

Several reactions of (4) with different bases were studied. Further investigations of the chemical behaviour of (4) were centred on the attempt to activate the $\mathrm{P}-\mathrm{C}_{5} \mathrm{Me}_{5}$ bond. yielding transition-metal substituted phosphanylium ions.

Results and Discussion

Preparatton of $\left[\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]^{-}$(4).-Three different routes have been followed for the preparation of $\left[\mathrm{P}\left(\mathrm{NHBu}^{1}\right)\right.$ $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$]. The first [method (a). Scheme 1], which is established as a general synthetic route to phosphanylium ions, ${ }^{8}$ involves $\mathrm{Al}_{2} \mathrm{Cl}_{6}$-promoted halide ion abstraction from the corresponding chlorophosphine precursor. (6). Pure (4) was solated as the tetrachloroalummate in $70-85^{\circ}$ o yield after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane at $0^{\circ} \mathrm{C}$.

Following an alternative procedure, displacement of the chlonde in (6) was achieved by reaction with silver trifluoromethanesulphonate, yrelding the phosphanylium salt and AgCl [method (h). Scheme 1].

Proton attack on the $\mathrm{P}=\mathrm{C}$ double bond in the phospha-
athene $\mathrm{P}\left[=\mathrm{C}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{2}\right]\left(\mathrm{C}_{4} \mathrm{Me}_{4}\right)$ using trifluoromethanesulphonic ach has been reported to result in formation of the corresponding cation. [$\left.\mathrm{P} ; \mathrm{CH}\left(\mathrm{OSO}_{2} \mathrm{CF}_{1}\right)_{2} i_{(}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]^{\circ}{ }^{\circ}$ We also investigated the analogous reactivity of the iminophosphane $P\left(=N B u^{\prime}\right)(C$, Mea). (5) " [method (w). Scheme 1] "P N mr spectroscopic montoring of the reactoon of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of (5) with one equisalent of $\left(\mathrm{F}_{4} \mathrm{SO}, \mathrm{H}\right.$ at $-7 \mathrm{X}^{\circ} \mathrm{C}$ resealed that (4) is indeed the major reation product $\left(>60^{\circ}\right.$. from integration of the n.m.r. spectrum). However, attempts to purfis the product falled due to the occurrence of undentified by-products, which could not be separated

Spectroncoph (haraterizatoon. Spectroscopic data are gasen in Table I Salts of $\left[\mathrm{AlCl}_{4}\right]$ were evidenced by the * Al

Scheme 1 .
n m.r spectra, wheh show a sharp senglet at of 103 p.p.m. ($\Lambda v_{1} 3$ $\mathrm{H} /$) characteristic of the $\left[\mathrm{AlCl}_{4}\right]$ ion. In the " $\mathrm{Pn} . \mathrm{m}$ r. spectrum. (4) gives rise to a single resonance which is shifted to higher field compared with the chlorophosphane precursor (6). A smilar chemtal shift sartation, being of oppostte sign to that found for amino-substtuted phosphanyltum ions," has also been obsersed for $[P(N M e 2)(C, M e,)]^{-1}$ and 15 attributable to multhapto-bonding between C, Me, and P. The phosphorus chemical shift further depends on the counter ion, which may be explaned in term of an equibbrium between a two-co-ordinate catton and a covalent compound. ${ }^{11}$ Scheme ?

Hence, according to "P n.m.r. data, a considerable amount of the cowalent specter in present for $X=O \mathrm{OSO}_{2}\left(\mathrm{~F}_{3}\right.$. while in
 follow from the : A 4 n m r. data

Both salts of (4) display the equivalence of all five ring carbon atoms and corresponding methyl groups Compared with the neutral compound ($\left.\left.\mathrm{C}_{,} \mathrm{Me},\right) \mathrm{P}=\mathrm{P}(\mathrm{C}, \mathrm{Me})\right)^{5} \quad \mathrm{P}[=\mathrm{C}(\mathrm{OSO}$. $\left.(F,)_{2}\right]\left(C^{\circ}, \mathrm{Me},\right)^{n}$ and $\mathrm{P}\left(=\mathrm{NBu} \mathrm{H}^{\prime}\right)(\mathrm{C}, \mathrm{Me},)^{4}$ deshielding of both the ring carbon and methyl proton resonances $t s$ obsersed wheh imples conoderable delocalization of positive charge on the ring and confirms the stabtising effect of the C, Me_{5} substituent The stgnal due to the NH proton in ($\mathbf{4}$) s found as a very broad resonance at $\delta 64 \mathrm{ppm}$ A downfield shift of more than 35 ppm relatase to the corresponding sgnal of the chlorophosphine (6) may be understood as a result of $\mathrm{P}-\mathrm{V}$ multuple bond character. leading to a agmificant bond anmotropy as well a to further charge delocalsation to nutrogen Varbable-temperature studtes on $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, solutions of (4) further resealed that the degeneracy in the 'H and ' C n m r spectra persust down to -78 and $-70^{\circ} \mathrm{C}$. respectacly. with a sgmificant broadening being observed for the revonance of the

Table I. Analytical and physcal data

			N.m.r data*				Analysin (", $)^{\text {a }}$		
Compound ${ }^{\text {a }}$	Mp ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Yield } \\ & \left({ }^{\circ} . .\right) \end{aligned}$	of "P1ppm	$J \mathrm{H} /$	of ${ }^{2} \mathrm{Al}$) p p.m.	$\begin{aligned} & \text { I.r data } \\ & \text { v(NH) } \mathrm{cm}^{\prime} \end{aligned}$	C	H	N
(4)	123	87	1067		102.0	3315 m	$\begin{gathered} 39.25 \\ (41.30) \end{gathered}$	$\begin{gathered} 6.85 \\ (6.90) \end{gathered}$	$\begin{gathered} 3.35 \\ (3+5) \end{gathered}$
(4)			1350						
(7)			54.4. 212	382 (PP)	1030				
(9)	112	93	162		102.x	3372 m			
(10)			630. 305	307 (PP)	1030	3308 m			
(13)			46.2. 394	23 (PP)	102.9				
(14)-0.5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	158	33	724. 157	36 (PP)	102 x	3320 m	$\begin{gathered} 48.75 \\ (4985) \end{gathered}$	$\begin{gathered} 765 \\ (7.35) \end{gathered}$	$\begin{gathered} 425 \\ (4.10) \end{gathered}$
(15)			-9. -14	223 (PP)	103.0				
(16)	153	88	212	225 (WP)	1029	3350 m			
(17a)	112-119 ${ }^{\prime}$		2979	404 (WP)	1029	3280 m			
(17b)	126-129	47	2683	583 (WP)	1030	3285 m	32.60	400	6.65
							(34.30)	(4.45)	(730)

"As $\left[\mathrm{AlCl}_{4}\right]$ salts unless otheruise stated "Recorded on a Varian $\mathrm{FT}-\mathrm{x}()$-A spectrometer in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or CDCl_{3}. standards were $85^{\prime \prime}$, $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\left[\mathrm{Al}\left(\mathrm{OH}_{2}\right)_{n}\right]^{3 *}:{ }^{1} \mathrm{H}$ and ${ }^{13}$ (data are given in the Experimental section ' Recorded from Nujol mulls betucen KBr pellets on a Perkin-Elmer 298 grating spectrometer ${ }^{4}$ Required values are given in parentheses 'As [OSO, CF, $]$ salt' With decomposition

Figure I. Plot of the crystal structure of $\left[\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{, ~ M e}\right)\right]\left[\mathrm{AlCl}_{4}\right]$ important bond length, (A) and anglev (${ }^{\circ}$) $\mathrm{P}(1) \mathrm{N}(1) 1.620(2)$.
 P(1)-N(1)-C(11) 127 7(3). N(1) P(1) C(1) 1051(1). C(2)-C(1)-C(1a)

nig carbon atoms. These results clearly rule out static η^{\prime} attachment of the C, Me، ligand to phosphorus, but indicate a fluxional molecule, which exhibits a sequence of degenerate [1.5]sigmatropic rearrangements ${ }^{1}$ involving species of lower hapticity. As this process is still rapid on the n.m.r. time-scale at $-70^{\circ} \mathrm{C}$. which suggests a very low barrier to migration. unequivocal assignment of the bonding situation in solution is not feasble: howeser. data are similar to the findings of Cowley and co-worker, ${ }^{\prime 2}$ on $[P R(C, M e)$,$] ions, and are consistent$ wth higher co-ordination at the phosphorus centre featuring η^{2} - or η^{3}-bonding to the $\mathrm{C}_{5} \mathrm{Me}$, ligand rather than σ -co-ordination. ${ }^{1}$
(irstal Struc ture of [$\left.\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right]\left[\mathrm{AlCl}_{4}\right]$. Crystalhne $\left[\mathrm{P}(\mathrm{NHBu})\left(\mathrm{C}_{3} \mathrm{Me}_{6}\right)\right]\left[\mathrm{AlC}_{4}\right]$ consists of discrete cations and $\left[\mathrm{AlCl}_{4}\right]$ antons, "th no stgnificant interactions between the different ions. The cation (Figure 1) exhibits crystallographic mirror symmetry. With the mirror plane passing through C(6). $C(3), P(1) . N(1) . C(11)$, and C(12) and bisecting C(1)-C(1a). The cyclopentadienyl ligand is η^{2} bound to the phosphorus atom, with the P(1)-C(1,1a) distance of 1.990(2) A showing considerable elongation with respect to the normal single bond distance. ${ }^{12}$ The five-membered ring is planar within expertmental error. and C-C distances are similar to those found for η^{2}-Cs Me , substituted compounds of Ge^{1113} and $\mathrm{Sn}^{11} .{ }^{1+}$ Also, only small distortions of the ('(ring)-C(methyl) bonds out of the nig plane. lying between 0° [at C(2) and C(3)] and 15.5° [at C(1)], are obsersed, thus suggesting ${ }^{13 / 4}$ nearly ideal $s p^{2}$ hy bridization for all five ring carbon atoms. The angle between the adjacent three- and five-membered rings, which amounts to 90.7°. is widened with respect to the analogous Ge^{13} and Sn compounds. ${ }^{14}$ revealing a lower tendency of the smaller P atom towards adopting a high co-ordination number. The t-butylamino ligand is oriented in such a way as to minimize steric interactions between the substttuents. The $\mathrm{P}(1)-\mathrm{N}(1)$ distance of $1.620(2) \mathrm{A}$ is similar to those found for diaminophosphanylium ions ${ }^{8}$ and is indicative of substantral multiple bond character. ${ }^{8}$ The position of the hydrogen atom has been located and confirms a planar co-ordination geometry around nitrogen; the low steric demand of hydrogen is reflected by the C(11)-$\mathrm{N}(1)-\mathrm{P}(1)$ angle of $127.7(3)^{\circ}$, which is considerably widened with respect to the value of 120° expected for $s p^{2}$ hybridization at nitrogen. In contrast, the low value of 106.2° for the bond angle at $\mathrm{P}(1)$ [defined as $\mathrm{A}-\mathrm{P}(1)-\mathrm{N}(1)$ where $\mathrm{A}=$ point bisecting $\mathrm{C}(1)-\mathrm{C}(\mathrm{la})]$ is attributable to a high p character of the

$$
\begin{aligned}
& {\left[\mathrm{C}_{5} \mathrm{Me}_{5}-\mathrm{P}_{\mathrm{PEt}_{3}}^{\mathrm{P}} \mathrm{NHBu}^{\mathrm{t}}\right]^{+}} \\
& \text {(7) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \\
& \begin{array}{l}
\left\lvert\, \begin{array}{l}
\left\lvert\, \begin{array}{l}
+Y \\
(-\mathrm{AICl}, Y)
\end{array}\right. \\
\text { (6) } \xrightarrow[Y=\mathrm{NEt}_{3}]{+(6)}
\end{array}\right.
\end{array}
\end{aligned}
$$

(10)

Scheme 3. $Y=$ thf. $\mathrm{NEt}_{3} . \mathrm{Ni}_{\left(\mathrm{CH}_{2}\right.}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N} . \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} . \mathrm{MeCN}$. or PPh_{3}

P(1)-C(1,Ia) bonds, and corresponds with the apparent sp p^{2} hybridization of the ring atoms. On the whole, the structural parameters of $\left[\mathrm{P}\left(\mathrm{NHBu}^{1}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]\left[\mathrm{AlCl}_{4}\right]$ are in good agreement with description of the $\eta^{2}-\mathrm{C}_{5} \mathrm{Me}_{5}$-phosphorus bonding stluation as a " π-complex of a main group element'.4
(hemical Reactrity: - (a) Acid-hase reactions. The Lewis and Bronsted acid behaviour of (4) was studied in reactions with different types of bases. 'Monofunctional' donors include neutral molecules possessing a single basic site, centred at an oxygen (tetrahydrofuran), nitrogen $\left[\mathrm{NEt}_{3} . \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right.$, (${ }_{4} \mathrm{H}_{5} \mathrm{~N} . \mathrm{NH}_{2} \mathrm{Bu}^{\prime}$. or MeCN]. or phosphorus $\left(\mathrm{PEt}_{3}\right.$ or PPh_{3}) atom. and the anionic $\mathrm{Li}\left[\mathrm{N}\left(\mathrm{S}_{1} \mathrm{Me}_{3}\right)_{2}\right]$. Ambivalent basicity is expected for the aminochlorophosphine (6) and iminophosphanes $P(=N R$) R. which exhibit different nucleophilic sites at P and N . Typically, reactions were performed by adding the base to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of (4) at $0^{\circ} \mathrm{C}$. and the products were identified by their ${ }^{31} \mathrm{P}$ and ${ }^{27} \mathrm{Al}$ n.m.r. spectra. The results contirm that reactions proceed ria either formation of Lewis acid base adducts or deprotonation of cation (4), thus establishing the expected ambivalent behaviour.

Lew is acid-base reactions were observed with neutral donors (see Scheme 3). However, only with soft bases is a complex between (4) and the donor formed [route (a)]. while in the case of hard donors the $\left[\mathrm{AlCl}_{4}\right]^{-}$anion can compete as a base, and the reaction proceeds via chloride transfer to (4). yielding (6), and a donor stabilized AlCl_{3} adduct [route (b)]. The composition of the reaction products follows from ${ }^{31} \mathrm{P}$ and ${ }^{27} \mathrm{Al}$ n.m.r. data. Difficulties were found for the chlorophosphane (6) and donors of rather low basicity. In the first case, fast exchange of a chloride ion is observed between (4) and (6), leading to coalescence of the n.m.r. signals of both species. Addition of weak donors MeCN or PPh_{3} to solutions of (4) only produces a change in ${ }^{31} \mathrm{P}$ chemical shift, which is accompanied by some line broadening. Formation of a definite acid-base adduct is not observed, and the findings may be interpreted as an equilibrium between the unperturbed molecules and a weak donor-acceptor complex. ${ }^{10}$ Interaction of (4) with t-butylamine proceeds via oxidative addition into a $\mathrm{N}-\mathrm{H}$ bond to yield the phosphonium ion $\mathrm{PH}\left(\mathrm{NHBu}^{t}\right)_{2}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)^{+}$(9), which was unequivocally
$P\left(=\mathrm{NBu}^{t}\right)\left[\mathrm{NBu}^{t}\left(\mathrm{~S}, \mathrm{Me}_{3}\right)\right]$ (11)

 $\left.\right|_{\downarrow} ^{(4)}+(5)$

 (12)

13)

(15)
(16)

Scheme 4.

characterized by \backslash pectroscopic data Although no intermediate could be detected by n m.r. spectroscopy, formation of a Lewn aed base adduct of (4) and the amine may be postulated as the initial step of the reaction
The reaction of (4) and triethylamine further differs from the general scheme in that (6) and a stable AICI , amme adduct are not formed. but instead a mixture of $\left[\mathrm{NHEt}_{3}\right]\left[\mathrm{AlCl}_{4}\right]$ and a product which is formulated as the phosphonium ton (10) on the basis of ${ }^{31} \mathrm{P}$. ${ }^{13} \mathrm{C}$. and ${ }^{1} \mathrm{H}$ n.m.r. data Generation of (10) may be explained by formation of (6) and an AlCl_{3} amine adduct in the first step. which then react, with a second cation of (4) to yield the final products. Although ,pectroscopic detection of (6) was not feasible in this case. further findings corroborate the proposed reaction mechansm (1) formation of (10) was also observed when a 1.1 mixture of (4) and (6) was treated with a solution containing one equivalent of $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ and trethylamine. indicating the instability of the AlCl_{3} amme adduct in this case. (ii) reaction of (4) with the conjugate base (5) was found to give a different product (see below), thus ruling out deprotonation of (4) by NEt_{3} as the first step. and (ili) completion of the reaction was obsersed after half an equivalent of NEt_{3} was added.

A different mechanism was established for the interaction of (4) with $\mathrm{Li}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ and the aminoimmophosphane (11). respectively (see Scheme 4). ${ }^{31} \mathrm{P}$ N.m.r. spectroscopic monitoring indicated formation of an identical transient intermediate in both cases, which subsequently rearranged to give a final product identified as the polycyclic cation (14). As formation of both (14) and its precursor were also observed in the reaction of (4) with the iminophosphane (5). without an additional base being present. occurrence of (5) as a common intermediate is assumed in all three cases. thus confirming the first example of a phosphanylium ton reacting as a Bronsted acid. For the further course of the reaction. formation of a Lewis

Figure 2. Plot of the crystal structure of the cation (14) Important bond distances (A) and angles $\left({ }^{\circ}\right) \mathrm{P}\left(1+\mathrm{N}(1) 1627(4)\right.$. $\mathrm{P}\left(1+\mathrm{N}_{(2)}\right)$ $166 \times(3) . P(2) N(2) 1755(4) . P(1)$ (12) $1 \times 26(4) . P(1)$ C(7) $1.818(41$. $P(2)$ C(1) $1 \times 93(4) . P(2)-(6) 1.896(4)$. (' (3) ($(x) 1646(6)$. ((4) C (5 (5$)$ $1325(6) . \quad C(9)-C(10) \quad 1310(6) \quad \mathrm{N}(2) \mathrm{P}(1)-\mathrm{N}(1) \quad 12162)$,
 102912). $P(2)$ N(2) $P(1) \quad 1010(2)$. (111 - $N(1)-P(1) \quad 1+013)$.

actd-base complex is proposed ria interaction of the iminonitrogen of (5) wth the electrophilic phosphorus centre of the cation Intramolecular stabilization of positive charge in the inttal adduct may be achered by interaction of the cationic centre with one of the eyclopentadienyl rings. so that on the basis of the ${ }^{31} \mathrm{P}$ n.m r data (AB pattern. $\delta_{4} 46.2 . \delta_{\mathrm{B}} 394 \mathrm{p} . \mathrm{pm}$. $J_{A B} 23 \mathrm{~Hz}$) the resulting intermedrate is tentatively formulated as an allyl cation (13). Finally, (14) is formed rat electrocychic rearrangement of (13). The formation of (13) during the reaction of (4) with (11) was accompanied by formation of an addtional product. which was detected by "P n.m.r. spectroscopy Both the charactersitic AB pattern $\dot{\delta}_{A}-9 . \delta_{\mathrm{H}}-14$ p p.m.. $J_{\mathrm{AB}} 23.3$ $\mathrm{H} /$) and the stotcherometry of the reaction provide evidence that its formation must arise from interaction of (11) with a phosphanylium ion. (12). resulting from proton transfer from (4) to (11) (Scheme 4) As comparable reactions of phosphanylium sons with organic or inorganic muluple bond, are known to give rise to three-membered ring systems." the reaction product was tentatively formulated as the cation (15) (Scheme 4). ${ }^{1 *}$

Isolation of pure. crystalline (14) was most easily achered from the direct reaction of (4) with (5). and its formulation avcertained by analytical and spectroscopic data (${ }^{11} \mathrm{P}$. ${ }^{13} \mathrm{C}$. ${ }^{1} \mathrm{H}$ nm r. ir) as well as an X-ray crystal structure determination. the results of which are depected in Figure 2. Solid (14). which was found to contan half a molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent per formula unit. consists of discrete cations and $\left[\mathrm{AIC} \mathrm{C}_{4}\right]$ anoons Both $\mathrm{P}-\mathrm{N}$ and $\mathrm{P}-\mathrm{C}$ bond distances at the four-co-ordinate phosphorus. $P(1)$ are significantly shortened wath respect to the corresponding bond distances involving $\mathrm{P}(2)$. Co-ordination geometry around both nitrogen atoms is planar. with the $\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(11)$ angle of $140.1(3)^{\circ}$ at the exocyclic nitrogen being considerably opened with respect to the expected value of 120°. Both eyclopentenyl rings feature significant devtations from planarity and display an 'envelope' conformation. thus enabling minimization of the electron repulsion of the two
double bonds. As a further consequence of repulsion of both the double bond π electrons and the two methyl substituents at $\mathrm{C}(3)$ and $\mathrm{C}(8)$, which are forced into an eclipsed configuration due to the rigidity of the ring skeleton, considerable elongation of the central C(3)-C(8) bond [1.646(6)A] occurs with respect to an expected C-C-distance of 1.54 A for a regular single bond.
Summarising the results of reactions of (4) with various bases, it can be concluded that the initial step may in general be identified as either a Lewis or Bronsted type interaction. Formation of cation (14) as the final product, following deprotonation of (4) implies that interaction of (4) and (5) must proceed signticantly faster than the proton transfer itself. Further studies on this type of reaction are necessary to decide whether this surprising effect arises from the unique qualities of the $\mathrm{C}_{5} \mathrm{Me}$, ligand. or may be established as a general feature of deprotonation reactions of phosphanylium ions. Furthermore. the proton transfer reaction between (4) and (11) is of considerable interest, as it also renders possible a comparison of the basicity of the two iminophosphanes. $t z$ (5) and (11). The aminoimunophosphane (II) was shown to be the stronger base, which is consistent with a more effective stabilization of positive charge in the corresponding acid, (12). and once more confirms the extraordinary stability of diamıno-substituted phosphanylium ions.
(b) Reactions with transition metal complexes. For conversion of the phosphanylium ion (4) mto transition metal substituted derivatives two different approaches seemed possible, tre. (i) displacement of the amino ligand ria reaction of (4) with complex metal hydrides. ${ }^{10}$ and (ii) activation of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ligand by insertion of a reactive transtion metal precursor ${ }^{6.7}$ In order to test the applicabiltty of (i) and (ii) to the synthesis of metallated phosphanylium ions, reactions of (4) with $\left[\mathrm{W}(\mathrm{CO})_{3} \mathrm{H}\left(\mathrm{C}, \mathrm{H}_{6}\right)\right]$ and $\left[\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}\right]$ were studied as representative examples. However, in no case was any evidence for the formation of metallated phosphanylium ions obtained.

While reaction of $\left[\mathrm{W}(\mathrm{CO})_{3} \mathrm{H}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]$ with ammophosphine precursors was reported to give neutral phosphido complexes $\left[\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{PR}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$] $t a\left(\right.$ elimination of amme. ${ }^{16}$ the analogous reaction of (4) exclusively yields the phosphonum cation (16) as the product of an oxidative addition reacton of (4) into the W-H bond (Scheme 5). Attempts to achieve subsequent reductive elimination of either $\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{H}$ or t -butylamine by thermolysis or base-catalysed elimination were unsuccessful. and only decomposition of (16) was observed. Reaction of (4) with [$\left.\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}\right]$ at $-20^{\circ} \mathrm{C}^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cleanly yielded the cationic phosphido complex (17a) cia displacement of one of the co-ordinated nitrile ligands. Decomposition occurred gradually on increasing the temperature to $20^{\circ} \mathrm{C}$. and a new complex. (17b), was formed by substitution of the trams-CO ligand by MeCN , which was liberated previously. Direct formation of (17b) was observed in the reaction of (4) with $\left[\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}\right]$ in acetonitrile at $60^{\circ} \mathrm{C}$. In contrast to the reported syntheses of transitionmetal substituted phospha-alkenes and iminophosphanes, for which comparable products were detected as transient intermediates. ${ }^{\text {6.- }}$ (17 a) and (17b) proved to be stable with respect to further elimination of nitrile ligands and transfer of the $\mathrm{C}_{5} \mathrm{Me}_{\text {s }}$ hgand from phosphorus to the metal. and except for partial decomposition no definite reaction was observed on prolonged heating in toluene or acetonitrile.

The formulations of (16). (17a), and (17b) were confirmed by analytical and spectroscopic data. For (16) the presence of a P-H bond follows from the large coupling of 539 Hz observed in the proton-coupled ${ }^{31} \mathrm{P}$ spectrum. According to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. data. the $\mathrm{C}_{9} \mathrm{Me}$, ligand adopts a static σ configuration, and different resonances are found for all five carbon atoms and methyl groups. respectively, due to the presence of a chiral centre at phosphorus. The i.r. spectrum displays three bands in

Scheme 5. $\mathrm{L}=\mathrm{MeCN}, \mathrm{X}=\mathrm{AlCl}_{4}$
the CO stretching region, the positions of which are in accord with a cationic complex of $\operatorname{type}\left[\mathrm{W}(\mathrm{CO})_{3} \mathrm{~L}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$. The ${ }^{31} \mathrm{P}$ chemical shifts of complexes (17a) and (17b) are found in a lowfield region characteristic for most neutral and cationic phosphanylium complexes. ${ }^{8}$ The large value of ${ }^{1} J_{\text {wp }}$ implies significant π character of the phosphorus-metal bond, ${ }^{16}$ confirming a close similarty of (17a) and (17b) with transtionmetal carbene complexes, which may be explained in terms of an isolobal analogy. ${ }^{17}$ The ${ }^{13} \mathrm{C}$ n.m.r. of both complexes exhibits three resonances for the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring carbons. confirming σ attachment of the ligands in this case. In the i.r. spectra, in addition to three [(17a)] or two [(17b)] intense bands in the CO stretching region. two weak bands are observed between 2278 and $2320 \mathrm{~cm}^{-1}$. which may be attributed to CN stretching vibrations of co-ordinated nitriles. In the case of ($\mathbf{1 7 b}$), a small splitting observed for both carbonyl bands indicates the presence of conformational isomers. Compared with the tris(acetonitrile) complex $\left[\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}\right]$. both absorptions are shifted to higher energy, thus indicating enhanced π acidity of cation (4) as a ligand in comparison with CO . Hence, the ease of displacement of the trans-carbonyl in (17a) may be attributed to stabilization of the metal-phosphorus back bonding due to the substitution of the trans-CO by the weaker π-acid MeCN . which is also reflected by the significant enhancement of the value of ${ }^{1} J_{w p}$ for (17b). The considerable electronic stabilization. which is expected as a result of the formation of a formal metal-phosphorus double bond ${ }^{16}$ in (17b), provides an explanation for the preference of the ligand-exchange reaction compared with migration of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ligand being favoured for co-ordinated phospha-alkenes and iminophosphanes. ${ }^{6.7 .11}$

Experimental

Operations were performed under dry argon. Solvents were dried over CaH_{2} (methylene chloride) or sodium-benzophenone ketyl (ethers or hydrocarbons) and distilled under argon before use. 'H N.m.r. spectra were recorded on a Varian EM 390 or Bruker AM 300 and ${ }^{13} \mathrm{C}$ n.m.r. spectra ($\delta /$ p.p.p.m. on a Varian FT80A spectrometer (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or CDCl_{3}). I.r. spectra were recorded from Nujol mulls between KBr pellets on a Perkin-

Table 2. Crystal data, structure analysis and refinement

Compound	$\begin{gathered} {\left[\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]-} \\ {\left[\mathrm{AICl}_{4}\right]} \end{gathered}$	$\begin{aligned} & {\left[\mathrm{AlCl}_{4}\right]} \\ & \text { salt of }(14) \end{aligned}$
Formula	$\begin{gathered} {\left[\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NP}\right]^{*}} \\ {\left[\mathrm{AICl}_{4}\right]^{-}} \end{gathered}$	$\begin{gathered} {\left[\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{P}_{2}\right]^{+}} \\ {\left[\mathrm{AlCl}_{4}\right]^{2}} \\ 0 \mathrm{SCH}_{2} \mathrm{Cl}_{2} \end{gathered}$
M	407.1	686.9
Crystal system	Monoclinic	Trichinic
Space group	C2m	PT
${ }_{4} \mathrm{~A}$	15.257(7)	$9.632(3)$
h A	$10674(6)$	11.893(4)
, A	14.434(10)	16.019(4)
x°	90	102.72(2)
β°	112.91(4)	97.85(2)
γ°	90	9441(3)
(nm^{3}	2.165	1.762
Z	4	2
D. $\mathrm{g} \mathrm{cm}^{3}$	125	1.29
$F(000)$	8.48	724
$\mu \mathrm{mm}{ }^{1}$	0.66	055
Crystal size (mm)	$05 \times 0.6 \times 06$	$04 \times 0.5 \times 0.6$
Colour	Yellow	Colourless
Number of reflections measured $\left(2 \theta_{\text {ma }}=50^{\circ}\right.$) 6064	8978
Symmetry-independent	1963	6198
'Observed' with $\|F\|>4 \sigma(F)$	1730	4502
Parameters	112	350
R	0048	0066
$\underset{\left.g F^{2}\right]}{R}\left[n^{\prime}=\sigma^{2}(F)+\right.$	0.050	0067
g	0.0002	0.0005

Table 3. Atomic co-ordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{4} \mathrm{Me}_{5}\right)\right]\left[\mathrm{AlCl}_{4}\right]$

Alom	1	1	$=$
Al	$1819(1)$	0	$2525(1)$
$\mathrm{Cl}(1)$	$624(1)$	0	$2938(1)$
$\mathrm{Cl}(2)$	$3062(1)$	0	$3896(1)$
$\mathrm{Cl}(3)$	$1813(1)$	$1(243(1)$	$1700(1)$
$\mathrm{P}(1)$	$5961(1)$	0	$2421(1)$
$\mathrm{N}(1)$	$6856(2)$	0	$3497(2)$
$\mathrm{C}(11)$	$7882(2)$	0	$3685(3)$
$\mathrm{C}(12)$	$7997(3)$	0	$2695(3)$
$\mathrm{C}(13)$	$8319(2)$	$1171(3)$	$1289(2)$
$\mathrm{C}(1)$	$4881(1)$	$693(2)$	$2703(2)$
$\mathrm{C}(2)$	$4312(1)$	$1064(2)$	$1686(2)$
$\mathrm{C}(3)$	$3974(2)$	0	$1091(2)$
$\mathrm{C}(4)$	$5118(2)$	$1523(2)$	$3603(2)$
$\mathrm{C}(5)$	$4137(2)$	$2390(2)$	$1333(2)$
$\mathrm{C}(6)$	$3378(3)$	0	$-11(3)$

Elmer 298 grating spectrometer. Microanalyses were performed by the microanalytical laboratories of the Universities of Bielefeld and Bonn.
Crystal structures of the tetrachloroaluminates of (4) and (14) were determined with a Nicolet $R 3 m$ diffractometer (ω scan mode. Mo- $K_{\text {, }}$ radiation, $\lambda=0.71069 \mathrm{~A}$), and solved and refined with SHELX 76 and SHELXTL. ${ }^{18}$ The structures were solved by direct methods. All non-hydrogen atoms were refined anisotropically [solvent C atom of (14) with site occupancy factor $=0.5$ isotropically]. Hydrogen atoms were localized by difference electron-density determination; N hydrogen atoms were refined free, and all others by using a 'riding' model.

Table 4. Atomic co-ordinates $\left(\times 10^{4}\right)$ for the $\left[\mathrm{AlCl}_{4}\right]^{-}$salt of (14)

Atom	x	y	z
Cl	- 1099 (5)	$5768(4)$	$9997(3)$
C'	-602(37)	4 695(29)	-363(19)
$P(1)$	1940 (1)	$8238(1)$	$7182(1)$
$P(2)$	3 446(1)	$9304(1)$	8 694(1)
N(1)	978(4)	8023 (3)	$6231(2)$
C(11)	-545(5)	$7719(4)$	$5804(3)$
C(12)	-805(6)	6416 (4)	$5443(3)$
C(13)	$-1558(5)$	$8125(5)$	6425 (3)
C(14)	-708(6)	$8331(5)$	5054 (3)
$\mathrm{N}(2)$	$2121(4)$	$9517(3)$	$7893(2)$
C(21)	$1502(5)$	$10652(4)$	7894 (3)
C(22)	152(7)	$10638(5)$	8286 (4)
C(23)	$1244(7)$	$10850(5)$	$6985(3)$
C(24)	$2551(7)$	11643 (4)	8467 (4)
C(1)	$2454(5)$	$7911(4)$	8789 (3)
C(2)	$1742(4)$	$7204(3)$	$7858(3)$
C(3)	$276-4(5)$	$6239(3)$	$7597(3)$
C(4)	$3411(5)$	$6116(4)$	8494 (3)
C(5)	$3338(5)$	$7044(4)$	$9112(3)$
C(6)	4663 (5)	8796 (3)	7886 (3)
C(7)	3746 (4)	$8022(3)$	$7032(3)$
C(8)	$3972(5)$	$6737(3)$	$7095(3)$
C(9)	$5418(5)$	$6937(4)$	$7657(3)$
C(10)	$5719(5)$	$8002(4)$	$8125(3)$
C(1)	$1421(6)$	$8337(4)$	$9413(3)$
C(2)	232(5)	6 694(4)	7850 (3)
C(3)	1947 (5)	$5085(4)$	7 055(3)
C(4)	4 029(7)	$5035(5)$	8 650(4)
C(5)	$3999(6)$	7278 (5)	$10049(3)$
C(6)	5413 (5)	$9933(4)$	7768 (3)
C(7)	$4119(5)$	8341 (4)	6 207(3)
C(8)	$3994(6)$	5946 (4)	6 199(3)
C(9')	6363 (5)	$5972(4)$	$7637(4)$
$\mathrm{C}\left(10^{\prime}\right)$	$6975(5)$	8474 (5)	$8824(3)$
Al	$6747(2)$	$2501(1)$	$6521(1)$
$\mathrm{Cl}(1)$	$7167(2)$	827(1)	5896 (I)
C(12)	$7882(2)$	$3739(1)$	$6032(1)$
Cl(3)	7367 (3)	$2824(2)$	$7868(1)$
Cl(4)	$4570(2)$	$2635(2)$	$6261(2)$

Details of the crystal data, structure analysis and refinement are given in Table 2 and atomic co-ordinates in Tables 3 and 4.

Additional material avallable from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Preparatuon of $\left[\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]\left[\mathrm{AlCl}_{4}\right]$ - The aminochlorophosphane (6$)^{9}(6.83 \mathrm{~g} .25 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ and added slowly to a vigorously stirred, icecooled suspension of $\mathrm{Al}_{2} \mathrm{Cl}_{6}(3.33 \mathrm{~g} .25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ cm^{3}). After the addition was complete, the light yellow solution as warmed to ambient temperature and concentrated in racuo to a final volume of $25 \mathrm{~cm}^{3}$. Addition of hexane ($75 \mathrm{~cm}^{3}$) produced a yellow precipitate. which was collected by filtration. Recrystallization was from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane. ${ }^{13} \mathrm{C}$ N.m.r.: $\delta 130.2$ (d, 10.2 Hz . C (ring)). 58.3 (d. $4.3 \mathrm{~Hz}, \mathrm{NC}$). 31.1 (d. 8.8 Hz NCMe_{3}). 10.4 (Me (ring)). ${ }^{1} \mathrm{H}$ N.m.r.: $\delta 6.4$ (broad, $1 \mathrm{H} . \mathrm{NH}$). 2.07 (d, $3.4 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{Me}$ (ring)). 1.36 (d, $1.7 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{NCMe})_{3}$).

Preparation of $\left[\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]\left[\mathrm{OSO}_{2} \mathrm{CF}_{3}\right]$,-Method A. Compound (6) (550 mg .2 mmol) was added to a stirred suspension of $\mathrm{Ag}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$ (510 mg . 2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$. After stirring for 30 min , precipitated AgCl was separated by centrifugation and the product characterized by ${ }^{31} \mathrm{P},{ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ n.m.r. spectroscopy.

Method B. $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(157 \mathrm{mg}, 1 \mathrm{mmol})$ was added to a solution of (5) (237 mg . 1 mmol) at $-78^{\circ} \mathrm{C}$. The reaction mixture was investigated by ${ }^{31} \mathrm{P}$ n.m.r. ($\delta 135$ p.p.m.). The ${ }^{13} \mathrm{C}$ and ' H n.m.r. were identical with (4).

Reactions of (4) with Bases.-General method. An ice-cooled solution of $\left[\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]\left[\mathrm{AlCl}_{4}\right](410 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ was treated with one equivalent of the corresponding base. In the case of tetrahydrofuran (thf) and pyridine, up to five equivalents of the base were added portionwise, and the reaction monitored by ${ }^{27} \mathrm{Al}$ n.m.r. spectroscopy after each step. The products were characterized by ${ }^{31} \mathrm{P}$ and ${ }^{27} \mathrm{Al}$ n.m.r. spectroscopy.
Reaction with thf. ${ }^{31} \mathrm{P}$ N.m.r.: $\delta 139.7 \mathrm{PCl}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$; ${ }^{2}{ }^{7} \mathrm{Al}$ n.m.r.: $\delta 102.0 \quad\left[\mathrm{AlCl}_{4}\right]{ }^{-}, 89.4 \quad\left[\mathrm{AlCl}_{3}(\right.$ thf $\left.)\right], 65.7$ $\left[\mathrm{AlCl}_{3}(\mathrm{thf})_{2}\right](8 \mathrm{a}) .^{19 a}$
Reaction with 1,4 -diazobicyclo[2.2.2]octane. ${ }^{31} \mathrm{P}$ N.m.r.: δ $139.7 \mathrm{PCl}\left(\mathrm{NHBu}^{1}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$: ${ }^{27} \mathrm{Al}$ n.m.r.: no resonance observed due to insolubility.
Reaction with pyridine (py). ${ }^{31} \mathrm{P}$ N.m.r.: $\delta 139.7 \mathrm{PCl}\left(\mathrm{NHBu}^{\prime}\right)$ $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$: ${ }^{27} \mathrm{Al}$ n.m.r.: $\delta 101.0\left[\mathrm{AlCl}_{4}\right]^{-}, 25.0\left[\mathrm{AlCl}_{2}(\mathrm{py})_{4}\right]^{+}$ (8b). ${ }^{19 b}$
Reaction with $\mathrm{PCl}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) .{ }^{31} \mathrm{P}$ n.m.r.: $\delta 128.4$ (broad singlet): ${ }^{27} \mathrm{Al}$ n.m.r.: $\delta 102.7\left[\mathrm{AlCl}_{4}\right]^{-}$.
Reaction with $\mathrm{NH}_{2} \mathrm{Bu}^{t}$. The amine $\mathrm{NH}_{2} \mathrm{Bu}^{\prime}(365 \mathrm{mg}, 5 \mathrm{mmol})$ was added tia a syringe to a solution of $\left[\mathrm{P}\left(\mathrm{NHBu}^{1}\right)\left(\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{Me}_{5}\right)\right]\left[\mathrm{AlCl}_{4}\right](2.03 \mathrm{~g} .5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. The volume of the colourless solution was reduced to $5 \mathrm{~cm}^{3}$ in vacuo, and hexane ($15 \mathrm{~cm}^{3}$) was added. The product was precipitated as a colourless, microcrystalline solid. Filtration and drying in tacuo gave pure (9). ${ }^{13} \mathrm{C}$ N.m.r.: 8143.4 (d, $8.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}$ ring). 132.4 (d, $3.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}$ ring). 56.6 (d. $64.5 \mathrm{~Hz}, \mathrm{PC}$), 54.6 (d, $5.1 \mathrm{~Hz}, \mathrm{NC}$), 30.8 (d, $4.5 \mathrm{~Hz}, \mathrm{NCMe}_{3}$). 15.2 (d, 1.8 Hz, PCMe ring). 10.4 (=CMe ring): ${ }^{1} \mathrm{H}$ n.m.r.: $\delta 7.18$ (dt, ${ }^{1} J_{\text {PH }} 539 \mathrm{~Hz} .{ }^{2} J_{\text {HH }} 8.1 \mathrm{~Hz} .1 \mathrm{H}$, PH), 2.46 (broad t. $\left.{ }^{2} J_{\mathrm{PH}}={ }^{2} J_{\mathrm{HH}} 8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}\right) ; 1.97(6 \mathrm{H})$ and $1.90(\mathrm{~d} .4 .3 \mathrm{~Hz}, 6 \mathrm{H})$ (=CMe ring): 1.42 (d. $23.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCMe}$ ring). 1.34 (d. $1.4 \mathrm{~Hz}, 18 \mathrm{Hr} \mathrm{NCMe}_{3}$).
Reaction w ith NEt_{3}. After evaporation of all volatiles in cacuo, a pale yellow. oily residue remained. which was shown to consist ff a mixture of ($\mathbf{1 0}$) and $\left[\mathrm{NHEt}_{3}\right]\left[\mathrm{AlCl}_{4}\right]$ by means of n.m.r. ipectroscopy. ${ }^{13} \mathrm{C} \mathrm{N.m.r.:}\left[\mathrm{NHEt}_{3}\right]^{-}: \delta 46.8$ (NC), 9.6 (NCC); 10): $\delta 145.4$ (dd, $\sum J_{\mathrm{PC}} 12.5 \mathrm{~Hz}$), 143.5 (dd, $\sum J_{\mathrm{PC}} 10 \mathrm{~Hz}$), 139.4 dd. $\Sigma J_{\mathrm{PC}} 8.0 \mathrm{~Hz}$). 1389 (dd. $\Sigma J_{\mathrm{PC}} 14 \mathrm{~Hz}$), 137.5 (dd, $\Sigma J_{\mathrm{PC}} 8.0$ $\mathrm{Hz}) .136 .2(\mathrm{~d} .9 .0 \mathrm{~Hz}) .134 .9\left(\mathrm{dd} . \sum J_{\mathrm{PC}} 6.0 \mathrm{~Hz}\right.$), and $132.8(\mathrm{~d}, 1.0$ Hz) (C=C ring): $60.9\left(\mathrm{dd}, \sum J_{\mathrm{PC}} 19 \mathrm{~Hz}\right.$) and $59.2\left(\mathrm{dd}, \sum J_{\mathrm{PC}} 35 \mathrm{~Hz}\right.$) (PC ring): 54.6 (dd, $\sum J_{\text {PC }} 15 \mathrm{~Hz}$) and $53.0\left(\mathrm{dd} . \sum J_{\mathrm{PC}} 22 \mathrm{~Hz}\right.$) (NC): $32.1(\mathrm{~d} .3 .0 \mathrm{~Hz})$ and $32.0\left(\mathrm{dd} . \sum J_{\mathrm{PC}} 8.0 \mathrm{~Hz}\right)\left(\mathrm{NCMe} e_{3}\right) ; 24.5$ (d, 20 $\left.\mathrm{Hz}, \mathrm{PCH}_{2}\right): 16.1\left(\mathrm{dd}, \sum \mathrm{J}_{\mathrm{PC}} 39 \mathrm{~Hz}\right)$ and $15.9\left(\mathrm{dd}, \sum J_{\mathrm{PC}} 2.0 \mathrm{~Hz}\right)$ (PCMe ring): 12.6 (dd, $\sum J_{\mathrm{PC}} 4,0 \mathrm{~Hz}$), 12.3, 11.8 (d, 3.0 Hz), 11.7 (dd, $\Sigma J_{\mathrm{PC}} 4.0 \mathrm{~Hz}$). $11.4\left(\mathrm{~d}, \Sigma J_{\mathrm{PC}} 2.0 \mathrm{~Hz}\right.$). $11.1\left(\mathrm{dd}, \Sigma J_{\mathrm{PC}} 2.0 \mathrm{~Hz}\right.$), and 10.8 (d. $\sum J_{\mathrm{Pc}} 1.0 \mathrm{~Hz}$) (Me ring). ${ }^{1} \mathrm{H}$ N.m.r.: $\left[\mathrm{NHEt}_{3}\right]^{+}: \delta$ 10.54 (broad. $1 \mathrm{H}, \mathrm{NH}$). 3.14 (dq. ${ }^{3} \mathrm{~J}_{\mathrm{HH}} 6$ and $8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{NCH}_{2}$). 1.37 (t. $8 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{NCMe}$); ($\mathbf{1 0}$): $\delta 8.31$ (broad, 1 H) and 2.57 (broad d. $3 \mathrm{~Hz}, 1 \mathrm{H})(\mathrm{NH}), 3.48\left(\mathrm{~d}, 16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}_{2}\right)$ (part of an AB spin system; the second resonance is masked under the CH_{2} resonance of $\left.\left[\mathrm{NHEt}_{3}\right]{ }^{*}\right), 2.03-1.67(\mathrm{~m}, 27 \mathrm{H}, \mathrm{CMe}$ ring); 1.28 $(9 \mathrm{H})$ and $1.10(\mathrm{~d}, 1.0 \mathrm{~Hz}, 9 \mathrm{H})\left(\mathrm{NCMe}_{3}\right)$.
Reaction with $\mathrm{Li}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$. Solid $\left[\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{Me}_{5}\right)\right]\left[\mathrm{AlCl}_{4}\right](410 \mathrm{mg} .1 \mathrm{mmol})$ was stirred for 2 h with a solution of $\mathrm{Li}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right](170 \mathrm{mg} .1 \mathrm{mmol})$ in toluene $\left(4 \mathrm{~cm}^{3}\right)$.
Reaction with $\mathrm{P}\left(=\mathrm{NBu}^{1}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ (5). Compound (5) (1.19 g .5 $\mathrm{mmol})$ was added cia a syringe to a solution of $\left[\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5}{ }^{-}\right.\right.$ $\left.\left.\mathrm{Me}_{5}\right)\right]\left[\mathrm{AlCl}_{4}\right](2.04 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. Quantitative formation of (13) after 10 min was indicated by ${ }^{31} \mathrm{P}$ n.m.r. spectroscopy. After 2 h additional stirring, the volume was reduced m cacuo to $5 \mathrm{~cm}^{3}$, and hexane ($15 \mathrm{~cm}^{3}$) was added. The prectpitate was filtered off and recrystallized twice from CHCl_{3}-hexane. After drying in cacuo. pure (14) was
obtained as colourless crystals. ${ }^{13} \mathrm{C}$ N.m.r.: 8139.4 (dd, 10.8 and $4.6 \mathrm{~Hz}), 129.8$ (dd, 8.9 and 3.9 Hz) (C=C); 67.3 (d, $19.3 \mathrm{~Hz}, \mathrm{C}$ allyl); $60.8(\mathrm{dd}, 18.1$ and 10.9 Hz) and $59.6(\mathrm{~d}, 86.4 \mathrm{~Hz})(\mathrm{PC}) ; 58.3$ (d, 9.7 Hz) and $58.0(\mathrm{~d}, 10.2 \mathrm{~Hz}$) (NC); 32.7 (dd, 8.1 and 2.2 Hz) and 33.4 (d, 2.8 Hz (NCMe_{3}); 20.6 (d, 26.1 Hz), 19.1, 16.5, 14.3, and 11.6 (CMe). 'H N.m.r.: $\delta 3.06$ (broad, 1 H, NH); 1.66 (d, $0.6 \mathrm{~Hz}, 9 \mathrm{H}$) and $1.53(\mathrm{~d}, 1.4 \mathrm{~Hz}, 9 \mathrm{H})\left(\mathrm{NCMe} e_{3}\right) ; 1.57(\mathrm{~d}, 2.0$ $\mathrm{Hz}, 6 \mathrm{H}), 1.51(6 \mathrm{H}), 1.27(\mathrm{~d}, 16.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, 17.8 \mathrm{~Hz}, 6 \mathrm{H})$, and 1.17 (d, $1.0 \mathrm{~Hz}, 6 \mathrm{H})(\mathrm{CMe})$.

Tricarbonyl(η^{5}-cyclopentadienyl) $)$ (σ-pentamethylcyclo-pentadienyl)(t-butylamino) phosphonio tungsten (0) Tetrachloroaluminate, (16).-A solution of $\left[\mathrm{W}(\mathrm{CO})_{3} \mathrm{H}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right](1.00 \mathrm{~g}, 3$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise to an ice-cooled solution of $\left[\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]\left[\mathrm{AlCl}_{4}\right](1.22 \mathrm{~g}, 3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$. After warming to room temperature, the solvent was evaporated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitated by addition of hexane. Filtration and drying in vacuo afforded $1.95 \mathrm{~g}(88 \%)$ of (16) as a bright yellow solid. ${ }^{13} \mathrm{C}$ N.m.r.: $\delta 217.4(\mathrm{~d}, 2.7 \mathrm{~Hz}), 214.3(\mathrm{~d}, 26.7 \mathrm{~Hz})$, and 212.1 (d, 21.9 Hz$)(\mathrm{CO}) ; 144.1(\mathrm{~d}, 8.6 \mathrm{~Hz}, 142.0(\mathrm{~d}, 6.9 \mathrm{~Hz}), 138.6$, and $134.0(\mathrm{~d}, 3.4 \mathrm{~Hz})(\mathrm{C}=\mathrm{C}) ; 93.3\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 62.9(\mathrm{~d}, 15.2 \mathrm{~Hz}, \mathrm{PC}), 55.3$ (d, 12.1 Hz, NC), $31.5(\mathrm{~d}, 2.8 \mathrm{~Hz}, \mathrm{NCMe} 3$); $17.9(\mathrm{~d}, 5.9 \mathrm{~Hz}), 13.0$, $11.9,11.3(\mathrm{~d}, 1.8 \mathrm{~Hz})$, and $10.9(\mathrm{~d}, 1.3 \mathrm{~Hz})$ (Me ring); ${ }^{1} \mathrm{H}$ N.m.r.: δ 7.43 (dd, ' $\left.J_{\mathrm{HP}} 392 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}} 11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PH}\right), 5.97\left(5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$; $1.96(3 \mathrm{H}), 1.80(\mathrm{~d}, 5.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(3 \mathrm{H}), 1.74(\mathrm{~d}, 6.7 \mathrm{~Hz}, 3 \mathrm{H})$, and $1.50(\mathrm{~d}, 17.0 \mathrm{~Hz}, 3 \mathrm{H})(\mathrm{Me}$ ring $), 1.41\left(9 \mathrm{H}, \mathrm{NCMe}_{3}\right)$. Ir.: $\mathrm{v}(\mathrm{CO})$ at $2046 \mathrm{~s}, 1980 \mathrm{~s}$, and $1960 \mathrm{vs} \mathrm{cm}^{-1}$.

Preparation of Complex (17a).-The compound [W(CO) ${ }_{3}$ $\left.(\mathrm{MeCN})_{3}\right](391 \mathrm{mg}, 1 \mathrm{mmol})$ was treated with a solution of [$\left.\mathrm{P}\left(\mathrm{NHBu}^{\prime}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]\left[\mathrm{AlCl}_{4}\right]$ ($406 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 cm^{3}) at $-20^{\circ} \mathrm{C}$. After stirring the deep red solution for 1 h at $-20^{\circ} \mathrm{C}$, volatiles were evaporated in vacuo, to give (17a) as a red microcrystalline solid. ${ }^{13} \mathrm{C}$ N.m.r. $\left(-40^{\circ} \mathrm{C}\right)$: $\delta 206.1$ and $205.5(\mathrm{~d} .9 .3 \mathrm{~Hz})(\mathrm{CO})$: $139.7(\mathrm{~d} .3 .4 \mathrm{~Hz})$ and $137.1(\mathrm{C}=\mathrm{C}) ; 128.1$ (CN), 76.6 (broad, PC), 56.1 (d, $1.2 \mathrm{~Hz}, \mathrm{PNC}$), 30.3 (d, 4.3 Hz , CMe ${ }_{3}$), 16.7 (d, 11 Hz, PCMe ring); 10.4 and 10.3 ($=$ CMe ring); 3.9 (NCMe). ${ }^{1} \mathrm{H}$ N.m.r.: $\delta 6.06$ (d, $\left.10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 2.58$ (6 H , $\mathrm{CH}_{3} \mathrm{CN}$), 1.85 (broad, 15 H , Me ring), $1.29\left(9 \mathrm{H}\right.$, Me ring). ${ }^{27} \mathrm{Al}$ N.m.r.: δ 102.9. I.r.: $v_{\text {cN }} 2320 \mathrm{w}, 2278 \mathrm{w}$; vco $2008 \mathrm{~s}, 1935 \mathrm{~m}$, and $1890 \mathrm{~s} \mathrm{~cm}^{-1}$.

Prepuration of Complex (17b).-(a) $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of (17a) was allowed to warm to $20^{\circ} \mathrm{C}$ and kept at this temperature for several days. Conversion to (17b) was monitored by ${ }^{31} \mathrm{P}$ n.m.r. spectroscopy.
(h) A solution of $\left[\mathrm{P}\left(\mathrm{NHBu}^{\mathrm{t}}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]\left[\mathrm{AlCl}_{4}\right](1.01 \mathrm{~g}, 2.5$ $\mathrm{mmol})$ and $\left[\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}\right](0.97$ g. 2.5 mmol$)$ in acetonitrile ($25 \mathrm{~cm}^{3}$) were refluxed for 2 h until a deep red solution was formed and evolution of CO had ceased. After cooling to room temperature, the solvent was evaporated in racuo. Recrystallization of the red, oily residue from toluene at $-20^{\circ} \mathrm{C}$ gave a pink, microcrystalline powder, which was once more recrystallized from a CHCl_{3}-hexane mixture, to give (17b) as red needles. ${ }^{13} \mathrm{C}$ N.m.r.: $\delta 217.4(\mathrm{~d} .16 .9 \mathrm{~Hz}, \mathrm{CO}) ; 139.5$ and $137.9(\mathrm{C}=\mathrm{C})$: 125.2 and $124.8(\mathrm{MeCN}): 80.5$ (broad. PC), 53.6 (PNC). 31.8 (d. 1.3 Hz (NCMe_{3}) , 18.4 (broad. PCMe ring), 10.9 (broad, $=\mathrm{CMe}$ ring); 4.6 and $4.3(\mathrm{MeCN}) .{ }^{1} \mathrm{H}$ N.m.r.: $\delta 6.37$ (d, $5.9 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{NH}): 2.62(3 \mathrm{H})$ and $2.48(6 \mathrm{H})(\mathrm{MeCN}): 1.84$ (broad, 15 H . Me ring), $1.26\left(9 \mathrm{H}\right.$, Me ring). ${ }^{27} \mathrm{Al}$ N.m.r.: δ 103.0. I.r.: $v_{\mathrm{CN}} 2316 \mathrm{w} .2286 \mathrm{w} \mathrm{cm}^{-1}$: $v_{\mathrm{Co}} 1929 \mathrm{~s}, 1922 \mathrm{~s}, 1852 \mathrm{~s}$, and $1840 \mathrm{~s} \mathrm{~cm}^{-1}$.

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

References

IS.G Baxter. A H Cowley, and S. K Mehrotra. J. Am Chem. Sor.. 1981. 103.5572

24 H Cowley and S K. Mehrotra. J fm. (hem Sir. 1983, 105, 2074
3 T. J Lee. H F Schacfer III. and E A Magnusson. J Am. Chem Sin . 1985. 107. 7239

4 P Jutn. fid Organomet. Chem, 1986, 26, 217 and refs theren
5 P Jutzi. L' Mever. B Krehs, and M Dartmann, Angen Chem. Int Eid Engl. 1986. 25. 919
6 D Gudat. F veche. B Krebs, and M Dartmann. Chuma, 1985. 39. 277

- D Gudat and E Neche. J Chem. Six., Chem Commun., 1987. 10
$8 \& \mathrm{H}$ Cowley and R A. Kemp, (hem Ret $1985.85,367$ and refs therein
4 D Gudat. F Nieche. B Krebs, and M Dartmann. Organometallus, 1986. 5. 2376

100 Dahl. Tetrahedron Lett. 1982. 23, 1493
11 R F Childs. Tetraheilron. 19x2. 38. 567
12 D F C Corbridge. The Structural Chemistry of Pho<phorus. Elsevier. Amoterdam. 1974

13 P Jutzi, B Hampel, K Stroppel, C Kruger. K Angermund, and P Hofmann, Chem Ber, 1985, 118, 2789. P. Juta1. B. Hampel. M. B Hursthouse, and A J Howes. J. Organomel ('hem. 1986. 299, 19; P. Jut/1. B Hampel. M B Hursthouse, and A J Howes, Organtometalluc ,. 1986, 5, 1944
141 X Kohl, E Schluter, P Juta. C Kruger, C; Wolmershauser, P Hofmann. and P Stauffert. Chem Ber.. 1984, 117. 1178
15 F Nicchc. D Gudat, and E Symalla, Angen. Chem. Int Ed. Engl. 1986. 25. 834

16 I Grob, K Jorg. K Fiederling. A Gottein. W Malisch, and R. Boese, fngen (hem.. Int. Ed Engl. 1984, 24, 738.
17 R Hoffman. thee't. Chem., Int. Ed Engl, 1982. 21. 711.
18 (; M Sheidrick. SHELX 76, A program for structure determination. C'naservity of Cambridge. 1976. G; M Sheldrich. SHELXTL. An integrated wivtem for solving. refining and displaying crystal structures from diffraction data. L'misersity of Geittingen. 1978
$19(a) \mathrm{H}$ Noth. R Rurlander, and P Wolfgardt. / Vaturforsch. Teil B 19K2.37. 29, (h) P Pallmann. K Hensen. and J W Bats, ihud. p 1312

Recelted 22nd Fibruary 1988. Paper 800689 J

[^0]: ${ }^{+}$Supplementari data at alable see Instructions for Authors. J. Chem. Sex.. Dalton Trans.. 1989. Issue 1. pp. xsu-ix.

