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ABSTRACT. The magnetosphere of a rapidly rotating, strongly magnetized 
neutron star with aligned magnetic and rotational axes (parallel rotator) is mod­
elled numerically. Including the radiation of the particles accelerated to relativistic 
energies as an efficient damping mechanism, we obtain a quasi-stationary self­
consistent solution to this classical problem. The numerical simulation, which 
was started from the well-known vacuum solution, yields a global magnetospheric 
structure that can be characterized by two regions of oppositely charged particles, 
which eventually produce a relativistic pulsar wind, separated by a vacuum gap of 
considerable extent. 

1. INTRODUCTION 

The problem - fundamental to the physics of pulsars - of determining the global 
structure of the magnetospheres of rapidly rotating strongly magnetized neutron 
stars has not yet been solved self-consistently (for a review cf. Michel 1982), but 
it must be solved before any conclusive interpretation can be given to the large 
amount of detailed experimental data on pulsar radiation (cf. e.g. the contribu­
tion by D. Backer in these proceedings). Apart from this reason, it is 'I •.• jU$t 
intolerable that we 3hould not know how a rotating magnetized neutron .dar come! 
to term. with it. environment" (Mestel 1981). 

We concentrate here on the self-consistent modelling of the magnetosphere of 
an aligned rotator, where the rotation axis is parallel to the magnetic axis of the 
neutron star. In this case, the homopolar induction, which should be responsible 
for populating the magnetosphere with charged particles pulled out from the neu­
tron star surface via field emission (Goldreich and Julian 1969), can be studied 
in purity, whereas electromagnetic wave effects are neglected. The main questions 
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to be answered nre the following: What is the global structure of the electric and 
the magnetic field? How are the charge and current density distributed that pro· 
duce these fields (together with the star)? Which particle populations exist in the 
magnetosphere? 

2. BASIC EQUATIONS 

2.1. Maxwell and Vlasov Equations 

In the stationary axially symmetric case the electromagnetic ficlds E and B in the 
pulsar magnetosphere can be described (in cylindrical coordinates p,l', z) by the 
electrostatic potential ~(p, z), the magnetic flux function W(p, z) and the poloidal 
magnetic field B",(p,z): E = -'V~ and B = (l/p)'VW x e", + B"'e .... The charge 
density Pc and the current density j determine the electric potential via the Poisson 
equation and the magnetic field via Ampere's law, which here read in suitable units 
such that all quantities are dimensionless: 

~~ = -p,; 

:z(pB",) = -pjp; 

(~- ~:p)W = -pj", 

:z (pB",) = -pj, 

(Ia) 

(Ib) 

The magnetosphere is formed by a collisionlcss plasma, in which the particles 
are expected to be extremely relativistic due to the huge electric and magnetic 
fields (the homopolar induction voltage between pole and equator of the neutron 
star is typically of the order 10" - IOUV). The charge and CUrTent densities arc 
derived from the zeroth and first momentum of the particle distribution function 

p, = j f(r,p)d3p; j= jVf(r,p)d'p, (2) 

where the distribution function !(r, p) is determined by the Vlasov equation 

v o! + ~ [(E + v x B + radiat.ion)!) = O. 
Or op dampmg 

(3) 

The velocity v is given by v = p/";(.' + p'), where the dimensionless parameter 
e is defined by 

2mc' 
E= I 

eBoa'O 
(4) 

i.e . by the ratio between rest mass energy and homopolar induction energy (Eo is 
the polar magnetic field strength, a is the radius and 0 is the angular velocity of 
the neutron star). Because typical values for. are extremely small (e - _10- 12 for 
electrons, • - 10-· for protons), the particles are expected to become extremely 
relativistic, since their maximum Lorentz factors should be comparable with 1/1.1, 



725 

at least if the radiation reaction during phases of acceleration can be neglected. 
Although this is not the case, as will be discussed in tbe following, it is nevertheless 
convenient to use a scaled Lorentz factor r = e'Y that never exceeds unity. 

2.2. Particle Motion in the Limit of Strong Radiation Damping 

Studying tbe trajectories of particles in realistic pulsar vacuum fields, one can get 
an idea of how strongly tbe radiation reaction does affect tbe particle motion. 

The Lorentz-Dirac equation of motion in the Landau approximation (d. Lan­
dau and Lifshitz 1975) can be written (for 1<1 <t: 1) as 

with 

v=.!.F; r=E · v-Dor 2F 2 
r 

F=E+vxB-v(E.v) . 

Tbe dimensionless damping constant Do, which is defined by 

(5a) 

(5b) 

.2 n 
Do = 671"'0 me'<' ' (6) 

characterizes the strength of the radiation reaction. For typical pulsar parameters, 
its value is of the order of Do - _1014 for electrons, and Do - 10 for protons. 
Thus, at least for the electrons, the radiation reaction force dominates the particle 
motion. Large values of IDol imply that the factor of Do in (5a) always remains 
very small; this leads us to the assumption, which was confirmed by numerical 
integration of eqs. (5) (d. Herold et al. 1985, Herold et al. 1986), that during the 
motion the condition F "" 0 is fulfilled, which means that the radiation reaction 
is locally minimized along the trajectory. This is a condition for the velocity and 
yields, for given E and B fields 

v= B2~p2[EXB+ !(E . B)B+PE] (7a) 

with 

p2 = ~(E2 _ B2) + H(E2 _ B2)2 + 4(E. B)2]!. (7b) 

Thereby, we have obtained a local velocity field v = v(E, B) and thus a fluid-like 
picture ror the particle motions in the magnetosphere. The main characteristics 
of this "damping-free" motion is that the particles try to come to rest in surfaces 
where E . B = O. 

3. NUMERICAL APPROACH AND RESULTS 

Based on these results, the task to determine a self~consistent solution is simpler 
than before, but still difficult due to the great non-linearity of the problem. Our 
approach is based on the idea to start from the vacuum solution and to fill up 
the magnetosphere witb the particles tbat are pulled out from the neutron star 
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surface. This is not a real time-dependent calculation, since we assume that the 
electric field is always described by an electrostatic potential, but for transporting 
tbe charge with the velocity (7) we need to solve the time-dependent continuity 
equation 

P. + div(p, v) = 0 (8) 

and therefore E cannot be omitted in Ampere's law. Thus eqs. (Ib) have to be 
replaced by 

( 
2 0) ( ) (OJ, Ojp) 6. - -- pB = p - - - . 
pop ., op oz 

(9) 

[ Actually, for each particle species the corresponding continuity equation is solved 
as the velocity (7a) depends on the particle charge: the sign of the quantity P 
(P = E · v) from (7b) has to be identical to the charge sign. The charge and 
the current density, which enter Maxwell's equations, are calculated by summation 
over both particle species. I 

In summary, we solve at each time step the elliptic equations (Ia) with Dirich­
let boundary conditions for 4> and >l' on the star - we assume a homogeneously 
magnetized neutron star - (the change of 4> at infinity has to be derived from Am­
pere's law) and equation (9) with the Neumann boundary condition 8(pB.,,)/Or = 
pj, on the star 's surface, where the simple emission law j = uEU is assumed. The 
three elliptic equations are solved by successive over·relaxation (SOR) in a vector· 
izable checkerboard scheme. For the continuity equations an explicit discretization 
in time with 2-dimensional Flux Corrected Transport is used in order to preserve 
steep gradients in the charge density. A more detailed description of our numerical 
methods is given in Ertl (1988). 
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The results described in the following were obtained for a rapid rotator with 
TO = (flo)/e = 0.1 as ratio of stellar radius and light cylinder radius (cf. also Ert! 
et al. 1987). We start with the vacuum fields of an uncharged aligned rotator, 
i.e. an electric quadrupole field and a magnetic dipole field resulting in E . B < 0 
everywhere. Therefore, only negative particles can be emitted and then transported 
along the magnetic field lines towards the equator where they accumulate. This 
causes a change in the electric field such that the E . B = 0 surface rises from the 
equator towards the polar field line forcing the negative particles to follow it. As 
soon as E· B > 0 at some part of the star's surface positive particles can enter the 
magnetosphere. 

Figs. 1 and 2 show a snapshot of this initial phase at t = 0.5 (one revolution 
of the star corresponds to t = 2,,). The cloud of positive particles has evolved 
to a sizable extent, although the negative charge density still dominates. After 
about one revolution the magnetosphere has developed a structure which already 
resembles the final situation. This quasi-stationary end phase is depicted (after 
35 revolutions) in Figs. 3 - 6, where the charge densities and the contour lines 
or the electrostatic potential and of E . B are shown. One recognizes two regions 
of charged particles (the negative ones in a cone around the polar field line, the 
positive ones around the equatorial plane) separated by a vacuum gap in between. 
(Vacuum gaps in non-selfconsistent models are not neWj for a more recent model 
with such a feature, cf. Mestel et al. 1985.) In this vacuum gap the parallel electric 
field Ell = (E· B)/IBI is greatly different from zero (s. Fig. 6), whereas in the 
regions populated with plasma the electric field, which is now totally unsimilar to 
the initial quadrupole (s. Fig. 5), has evolved as to achieve E· B ~ 0 there. The 
poloidal magnetic field does not change very much, it remains essentially dipolar. 
The neutron star is now positively charged, and the positive and the negative 
currents out of the star exactly match each otber. 

From the velocity fields - which are not shown here - one can conclude 
that the positive particles corotate w;th the star (to a very good approximation) 
as long as they are inside the light cylinder, but close to the light cylinder they 
lose corotation and stream through a sort of nozzle into the outer parts of the 
magnetosphere forming a radial wind. The velocity of the negative particles is 
dominantly poloidal and, thus, also a negatively charged wind builds up. 

There are still some wave-like fluctuations, especially inside the negative zone, 
which seem to originate from the tendency of the system to make E . B small (or 
even zero) in the plasma regions. This also explains the strange folded structure 
of the E . B = 0 surface and might be an indication that the magnetosphere wants 
to form an extended region with E· B = 0; however, this is difficult to achieve 
with a relativistic particle population. Whether for this end a cool non-relativistic 
plasma population is necessary or whether such fluctuations are a physically real 
part of a quasi-stationary configuration is an open question. Globally, our solution 
represents a stationary structurcj for instance, the charges of the star and of the 
magnetosphere remain, in the end phase, constant with great accuracy. 

For the first time in pulsar magnetospheric theory it seems that a stationary 
self-consistent solution for the aligned rotator has been found by a quasi-time­
dependent simulation. Detailed diagnostic investigations of this solution, such as 
the calculation of the radiation of the accelerated particles, as well as studies of 
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the parameter dependence (rotation frequeny n, emissivity" of the neutron star) 
are tasks for the future. 
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