Synthese und Kristallstrukturbestimmung von Oxoboraten und Chlorid-Oxoboraten dreiwertiger Selten-Erd-Elemente

Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines

DOKTORS DER NATURWISSENSCHAFTEN – Dr. rer. nat.–

genehmigte Abhandlung

Vorgelegt von Tanja Nikelski aus Ludwigsburg

Hauptberichter: Prof. Dr. Thomas Schleid Mitberichter: Prof. Dr. Paul Keller

Tag der mündlichen Prüfung: 17.12.2004

Institut für Anorganische Chemie der Universität Stuttgart 2004

1. Einleitung	7
2. Präparation und Charakterisierung	9
2.1. Apparative Methoden	9
2.1.1. Argon-Glove-Box	9
2.1.2. Vakuumpumpenstand	10
2.2. Präparative Methoden	10
2.2.1. Präparatives Arbeiten	10
2.2.2. Verwendete Chemikalien	12
2.3. Röntgenographische Methoden	13
2.3.1. Pulverdiffraktometrie	14
2.3.2. Röntgenbeugung am Einkristall	17
2.3.2.1. Das Schwenk- und Drehkristallverfahren	17
2.3.2.2. Das Weissenberg-Verfahren	18
2.3.2.3. Messungen mit dem Einkristalldiffraktometer	20
2.3.3. Strukturlösung	23
2.4. Verwendete Computerprogramme und Geräte	25
3. Struktureller Teil	27
3.1. Oxoborate	27
3.1.1. $M(BO_2)_3$ mit M = La – Tb	30
3.1.1.1. Vorbemerkung	30
3.1.1.2. Experimentelles	30
3.1.1.3. Strukturbeschreibung	31
3.1.2. $M(BO_2)_3$ mit M = Tb, Dy	37
3.1.2.1. Experimentelles	37
3.1.2.2. Strukturbeschreibung	37

3.1.3. $La_4B_{14}O_{27}$	49
3.1.3.1. Vorbemerkung	49
3.1.3.2. Experimentelles	50
3.1.3.3. Strukturbeschreibung	50
3.2. Chlorid-Oxoborate	59
3.2.1. $MCl(BO_2)_2$ mit M = La, Ce, Pr	59
3.2.1.1. Experimentelles	59
3.2.1.2. Strukturbeschreibung am Beispiel von CeCl(BO ₂) ₂	60
3.2.2. $M_3Cl_3[BO_3]_2$ mit M = La, Ce	68
3.2.2.1. Experimentelles	68
3.2.2.2. Strukturbeschreibung	68
3.2.3. $M_2Cl_2[B_2O_5]$ mit M = Sc, Er	75
3.2.3.1. Experimentelles	75
3.2.3.2. Strukturbeschreibung am Beispiel von Sc ₂ Cl ₂ [B ₂ O ₅]	75
3.3. Oxidchlorid-Oxoborate	84
3.3.1. $M_4O_4Cl[BO_3]$ mit M = Dy – Tm	84
3.3.1.1. Vorbemerkung	84
3.3.1.2. Experimentelles	84
3.3.1.3. Strukturbeschreibung	84
4. Zusammenfassung und Ausblick	96
4.1. Diskussion und Zusammenfassung	96
4.1.1. Oxoborate	96
4.1.2. Chlorid-Oxoborate	100
4.1.3. Oxidchlorid-Oxoborate	104
4.2. Ausblick	105

5. Summary and Outlook	108
5.1. Discussion and Summary	108
5.1.1. Oxoborates	108
5.1.2. Chloride-Oxoborates	110
5.1.3. Oxide-Chloride-Oxoborates	113
5.2. Outlook	114
6. Literatur	116

1. Einleitung

Bor kommt wegen seiner großen Affinität zu Sauerstoff nicht elementar in der Natur vor, sondern nur in sauerstoffgebundenem Zustand, also als Borsäure H₃BO₃ sowie ihren Salzen, den Oxoboraten. Die wichtigsten Boratmineralien sind Kernit (Na₂[B₄O₅(OH)₄] · 2 H₂O \equiv Na₂B₄O₇ · 4 H₂O), Borax (Na₂B₄O₇ · 10 H₂O) und Borocalcit (CaB₄O₇ · 4 H₂O). Breite Anwendung finden Oxoborate in der Emaille-Industrie bei der Herstellung leichtschmelzender Glasuren für Steingut und Porzellanwaren, bei der Herstellung von feuerbeständigem Glas, sowie in der Waschmittelindustrie. Gemäß der "Schrägbeziehung" im Periodensystem ist das nichtmetallische Bor dem nichtmetallischen Silicium sehr ähnlich. Allerdings weisen Oxoborat-Anionen insgesamt eine noch größere Strukturvielfalt als Oxosilicate auf, da das Bor-Kation, im Gegensatz zum Silicium-Kation, sowohl tetraedrisch als auch trigonal-planar von Sauerstoff umgeben vorliegen kann. Diese Oxoborat-Einheiten können dann sowohl isoliert vorliegen als auch untereinander über Ecken und Kanten weiterverknüpfen. Dabei kann es sein, daß die verknüpfenden Sauerstoffatome nicht nur zwei, sondern sogar drei Bor-Kationen angehören. Die Zusammensetzung M[BO₃] (M = Selten-Erd-Element: Sc, Y, La; Ce – Lu) mit unter anderem diskreten trigonal-planaren $[BO_3]^{3-}$ Anionen wird mit unterschiedlichen Selten-Erd-Kationen (M3+) in insgesamt sieben verschiedenen Modifikationen angetroffen, von denen sich drei zwanglos von den CaCO₃-Polymorphen ableiten [1-5]. In Ta[BO₄] liegen tatsächlich isolierte [BO₄]⁵⁻-Anionen vor [6] und im polymeren Metaborat $M(BO_2)_3$ (M = La – Tb) ist das Bor sowohl trigonal-planar als auch tetraedrisch umgeben [7-15].

Die Oxoborate der Lanthanide zeichnen sich durch ausgeprägte Lumineszenz-Fähigkeit aus und stellen gängige sogenannte "host materials" für Leuchtstoffe dar. Sowohl nicht dotierte als auch einfach und mehrfach dotierte Oxoborat-Präparate zeigen interessante Lumineszenz-Eigenschaften [16-23] und sind daher auch für die aktuelle Forschung von Bedeutung. Die Voraussetzung für interessante Anwendungsmöglichkeiten ist jedoch die Aufklärung der atomaren Struktur der Verbindungen. Daher steht neben der Synthese vor allem die Strukturanalyse im Vordergrund. Auf dem Gebiet der Oxoborate ist die Strukturaufklärung schon recht weit fortgeschritten, trotzdem sind auch hier noch neue Ergebnisse zu erwarten.

Zusätzlich sind nicht nur reine Oxoborate selbst von Interesse, sondern auch der Einbau zusätzlicher Anionen, z. B. Halogenide, und deren Einfluß auf die Struktur der dreiwertigen Selten-Erd-Metall-Oxoborate birgt interessante Forschungsmöglichkeiten. Diese Arbeit wurde von *Sieke* und *Schleid* begonnen [24], wobei der Aspekt im Vordergrund stand, welchen Einfluß der Ersatz des im Sinne des *Pearson*-Konzeptes [25] "harten" Oxid-Anions gegen "weiche" Fremd-Anionen, z. B. Chlorid, auf eine generell "harte" Matrix aus dreiwertigen Lanthanid-Kationen und Oxid-Anionen wie $[B_xO_y]^{n-}$ hat. Diese Fragestellung wurde in der vorliegenden Arbeit weiter untersucht.

So gliedert sich diese Arbeit hauptsächlich in zwei Teile: Oxoborate ohne Fremd-Anionen und Oxoborate, die Cl⁻-Anionen enthalten. Dabei wird zunächst eine Übersicht über die schon bekannten und zum größten Teil strukturell aufgeklärten Oxoborate der dreiwertigen Seltenen Erden gegeben. Danach werden die Strukturen von $M(BO_2)_3$ (M = La – Gd sowie Tb, Dy) und La₄B₁₄O₂₇ vorgestellt und beschrieben. Im zweiten Teil wird auf die Darstellung und Strukturaufklärung der Chlorid-Oxoborate eingegangen und zum Schluß sollen auch noch Oxidchlorid-Oxoborate vorgestellt werden.

2. Präparation und Charakterisierung

2.1. Apparative Methoden

2.1.1. Argon-Glove-Box

Die in dieser Doktorarbeit verwendeten Verbindungen der Selten-Erd-Elemente sind sowohl luft- als auch wasserempfindlich und müssen deswegen unter Schutzgas aufbewahrt und verarbeitet werden. Daher ist es unerläßlich, sich für deren Handhabung einer Argon-Glove-Box zu bedienen. Im Inneren dieser Box (Fa. Braun, München; siehe Tabelle 2-3) befindet sich außer einem Metallregal zur Aufbewahrung von Chemikalien und einer Reinigungsausstattung auch eine elektronische Waage. Arbeitsgeräte, Reaktionsbehälter und Vorratschemikalien lassen sich über ein Schleusensystem in die Box einbringen. Abbildung 2-1 zeigt den schematischen Aufbau einer solchen Glove-Box. In die Frontscheibe aus

Abbildung 2-1: Argon-Glove-Box

Plexiglas sind zwei bzw. drei armlange Gummihandschuhe eingelassen, mit deren Hilfe der gesamte Innenraum zu erreichen ist. Um eine luft- und wasserfreie Schutzgas-Atmosphäre aus Argon zu gewährleisten, läuft eine Umwälzpumpe im Dauerbetrieb. Darüber hinaus werden die H₂O- und O₂-Anteile in der Boxenatmosphäre regelmäßig mit Hilfe des Atmosphären-Kontrollgeräts überprüft. Bei Meßwerten größer als 1 ppm wird der Kupferkatalysator des Umwälzkreislaufs mittels Regeneriergas (Ar mit 7,5% H₂) gereinigt. Während des präparativen Arbeitens kann der Innendruck mit Hilfe von zwei Fußpedalen reguliert werden

2.1.2. Vakuumpumpenstand

Die Kieselglas-Überampulle, in der sich die Platinampulle befindet, wird mit Hilfe eines "Quick-Fits" an einen Pumpenstand mit einer Drehschieber-Vakuumpumpe angeschlossen. Diese Pumpe ist in der Lage, einen Restdruck von nur 10^{-3} mbar in den Ampullen zu erzeugen. Für niedrigere Restdrücke (bis p $\approx 10 - 5$ mbar) wird ein Vakuumpumpenstand mit Turbo-Molekularpumpe verwendet. Schließlich wird die Kieselglas-Überampulle unter dynamischem Vakuum mittels einer Erdgas-Sauerstoff-Flamme abgeschmolzen und so luftdicht verschlossen.

2.2. Präparative Methoden

2.2.1. Präparatives Arbeiten

Weil sich in dieser Arbeit Kieselglasampullen als Reaktionsgefäße nicht eignen, die Edukte greifen die Ampullenwand an und reagieren mit dieser, wobei es nicht zu den geplanten Reaktionen kommt, sondern im Falle von Kieselglasampullen zu Silicaten oder Borosilicaten [26, 27], wurden verschiedene Ampullenmaterialien verwendet und untersucht. Leider erwies es sich als äußerst schwierig, ein geeignetes Ampullenmaterial zu finden, da die Edukte meist Reaktionen mit der Ampullenwand eingingen. So entstanden z. B. in Tantal-Ampullen Selten-Erd-Oxotantalate [28]. Erst die Wahl von Platinampullen als Reaktionsgefäße führte zu den gewünschten Reaktionen.

Da die Edukte luft- und wasserempfindlich sind, wird jede Platinampulle in der Argon-Glove-Box mit einer Gesamteduktmenge von ungefähr 0,5 g mit Hilfe von speziell hergestellten Trichtern befüllt und mit einer Zange gasdicht verschlossen. Nun wird die Platinampulle ausgeschleust und in eine Kieselglasüberampulle gegeben. Dies ist notwendig, da das Platin bei den hohen Temperaturen im Ofen mit der Umgebungsluft reagieren würde. Diese Sekundärampulle wird zuerst am Knallgasbrenner verjüngt und dann mit Hilfe eines "Quick-Fits" an den Vakuumpumpenstand angeschlossen. Dann wird sie an der Verjüngung unter dynamischen Vakuum zugeschmolzen und in den Ofen gestellt. Dort wird das Gemisch nach einem festgesetzten Temperaturprogramm auf die Reaktionstemperatur gebracht und für die angesetzte Reaktionsdauer getempert. Danach wird der Ofen ausgeschaltet und die Kieselglasampulle, sobald sie auf Raumtemperatur abgekühlt ist, entnommen. Die Überampulle wird mit einem Hammer zerschlagen, die Platinampulle mit einer Zange geöffnet und das entstandene Reaktionsprodukt aus der Ampulle entnommen. Nach dem Auswaschen mit Wasser wird der Ansatz unter dem Mikroskop untersucht und geeignete Einkristalle in ein Markröhrchen (Durchmesser: 0,1 bis 0,3 mm) eingebracht und dort mit Hilfe von wenig Schliff-Fett an der Wand befestigt.

2.2.2. Verwendete Chemikalien

Tabelle 2-1: Käufliche Chemikalien

Substanz	Reinheit	Hersteller
Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu	99,9 %	Heraeus, Karlsruhe
Sc_2O_3 , Y_2O_3 , La_2O_3 , CeO_2 , Pr_6O_{11} , Nd_2O_3 , Sm_2O_3 , Gd_2O_3 , Tb_4O_7 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 , Lu_2O_3	99,9 %	Heraeus, Karlsruhe
ScCl ₃ , YCl ₃ , LaCl ₃ , CeCl ₃ , PrCl ₃ , NdCl ₃ , SmCl ₃ , GdCl ₃ , TbCl ₃ , DyCl ₃ , HoCl ₃ , ErCl ₃ , TmCl ₃ , YbCl ₃ , LuCl ₃	99,9 %	Heraeus, Karlsruhe
B_2O_3	p.a.	Riedel-deHaën, Seelze
CsCl	99,9 %	E. Merck, Darmstadt

2.3. Röntgenographische Methoden

Kristalle werden durch ihren dreidimensional periodischen Aufbau charakterisiert. Aufgrund der Tatsache, daß die Wellenlänge von Röntgenstrahlen in der selben Größenordnung liegt wie Atomabstände in Kristallen, werden die eintretenden Röntgenstrahlen am Kristallgitter gebeugt. Somit können Informationen über die Struktur erhalten werden. Um einen Kristall beschreiben zu können, wird eine Elementarzelle, die kleinste Baueinheit, die die volle Symmetrie der Struktur wiedergibt, festgelegt. Durch Permutation verschiedener Kantenlängen und Winkel werden sieben unterschiedliche Elementarzellenformen erhalten (triklines, monoklines, orthorhombisches, tetragonales, trigonales, hexagonales und kubisches Kristallsystem). Durch Kombination mit den fünf Gittertypen (primitiv, basis-, flächen- und innen- und R-zentriert) erhält man die vierzehn Bravais-Gitter. Unter Einbeziehung von Symmetrie-Operationen werden nun die 230 möglichen Raumgruppen gebildet, die zur Strukturbeschreibung im dreidimensionalen Raum dienen. Die regelmäßige Anordnung der Atome im Einkristall zu einem dreidimensionalen Gitter ist korreliert mit ihrer Verknüpfung zu Netzebenen, welche durch die sogenannten Miller-Indices (h, k und l) gekennzeichnet werden. Wird ein Einkristall mit Röntgenstrahlen durchleuchtet, so wird das eingestrahlte Röntgenlicht an den Gitterpunkten der Netzebenenscharen gestreut und es entsteht ein charakteristisches Streumuster. Für den Winkel θ , unter dem ein Röntgenreflex beobachtet werden kann, gilt dann die Bragg'sche Gleichung. Sie stellt einen Zusammenhang zwischen Glanzwinkel (θ), Netzebenabstand (d_{hkl}), Wellenlänge der eingesetzten Strahlung (λ) und der Beugungsordnung (n) dar:

$$\mathbf{n} \cdot \mathbf{\lambda} = 2 \cdot \mathbf{d}_{hkl} \cdot \sin \theta$$
.

Ziel einer Röntgenstrukturanalyse ist die Bestimmung der Metrik (Abmessungen der Elementarzelle), der Symmetrie und der Anordnung der Atome in der asymmetrischen Einheit (Atomlagen). Liegen von einer zu untersuchenden Substanz Einkristalle vor, so können diese Informationen sehr einfach durch röntgenographische Einkristall-Methoden ermittelt werden. Gelingt es bei der Präparation nicht, Einkristalle hinreichender Größe und Qualität zu erhalten, so können die mikrokristallinen Proben mittels Pulverdiffraktometrie untersucht werden.

2.3.1. Pulverdiffraktometrie

Die Zusammensetzung und Reinheit der Reaktionsprodukte kann mit Hilfe von Pulverdiffraktometer-Messungen überprüft werden. Darüber hinaus lassen sich mit dieser Methode die Gitterkonstanten von bekannten kristallinen Verbindungen mittels statistischer Methoden recht genau bestimmen [29].

In einem polykristallinen Pulver liegen sehr viele Kristallite in statistischer Orientierung vor. Wird dieses Pulver von Röntgenstrahlung durchleuchtet, liegen innerhalb des vom Primärstrahl durchstrahlten Volumens eine sehr große Anzahl Kristallite. Viele dieser Kristallite liegen dabei in einer Position, in der eine bestimmte Netzebenenschar, die mit der Röntgenstrahlung den Winkel 0 bildet, zur Reflexion kommen kann. Die nun in einer Röntgenpulveraufnahme erhaltenen Informationen sind die Positionen der Reflexe und ihre Intensitäten. Anhand der Reflexlagen ist es in vielen Fällen möglich, die Gitterkonstanten und sogar die Laue-Gruppe für eine bestimmte polykristalline Probe zu bestimmen. Allerdings ist nur bei hochsymmetrischen Kristallsystemen (z. B. dem kubischen) eine eindeutige Zuordnung der Reflexe zu den Netzebenen möglich. Im Gegensatz dazu erschweren bei niedriger symmetrischen Systemen Linienkoinzidenzen die Indizierung erheblich. Die beobachtete Intensität im Pulverdiffraktogramm setzt sich aus einem Beitrag der Bragg-Reflexion und einem Beitrag des Untergrundes zusammen. Die Intensität der Reflexe ist durch die Art und Lage der Atome in der Elementarzelle festgelegt. Sie kann durch Faktoren wie Absorption, Extinktion oder bevorzugte Orientierung der Teilchen in der Probe beeinflußt werden. Für den Untergrund sind Fluoreszenz der Probe, Detektor-Rauschen, thermische Streuung der Probe, röntgenamorphe Phasen in der Probe, inkohärente Streuung oder Streuung der Röntgenstrahlung durch Luft oder den Probenträger verantwortlich.

Die Probenvorbereitung läuft folgendermaßen ab: Die Probe einer Substanz wird zunächst fein verrieben und auf eine Adhäsivfolie aufgebracht oder in ein abgeschmolzenes Markröhrchen aus wenig absorbierendem Glas (Durchmesser: 0,1 bis 0,3 mm) eingebracht. Die so vorbereitete Probe wird dann auf einem drehbaren Probenträger fixiert und dieser wird in das Pulverdiffraktometer eingesetzt. Die Primärstrahlung passiert nach Verlassen der Röntgenquelle einen Germanium-Monochromator und eine Schlitzblende und trifft danach, wie in Abbildung 2-2 zu sehen ist, auf die Probe. Um eine zufällige Orientierung der Kristallite zu gewährleisten und Textureffekte zu vermindern, wird der Probenträger mit gleichmäßiger Geschwindigkeit gedreht. So wird während der Messung der Winkel zwischen Strahlenquelle, Probe und Detektor schrittweise variiert und beim jeweils doppelten Einfallswinkel positioniert. Dieser Detektor misst die Intensität der gebeugten Röntgenstrahlung abhängig vom Ort auf einer Breite von annähernd 7°. Durch die Bewegung von Probe und Detektor entstehen somit eine Vielzahl von Einzelmessungen pro Reflex (abhängig von der Schrittweite), die sich durch Computersteuerung mittels der

Abbildung 2-2: Schematischer Aufbau eines Pulverdiffraktometers

entsprechenden Software (s. Tabelle 2-2) aufsummieren lassen (Abbildung 2-3). Wählt man die Meßzeit pro Winkeleinstellung relativ groß, so gelangt man zu einer hohen Auflösung und das Signal-Rausch-Verhältnis verschiebt sich zugunsten des Signals. Allerdings wird dadurch die Gesamtmeßzeit länger und die Messung dauert, je nach gewünschter Qualität, zwischen vier und zwanzig Stunden. In Ausnahmefällen (z. B. bei sehr geringen Substanzmengen) kann die Meßzeit sogar mehrere Tage betragen.

Zusätzlich zu den Raumtemperaturmessungen ist es auch möglich, temperaturabhängige Röntgenpulverdiffraktogramme im Bereich zwischen Raumtemperatur und 800°C zu messen. Dies erfolgt ebenfalls mit dem Diffraktometersystem STADI P (Fa. STOE), ausgerüstet mit einer Heizkammer und einem ortsempfindlichen Detektor unter Verwendung von monochromatischer Cu-K α_1 -Strahlung ($\lambda = 154,04$ pm). Als Probenträger kommt hierbei eine offene oder abgeschmolzene Kieselglaskapillare (Durchmesser: 0,1 mm) zum Einsatz.

Abbildung 2-3: Typisches Röntgenpulverdiffraktogramm (*hier:* Nd[BO₃] im Aragonit-Typ); wie man im Vergleich mit dem theoretischen Pulverdiagramm erkennen kann, ist die Pulverprobe *nicht* phasenrein

2.3.2. Röntgenbeugung am Einkristall

Um einen Einkristall zu untersuchen und Informationen über die Struktur, also den Aufbau der Elementarzelle und die Gitterparameter zu erhalten, werden ebenfalls Röntgenbeugungsexperimente angestellt [30, 31]. Im Folgenden werden die verwendeten Methoden näher beschrieben.

2.3.2.1. Das Schwenk- und Drehkristallverfahren

Als Vorbereitung für eine Schwenkaufnahme wird ein Einkristall in ein Markröhrchen gebracht und dort fixiert. Das Markröhrchen wird mittels eines Wachstropfens auf einem Goniometerkopf befestigt und mit Hilfe eines aufeinander senkrecht stehenden Translationsschlittenpaares vor dem Röntgenstrahl justiert und dort um 5 – 10° geschwenkt. In einer zylindrischen Kassette befindet sich ein lichtempfindlicher Film, auf dem das Beugungsmuster aufgenommen wird. Solch eine Drehkristallmessung (Abbildung 2-4) dauert

Abbildung 2-4: Prinzip einer Drehkristallaufnahme

im Durchschnitt eine Stunde. Aus dieser Aufnahme lassen sich Aussagen über die Kristallqualität innerhalb einer Ebene machen. Ein tauglicher Einkristall, sofern in der Probe vorhanden, wird mittels der beiden skalierten Bogenschlitten des Goniometerkopfs so vor dem Röntgenstrahl justiert, daß eine reale Gittergerade (gewöhnlich eine kristallographische Achse) parallel zur Schwenkachse zu liegen kommt. Aus dem Beugungsmuster dieser Schwenkaufnahme können Informationen über die Symmetrie der Achse (z. B. Spiegel-Eigenschaften) erhalten werden. Außerdem kann man eine der Gitterkonstanten durch Ausmessen des Schichtlinienabstandes als die Länge I (\equiv Identitätsperiode) der Gittergeraden recht genau bestimmen:

$$I = \frac{n \cdot \lambda}{\sin[\arctan(\frac{y}{d})]}$$

I = Identitätsperiode (Achslänge) [pm], d = Durchmesser der Filmkassette (hier: 57,3 mm), λ = Wellenlänge (hier: λ = 71,07 pm), y = Schichtlinienabstand [mm], n = Beugungsordnung der Schichtlinien (1, 2, 3, ...).

2.3.2.2. Das Weissenberg-Verfahren

Im Anschluß an eine Drehkristallaufnahme läßt sich auf der gleichen Apparatur (Abbildung 2-5) mit dem auf dem Goniometerkopf einjustierten Kristall eine Weissenberg-Aufnahme anfertigen. Mittels zweier zylindrischer Blenden werden alle Reflexe mit Ausnahme einer Vorzugsschichtlinie (zunächst die Äquatorlinie) senkrecht zur Drehachse ausgeblendet. Durch eine mit der Drehung des Kristalls gekoppelten Parallelverschiebung des Films um 2°/mm entstehen die typischen girlandenförmigen Weissenberg-Beugungsmuster einer Gitterebene. Durch Übertragen dieser Reflexe auf Polarkoordinatenpapier mit Hilfe eines Buerger- oder Weissenberg-Dreiecks läßt sich eine unverzerrte reziproke Gitterebene konstruieren, aus der man die Längen der beiden übrigen Achsen und den von ihnen eingeschlossenen Winkel bestimmen kann. Durch Auffinden möglicher systematischer Auslöschungen ist oft auch die Bestimmung des Kristallsystems und der *Laue*-Symmetrie möglich. Die Achslängen lassen sich aus einer Weissenberg-Aufnahme mit folgender Gleichung berechnen:

$$I = \frac{n \cdot \lambda}{\sin\left(2d_n\right)}$$

 $I = Achslänge (Identitätsperiode) [pm], \quad n = Anzahl der Identitätsperioden (1, 2, 3, ...),$ $d_n = Abstand des n-ten Reflexes zur Nulllinie [mm], \qquad \lambda = Wellenlänge [pm].$

Abbildung 2-5: Schematischer Aufbau einer Weissenberg-Kamera

Weissenberg-Aufnahmen höherer Schichtlinien werden durch Parallelverschiebung der Blenden (um S_n) und durch Drehung der gesamten Meßanordnung vor dem Röntgenstrahl um den sogenannten Äquiinklinationswinkel (μ_n) erhalten, wobei folgende Gleichungen gelten:

$$\mu_n = \arcsin\left(\frac{n \cdot \lambda}{2I}\right)$$

n = Beugungsordnung der betreffenden Schichtlinie (1, 2, 3, ...),

 λ = Wellenlänge [pm], I = Identitätsperiode der Drehachse [pm] und

$$S_n = R \cdot \tan \mu_n$$

 S_n = Blendenverschiebung [mm], R = Radius der Blenden [mm].

2.3.2.3. Messungen mit dem Einkristalldiffraktometer

Im Vergleich zu Filmaufnahmen hat ein Einkristalldiffraktometer den Vorteil, Reflexintensitäten schneller und genauer zu registrieren. Es standen zwei verschiedene Geräte zur Verfügung: das STOE IPDS und das NONIUS κ -CCD, die beide mit Molybdänröntgenröhren und Graphitmonochromatoren ausgestattet sind (Mo-K α_1 -Strahlung, $\lambda = 71,07$ pm).

Das Image Plate Diffraction System (IPDS) stellt ein Einkreisdiffraktometer dar (s. Abbildung 2-1). Das bedeutet, daß der Kristall während der Messung um nur eine Achse gedreht wird, die aus Gründen der Gewinnung von Information über systematische Auslöschungen nicht mit einer realen Achse des Kristalls identisch sein sollte. Die Beugungsreflexe treffen auf eine mit Eu²⁺-Kationen dotiertem BaFCl beschichtete Fluoreszenzplatte auf und werden dort abgebildet. Dieser Detektor ist erheblich empfindlicher als die bei Mehrkreisgeräten verwendeten Zählrohre. Die Reflexintensitäten werden dann mit LASER-Licht abgelesen, "gescannt" und anschließend mit einer starken Lichtquelle wieder gelöscht. Nach dem Drehen des Kristalls um einen bestimmten Betrag $(0,5 - 1^{\circ})$ wird der Routineablauf aus Röntgenbelichtung, Scannen und Löschen wiederholt. Nach etwa 200 – 400 solcher Aufnahmen sind genügend Informationen für eine Strukturlösung gesammelt. Mit dieser Meßtechnik können beliebig viele Reflexe innerhalb einer Schicht gleichzeitig gemessen werden. Damit erreicht man bei Kristallen mit großen Gitterkonstanten einen extremen Zeitvorteil gegenüber der Messung mit handelsüblichen Vierkreisdiffraktometern. Allerdings bedingt diese Technik auch, daß eine Menge von Fremdreflexen berücksichtigt werden, die zu falschen Vorschlägen für die Elementarzelle

Abbildung 2-6: Schematischer Aufbau eines IPDS-Diffraktometers

führen können. Bei der nachträglichen Integration mit der "richtigen" Zelle werden diese dann aber vernachlässigt. Da das IPDS-Verfahren im Gegensatz zur Messung mit dem Vierkreisdiffraktometer nicht in der Lage ist, die Intensitäten einzelner Reflexe in unterschiedlicher Orientierung zu messen, kann hier keine empirische Absorptionskorrektur durchgeführt werden. Probleme treten vor allem bei Kristallen auf, die stark absorbierende Elemente enthalten. Durch Verwendung des Computerprogrammes X–SHAPE [32] wird versucht, sofern genügend Reflexe zur Verfügung stehen, diesen Nachteil auszugleichen. Dieses Programm nähert die mögliche Gestalt des Kristalls auf der Grundlage symmetrieäquivalenter Reflexe bei vorgegebener Raumgruppe und Zusammensetzung iterativ an. Basierend auf diesem möglichen Habitus werden die Intensitäten aller Reflexe korrigiert. Im Gegensatz dazu stellt das NONIUS κ-CCD ein Mehrkreisdiffraktometer mit CCD-Flächendetektor dar (Abbildung 2-7). Es wird deswegen zu den Mehrkreisgeräten gezählt, da zusätzlich zum ϕ -Kreis noch um den ω -Kreis, den θ -Kreis und den κ -Kreis gedreht werden kann. Die Detektion der Reflexintensitäten erfolgt auf digitaler Halbleitertechnik (CCD = Charge Coupled Device) und ist empfindlicher als die beschichtete IPDS-Detektorplatte. Somit sind die Meßzeiten aufgrund der direkten Übertragung des Beugungsbildes an den Prozeßrechner deutlich kürzer. Weiterhin ist es hierbei möglich, durch Anfertigung von ψ -Scans eine empirische Absorptionskorrektur des Intensitätsdatensatzes durchzuführen. Um die Elementarzelle zu bestimmen, werden durch Drehung um 0,5° um den φ -Kreis etwa 25 Beugungsaufnahmen mit einer Belichtungszeit von üblicherweise 20 Sekunden aufgenommen. Ist die Elementarzelle festgelegt, so berechnet der Computer unter Einsatz aller Kreise eine Abfolge von Scans, welche alle gesuchten Reflexe erfaßt und eine fünffache Redundanz für 90 % aller Reflexe gewährleistet. Anschließend wird die eigentliche Messung durchgeführt. Nach Abschluß der Messung werden die detektierten Reflexe durch Integration und Skalierung zu einem, für die Strukturverfeinerung verwendbaren, hkl-Datensatz aufbereitet.

Abbildung 2-7: Aufbau des NONIUS κ-CCD-Diffraktometers

2.3.3. Strukturlösung

Nachdem nun Informationen über Elementarzelle, Kristallsystem, Raumgruppe und Peak-Intensität vorliegen, muß die Lage der Atome in der asymmetrischen Einheit bestimmt, also ein Strukturmodell erstellt werden. Mit dem Computerprogramm SHELXS-97 [33] hat man die Möglichkeit, entweder einen Ansatz mittels "Patterson-Synthesen" oder "Direkte Methoden" zu erhalten. Dieses Verfahren ist nur dann relativ problemlos, wenn in der Elementarzelle nur wenige schwere neben vielen leichten Atomen vorliegen (Phasenproblem). Mit Hilfe von Differenz-Fourier-Synthesen werden die Elektronendichtemaxima lokalisiert und man erhält so die Atomlagen der restlichen Atome in der Elementarzelle (SHELX-97 [33]). Konnte ein passendes Strukturmodell gefunden werden, läßt sich dieses schließlich mit dem Computerprogramm SHELXL-93 [34] nach der Methode der kleinsten Fehlerquadrate ("least-squares"-Methode) weiter optimieren, indem mit isotropen Temperaturfaktoren zuerst die Lagen der Atome und dann die anisotropen Temperaturfaktoren "verfeinert" werden. Zur Abschätzung der Qualität der Daten werden mit dem Programm SHELXL-93 [34] Werte für R_{int} ("interner Residualwert") der Definition:

$$\mathbf{R}_{int} = \frac{\sum_{i=1}^{n} \left| F_{0}^{2} - \overline{F_{0}^{2}} \right|}{\sum_{i=1}^{n} F_{0}^{2}}$$

mit n:

Zahl der symmetrieabhängigen Reflexe,

 F_0^2 : beobachtetes Quadrat der Strukturamplitude,

 $\overline{F_0^2}$: aus symmetrieabhängigen Reflexen gemitteltes Quadrat der Strukturamplitude, bzw.

$$\mathbf{R}_{\sigma} = \frac{\sum_{i=1}^{n} \sigma(\mathbf{F}_{0}^{2})}{\sum_{i=1}^{n} \mathbf{F}_{0}^{2}}$$

mit $\sigma(\mathbf{F}_0^2)$: Standardabweichung der observierten Reflexe,

berechnet, die ein Maß für die Abweichung symmetrieäquivalenter Reflexe von ihrem Mittelwert in der entsprechenden *Laueklasse* angeben. Die bei der Verfeinerung mit SHELXL-93 [34] zu minimierende Größe wR_2 ist wie folgt definiert:

$$wR_{2} = \sqrt{\frac{\sum_{i=1}^{n} w(F_{0}^{2} - F_{c}^{2})^{2}}{\sum_{i=1}^{n} w(F_{0}^{2})^{2}}}$$

und enthält gemäß

$$w = \left[\sigma^{2}(F_{0}^{2}) + (aP)^{2} - bP\right]^{-1}$$
$$P = \frac{1}{3}(F_{0}^{2} + 2(F_{c}^{2}))$$

mit

einen Wichtungsfaktor *w*, der besonders die Standardabweichungen $\sigma(F_0^2)$ quadratisch gewichtet. Dabei sind a und b aus der Verfeinerung ermittelte Größen, F_c^2 ist das Quadrat der berechneten Strukturamplitude. Neben dem erhaltenen Wert für wR_2 wird in dieser Arbeit noch der konventionelle R-Wert (R₁) angegeben, der als

$$\mathbf{R}_{1} = \frac{\sum_{i=1}^{n} \left\| \mathbf{F}_{0} \right\| - \left| \mathbf{F}_{c} \right\|}{\sum_{i=1}^{n} \left| \mathbf{F}_{0} \right|}$$

definiert ist und damit nicht auf den (observablen!) Quadraten der Strukturamplituden, sondern nur auf deren Beträgen beruht. Ein weiteres Qualitätsmerkmal stellt der "Gütefaktor" (engl. "Goodness of fit", GooF) S dar.

GooF = S =
$$\sqrt{\frac{\sum_{i=1}^{n} w (F_0^2 - F_c^2)^2}{n-p}}$$

mit n: Zahl der Reflexe,

p: Zahl aller verfeinerten Parameter.

Hier geht in der Differenz (n - p) auch der Grad der Übereinstimmung der Strukturparameter ein. S sollte bei richtiger Struktur und korrekter Gewichtung Werte um 1 annehmen.

2.4. Verwendete Computerprogramme und Geräte

Programm	Funktion	Literatur
STOE Visual X ^{POW}	Programmpaket zur Auswertung und Simulation von Pulverdiffraktogrammen und zur Steuerung des Pulverdiffraktometers STAPI P (Fa. STOE)	[29]
X–SHAPE	Programm zur Berechnung eines möglichen Kristallhabitus mittels symmetrieäquivalenter Reflexe	[32]
SHELXS-86	Programm zur Lösung von Kristallstrukturen	[35]
SHELXL-93	Programm zur Verfeinerung von Kristallstrukturen	[34]
Programmpaket SHELX–97	Weiterentwicklung von SHELXS-86 und SHELXL-93	[33]
X-RED	Programm zur Raumgruppenbestimmung sowie zur numerischen Absorptionskorrektur	[36]
X–STEP bzw. X–STEP 32	Arbeitsoberfläche, die die Programme SHELXS–86 bzw. –97 und SHELXL–93 bzw. –97 nutzt	[37] [38]
MAPLE 4.0	Programm zur Berechnung von Atomabständen, Bindungswinkeln und Gitterenergien aus Strukturdaten	[39]
DIAMOND 2.1 d	Programm zur graphischen Darstellung von Molekülen, Elementarzellen und Kristallstrukturen	[40]

Tabelle 2-2: Verwendete Computerprogramme

Gerät	Hersteller	Schutzgas bzw. Strahlung
Mikroskop SZ 40	Olympus (Hamburg)	_
Glove-Box (Lab Master 130)	M. Braun (München)	Argon
		a u
Pulverdiffraktometer (STADI P)	STOE (Darmstadt)	Cu-Ka
Weissenberg-Kamera	Huber (Rimsting)	Μο-Κα
Webseneerg Humbru	(itilisting)	
Image Plate Diffraction System (IPDS)	STOE (Darmstadt)	Μο-Κα
Einkristalldiffraktometer κ-CCD	NONIUS (Delft / NL)	Μο-Κα

Tabelle 2-3: Verwendete Geräte

3. Struktureller Teil

3.1. Oxoborate

In den Systemen $M_2O_3-B_2O_3$ (M = Sc, Y, La; Ce – Lu) sind Verbindungen mit sechs verschiedenen Formeltypen von Selten-Erd(III)-Oxoboraten bekannt. Ortho-Oxoborate mit der Summenformel M[BO₃] [41], meta-Oxoborate MB₃O₆ (\equiv M(BO₂)₃) [41], weiterhin Hochdruck-Oxoborate der Zusammensetzung M₄B₆O₁₅ [42, 43] und M₂B₄O₉ [43-45] sowie Oxid-Oxoborate, die einen Überschuß an Oxid-Anionen aufweisen, wie z. B. M_3BO_6 $(\equiv M_3O_3[BO_3])$ [46, 47] und $M_{26}B_8O_{51}$ $(\equiv M_{26}O_{27}[BO_3]_8)$ [48]. Da in den Kristallstrukturen der vier erstgenannten Formeltypen ausschließlich Oxoborat-Anionen vorkommen, bezeichnet man sie auch als "reine" Oxoborate, bei den zuletzt genannten liegen neben Oxoborat-Anionen auch noch nicht an Bor gebundene Oxid-Anionen vor [48]. Die Kristallstrukturen dieser Oxid-Oxoborate M_3BO_6 (= $M_3O_3[BO_3]$) [46, 47] und $M_{26}B_8O_{51}$ $(\equiv M_{26}O_{27}[BO_3]_8)$ [48] konnten bisher noch nicht im Detail geklärt werden. Ortho-Oxoborate M[BO₃] ($\equiv M^{3+}[BO_3]^{3-}$) der dreiwertigen Selten-Erd-Metalle (M = Sc, Y, La; Ce – Lu) können, abhängig vom Radius des M³⁺-Kations und den Reaktionsbedingungen, in sieben verschiedenen Kristallstrukturen auftreten [49-53]. Bei Raumtemperatur vermögen vier verschiedene Strukturtypen auszukristallisieren: λ -M[BO₃] im Aragonit-Typ [54, 55] $(M = La - Nd), \beta - M[BO_3]$ (M = Yb, Lu) im Calcit-Typ [43, 56, 57], $\pi - M[BO_3]$ (M = Eu - Yb) [58, 59] und μ -MBO₃ (M = Sm - Lu) [60], die letztgenannten mit noch nicht vollständig aufgeklärten Strukturen.

 λ -M[BO₃] (M = La – Pm) im Aragonit-Typ [54, 55, 61, 62] kristallisiert orthorhombisch mit der Raumgruppe Pnma und Z = 4. Die Kristallstruktur wird aus [MO₉]^{15–}-Polyedern (doppelt überkappte trigonale Prismen) und isolierten trigonal-planaren [BO₃]^{3–}-Anionen aufgebaut [2, 5, 63].

Die Phase β -M[BO₃] existiert wohl nur mit M = Yb (metastabil) [57] und Lu. Beide Verbindungen kristallisieren im trigonalen Calcit-Typ [56, 57] mit der Raumgruppe R $\overline{3}$ c (Z = 6). Die [BO₃]³⁻-Anionen bauen sich aus B³⁺-zentrierten, gleichseitigen O²⁻-Dreiecken

auf, und die Metall-Kationen werden sechsfach in Form eines verzerrten Oktaeders (besser: trigonalen Antiprismas) von Sauerstoff koordiniert.

Die Strukturen der hexagonalen (oder *pseudo*-hexagonalen) Modifikation π -M[BO₃] (M = Eu - Yb) und der trigonalen Modifikation μ -MBO₃ ($\equiv M_3[B_3O_9]$; M = Sm - Lu) sind noch nicht vollständig geklärt. Bislang existieren für π -M[BO₃] (M = Eu – Yb) drei hexagonale Modelle: Anhand von röntgenographischen Pulverdaten schlagen Newnham, Redman und Santoro [4] ein fehlgeordnetes und ein geordnetes Modell entsprechend den Raumgruppen P6₃/mmc (Z = 2) bzw. P6₃/mcm (Z = 6) für Y[BO₃] vor. Die Metall-Kationen sind darin von acht O²⁻-Anionen umgeben und die B³⁺-Kationen werden trigonal-planar von drei Sauerstoff-Atomen koordiniert. Bradley, Graf und Roth [1] legen ihrer Strukturlösung die Raumgruppe P6c2 mit Z = 6 zugrunde, da die Annahme dreifach koordinierter Bor-Kationen nicht im Einklang mit IR- und NMR-spektroskopischen Untersuchungen steht, die zweifelsfrei auf tetraedrische Oxoborat-Gruppen hinweisen [64]. In diesem Strukturmodell werden die Metallteilchen sechs- und zwölffach von Sauerstoff umgeben. Die Struktur basiert gemäß ${}^{0}_{\infty} [(BO^{t}_{2/1}O^{e}_{2/2})_{3}]^{9-}$ (t = terminale, e = eckenverknüpfende Sauerstoffatome) auf sechsgliedrigen Ringen $[B_3O_9]^{9-}$ eckenverknüpfter Oxoborat-Tetraeder $[BO_4]^{5-}$, wie sie z. B. von den Mineralien Benitoit (BaTi[Si₃O₉]) [64, 65] und Pseudowollastonit (α-Ca[Si₃O₉]) [65, 66], aber auch von synthetischem La₃F₃[Si₃O₉] [67] in der Oxosilicatchemie ebenfalls bekannt sind. Aus neueren Röntgenstruktur-Untersuchungen an Y[BO₃]-Einkristallen resultiert die Raumgruppe $P6_3/m$ mit Z = 2 [68]. Mit der Koordinationszahl acht ergibt sich für das Polyeder um die M³⁺-Kationen ein doppelt überkapptes trigonales Antiprisma. Die Boratome bilden mit vier O^{2-} -Anionen $[BO_4]^{5-}$ -Tetraeder, die über Ecken zu unendlichen Ketten verknüpft sind und damit dem Pyroxenmotiv folgen, das man aus der Silicatchemie ganz analog von Wollastonit (β -Ca(SiO₃) = {(Ca²⁺)¹_∞[SiO^t_{2/1}O^e_{2/2}]²⁻}; t = terminal, e = eckenverknüpfend) her kennt. Ren, Lin, Dong, Yang, Su und You [59] haben bei der Strukturaufklärung und Phasenumwandlung von GdBO3 eine Normaltemperaturphase μ -MBO₃ (\equiv M₃[B₃O₉], M = Sm - Lu) und eine Hochtemperaturphase π -M[BO₃] gefunden. Sie erhielten π -M[BO₃] in einer mit dem Calcit-Typ verwandten Struktur in der hexagonalen Raumgruppe P6₃/mmc bei der Phasenumwandlung von µ-MBO₃ unter Wärmeeinwirkung. π -M[BO₃] enthält als charakteristische Baueinheit trigonal-planare Oxoborat-Anionen $[BO_3]^{3-}$ und das Selten-Erd-Kation wird trigonal antiprismatisch von sechs O²⁻-Anionen umgeben. **µ-MBO₃** kristallisiert laut *Ren et al.* im Vaterit-Typ von CaCO₃ trigonal mit der Raumgruppe R32 und Z = 18 [59]. Die Struktur basiert nach ihrer Beschreibung auf sechsgliedrigen Ringen $[B_3O_9]^{9-}$ eckenverknüpfter Oxoborat-Tetraeder $[BO_4]^{5-}$ (was mit der CaCO₃-Topologie nicht im Einklang stehen kann [69]), wobei die Selten-Erd-Kationen M³⁺ auf der dreizähligen Achse und einer allgemeinen Lage zu liegen kommen.

Bei den anderen drei Typen v-M[BO₃], H-M[BO₃] und χ -MBO₃ handelt es sich um Hochtemperatur- bzw. Hochdruckmodifikationen.

v-M[BO₃] (M = Ce, Pr, Sm) kristallisiert triklin mit der Raumgruppe P1 und Z = 4. Die beiden kristallographisch unterschiedlichen M^{3+} -Kationen besitzen die Koordinationszahl acht und werden in Form eines leicht verzerrten Trigon-Dodekaeders von O^{2–}-Anionen umgeben. Das B³⁺-Kation wird nahezu trigonal-planar von O^{2–} koordiniert und ist nur leicht aus der Sauerstoff-Dreiecksebene ausgelenkt [70].

Die Hochtemperaturphase **H-M[BO₃]** (M = La, Ce, Nd, Sm) kristallisiert in der monoklinen Raumgruppe P2₁/m (Z = 2) und enthält ebenfalls trigonal-planar von Sauerstoff umgebene B³⁺-Kationen, die nur leicht aus der Dreiecksebene ausgelenkt sind. Das M³⁺-Kation wird in Form eines einfach überkappten, stark verzerrten Würfels von neun O^{2–}-Anionen koordiniert [52].

In χ -MBO₃ (triklin, P1, Z = 12; M = Dy, Er) trifft man ein Kettenfragment *catena*-[B₃O₉]^{9–} an, in dem eine tetraedrische [BO₄]^{5–}-Zentraleinheit über je eine Ecke mit einem weiteren [BO₄]^{5–}-Tetraeder und einem [BO]^{3–}-Dreieck verknüpft ist [53]. Die sechs kristallographisch unterschiedlichen M³⁺-Kationen weisen Koordinationszahlen von sieben bis neun auf.

3.1.1. $M(BO_2)_3$ mit M = La – Tb

3.1.1.1. Vorbemerkung

Verbindungen der Zusammensetzung MB₃O₆ (\equiv M(BO₂)₃) kristallisieren für M = La – Tb isotyp zueinander im monoklinen Kristallsystem mit der Raumgruppe C2/c (Z = 4). In der Literatur wird die Elementarzelle jedoch häufig so aufgestellt, daß sich als Raumgruppe I2/c oder I2/a ergibt [14, 71]. Für M = Nd wird als Raumgruppe sogar einmal von *Pakhomov* et al. [10] Imcm (also eine orthorhombische mit einem 94°-Winkel!) angegeben, und für M = Tbwird ebenfalls von Pakhomov et al. [72] über eine (orthorhombische) Elementarzelle mit der Raumgruppe Pbn2₁ (bzw. Pbnm) mit sechzehn Formeleinheiten, allerdings ohne Strukturparameter, berichtet. Da Verbindungen in diesem Typ häufig im Laufe dieser Arbeit anfielen, wird die Kristallstruktur von MB₃O₆ (\equiv M(BO₂)₃; M = La – Tb) im Folgenden am Beispiel von Pr(BO₂)₃ und Nd(BO₂)₃ noch ausführlicher beschrieben. Für die schwereren Lanthanide (M = Tb - Lu) lagen lange Zeit keine kristallographischen Einkristalldaten vor, röntgenographische Pulver- und IR-Untersuchungen [7] wiesen aber auf *drei* verschiedene Strukturtypen hin: $M(BO_2)_3$ (M = Tb, Dy), $M'(BO_2)_3$ (M' = Ho - Tm) sowie $M''(BO_2)_3$ (M'' = Yb, Lu). Eine Kristallstruktur für $M(BO_2)_3$ (M = Tb – Lu) unter Hochdruckbedingungen konnte inzwischen von Emme und Huppertz geklärt werden. Diese Verbindungen kristallisieren analog den unter Normaldruckbedingungen dargestellten meta-Oxoboraten $M(BO_2)_3$ (M = Tb, Dy), die ebenfalls näher beschrieben werden.

3.1.1.2. Experimentelles

Die *meta*-Oxoborate $M(BO_2)_3$ (M = Pr, Nd) entstehen einkristallin bei der Reaktion von elementarem Praseodym (Heraeus, 99,9 %), Pr_6O_{11} (Heraeus, 99,9 %) und $PrCl_3$ (Heraeus, 99,9 %) bzw. Nd₂O₃ (Heraeus, 99,9 %) und NdCl₃ (Heraeus, 99,9 %), beide Male in einem Überschuß von B₂O₃ (Riedel-deHaën, p.a.), in gasdicht verschlossenen Platinampullen nach sieben Tagen bei 850°C. Aus dem mit Wasser gewaschenen Produkt erhält man einkristallines $M(BO_2)_3$ (M = Pr, Nd) als lange, dünne, hellgrüne (Pr(BO₂)₃) bzw. blaßviolette

 $(Nd(BO_2)_3)$, luft- und wasserbeständige Nadeln, die aufgrund ihres faserigen Habitus stark zur Wachstumsverzwillingung neigen. Geeignete Einkristalle beider Verbindungen wurden ausgesucht und erbrachten durch röntgenographische Diffraktometer-Untersuchungen die monokline Kristallstruktur der *meta*-Oxoborate M(BO₂)₃ (\equiv MB₃O₆; M = Pr, Nd). Die Ergebnisse (kristallographische Daten zur Messung und Strukturbestimmung, Orts- und thermische Auslenkungsparameter) sind in Tabelle 3-1 bis Tabelle 3-3 zusammengefaßt. Ausgewählte interatomare Abstände und Winkel finden sich in Tabelle 3-4, über die Motive der gegenseitigen Zuordnung informiert Tabelle 3-5.

3.1.1.3. Strukturbeschreibung

Pr(BO₂)₃ und Nd(BO₂)₃ kristallisiert monoklin in der Raumgruppe C2/c (Nr. 15). Die B³⁺-Kationen sind sowohl trigonal-planar als auch tetraedrisch von Sauerstoff-Atomen koordiniert, wobei die Verknüpfung der beiden unterschiedlichen Oxoborat-Polyeder [BO₃]³⁻ (mit B2) und [BO₄]⁵⁻ (mit B1) über gemeinsame Ecken zu unendlichen Ketten (Abbildung 3-1) erfolgt. Ein [BO₄]⁵⁻-Tetraeder ist dabei über vier [BO₃]³⁻-Dreiecke mit zwei weiteren [BO₄]⁵⁻-Tetraedern so verbunden, daß jede Tetraederecke zur Verknüpfung dient. Gleichzeitig überbrückt ein [BO₃]³⁻-Dreieck zwei [BO₄]⁵⁻-Tetraeder mit nur zwei Ecken, so daß terminale Sauerstoff-Atome auf das trigonal koordinierte Bor beschränkt sind. Die Ketten $\int_{\infty}^{1} {[(B2)O_{1/1}^{t}O_{2/2}^{e}(B1)O_{4/2}^{e}(B2)O_{1/1}^{t}O_{2/2}^{e}]^{3-}} (\equiv \int_{\infty}^{1} {[BO₂]^{-}}) verlaufen entlang [101]$ (Abbildung 3-1). Das Bor-Kation in der [BO₃]³⁻-Einheit liegt nicht exakt innerhalb derSauerstoffebene, sondern ist um 0,7 pm (Pr(BO₂)₃) bzw. 1,1 pm (Nd(BO₂)₃) ausgelenkt. Das

M³⁺-Kation wird von zehn Oxid-Anionen in Form eines doppelt überkappten quadratischen Antiprismas umgeben (Abbildung 3-2). Die Polyeder der Metall-Kationen sind über je vier Sauerstoffkanten zu einem dreidimensionalen Netz verknüpft. Von den drei kristallographisch unterschiedlichen Sauerstoff-Atomen wird O1 tetraedrisch von (B1)³⁺, (B2)³⁺ und zwei M³⁺ koordiniert. Diese Tetraeder bilden nun durch Verknüpfung über zwei Kanten (B1--M und M--M) Doppelketten entlang [001] aus. O2 und O3 sind jeweils nur trigonal in leicht aplanarer Form von Kationen umgeben. Die Dreiecke um

O2 verbinden sich über Ecken (B1 und M) ebenfalls zu Ketten parallel [001], während jene um O3 durch Kantenverknüpfung (M--M) zunächst Dimere bilden, die wiederum über Ecken (M) zu Doppelketten entlang [101] verknüpft sind. Das tetraedrisch von Sauerstoff koordinierte (B2)³⁺ bleibt diesbezüglich von jeglicher Verknüpfung ausgeschlossen (vgl. Tabelle 3-4 und Tabelle 3-5).

Abbildung 3-3: Blick auf die Kristallstruktur von $M(BO_2)_3$ (M = Pr, Nd) entlang der b-Achse

Abbildung 3-1: Aufbau der Oxoborat-Ketten in $M(BO_2)_3$ (M = Pr, Nd)

Abbildung 3-4: Projektion der Kristallstruktur von $M(BO_2)_3$ (M = Pr, Nd) auf (101)

Kristallographische Daten:			
Kristallsystem	monoklin		
Raumgruppe	C2/c (Nr. 15)	[73]	
Zahl der Formeleinheiten	Z = 4		
	Pr (BO ₂) ₃	$Nd(BO_2)_3$	
Gitterkonstantena) [pm]	a = 984,98(9)	a = 983,24(9)	
	b = 809,57(8)	b = 809,32(7)	
	c = 641,02(6)	c = 637,71(6)	
[grd]	$\beta = 126,783(9)$	$\beta = 126,639(8)$	
molares Volumen ^{a)} (V_m) [cm ³ · mol ⁻¹]	61,634	61,303	
berechnete Dichte ^{a)} (D _x) $[g \cdot cm^{-3}]$	4,370	4,448	
Meßparameter:			
Meßgerät	Einkristalldiffraktometer:	κ-CCD (Fa. Nonius)	
verwendete Strahlung	Mo-Ka (Graphit-Monoch	fromator, $\lambda = 71,07 \text{ pm}$)	
Meßbereich	$14 \le h \le 14$	$14 \le h \le 14$	
	$-12 \le k \le 12$	$-12 \le k \le 12$	
	$-9 \le 1 \le 9$	$-9 \le 1 \le 9$	
Meßgrenze (θ_{max}) [grd]	25,00	32,76	
F(000)	488	492	
Absorptionskoeffizient μ [mm ⁻¹]	6,28	12,69	
Datenreduktion:			
Datenkorrekturen	Untergrund, Polarisations-	- und Lorentzfaktoren	
Absorption	empirisch; Programm HA	BITUS [32, 74]	
Zahl der gemessenen Reflexe	1422	2831	
davon symmetrieunabhängig	720	717	
$R_{int} (R_{\sigma})$	0,015 (0,014)	0,037 (0,025)	
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$	717	670	
Strukturverfeinerung:b)			
R ₁ für alle Reflexe	0,019	0,018	
$R_1 \operatorname{mit} F_o \ge 4\sigma(F_o)$	0,018	0,015	
wR ₂ für alle Reflexe	0,051	0,031	
Goodness of Fit	1,167	1,032	
Restelektronendichten $[10^{-6} \cdot e^- \cdot pm^{-3}]$	2,40 (max.)	0,92 (max.)	
	-1,09 (min.)	-0,71 (min.)	

Tabelle 3-1: Kristallographische Daten und ihre Bestimmung für $M(BO_2)_3$ (M = Pr, Nd)

^{a)} Einkristalldaten;
^{b)} Programme: SHELXS–86 bzw. SHELXL–93 [34, 35]; Streufaktoren nach International Tables, Vol. C [73]

Atom	Lage	x/a	y/b	z/c
Pr	(4 <i>e</i>)	0	0,69990(2)	¹ / ₄
B1	(<i>4e</i>)	0	0,2790(6)	$^{1}/_{4}$
B2	(<i>8f</i>)	0,2741(4)	0,4330(4)	0,4172(6)
01	(<i>8f</i>)	0,6055(3)	0,1139(3)	0,7125(5)
O2	(<i>8f</i>)	0,3983(3)	0,3135(3)	0,5080(5)
03	(<i>8f</i>)	0,2977(3)	0,5869(3)	0,5002(5)
Nd	(4 <i>e</i>)	0	0,70023(2)	¹ / ₄
B 1	(4e)	0	0,2784(4)	$^{1}/_{4}$
B2	(<i>8f</i>)	0,2744(3)	0,4332(3)	0,4167(5)
01	(<i>8f</i>)	0,6054(2)	0,1119(2)	0,7111(3)
O2	(<i>8f</i>)	0,3984(2)	0,3134(2)	0,5066(3)
03	(<i>8f</i>)	0,2981(2)	0,5879(2)	0,4998(3)

Tabelle 3-2: Atomlagen für $M(BO_2)_3$ (M = Pr, Nd)

Tabelle 3-3:	Koeffizienten	der	anisotropen	thermischen	Auslenkungsparameter ^{a)}
	für M(BO ₂) ₃ (M	I = Pr,	Nd)		

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pr	47(2)	44(2)	46(2)	0	23(1)	0
B1	15(16)	58(15)	53(17)	0	7(14)	0
B2	58(11)	73(12)	55(10)	-2(10)	21(10)	-2(9)
01	61(8)	81(9)	64(8)	-8(7)	24(7)	20(7)
O2	86(10)	69(9)	69(10)	23(7)	43(9)	40(6)
03	75(9)	82(9)	123(9)	-41(8)	-36(8)	-6(7)
Nd	32(1)	36(1)	25(1)	0	15(1)	0
B1	20(12)	34(13)	17(12)	0	-12(11)	0
B2	60(9)	59(10)	42(9)	8(8)	36(9)	6(8)
01	41(6)	70(7)	39(6)	2(6)	14(6)	23(6)
O2	45(6)	82(7)	30(7)	21(6)	13(6)	44(6)
O3	69(7)	59(7)	95(7)	-38(6)	33(7)	-4(6)

^{a)} definiert als Temperaturfaktor: exp $[-2\pi^2 (a^{*2}h^2U_{11} + b^{*2}k^2U_{22} + c^{*2}l^2U_{33} + 2b^*c^*klU_{23} + 2a^*c^*hlU_{13} + 2a^*b^*hkU_{12})];$ U_{ij} in pm²

Pr –	O3 O3'	238,6 252,5	(2x) (2x)	B1 –	O2 O1	145,2 147,9	(2x) (2x)	O1 - B1 - O2 O1 - B1 - O1'	103,4 108,2	(2 x)
	02	256,3	(2x)		-	-)-	~ /	O1 – B1 – O2'	111,9	(2 x)
	01	258,2	(2x)					O2 - B1 - O2'	117,9	
	01'	280,9	(2 x)							
				B2 –	03	132,0		O1 – B2– O3	116,8	
					O2	138,9		O1 – B2– O2	116,9	
					01	141,9		O2 – B2– O3	126,3	
Nd –	03	237,6	(2 x)	B1 –	O2	145,2	(2x)	O1 – B1 – O2	103,3	(2 x)
	O3'	252,6	(2x)		O1	149,4	(2x)	O1 – B1 – O1'	107,1	
	O2	254,3	(2x)					O1 – B1 – O2'	112,3	(2 x)
	01	256,8	(2x)					O2 - B1 - O2'	118,5	
	O1'	279,7	(2 x)							
				B2 –	03	132,5		O1 – B2– O3	116,2	
					O2	138,6		O1 – B2– O2	117,3	
					01	141,9		O2 – B2– O3	126,5	

Tabelle 3-4: Ausgewählte interatomare Abstände (d / pm) und Winkel (\checkmark / grd) für $M(BO_2)_3$ (M = Pr, Nd)

Tabelle 3-5: Motive der gegenseitigen Zuordnung für $M(BO_2)_3$ (M = Pr, Nd)

	01	02	03	CN
Μ	4/2	2/1	4/2	10
B1	2/1	2/1	0/0	4
B2	1 / 1	1 / 1	1 / 1	3
CN	4	3	3	
3.1.2. $M(BO_2)_3$ mit M = Tb, Dy

3.1.2.1. Experimentelles

Bei Versuchen zur Darstellung von Chlorid-Oxoboraten des Terbiums und Dysprosiums erhält man statt dessen die entsprechenden Lanthanid-*meta*-Oxoborate M(BO₂)₃ (\equiv MB₃O₆), deren Kristallstruktur bisher noch nicht aufgeklärt war. Die Umsetzung von Terbium (Heraeus, 99,9 %), Tb₄O₇ (Heraeus, 99,9 %), TbCl₃ (Heraeus, 99,9 %) und B₂O₃ (RiedeldeHaën, p.a.) im molaren Verhältnis von 2 : 14 : 3 : 21 bzw. von Dy₂O₃ (Heraeus, 99,9 %), DyCl₃ (Heraeus, 99,9 %) und B₂O₃ (Riedel-deHaën, p.a.) im molaren Verhältnis von 1 : 2 : 3 erfolgten mit einem Überschuß an B₂O₃ als Eigenflux. Die Edukte werden drei Wochen bei 950°C bzw. 900°C zur Reaktion gebracht. Aus dem mit Wasser gewaschenen Produkt erhält man einkristallines $M(BO_2)_3$ (M = Tb, Dy) als feine, farblose, faserige, luft- und wasserbeständige Nadeln. Geeignete Einkristalle beider Substanzen wurden ausgesucht und erbrachten durch röntgenographische Diffraktometer-Untersuchungen die orthorhombische Kristallstruktur von M(BO₂)₃ (\equiv MB₃O₆; M = Tb, Dy). Die Ergebnisse (kristallographische Daten zur Messung und Strukturbestimmung, Orts- und thermische Auslenkungsparameter) sind in Tabelle 3-6 bis Tabelle 3-10zusammengefaßt. Ausgewählte interatomare Abstände und Winkel finden sich in Tabelle 3-11 und Tabelle 3-12, über die Motive der gegenseitigen Zuordnung informiert Tabelle 3-13.

3.1.2.2. Strukturbeschreibung

Die *meta*-OxoborateM(BO₂)₃ (M = Tb, Dy) kristallisieren orthorhombisch in der Raumgruppe Pnma (Nr. 62) [75, 76]. Die sechs kristallographisch unterschiedlichen B³⁺-Kationen weisen allesamt eine Koordinationszahl von vier auf und werden tetraedrisch von Sauerstoffatomen koordiniert (d(B–O) = 143 – 154 pm, \lt O–B–O)= 102 – 116°; vgl. Tabelle 3-11 und Tabelle 3-12). Dabei verknüpfen immer zwei [BO₄]^{5–}-Tetraeder kristallographisch gleichartiger Boratome miteinander über Ecke zu [B₂O₇]^{8–}-Doppeltetraedern (\lt B–O–B = 121 – 136°; vgl. Tabelle 3-11). Die Tetraederdoppel der Kationen B1, B2 und B3 verknüpfen über das Sauerstoffatom O7 in der Art, daß die B³⁺-Kationen selbst ein trigonales Prisma bilden, wobei O7 nur um ca. 5 pm aus dieser Ebene ausgelenkt ist. Diese Einheiten werden wiederum von den B4-, B5- und B6- Tetraederdoppeln zu Dreiecks-Strängen parallel [100] verbunden, wobei auch hier die Boratome B4, B5 und B6 ein trigonales Prisma bilden (Abbildung 3-5). Zwei Dreiecks-Stränge verknüpfen miteinander über das Sauerstoffatom O11, so daß die Tetraeder der B³⁺-Kationen B1, B4 und B5 beider Stränge fast linear angeordnet sind. Diese Doppel-Stränge wiederum verknüpfen gegeneinander verschoben über das Sauerstoffatom O11 zu stark gewellten Schichten parallel (100) (Abbildung 3-9).

Die vier kristallographisch unterschiedlichen M^{3+} -Kationen weisen jeweils Koordinationszahlen von acht auf. Hierbei werden zwei der M^{3+} -Kationen, M3 und M4, in Form von verzerrten quadratischen Antiprismen (d(M–O) = 229 – 265 pm), M2 in Form eines stark verzerrten Trigon-Dodekaeders (d(M2–O) = 227 – 262 pm) und M1 in Form eines zweifach überkappten verzerrten Oktaeders (d(M1–O) = 226 – 288 pm) von O^{2–}-Anionen

Abbildung 3-6: Aufbau der Oxoborat-Schicht in $M(BO_2)_3$ (M = Tb, Dy), Blick entlang der a-Achse

Abbildung 3-5: Aufbau der Oxoborat-Schicht in $M(BO_2)_3$ (M = Tb, Dy)

umgeben (Abbildung 3-8). Die Polyeder der Metall-Kationen verknüpfen ebenfalls zu stark gewellten Schichten parallel (100), welche die Oxoborat-Schichten $^{2}_{\infty} \{(BO_{2})^{-}\}$ miteinander verknüpfen. Von den fünfzehn kristallographisch unterschiedlichen Sauerstoff-Atomen mit den Koordinationszahlen drei und vier (vgl. Tabelle 3-7, Tabelle 3-8 und Tabelle 3-13) besitzen drei eine besondere Funktion im Strukturaufbau und verhindern, daß sich eine SiO₂-analoge Struktur gemäß $_{\infty}^{3} \{(Si^{4+})(O^{2-})_{4/2}\}$ für das BO₂⁻-Teilgitter ausbildet. Das Sauerstoffatom O7 wird nahezu trigonal-planar (Auslenkung aus der B³⁺-Ebene ca. 5 pm) von drei B³⁺-Kationen koordiniert (\ll B–O7–B = 116 – 125°; vgl. Tabelle 3-11) und besetzt das Zentrum der Oxoborat-Dreiecksstränge. Die Oxoborat-Dreiecksstränge verknüpfen über das Sauerstoff-Anion O11 zu Schichten parallel (100) und O15 befindet sich schließlich an der terminalen Ecke eines jeden Oxoborat-Dreiecksstranges und koordiniert als einziges O^{2–}-Anion an drei M³⁺-Kationen gleichzeitig.

Abbildung 3-7: Verknüpfung der Oxoborat-Schichten in M(BO₂)₃ (M = Tb, Dy)

Abbildung 3-8: M^{3+} -Koordinationspolyeder in M(BO₂)₃ (M = Tb, Dy)

Abbildung 3-9: Blick entlang der b-Achse auf die Gesamtstruktur von $M(BO_2)_3$ (M = Tb, Dy)

Kristallographische Daten:					
Kristallsystem	orthorhombisch				
Raumgruppe	Pnma (Nr. 62) [73]				
Zahl der Formeleinheiten	Z =	16			
	Tb(BO ₂) ₃	$Dv(BO_2)_3$			
Gitterkonstanten ^{a)} [pm]	a = 1598,97(9)	a = 1594,31(9)			
	b = 741,39(4)	b = 740,36(4)			
	c = 1229,58(7)	c = 1226, 18(7)			
molares Volumen ^{a)} (V_m) [cm ³ · mol ⁻¹]	54,862	54,475			
berechnete Dichte ^{a)} $(D_x) [g \cdot cm^{-3}]$	5,238	5,341			
Meßparameter:					
Meßgerät	Einkristalldiffraktometer	r: κ-CCD (Fa. Nonius)			
verwendete Strahlung	Mo–K α (Graphit-Monochromator, $\lambda = 71,07$ pm)				
Meßbereich	$-20 \le h \le 20$	$-20 \le h \le 20$			
	$-9 \le k \le 9$	$-9 \le k \le 9$			
	$-15 \le l \le 15$	$-15 \le l \le 15$			
Meßgrenze (θ_{max}) [grd]	27,45	27,48			
F(000)	2048	2064			
Absorptionskoeffizient μ [mm ⁻¹]	19,34	20,58			
Datenreduktion:					
Datenkorrekturen	Untergrund, Polarisation	as- und Lorentzfaktoren			
Absorption	empirisch; Programm H	ABITUS [32, 74]			
Zahl der gemessenen Reflexe	20561	19812			
davon symmetrieunabhängig	1796	1789			
$R_{int} (R_{\sigma})$	0,082 (0,043)	0,079 (0,031)			
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$	1594	1680			
Strukturverfeinerung: ^{b)}					
R ₁ für alle Reflexe	0,046	0,029			
$R_1 \text{ mit } F_o \ge 4\sigma(F_o)$	0,035	0,026			

0,048

1,130

1,36 (max.)

-1,59 (min.)

0,053

1,094

1,42 (max.)

-1,33 (min.)

Tabelle 3-6: Kristallographische Daten und ihre Bestimmung für $M(BO_2)_3$ (M = Tb, Dy)

^{a)} Einkristalldaten;

wR2 für alle Reflexe

Restelektronendichten $[10^{-6} \cdot e^{-1} \cdot pm^{-3}]$

Goodness of Fit

^{b)} Programme: SHELXS–86 bzw. SHELXL–93 [34, 35]; Streufaktoren nach International Tables, Vol. C [73]

Atom	Lage	x/a	y/b	z/c
Tb1	(4 <i>c</i>)	0,37980(3)	$^{1}/_{4}$	0,00693(4)
Tb2	(<i>4c</i>)	0,17183(3)	$^{1}/_{4}$	0,43280(4)
Tb3	(<i>4c</i>)	0,04816(3)	$^{1}/_{4}$	0,08748(4)
Tb4	(<i>4c</i>)	0,37274(3)	$^{1}/_{4}$	0,72919(4)
B1	(8 <i>d</i>)	0,2171(5)	0,0722(11)	0,8140(7)
B2	(8 <i>d</i>)	0,0572(5)	0,0710(11)	0,8446(7)
B3	(8 <i>d</i>)	0,1100(5)	0,0789(11)	0,6443(7)
B4	(8 <i>d</i>)	0,2420(5)	0,0678(11)	0,1288(7)
B5	(8 <i>d</i>)	0,3481(5)	0,0786(11)	0,4803(7)
B6	(8 <i>d</i>)	0,0311(5)	0,0636(11)	0,3228(7)
01	(<i>4c</i>)	0,2438(5)	$^{1}/_{4}$	0,8550(6)
O2	(<i>4c</i>)	0,0476(5)	$^{1}/_{4}$	0,8966(6)
03	(4 <i>c</i>)	0,0777(5)	$^{1}/_{4}$	0,6072(6)
O4	(<i>4c</i>)	0,2757(5)	$^{1}/_{4}$	0,1376(6)
05	(<i>4c</i>)	0,3410(5)	$^{1}/_{4}$	0,5376(6)
06	(<i>4c</i>)	0,0638(5)	$^{1}/_{4}$	0,3020(6)
07	(8 <i>d</i>)	0,1292(3)	0,0713(7)	0,7647(4)
08	(8 <i>d</i>)	0,1844(3)	0,0355(7)	0,5787(4)
09	(8 <i>d</i>)	0,4523(3)	0,0657(7)	0,1228(4)
O10	(8 <i>d</i>)	0,2763(3)	0,0178(7)	0,7305(4)
O11	(8 <i>d</i>)	0,1652(3)	0,0642(7)	0,0651(4)
O12	(8 <i>d</i>)	0,4297(3)	0,0565(7)	0,4319(4)
O13	(8 <i>d</i>)	0,2818(3)	0,0625(7)	0,3981(4)
O14	(8 <i>d</i>)	0,4799(3)	0,0213(7)	0,7091(4)
015	(8 <i>d</i>)	0,4043(3)	0,0403(7)	0,8755(4)

Tabelle 3-7: Atomlagen für Tb(BO₂)₃

Atom	Lage	x/a	y/b	z/c
Dy1	(4 <i>c</i>)	0,37948(3)	$^{1}/_{4}$	0,00752(3)
Dy2	(4 <i>c</i>)	0,17199(3)	$^{1}/_{4}$	0,43351(3)
Dy3	(4 <i>c</i>)	0,04822(3)	$^{1}/_{4}$	0,08809(3)
Dy4	(4 <i>c</i>)	0,37252(3)	$^{1}/_{4}$	0,73038(3)
B1	(8 <i>d</i>)	0,2171(4)	0,0698(9)	0,8141(6)
B2	(8 <i>d</i>)	0,0571(4)	0,0739(9)	0,8455(6)
B3	(8 <i>d</i>)	0,1101(4)	0,0779(9)	0,6446(6)
B4	(8 <i>d</i>)	0,2419(4)	0,0688(9)	0,1292(6)
B5	(8 <i>d</i>)	0,3476(4)	0,0772(9)	0,4823(6)
B6	(8 <i>d</i>)	0,0310(4)	0,0619(9)	0,3223(6)
01	(4 <i>c</i>)	0,2455(4)	$^{1}/_{4}$	0,8557(5)
O2	(4 <i>c</i>)	0,0482(4)	$^{1}/_{4}$	0,8975(5)
O3	(<i>4c</i>)	0,0779(4)	$^{1}/_{4}$	0,6065(5)
O4	(4 <i>c</i>)	0,2759(4)	$^{1}/_{4}$	0,1383(5)
05	(4 <i>c</i>)	0,3408(4)	$^{1}/_{4}$	0,5388(5)
06	(4 <i>c</i>)	0,0644(4)	$^{1}/_{4}$	0,3025(5)
O7	(8 <i>d</i>)	0,1294(3)	0,0736(6)	0,7648(3)
O8	(8 <i>d</i>)	0,1851(3)	0,0352(6)	0,5777(4)
09	(8 <i>d</i>)	0,4514(3)	0,0639(6)	0,1230(3)
O10	(8 <i>d</i>)	0,2769(3)	0,0195(6)	0,7301(4)
011	(8 <i>d</i>)	0,1646(3)	0,0642(6)	0,0645(4)
O12	(8 <i>d</i>)	0,4301(3)	0,0577(6)	0,4319(3)
O13	(8 <i>d</i>)	0,2818(3)	0,0631(6)	0,3989(3)
O14	(8 <i>d</i>)	0,4791(3)	0,0230(6)	0,7099(4)
O15	(8 <i>d</i>)	0,4039(3)	0,0400(6)	0,8773(4)

Tabelle 3-8: Atomlagen für $Dy(BO_2)_3$

	für Tb(BO ₂)	3				
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Tb1	120(2)	102(2)	76(2)	0	6(2)	0
Tb2	89(2)	96(2)	90(2)	0	-1(2)	0
Tb3	85(2)	105(2)	103(2)	0	-1(2)	0
Tb4	98(2)	100(2)	83(2)	0	-4(2)	0
B1	69(38)	92(41)	130(41)	1(31)	1(32)	-29(29)
B2	58(38)	173(45)	164(45)	4(33)	8(32)	-19(31)
B3	98(36)	92(37)	68(38)	26(27)	26(29)	-12(26)
B4	116(39)	137(44)	77(40)	47(32)	6(34)	-15(31)
B5	119(41)	60(34)	110(41)	18(29)	-18(32)	16(28)
B6	88(39)	118(41)	65(37)	9(30)	-33(30)	-34(29)
01	153(37)	75(36)	66(35)	0	-30(29)	0
O2	100(34)	94(35)	66(33)	0	-21(27)	0
03	122(36)	160(40)	65(36)	0	-32(28)	0
O4	129(37)	71(37)	167(39)	0	-73(31)	0
05	137(41)	100(35)	78(34)	0	-78(30)	0
06	71(34)	82(36)	162(39)	0	67(29)	0
07	91(24)	103(24)	47(22)	-8(17)	-14(19)	1(20)
08	130(26)	65(24)	56(24)	-9(18)	23(20)	9(19)
09	106(24)	68(25)	72(25)	25(18)	38(20)	-15(19)
O10	92(25)	86(27)	115(26)	-50(20)	9(20)	-38(19)
011	52(23)	101(25)	108(25)	-25(19)	10(20)	14(19)
012	107(25)	95(26)	98(26)	33(19)	-4(20)	-18(19)
013	78(24)	79(26)	99(26)	4(19)	-10(19)	-6(18)
O14	50(23)	181(28)	63(24)	24(21)	3(19)	48(19)
015	113(25)	157(29)	139(27)	17(21)	-6(22)	17(20)

Koeffizienten thermischen Auslenkungsparameter^{a)} anisotropen Tabelle 3-9: der

^{a)} definiert als Temperaturfaktor: exp $[-2\pi^2 (a^{*2}h^2U_{11} + b^{*2}k^2U_{22} + c^{*2}l^2U_{33} + 2b^*c^*klU_{23} + 2a^*c^*hlU_{13} + 2a^*b^*hkU_{12})];$ U_{ij} in pm²

Tur Dy(BO ₂)	3				
U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
91(2)	47(2)	60(2)	0	1(2)	0
77(2)	56(2)	78(2)	0	-2(2)	0
70(2)	64(2)	84(2)	0	-3(2)	0
78(2)	55(2)	74(2)	0	-2(2)	0
56(31)	112(31)	62(31)	22(26)	-1(25)	-14(25)
99(32)	81(30)	41(31)	3(25)	-19(25)	-13(25)
59(30)	45(28)	83(33)	27(24)	-4(25)	-35(24)
67(31)	73(30)	109(34)	-3(27)	39(27)	-9(25)
101(33)	85(30)	31(31)	-44(25)	20(25)	43(25)
69(31)	76(30)	41(30)	10(25)	-12(24)	-11(24)
70(29)	59(27)	70(30)	0	-42(23)	0
74(29)	83(28)	34(28)	0	7(23)	0
110(31)	48(27)	85(31)	0	-44(25)	0
71(29)	86(29)	88(31)	0	20(24)	0
99(31)	32(27)	107(32)	0	15(25)	0
65(29)	47(27)	94(31)	0	34(24)	0
59(21)	72(19)	42(20)	-19(16)	11(16)	-4(16)
42(20)	110(21)	105(22)	-2(17)	-6(17)	29(16)
102(21)	46(18)	50(20)	3(16)	-17(17)	-12(16)
75(21)	70(20)	81(22)	-24(16)	20(17)	5(16)
70(21)	70(20)	69(21)	-15(16)	-5(16)	-7(16)
75(20)	57(19)	55(20)	13(16)	1(16)	2(16)
60(21)	69(20)	79(21)	-0(16)	-13(16)	-13(16)
72(21)	77(20)	96(22)	23(17)	-7(18)	0(16)
98(21)	82(20)	63(21)	-29(17)	21(17)	37(17)
	$\begin{array}{c} U_{11} \\ 91(2) \\ 77(2) \\ 70(2) \\ 78(2) \\ 56(31) \\ 99(32) \\ 59(30) \\ 67(31) \\ 101(33) \\ 69(31) \\ 70(29) \\ 74(29) \\ 110(31) \\ 71(29) \\ 99(31) \\ 65(29) \\ 59(21) \\ 42(20) \\ 102(21) \\ 75(21) \\ 70(21) \\ 75(20) \\ 60(21) \\ 72(21) \\ 98(21) \end{array}$	Inr Dy(BO2)3 U_{11} U_{22} 91(2)47(2)77(2)56(2)70(2)64(2)78(2)55(2)56(31)112(31)99(32)81(30)59(30)45(28)67(31)73(30)101(33)85(30)69(31)76(30)70(29)59(27)74(29)83(28)110(31)48(27)71(29)86(29)99(31)32(27)65(29)47(27)59(21)72(19)42(20)110(21)102(21)46(18)75(21)70(20)70(21)70(20)75(20)57(19)60(21)69(20)72(21)77(20)98(21)82(20)	Intr Dy(BO2)3 U_{11} U_{22} U_{33} 91(2)47(2)60(2)77(2)56(2)78(2)70(2)64(2)84(2)78(2)55(2)74(2)56(31)112(31)62(31)99(32)81(30)41(31)59(30)45(28)83(33)67(31)73(30)109(34)101(33)85(30)31(31)69(31)76(30)41(30)70(29)59(27)70(30)74(29)83(28)34(28)110(31)48(27)85(31)71(29)86(29)88(31)99(31)32(27)107(32)65(29)47(27)94(31)59(21)72(19)42(20)42(20)110(21)105(22)102(21)46(18)50(20)75(21)70(20)81(22)70(21)70(20)69(21)75(20)57(19)55(20)60(21)69(20)79(21)72(21)77(20)96(22)98(21)82(20)63(21)	Intr Dy(BO2)3 U_{11} U_{22} U_{33} U_{23} 91(2)47(2)60(2)077(2)56(2)78(2)070(2)64(2)84(2)078(2)55(2)74(2)056(31)112(31)62(31)22(26)99(32)81(30)41(31)3(25)59(30)45(28)83(33)27(24)67(31)73(30)109(34)-3(27)101(33)85(30)31(31)-44(25)69(31)76(30)41(30)10(25)70(29)59(27)70(30)074(29)83(28)34(28)0110(31)48(27)85(31)071(29)86(29)88(31)099(31)32(27)107(32)065(29)47(27)94(31)059(21)72(19)42(20)-19(16)42(20)110(21)105(22)-2(17)102(21)46(18)50(20)3(16)75(21)70(20)81(22)-24(16)70(21)70(20)69(21)-15(16)75(20)57(19)55(20)13(16)60(21)69(20)79(21)-0(16)72(21)77(20)96(22)23(17)98(21)82(20)63(21)-29(17)	Intr Dy(BO2)3 U_{11} U_{22} U_{33} U_{23} U_{13} 91(2)47(2)60(2)01(2)77(2)56(2)78(2)0-2(2)70(2)64(2)84(2)0-3(2)78(2)55(2)74(2)0-2(2)56(31)112(31)62(31)22(26)-1(25)99(32)81(30)41(31)3(25)-19(25)59(30)45(28)83(33)27(24)-4(25)67(31)73(30)109(34)-3(27)39(27)101(33)85(30)31(31)-44(25)20(25)69(31)76(30)41(30)10(25)-12(24)70(29)59(27)70(30)0-42(23)74(29)83(28)34(28)07(23)110(31)48(27)85(31)020(24)99(31)32(27)107(32)015(25)65(29)47(27)94(31)034(24)59(21)72(19)42(20)-19(16)11(16)42(20)110(21)105(22)-2(17)-6(17)102(21)46(18)50(20)3(16)-17(17)75(21)70(20)81(22)-24(16)20(17)70(21)70(20)69(21)-15(16)-5(16)75(20)57(19)55(20)13(16)1(16)60(21)69(20)79(21)-0(16)-13(16)72(21)77(20)96(22)23(17)-7(18)98(21)82(20)

Auslenkungsparameter^{a)} Tabelle 3-10: Koeffizienten der anisotropen thermischen $f_{iim} D_{ii} (DO)$

^{a)} definiert als Temperaturfaktor: exp $[-2\pi^2 (a^{*2}h^2U_{11} + b^{*2}k^2U_{22} + c^{*2}l^2U_{33} + 2b^*c^*klU_{23} + 2a^*c^*hlU_{13} + 2a^*b^*hkU_{12})];$ U_{ij} in pm²

Tb1 –	015	227,6	(2 x)	B1 –	013	143,	8	B2 - 01	2	144,6
	09	228,9	(2 x)		O10	145,	4	01	4	144,9
	O4	231,3			01	147,	4	O2	,	148,1
	08	251,3	(2 x)		07	153,	1	07		151,3
	01	286,7								
Tb2 –	O13	228,2	(2 x)	B3 –	O3	144,	4	B4 – O1	0	143,3
	06	236,0			08	147,	3	01	1	145,7
	08	240,6	(2 x)		O9	148,	7	O4		145,8
	O15	257,1	(2 x)		O 7	151,	3	08		153,3
	O3	262,0								
Tb3 –	O11	234,0	(2 x)	B5 –	O12	144,	3	B6 - 09)	142,7
	O2	234,7			O5	145,	7	01	5	144,2
	O12	238,8	(2 x)		O13	147,	0	06)	150,0
	O14	254,6	(2 x)		O11	150,	1	01	4	154,3
	O6	265,0								
Tb4 –	O10	231,1	(2 x)	B1 –	O1 – B1		126,8	B1 – O	7 –	116,2
	05	241,0		B2 –	O2 – B2		127,3	B1 – O	7 –	125,0
	O14	242,3	(2 x)	B3 –	O3 – B3		123,0	B2 – O	7 –	118,7
	015	243,1	(2 x)	B4 –	O4 – B4		135,7			
	01	257,8		B5 –	O5 – B5		121,4			
				B6 –	O6 – B6		134,3			
Dy1 –	015	226,2	(2 x)	B1 –	013	143,	2	B2 – O1	2	145,4
-	09	228,4	(2 x)		O10	145,	2	O2	,	145,8
	O4	230,2			01	149,	8	01	4	146,6
	08	250,2	(2 x)		O7	152,	4	07	,	151,9
	01	283,3								
Dy2 –	O13	227,2	(2 x)	B3 –	O3	145,	1	B4 - 01	0	143,1
-	06	235,0			09	146,	1	O4		145,1
	08	238,7	(2 x)		08	148,	4	01	1	146,6
	015	255,9	(2 x)		07	150,	6	08		153,2
	O3	259,8								
Dy3 –	O11	232,8	(2 x)	B5 –	O5	145,	9	B6 - 09)	143,6
	O2	233,7			O12	146,	0	01	5	145,0
	O12	237,4	(2 x)		011	146,	6	06		151,1
	O14	255,1	(2 x)		O13	146,	9	01	4	152,3
	06	264,2								
Dy4 –	O10	228,8	(2 x)	B1 –	O1 – B1		125,8	B1 – O	7 –	115,9
	O5	240,3		B2 –	O2 – B2		126,8	B1 – O	7 –	125,2
	O14	240,3	(2 x)	B3 –	O3 – B3		122,8	B2 – O	7 –	119,0
	O15	243,2	(2 x)	B4 –	O4 – B4		135,2			
	O1	254,2		B5 –	O5 – B5		122,5			
				B6 –	O6 – B6		134,4			

Tabelle 3-11: Ausgewählte interatomare Abstände (d / pm) und B–O–B-Winkel (\triangleleft / grd) für M(BO₂)₃ (M = Tb, Dy)

Tb (BO ₂) ₃					
O7 – B1 – O13	107,0	O2 – B2 – O12	106,3	O7 – B3 – O9	106,4
O1 – B1 – O10	107,5	O12 - B2 - O14	107,2	O8 - B3 - O9	106,6
O10 – B1 – O13	107,9	O2 - B2 - O14	109,6	O3 - B3 - O8	107,9
O7 - B1 - O10	108,5	O7 - B2 - O14	110,7	O3 - B3 - O9	109,7
O1 – B1 – O13	111,8	O2 - B2 - O7	111,0	O7 - B3 - O8	111,3
O1 - B1 - O7	113,9	O7 – B2 – O12	111,9	O3 - B3 - O7	114,5
O4 - B4 - O8	102,1	O5 – B5 – O11	105,6	O6 – B6 – O14	105,1
O8 - B4 - O10	106,6	O11 – B5 – O13	108,6	O14 - B6 - O15	105,7
O10 – B4 – O11	106,8	O11 – B5 – O12	109,5	O6 – B6 – O15	108,6
O4 – B4 – O11	111,6	O5 – B5 – O13	110,3	O9 – B6 – O14	109,2
O4 - B4 - O10	114,9	O12 – B5 – O13	111,1	O6 - B6 - O9	112,2
O8 – B4 – O11	115,0	O5 – B5 – O12	111,6	O9 – B6 – O15	115,3
$Dy(BO_2)_3$					
$Dy(BO_2)_3$ O1 – B1 – O10	105,8	O12 – B2 – O14	106,5	O8 - B3 - O9	106,7
$Dy(BO_2)_3$ O1 - B1 - O10 O7 - B1 - O13	105,8 108,2	O12 – B2 – O14 O2 – B2 – O12	106,5 107,1	O8 – B3 – O9 O3 – B3 – O8	106,7 107,1
$Dy(BO_2)_3 \\ O1 - B1 - O10 \\ O7 - B1 - O13 \\ O7 - B1 - O10$	105,8 108,2 109,0	O12 - B2 - O14 O2 - B2 - O12 O7 - B2 - O14	106,5 107,1 110,0	O8 – B3 – O9 O3 – B3 – O8 O7 – B3 – O9	106,7 107,1 107,4
$Dy(BO_2)_3$ $O1 - B1 - O10$ $O7 - B1 - O13$ $O7 - B1 - O10$ $O10 - B1 - O13$	105,8 108,2 109,0 109,3	O12 - B2 - O14 O2 - B2 - O12 O7 - B2 - O14 O2 - B2 - O14	106,5 107,1 110,0 110,5	O8 - B3 - O9 O3 - B3 - O8 O7 - B3 - O9 O3 - B3 - O9	106,7 107,1 107,4 109,6
$Dy(BO_2)_3$ $O1 - B1 - O10$ $O7 - B1 - O13$ $O7 - B1 - O10$ $O10 - B1 - O13$ $O1 - B1 - O13$	105,8 108,2 109,0 109,3 111,2	O12 - B2 - O14 O2 - B2 - O12 O7 - B2 - O14 O2 - B2 - O14 O2 - B2 - O7	106,5 107,1 110,0 110,5 111,1	O8 - B3 - O9 O3 - B3 - O8 O7 - B3 - O9 O3 - B3 - O9 O7 - B3 - O9 O7 - B3 - O8	106,7 107,1 107,4 109,6 111,8
$Dy(BO_2)_3$ $O1 - B1 - O10$ $O7 - B1 - O13$ $O7 - B1 - O10$ $O10 - B1 - O13$ $O1 - B1 - O13$ $O1 - B1 - O7$	105,8 108,2 109,0 109,3 111,2 113,3	O12 - B2 - O14 O2 - B2 - O12 O7 - B2 - O14 O2 - B2 - O14 O2 - B2 - O7 O7 - B2 - O12	106,5 107,1 110,0 110,5 111,1 111,5	O8 - B3 - O9 O3 - B3 - O8 O7 - B3 - O9 O3 - B3 - O9 O7 - B3 - O9 O7 - B3 - O8 O3 - B3 - O7	106,7 107,1 107,4 109,6 111,8 114,0
$Dy(BO_2)_3$ $O1 - B1 - O10$ $O7 - B1 - O13$ $O7 - B1 - O10$ $O10 - B1 - O13$ $O1 - B1 - O13$ $O1 - B1 - O13$ $O1 - B1 - O7$ $O4 - B4 - O8$	105,8 108,2 109,0 109,3 111,2 113,3 102,3	$\begin{array}{c} 012 - B2 - 014 \\ 02 - B2 - 012 \\ 07 - B2 - 014 \\ 02 - B2 - 014 \\ 02 - B2 - 07 \\ 07 - B2 - 07 \\ 07 - B2 - 012 \\ 05 - B5 - 011 \end{array}$	106,5 107,1 110,0 110,5 111,1 111,5 106,9	O8 - B3 - O9 O3 - B3 - O8 O7 - B3 - O9 O3 - B3 - O9 O7 - B3 - O9 O7 - B3 - O8 O3 - B3 - O7 O6 - B6 - O14	106,7 107,1 107,4 109,6 111,8 114,0 105,8
$Dy(BO_2)_3$ $O1 - B1 - O10$ $O7 - B1 - O13$ $O7 - B1 - O10$ $O10 - B1 - O13$ $O1 - B1 - O13$ $O1 - B1 - O7$ $O4 - B4 - O8$ $O10 - B4 - O11$	105,8 108,2 109,0 109,3 111,2 113,3 102,3 106,3	$\begin{array}{c} 012 - B2 - 014 \\ 02 - B2 - 012 \\ 07 - B2 - 014 \\ 02 - B2 - 014 \\ 02 - B2 - 014 \\ 07 - B2 - 07 \\ 07 - B2 - 012 \\ 05 - B5 - 011 \\ 011 - B5 - 013 \end{array}$	106,5 107,1 110,0 110,5 111,1 111,5 106,9 109,5	$\begin{array}{c} 08 - B3 - 09 \\ 03 - B3 - 08 \\ 07 - B3 - 09 \\ 03 - B3 - 09 \\ 07 - B3 - 09 \\ 07 - B3 - 08 \\ 03 - B3 - 07 \\ 06 - B6 - 014 \\ 014 - B6 - 015 \end{array}$	106,7 107,1 107,4 109,6 111,8 114,0 105,8 106,4
$Dy(BO_2)_3$ $O1 - B1 - O10$ $O7 - B1 - O13$ $O7 - B1 - O10$ $O10 - B1 - O13$ $O1 - B1 - O13$ $O1 - B1 - O7$ $O4 - B4 - O8$ $O10 - B4 - O11$ $O8 - B4 - O10$	105,8 108,2 109,0 109,3 111,2 113,3 102,3 106,3 106,6	$\begin{array}{c} 012 - B2 - 014\\ 02 - B2 - 012\\ 07 - B2 - 014\\ 02 - B2 - 014\\ 02 - B2 - 07\\ 07 - B2 - 07\\ 07 - B2 - 012\\ 05 - B5 - 011\\ 011 - B5 - 013\\ 011 - B5 - 012\\ \end{array}$	106,5 107,1 110,0 110,5 111,1 111,5 106,9 109,5 109,9	$\begin{array}{c} 08 - B3 - 09 \\ 03 - B3 - 08 \\ 07 - B3 - 09 \\ 03 - B3 - 09 \\ 07 - B3 - 09 \\ 07 - B3 - 08 \\ 03 - B3 - 07 \\ 06 - B6 - 014 \\ 014 - B6 - 015 \\ 06 - B6 - 015 \end{array}$	106,7 107,1 107,4 109,6 111,8 114,0 105,8 106,4 107,6
$Dy(BO_2)_3$ $O1 - B1 - O10$ $O7 - B1 - O13$ $O7 - B1 - O10$ $O10 - B1 - O13$ $O1 - B1 - O13$ $O1 - B1 - O7$ $O4 - B4 - O8$ $O10 - B4 - O11$ $O8 - B4 - O10$ $O4 - B4 - O11$	105,8 108,2 109,0 109,3 111,2 113,3 102,3 106,3 106,6 112,2	$\begin{array}{c} 012 - B2 - 014\\ 02 - B2 - 012\\ 07 - B2 - 014\\ 02 - B2 - 014\\ 02 - B2 - 014\\ 02 - B2 - 07\\ 07 - B2 - 012\\ 05 - B5 - 011\\ 011 - B5 - 013\\ 011 - B5 - 012\\ 05 - B5 - 013\\ \end{array}$	106,5 107,1 110,0 110,5 111,1 111,5 106,9 109,5 109,9 109,9	$\begin{array}{c} 08 - B3 - 09 \\ 03 - B3 - 08 \\ 07 - B3 - 09 \\ 03 - B3 - 09 \\ 07 - B3 - 09 \\ 07 - B3 - 08 \\ 03 - B3 - 07 \\ 06 - B6 - 014 \\ 014 - B6 - 015 \\ 06 - B6 - 015 \\ 09 - B6 - 014 \end{array}$	106,7 107,1 107,4 109,6 111,8 114,0 105,8 106,4 107,6 109,5
$Dy(BO_2)_3$ $O1 - B1 - O10$ $O7 - B1 - O13$ $O7 - B1 - O13$ $O1 - B1 - O13$ $O1 - B1 - O13$ $O1 - B1 - O7$ $O4 - B4 - O8$ $O10 - B4 - O11$ $O8 - B4 - O10$ $O4 - B4 - O11$	105,8 108,2 109,0 109,3 111,2 113,3 102,3 106,3 106,6 112,2 113,8	$\begin{array}{c} 012 - B2 - 014\\ 02 - B2 - 012\\ 07 - B2 - 014\\ 02 - B2 - 014\\ 02 - B2 - 07\\ 07 - B2 - 012\\ 05 - B5 - 012\\ 05 - B5 - 013\\ 011 - B5 - 012\\ 05 - B5 - 013\\ 012 - B5 - 013\\ \end{array}$	106,5 107,1 110,0 110,5 111,1 111,5 106,9 109,5 109,9 109,9 110,0	$\begin{array}{c} 08 - B3 - 09 \\ 03 - B3 - 08 \\ 07 - B3 - 09 \\ 03 - B3 - 09 \\ 07 - B3 - 09 \\ 07 - B3 - 08 \\ 03 - B3 - 07 \\ 06 - B6 - 014 \\ 014 - B6 - 015 \\ 06 - B6 - 015 \\ 09 - B6 - 014 \\ 06 - B6 - 09 \end{array}$	106,7 107,1 107,4 109,6 111,8 114,0 105,8 106,4 107,6 109,5 112,2

Tabelle 3-12: Ausgewählte O–B–O-Winkel (\checkmark / grd) für M(BO₂)₃ (M = Tb, Dy)

	01	02	03	04	05	06	07	08	09	O10	011	012	013	014	015	CN
M1	1/1	0/0	0/0	1/1	0/0	0/0	0/0	1/2	1/2	0/0	0/0	0/0	0/0	0/0	1/2	8
M2	0/0	0/0	1/1	0/0	0/0	1/1	0/0	1/2	0/0	0/0	0/0	0/0	1/2	0/0	1/2	8
M3	0/0	1/1	0/0	0/0	0/0	1/1	0/0	0/0	0/0	0/0	1/2	1/2	0/0	1/2	0/0	8
M4	1/1	0/0	0/0	0/0	1/1	0/0	0/0	0/0	0/0	1/2	0/0	0/0	0/0	1/2	1/2	8
B1	2/1	0/0	0/0	0/0	0/0	0/0	1/1	0/0	0/0	1/1	0/0	0/0	1/1	0/0	0/0	4
B2	0/0	2/1	0/0	0/0	0/0	0/0	1/1	0/0	0/0	0/0	0/0	1/1	0/0	1/1	0/0	4
B3	0/0	0/0	2/1	0/0	0/0	0/0	1/1	1/1	1/1	0/0	0/0	0/0	0/0	0/0	0/0	4
B4	0/0	0/0	0/0	2/1	0/0	0/0	0/0	1/1	0/0	1/1	1/1	0/0	0/0	0/0	0/0	4
B5	0/0	0/0	0/0	0/0	2/1	0/0	0/0	0/0	0/0	0/0	1/1	1/1	1/1	0/0	0/0	4
B6	0/0	0/0	0/0	0/0	0/0	2/1	0/0	0/0	1/1	0/0	0/0	0/0	0/0	1/1	1/1	4
CN	4	3	3	3	3	4	3	4	3	3	3	3	3	4	4	

Tabelle 3-13: Motive der gegenseitigen Zuordnung für $M(BO_2)_3$ (M = Tb, Dy)

3.1.3. La₄B₁₄O₂₇

3.1.3.1. Vorbemerkung

Bisher sind außer den *ortho*-Oxoboraten MBO₃ und den *meta*-Oxoboraten MB₃O₆ $(\equiv M(BO_2)_3)$ auch reine Oxoborate der Zusammensetzungen M₄B₆O₁₅ (M = Dy, Ho) [42, 43] und $M_2B_4O_9$ (M = Eu, Gd, Tb, Dy) [43, 45] bekannt. Bei den beiden letzgenannten handelt es sich allerdings um Hochtemperatur- / Hochdruckverbindungen. Die Vertreter des Formeltyps $M_4B_6O_{15}$ (M = Dy, Ho) kristallisiert monoklin in der Raumgruppe C2/c mit Z = 4. Die B³⁺-Kationen sind allesamt tetraedrisch von vier O^{2-} -Anionen umgeben. Diese $[BO_4]^{5-}$ -Tetraeder verknüpfen über Kanten und Ecken zu stark gewellten Schichten parallel (010). Die Schichten werden durch achtfach koordinierte M³⁺-Kationen zusammengehalten. Oxoborate der Zusammensetzung M₂B₄O₉ treten es in zwei Modifikationen auf. α -M₂B₄O₉ (M = Eu, Gd, Tb, Dy; Z = 20 kristallisiert monoklin (C2/c) und hat ein aus ecken- und kantenverknüpften [BO₄]⁵⁻-Tetraedern bestehendes Raumnetzgitter als charakteristisches Strukturelement. Die fünf kristallographisch unterschiedlichen M³⁺-Kationen weisen Koordinationszahlen von acht bis elf auf. Im Gegensatz dazu enthält β -M₂B₄O₉ (M = Dy, triklin, P1; Z = 2) neben tetraedrisch koordiniertem B³⁺ auch nahezu trigonal-planar koordiniertes Bor (Auslenkung aus der Sauerstoff-Dreiecksebene: ca. 6 pm). Drei eckenverknüpfte [BO₄]⁵⁻-Tetraeder sind hier über ein [BO₃]³⁻-Dreieck zu Strängen verbunden, die parallel [100] verlaufen. Die beiden kristallographisch unterschiedlichen M³⁺-Kationen werden neun- bzw. zehnfach von O²⁻-Anionen koordiniert.

Von Lanthan waren bisher zwei reine Oxoborate bekannt, das orthorhombische *ortho*-Oxoborat La[BO₃] (Aragonit-Typ) [50, 52] und das monokline *meta*-Oxoborat La(BO₂)₃ (\equiv LaB₃O₆) [15]. Bei der neuen Verbindung La₄B₁₄O₂₇ wurde nun formal eine weitere Borsesquioxid-Einheit (B₂O₃) in das *meta*-Oxoborat (4 × La(BO₂)₃) eingebaut.

3.1.3.2. Experimentelles

La₄B₁₄O₂₇ entsteht bei Versuchen zur Darstellung von Chlorid-Oxoboraten des Lanthans unter Umsetzung von Lanthantrichlorid (LaCl₃, Heraeus, 99,9 %), Lanthansesquioxid (La₂O₃, Rhône-Poulenc, 99,99 %), Borsesquioxid (B₂O₃, Riedel-deHaën, p.a.) im molaren Verhältnis von 2:1:3 mit Caesiumchlorid (CsCl, Merck, 99,9 %) als Flußmittel. Die Edukte werden 20 Tage lang bei 710°C getempert. Aus dem mit Wasser gewaschenen Produkt erhält man La₄B₁₄O₂₇ einkristallin in Form von farblosen, transparenten, luft- und wasserbeständigen geeigneter Einkristall wurde ausgesucht Plättchen. Ein und erbrachte durch röntgenographische Diffraktometer-Untersuchungen die monokline Kristallstruktur von La₄B₁₄O₂₇. Die Ergebnisse (kristallographische Daten zur Messung und Strukturbestimmung, Orts- und thermische Auslenkungsparameter) sind in Tabelle 3-14 bis Tabelle 3-16 zusammengefaßt. Ausgewählte interatomare Abstände und Winkel finden sich in Tabelle 3-17 Tabelle 3-18, über die Motive der gegenseitigen Zuordnung informiert und Tabelle 3-19.

3.1.3.3. Strukturbeschreibung

Die Kristallstruktur von La₄B₁₄O₂₇ (monoklin, C2/c; a = 1120,84(9), b = 641,98(6), c = 2537,2(2) pm, β = 100,125(8)°; Z = 4) wird aus einem Oxoborat-Raumgitter aufgebaut. Von den sieben kristallographisch unterschiedlichen B³⁺-Kationen sind vier tetraedrisch von Sauerstoff umgeben (B1, B3 – B5; d(B–O) = 144 – 151 pm, \ll O–B–O = 102 – 117°; vgl. Tabelle 3-17 und Tabelle 3-18) und drei annähernd trigonal-planar (B2, B6, B7; d(B–O) = 134 – 140 pm, \ll O–B–O = 116 – 123°; vgl. Tabelle 3-17 und Tabelle 3-18), wobei das Bor-Kation stets um weniger als 4 pm aus der Sauerstoff-Dreiecksebene ausgelenkt ist. Drei Tetraeder (B3, B4, B5) verknüpfen jeweils über Ecke zu [B₃O₉]^{9–}-Sechsringen, welche über eine trigonal-planare [BO₃]^{3–}-Einheit (B2) zu Schichten weiterverbunden sind. Dabei entsteht zwischen drei verknüpften Einheiten, jeweils bestehend aus einem [B₃O₉]^{9–}. Sechsring und einem [BO₃]^{3–}-Dreieck, stets eine trigonale Lücke. Jeweils zwei solcher Schichten sind über [B₂O₇]^{8–}-Tetraederdoppel (zwei [BO₄]^{5–}-Tetraeder (B4) mit gemeinsamer

Ecke) zu Doppelschichten verknüpft. Dabei kommt der $[B_3O_9]^{9-}$ -Sechsring der ersten Schicht über der trigonalen Lücke der zweiten Schicht zu liegen und umgekehrt (Abbildung 3-10). Die Doppelschichten werden schließlich noch über Stränge aus tetraedrischen (B1) und trigonal-planaren Oxoborat-Einheiten (B6, B7) zu einem Raumgitter vernetzt. Dabei verknüpft eine $[BO_3]^{3-}$ -Einheit (B6) die Doppelschicht über Kante mit dem tetraedrischen $[BO_4]^{5-}$ -Baustein (B1), das andere $[BO_3]^{3-}$ -Dreieck (B7) verbindet die beiden gegenüberliegenden $[BO_4]^{5-}$ -Tetraeder ebenfalls über Kante miteinander. Das $[BO_4]^{5-}$ Tetraeder selbst verknüpft also über eine Kante zwei $[BO_3]^{3-}$ -Einheiten (B7), mit der gegenüberliegenden Kante verbindet es die trigonale $[BO_3]^{3-}$ -Einheit (B6) mit der Oxoborat-Doppelschicht (Abbildung 3-11).

Abbildung 3-10: Aufbau der Oxoborat-Doppelschicht in La₄B₁₄O₂₇; Blick entlang der c- (*oben*) und der b-Achse (*unten*)

La₄B₁₄O₂₇ enthält zwei kristallographisch unterschiedliche La³⁺-Kationen (Abbildung 3-12). Dabei wird La1 von zehn O^{2–}-Anionen koordiniert (d(La1–O) = 241 – 285 pm) und liegt innerhalb der Oxoborat-Doppelschichten. La2 weist eine (8 + 2)-Koordination aus O^{2–}-Anionen (d(La2–O = 234 – 322 pm) auf und liegt in Kanälen, die parallel zu (001) verlaufen (Abbildung 3-13).

Abbildung 3-11: Verknüpfung (*hellgrau*) der Oxoborat-Doppelschichten (*dunkelgrau* und *schwarz*) in La₄B₁₄O₂₇; Blick entlang der a- (*links*) und der b-Achse (*rechts*)

Abbildung 3-12: Koordinationspolyeder um die La³⁺-Kationen in La₄B₁₄O₂₇

Abbildung 3-13: Gesamtansicht der Kristallstruktur von La₄B₁₄O₂₇ mit der Lage der (La1)³⁺-Kationen innerhalb der Oxoborat-Doppelschichten und der (La2)³⁺-Kationen in den Kanälen parallel (001)

Tabelle 3-14: Kristallographische Daten	und thre Bestimmung für $La_4B_{14}O_{27}$
Kristallographische Daten:	
Kristallsystem	monoklin
Raumgruppe	C2/c (Nr. 15) [73]
Zahl der Formeleinheiten	Z = 4
Gitterkonstanten ^{a)} [pm]	a = 1120,84(9)
	b = 641,98(6)
	c = 2537, 2(2)
[grd]	$\beta = 100,125(8)$
molares Volumen ^{a)} (V_m) [cm ³ · mol ⁻¹]	270,574
berechnete Dichte ^{a)} (D _x) [g \cdot cm ⁻³]	4,209
Meßparameter:	
Meßgerät	Einkristalldiffraktometer: IPDS (Fa. Stoe)
verwendete Strahlung	Mo–K α (Graphit-Monochromator, $\lambda = 71,07$ pm)
Meßbereich	$-14 \le h \le 14$
	$-8 \le k \le 8$
	$-33 \le 1 \le 33$
Meßgrenze (θ_{max}) [grd]	27,97
F(000)	2056
Absorptionskoeffizient μ [mm ⁻¹]	9,47
Datenreduktion:	
Datenkorrekturen	Untergrund, Polarisations- und Lorentzfaktoren
Absorption	empirisch; Programm HABITUS [32, 74]
Zahl der gemessenen Reflexe	8132
davon symmetrieunabhängig	2166
$R_{int} (R_{\sigma})$	0,058 (0,052)
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$	1647
Strukturverfeinerung: ^{b)}	
R ₁ für alle Reflexe	0,052
$R_1 \text{ mit } F_o \ge 4\sigma(F_o)$	0,035
wR ₂ für alle Reflexe	0,075
Goodness of Fit	0,962
Restelektronendichten $[10^{-6} \cdot e^{-1} \cdot pm^{-3}]$	1,36 (max.)
	-1,47 (min.)

Tab a11 . . 1.4 J :1 ...т --ı · fii ъ \mathbf{c}

^{a)} Einkristalldaten;
^{b)} Programme: SHELXS–86 bzw. SHELXL–93 [34, 35]; Streufaktoren nach International Tables, Vol. C [73]

Atom	Lage	x/a	y/b	z/c
La1	(<i>8f</i>)	0,82908(3)	0,08354(6)	0,31513(1)
La2	(<i>8f</i>)	0,09845(4)	0,24867(6)	0,44414(2)
B1	(<i>8f</i>)	0,1049(7)	0,7385(12)	0,4455(3)
B2	(<i>8f</i>)	0,9947(7)	0,6010(12)	0,3127(3)
B3	(<i>8f</i>)	0,0995(7)	0,9340(12)	0,3507(3)
B4	(<i>8f</i>)	0,0899(7)	0,2668(12)	0,2948(3)
B5	(<i>8f</i>)	0,7807(7)	0,5759(13)	0,3245(3)
B6	(<i>8f</i>)	0,1212(7)	0,3318(12)	0,5787(3)
B7	(<i>8f</i>)	0,8314(7)	0,1428(12)	0,4539(3)
01	(<i>8f</i>)	0,7861(4)	0,2143(7)	0,2170(2)
O2	(<i>8f</i>)	0,1135(4)	0,9067(8)	0,4081(2)
O3	(<i>8f</i>)	0,8831(5)	0,1497(8)	0,4098(2)
O4	(<i>8f</i>)	0,0629(4)	0,1544(7)	0,3417(2)
05	(<i>8f</i>)	0,2093(4)	0,5995(8)	0,4512(2)
06	(<i>8f</i>)	0,9991(4)	0,6023(8)	0,4263(2)
O7	(<i>8f</i>)	0,1721(5)	0,2945(7)	0,5357(2)
08	(4 <i>e</i>)	0	0,2025(11)	$^{1}/_{4}$
09	(<i>8f</i>)	0,8071(4)	0,7078(7)	0,3725(2)
O10	(<i>8f</i>)	0,8899(4)	0,4882(8)	0,3088(2)
O11	(<i>8f</i>)	0,5986(5)	0,9916(8)	0,3067(2)
O12	(<i>8f</i>)	0,9967(4)	0,8083(7)	0,3213(2)
O13	(<i>8f</i>)	0,7098(4)	0,3919(8)	0,3301(2)
O14	(<i>8f</i>)	0,9092(5)	0,1667(8)	0,5026(2)

Tabelle 3-15: Atomlagen für $La_4B_{14}O_{27}$

thermischen

	Auslenkungsparameter ^a für La ₄ B ₁₄ O ₂₇									
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂				
La1	29(2)	47(2)	97(2)	-7(2)	12(1)	9(2)				
La2	45(2)	51(2)	101(2)	-11(1)	-1(1)	2(2)				
B 1	47(13)	_	_	_	_	_				
B2	51(13)	_	_	_	_	_				
B3	53(13)	_	_	_	_	_				
B4	72(14)	_	_	_	_	_				
B5	59(13)	_	_	_	_	-				
B6	82(15)	_	_	_	_	-				
B7	84(15)	_	_	_	_	-				
01	54(9)	_	—	—	_	-				
O2	69(9)	_	_	_	_	_				
03	99(10)	_	_	_	_	_				
O4	54(9)	_	_	_	_	-				
05	82(9)	_	_	_	_	_				
06	76(9)	_	_	_	_	_				
07	84(10)	_	_	_	_	-				
08	93(14)	_	_	_	_	_				
09	74(10)	_	_	_	_	_				
O10	70(9)	_	_	_	_	-				
011	83(9)	_	_	_	_	_				
O12	66(9)	_	_	_	_	_				
013	80(9)	_	_	_	_	_				
O14	80(9)	_	_	_	_	_				

der Tabelle 3-16: Koeffizienten isotropen anisotropen und

^{a)} definiert als Temperaturfaktor:

isotrop: exp $[-8\pi^2 (U_{iso}\sin^2\theta/\lambda^2)];$ anisotrop: exp $[-2\pi^2 (a^{*2}h^2U_{11} + b^{*2}k^2U_{22} + c^{*2}l^2U_{33} + 2b^*c^*klU_{23} + 2a^*c^*hlU_{13} + 2a^*b^*hkU_{12})];$ U_{ij} in pm²

La1 –	03	241,0	B1 –	O2	145,2	B5 –	O13	144,4
	O13	245,5		05	145,8		O10	146,5
	O12	256,4		O14	148,4		09	146,9
	01	259,2		06	148,6		01	147,7
	O11	262,2						
	O4	262,9	B2 –	O12	134,8	B6 –	O7	133,9
	O10	269,7		O10	137,0		09	137,7
	O1'	275,3		011	139,0		O6	139,7
	O8	284,6						
	O9	285,0	B3 –	O2	144,7	B7 –	O3	134,7
				013	145,0		O5	138,6
La2 –	O7	234,2		O4	148,0		O14	139,0
	O2	239,6		O12	149,5			
	O3	250,0				B4 – (D8 – B4	146,7
	O6	253,4	B4 –	08	144,1			
	O7'	254,7		O4	146,8	B4 – (D1 – B5	111,2
	O5	256,3		011	147,5	B3 – 0	D13 – B5	113,7
	O4	262,9		01	151,0	B3 – 0	D4 – B4	120,3
	O14	284,2						
	014'	299,8				B2-0	D11 – B4	119,4
	09	321,5				B2 – 0	D10 – B5	121,6
						B2-0	D12 – B3	127,1

Tabelle 3-17: Ausgewählte interatomare Abstände (d / pm) und B–O–B-Winkel (\checkmark / grd) für La₄B₁₄O₂₇

O5 - B1 - O6	104,6	O10 – B2 – O11	116,7	O2 - B3 - O4	104,4
O2 - B1 - O14	107,8	O10 – B2 – O12	121,6	O4 - B3 - O12	105,7
O6 - B1 - O14	109,2	O11 – B2 – O12	121,8	O12 - B3 - O13	110,5
O2 - B1 - O6	111,3			O4 - B3 - O13	110,7
O5 – B1 – O14	111,9			O2 – B3 – O12	112,0
O2 - B1 - O5	112,0			O2 – B3 – O13	113,1
O1 – B4 – O11	103,3	O10 - B5 - O13	102,3	O7 – B6 – O9	115,8
O4 - B4 - O8	106,5	O1 - B5 - O9	104,3	O6 - B6 - O7	121,6
O1 - B4 - O8	108,7	O1 – B5 – O13	110,1	O6 - B6 - O9	122,6
O4 - B4 - O11	109,3	O1 - B5 - O10	112,3		
O1 - B4 - O4	112,3	O9 - B5 - O10	113,0		
O8 - B4 - O11	117,0	O9 – B5 – O13	115,2		
O3 – B7 – O14	116,1				
O3 - B7 - O5	122,0				
O5 – B7 – O14	121,7				

Tabelle 3-18: Ausgewählte O–B–O-Winkel (\checkmark / grd) für La₄B₁₄O₂₇

Tabelle 3-19: Motive der gegenseitigen Zuordnung für $La_4B_{14}O_{27}$

	01	02	03	04	05	06	07	08	O9	010	011	012	013	014	CN
La1	2/2	0/0	1/1	1/1	0/0	0/0	0/0	2/1	1/1	1/1	1/1	1/1	1/1	0/0	10
La2	0/0	1/1	1/1	1/1	1/1	1/1	2/2	0/0	0 ⁺¹ /0 ⁺¹	0/0	0/0	0/0	0/0	$1^{+1}/1^{+1}$	8 ⁺²
B1	0/0	1/1	0/0	0/0	1/1	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/1	4
B2	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/1	1/1	1/1	0/0	0/0	3
B3	0/0	1/1	0/0	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/1	1/1	0/0	4
B4	1/1	0/0	0/0	1/1	0/0	0/0	0/0	2/1	0/0	0/0	1/1	0/0	0/0	0/0	4
B5	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/1	1/1	0/0	0/0	1/1	0/0	4
B6	0/0	0/0	0/0	0/0	0/0	1/1	1/1	0/0	1/1	0/0	0/0	0/0	0/0	0/0	3
B7	0/0	0/0	1/1	0/0	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/1	3
CN	4	3	3	4	3	3	3	4	3 ⁺¹	3	3	3	3	3 ⁺¹	

3.2. Chlorid-Oxoborate

Lange Zeit waren keine Chlorid-Oxoborate mit dreiwertigem Selten-Erd-Metall-Kation bekannt. *Sieke* und *Schleid* gelang es erstmals, eine Verbindung mit der Zusammensetzung PrCl(BO₂)₂ [8, 24] darzustellen. Danach konnte die isotype Verbindung ebenfalls mit M = La dargestellt werden [77]. In dieser Arbeit ist es nun gelungen, auch CeCl(BO₂)₂ darzustellen, deshalb wird auf die Struktur dieser Verbindung später noch näher eingegangen. Das ebenfalls bekannte prototypische Chlorid-Oxoborat der Zusammensetzung Er₂Cl₂[B₂O₅] [77, 78] ließ sich im Rahmen dieser Arbeit um das isotype Sc₂Cl₂[B₂O₅] erweitern. Weiterhin konnten Vertreter des neuen Formeltyps M₃Cl₃[BO₃]₂ (M = La, Ce) dargestellt werden.

3.2.1. $MCl(BO_2)_2$ mit M = La, Ce, Pr

3.2.1.1. Experimentelles

Einkristalle von $MCl(BO_2)_2$ (M = La, Ce, Pr) entstehen bei der Umsetzung von Selten-Erd-Oxid (La₂O₃: Rhône-Poulenc, 99,99 %; CeO₂: Heraeus, 99,9 %; Pr₆O₁₁: Heraeus, 99,9 %), Selten-Erd-Trichlorid (MCl₃; M = La, Ce, Pr: Heraeus, 99,9 %) und Borsesquioxid (B_2O_3 : Riedel-deHaën, p.a.), im Falle von Cer und Praseodym muß noch elementares Selten-Erd-Metall (Heraeus, 99,9 %) zugegeben werden, im molaren Verhältnis von 4 : 7 : 12 (M = La), 3:2:6:1 (M = Ce) und 3:4:6:1 (M = Pr) jeweils mit einem Überschuß an B₂O₃ als Flußmittel. Die Umsetzung erfolgt für zwei bis vier Wochen bei 900°C. Aus dem mit Wasser gewaschenen Produkt erhält man einkristallines MCl(BO₂)₂ (M = La, Ce, Pr) als feine, faserige, luft- und wasserbeständige, stark zu Wachstumsverzwillingung neigende Nadeln, in der für das Selten-Erd-Trikation typischen Farbe. Geeignete Einkristalle wurden ausgesucht und erbrachten durch röntgenographische Diffraktometer-Untersuchungen die trikline Kristallstruktur von $MCl(BO_2)_2$ (M = La, Ce, Pr). Die Ergebnisse (kristallographische Daten zur Messung und Strukturbestimmung, Orts- und thermische Auslenkungsparameter) sind in Tabelle 3-20 bis Tabelle 3-22 zusammengefaßt. Ausgewählte interatomare Abstände und Winkel finden sich in Tabelle 3-23, über die Motive der gegenseitigen Zuordnung informiert Tabelle 3-24.

3.2.1.2. Strukturbeschreibung am Beispiel von CeCl(BO₂)₂

Das Chlorid-Oxoborat CeCl(BO₂)₂ kristallisiert isotyp mit $PrCl(BO_2)_2$ [8, 24] und $LaCl(BO_2)_2$ [77] triklin in der Raumgruppe P1 (Nr. 2) (a = 421,74(5), b = 657,63(7), c = 812,21(9) pm, $\alpha = 82,152(6),$ $\beta = 89,206(7),$ $\gamma = 72,048(6)^{\circ}$ mit zwei Formeleinheiten pro Elementarzelle. Die charakteristischen Baueinheiten in der Kristallstruktur bestehen aus unendlichen, nahezu planaren $[BO_3]^{3-}$ -Dreiecke. Ketten eckenverknüpfter Dabei jeweils zwei trigonal-planare verknüpfen zunächst [BO₃]³⁻-Einheiten über ein O²⁻-Anion (O4) miteinander Oxodiborat-Gruppen $[B_2O_5]^{4-}$, welche zu über Dreiecksspitzen (03)untereinander weiterverbunden So entstehen quasi-planare Zick-Zack-Ketten sind. $\int_{\infty}^{1} \{ [(B1)O_{1/1}^{t}O_{2/2}^{e}(B2)O_{1/1}^{t}O_{2/2}^{e}]^{2-} \} (\equiv \int_{\infty}^{1} \{ [BO_{2}]^{-} \}), \text{ die entlang} \}$ [100] verlaufen (Abbildung 3-14).

in $MCl(BO_2)_2$ (M = La, Ce, Pr)

Abbildung 3-14: Oxoborat-Kette

Die Bor-Kationen im Zentrum der Sauerstoff-Dreiecke liegen nicht exakt in einer Ebene mit diesen, sondern sind um 2,9 (B1) bzw. 4,5 pm (B2) ausgelenkt. Das Ce³⁺-Kation wird von sieben O^{2–} und drei Cl[–]-Anionen in Form eines vierfach

Abbildung 3-15: Koordinationspolyeder $\text{um } M^{3+} \text{ in } MCl(BO_2)_2$ (M = La, Ce, Pr)

überkappten trigonalen Prismas (oder *Edshammar*-Polyeders; d(Ce-O) = 239 - 283 pm, d(Ce-Cl) = 295 - 318 pm) koordiniert (Abbildung 3-15). Diese [CeO₇Cl₃]¹⁴⁻-Polyeder sind über Ecken und Kanten zu Schichten verknüpft, die parallel (101) verlaufen (Abbildung 3-16). Diese Schichten werden wiederum über die Oxoborat-Ketten miteinander verbunden. Sowohl die Chlorid- als auch drei der vier kristallographisch unabhängigen Oxid-Anionen sind jeweils dreifach von B³⁺- und / oder Ce³⁺-Kationen umgeben (Tabelle 3-21 und Tabelle 3-24). Während Cl, O1, O3 und O4 nur durch drei Ce³⁺ koordiniert werden, weist O2 eine verzerrt tetraedrische Koordinationssphäre aus einem B³⁺- und drei Ce³⁺-Kationen auf (Tabelle 3-21 und Tabelle 3-24).

Abbildung 3-16: M^{3+} -Polyederschicht in der Kristallstruktur von $MCl(BO_2)_2$ (M = La, Ce, Pr)

Abbildung 3-17: Gesamtansicht der Kristallstruktur von MCl(BO₂)₂ (M = La, Ce, Pr) mit Blick entlang der c-Achse

Tabelle 3-20:	Kristallographische I (M = La, Ce, Pr)	Daten	und	ihre	Bestimmung	für	MCl(BO ₂) ₂	
Kristallograp	bhische Daten:							
Kristallsystem	1				triklin			
Raumgruppe					P1 (Nr. 2) [73]			
Zahl der Form	neleinheiten				Z = 2			
		La	Cl(BO ₂)2	CeCl(BO ₂) ₂	Pr	$Cl(BO_2)_2$	
Gitterkonstan	ten ^{a)} [pm]	a = b =	423,52 662,16 810 33	(4) (7)	a = 421,74(5) b = 657,63(7) c = 812,21(9)	a = b =	420,56(4) 655,42(7) 808 34(8)	
	[grd]	$\alpha = \beta = \gamma = \gamma$	82,081 89,238 72,109	(8) (8) (9) (7)	$\alpha = 82,152(6)$ $\beta = 89,206(7)$ $\gamma = 72,048(6)$	$\alpha = \beta = \gamma = \gamma$	808,34(8) 82,361(8) 89,173(9) 71,980(7)	
molares Volumen ^{a)} $(V_m) [cm^3 \cdot mol^{-1}]$ berechnete Dichte ^{a)} $(D_x) [g \cdot cm^{-3}]$			180 39		63,894 4,088	63, 4,1	63,207 4,145	
Meßparamet	er:							
Meßgerät verwendete St Meßbereich Meßgrenze (θ F(000)	trahlung P _{max}) [grd]	Ein Mo 6 = 10 12 32,8 232	kristallo $-K\alpha$ (C $\leq h \leq 6$ $\leq k \leq 1$ $\leq l \leq 1$ 3 27	diffrak Fraphit 10 2	tometer: IPDS (F -Monochromator $-5 \le h \le 5$ $-8 \le k \le 8$ $-10 \le 1 \le 10$ 27,6 234	Fa. Sto $\lambda = 7$ -4 -8 -10 28, 236 12	he) 71,07 pm) $\leq h \leq 4$ $\leq k \leq 8$ $0 \leq 1 \leq 10$ 2 5 12	
Absorptionsko	emizient µ [mm]	10,3	57		11,24	12,	12	
Datenredukt Datenkorrektu Absorption Zahl der geme davon symme $R_{int} (R_{\sigma})$ Zahl der Refle Strukturverf	tion: uren essenen Reflexe strieunabhängig exe mit $ F_o \ge 4\sigma(F_o)$ einerung: ^{b)}	Unt emp 312 142 0,02 125	ergrund birisch; 3 9 25 (0,03 7	l, Pola Progra 36)	risations- und Lo amm HABITUS 5993 984 0,084 (0,047) 888	orentzf [32, 74 304 932 0,0 881	² aktoren 4] 43 2 51 (0,038)	
D. für alle De	flava	0.07	7		0.037	0.0	67	
R_1 mit $ F_0 \ge 4$ R_2 für alle R Goodness of I Restelektrone	Nexe $\sigma(F_o)$ Reflexe Fit ndichten $[10^{-6} \cdot e^- \cdot pm^{-3}]$	0,02 0,02 0,04 0,99] 1,76 -1,1	21 49 92 6 (max. 10 (min) .)	0,037 0,031 0,060 1,050 1,20 (max.) -1,11 (min.)	0,0 0,0 0,1 1,0 4,3 -2,	57 41 45 1 (max.) 30 (min.)	

^{a)} Einkristalldaten;
 ^{b)} Programme: SHELXS–86 bzw. SHELXL–93 [34, 35]; Streufaktoren nach International Tables, Vol. C [73]

Atom	Lage	x/a	y/b	z/c
La	(2 <i>i</i>)	0,21526(6)	0,03109(3)	0,22262(2)
Cl	(2 <i>i</i>)	0,8530(2)	0,7967(1)	0,4574(1)
B1	(2 <i>i</i>)	0,4372(9)	0,4375(6)	0,1929(4)
B2	(2 <i>i</i>)	0,8355(9)	0,6499(6)	0,1468(4)
01	(2 <i>i</i>)	0,6346(7)	0,2363(4)	0,2077(3)
O2	(2 <i>i</i>)	0,8382(7)	0,8463(4)	0,0810(3)
O3	(2 <i>i</i>)	0,5231(7)	0,6251(4)	0,1822(3)
O4	(2 <i>i</i>)	0,1005(7)	0,4639(4)	0,1759(3)
Ce	(2 <i>i</i>)	0,21114(9)	0,03249(6)	0,22181(5)
Cl	(2 <i>i</i>)	0,8532(4)	0,7973(3)	0,4572(2)
B1	(2 <i>i</i>)	0,4408(17)	0,4350(12)	0,1949(9)
B2	(2 <i>i</i>)	0,8354(18)	0,6489(11)	0,1497(9)
01	(2 <i>i</i>)	0,6331(10)	0,2357(7)	0,2106(6)
O2	(2 <i>i</i>)	0,8346(11)	0,8483(7)	0,0807(6)
03	(2 <i>i</i>)	0,5192(10)	0,6263(7)	0,1823(6)
O4	(2 <i>i</i>)	0,0970(10)	0,4625(7)	0,1772(6)
Pr	(2 <i>i</i>)	0,21005(8)	0,03378(5)	0,22147(4)
Cl	(2 <i>i</i>)	0,8544(5)	0,7972(3)	0,4576(2)
B 1	(2 <i>i</i>)	0,4303(11)	0,4375(8)	0,1960(6)
B2	(2 <i>i</i>)	0,8420(11)	0,6482(8)	0,1468(6)
01	(2 <i>i</i>)	0,6314(9)	0,2337(6)	0,2105(5)
O2	(2 <i>i</i>)	0,8358(9)	0,8485(6)	0,0789(5)
03	(2 <i>i</i>)	0,5147(9)	0,6298(6)	0,1855(5)
O4	(2 <i>i</i>)	0,0906(9)	0,4653(6)	0,1796(5)

Tabelle 3-21: Atomlagen für $MCl(BO_2)_2$ (M = La, Ce, Pr)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
La	47(1)	45(1)	67(1)	-5(1)	0(1)	-16(1)
Cl	191(5)	117(3)	81(3)	-10(3)	15(3)	-65(3)
B1	53(21)	59(14)	54(13)	11(11)	-8(11)	-23(12)
B2	39(20)	62(14)	73(15)	-2(11)	-6(11)	-7(12)
01	60(15)	51(10)	177(12)	-16(9)	-9(9)	-26(9)
O2	74(14)	42(9)	89(10)	2(8)	-16(8)	-13(8)
O3	45(14)	46(10)	189(12)	-22(9)	10(9)	-19(8)
O4	42(14)	51(10)	125(11)	-9(8)	-4(8)	-14(8)
Ce	241(2)	225(2)	335(2)	-33(1)	0(1)	-91(1)
Cl	403(9)	313(8)	332(9)	-55(7)	21(7)	-155(7)
B1	205(32)	290(35)	347(39)	-113(29)	16(28)	-117(28)
B2	246(34)	209(33)	305(37)	-40(27)	-10(28)	-50(27)
01	227(21)	218(21)	401(26)	-83(19)	-10(19)	-74(18)
O2	363(26)	248(22)	390(26)	-44(19)	-49(21)	-175(20)
O3	196(20)	227(21)	442(27)	-18(19)	-27(19)	-90(17)
O4	164(20)	248(21)	384(25)	-73(18)	-16(18)	-92(17)
Pr	186(3)	137(2)	143(2)	-15(1)	3(1)	-40(1)
Cl	300(13)	215(10)	185(11)	-27(7)	11(9)	-75(8)
B1	107(48)	159(40)	132(39)	-26(30)	3(32)	-83(31)
B2	262(56)	148(41)	192(47)	-55(34)	4(38)	-41(36)
01	276(40)	125(26)	184(30)	-12(21)	-36(25)	-83(25)
O2	300(38)	138(26)	97(26)	-4(20)	10(24)	-44(24)
O3	154(35)	177(29)	264(34)	-58(24)	3(25)	-61(23)
O4	271(41)	157(28)	233(33)	-8(23)	10(24)	-91(26)

Tabelle 3-22: Koeffizienten der anisotropen thermischen Auslenkungsparameter^{a)} für $MCl(BO_2)_2$ (M = La, Ce, Pr)

^{a)} definiert als Temperaturfaktor: $exp[-2\pi^{2}(a^{*2}h^{2}U_{11} + b^{*2}k^{2}U_{22} + c^{*2}l^{2}U_{33} + 2b^{*}c^{*}klU_{23} + 2a^{*}c^{*}hlU_{13} + 2a^{*}b^{*}hkU_{12})];$ U_{ij} in pm²

			Lu, C	•, 11)			
La –	01	241,2	B1 –	01	132,8	O1 – B1 – O4	115,3
	O2	249,9		O3	138,9	O3 - B1 - O4	115,8
	01'	253,9		O4	138,9	O1 – B1 – O3	128,8
	O2'	265,2					
	O3	267,0	B2 –	O2	134,1	O3 - B2 - O4	115,2
	O4	272,8		O4	138,2	O2 - B2 - O3	116,4
	O2"	285,1		O3	140,3	O2 - B2 - O4	128,2
	Cl	297,6					
	Cl'	300,4				B1 - O3 - B2	127,4
	Cl"	318,5				B1 – O4 – B2	129,7
Ce –	01	238,8	B1 –	01	130,1	O3 – B1 – O4	114,3
	O2	246,6		O3	138,7	O1 - B1 - O4	115,0
	O1'	252,8		O4	141,2	O1 - B1 - O3	130,6
	O2'	263,0					
	O3	264,8	B2 –	O2	135,3	O2 - B2 - O3	115,2
	O4	269,2		O4	136,7	O3 - B2 - O4	115,5
	O2"	283,3		O3	140,4	O2 - B2 - O4	129,0
	Cl	295,2					
	Cl'	298,0				B1 - O3 - B2	125,7
	Cl"	318,3				B1 – O4 – B2	129,3
Pr –	01	237,7	B1 –	01	133,2	O3 – B1 – O4	115,1
	O2	244,0		O4	138,9	O1 - B1 - O4	115,8
	O1'	250,3		O3	140,3	O1 – B1 – O3	129,0
	O3	261,4					
	O2'	262,4	B2 –	O4	132,2	O2 - B2 - O3	113,6
	O4	269,0		O2	134,7	O3 - B2 - O4	114,6
	O2"	283,5		O3	144,5	O2 - B2 - O4	131,8
	Cl	293,1					
	Cl'	297,5				B1 - O3 - B2	124,9
	Cl"	318,7				B1 - O4 - B2	128,4

Tabelle 3-23: Ausgewählte interatomare Abstände (d / pm) und Winkel (\preccurlyeq / grd) für MCl(BO₂)₂ (M = La, Ce, Pr)

	Cl	01	02	03	04	CN
Μ	3/3	2/2	3/3	1/1	1/1	10
B1	0/0	1/1	0/0	1/1	1/1	3
B2	0/0	0/0	1/1	1/1	1/1	3
CN	2	2	3	3	3	

Tabelle 3-24: Motive der gegenseitigen Zuordnung für $MCl(BO_2)_2$ (M = La, Ce, Pr)

3.2.2. $M_3Cl_3[BO_3]_2$ mit M = La, Ce

3.2.2.1. Experimentelles

Einkristalle der Zusammensetzung $M_3Cl_3[BO_3]_2$ (M = La, Ce) werden durch Umsetzung von Selten-Erd-Oxid (La₂O₃: Rhône-Poulenc, 99,99 %; CeO₂: Heraeus, 99,9 %), Selten-Erd-Trichlorid (MCl₃; M = La, Ce: Heraeus, 99,9 %) und Borsesquioxid (B₂O₃: Riedel-deHaën, p.a.), im Fall von Cer ist auch die Zugabe von elementarem Cer (Heraeus, 99,9 %) notwendig, im molaren Verhältnis von 4:7:12 (M = La) und 3:4:2:1 (M = Ce) jeweils mit einem Überschuß von MCl₃ (M = La, Ce) als Flußmittel erhalten. Die Edukte werden bei 550°C drei Wochen lang getempert. Diese neuen Chlorid-Oxoborate kristallisieren in Form von langen, transparenten, farblosen, luft- und hydrolysestabilen Nadeln. Geeignete Einkristalle wurden ausgesucht und erbrachten durch röntgenographische Diffraktometer-Untersuchungen die Kristallstruktur von $M_3Cl_3[BO_3]_2$ Ce). Die hexagonale (M = La,Ergebnisse (kristallographische Daten zur Messung und Strukturbestimmung, Orts- und thermische Auslenkungsparameter) sind in Tabelle 3-25 bis Tabelle 3-27 zusammengefaßt. Ausgewählte interatomare Abstände und Winkel finden sich in Tabelle 3-28, über die Motive der gegenseitigen Zuordnung informiert Tabelle 3-29.

3.2.2.2. Strukturbeschreibung

Die Kristallstruktur von $M_3Cl_3[BO_3]_2$ (M = La, Ce; hexagonal, P6₃/m (Nr. 176); Z = 2) ist aus planaren Schichten aufgebaut, die einerseits aus isolierten Oxoborat-Einheiten $[BO_3]^{3-}$ und andererseits aus M^{3+} -Kationen sowie Cl⁻-Anionen bestehen (Abbildung 3-19 und Abbildung 3-21).

Abbildung 3-18: Koordinationspolyeder um M^{3+} in $M_3Cl_3[BO_3]_2$ (M = La, Ce)

In den diskreten Oxoborat-Anionen $[BO_3]^{3-}$ beträgt der B–O-Abstand 137,3 pm (3x, M = La) bzw. 137,6 pm (3x, M = Ce) und der O–B–O-Winkel liegt bei 119,4° bzw. 119,5° (Tabelle 3-28). Daraus ergibt sich, daß der Schwerpunkt des B³⁺-Kations leicht aus der Ebene der drei Sauerstoffatome ausgelenkt ist und zwar um 10,5 pm für M = La sowie um 9,4 pm für M = Ce. Die Oxoborat-Anionen $[BO_3]^{3-}$ liegen dabei in jeder zweiten Schicht genau übereinander (Abbildung 3-19). Das M³⁺-Kation weist eine Koordinationszahl von zehn auf, wobei es von sechs O^{2–}- und vier CI[–]Anionen umgeben wird (Abbildung 3-18). Die M³⁺-Koordinationspolyeder verknüpfen die Schichten aus diskreten $[BO_3]^{3-}$ -Einheiten in der Form, daß jeweils drei Sauerstoffatome aus der darunter- und darüberliegenden Oxoborat-Schicht ein- und demselben Polyeder angehören (Abbildung 3-21). Zwei der CI[–]Anionen befinden sich mit dem Zentral-Kation M³⁺ in der gleichen Schicht, die beiden

Abbildung 3-19: Kristallstruktur von $M_3Cl_3[BO_3]_2$ (M = La, Ce) mit Blick entlang der c-Achse

Abbildung 3-20: Aufbau der M^{3+} –Cl⁻-Stränge in der Kristallstruktur von $M_3Cl_3[BO_3]_2$ (M = La, Ce)

 \neq (Cl-Ce-Cl') = 75,1°; \neq (Ce-Cl-Ce) = 164,9°), die übereinandergestapelt Kanäle parallel [001] ausbilden (Abbildung 3-20). Dadurch entstehen entlang dieser Kanäle zick-zackförmige M³⁺-Cl⁻-Ketten (\neq (Cl"-La-Cl") = 130,7°; \neq (La-Cl"-La) = 132,3° bzw. \neq (Cl"-Ce-Cl") = \neq (Ce-Cl"-Ce) = 132,2°; vgl. Tabelle 3-28).

Abbildung 3-21: Blick auf die Schichtstruktur von $M_3Cl_3[BO_3]_2$ (M = La, Ce) längs [110] und die Verknüpfung der einzelnen Schichten untereinander

(M = La, Ce)				
Kristallographische Daten:				
Kristallsystem	hexagonal			
Raumgruppe	P6 ₃ /m (Nr. 176) [73]			
Zahl der Formeleinheiten	Z = 2			
	La ₃ Cl ₃ [BO ₃] ₂	Ce ₃ Cl ₃ [BO ₃] ₂		
Gitterkonstanten ^{a)} [pm]	a = 923,80(6)	a = 920,08(6)		
-1 -	c = 584,29(4)	c = 580,79(4)		
molares Volumen ^{a)} (V _m) $[cm^3 \cdot mol^{-1}]$	130,026	128,208		
berechnete Dichte ^{a)} (D _x) [g \cdot cm ⁻³]	4,927	5,026		
Meßparameter:				
Meßgerät	Einkristalldiff	raktometer:		
	IPDS (Fa. Stoe)	κ-CCD (Fa. Nonius)		
verwendete Strahlung	Mo–K α (Graphit-Monochromator, $\lambda = 71,07$			
Meßbereich	$-13 \le h \le 13$	$-11 \le h \le 11$		
	$-14 \le k \le 14$	$-11 \le k \le 11$		
	$-8 \le l \le 8$	$-7 \le l \le 7$		
Meßgrenze (θ_{max}) [grd]	32,82	27,44		
F(000)	560	566		
Absorptionskoeffizient μ [mm ⁻¹]	15,49	16,69		
Datenreduktion:				
Datenkorrekturen	Untergrund, Polarisations	- und Lorentzfaktoren		
Absorption	empirisch; Programm HA	BITUS [32, 74]		
Zahl der gemessenen Reflexe	6277	4948		
davon symmetrieunabhängig	582	357		
$R_{int} (R_{\sigma})$	0,067 (0,027)	0,035 (0,019)		
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$	538	341		
Strukturverfeinerung: ^{b)}				
R ₁ für alle Reflexe	0,030	0,018		
$R_1 \text{ mit } F_o \ge 4\sigma(F_o)$	0,025	0,017		
wR ₂ für alle Reflexe	0,061	0,038		
Goodness of Fit	1,264	1,152		
Restelektronendichten $[10^{-6} \cdot e^{-} \cdot pm^{-3}]$	2,40 (max.)	1,41 (max.)		
	-2,20 (min.)	-0,73 (min.)		

Tabelle 3-25: Kristallographische Daten und (M - La Ce)Bestimmung $M_3Cl_3[BO_3]_2$ ihre für

^{a)} Einkristalldaten;
^{b)} Programme: SHELXS–86 bzw. SHELXL–93 [34, 35]; Streufaktoren nach International Tables, Vol. C [73]
Atom	Lage	x/a	y/b	z/c
La	(<i>6h</i>)	0,38672(3)	0,05209(3)	$^{1}/_{4}$
Cl	(<i>6h</i>)	0,2033(2)	0,2396(2)	$^{1}/_{4}$
В	(4f)	¹ / ₃	$^{2}/_{3}$	0,0163(10)
0	(<i>12i</i>)	0,5357(3)	0,3631(3)	0,0022(5)
Ce	(6h)	0,38622(4)	0,05095(4)	¹ / ₄
Cl	(<i>6h</i>)	0,2030(2)	0,2396(2)	$^{1}/_{4}$
В	(4f)	¹ / ₃	² / ₃	0,0143(12)
0	(<i>12i</i>)	0,5359(3)	0,3651(4)	0,0018(5)

Tabelle 3-26: Atomlagen für $M_3Cl_3[BO_3]_2$ (M = La, Ce)

Tabelle 3-27: Koeffizienten der anisotropen thermischen Auslenkungsparameter^{a)} für $M_3Cl_3[BO_3]_2$ (M = La, Ce)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
La	25(2)	26(2)	57(2)	0	0	10(1)
Cl	86(5)	125(5)	115(5)	0	0	84(4)
В	41(14)	U_{11}	25(22)	0	0	$^{1}/_{2}$ U ₁₁
0	46(10)	94(10)	97(11)	-32(9)	-18(9)	51(9)
Ce	78(2)	83(2)	121(2)	0	0	36(1)
Cl	145(6)	168(6)	172(6)	0	0	105(5)
В	117(20)	U_{11}	83(30)	0	0	$^{1}/_{2}$ U ₁₁
0	118(13)	130(12)	176(13)	-19(11)	3(12)	81(11)

^{a)} definiert als Temperaturfaktor:

exp $[-2\pi^2 (a^{*2}h^2U_{11} + b^{*2}k^2U_{22} + c^{*2}l^2U_{33} + 2b^*c^*klU_{23} + 2a^*c^*hlU_{13} + 2a^*b^*hkU_{12})];$ U_{ij} in pm²

La – O	246,5	(2 x)	Cl – La – Cl'	73,9	
O'	247,0	(2 x)	La – Cl – La	164,8	
O''	288,0	(2 x)			
Cl	290,0	(1 x)	Cl'' - La - Cl''	130,7	
Cl'	296,8	(1 x)	La – Cl'' – La	132,3	
Cl''	319,5	(2 x)			
B – O	137,3	(3 x)	O – B – O	119,4	(3x)
Ce – O	227,6	(2x)	Cl – Ce – Cl'	75,1	
O'	228,9	(2x)	Ce - Cl - Ce	164,9	
O''	231,3	(2 x)			
Cl	251,3	(1 x)	Cl'' - Ce - Cl''	132,2	
Cl'		(1 x)	Ce - Cl'' - Ce	132,2	
Cl''	286,7	(2 x)			
B – O	137,6	(3x)	O – B – O	119,5	(3 x)

Tabelle 3-28: Ausgewählte interatomare Abstände (d / pm) und Winkel (\triangleleft / grd) für $M_3Cl_3[BO_3]_2$ (M = La, Ce)

Tabelle 3-29: Motive der gegenseitigen Zuordnung für $M_3Cl_3[BO_3]_2$ (M = La, Ce)

	Cl	0	CN
Μ	4 / 4	6/2	10
В	0 / 0	3 / 1	3
CN	4	3	

3.2.3. $M_2Cl_2[B_2O_5]$ mit M = Sc, Er

3.2.3.1. Experimentelles

Einkristalle von $M_2Cl_2[B_2O_5]$ (M = Sc, Er) werden durch Umsetzung von MCl₃ (Heraeus, 99,9 %), M₂O₃ (Heraeus, 99,9 %) und B₂O₃ (Riedel-deHaën, p.a.) im molaren Verhältnis von 1:1:3 mit einem Überschuß an MCl3 als Flußmittel bei 850°C innerhalb von 14 Tagen gewonnen. Diese Chlorid-Oxoborate kristallisieren in Form von langen, dicken, transparenten, hydrolyseunempfindlichen Nadeln mit der für das Selten-Erd-Kation typischen Farbe. Geeignete Einkristalle wurden ausgesucht und erbrachten durch röntgenographische Diffraktometer-Untersuchungen die orthorhombische Kristallstruktur von $M_2Cl_2[B_2O_5]$ (M = Sc, Er). Die Ergebnisse (kristallographische Daten zur Messung und Strukturbestimmung, Orts- und thermische Auslenkungsparameter) sind in Tabelle 3-30 bis Tabelle 3-32 zusammengefaßt. Ausgewählte interatomare Abstände und Winkel finden sich in Tabelle 3-33, über die Motive der gegenseitigen Zuordnung informiert Tabelle 3-34.

3.2.3.2. Strukturbeschreibung am Beispiel von Sc₂Cl₂[B₂O₅]

 $Sc_2Cl_2[B_2O_5]$ kristallisiert orthorhombisch (a = 1417,43(9), b = 962,61(6), c = 501,20(3) pm) [79] in der Raumgruppe Pbam (Nr. 55) vier Formeleinheiten [73] mit pro Elementarzelle. Die beiden kristallographisch unterschiedlichen Bor-Atome weisen eine Koordinationszahl von drei auf und werden trigonal-planar von Sauerstoffatomen koordiniert. Dabei [BO₃]^{3–}-Dreiecke zwei verknüpfen kristallographisch verschiedener B³⁺-Kationen über ein gemeinsames Sauerstoffatom (O3) als Ecke zu isoliert

Abbildung 3-22: Oxoborateinheit $[B_2O_5]^{4-}$ mit M³⁺-Koordinationssphäre in $M_2Cl_2[B_2O_5]$ (M = Sc, Er)

vorliegenden Oxodiborat-Einheiten $[B_2O_5]^{4-}$. Diese exakt planaren Einheiten liegen vollständig in der (001)-Spiegelebene (Abbildung 3-22). Die B–O-Abstände variieren dabei zwischen 134,2 und 142,7 pm recht stark. Die Sc³⁺-Kationen werden sechs- bzw. siebenfach von O²⁻- und CI⁻-Anionen koordiniert. (Sc1)³⁺ ist von fünf O²⁻- und zwei CI⁻-Anionen in Form einer verzerrten pentagonalen Bipyramide umgeben (d(Sc1–O) = 208 – 240 pm, d(Sc1–Cl) = 252 pm), wobei die Sauerstoff-Atome die planare Grundfläche bilden und die Chlor-Atome als Apikalliganden oberhalb und unterhalb leicht gegeneinander verschoben sind (\ll (Cl1–Sc1–Cl1) = 170°, Abbildung 3-23). Die (Sc2)³⁺-Koordinationssphäre besteht aus vier O²⁻- und zwei CI⁻-Anionen in Form eines nur leicht verzerrten Oktaeders (besser: tetragonale Bipyramide; d(Sc2–O) = 205 – 212 pm, d(Sc2–Cl) = 251 pm). Auch in diesem Fall bilden die O²⁻-Anionen die nahezu quadratische Grundfläche aus und die CI⁻-Anionen liegen als apikale Liganden vor (\ll (Cl2–Sc2–Cl2) = 175°, Abbildung 3-23). Von den fünf kristallographisch unabhängigen Oxid-Anionen sind O1, O2, O4 und O5 jeweils zweifach von Sc³⁺- und einfach von B³⁺-Kationen umgeben, O3 ist dagegen umgekehrt zweifach von

Abbildung 3-23: Koordinationspolyeder um die M^{3+} -Kationen in $M_2Cl_2[B_2O_5]$ (M = Sc, Er)

 B^{3+} - und einfach von Sc^{3+} -Kationen koordiniert. Dadurch weisen sie allesamt eine Koordinationszahl von drei auf (vgl. Tabelle 3-31 und Tabelle 3-34). Ein Blick auf die Kristallstruktur parallel (001) läßt erkennen, daß es sich um eine ausgeprägte Schichtstruktur handelt (Abbildung 3-25). Hierbei werden exakt planare Schichten bestehend aus Sc^{3+} -Kationen und Oxodiborat-Einheiten $[B_2O_5]^{4-}$ durch reine Cl⁻-Anionen-Schichten voneinander getrennt. Die Chlorid-Anionen und die Scandium-Kationen bilden jeweils parallel [001] verlaufende, leicht zick-zack-förmige Endlosketten $\int_{\infty}^{1} {[(Sc1)(Cl1)_{2/2}]^{2+}}$ bzw. $\int_{\infty}^{1} {[(Sc2)(Cl2)_{2/2}]^{2+}}$ mit Kation-Anion-Alternanz, die kaum von der Linearität abweichen (vgl. Abbildung 3-24 und Abbildung 3-25).

Abbildung 3-24: Blick auf die Elementarzelle von $M_2Cl_2[B_2O_5]$ (M = Sc, Er) entlang der c-Achse

Abbildung 3-25: Blick auf die Schichtstruktur von $M_2Cl_2[B_2O_5]$ (M = Sc, Er) entlang der a-Achse und die M³⁺-Cl⁻-Ketten parallel [001]

(IVI – SC, EI)					
Kristallographische Daten:					
Kristallsystem	orthorhombisch				
Raumgruppe	Pbam (Nr. 55) [73]			
Zahl der Formeleinheiten	Z = 4				
	$Sc_2Cl_2[B_2O_5]$	$Er_2Cl_2[B_2O_5]$			
Gitterkonstanten ^{a)} [pm]	a = 1417,43(9)	a = 1489,65(9)			
	b = 962, 61(6)	b = 1004,80(6)			
	c = 501,20(3)	c = 524,86(3)			
molares Volumen ^{a)} (V_m) [cm ³ · mol ⁻¹]	102,955	118,275			
berechnete Dichte ^{a)} (D _x) $[g \cdot cm^{-3}]$	2,549	4,287			
Meßparameter:					
Meßgerät	Einkristalldi	ffraktometer:			
	κ-CCD (Fa. Nonius)	IPDS (Fa. Stoe)			
verwendete Strahlung	Mo–K α (Graphit-Monochromator, $\lambda = 71,07$ pm)				
Meßbereich	$-18 \le h \le 18$	$-22 \le h \le 22$			
	$-12 \le k \le 12$	$-15 \le k \le 15$			
	$-6 \le l \le 6$	$-7 \le l \le 7$			
Meßgrenze (θ_{max}) [grd]	27,48	32,83			
F(000)	504	880			
Absorptionskoeffizient μ [mm ⁻¹]	2,72	21,86			
Datenreduktion:					
Datenkorrekturen	Untergrund, Polarisation	s- und Lorentzfaktoren			
Absorption	empirisch; Programm H	ABITUS			
Zahl der gemessenen Reflexe	8844	11369			
davon symmetrieunabhängig	874	1513			
$R_{int} (R_{\sigma})$	0,032 (0,018)	0,079 (0,031)			
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$	831	1309			
Strukturverfeinerung: ^{b)}					
R ₁ für alle Reflexe	0,028	0,032			
$R_1 \text{ mit } F_o \ge 4\sigma(F_o)$	0,025	0,023			
wR ₂ für alle Reflexe	0,070	0,046			
Goodness of Fit	1,172	0,981			
Restelektronendichten $[10^{-6} \cdot e^{-} \cdot pm^{-3}]$	0,55 (max.)	3,24 (max.)			
	-0,46 (min.)	-3,61 (min.)			

Tabelle 3-30: Kristallographische Daten und (M = Sc, Er)ihre Bestimmung $M_2Cl_2[B_2O_5]$ für

^{a)} Einkristalldaten;
^{b)} Programme: SHELXS–86 bzw. SHELXL–93 [34, 35]; Streufaktoren nach International Tables, Vol. C [73]

Atom	Lage	x/a	y/b	z/c
Sc1	(<i>4h</i>)	0,38116(4)	0,03074(6)	$^{1}/_{2}$
Sc2	(4 <i>h</i>)	0,39011(4)	0,43571(6)	$^{1}/_{2}$
Cl1	(4g)	0,37084(7)	0,01327(13)	0
Cl2	(4g)	0,38510(7)	0,42632(12)	0
B1	(4 <i>h</i>)	0,0648(3)	0,2559(4)	$^{1}/_{2}$
B2	(<i>4h</i>)	0,2383(3)	0,1976(4)	$^{1}/_{2}$
01	(<i>4h</i>)	0,0334(2)	0,1244(2)	$^{1}/_{2}$
O2	(<i>4h</i>)	0,0125(2)	0,3725(2)	$^{1}/_{2}$
03	(<i>4h</i>)	0,1628(2)	0,2900(3)	$^{1}/_{2}$
O4	(<i>4h</i>)	0,2284(2)	0,0569(2)	$^{1}/_{2}$
05	(4 <i>h</i>)	0,3286(2)	0,2432(3)	$^{1}/_{2}$
Er1	(4 <i>h</i>)	0,37886(1)	0,03055(2)	¹ / ₂
Er2	(4 <i>h</i>)	0,39083(1)	0,43054(2)	$^{1}/_{2}$
Cl1	(4g)	0,3690(2)	0,0069(3)	0
Cl2	(4g)	0,3897(2)	0,4128(3)	0
B 1	(<i>4h</i>)	0,0646(4)	0,2552(6)	$^{1}/_{2}$
B2	(<i>4h</i>)	0,2324(4)	0,1978(6)	$^{1}/_{2}$
01	(<i>4h</i>)	0,0365(3)	0,1276(4)	$^{1}/_{2}$
O2	(<i>4h</i>)	0,0124(3)	0,3658(4)	$^{1}/_{2}$
03	(<i>4h</i>)	0,1593(3)	0,2877(4)	$^{1}/_{2}$
O4	(<i>4h</i>)	0,2241(3)	0,0634(4)	$^{1}/_{2}$
05	(<i>4h</i>)	0,3185(3)	0,2431(4)	$^{1}/_{2}$

Tabelle 3-31: Atomlagen für $M_2Cl_2[B_2O_5]$ (M = Sc, Er)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sc1	57(3)	76(3)	102(3)	0	0	2(2)
Sc2	70(3)	81(3)	126(3)	0	0	-3(2)
Cl1	253(5)	431(6)	111(4)	0	0	25(4)
C12	296(5)	479(6)	107(4)	0	0	-53(4)
B1	83(16)	140(17)	122(17)	0	0	-16(14)
B2	90(17)	134(16)	136(17)	0	0	-18(14)
01	78(10)	82(10)	197(12)	0	0	-5(8)
O2	86(10)	94(10)	223(13)	0	0	2(9)
O3	68(10)	119(12)	257(14)	0	0	0(9)
O4	79(11)	102(11)	188(12)	0	0	3(8)
05	79(11)	114(11)	198(13)	0	0	-7(9)
Er1	29(1)	42(1)	149(2)	0	0	1(1)
Er2	32(1)	34(1)	225(2)	0	0	-3(1)
Cl1	378(11)	574(13)	151(11)	0	0	6(8)
Cl2	429(13)	647(19)	182(14)	0	0	-43(10)
B1	46(23)	102(29)	217(41)	0	0	0(19)
B2	42(21)	85(26)	226(42)	0	0	-13(20)
01	54(16)	44(18)	308(29)	0	0	7(12)
O2	58(15)	48(17)	287(28)	0	0	-10(13)
03	54(15)	43(17)	349(30)	0	0	-1(13)
O4	46(15)	40(18)	372(31)	0	0	-3(12)
05	42(15)	68(19)	379(32)	0	0	-28(12)

Tabelle 3-32: Koeffizienten der anisotropen thermischen Auslenkungsparameter^{a)} für $M_2Cl_2[B_2O_5]$ (M = Sc, Er)

^{a)} definiert als Temperaturfaktor:

 $\exp \left[-2\pi^2 \left(a^{*2}h^2 U_{11} + b^{*2}k^2 U_{22} + c^{*2}l^2 U_{33} + 2b^*c^*k l U_{23} + 2a^*c^*h l U_{13} + 2a^*b^*h k U_{12}\right)\right];$ U_{ij} in pm²

		2 - 2L	2 - 51 (-))				
Sc1 –	O2	208,2		B1 –	01	134,2	Cl1 - Sc1 - Cl1	169,8
	O2'	214,4			O2	134,5	Cl2 - Sc2 - Cl2	174,8
	05	217,7			O3	142,7		
	O4	218,0					O2 - B1 - O3	110,2
	03	240,0					O1 – B1 – O3	122,7
	Cl1	251,6	(2 x)				O1 - B1 - O2	127,1
Sc2 –	O4	204,5		B2 –	05	135,3	O4 - B2 - O5	114,9
	05	204,8			O4	136,2	O3 - B2 - O5	121,4
	01	211,1			O3	139,2	O3 - B2 - O4	123,8
	01'	211,6						
	Cl2	250,9	(2 x)					
Er1 –	O2	224,5		B1 –	01	134,9	Cl1 – Er1 – Cl1	167,9
	O2'	231,6			O2	135,6	Cl2 – Er2 – Cl2	172,2
	O5	231,7			O3	144,8		
	O4	232,9					O2 – B1 – O3	112,0
	O3	250,5					O1 – B1 – O3	121,1
	Cl1	263,9	(2 x)				O1 – B1 – O2	126,9
Er2 –	05	217,0		B2 –	O4	135,6	O4 - B2 - O5	114,8
	O4	217,1			O5	136,1	O3 - B2 - O5	120,8
	01	224,7			O3	141,5	O3 - B2 - O4	124,5
	01'	225,7						
	Cl2	263,0	(2 x)					

Tabelle 3-33: Ausgewählte interatomare Abstände (d / pm) und Winkel (\triangleleft / grd) für $M_2Cl_2[B_2O_5]~(M=Sc,\,Er)$

	Cl1	Cl2	01	02	03	04	05	CN
M1	2/2	0/0	0/0	2/2	1/1	1/1	1/1	7
M2	0/0	2/2	2/2	0/0	0/0	1/1	1/1	6
B1	0/0	0/0	1/1	1/1	1/1	0/0	0/0	3
B2	0/0	0/0	0/0	0/0	1/1	1/1	1/1	3
CN	2	2	3	3	3	3	3	

Tabelle 3-34: Motive der gegenseitigen Zuordnung für $M_2Cl_2[B_2O_5]$ (M = Sc, Er)

3.3. Oxidchlorid-Oxoborate

3.3.1. $M_4O_4Cl[BO_3]$ mit M = Dy – Tm

3.3.1.1. Vorbemerkung

Bisher waren sowohl reine Oxoborate, z. B. *ortho*-Oxoborate M[BO₃] [4] und *meta*-Oxoborate M(BO₂)₃ [14, 15], als auch Chlorid-Oxoborate der Zusammensetzungen MCl(BO₂)₂ [8, 24, 77, 80], M₂Cl₂[B₂O₅] [77] und M₃Cl₃[BO₃]₂ [80] mit den dreiwertigen Selten-Erd-Elementen (M = Sc, Y, La; Ce – Lu) bekannt. Mit der neuen Verbindung Ho₄O₄Cl[BO₃] wurde nun erstmals auch ein sauerstoffreiches Oxidchlorid-Oxoborat erhalten.

3.3.1.2. Experimentelles

Die Oxidchlorid-Oxoborate M₄O₄Cl[BO₃] (M = Dy – Tm) entstehen bei der Umsetzung von Selten-Erd-Sesquioxid (M₂O₃: Heraeus, 99,9 %), Selten-Erd-Trichlorid (MCl₃: Heraeus, 99,9 %) und Borsesquioxid (B₂O₃: Riedel-deHaën, p.a.) mit Caesiumchlorid (CsCl: Merck, 99,9 %) als Flußmittel bei 700°C innerhalb von 35 Tagen einkristallin in Form von transparenten, luft- und wasserbeständigen Stäbchen mit der für das Selten-Erd-Kation M³⁺ typischen Farbe. Geeignete Einkristalle wurden ausgesucht und erbrachten durch röntgenographische Diffraktometer-Untersuchungen die monokline Kristallstruktur von M₄O₄Cl[BO₃] (M = Dy – Tm). Die Ergebnisse (kristallographische Daten zur Messung und Strukturbestimmung, Orts- und thermische Auslenkungsparameter) sind in Tabelle 3-35 bis Tabelle 3-37 zusammengefaßt. Ausgewählte interatomare Abstände und Winkel finden sich in Tabelle 3-38, über die Motive der gegenseitigen Zuordnung informiert Tabelle 3-39.

3.3.1.3. Strukturbeschreibung

Die Kristallstruktur von M₄O₄Cl[BO₃] (M = Dy – Tm; monoklin, P2₁/n; Z = 4) kann als stark gewellte Schichtstruktur bestehend aus sauerstoffzentrierten, ecken- und kantenverknüpften

Tetraedern $[OM_4]^{10+}$ einerseits sowie diskreten Oxoborat-Einheiten $[BO_3]^{3-}$ und Chlorid-Anionen Cl⁻ andererseits beschrieben werden. Das B³⁺-Kation ist trigonal-planar von Sauerstoff (O5 – O7) umgeben, wobei die B–O-Abstände um so mehr variieren, je kleiner und schwerer das Selten-Erd-Kation der Verbindung ist.

Abbildung 3-26: Aufbau der gewellten Schichten der Zusammensetzung $_{\infty}^{2} \{[O_4M_4]^{4+}\}$ in der Kristallstruktur von M₄O₄Cl[BO₃] (M = Dy – Tm)

Die vier kristallographisch unterschiedlichen M^{3+} -Kationen weisen Koordinationszahlen von sieben und acht auf. Dabei werden M1 und M2 von sechs O^{2–}-Anionen und einem Cl[–]-Anion in Form eines überkappten trigonalen Prismas koordiniert (Abbildung 3-27). M3 weist eine annähernd würfelförmige (7 + 1)-Koordination aus sieben O^{2–}-Anionen und einem weit entfernten Cl[–]-Anion auf, während M4 eine (6 + 1)-Koordination bestehend aus fünf O^{2–}-und zwei Cl[–]-Anionen besitzt, die ebenfalls als überkapptes trigonales Prisma beschrieben werden kann (Abbildung 3-27).

Abbildung 3-27: Koordinationspolyeder um die M^{3+} -Kationen in $M_4O_4Cl[BO_3]$ (M = Dy - Tm)

Die sieben kristallographisch unterschiedlichen Sauerstoff-Atome werden allesamt von jeweils vier Kationen tetraedrisch umgeben, wobei O1 – O4 ausschließlich von M^{3+} -Kationen, O5 – O7 dagegen von jeweils einem B^{3+} - und drei M^{3+} -Kationen koordiniert sind. Dabei

verknüpfen die $(M^{3+})_4$ -Tetraeder um O1 – O4 über zwei (O2, O3) bzw. vier Kanten (O1, O4) zu Strängen. Diese Stränge sind wiederum über die Tetraeder um O2 und O3 zu gewellten Schichten der Zusammensetzung ${}^2_{\infty} \{[O_4M_4]^{4+}\}$ weiter kondensiert, die durch die diskreten Anionen ([BO₃]³⁻ und Cl⁻) zusammengehalten werden (Abbildung 3-26 und Abbildung 3-28).

Abbildung 3-28: Blick auf die Kristallstruktur von $M_4O_4Cl[BO_3]$ (M = Dy – Tm) entlang der b-Achse

Kristallsystem						
Raumgruppe	umgruppe $P2_1/n$ (Nr. 14) [73]					
Zahl der Formel	einheiten	Z = 4				
Summenformel	Gi	Gitterkonstanten ^{a)}				berechnete Dichte ^{a)} D_x
	a [pm]	o [pm]	c [pm]	p[grd]	[cm · mol]	[g·cm]
Dy ₄ O ₄ Cl[BO ₃]	861,54(7)	806,48(6)	1087,46(9)	102,715(7)	110,964	7,28
Ho ₄ O ₄ Cl[BO ₃]	857,65(7)	802,13(6)	1084,76(8)	102,931(7)	109,501	7,47
Er ₄ O ₄ Cl[BO ₃]	853,57(7)	798,91(6)	1084,07(8)	103,250(7)	108,334	7,64
$Tm_4O_4Cl[BO_3]$	846,98(7)	795,21(6)	1083,08(8)	103,641(7)	106,727	7,81
Meßparameter	:					
Meßgerät		Einkri	istalldiffrakto	ometer: κ-CC	CD (Fa. Noniu	s)
verwendete Stral	hlung	Mo-K	Kα (Graphit-I	Monochroma	ator, $\lambda = 71,07$	' pm)
Summenformel		Meßberei	ch	Meßgr θ _{ma} [gro	enze F(000) ^{1x} 1]	Absorptions- koeffizient µ [mm ⁻¹]
Dy ₄ O ₄ Cl[BO ₃]	$-11 \le h \le 1$	1, −10 ≤ k ≤	$10, -14 \le 1 \le 1$	≤ 14 27,4	46 1368	40,44
Ho ₄ O ₄ Cl[BO ₃]	$-11 \le h \le 1$	$1, -10 \le k \le$	$10, -14 \le 1 \le$	≤ 14 27,4	1384	43,40
Er ₄ O ₄ Cl[BO ₃]	$-11 \le h \le 1$	$1, -10 \le k \le$	$10, -14 \le 1 \le$	≤ 14 27,4	1400	46,53
Tm ₄ O ₄ Cl[BO ₃]	$-10 \le h \le 1$	$0, -10 \le k \le$	$10, -14 \le 1$	≤ 14 27,4	48 1416	49,94

Tabelle 3-35: Kristallographische Daten und ihre Bestimmung für M₄O₄Cl[BO₃] (M = Dy - Tm)

Kristallographische Daten:

Datenreduktion:

Datenkorrekturen

Absorption

Untergrund, Polarisations- und Lorentzfaktoren empirisch; Programm HABITUS [32, 74]

Summenformel	gemessene Reflexe	(davon symmetrieunabhängig)	$R_{int}\left(R_{\sigma}\right)$	Reflexe mit $ F_o \ge 4\sigma(F_o)$
Dy ₄ O ₄ Cl[BO ₃]	15381	1681	0,143 (0,057)	1293
Ho ₄ O ₄ Cl[BO ₃]	17362	1667	0,079 (0,033)	1296
Er ₄ O ₄ Cl[BO ₃]	14920	1645	0,123 (0,045)	1376
Tm ₄ O ₄ Cl[BO ₃]	16720	1623	0,086 (0,033)	1376

Strukturverfeinerung:^{b)}

Summenformel	R ₁ für alle Reflexe	$\begin{array}{l} R_1 \text{ mit} \\ F_o \geq 4\sigma(F_o) \end{array}$	wR ₂ für alle Reflexe	GooF	Restelekti $[10^{-6} \cdot e^{-7}]$ max.	ronendichten · pm ⁻³] min.
Dy ₄ O ₄ Cl[BO ₃]	0,069	0,049	0,164	1,164	3,16	-5,98
Ho ₄ O ₄ Cl[BO ₃]	0,044	0,029	0,070	1,049	1,78	-2,21
Er ₄ O ₄ Cl[BO ₃]	0,057	0,046	0,142	1,226	4,00	-2,72
Tm ₄ O ₄ Cl[BO ₃]	0,043	0,034	0,097	1,222	2,80	-4,58

^{a)} Einkristalldaten; ^{b)} Programme: SHELXS–86 bzw. SHELXL–93 [34, 35]; Streufaktoren nach International Tables, Vol. C [73]

Atom	Lage	x/a	y/b	z/c
Dy1	(4 <i>e</i>)	0,48068(9)	0,12685(9)	0,28006(7)
Dy2	(4 <i>e</i>)	0,16839(9)	0,11790(9)	0,58760(8)
Dy3	(4 <i>e</i>)	0,34692(9)	0,13680(9)	0,92032(8)
Dy4	(4 <i>e</i>)	0,03795(9)	0,11481(9)	0,22007(8)
01	(4 <i>e</i>)	0,5529(15)	0,1214(13)	0,0976(12)
O2	(4 <i>e</i>)	0,4172(14)	0,1362(13)	0,7227(12)
O3	(4 <i>e</i>)	0,1032(15)	0,1180(13)	0,7833(13)
O4	(4 <i>e</i>)	0,9772(14)	0,1224(13)	0,4069(12)
Cl	(4 <i>e</i>)	0,3492(5)	0,3554(6)	0,4660(4)
В	(4 <i>e</i>)	0,2139(21)	0,3774(20)	0,0883(19)
O5	(4 <i>e</i>)	0,1817(14)	0,3883(15)	0,9586(13)
O6	(4 <i>e</i>)	0,2295(12)	0,5069(15)	0,1609(11)
O7	(4 <i>e</i>)	0,2502(13)	0,2121(14)	0,1352(12)
Ho1	(4 <i>e</i>)	0,48073(5)	0,12611(4)	0,27974(4)
Ho2	(4 <i>e</i>)	0,16746(5)	0,11821(5)	0,58913(4)
Ho3	(4 <i>e</i>)	0,34759(5)	0,13746(5)	0,91999(4)
Ho4	(4 <i>e</i>)	0,03788(5)	0,11507(5)	0,21998(4)
01	(4 <i>e</i>)	0,5550(8)	0,1221(6)	0,0962(6)
O2	(4 <i>e</i>)	0,4164(7)	0,1358(6)	0,7246(6)
O3	(4 <i>e</i>)	0,1035(7)	0,1174(6)	0,7837(6)
O4	(4 <i>e</i>)	0,9794(7)	0,1216(6)	0,4079(6)
Cl	(4 <i>e</i>)	0,3489(3)	0,3525(3)	0,4665(2)
В	(4 <i>e</i>)	0,2137(12)	0,3702(12)	0,0831(11)
O5	(4 <i>e</i>)	0,1830(7)	0,3880(7)	0,9578(6)
O6	(4 <i>e</i>)	0,2303(7)	0,5047(7)	0,1650(6)
07	(4 <i>e</i>)	0,2494(7)	0,2120(7)	0,1357(6)

Tabelle 3-36: Atomlagen für $M_4O_4Cl[BO_3]$ (M = Dy – Tm)

Atom	Lage	x/a	y/b	z/c
Er1	(4 <i>e</i>)	0,48099(9)	0,12555(6)	0,27912(6)
Er2	(4 <i>e</i>)	0,16692(9)	0,11802(7)	0,59021(6)
Er3	(4 <i>e</i>)	0,34844(9)	0,13830(8)	0,91965(6)
Er4	(4 <i>e</i>)	0,03833(9)	0,11488(7)	0,22026(6)
01	(4 <i>e</i>)	0,5556(14)	0,1223(9)	0,0979(10)
02	(4 <i>e</i>)	0,4182(14)	0,1364(9)	0,7235(10)
03	(4 <i>e</i>)	0,1019(14)	0,1184(9)	0,7847(10)
04	(4 <i>e</i>)	0,9811(13)	0,1214(9)	0,4066(10)
Cl	(4 <i>e</i>)	0,3496(5)	0,3503(4)	0,4678(4)
В	(4 <i>e</i>)	0,2187(22)	0,3671(17)	0,0843(16)
05	(4 <i>e</i>)	0,1823(13)	0,3894(11)	0,9572(9)
06	(4 <i>e</i>)	0,2280(12)	0,5029(12)	0,1658(8)
07	(4 <i>e</i>)	0,2476(13)	0,2103(12)	0,1328(9)
Tm1	(4 <i>e</i>)	0,48099(6)	0,12551(5)	0,27835(4)
Tm2	(4 <i>e</i>)	0,16659(6)	0,11796(5)	0,59063(5)
Tm3	(4 <i>e</i>)	0,34886(6)	0,13820(6)	0,91916(5)
Tm4	(4e)	0,03855(6)	0,11533(6)	0,22116(4)
01	(4e)	0,5567(10)	0,1219(8)	0,0963(7)
02	(4e)	0,4176(10)	0,1377(8)	0,7262(7)
03	(4 <i>e</i>)	0,1025(10)	0,1165(7)	0,7832(7)
O4	(4 <i>e</i>)	0,9815(10)	0,1203(8)	0,4078(7)
Cl	(4 <i>e</i>)	0,3496(4)	0,3491(3)	0,4683(3)
В	(4 <i>e</i>)	0,2178(15)	0,3689(13)	0,0864(13)
05	(4 <i>e</i>)	0,1845(9)	0,3911(8)	0,9574(7)
06	(4 <i>e</i>)	0,2272(8)	0,5031(9)	0,1659(7)
07	(4 <i>e</i>)	0,2470(9)	0,2099(9)	0,1331(7)

		3](1VI - Dy -	1111)			
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Dy1	119(5)	111(5)	115(5)	4(3)	32(3)	0(3)
Dy2	119(4)	100(5)	120(5)	-2(3)	24(3)	4(3)
Dy3	124(4)	115(5)	99(5)	-4(3)	14(3)	5(3)
Dy4	120(5)	109(5)	129(5)	12(3)	42(3)	-1(3)
01	289(67)	107(63)	115(60)	-6(43)	96(52)	-2(45)
O2	180(60)	183(66)	765(56)	47(43)	60(46)	70(43)
03	186(59)	122(62)	219(66)	-51(46)	53(51)	20(42)
O4	142(56)	174(66)	67(54)	59(43)	-22(44)	13(41)
Cl	220(20)	236(22)	185(21)	-35(17)	29(18)	-42(16)
В	83(69)	95(85)	172(86)	2(64)	50(63)	-154(58)
05	125(55)	241(66)	262(71)	13(53)	67(51)	-6(48)
06	99(50)	292(68)	238(63)	-94(55)	103(47)	-16(46)
O7	121(55)	161(60)	264(66)	66(50)	57(49)	-1(43)
Ho1	70(2)	82(2)	69(2)	5(2)	12(2)	-5(2)
Ho2	68(2)	78(2)	76(2)	0(2)	7(2)	4(2)
Ho3	76(2)	87(2)	84(3)	-1(2)	4(2)	10(2)
Ho4	75(2)	92(2)	76(2)	9(2)	16(2)	-8(2)
01	186(34)	111(30)	103(32)	-12(24)	67(27)	-2(25)
O2	84(31)	84(28)	132(33)	-2(23)	48(25)	21(23)
03	56(28)	96(27)	88(30)	-19(22)	26(23)	4(22)
O4	61(30)	11(29)	102(32)	-30(23)	15(25)	-28(23)
Cl	187(12)	218(11)	174(13)	7(9)	35(10)	-32(9)
В	100(46)	40(43)	199(57)	12(37)	72(40)	-40(35)
05	90(31)	176(30)	119(33)	-29(25)	-13(26)	-4(25)
06	148(33)	211(31)	146(34)	-67(27)	48(27)	-7(26)
O7	103(32)	142(30)	221(36)	36(26)	25(28)	-29(24)

Tabelle 3-37: Koeffizienten der anisotropen thermischen Auslenkungsparameter^{a)} für $M_4O_4Cl[BO_3]$ (M = Dy – Tm)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Er1	140(4)	81(4)	93(4)	7(2)	3(3)	-6(2)
Er2	141(4)	80(4)	98(4)	-1(2)	-1(3)	4(2)
Er3	148(4)	92(4)	106(4)	-2(2)	-5(3)	6(2)
Er4	144(4)	87(4)	105(4)	11(2)	10(3)	-4(2)
01	186(60)	59(45)	189(51)	5(30)	-8(44)	-1(34)
O2	222(64)	107(48)	151(48)	11(32)	-71(44)	-31(37)
03	189(59)	18(43)	223(52)	-3(30)	-28(44)	25(33)
O4	128(55)	24(42)	193(50)	-33(29)	-36(42)	-22(31)
Cl	279(22)	219(16)	187(16)	12(13)	42(16)	-32(15)
В	125(79)	162(76)	175(74)	-12(52)	73(61)	-44(54)
05	124(53)	165(47)	169(48)	-3(34)	-1(40)	-25(37)
06	128(51)	194(47)	239(48)	-63(39)	1(39)	-40(39)
07	169(58)	181(49)	297(51)	74(40)	3(44)	2(41)
Tm1	70(3)	86(3)	64(3)	7(2)	9(2)	-3(2)
Tm2	68(3)	78(3)	68(3)	1(2)	6(2)	4(2)
Tm3	74(3)	90(3)	75(3)	-3(2)	0(2)	6(2)
Tm4	75(3)	89(3)	74(3)	12(2)	16(2)	-5(2)
01	111(40)	134(39)	114(38)	40(26)	11(31)	28(27)
O2	95(40)	120(37)	142(40)	0(27)	24(31)	12(27)
03	106(38)	72(35)	69(35)	17(24)	-10(29)	15(25)
O4	106(40)	144(39)	69(36)	12(25)	-3(30)	-33(27)
Cl	221(15)	200(13)	130(13)	11(10)	30(12)	-28(11)
В	29(51)	129(58)	130(58)	-8(41)	-12(43)	9(40)
05	125(39)	186(38)	82(37)	6(28)	23(30)	-61(29)
06	88(35)	175(36)	141(36)	-77(30)	17(28)	-4(28)
	1 1 1 (2 0)					

^{a)} definiert als Temperaturfaktor: exp $[-2\pi^2 (a^{*2}h^2U_{11} + b^{*2}k^2U_{22} + c^{*2}l^2U_{33} + 2b^*c^*klU_{23} + 2a^*c^*hlU_{13} + 2a^*b^*hkU_{12})];$ U_{ij} in pm²

	M = Dy	M = Ho	M = Er	M = Tm
M1 – O1	220,7	222,2	220,0	221,3
O5	230,3	229,2	227,4	227,4
O6	226,7	225,1	223,3	221,9
O2	229,9	228,3	226,6	226,7
O3	230,9	230,7	228,6	229,0
07	234,9	233,8	234,4	232,0
Cl	312,7	311,5	311,7	311,7
M2 - O4	227,0	224,7	224,3	221,7
O3	231,7	229,6	230,0	227,6
O4'	231,6	230,3	229,7	227,5
O1	233,9	230,4	229,1	227,5
O2	232,1	230,9	230,0	228,6
O5	237,4	236,8	235,8	232,9
Cl	295,8	294,1	293,0	291,6
M3 - O4	226,4	225,8	225,0	224,3
01	227,9	226,5	226,2	223,8
O3	229,7	228,2	227,7	225,9
O1'	231,8	230,5	230,5	228,1
O2	235,7	232,4	233,6	229,9
O5	256,4	254,1	254,3	253,4
07	271,7	272,5	270,6	271,7
Cl	323,3	324,2	325,3	325,0
M4 - O4	220,7	220,6	218,5	218,7
O3	223,3	222,0	220,9	219,1
O2	226,5	225,9	224,0	222,2
O6	230,3	227,7	227,5	225,5
07	235,7	234,0	233,4	232,1
Cl	289,1	287,4	285,4	284,1
Cl'	320,7	321,7	323,0	324,2
B- 06	129,8	138,5	139,0	136,2
07	143,7	139,7	135,9	136,3
O5	137,9	133,3	135,3	137,0
05 - B - 07	113.7	119.3	119.6	118.3
O5 - B - O6	122.8	122.7	120.7	120.8
06 - B - 07	123.0	117.6	119.7	120.9
	,	,	,	,

Tabelle 3-38: Ausgewählte interatomare Abstände (d / pm) für $M_4O_4Cl[BO_3]$ (M = Dy – Tm)

	Cl1	01	02	03	04	05	O 6	07	CN
M1	$0^{+1} / 0^{+1}$	1/1	1/1	1/1	0/0	1/1	1/1	1/1	6 ⁺¹
M2	1/1	1/1	1/1	1/1	2/2	1/1	0/0	0/0	7
M3	$0^{+1} / 0^{+1}$	2/2	1/1	1/1	1/1	1/1	0/0	1/1	7 ⁺¹
M4	1^{+1} / 1^{+1}	0/0	1/1	1/1	1/1	0/0	1/1	1/1	6 ⁺¹
В	0/0	0/0	0/0	0/0	0/0	1/1	1/1	1/1	3
CN	2 ⁺³	4	4	4	4	4	3	4	

Tabelle 3-39: Motive der gegenseitigen Zuordnung für $M_4O_4Cl[BO_3]$ (M = Dy – Tm)

4. Zusammenfassung und Ausblick

4.1. Diskussion und Zusammenfassung

4.1.1. Oxoborate

Einige Oxoborate der Selten-Erd-Elemente sind recht gut untersucht und strukturell beschrieben worden. Da jedoch der Bedarf an Verbindungen mit guten Lumineszenz-Eigenschaften in den letzten Jahren gestiegen ist und einige Oxoborate der dreiwertigen Selten-Erd-Elemente sowohl dotiert als auch nicht dotiert diese Eigenschaften aufweisen, sollen im Folgenden die bekannten und neuen Strukturen zusammengefaßt und verglichen werden.

Rein formal kann man aus jeder Oxoborat-Summenformel ein M2O3:B2O3-Verhältnis errechnen. So ist in ortho-Oxoboraten dieses Verhältnis 1 (M₂O₃) : 1 (B₂O₃). Dies äußert sich darin, daß die charakteristischen Oxoborat-Baueinheiten jeweils zumeist diskret vorliegen (Abbildung 4-1). So enthalten die *ortho*-Oxoborate λ -M[BO₃], π -M[BO₃], β -M[BO₃], v-M[BO₃] und H-M[BO₃] [52, 57–59, 62, 70, 81, 82] isolierte, trigonal-planare Oxoborat-Einheiten. In γ -MBO₃ ist ein Kettenfragment *catena*-[B₃O₉]⁹⁻ bestehend aus zwei eckenverknüpften [BO₄]⁵⁻-Tetraedern und einer, ebenfalls über Ecke verknüpften, trigonalplanaren $[BO_3]^{3-}$ -Einheit enthalten [53] und in μ -MBO₃ schließlich ein sechsgliedriger Ring $[B_3O_9]^{9-}$ aus eckenverknüpften Oxoborat-Tetraedern $[BO_4]^{5-}$ [59]. Erhöht man nun das stöchiometrische M₂O₃:B₂O₃-Verhältnis auf 1 : 1,5, so resultiert daraus M₄B₆O₁₈ mit Oxoborat-Strängen, die vollständig aus Tetraedern aufgebaut sind (Abbildung 4-1). Diese Verbindungen erhält man allerdings nur unter Hochdruck- und Hochtemperaturbedingungen und die Oxoborat-Stränge enthalten sogar erstmals überhaupt in der Oxoborat-Chemie über Kante verknüpfte [BO₄]^{5–}-Tetraeder [42]. Bei einer weiteren Anreicherung der Verbindungen mit B_2O_3 (Verhältnis M_2O_3 : $B_2O_3 = 1$: 2) fallen die Hochdruck- / Hochtemperatur-Verbindungen β -M₂B₄O₉ an, die Schichten bestehend aus sechsgliedrigen $[B_3O_9]^{9-}$ -Ringen eckenverknüpfter Oxoborat-Tetraeder $[BO_4]^{5-}$, welche über Ecke mit trigonal-planaren [BO₃]³⁻-Einheiten weiterverknüpft werden, aufweisen [44] (Abbildung 4-1). Bisher ist kein Oxoborat mit dreiwertigem Selten-Erd-Element und der Zusammensetzung M₄B₁₀O₂₁ $(\equiv M_2O_3 : B_2O_3 = 1 : 2,5)$ bekannt, allerdings kann ein stöchiometrisches Verhältnis von 1 : 3 (M₂O₃ : B₂O₃) schon unter "Normalbedingungen" erreicht werden. Meta-Oxoborate $MB_3O_6 (\equiv M(BO_2)_3; M = La - Tb)$ sind nämlich seit langem bekannt und ihre Kristallstruktur ist gut aufgeklärt (z. B. $Pr(BO_2)_3$: monoklin; C2/c (Nr. 15); a = 983,24(9), b = 809,32(7), c = 637,71(6) pm, β = 126,639(8)°; Z = 4). Bor und Sauerstoff treten zu Polyanionen in Form endlosen Ketten der Niggli-Formel von $\int_{\infty}^{1} \{ ([(B1)(O1)_{2/1}^{e}(O2)_{2/1}^{e}][(B2)(O1)_{1/1}^{e}(O1)_{1/1}^{e}(O3)_{1/1}^{t}]_{2})^{3-} \} \quad (\equiv \int_{\infty}^{1} \{ (BO_{2})^{-} \})$ mit sowohl tetraedrisch (B1) als auch trigonal-planar (B2) von Sauerstoff koordiniertem Bor im Verhältnis 1 : 2 zusammen (Abbildung 4-1), wobei B2 nur leicht aus der Ebene seiner drei Liganden ausgelenkt ist. Dabei wird ein $[BO_4]^{5-}$ -Tetraeder über alle vier Ecken mit je einem [BO₃]³⁻-Dreieck, ein Dreieck seinerseits über nur zwei Ecken mit je einem Tetraeder verbunden. Immer zwei der letzteren verbinden also zwei der ersteren so miteinander, daß sich in Kettenrichtung ([101] in der Standardaufstellung C2/c) die Reihenfolge "Tetraeder zwei Dreiecke - Tetraeder - zwei Dreiecke" ergibt. Die B-O-Abstände des trigonal-planar koordinierten $(B2)^{3+}$ -Kations variieren zwar recht stark (z. B. Pr(BO₂)₃: d(B2-O) = 132 - 141 pm), stimmen jedoch im Mittel gut mit anderen Abständen in dreifach von Sauerstoff koordiniertem Bor überein. Wie erwartet fällt der B-O-Abstand für das tetraedrisch koordinierte B1 deutlich größer aus (z. B. $Pr(BO_2)_3$: d(B1-O) = 145 - 148 pm), stimmt jedoch ebenfalls mit Abständen anderer tetraedrisch koordinierter B³⁺-Kationen überein. Die Koordinationszahl von zehn am M³⁺-Kation läßt jedoch schon erwarten, daß dieser Verbindungstyp nur mit den größeren, aber leichteren Lanthaniden (M = La - Tb) erreicht werden kann. Die Kristallstruktur für $M(BO_2)_3 (\equiv MB_3O_6)$ mit M = Tb und Dy konnte in dieser Arbeit aufgeklärt werden (z. B. Tb(BO₂)₃: orthorhombisch; Pnma (Nr. 62); a = 1598,97(9), b = 741,39(4), c = 1229,58(7) pm; Z = 16). Die B³⁺-Kationen weisen allesamt eine Koordinationszahl von vier auf und werden tetraedrisch von Sauerstoff-Atomen immer zwei $[BO_4]^{5-}$ -Tetraeder koordiniert (Abbildung 4-1). Dabei verknüpfen $[B_2O_7]^{8-}$ miteinander über Ecke zu kristallographisch gleichartiger Boratome Doppeltetraedern. Die Tetraederdoppel der Kationen B1, B2 und B3 verknüpfen über das Sauerstoffatom O7 in der Art, daß die B^{3+} -Kationen selbst ein trigonales Prisma bilden. Diese

Einheiten werden wiederum von den B4-, B5- und B6-Tetraederdoppeln zu Dreiecks-Strängen parallel (100) verbunden, wobei auch hier die Boratome B4, B5 und B6 ein trigonales Prisma bilden. Zwei Dreiecks-Stränge verknüpfen miteinander über das Sauerstoffatom O11, so daß die Tetraeder der B³⁺-Kationen B1, B4 und B5 beider Stränge fast linear angeordnet sind. Diese Doppel-Stränge wiederum verknüpfen gegeneinander verschoben über das Sauerstoffatom O11 zu stark gewellten Schichten parallel (100). Die B–O-Abstände in $M(BO_2)_3$ (M = Tb, Dy) streuen zwar erheblich (143 – 154 pm), sind aber vergleichbar mit den Abständen für andere tetraedrisch koordinierte B³⁺-Kationen in Oxoboraten dreiwertiger Lanthanide. Die O-B-O-Winkel in $M(BO_2)_3$ (M = Tb, Dy; $102 - 115^{\circ}$) variieren sogar etwas weniger stark als jene in den $[BO_4]^{5-}$ -Tetraedern des Praseodym-meta-Oxoborates $Pr(BO_2)_3$ (103 – 118°) [8] bzw. der ortho-Oxoborate γ -MBO₃ (M = Dy, Er) (102 - 120°) [53] und des Dysprosium-meta-Oxoborates Dy₄B₆O₁₅ (eckenverknüpfte Tetraeder: 107 – 116°; kantenverknüpfte Tetraeder: 94 – 119°) [42]. Die bisher borsesquioxid-reichste Verbindung (M_2O_3 : B_2O_3 = 1 : 3,5) stellt das neue *meta*-Oxoborat La₄B₁₄O₂₇ (monoklin; C2/c (Nr. 15); a = 1120,84(9), b = 641,98(6), c = 2537, 2(2) pm, $\beta = 100, 125(8)^{\circ}$; Z = 4) dar, das mithin auch als *ultra*-Oxoborat bezeichnet werden könnte. Die Kristallstruktur enthält als charakteristische Baueinheit ein Oxoborat-Raumgitter (Abbildung 4-1). Von den sieben kristallographisch unterschiedlichen B^{3+} -Kationen sind vier tetraedrisch von Sauerstoff umgeben (d(B-O) = 144 - 151 pm) und drei annähernd trigonal-planar (d(B-O) = 134 - 140 pm), wobei das Bor-Kation stets um weniger als 4 pm aus der Sauerstoff-Dreiecksebene ausgelenkt ist. Die B-O-Abstände sind ebenfalls gut vergleichbar mit den Abständen von B³⁺-Kationen mit gleicher Koordinationszahl in anderen Verbindungen. Drei Tetraeder verknüpfen jeweils über Ecke zu $[B_3O_9]^{9-}$ -Sechsringen, welche über eine trigonal-planare $[BO_3]^{3-}$ -Einheit zu Schichten weiterverbunden werden. Jeweils zwei solcher Schichten sind über $[B_2O_7]^{8-}$ -Tetraederdoppel (zwei [BO₄]⁵⁻-Tetraeder mit gemeinsamer Ecke) zu Doppelschichten verknüpft. Diese werden schließlich noch über Stränge aus tetraedrischen und trigonal-planaren Oxoborat-Einheiten zu einem Raumgitter vernetzt.

Abbildung 4-1: Überblick über die charakteristischen Oxoborat-Einheiten in reinen Selten-Erd(III)-Oxoboraten und deren Verknüpfung

4.1.2. Chlorid-Oxoborate

Chlorid-Oxoborate der Selten-Erd-Elemente sind erst seit kurzem bekannt. *Sieke et al.* [8] gelang es erstmals, eine Praseodym-Verbindung der Zusammensetzung $PrCl(BO_2)_2$ darzustellen. In der vorliegenden Arbeit war es nun möglich, die Reihe $MCl(BO_2)_3$ mit M = La und Ce zu vervollständigen sowie neue Verbindungen der Zusammensetzungen $M_2Cl_2[B_2O_5]$ (M = Sc, Er) und $M_3Cl_3[BO_3]_2$ (M = La, Ce) zu erhalten.

Die Kristallstruktur der Chlorid-Oxoborate MCl(BO₂)₂ (M = La, Ce, Pr; triklin; P1 (Nr. 2); z. B. CeCl(BO₂)₂: a = 421,52(4), b = 662,16(7), c = 819,33(8) pm, α = 82, 081(8), β = 89,238(9), γ = 72,109(7)°; Z = 2) enthält als charakteristische Baueinheit leicht gewellte Doppelschichten bestehend aus Oxoborat-Ketten $\frac{1}{2}$ {[(B1)O^t_{1/1}O^e_{2/2}(B2)O^t_{1/1}O^e_{2/2}]²⁻} (Abbildung 4-2) sowie M³⁺-Kationen einerseits und reinen Chlorid-Anionenschichten andererseits. Daher sind sie mit dem $\frac{1}{2}$ {(BO₂)⁻}-Anion als Chlorid-*meta*-Oxoborate aufzufassen. Die Lanthanid-Kationen M³⁺ weisen eine Koordinationszahl von zehn (7 O²⁻ + 3 Cl⁻) auf und werden in Form eines vierfach überkappten trigonalen Prismas (oder *Edshammar*-Polyeders) koordiniert. Aufgrund dieser hohen Koordinationszahl ist es leicht erklärbar, daß sich Vertreter dieses Verbindungstyps nur mit den großen Lanthaniden (M = La – Pr) darstellen lassen.

Zieht man von der versechsfachten Summenformel MCl(BO₂)₂ (\equiv M₆Cl₆B₁₂O₂₄) nun formal drei Borsesquioxid-Einheiten ab, so erhält man eine Verbindungsklasse mit der Zusammensetzung M₆Cl₆B₆O₁₅ (\equiv M₂Cl₂[B₂O₅]). Die Chlorid-Oxodiborate M₂Cl₂[B₂O₅] (M = Sc, Er; orthorhombisch; Pbam (Nr. 55); z. B. Er₂Cl₂[B₂O₅]: a = 1489,65(9), b = 1004,80(6), c = 524,86(3) pm; Z = 4) weisen exakt planare, alternierende Schichten auf. Diese bestehen zum Einen aus isolierten Oxodiborat-Einheiten [B₂O₅]⁴⁻ (Abbildung 4-2) und M³⁺-Kationen, zum Anderen aber ausschließlich aus Chlorid-Anionen. Die zwei kristallographisch unterschiedlichen Selten-Erd-Kationen (M1)³⁺ und (M2)³⁺ betätigen Koordinationszahlen von sieben und sechs. (M1)³⁺ wird dabei in Form einer pentagonalen Bipyramide von fünf O²⁻- und zwei Cl⁻-Anionen umgeben, während (M2)³⁺ leicht verzerrt oktaedrisch von vier O²⁻- und zwei Cl⁻-Anionen koordiniert ist. Dieser Verbindungstyp sollte daher auch noch mit den schwereren Lanthaniden (M = Gd - Lu) sowie dem Yttrium zugänglich sein.

Eine weitere formale Verringerung des Borsesquioxid-Gehaltes (M₂Cl₂[B₂O₅] \equiv M₆Cl₆B₆O₁₅) um eine Einheit ergibt die Summenformel M₆Cl₆B₄O₁₂ (\equiv M₃Cl₃[BO₃]₂; M = La, Ce; hexagonal; P6₃/m (Nr. 176); z. B. La₃Cl₃[BO₃]₂: a = 923,80(6), c = 584,29(4) pm; Z = 2). Auch diese Verbindungen können als Schichtstrukturen beschrieben werden. Allerdings liegen hier, im Gegensatz zu den beiden bisher beschriebenen Chlorid-Oxoboraten, die M³⁺-Kationen gemeinsam mit den Cl⁻-Anionen in einer Schicht vor, während die zweite Schicht nun aus reinen Oxoborat-Einheiten in Form von isolierten, nahezu perfekt trigonal-planaren [BO₃]³⁻-Dreiecken (Abbildung 4-2) besteht. Das M³⁺-Kation weist eine Koordinationszahl von zehn (6 O²⁻ + 4 Cl⁻) auf und somit ist auch diese Struktur wohl nur mit den großen Lanthaniden (M = La – Pr) zu erwarten.

Bei den Strukturtypen MCl(BO₂)₂ und M₃Cl₃[BO₃]₂ handelt es sich um Chlorid-Oxoborate dreiwertiger Selten-Erd-Kationen der leichten, aber größeren Lanthanide. Der Unterschied liegt darin, daß es sich bei M₃Cl₃[BO₃]₂ um einen borsesquioxid-ärmeren Formeltyp handelt. Das kann durch einen Vergleich der Darstellungsmethoden der beiden Verbindungsklassen gut erklärt werden. MCl(BO₂)₂-Vertreter werden mit Borsesquioxid B₂O₃ als Flußmittel dargestellt, während die Chlorid-Oxoborate M₃Cl₃[BO₃]₂ bei Umsetzungen mit MCl₃ als Flußmittel anfallen. Somit werden bei einem B₂O₃-Überschuß tatsächlich auch größere Oxoborat-Einheiten ausgebildet. Dies geschieht, indem man die isolierten Oxoborat-Anionen $[BO_3]^{3-}$ formal durch weitere Oxoborat-Gruppen $[BO_3]^{3-}$ über Ecke zu Ketten verknüpft. So werden im Formeltyp MCl(BO₂)₂ tatsächlich Ketten der Zusammensetzung $\int_{\infty}^{1} \{ [(B1)O_{1/1}^{t}O_{2/2}^{e}(B2)O_{1/1}^{t}O_{2/2}^{e}]^{2-} \} (\equiv \int_{\infty}^{1} \{ (BO_{2})^{-} \}) \text{ erhalten. Das Bindeglied zwischen diesen}$ beiden Verbindungstypen stellt M2Cl2[B2O5] dar. Vergleicht man alle drei Strukturen, so erkennt man, daß M₃Cl₃[BO₃]₂ die oxoboratärmste Verbindungsklasse darstellt, während M₂Cl₂[B₂O₅] formal eine B₂O₃-Einheit und MCl(BO₂)₂ sogar vier B₂O₃-Einheiten mehr enthält als M₃Cl₃[BO₃]₂. Dies führt konsequenterweise auch strukturell zu ausgedehnteren Oxoborat-Gruppierungen. So liegen in $M_3Cl_3[BO_3]_2$ isolierte Oxoborat-Einheiten $[BO_3]^{3-}$ vor, während M₂Cl₂[B₂O₅] mit einem höheren Borsesquioxid-Anteil diskrete Oxodiborat-Anionen $[B_2O_5]^{4-}$ aus zwei eckenverknüpften Oxoborat-Dreiecken $[BO_3]^{3-}$ enthält. Wie schon

beschrieben wurde, geraten die Oxoborat-Einheiten bei einem weiteren B₂O₃-Überschuß noch treten in MCl(BO₂)₂ als bislang borsesquioxid-reichstem ausgedehnter. Daher Verbindungstypus Oxoborat-Ketten ${}_{\infty}^{-1} \{ [(B1)O_{1/1}^{t}O_{2/2}^{e}(B2)O_{1/1}^{t}O_{2/2}^{e}]^{2-} \}$ auf, die sich formal eckenverknüpften Oxodiborat-Anionen $[B_2O_5]^{4-}$ rekrutieren. Bei allen drei aus Verbindungstypen sind die B-O-Abstände der dreifach koordinierten B³⁺-Kationen untereinander im Mittel gut vergleichbar (M₃Cl₃[BO₃]₂: 137 – 138 pm, M₂Cl₂[B₂O₅]: 134 – 145 pm, MCl(BO₂)₂: 130 – 145 pm), wobei in M₃Cl₃[BO₃]₂ drei gleiche B–O-Abstände vorliegen, was wohl damit zusammenhängt, daß hier diskrete trigonal-planare [BO3]3--Dreiecke vorliegen, während man in M₂Cl₂[B₂O₅] isolierte Oxodiborat-Einheiten aus zwei eckenverknüpften [BO₃]³⁻-Dreiecken antrifft und man die Oxoborat-Endlos-Ketten $\frac{1}{2}$ {(BO₂)⁻} in MCl(BO₂)₂ formal ebenfalls aus eckenverknüpften Oxodiborat-Einheiten oder sogar aus [BO₃]³⁻-Dreiecken selbst aufbauen kann. Allerdings sind die Oxoborat-Gruppen in M₂Cl₂[B₂O₅] exakt planar, während die Bor-Kationen sowohl in M₃Cl₃[BO₃]₂ als auch in MCl(BO₂)₂ leicht aus der Sauerstoff-Dreiecksebene ausgelenkt sind. So entstehen bei MCl(BO₂)₂ ganz schwach gewellte, zick-zack-förmige Ketten beim unendlichen Verknüpfen der [BO₃]³⁻-Einheiten. Die Abstände der Bor-Atome zu den terminalen Sauerstoff-Liganden fallen sowohl bei M₂Cl₂[B₂O₅] als auch bei MCl(BO₂)₂ erwartungsgemäß stets kürzer aus als jene zu den verbrückenden.

Bei den Verbindungen MCl(BO₂)₂ und M₂Cl₂[B₂O₅] liegen die Brückenwinkel (B–O–B) für die Eckenverknüpfung der [BO₃]^{3–}-Dreiecke zwischen 125 und 130°, sind also weit von einer linearen Anordnung um den Brückensauerstoff mit einem gestreckten (B–O–B)-Winkel von 180° entfernt. Eine leichte Verdrehung der eckenverknüpften [BO₃]^{3–}-Einheiten gegeneinander scheint nur für MCl(BO₂)₂ günstiger zu sein. Bei M₂Cl₂[B₂O₅] liegen die Oxoborat-Einheiten exakt in einer Ebene, was den zentralen Boratomen eine sp²-Hybridisierung mit leerem p-Orbital und den B–O-Bindungen damit (durch den +M-Effekt der doppelt besetzten p-Orbitale der Sauerstoff-Liganden) im kovalenten Bild einen gewissen Doppelbindungs-Charakter attestiert.

Abbildung 4-2: Überblick über die Oxoborat-Teilstrukturen in Chlorid-Oxoboraten der dreiwertigen Selten-Erd-Elemente

4.1.3. Oxidchlorid-Oxoborate

Mit $M_4O_4Cl[BO_3]$ (M = Dy – Tm) ist erstmals die Synthese von Oxidchlorid-Oxoboraten der Selten-Erd-Elemente gelungen. Die Verbindungen kristallisieren in der monoklinen Raumgruppe $P2_1/n$ (Nr. 14) mit vier Formeleinheiten pro Elementarzelle (z. B. Ho₄O₄Cl[BO₃]: a = 857,65(7), b = 802,13(6), c = 1084,76(8) pm, β = 102,931(7)°). Auch diese Struktur kann als Schichtstruktur beschrieben werden. Die stark gewellten Schichten sind aus diskreten [BO₃]³⁻-Dreiecken und Cl⁻-Anionen einerseits und sauerstoffzentrierten, ecken- und kantenverknüpften [OM₄]¹⁰⁺-Tetraedern andererseits aufgebaut. Die sieben kristallographisch unterschiedlichen Sauerstoff-Atome werden allesamt von jeweils vier Kationen tetraedrisch umgeben, wobei O1 – O4 ausschließlich von M³⁺-, O5 – O7 dagegen von jeweils einem B^{3+} - und drei M^{3+} -Kationen koordiniert sind. Dabei verknüpfen die $(M^{3+})_4$ -Tetraeder um O1 – O4 über zwei (O2, O3) bzw. vier Kanten (O1, O4) zu Strängen. Diese Stränge sind wiederum über die Tetraeder um O2 und O3 zu gewellten Schichten der Zusammensetzung $\frac{2}{2}$ { $[O_4M_4]^{4+}$ } weiter kondensiert, die durch die diskreten Anionen ($[BO_3]^{3-}$ und Cl-) zusammengehalten werden. Die vier kristallographisch unterschiedlichen M³⁺-Kationen weisen Koordinationszahlen von sieben und acht gegenüber den O²⁻- bzw. Cl⁻-Anionen auf. Somit sollten Vertreter dieser neuen Verbindungsklasse auch noch mit weiteren Lanthaniden und dem Yttrium darstellbar sein.

4.2. Ausblick

Betrachtet man die Gesamtstruktur der Selten-Erd-*meta*-Oxoborate M(BO₂)₃ (M = Tb, Dy), so kann man erwarten, daß weitere Vertreter mit den schwereren Lanthaniden in diesem Strukturtyp kristallisieren sollten, wobei unter Hochdruck- und Hochtemperaturbedingungen bereits die isotype Reihe bis hin zum Lutetium dargestellt worden ist [75]. Eine Koordinationszahl von acht am Lanthanid-Kation ist bei den schwereren Lanthaniden gut vertretbar, so weisen doch die M³⁺-Kationen in den *ortho*-Oxoboraten χ -MBO₃ (M = Dy, Er) [11] Koordinationszahlen von sieben bis neun auf, wobei vier der sechs kristallographisch unterschiedlichen M³⁺-Kationen eine direkte Achter-Koordination zeigen. Im Dysprosium*meta*-Oxoborat Dy₄B₆O₁₅ [17], hierbei handelt es sich um ein Oxoborat mit eckenund kantenverknüpften [BO₄]⁵⁻-Tetraedern, liegen sogar beide kristallographisch unterschiedlichen Dy³⁺-Kationen achtfach von Sauerstoff koordiniert vor.

Das bisher borsesquioxid-reichste ultra-Oxoborat La4B14O27 sollte zumindest auch mit den Selten-Erd-Elementen Cer und Praseodym darstellbar sein. Zudem wäre es von Interesse, ob weitere, noch borsesquioxid-reichere Selten-Erd-Oxoborate zugänglich sind und welche charakteristische Baueinheit solche Verbindungen wohl aufweisen, da schon in La₄B₁₄O₂₇ der "Oxoborat-Überschuß" zu einem dreidimensionalen Raumgitter bestehend aus trigonal-planar tetraedrisch von Sauerstoff koordiniertem Bor führt. Weiterhin und besteht ein Klärungsbedarf, ob der fehlende Formeltyp $M_4B_{10}O_{21}$ (M₂O₃ : B₂O₃ = 1 : 2,5; Abbildung 4-1) zwischen M₂B₄O₉ (M₂O₃ : B₂O₃ \equiv 1 : 2) und den *meta*-Boraten M(BO₂)₃ $(M_2O_3 : B_2O_3 \equiv 1 : 3)$ tatsächlich synthetisierbar ist und welche Bedingungen man dazu aufwenden muß. Die Formeltypen M4B6O15 und M2B4O9 sind bisher nur über Hochdruckund Hochtemperaturbedingungen zugänglich, weisen aber sehr spektakuläre Oxoborat-Einheiten auf. Somit ist deutlich erkennbar, daß schon bei der Darstellbarkeit und strukturellen Aufklärung der "reinen" Oxoborate ein großer Bedarf besteht. Ein weiteres großes Arbeitsfeld ergibt sich z. B. aus anstehenden Untersuchungen zu den Lumineszenz-Eigenschaften dieser Verbindungen oder deren Eignung als Matrix für Leuchtstoffe.

Modifiziert man reine Oxoborate mit Fremd-Anionen, z. B. Chlorid, so ergeben sich weitere interessante Forschungsfelder. In dieser Arbeit konnten drei verschiedene Formeltypen von

Chlorid-Oxoboraten dargestellt werden. Bei den Chlorid-Oxoboraten MCl(BO₂)₂ (M = La - Pr) ist wohl kein weiterer Vertreter mehr zu erwarten, da eine Koordinationszahl von zehn mit kleineren Selten-Erd-Elementen unwahrscheinlich ist, der Formeltyp $M_3Cl_3[BO_3]$ (M = La, Ce) sollte allerdings auch noch mit Praseodym realisierbar sein. Der Strukturtyp $M_2Cl_2[B_2O_5]$ (M = Sc, Er) mit einer sechs- bzw. siebenfachen Koordination am M³⁺-Kation läßt erwarten, daß noch eine ganze Reihe weiterer Vertreter darstellbar sind. Die Darstellung neuer Chlorid-Oxoborate ist indes nicht ganz einfach. Geeignete Einkristalle werden nur dann erhalten, wenn auch die Ziel-Stöchiometrie genau eingehalten wird. Die Darstellung von Formeltypen der Zusammensetzung $M_3Cl_3B_4O_9$ oder $M_6Cl_6B_{10}O_{21}$ (Abbildung 4-2) ist bisher noch nicht gelungen, es erscheint aber sinnvoll, auch diese Stöchiometrien als Zielsetzung anzustreben, da z. B. ein Oxoborat-Anion $[B_4O_9]^{6-}$ (in mit Eu^{2+} -dotiertem Sr₃[B₄O₉] [83, 84]) durchaus bekannt ist und die beiden genannten Formeltypen die Lücke zwischen $M_2Cl_2[B_2O_5]$ (MCl₃ : M_2O_3 : $B_2O_3 \equiv 2 : 2 : 3$) und $MCl(BO_2)_2$ ($MCl_3 : M_2O_3 : B_2O_3 \equiv 2 : 2 : 6$) schließen würden.

Die Problematik der Darstellung von Chlorid-Oxoboraten ist am Beispiel der Oxidchlorid-Oxoborate gut zu zeigen. So entstand Ho₄O₄Cl[BO₃] zunächst unbeabsichtigt bei einem "Sauerstoff-Einbruch" in die Ampulle, wobei analoge Experimente unter exakt den gleichen Darstellungsbedingungen, allerdings ohne Sauerstoff-Kontamination, zu keinem Ergebnis führten. Nachdem jedoch gezielte Versuche mit der erhaltenen Stöchiometrie vorgenommen wurden, konnte die isotype Reihe M₄O₄Cl[BO₃] mit M = Dy – Tm problemlos dargestellt werden. Weiterhin deuten Pulveraufnahmen auf die Existenz weiterer Verbindungen mit diesem Strukturtyp (z. B. mit M = Y; Eu – Gd) hin. In diesem Zusammenhang wäre auch die eine Strukturaufklärung der Oxid-Oxoborate M₃O₃[BO₃] von Bedeutung, da M₄O₄Cl[BO₃] gemäß M₃O₃[BO₃] · MOC1 ein Derivat davon darstellt und die Kristallstruktur von M₄O₄Cl[BO₃] dann mit jener von M₃O₃[BO₃] und MOC1 verglichen werden könnte.

Nachdem es nun möglich ist, Chlorid-Oxoborate und Oxidchlorid-Oxoborate gezielt darzustellen, wäre es von großem Interesse, die erhaltenen Verbindungen auf Lumineszenz-Fähigkeit zu untersuchen oder gegebenenfalls geeignete Wirtsgitter zu dotieren, um die gewünschten Eigenschaften einzustellen. Außerdem besteht die Möglichkeit, auch Oxoborate mit weiteren Fremd-Anionen, z. B. Iodid, Bromid und Fluorid (bisher bekannt: Gd₂F₃[BO₃] und $M_3F_3[BO_3]_2$, M = Sm, Eu und Gd [85]) oder Sulfid, Selenid und Tellurid, zu modifizieren oder Thioborate (hier existiert bislang nur EuB₂S₄ mit Eu²⁺-Kationen [86]) bzw. gemischte Oxo-Thioborate darzustellen.

5. Summary and Outlook

5.1. Discussion and Summary

5.1.1. Oxoborates

Several oxoborates of the rare earth elements have been thoroughly investigated and structurally characterized. Since however, the demand for compounds with favourable luminescence properties has increased over the last few years and several oxoborates of the trivalent rare earth elements, both doped and undoped, show these properties, the known and new structures are compared and summarized below.

Formally, a M_2O_3 : B_2O_3 ratio can be obtained from every oxoborate empirical formula. Thus, ortho-oxoborates have a ratio of $1 (M_2O_3) : 1 (B_2O_3)$ and each of the characteristic oxoborate units are present discretely. Thus the *ortho*-oxoborates λ -M[BO₃], π -M[BO₃], β-M[BO₃], v-M[BO₃] and H-M[BO₃] [51, 56–58, 61, 69, 80, 81] contain discrete, trigonal planar oxoborate units. γ -M(BO₃) contains a *catena*-[B₃O₉]⁹⁻ chain fragment derived from two vertex-sharing $[BO_4]^{5-}$ tetrahedra and a trigonal planar $[BO_3]^{3-}$ unit which is also vertexsharing [52] and in μ -M(BO₃) a six-membered ring $[B_3O_9]^{9-}$ vertex-sharing oxoborate tetrahedra $[BO_4]^{5-}$ [58]. When the stoichiometric ratio of M_2O_3 : B_2O_3 is raised to 1 : 1.5, $M_4B_6O_{18}$ is obtained with oxoborate strands that are built up completely of tetrahedra. These compounds can only be obtained at high temperature and pressure and for the first time in oxoborate chemistry the oxoborates strand even contain edge-shared [BO₄]⁵⁻ tetrahedra [41]. When the B_2O_3 content is further increased (Ratio: M_2O_3 : B_2O_3 = 1 : 2), the high temperature / high pressure compound β -M₂B₄O₉ is obtained, which contains sheets built up of six-membered rings $[B_3O_9]^{9-}$ vertex-sharing oxoborate tetrahedra $[BO_4]^{5-}$, which are further connected to trigonal planar $[BO_3]^{3-}$ units over vertices [43]. No oxoborate of a trivalent rare earth element and the composition $M_4B_{10}O_{21}$ (= M_2O_3 : B_2O_3 = 1 : 2.5) is yet known, even though a stoichiometric ratio of 1 : 3 (M₂O₃ : B₂O₃) can be achieved under normal conditions. *Meta*-oxoborates MB₃O₆ (\equiv M(BO₂)₃; M = La – Tb) have been known for a long time and their crystal structure is well defined (e. g. $Pr(BO_2)_3$: monoclinic, C2/c
(No. 15); a = 983.24(9), b = 809.32(7), c = 637.71(6) pm, $\beta = 126.639(8)^{\circ}$; Z = 4). Boron and oxygen combine to give polyanions in the form of chains with the Niggli formula $\int_{\infty}^{1} \{ ([(B1)(O1)_{2/1}^{e}(O2)_{2/1}^{e}] [(B2)(O1)_{1/1}^{e}(O1)_{1/1}^{e}(O3)_{1/1}^{t}]_{2})^{3-} \} \quad (\equiv \int_{\infty}^{1} \{ (BO_{2})^{-} \}) \text{ with tetrahedral}$ (B1) as well as trigonal planar (B2) boron coordinated to oxygen with the ratio 1 : 2, whereby B2 lies only slightly out of the plane of its three ligands. Accordingly, a $[BO_4]^{5-}$ tetrahedron is bound via all four vertices to each of a $[BO_3]^{3-}$ triangle, which in turn connects via only two vertices with each of a tetrahedron. Two of the latter always connected to two of the former such that the sequence "tetrahedron - two triangles - tetrahedron - two triangles" along the chain ([101] in the standard setting C2/c) arises. The B-O distances of the trigonal planarcoordinated $(B2)^{3+}$ cations vary substantially (e. g. $Pr(BO_2)_3$: d(B2-O) = 132 - 141 pm); however, the average value tallys well with other distances for boron coordinated to three oxygens. As expected, the B-O distance for the tetrahedrally coordinated B1 is clearly larger (e. g. $Pr(BO_2)_3$: d(B1-O) = 145 - 148 pm); this however is in accordance to distances of other tetrahedrally coordinated B^{3+} cations. The coordination number ten for a M^{3+} cation however, leads us to expect this type of compound can only be obtained with the larger but lighter lanthanides (M = La – Tb). The crystal structure of $M(BO_2)_3$ (= MB₃O₆) with M = Tb and Dy was established in this work (e. g. $Tb(BO_2)_3$: orthorhombic, Pnma (No. 62); a = 1598.97(9), b = 741.39(4), c = 1229.58(7) pm; Z = 16). The B³⁺ cations exhibit a coordination number of four and are tetrahedrally coordinated to oxygen atoms. In this, two [BO₄]⁵⁻ tetrahedra of crystallographically equivalent boron atoms are always connected with another via vertices to give $[B_2O_7]^{8-}$ double tetrahedra. The double tetrahedra of the cations B1, B2 and B3 connect via the oxygen atom O7 in such a way that the B³⁺ cations themselves make up a trigonal prism. These units are in turn joined to the B4, B5 and B6 double tetrahedra to give a triangular strand parallel to (100), whereby here the boron atoms B4, B5 and B6 also form a trigonal prism. Two triangular strands are linked to one another via oxygen atom O11 such that the tetrahedra of the B^{3+} cations B1, B4 and B5 of both strands are almost linearly arranged. These double strands are in turn joined via the oxygen atom O11 shifted against each other to give strongly undulating sheets parallel to (100). The B-O distances in $M(BO_2)_3$ (M = Tb, Dy) vary considerably (143 – 154 pm), but are comparable to the distances in other tetrahedrally coordinated B^{3+} cations in oxoborates of trivalent

lanthanoids. The variation of the O–B–O angles in $M(BO_2)_3$ (M = Tb, Dy; 102 – 115°) is actually less than those of the $[BO_4]^{5-}$ tetrahedra of praseodymium *meta*-oxoborates Pr(BO₂)₃ $(103 - 118^{\circ})$ [8] or the *ortho*-oxoborates χ -MBO₃ (M = Dy, Er) $(102 - 120^{\circ})$ [52], and of the dysprosium meta-oxoborates Dy₄B₆O₁₅ (vertex-sharing terahedra 107 - 116°; edgesharing tetrahedra 94 - 119°) [41]. The boron sesquioxide richest compound so far $(M_2O_3 : B_2O_3 = 1 : 3.5)$ is the new *meta*-oxoborate La₄B₁₄O₂₇ (monoclinic, C2/c (No. 15; a = 1120.84(9), b = 641.98(6), c = 2537.2(2) pm, $\beta = 100,125(8)^{\circ}$; Z = 4) which can be named ultra-oxoborate. The crystal structure contains a three-dimensional oxoborate array as characteristic building block (figure x-1). Of the seven crystallographically independent B^{3+} cations four are surrounded tetrahedrally by oxygen (d(B-O) = 134 - 140 pm) in which the position of boron cation is always less than 4 pm out of the oxygen triangular plane. The B-O distances also compare well with distances of boron cations with the same coordination number in other compounds. Three tetrahedra join over $[B_3O_9]^{9-}$ six-membered rings, which are further linked via a trigonal planar $[BO_3]^{3-}$ unit to give sheets. These sheets occur pairwise over $[B_2O_7]^{8-}$ double tetrahedra (two $[BO_4]^{5-}$ tetrahedra with a common vertex) to give double sheets. Finally, these are cross-linked via strands formed from tetrahedral and trigonal planar oxoborate units to give a three-dimensional network.

5.1.2. Chloride-Oxoborates

Rare earth element chloride-oxoborates have only recently been discovered. *Sieke et al.* [8] produced a compound with praseodymium for the first time with the composition $PrCl(BO_2)_2$. In the present work it was possible to complete the series $MCl(BO_2)_3$ with M = La, Ce, and the new compounds of the composition $M_2Cl_2[B_2O_5]$ (M = Sc, Er) and $M_3Cl_3[BO_3]_2$ (M = La, Ce) were obtained.

The crystal structure of the chloride-oxoborates MCl(BO₂)₂ (M = La, Ce Pr; triclinic, P1 (No. 2), Z = 2; e. g. CeCl(BO₂)₂: a = 421.52(4), b = 662.16(7), c = 819.33(8) pm, α = 82.081(8), β = 89.238(9), γ = 72.109(7)°) contains corrugated double sheets as the characteristic building block, made up of oxoborate chains $\int_{\infty}^{1} \{ [(B1)O_{1/1}^{t}O_{2/2}^{e}(B2)O_{1/1}^{t}O_{2/2}^{e}]^{2-} \}$ and M³⁺ cations on one hand, and wholly chloride anion

sheets on the other. Hence, with the $\frac{1}{\infty}$ {(BO₂)⁻} anion they are to be understood as chloride *meta*-oxoborates. The lanthanide cations M³⁺ have a coordination number of ten (seven O²⁻ + three Cl⁻) and form a fourfold-capped trigonal prism (or *Edshammar* polyhedron). This high coordination number, easily shows that members of this type of compound only form with the large lanthanides (M = La – Pr).

When three boron sesquioxide units are formally removed from six times the empirical formula $MCl(BO_2)_2$ ($\equiv M_6Cl_6B_{12}O_{24}$), a compound of the formula $M_6Cl_6B_6O_{15}$ ($\equiv M_2Cl_2[B_2O_5]$) is received. The chloride-oxodiborate $M_2Cl_2[B_2O_5]$ (M = Sc, Er; orthorhombic, Pbam (No. 55); Z = 4; e. g. $Er_2Cl_2[B_2O_5]$: a = 1489.65(9), b = 1004.80(6), c = 524.86(3) pm) exhibits completely planar, alternating layers. These are made up of isolated oxodiborate units $[B_2O_5]^{4-}$ and M^{3+} cations on one hand, and chloride anions only on the other. Two crystallographically independent rare earth cations (M1)³⁺ and (M2)³⁺ have the coordination numbers seven and six. (M1)³⁺ is surrounded by five O²⁻ and two Cl⁻ anions to form a pentagonal bipyramid, whereas (M2)³⁺ is coordinated to four O²⁻ and two Cl⁻ anions to give a slightly distorted octahedron. Therefore this type of compound should also be accessible to the heavier lanthanides (M = Y; Gd – Lu).

A further formal reduction of the boron sesquioxide content $(M_2Cl_2[B_2O_5] \equiv M_6Cl_6B_6O_{15})$ by one unit results in the empirical formula $M_6Cl_6B_4O_{12}$ ($\equiv M_3Cl_3[BO_3]_2$; M = La, Ce; hexagonal, P6₃/m (Nr. 176); Z = 2; e. g. La₃Cl₃[BO₃]₂: a = 923,80(6), c = 584,29(4) pm). This chloride-oxoborate can also be described as a layer structure. However, in contrast to both the previously described compounds, here the M^{3+} cations are found together with the Cl⁻ anions in the same layer, while the second layer consists of purely oxoborate units as isolated, almost trigonal planar [BO₃]³⁻ triangles. The M^{3+} cation has a coordination number of ten (six O²⁻ and four Cl⁻) and so this structure is only expected for the larger lanthanides (M = La – Pr). The structural types MCl(BO₂)₂ and M₃Cl₃[BO₃]₂ consist of chloride-oxoborates of trivalent rare-earth cations of the lighter, larger lanthanides. The difference is that for M₃Cl₃[BO₃]₂ a boron sesquioxide-poor formula type is involved. This can be explained by comparing the synthetic conditions for both compounds. MCl(BO₂)₂ is synthesized with boron sesquioxide as flux, whereas for M₃Cl₃[BO₃]₂ MCl₃ is used. Thus with an excess of B₂O₃, larger oxoborate units are in fact also integrated. Here the isolated oxoborate anions [BO₃]³⁻ formally join up with other oxoborate groups $[BO_3]^{3-}$ via vertices to form chains. The MCl(BO₂)₂ chains have the constitution ${}^{1}_{\infty} \{ [(B1)O_{1/1}^{t}O_{2/2}^{e}(B2)O_{1/1}^{t}O_{2/2}^{e}]^{2^{-}} \} (\equiv {}^{1}_{\infty} \{ (BO_{2})^{-} \}).$ The link between these two compound types is M₂Cl₂[B₂O₅]. When all three structures are compared, it can be seen that M₃Cl₃[BO₃]₂ is the oxoborate-poorest compound, whereas M₂Cl₂[B₂O₅] contains formally one B₂O₃ unit and MCl(BO₂)₂ even four B₂O₃ units more than M₃Cl₃[BO₃]₂. This consequently leads to structurally more expanded oxoborate groupings. Thus in M₃Cl₃[BO₃]₂ isolated oxoborate anions $[B_2O_5]^{4-}$ are found, whereas M₂Cl₂[B₂O₅] with a higher boron sesquioxide content contains isolated oxodiborate anions $[B_2O_5]^{4-}$ composed of two vertex-sharing oxoborate triangles [BO₃]³⁻. As described above, with a further excess B_2O_3 , the oxodiborate units become even larger. Thus in MCl(BO_2)₂, the boron sesquioxide-richest compound yet, oxoborate chains $\sum_{\infty}^{1} \{ [(B1)O_{1/1}^{t}O_{2/2}^{e}(B2)O_{1/1}^{t}O_{2/2}^{e}]^{2^{-}} \}$ are found that formally involve vertex-sharing oxodiborate anions $[B_2O_5]^{4-}$. For all three compounds, the B–O distances of the threefold coordinated B^{3+} cations compare averagely well with one another (M₃Cl₃[BO₃]₂: 137 - 138 pm, M₂Cl₂[B₂O₅]: 134 - 145 pm and MCl(BO₂)₂: 130 –145 pm). In M₃Cl₃[BO₃]₂ three equivalent B–O distances are found, which correlates with $M_3Cl_3[BO_3]_2$ having discrete trigonal planar $[BO_3]^{3-}$ triangles, whereas $M_2Cl_2[B_2O_5]$ has isolated oxodiborate units from two vertex-sharing $[BO_3]^{3-}$ triangles. Likewise the endless oxoborate chains $\frac{1}{m} \{ (BO_2)^{-} \}$ in MCl(BO₂)₂ can be formally built up from vertex-sharing oxoborate units or even from isolated $[BO_3]^{3-}$ triangles. However, the oxoborate groups in $M_2Cl_2[B_2O_5]$ are definitly planar, whereas the boron cations lie slightly out of the oxygen plane in M₃Cl₃[BO₃]₂ as well as in MCl(BO₂)₂. Thus in MCl(BO₂)₂ very slightly corrugated, zigzag chains formed by infinite coupling of the $[BO_3]^{3-}$ units. The distances for the boron atoms to the terminal oxygen ligands are always shorter for $M_2Cl_2[B_2O_5]$ and $MCl(BO_2)_2$ then those to the bridging oxygens.

For the compounds $M_2Cl_2[B_2O_5]$ and $MCl(BO_2)_2$ the bridge angle (B–O–B) for the vertexsharing of the $[BO_3]^{3-}$ triangles lie between 125 and 130°, and are thus far from a linear arrangement for the bridging oxygen with opened out (B–O–B) angle (180°). A slight twisting of the edge-shared $[BO_3]^{3-}$ units with respect to one another appears only to be favourable for $MCl(BO_2)_2$. For $M_2Cl_2[B_2O_5]$ the oxoborate units lie exactly in a plane, which corroborates with the covalent picture of some double-bond character with sp² hybridization of the central boron atoms and the empty p orbital and thus the B–O bond (through the +M effect of the doubly occupied p orbital of the oxygen ligands).

5.1.3. Oxide-Chloride-Oxoborates

In the case of M₄O₄Cl[BO₃] (M = Dy – Tm), the oxide-chloride oxoborates were synthesized for the first time. The compounds crystallize in the monoclinic space group P2₁/n (No. 14) with four formula units per unit cell (e. g. Ho₄O₄Cl[BO₃]: a = 857.65(7), b = 802.13(6), c = 1084.76(8) pm, β = 102.931(7)°). This structure can also be described as a layer structure. The heavily corrugated layers are described as discrete [BO₃]³⁻ triangles and Cl⁻ anions on one hand, and oxygen-centred, vertex- and edge-sharing [OM₄]¹⁰⁺ tetrahedra on the other. The seven crystallographically independent oxygen atoms are each tetrahedral surrounded by four cations, in which O1 – O4 are coordinated only by M³⁺ cations whereas O5 – O7 on the other hand are each coordinated by one B³⁺ and three M³⁺ cations. Moreover the (M³⁺)₄ tetrahedra about O1 – O4 are linked via two (O2, O3) i. e. four edges (O1, O4) to strands. These strands again are further condensed by these tetrahedra about O2 and O3 to corrugated layers of the composition $\frac{2}{\infty}$ {[O₄M₄]⁴⁺}, that are held together by discrete anions ([BO₃]³⁻ and Cl⁻). The four crystallographically independent M³⁺ cations have coordination numbers of seven and eight. This should allow these new compounds to be synthesized from other lanthanides and yttrium.

5.2. Outlook

When observing the entire structure of the lanthanide *meta*-oxoborate $M(BO_2)_3$ (M = Tb, Dy), it can be expected that further representatives of the heavier lanthanides should crystallize in this structural type, where the isotype series up to the lutetium has been obtained under high pressures and high temperature conditions [75]. Although coordination number of eight for a lanthanide cation is justifiable for the heavier lanthanides the M^{3+} cations of the ortho-oxoborates χ -MBO₃ (M = Dy, Er) [11] show coordination figures from seven to nine, whereas four of the six crystallographically independent M^{3+} cations have a coordination number of eight. In the dysprosium *meta*-oxoborate $Dy_4B_6O_{15}$ [17], namely an oxoborate with vertex- up and edge-sharing $[BO_4]^{5-}$ tetrahedra, even both crystallographically independent Dy^{3+} cations are eightfold coordinated with oxygen. It should be possible to prepare the boron sesquioxide richest ultra-oxoborate La₄B₁₄O₂₇ at least with the rare earth elements cerium and praseodymium. Whether more boron sesquioxide richer rare earth element oxoborates can be synthesized and characterized would be of further interest as the surplus oxoborate in La₄B₁₄O₂₇ leads to a three-dimensional network consisting of trigonal-planar and tetrahedral coordinated boron. Furthermore a clarification is needed as to whether the missing formula types $M_4B_{10}O_{21}$ (M_2O_3 : $B_2O_3 \equiv 1 : 2.5$) between $M_2B_4O_9$ ($M_2O_3 : B_2O_3 \equiv 1 : 2$) and the *meta*borates M(BO₂)₃ (M₂O₃ : B₂O₃ \equiv 1 : 3) are really synthesizable and which conditions are necessary. The formula types M₄B₆O₁₅ and M₂B₄O₉ are up to now accessible only under high pressure and high temperature conditions, however they feature very interesting oxoborate units. It is therefore evident that already the synthesis and structural clarification of the "pure" oxoborate is a big requirement. Another big field of work is determined, e.g. from awaiting investigations on luminescence qualities of the compounds or their adequacy as a matrix for illuminants.

By modifying pure oxoborates by external anions, e.g. chloride, farther interesting research fields open up. In this work three different formula types of chloride oxoborates could be synthesized. In the case of the compound $MCl(BO_2)_2$ (M = La – Pr), further members are not expected because coordination numbers of ten are not expected by smaller lanthanides, $M_3Cl_3[BO_3]$ (M = La, Ce) should however also be obtainable with praseodymium. Further

examples for the structural type $M_2Cl_2[B_2O_5]$ (M = Sc, Er) with coordination numbers of six and seven for the M^{3+} cation should be possible. The synthesis of new chloride-oxoborates is not trivial. Suitable single crystals are only obtained when the reaction stoichiometry is strictly observed. The synthesis of formula types of the composition $M_3Cl_3B_4O_9$ or $M_6Cl_6B_{10}O_{21}$ has not been possible up to now, however it would be wise to apply this stoichiometry as an objective, as e.g. an oxoborate anion $[B_4O_9]^{6-}$ (in the case of Eu²⁺ endowed $Sr_3[B_4O_9]$ [83, 84]) is well known and both mentioned formula types would close the gap between $M_2Cl_2[B_2O_5]$ (MCl₃ : M_2O_3 : $B_2O_3 \equiv 2$: 2 : 3) and MCl(BO₂)₂ (MCl₃ : M_2O_3 : $B_2O_3 \equiv 2$: 2 : 6).

The problems involved with synthesizing chlorid oxoborates is obvious from the example of oxide chloride oxoborates. Even though oxygen contamination in the ampoule led to the unintended formation of Ho₄O₄Cl[BO₃] analogous preparations under precisely same conditions, even without the oxygen contamination produced no results. However, selective preparation with the known stoichiomtry, enabled the synthesis of the isotypical series $M_4O_4Cl[BO_3]$ with M = Dy - Tm without any problems. Powder diffraction studies suggest the existence of further compounds of this structural type (e. g. for M = Y, Eu – Gd).

Consequently a structure clarification of M_3O_3 [BO₃] would be of importance, because $M_4O_4Cl[BO_3]$ according to M_3O_3 [BO₃] · MOCl would be a derivative of this oxide oxoborate and then the crystal structure of $M_4O_4Cl[BO_3]$ could be compared with those of M_3O_3 [BO₃] and MOCl.

As the selective synthesis of chloride-oxoborates is now possible, it would be of interest to investigate the luminescence efficiency of the compounds obtained, or possibly the doping of suitable compounds in order to achieve the desired properties.

Besides possibility to modify oxoborates with other external anions, e.g. iodide, bromide and fluoride (up to now known: $Gd_2F_3[BO_3]$ and $M_3F_3[BO_3]_2$ M = Sm, Eu and Gd [85]) or sulfide, selenide or telluride, or to synthesize thioborates (here exists until now only EuB_2S_4 with Eu^{2+} cations [86]) or mixed oxo-thioborates is also a possibility.

6. Literatur

- [1] W. F. Bradley, D. L. Graf, R. S. Roth: Acta Crystallogr. **1966**, 20, 283.
- [2] P. N. Kotru, B. M. Wanklyn: J. Mater. Sci. 1979, 14, 755.
- [3] H. J. Meyer, A. Skokan: *Naturwissenschaften* **1971**, *58*, 566.
- [4] R. E. Newnham, M. J. Redman, R. P. Santoro: J. Amer. Ceram. Soc. 1963, 46, 253.
- [5] J. Weidelt, H. U. Bambauer: *Naturwissenschaften* **1968**, *55*, 342.
- [6] K.-J. Range, M. Wildenauer, M. Andratschke: Z. Kristallogr. 1996, 211, 815.
- [7] I. V. Tananaev, B. F. Dzhurinskii, V. I. Christova: Inorg. Mater. 1975, 11, 69.
- [8] C. Sieke, T. Nikelski, Th. Schleid: Z. Anorg. Allg. Chem. 2002, 628, 819.
- [9] V. I. Pakhomov, G. I. Sil'nitskaya, A. V. Medvedev, B. F. Dzhurinskii: *Inorg. Mater.* 1972, 8, 1107.
- [10] V. I. Pakhomov, G. B. Sil'nitskaya, A. V. Medvedev, B. F. Dzhurinskii: *Inorg. Mater.* 1969, 5, 1409.
- [11] M. Marezio, H. A. Plettinger, W. H. Zachariasen: Acta Crystallogr. 1963, 16, 390.
- [12] V. G. Karabutov, N. N. Morozov, A. S. Pronin, B. F. Dzhurinskii: *Inorg. Mater.* 1978, 14, 1574.
- [13] H. U. Bambauer, J. Weidelt, J. S. Ysker: Z. Kristallogr. 1969, 130, 207.
- [14] G. K. Abdullaev, Kh. S. Mamedov, G. G. Dzhafarov: Sov. Phys. Crystallogr. 1975, 20, 265.
- [15] G. K. Abdullaev, Kh. S. Mamedov, G. G. Dzhafarov: Sov. Phys. Crystallogr. 1981, 26, 837.
- [16] B. F. Dzhurinskii, L. Z. Gokhman, A. V. Osiko, L. N. Zorina, N. N. Soshchin: *Inorg. Mater.* **1982**, *18*, 1494.
- [17] H. G. Giesber, J. Ballato, W. T. Pennington, J. W. Kolis, M. Dejneka: *Glass Technol.* 2003, 44, 42.

- [18] H. Giesber, J. Ballato, G. Chumanov, J. Kolis, M. Dejneka: J. Appl. Phys. 2003, 93, 8987.
- [19] H. G. Giesber, J. Ballato, W. T. Pennington, J. W. Kolis: *Inform. Sciences* 2003, 149, 61.
- [20] Z. G. Wei, L. D. Sun, C. S. Liao, X. C. Jiang, C. H. Yan, Y. Tao, X. Y. Hou, X. Ju: J. Appl. Phys. 2003, 93, 9783.
- [21] Z. G. Wei, L. D. Sun, X. C. Jiang, C. S. Liao, C. H. Yan: Chem. Mater. 2003, 15, 3011.
- [22] E. Antic-Fidancev, M. Lemaître-Blaise, J. Chaminade, P. Porcher: J. Alloys Compds. 1992, 180, 223.
- [23] G. Bertrand-Chadeyron, M. El-Ghozzi, D. Boyer, R. Mahiou, J. C. Cousseins: J. Alloys Compds. 2001, 317, 183.
- [24] C. Sieke: Dissertation, Univ. Stuttgart 1998.
- [25] R. G. Pearson: Chemical Hardness, Wiley-VCH-Verlag, Weinheim 1997.
- [26] H. Müller-Bunz, Th. Schleid: Z. Kristallogr. 1998, Suppl. 15, 48.
- [27] H. Müller-Bunz, H. Grossholz, Th. Schleid: Z. Anorg. Allg. Chem. 2001, 627, 1436.
- [28] H. Müller-Bunz, Th. Schleid: Z. Kristallogr. 2003, Suppl. 20, 144.
- [29] Fa. STOE & CIE GmbH: Programm STOE Win Xpow, Version 1.2, Darmstadt 2001.
- [30] K.-H. Jost: Röntgenbeugung an Kristallen, Heyden & Son GmbH, Rheine 1975.
- [31] M. F. C. Ladd, R.-H. Palmer: *Structure Determination by X-Ray Crystallography*, Plenum Press, New York **1993**.
- [32] Fa. STOE & CIE GmbH: Programm X–Shape, Version 1.06, Darmstadt 1999.
- [33] G. M. Sheldrick: *Programmpaket SHELX*–97, Göttingen 1997.
- [34] G. M. Sheldrick: *Programm SHELXL–93*, Göttingen 1993.
- [35] G. M. Sheldrick: *Programm SHELXS*–86, Göttingen 1986.
- [36] Fa. STOE & Cie GmbH: Program X–RED, 1.19, Darmstadt 1999.

- [37] Fa. STOE & Cie GmbH: Programm X–STEP, 2.14, Darmstadt 1997.
- [38] Fa. STOE & Cie GmbH: *Programm X–STEP 32*, *1.05 f*, Darmstadt **2000**.
- [39] R. Hübenthal, R. Hoppe: Programm MAPLE, Version 4.0, Gießen 1990.
- [40] Fa. CRYSTAL IMPACT: Programm Diamond, 2.14 d, Bonn 2000.
- [41] GMELIN Handbook of Inorganic and Organometallic Chemistry, Syst. No. 39, C11b, Compounds with Boron, 8th Edit., Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo 1991.
- [42] H. Huppertz: Z. Naturforsch. 2003, 58b, 278.
- [43] H. Huppertz, H. Emme: J. Phys. Condens. Mat. 2004, 16, S1283.
- [44] H. Huppertz, S. Altmannshofer, G. Heymann: J. Solid State Chem. 2003, 170, 320.
- [45] H. Emme, H. Huppertz: Chem. Eur. J. 2003, 9, 3623.
- [46] E. M. Levin, C. R. Robbins, J. L. Waring: J. Amer. Ceram. Soc. 1961, 44, 87.
- [47] E. M. Levin: J. Amer. Ceram. Soc. 1967, 50, 53.
- [48] J. H. Lin, M. Z. Su, K. Wurst, E. Schweda: J. Solid State Chem. 1996, 126, 287.
- [49] GMELIN Handbook of Inorganic and Organometallic Chemistry, Syst. No 39, Vol. C11b, 8. Auflage, Springer-Verlag, Berlin, Heidelberg, New York 1991.
- [50] E. M. Levin, R. S. Roth, J. B. Martin: Amer. Mineral. 1961, 46, 1030.
- [51] R. S. Roth, J. L. Waring, E. M. Levin: Proc. 3rd Conf. Rare Earth Res. 1963 153.
- [52] R. Boehlhoff, H. U. Bambauer, W. Hoffmann: Naturwissenschaften 1970, 57, 129.
- [53] H. Huppertz, B. von der Eltz, R. D. Hoffmann, H. Piotrowski: J. Solid State Chem. 2002, 166, 203.
- [54] C. Fouassier, A. Levasseur, P. Hagenmuller: J. Solid State Chem. 1971, 3, 206.
- [55] A. Dal Negro, L. Ungaretti: Amer. Mineral. 1971, 56, 768.
- [56] H. Chessin, W. C. Hamilton, B. Post: Acta Crystallogr. 1965, 18, 689.

- [57] H. Huppertz: Z. Naturforsch. 2001, 56b, 697.
- [58] T. Yamanaka, H. Mori: Acta Crystallogr. 1981, B 37, 1010.
- [59] M. Ren, J. H. Lin, Y. Dong, L. Q. Yang, M. Z. Su, L. P. You: Chem. Mater. 1999, 11, 1576.
- [60] H. J. Meyer: Z. Kristallogr. 1969, 128, 183.
- [61] W. L. Bragg: Proc. Roy. Soc. 1924, A 105, 16.
- [62] J. P. R. De Villiers: Amer. Mineral. 1971, 56, 758.
- [63] F. Weigel, V. Scherer: *Radiochim. Acta* **1967**, *7*, 50.
- [64] J. H. Denning, S. D. Ross: Spectrochim. Acta Molec. Spectr. 1972, A 28, 1775.
- [65] H. Strunz: *Mineralogische Tabellen*, 8. Auflage, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig 1982.
- [66] G. K. Moir, J. A. Gard, F. P. Glasser: Z. Kristallogr. 1975, 141, 437.
- [67] H. Müller-Bunz: *Diplomarbeit*, Univ. Stuttgart **1997**.
- [68] G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus, J. C. Cousseins: J. Solid State Chem. 1997, 128, 261.
- [69] H. J. Meyer: Z. Kristallogr. 1965, 121, 220.
- [70] K. K. Palkina, V. G. Kuznetsova, L. A. Butman, B. F. Dzhurinskii: *Koord. Khimiya* **1976**, *2*, 286.
- [71] A. Goriounova, P. Held, P. Becker, L. Bohatý: Acta Crystallogr. 2003, E 59, 83.
- [72] V. I. Pakhomov, G. B. Sil'nitskaya, B. F. Dzhurinskii: Inorg. Mater. 1971, 7, 467.
- [73] Th. Hahn, A. J. C. Wilson (Eds.): *International Tables for Crystallography*, Vol. C, 3rd Edit., Kluwer Acad. Publ., Dordrecht, Boston, London 1992.
- [74] W. Herrendorf: Programm HABITUS (X-SHAPE), Karlsruhe, Gießen 1995.
- [75] H. Emme, T. Nikelski, Th. Schleid, R. Pöttgen, M. H. Möller, H. Huppertz: *Z. Naturforsch.* **2004**, *59b*, 202.

- [76] T. Nikelski, Th. Schleid: Z. Anorg. Allg. Chem. 2003, 629, 1017.
- [77] T. Nikelski, Th. Schleid: Z. Anorg. Allg. Chem. 2003, 629, 2028.
- [78] T. Nikelski, Th. Schleid: Z. Kristallogr. 2000, Suppl. 17, 127.
- [79] GMELIN Handbook of Inorganic and Organometallic Chemistry, Syst. No. 39, Vol. C11b, 8. Auflage, Springer-Verlag, Berlin, Heidelberg, New York 1991.
- [80] T. Nikelski, Th. Schleid: Z. Anorg. Allg. Chem. 2003, 629, 2200.
- [81] H. Müller-Bunz, T. Nikelski, Th. Schleid: Z. Naturforsch. 2003, 58b, 375.
- [82] S. C. Abrahams, J. L. Bernstein, E. T. Keve: J. Appl. Crystallogr. 1971, 4, 284.
- [83] H. Müller-Bunz, Th. Schleid: Z. Anorg. Allg. Chem. 2002, 628, 2750.

Die experimentellen Arbeiten der vorliegenden Dissertation wurden im Zeitraum von September 1999 bis August 2004 am Institut für Anorganische Chemie der Universität Stuttgart (Pfaffenwaldring 55, 70569 Stuttgart) unter Leitung von Herrn Prof. Dr. Thomas Schleid durchgeführt.

Ich versichere hiermit an Eides statt, die vorliegende Arbeit selbstständig und unter Verwendung der angegebenen Hilfsmittel angefertigt zu haben.

DANKSAGUNGEN

Vorrangiger Dank geht an meine Familie, stellvertretend für alle seien genannt meine Cousine Nina Baghdjian und ihre Eltern, ohne deren finanziellen und mentalen Beistand ich mein Studium nicht geschafft hätte.

Ich möchte mich bei meinem Doktorvater Prof. Dr. Thomas Schleid für die Überlassung des Themas, die zahlreichen Ratschläge und Diskussionen sowie die freundliche Unterstützung bei der Anfertigung dieser Arbeit bedanken.

Herrn Prof. Paul Keller danke ich für die Übernahme des Korreferats.

Bei Herrn Dr. Falk Lissner und Herrn Dr. Ingo Hartenbach möchte ich mich für die Durchführung der Einkristallmessungen bedanken.

Meinen Kollegen von der ehemaligen "Kaffeerunde" Herrn Dr. Ioannis Tiritiris und Frau Ref. D. LA. Sabine Strobel möchte ich besonders danken für viele lustige und anregende Diskussionen.

Ferner danke ich nochmals Herrn Dr. Ingo Hartenbach. daß er mir die Geräteabbildungen zur Verfügung gestellt hat.

Herrn Dr. Stephen Horner und Frau Sumati Panicker-Otto möchte ich ganz herzlich für die redaktionelle Hilfe danken.

Ebenso bedanken möchte ich mich bei allen namentlich nicht erwähnten derzeitigen Kolleginnen und Kollegen sowie bei den Mitarbeitern des AK Schleid für das schöne Arbeitsklima und ihre Unterstützung.

Einen herzlichen Dank auch an alle meine Freunde, stellvertretend für alle sei an dieser Stelle Dr. Markus Kreitmeir erwähnt, die mich immer unterstützt haben und ohne deren moralische Unterstützung eine solche Arbeit nicht möglich gewesen wäre.

Lebenslauf

Tanja Nikelski

Frankfurter Str. 92 / 3068 • 63110 Rodgau

Persönliche Daten

Familienstand	ledig
Staatsangehörigkeit	deutsch
Geburtsdatum	23. Dezember 1970
Geburtsort	Ludwigsburg

Ausbildung

1977 – 1981	Schlößlesfeldgrundschule in Ludwigsburg
1981 – März 1985	Friedrich Schiller Gymnasium in Ludwigsburg
April 1985 – 1991	Gymnasium Ernestinum in Celle Abschluss: allgemeine Hochschulreife
1991 –1995	Grundstudium Chemie (Diplom) an der Universität Stuttgart
Mai 1995	Vordiplom Chemie
1995 –1999	Hauptstudium mit Vertiefungsfach: Textil- und Faserchemie
Februar 1999	Diplomprüfungen in Anorganischer Chemie, Organischer Chemie, Physikalischer Chemie, Textil- und Faserchemie
März 1999 – August 1999	Diplomarbeit bei Prof. Dr. Th. Schleid am Institut für Anorganische Chemie, Universität Stuttgart
seit September 1999	Promotion am Institut für Anorganische Chemie unter Anleitung von Prof. Dr. Th. Schleid an der Universität Stuttgart

<u>Tätigkeiten</u>

Juni 1995 – Oktober 1998	Beschäftigung als Wissenschaftliche Hilfskraft am Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft, Abteilung Biologie, der Universität Stuttgart.
1994 – 1999	Mitarbeit in der Fachschaft Chemie der Universität Stuttgart (u.a. Tutorenschaft für Erstsemester, Betreuung der Studenten auf Informations- und anderen Veranstaltungen).
seit Oktober 1999	Betreuung von Studenten im Anorganisch-Chemischen Grund- praktikum; Betreuung des jährlichen Schülerinnen-Workshops