Synthese und Strukturaufklärung von kupferhaltigen ternären und quaternären Sulfiden der Selten-Erd-Elemente

Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften – Dr. rer. nat. – genehmigte Abhandlung

Vorgelegt von

Petra Lauxmann-Melchinger

aus Stuttgart

Hauptberichter Prof. Dr. Thomas Schleid

Mitberichter Prof. Dr. Paul Keller

Datum der mündlichen Prüfung: 16.12.2005

Institut für Anorganische Chemie der Universität Stuttgart

2006

Bitte beachten:

Zur korrekten Darstellung dieser Datei wird empfohlen, den Adobe Acrobat Reader® 6

oder eine neuere Version

zu verwenden.

Die Illustration »Escher-Krebse« widme ich meiner Frau Petra und ihrer Doktorarbeit *Michael Melchinger*

The whole is more than the sum of its parts

ARISTOTELES

Die folgenden Geräte und Programme dienten der grafischen Umsetzung dieser Arbeit:

- Hardware: Apple Power Macintosh® G3 Computer mit Betriebssystem Mac OS® DI 9.1
 - Apple iMac[®] G5 Computer mit Betriebssystem Mac os[®] x 10.3.9
 - Agfa Arcus® 11 Scanner
 - Hewlett Packard LaserJet[®] 2200 DTN Drucker
- Software: QuarkXPress[®] 4.1 (Seitenlayout)
 - Adobe Photoshop[®] cs Version 8.0.1 (Bildbearbeitung)
 - Adobe Photoshop[®] 5.5 Power Pc mit FotoLook[®] PS 2.09.2 Plug-in (Scan und Bildbearbeitung)
 - Adobe Illustrator[®] 7.0.1 PPC (Vektorgrafik)
 - Macromedia Fontographer[®] 4.1.5 (Zeichensatz-Erstellung)
 - Adobe Acrobat[®] 6.0.4 Professional mit Adobe Acrobat Distiller[®] 6.0.2 (PDF-Generierung)

Die Bindung der gedruckten Version erfolgte bei der Buchbinderei Erwin Haßdenteufel, Mainz.

INHALT

I. Einleitung

1.1	Vorwort
1.2	Literaturübersicht8
II. Experi	menteller Teil
2.1	Apparative Methoden
2.1.1	Argon-Glove-Box

2.1.2	Vakuum-Schutzgas-Apparatur17
2.1.3	Präparative Methoden17
2.2	Strukturaufklärung19
2.2.1	Röntgenographische Methoden19
2.2.2	Pulverdiffraktometrie
2.2.3	Einkristallverfahren21
2.2.3.1	Weissenberg-Verfahren
2.2.3.2	Buerger-Präzessionsverfahren
2.2.3.3	Einkristalldiffraktometrie26
2.3	Strukturlösung

III. Spezieller Teil

3.1	Binäre Sulfide
3.1.1	$MS_2 (M = La - Pr)33$
3.1.2	$M_{10}S_{19}$ (M = La-Gd)
3.2	Ternäre Sulfide
3.2.1	CsCuS ₆
3.2.2	CuMS ₂
3.2.2.1	CuYS ₂
3.2.2.2	$CuMS_2 (M = Pr - Gd)84$
3.2.3	$Cu_{1.45}M_{0.85}S_2$
3.3	Quaternäre Chalkogenide
3.3.1	$CsCu_3M_2S_5\ldots\ldots\ldots 108$
3.3.2	CuPrOS
3.3.3	CuLa ₃ OS ₄
IV. Zusammenfassung und Ausblick	
V. Summa	ary and futuristic view
VI. Litera	164

i. Einleitung

1.1 Vorwort

Bereits seit Ende der vierziger Jahre sind Synthesen und Strukturaufklärungen von Sesquisulfiden der Selten-Erd-Elemente Gegenstand des Interesses der Festkörperforschung [1,2]. Aufgrund der Weiterentwicklung und damit Vervollkommnung der Röntgenstrukturanalyse in den folgenden Jahrzehnten werden zuverlässige kristallographische Daten über die Strukturtypen dieser Stoffklasse erhalten [4, 6, 103]. Die hier als Nebenprodukte erhaltenen Kristalle der Bruttoformel MS_{1,9} bzw. MS₂ sind im Unterschied zu den bereits beschriebenen Sesquisulfiden der Zusammensetzung M₂S₃ [35, 103] mit Ausnahme von LaS₂ [4, 36] bzw. La_{10,666}S_{15,999} [37] sowie CeS₂ [5, 6, 7] nicht veröffentlicht worden.

Ausgehend von Sulfiden der Zusammensetzung M2S3 wurden in den sechziger Jahren Versuche zur Synthese ternärer Sulfide unternommen [8, 9, 10, 114, 115]. Ziel war es, sowohl Verbindungen vom Typ AMS₂ (A = Alkalimetall-, M = Nebengruppenelementkationen) [28, 29, 70] als auch von demjenigen der Formel BM_2S_4 (B = Erdalkalimetall- [9], M = Nebengruppenelementkationen [10-13]) darzustellen. Von Verbindungen der einwertigen Nebengruppenelemente, also hauptsächlich der Münzmetalle, wurden als ternäre Sulfide im Jahre 1992 drei Silberlanthanoid-Chalkogenide der Bruttoformel AgMS₂ (M = Sm-Yb) beschrieben [8]. Es gab nur sehr wenige Daten über analoge kupferhaltige Verbindungen, die aber nicht aus Einkristallmessungen erhalten wurden, sondern lediglich auf röntgenographischen Pulverdaten beruhten, und deren Phasenbreite dazu noch stark variierte [31]. 1981 erschien die Veröffentlichung der Kristallstruktur über die quaternäre Verbindung eines Münzmetalles mit Lanthan der Zusammensetzung AgLaOS [13], gefolgt von einer Beschreibung der Kristallstruktur von CuLaS₂ im monoklinen A-Typ [14]. Vom Gold existieren lediglich ternäre Sulfide bzw. Selenide mit Metallen der Nebengruppen [15, 16] sowie der Alkalimetalle [17].

Ternäre Selten-Erd-Verbindungen des Goldes waren nicht bekannt, obwohl über Stoffe wie $A_2Au_4MS_4$ (A = Alkalimetall, M = zweiwertige Metallkationen der Hauptgruppenelemente) [15, 17] und auch AuCrS₂ [16] detailliert berichtet wurde. Von den wenigen veröffentlichten ternären Phasen des Kupfers fehlten oft zuverlässige Einkristallmessungen mit Angabe der kristallographischen Daten [19]. So war es naheliegend, an die Untersuchungen von *Lee, Belt* und *Wiegers* [8] anzuknüpfen, wobei der Schwerpunkt der hier beschriebenen Forschung auf Verbindungen des Kupfers gelegt wurde.

Während die Silicate, Borate und Phosphate sowie Fluoride [20, 21] der Lanthanide sich durch ausgeprägte Lumineszenzfähigkeit auszeichnen und industriell als Phosphore in Fluoreszenzlampen, Kathodenstrahlröhren und Lasermaterialien zum Einsatz kommen, sind die Cuprate genau wie ihre Analoga, die Argentate und Aurate der Selten-Erd-Metalle wie z. B. YBa₂Cu₃O₇ hochinteressante Materialien für die Supraleitertechnik [22, 24, 25]. Sie kommen industriell auch als magnetische Materialien [26, 123], als kationenleitende Festelektolyte [27, 103] sowie in der Halbleitertechnik zum Einsatz [28, 110, 111]. Zudem weisen die binären und ternären Sulfide der Selten-Erd-Elemente ungewöhnliche optische Eigenschaften, weshalb sie Eingang in die Riege der Infrarotfenster, Lichtwellenleiter [116] sowie der lumineszierenden [119, 121] und magneto-optischen [82] Materialien finden [128]. Ein Teil der vorliegenden Arbeit knüpft auch an frühere Versuche an, deren Ziel es war, eine Verbindung der Bruttoformel »HgNdS₂« zu synthetisieren [32]. Als einziges kristallines Produkt entstanden seinerzeit in fast quantitativer Ausbeute dunkle, achteckige Kristalle, deren strukturelle Aufklärung damals den Rahmen der Diplomarbeit gesprengt hätte. Durch weitere Diffraktometermessungen sowie Untersuchungen mittels Mikrosonde konnte nun die Struktur dieser Kristalle mit der Zusammensetzung NdS_{1.9} aufgeklärt werden. Weitere Verbindungen der Formel MS_{1.9} bzw. MS₂ (M = Pr, Nd, Gd, Dy) wurden dann gezielt synthetisiert.

Alle diese Umsetzungen wurden mit Hilfe eines Alkalihalogenids, meist Caesiumchlorid, als Flußmittel durchgeführt. Dieses verhielt sich jedoch nicht immer völlig inert, so daß als Nebenprodukte auch quaternäre Phasen der Formel $CsM_2Cu_3S_5$ (M = Dy, Er) entstanden. Ebenfalls machten sich schon geringe Spuren von Sauerstoff bemerkbar, da die Lanthanidkationen als »hart« im Sinne des *Pearson*-Konzeptes [33] einzustufen sind und daher durchweg oxophiles Verhalten zeigen [34]. Dies führte zu nicht uninteressanten Nebenprodukten wie CuPrOS oder CuLa₃OS₄.

So konnten in dieser Dissertation nicht nur die den Silberverbindungen analogen ternären Kupfer-Lanthanoid-Sulfide dargestellt und röntgenographisch untersucht, sondern auch völlig neuartige Verbindungen synthetisiert und anhand ihrer Kristallstruktur charakterisiert werden. Die im Folgenden beschriebenen Verbindungen entstammen hauptsächlich den Versuchen zur Darstellung ternärer bzw. quaternärer Sulfide aus Cu-M-S-Systemen.

1.2 Literaturübersicht

Bereits 1948 wurden umfangreiche Ergebnisse aus Synthesen und Strukturen von Sulfiden der Selten-Erd-Metalle von *Zachariasen* veröffentlicht. Er untersuchte intensiv Systeme der Zusammensetzung M_2S_3 (M = Ce–Nd, Ac–Np), Ce₃S₄ (kubisch I $\bar{4}3d$) sowie Selten-Erd-Sulfid-Oxide der Formel M_2O_2S (M = La, Ce; trigonal P $\bar{3}m1$) [1, 3]. Aufgrund der Weiterentwicklung und damit Vervollkommnung der Röntgenstrukturanalyse in den folgenden Jahrzehnten erhielt man zuverlässigere kristallographische Daten über die Strukturtypen der Lanthanoid-Sesquisulfide [2, 35, 103]. So wurde 1993 von *Schleid* detailliert über die Strukturen von Selten-Erd-Sesquisulfiden berichtet. Diese Verbindungen liegen in neun verschiedenen Modifikationen vor, welche vom monoklinen D-Typ des Ho₂S₃ (P2₁/m, Z = 6) bis zum kubischen C-Typ (I $\bar{4}3d$, Z= 5,333) reichen.

Strukturtyp	Selten-Erd-Element	Koordinationszahl
А-Тур	La, Ce, Nd, Sm–Gd	7/8
В-Тур	La	8
С-Тур	La-Tb, Ho-Lu, Y	8
D-Typ	Dy-Yb	7/6
Е-Тур	Tm-Lu	6
F-Typ	Er-Yb	6/7/8
Т-Тур	Tm	6
U-Typ	Y, Gd, Tb, Ho–Tm, Lu	7/8
Z-Typ	Sc	6

 Tab. 1: Strukturelle Übersicht über die Sesquisulfide der Selten-Erd-Elemente

Von den hier erhaltenen Verbindungen der Bruttoformel $MS_{1,9}$ bzw. MS_2 waren im Unterschied zu einigen bereits beschriebenen Sesquisulfiden der Zusammensetzung M_2S_3 lediglich von LaS_2 [36] Einkristalldaten veröffentlicht worden. Von Verbindungen der Zusammensetzung MS_2 (M = La-Nd) wurde aus Pulvermessungen die Symmetrie für M = La-Nd, Sm als kubisch angegeben, wobei die Gitterkonstanten Werte von a = 820 pm (La) bis 796 pm (Sm) einnehmen [53]. Die Disulfide der schwereren Selten-Erd-Elemente Eu, Gd und Dy sowie auch des Yttriums kristallisieren dagegen orthorhombisch in Pnma. Charakteristische Werte reichen z. B. für GdS₂ mit a = 783, b = 796 und c = 1023 pm bis zu YS₂, welches die Gitterkonstanten a = 771, b = 789 und c = 1017 pm besitzt. Erst später erschienen über LaS₂ [4] sowie CeS₂ [5, 6, 7] auch Einkristalldaten. Bei LaS₂ wurde eine Darstellung mittels Umsetzung von La₂S₃ mit Schwefel beschrieben. Die Raumgruppe wurde nun aber als Pnma angegeben, die Gitterkonstanten betragen a = 813, b = 1634 und c = 414 pm.

Vom Kupfer existieren ebenfalls eine Vielzahl von Sulfiden, von denen die meisten als natürlich vorkommende Mineralien bekannt sind. Die Bandbreite der Zusammensetzungen reicht vom stöchiometrischen Verhältnis 1:2 in CuS_2 bis zu 2:1 für Cu_2S .

So wurde schon 1946 in der damaligen UdSSR von *Belov* und *Butuzov* eine hexagonale Modifikation von Cu₂S veröffentlicht [39]. Die Raumgruppe wird als P6₃/mmc mit den Gitterkonstanten a = 389 und c = 667 pm beschrieben. Knapp zwanzig Jahre später, 1964, beschrieb *Janosi* die Struktur von Cu₂S als tetragonale Modifikation mit a = 400 und c = 1129 pm in der Raumgruppe P4₃2₁2 [40]. Die Angaben über weitere Daten basierten auf Pulvermessungen. Später war in der Zeitschrift für Kristallographie von 1979 das »low-chalcosite«, die Tieftemperaturform von Cu₂S, in der monoklinen Raumgruppe P2₁/c genauer dargestellt [38]. Die Gitterkonstanten sind mit a = 1524,6(4), b = 1188,4(2) und c = 1349,4(3) pm und $\beta = 116,35(1)^{\circ}$ angegeben. Hier ist das Kupferkation trigonal-planar von Schwefelanionen umgeben, welche das Raumgitter mittels Eckenverknüpfung aufbauen. Die Cu–S-Abstände sind mit Werten zwischen 221–289 pm sehr uneinheitlich.

Die Hochtemperaturform des Chalcosins, welche bei einer Temperatur T > 104° C vorliegt, bildet eine hexagonale Modifikation, bei der die Schwefelatome nahezu perfekt in einer hexagonal-dichtesten Packung angeordnet sind [41]. Die Symmetrie wird mit P6₃/mmc beschrieben, die Gitterkonstanten betragen a = 396,1(4) und c = 672,2(7) pm [42].

In einer Veröffentlichung von *Evans* aus dem Jahre 1979 wird auch die Struktur des Minerals Djurleit vorgestellt, welches als ein monoklines Kupfersulfid der Formel Cu_xS (x = 1,9375) vorliegt [42]. Die Daten sind mit a = 2689,7(7), b = 1574,5(3) und c = 1356,5(5) pm sowie β = 90,1(1)° in der Raumgruppe in P2₁/n angegeben. Auch hier variieren die Bindungsabstände mit 245–280 pm stark. Das Raumgitter wird von trigonal-planaren Cu–S-Einheiten sowie kupfer-zentrierten S²-Tetraedern

aufgebaut, wobei allerdings der Anteil der trigonal-planaren Baueinheiten in dieser Struktur überwiegt.

Auch erste Daten der Struktur des Digenits, eines weiteren natürlich vorkommenden Kupfersulfids der Zusammensetzung Cu₉S₅, welches auch mit der Formel Cu_{1,8}S beschrieben wird, wurden schon 1958 veröffentlicht [44]. Die Symmetrie wird als trigonal in der Raumgruppe R $\bar{3}$ m mit der Gitterkonstanten a = 392 und c = 4800 pm angegeben. Die Cu–S-Abstände variieren zwischen 224 und 277 pm. Durch die Vervollkommnung der röntgenographischen Methoden konnten später genauere Daten erhalten werden. So wurden 1991 von *Kashida* und *Yamamoto* [45] die Einkristalldiffraktometerdaten von Digenit veröffentlicht. Die Zusammensetzung wird ebenfalls als Cu_{1,8}S, jedoch in der Raumgruppe R3m angegeben, wobei jedoch außer der Gitterkonstanten a = 555,5(3) pm keine weiteren Zellparameter angegeben wurden. Die charakteristischen Baueinheiten dieser Elementarzelle sind ebenfalls trigonal-planare sowie tetraedrische kupfer-zentrierte Polyeder. Da jedoch die Kupferionenleitfähigkeit dieser Verbindung sehr hoch ist, liegen in dieser Veröffentlichung auch keine Daten über Cu–S-Abstände vor.

Auch von CuS, welches unter dem Namen Covellit bekannt ist, gab es schon in den dreißiger Jahren erste Untersuchungen [46]. Es folgten ab 1975 weitere Untersuchungen, auf Grund derer immer bessere Daten erhalten wurden [48, 49, 50]. Covellit kristallisiert bei Raumtemperatur in der hexagonalen Raumgruppe P6₃/mmc mit den Gitterkonstanten a = 379,17(8) und c = 1634,2(3) pm. Die Struktur des Covellits besteht aus zwei unterschiedlich kupfer-zentrierten Polyedern: Zum Einen existieren Tetraeder, welche untereinander eckenverknüpft sind, zum Anderen werden Kupferkationen trigonal-planar von den Schwefelanionen koordiniert. Diese sind ihrerseits mit den Tetraedern über jedes Schwefelanion, also über jede Ecke, verbunden. Die Bindungsabstände fallen mit 219–233 pm sehr kurz aus. In einer weiteren Form liegt CuS als orthorhombische Tieftemperaturmodifikation in der Raumgruppe Cmcm vor [50]. Es besitzt die Gitterkonstanten a = 379, b = 379 und c = 1631 pm. Die Koordinationsverhältnisse gleichen denen der Hochdruckmodifikation. Die Bindungsabstände liegen bei 217–233 pm.

Als weitere bedeutende sulfidische Verbindung des Kupfers ist noch CuS_2 bekannt. In der Zeitschrift American Mineralogist (1979) wird die Struktur von CuS_2 als kubisch in der Raumgruppe Pa3 mit a = 578,91(6) pm beschrieben [51]. Hier liegt das Kupfer sowohl als Cu^{*}- und auch als Cu²-Kation vor. Es existieren in dieser Struktur zwei Arten von Koordinationspolyedern. Zum Einen gibt es ein kupfer-zentriertes trigonales Antiprisma, welches für das Kupferkation eine Koordinationszahl von sechs bedingt. Zum Anderen liegen schwefel-zentrierte Tetraeder vor, welche drei Kupferatome und ein Schwefelatom als Liganden besitzen. Der Cu–S-Bindungsabstand beträgt dabei 245 pm.

Als weitere Verbindung dieser Reihe wurde 1970 das Mineral Anilit Cu₇S₄ von *Koto* und *Morimoto* beschrieben [47]. Es kristallisiert in der orthorhombischen Raumgruppe Pnma mit den Gitterkonstanten a = 789, b = 784 und c = 1101 pm. Die Struktur besteht aus kantenverknüpften kupfer-zentrierten Tetraedern, welche aber sehr stark verzerrt vorliegen, so daß das Zentralatom teilweise sogar in der Flächenebene liegt. Die Abweichungen der Winkel vom idealen Tetraederwinkel sind mit 86– 132° daher sehr groß. Folglich decken auch die Bindungsabstände im Polyeder 225 –346 pm ein weites Intervall ab.

Ausgehend von Sulfiden der Zusammensetzung M_2S_3 (M = Lanthanide) wurden ab den sechziger Jahren [29, 31, 119] auch Versuche zur Synthese ternärer Sulfide unternommen [115]. Besonders *Ballestracci* und *Bertaut* [29,31] gelang es, eine Vielzahl von Verbindungen des Typs BM_2S_4 (B = Mg–Ba, Ni, Co) darzustellen, wobei die Veröffentlichungen der Strukturen des Typs BM_2S_4 (B = Zn, Cd) [11–14, 19] sowie des FeYb₂S₄ [115] der französischen Arbeitsgruppen von Bedeutung sind.

1990 wurde von *Lemoine, Tomas, Vovan* und *Guittard* die Struktur von ZnM₂S₄ (M = Sc, Er–Lu) aufgeklärt [11]. ZnSc₂S₄ kristallisiert im kubischen Spinell-Typ, wogegen die Verbindungen der schwereren Homologen im Olivin-Typ (orthorhombisch, Pnma) vorliegen, wobei die Lanthanidatome in beiden Typen die Hälfte der Oktaederlücken, die Zinkatome hingegen ein Achtel der Tetraederlücken besetzen. So betragen die Bindungsabstände in der ZnTmS₄-Struktur für Tm1 – S 267,1(6) – 270,9(5) pm bzw. Tm2–S 268,4(8) – 274,4(6) und für Zn–S 229,4(9) – 238,8(9) pm, was natürlich eine Verzerrung der Koordinationspolyeder bedingt. Auch die Kristallstrukturen des homologen CdTm₂S₄ sowie von CdYb₂S₄ wurden hier vorgestellt. Eine andere Veröffentlichung beschrieb die Verbindung CaYb₂S₄, welche orthorhombisch in Pnma kristallisiert mit den Gitterkonstanten a = 1280,7(3), b = 383,6(2) und c = 1296,4(3) pm [9]. Das Calciumkation ist dabei siebenfach, das Ytterbiumkation sechsfach koordiniert. Die Abstände der Yb–S-Bindungen liegen bei 266,2(2) – 277,2(3) pm.

Vollebregt und *Plug* untersuchten darüber hinaus den thermischen Übergang der Tieftemperaturform der Verbindung CdHo₂S₄ (Spinell-Typ, a = 1116,7(8) pm) zur Hochtemperaturform (Defekt-Halit-Struktur, a = 572(3) pm) [54]. 1985 folgten weitere Experimente zur Synthese CdTm₂S₄ sowie CdYb₂S₄ (Olivin-Struktur) [12]. Die Hochtemperaturform (Spinell) wurde jetzt sehr genau in Fd $\bar{3}$ m mit a = 1105,8(3) für CdTm₂S₄ bzw. a = 1105,5(3) pm für CdYb₂S₄ beschrieben.

1992 wurden als erste ternäre Sulfide der Selten-Erd-Metalle mit den Münzmetallen etliche Silber-Lanthanoid-Chalkogenide der Bruttoformel AgMS₂ (M = Sm-Yb) beschrieben [8]. Einkristallmessungen konnten an AgGdS2 und AgHoS2 durchgeführt werden, von den AgMS₂-Verbindungen (M = Sm, Dy, Er, Yb) wurden nur Pulverdiffraktometerdaten genannt. Die Struktur von AgYbS2 wurde als kubischflächenzentriert beschrieben, wobei als a = 550,63(1) pm angegeben wurde. Die übrigen Verbindungen dagegen kristallisieren in der monoklinen Raumgruppe P21 mit a \approx b \approx 770 pm sowie c \approx 1200 pm und 90 $\leq \beta \leq$ 91°. Diese Struktur kann als eine Halit-Struktur betrachtet werden, deren kationische Atomlagen durch Silber und Lanthanidmetall in einer geordneten Weise aufgefüllt sind. Das Silberion besitzt in diesem Verband die hohe Koordinationszahl von sechs. Auch die Ag-S-Abstände variieren stark. Sie reichen von 241,8(7) – 382,3(8) pm. Das oktaedrisch koordinierte Lanthanidmetallion besitzt einheitlichere Werte, die von 273,3(8) - 280,2(5) pm reichen. 1981 erschien die Veröffentlichung der Kristallstruktur der quaternären Verbindung AgLaOS [13]. Diese Verbindung kristallisiert in der tetragonalen Raumgruppe P4/nmm. Die Gitterkonstanten sind a = 405,0(2) und c = 903,9(3) pm mit Z = 2 angegeben. Die Struktur wird aus alternierenden (La–O)- und (Ag–S)-Schichten gebildet. Das Lanthankation ist von je 4 Schwefelanionen und Sauerstoffanionen koordiniert, während das Ag⁺-Kation tetraedrisch von Schwefel umgeben ist. Die Ag-S-Bindungen sind mit Werten zwischen 267 und 405 pm sehr lang, ebenso wie die La-S-Abstände, welche bis zu 325,5(4) pm betragen.

Es gab sehr wenige Daten über analoge kupferhaltige Verbindungen, die aber nicht aus Einkristallmessungen erhalten wurden, sondern lediglich auf röntgenographischen Pulverdaten beruhten, und deren Phasenbreite dazu noch stark variierte [31]. 1981 erschien eine Veröffentlichung, welche die Verbindung CuLaS₂ beschrieb [14]. Die Darstellung erfolgte aus Cu₂S und La₂S₃ im Alkalimetallhalogenid-Flux. Die Verbindung wurde in der monoklinen Raumgruppe P2₁/b mit a = 664,6(2), b= 693,8(2) und c = 732,5(2) pm mit β = 98,73(2)° angegeben. Die Struktur dieser Verbindung basiert auf kupfer-Zentrierten Cu–S-Tetraedern, die durch Kantenverknüpfung Bänder ausbilden, die ihrerseits mittels der lanthan-zentrierten La–S-Polyedern zum Kristallgitter verbunden sind. Die Koordinationszahl beträgt dabei sieben, was im Verhältnis der üblichen Koordinationszahlen von Lanthan recht niedrig ist.

Von den ternären Phasen des Kupfers der Systeme Cu₂X–M₂X₃ (M = Lanthanid, X = S, Se) wurden von 1970 bis1980 die Pulverdaten dreier bekannter Strukturtypen beschrieben: A-CuMS₂ (M = La–Tb, monoklin, P2₁/c) [19, 72], B-CuMS₂ (M = Y, Dy–Lu, orthorhombisch, Pnma [62]) und C-CuScS₂ (trigonal, P3m1)[71]. Über die Verbindung CuSmS₂, welche mit der Raumgruppensymmetrie P2₁/c kristallisiert, erschienen 1984 Einkristalldaten aus einer sowjetischen Arbeit [72]. *Julien-Pouzol, Jaulmes* und *Guittard* veröffentlichten 1981 Einkristalldaten der Verbindung CuLaS₂, die in der Raumgruppe P2₁/b vorliegt. Die Gitterkonstanten sind mit a = 646,6(2), b = 693,8(2), c = 732,5(2) pm und β = 98,73(2)° angegeben. Das Lanthankation besitzt die Koordinationszahl sieben, das Kupferkation wird von den Schwefelanionen tetraedrisch umgeben. Die Bindungsabstände betragen für d(Cu–S) 233,7(5) – 253,7(5) pm und für d(La–S) 289,1(4) – 308,1(4) pm.

Dismukes und *Smith* vervollständigten diese Reihe mit der Verbindung CuScs₂ [71], die in der trigonalen Raumgruppe P3m1 kristallisiert. Die Gitterkonstanten betragen a = 373,3(3) und c = 609,8(1) pm. Die Struktur wird von einem Gerüst aus Schwefelanionen gebildet, die in Form der hexagonal dichtesten Packung angeordnet sind und somit die Kupferkationen tetraedrisch und die Scandiumkationen oktaedrisch koordinieren. Die Bindungsabstände der Cu–S-Bindungen sind extrem ungleich. So liegt der Wert in Richtung der c-Achse bei 236 pm, während er bei den anderen Bindungen im Tetraeder 221 pm beträgt. Die Sc–S-Abstände liegen bei 255 bzw. 266 pm.

Mit einer Verbindung der Zusammensetzung CuEu₂S₃ wurde 1986 auch eine Kristallstruktur vorgestellt, die gemischtvalentes Europium enthält [70]. Die Verbindung kristallisiert orthorhombisch in Pnam mit a = 1034,7(4), b = 1286,3(3) und c = 395,4(1) pm. Eu(III) wird von den Schwefelanionen in Form eines verzerrten Oktaeders koordiniert. Die Bindungsabstände betragen 275,1(4) - 279,3(4) pm. Eu(II) hingegen bildet mit seinen Schwefelliganden ein einfach-überkapptes trigonales Prisma, dessen Bindungsabstände mit 298,2(4) - 314,7(5) pm noch stärker variieren. Die Bindungslängen des Kupfertetraeders liegen dagegen mit 233,7(6) - 239,7(4) pm in dem für solche Systeme üblichen Rahmen.

Daneben wurde über trigonale Verbindungen des Formeltyps $Cu_{2-x}M_{(2+x)/3}S_2$ (M = Y, Tb–Lu) mit zum Teil erheblicher Phasenbreite ($0 \le x \le 0.667$) berichtet [89]. So wurde für M = Sc, Y, Gd–Yb homogene Phasen der trigonalen Raumgruppe P3 vorgestellt, deren Zusammensetzungen von $Cu_2M_{2/3}S_2$ bis $Cu_{4/3}M_{8/9}S_2$ reichen. Die Verbindung $Cu_2Er_{2/3}S_2$ wird 1990 gut beschrieben [89]. Die Substanz kristallisiert im *anti*-La₂O₃-Typ, jedoch in der Raumgruppe P3, wobei die Schwefelionen die Lanthanlagen und die Kupfer- sowie die Erbiumionen die Sauerstofflagen besetzen. Die strukturellen Leerstellen, die durch Stapelfehler senkrecht zur c-Achse bedingt sind, liegen auf der Erbium-Lage. Die Gitterkonstanten betragen a = 387,9(1) und c = 630,3(3) pm. Das Kupferkation ist verzerrt tetraedrisch koordiniert mit Bindungsabständen von 237,6(2) und 241,1(5) pm, das Erbiumkation liegt dagegen als regelmäßiges Oktaeder mit einer Bindungslänge von 272,3(2) pm vor.

1998 erschien die erste Veröffentlichung eines quaternären Sulfids der Zusammensetzung KCuGd₂S₄ [91]. Diese Verbindung liegt in der orthorhombischen Raumgruppe Cmcm mit a = 399,2(1), b = 1352,3(3) und c = 1380,2(3) pm vor. In dieser Struktur bilden kanten- und eckenverknüpfte GdS₆-Oktaeder und CuS₄-Tetraeder gewellte Schichten, die durch kantenverknüpfte GdS₆-Einheiten zu einer Kanalstruktur verbunden werden. In diesen Kanälen sind die Kaliumionen in achtfacher Koordination von Schwefelionen umgeben. Die Abstände sowohl der Cu–S- als auch der Gd–S-Bindungen sind mit Werten von d(Gd–S) 273 – 274 pm und d(Cu– S) von 234 – 237 pm sehr einheitlich.

II. EXPERIMENTELLER TEIL

2.1. Apparative Methoden

2.1.1 Argon-Glove-Box

Da Sauerstoff und Wasser die in dieser Arbeit aufgeführten Reaktionen erheblich stören, ist es notwendig, unter strengstem Ausschluß dieser beiden Stoffe zu arbeiten. Daher ist das Befüllen der Ampullen in einer Argon-Glove-Box vorzunehmen. In Abb. 1 wird eine solche Box schematisch dargestellt [55]. Sie besitzt eine Frontscheibe aus Plexiglas, in die Gummihandschuhe eingelassen sind, mit denen ein Arbeiten in der Box erst ermöglicht wird. Eine Argon-Umwälzpumpe und eine Regenerierungseinrichtung des Atmosphärengases sowie eine Überwachung des Partialdruckes (H₂O / O₂ : 0.1–1.0 ppm) mittels eines H₂O / O₂-Analyzers gewähren gleichbleibende ideale Bedingungen im Inneren der Box. Eine evakuierbare Schleuse ermöglicht einen raschen Austausch von Chemikalien bzw. Geräten. Im Inneren befinden sich benötigte Chemikalien sowie eine Waage. Luftempfindliche Chemikalien, vor allem Kupfer und die recht reaktiven Lanthanidmetalle werden daher in dieser Box aufbewahrt. Die im Trockenschrank während 2h bei 150°C getrockneten Reaktionsgefäße werden in die Schleuse gebracht, die dann 1h evakuiert wird. Dadurch wird der Ausschluß von Luft bzw. Wasser gewährleistet. Danach können die Gefäße von der Schleuse ins Innere der Glove-Box gebracht werden. Durch ein Fußpedal kann der Innendruck dieser Box leicht abgesenkt werden. Genauso können luftempfindliche Chemikalien wie Kupfer und die Lanthanidmetalle sicher vor Oxidation aufbewahrt werden.

2.1.2 Vakuum-Schutzgas-Apparatur

Nachdem die Ampullen unter Schutzgas bestückt und luftdicht mit Hilfe von sogenannten »Quick-Fits« verschlossen wurden, werden sie aus der Glove-Box ausgeschleust und anschließend an einer Vakuum-Schutzgas-Apparatur unter dynamischem Vakuum abgeschmolzen. Diese Apparatur ist ein mit mehreren Schliffen versehenes Rohrsystem, das mittels einer Drehschieberpumpe evakuiert ($p = 1-10^{-2}$ Torr) sowie je nach Bedarf mit gereinigtem Argon geflutet werden kann (Abb. 2).

Abb. 2: Vakuum-Schutzgas-Apparatur

2.1.3 Präparative Methoden

Als Ampullenmaterial hat sich Quarzglas bewährt, da es preiswert, leicht zu bearbeiten und chemisch einigermaßen inert ist. Erst bei hohen Temperaturen bilden sich Silicate als Nebenprodukte.

Metallampullen haben sich für die hier beschriebenen Synthesen als ungeeignet erwiesen, da das Ampullenmaterial mit Schwefel, der als Edukt stets vorhanden war, abreagiert und somit diesen aus der Reaktionsmischung komplett entfernt.

Mit Hilfe einer Knallgasflamme wird ein Quarzglasrohr mit ca. einem Zentimeter Durchmesser an einem Ende zugeschmolzen und dann in der Mitte solcherart verjüngt, daß sowohl eine Bestückung als auch das spätere Abschmelzen mittels eines Erdgasbrenners möglich ist. Die befüllten und abgeschmolzenen Ampullen werden in elektrischen Muffelöfen senkrecht platziert und auf Reaktionstemperatur gebracht.

Haben sich genügend große Einkristalle von ausreichend guter Qualität gebildet, sucht man einen geeigneten Kristall unter dem Mikroskop heraus und befestigt ihn in einer Glaskapillare. Falls der Kristall instabil gegen Wasser oder Luft sein sollte, muß dies unter Schutzgasatmosphäre in einer geeigneten Glove-Box geschehen. Dann wird er röntgenographischen Strukturaufklärungsmethoden unterzogen.

Substanz	Hersteller	Reinheit
Lanthanidmetalle	Heraeus, Karlsruhe	99,9%
Schwefel	Heraeus, Karlsruhe	99,999 %
Alkalimetallhalogenide	Merck, Darmstadt	p.a.
Kupfer	Aldrich, Steinheim	p.a.
Quecksilbersulfid	Aldrich, Steinheim	p.a.

Tab. 2:	Kommerzielle	Chemikalien
---------	--------------	-------------

2.2. Strukturaufklärung

2.2.1 Röntgenographische Methoden

Man unterscheidet bei Röntgenbeugungsmethoden zwischen Pulver- und Einkristallverfahren (siehe Kapitel 2.2.2 sowie 2.2.3). Das Ziel einer röntgenographischen Untersuchung ist es, die Metrik und Symmetrie der Elementarzelle sowie die Lage und Symmetrie der Atome im Kristall zu bestimmen.

Dies ist möglich, weil die Wellenlänge von Röntgenstrahlung (MoK_{α} - bzw. Cu K_{α} -Strahlung, $\lambda = 71$ bzw. 154 pm) größenordnungsmäßig im Bereich der interatomaren Abstände liegt (100-500 pm). Das Kristallgitter beugt die einfallende Röntgenstrahlung wie ein dreidimensionales optisches Gitter. Die Geometrie der Beugung an einer Netzebenenschar hkl entspricht der Reflexion derjenigen eines Lichtstrahls an einem Spiegel. Deshalb werden auch die an einem Kristallgitter gebeugten Röntgenstrahlen »Reflexe« genannt. Dies wird durch die *Bragg*'sche Gleichung beschrieben:

 $n\cdot\lambda=2\cdot d_{\textbf{hkl}}\cdot sin\theta_{\textbf{hkl}}$

Die Lage der Reflexe hängt allein von den Gitterkonstanten ab, die Lage und Art der Ionen in der Kristallstruktur bestimmen die Intensitäten. Dadurch können aus Lage und Intensität der Röntgenreflexe Kristallstrukturen ermittelt werden [56, 57].

2.2.2 Pulverdiffraktometrie

Abb. 3: Pulverdiffraktometer

Da es nicht immer gelingt, einen Einkristall ausreichender Qualität zu erhalten, kann man zur ersten Identifizierung einer Substanz (»fingerprint«) und zum Erkennen von Verunreinigungen das Pulververfahren einsetzen (Abb. 3). Wie der Name schon sagt, genügt hier ein feines Kristallpulver. Die Filmmethoden der Pulveruntersuchungen, wie z.B. *Guinier-* oder *Debye-Scherrer*-Aufnahmen sind heutzutage nur noch wenig gebräuchlich und wurden auch im Rahmen dieser Arbeit nicht verwendet.

Bei einem Pulverdiffraktogramm wird die gebeugte Strahlung mit einem Szintillationszähler oder einem Proportionalzählrohr registriert. Diese Methode hat den Vorteil, daß die registrierten Intensitäten direkt an einen Computer weitergegeben werden können, der die empfangenen Daten mittels einer entsprechenden Software auswertet [59]. So werden sowohl Reflexlagen wie auch Reflexintensitäten genauer ermittelt als bei Filmmethoden. Die Indizierung einer Pulveraufnahme ist nicht immer eindeutig möglich. Wenn die Kristallstruktur einer Verbindung jedoch bekannt ist, lassen sich mit Hilfe einer Pulveraufnahme die Gitterkonstanten wesentlich genauer bestimmen als aus Einkristallmessungen [58].

2.2.3 Einkristallverfahren

Das Pulververfahren weist zur Bestimmung einer Struktur gegenüber dem Einkristallverfahren erhebliche Nachteile auf: Die räumliche Information fehlt vollständig, außerdem treten Linienkoinzidenzen ungleichwertiger Reflexe auf. Beides zusammen erschwert die Indizierung und die Intensitätsmessung.

Bei den Einkristallverfahren kann die Raumgruppe in den meisten Fällen zweifelsfrei bestimmt werden, wobei die Bestimmung des Symmetriezentrums das einzige Problem ist. Auch die Lösung der Struktur gelingt leichter als bei Pulvern.

Die Voraussetzung für alle Einkristall-Verfahren ist, daß man einen Kristall von ausreichender Qualität und Größe zur Verfügung hat.

2.2.3.1 Weissenberg-Verfahren

Abb. 4: Schema einer Drehkristallaufnahme

Nachdem der Kristall in eine Kapillare gebracht und dort befestigt wurde, wird diese auf einem Goniometerkopf solcherart auf die *Weissenberg*-Kamera (Abb. 5) gebracht, daß die Kapillare in etwa in der horizontalen Drehachse des Goniometers liegt (normal-beam-Verfahren). Der Röntgenstrahl trifft senkrecht zur Drehachse

Abb. 5: Weissenberg-Goniometer (schematische Darstellung, Quer- und Längsschnitt)

auf den Kristall. Mit Hilfe von Justieraufnahmen wird der Kristall so ausgerichtet, daß eine Ebene des reziproken Gitters senkrecht zur Drehachse steht (Abb. 4). Der Kristall wird also um eine reale Achse gedreht, da immer eine Ebene des reziproken Gitters senkrecht auf einer realen Achse steht. Nach dieser Justierung werden bei den nun folgenden eigentlichen *Weissenberg*-Aufnahmen mit Hilfe zylindrischer Blenden alle Schichtlinien bis auf die gewünschte ausgeblendet [56].

Außerdem ist die Drehung des Kristalls mit einer Verschiebung des Films gekoppelt. Zur Aufnahme höherer Schichtlinien wird das Goniometer gekippt, so daß Drehachse und Röntgenstrahl keinen rechten Winkel mehr bilden (equi-inclination-Verfahren). Beim *Weissenberg*-Verfahren entsteht stets ein verzerrtes Abbild der Reflexe einer reziproken Ebene. Mit Hilfe des sogenannten *»Buerger*-Dreiecks« und von Polarkoordinatenpapier läßt sich diese Darstellung entzerren. Man erhält auf diese Weise zwei reziproke Achsen und den von ihnen eingeschlossenen Winkel, außerdem die Symmetrie dieser reziproken Ebene. Aus den systematischen Auslöschungen erhält man weitere Symmetrieinformationen.

2.2.3.2 Das Buerger-Präzessionsverfahren

Abb. 6: Buerger-Goniometer (stark vereinfachte Abbildung)

Das *Buerger*-Präzessionsverfahren, ebenfalls eine Einkristall-Filmmethode, liefert im Unterschied zur *Weissenberg*-Aufnahme unverzerrte Abbildungen der reziproken Gitterebenen [56]. Dadurch kann man eine *Buerger*-Filmaufnahme direkt auswerten, d. h. die Umzeichnung der Röntgenaufnahme mittels *Buerger*-Dreieck und Polarkoordinatenpapier entfällt.

Bei diesem Verfahren wird eine reziproke Gitterebene aufgenommen, welche in der Grundstellung des Instruments parallel zur Drehachse des Goniometerkopfes und senkrecht zum Primärstrahl steht. Dazu ist es notwendig, eine reale Achse des Kristalls in Richtung des Röntgenstrahls zu justieren, d. h. senkrecht zur Drehachse des

Goniometerkopfes. Bei Kristallen mit gut ausgebildeten Flächen kann man dazu den Kristall lichtoptisch vorjustieren. Daran schließt sich dann die röntgenographische Feinjustierung an. Bei nadelförmigen Kristallen, womöglich noch mit nichtorthogonalem Kristallsystem kann das Auffinden einer Achse erhebliche Probleme bereiten, da ein solcher Kristallhabitus keine lichtoptische Vorjustierung ermöglicht. Will man jedoch einen Kristall untersuchen, welcher den Habitus einer Platte hat (wie das bei den in dieser Abhandlung beschriebenen Verbindungen meist der Fall war), kann man die Reflektion des sichtbaren Lichts zur Vorjustierung benützen. Im letzteren Fall kann die röntgenographische Justierung des Kristalls beim Buerger-Präzessionsverfahren wesentlich schneller zu bewerkstelligen sein als beim Weissenberg-Verfahren. Im Gegensatz zum Weissenberg-Verfahren wird der Kristall beim Buerger-Verfahren nicht um die Achse des Goniometerkopfes gedreht, sondern während der Aufnahme in einer definierten azimutalen Stellung festgehalten (Abb. 6). Vor Beginn der Aufnahme wird die justierte Kristallachse um einen Winkel u aus der Strahlrichtung heraus gedreht. Während der Aufnahme beschreibt diese Achse eine Präzessionsbewegung mit Öffnungswinkel 2µ0 um die Primärstrahlrichtung.

Der Film wird einer definierten feststehenden Entfernung zum Kristall (60 mm) parallel zur reziproken Gitterebene geführt, so daß die Normale zur Filmebene die gleiche Präzessionsbewegung um den einfallenden Röntgenstrahl beschreibt wie die Normale der reziproken Gitterebene. Jede der beiden Normalen bewegt sich folglich auf einem Kegelmantel um den einfallenden Röntgenstrahl. Man bezeichnet μ_0 als den Präzessionswinkel.

Die erwünschte Schichtlinie wird analog zum *Weissenberg*-Verfahren mittels einer (hier allerdings kreisförmigen) Blende ausgewählt. Auf diese Weise erhält man die unverzerrte Abbildung einer *Buerger*-Präzessionsaufnahme.

Da sowohl bei der *Weissenberg*-Methode als auch beim *Buerger*-Präzessionsverfahren Intensitätsmessungen nur über mühsame Photometermessungen möglich sind, werden heutzutage diese Daten mit computergesteuerten Diffraktometern gewonnen.

2.2.3.3 Einkristalldiffraktometrie

Abb. 7: IPDS-Diffraktometer (schematisch)

Auch wenn mit Hilfe der soeben vorgestellten Filmmethoden die Elementarzelle und die *Laue*-Gruppe eines Kristalls zweifelsfrei bestimmt werden kann, hat ein Diffraktometer mit Zählrohr oder Flächendetektoren den Vorteil, die Reflexintensitäten wesentlich genauer und schneller ermitteln zu können. Bei den Einkristalldiffraktometern unterscheidet man zwei Gruppen: Zum Einen ein nach dem Prinzip der *Euler*-Wiege konstruiertes Diffraktometer, wie z. B. das sogenannte Vierkreisdiffraktometer, zum Anderen das \varkappa -Achsen-Diffraktometer, das ebenfalls vier Achsen besitzt, bei dem aber eine Achse (\varkappa) schräg steht. Die Datensätze für die vorliegende Abhandlung wurden mit einem solchen Einachsdiffraktometer mit Flächendetektor, genannt IPDS (»imaging plate diffraction system«) gemessen (siehe Abb. 7).

Das bedeutet, daß der zu vermessende Kristall während der Messung nur um eine Achse oszilliert, die aus Gründen der Gewinnung von Informationen nicht mit einer realen Kristallachse identisch sein sollte (Oszillationswinkel $0,5-1,0^{\circ}$). Das Beugungsmuster wird auf einer Platte abgebildet, die mit Eu²⁺-dotiertem BaFCl beschichtet ist. Ein solcher Detektor ist wesentlich empfindlicher als die z. B. bei Vierkreisdiffraktometern häufig verwendeten Zählrohre, weshalb hier deutlich kleinere Kristalle vermessen werden können.

Die Reflexintensitäten werden dann mit einem LASER-Strahl ausgelesen und anschließend mit einer starken Lichtquelle gelöscht. Der Meßablauf wird mit dem daran anschließenden Oszillationsintervall wiederholt. Nach ca. 200–400 solcher Aufnahmen sind genügend Informationen für eine Strukturlösung vorhanden.

Ein großer Nachteil bei diesem Verfahren ist, daß keine Möglichkeit zu einer empirischen Absorptionskorrektur besteht, was vor allem bei Kristallen mit stark absorbierenden Elementen wie den Lanthaniden Probleme verursacht. Dieser Nachteil kann aber durch eine Absorptionskorrektur mittels des Programms X-SHAPE [60] kompensiert werden, vorausgesetzt, es stehen genügend Reflexe zur Verfügung. Dieses Programm nähert die mögliche Gestalt des Kristalls auf der Grundlage äquivalenter Reflexe bei vorgegebener Raumgruppe iterativ an. Basierend auf diesem möglichen Habitus werden im nächsten Schritt die Intensitäten aller Reflexe korrigiert.

2.3 Strukturlösung und -verfeinerung

Aus den vorhandenen Datensätzen, die mittels Diffraktometer erhalten werden, wie Reflexintensitäten, Kristallsystem und Raumgruppe, ist nun die Lage der Atome in der Elementarzelle zu ermitteln, also ein Strukturmodell zu erstellen. Mittels der Computerprogramme SHELXS-86 [61] bzw. SHELXS-93 [62] kann man Lösungsansätze entweder über »Patterson-Synthese« oder mit »Direkten Methoden«, die im Rahmen dieser Arbeit bevorzugt verwendet wurden, erhalten. In beiden Fällen wird mittels Fourier-Transformation aus den Daten des IPDS eine Elektronendichtefunktion ermittelt, deren Maxima den im Kristallgitter enthaltenen Elementen entsprechen. Wegen des Phasenproblems lassen sich im allgemeinen so nur die Lagen der Schweratome ermitteln. Dieses anfängliche Modell wird mittels SHELXL-93 bzw. SHELXL-97 [63] verfeinert und eine Differenz-Fourier-Synthese erstellt, aus der sich die restlichen Atomlagen ermitteln lassen. Das nun vollständige Strukturmodell wird durch weitere Verfeinerung von Atomlagen und zunächst isotropen, später auch anisotropen Temperaturfaktoren nach der Methode der kleinsten Fehlerquadrate optimiert. Um die Qualität der Daten beurteilen zu können, werden mit den Programmen SHELX-93 bzw. SHELX-97 »Residual«oder R-Werte für R_{int}, der eine Abschätzung für die Übereinstimmung symmetrieäquivalenter Reflexe liefert, und R_g, der eine Aussage über das durchschnittliche Verhältnis von Intensität zu Standardabweichung der Reflexe macht, berechnet. Diese sind wie folgt definiert:

$$R_{int} = \frac{\sum_{i=1}^{n} |F_{O}^{2} - \overline{F_{O}^{2}}|}{\sum_{i=1}^{n} F_{O}^{2}}$$

mit n: Zahl der gemessenen Reflexe

F₀²: beobachtetes Quadrat der Strukturamplitude

 $\overline{F_0^2}$: aus symmetrieäquivalenten Reflexen gemitteltes Quadrat der Strukturamplitude und

$$\mathbf{R}_{\sigma} = \frac{\sum_{i=1}^{n} \sigma(\mathbf{F}_{\mathbf{O}}^{2})}{\sum_{i=1}^{n} \mathbf{F}_{\mathbf{O}}^{2}}$$

mit $\sigma(F_0^2)$: Standardabweichung der Strukturfaktoren

wobei σ = Standardabweichung, die sich berechnet nach

$$N_n = N_b - N_u$$

mit N_n = Netto-Intensität des Reflexes (ohne Untergrund) N_b = Brutto-Intensität des Reflexes (mit Untergrund) N_u = Untergrund-Intensität

$$\sigma(\mathbf{N_n}) = \sqrt{\mathbf{N_b} + \mathbf{N_u}}$$

Über die Übereinstimmung von Datensatz und Strukturmodell geben verschiedene Gütefaktoren Auskunft. Der von SHELXL-93 bzw. SHELXL-97 direkt minimierte ist wR₂, der wie folgt definiert ist:

wR₂ =
$$\sqrt{\frac{\sum_{i=1}^{n} w(F_{0}^{2} - F_{C}^{2})^{2}}{\sum_{i=1}^{n} w(F_{0}^{2})^{2}}}$$

mit F_c²: aus dem Strukturmodell berechnetes Quadrat der Strukturamplitude,

w: Wichtungsfaktor, wobei er definiert ist als

$$w = \frac{1}{\sigma^2 (F_0^2) + (aP)^2 - bP}$$

mit $P = 1/3 (F_0^2 + 2F_c^2)$ sowie a und b als aus der Verfeinerung ermittelte Größen, und somit die einzelnen Reflexe nach den Quadraten ihrer Standardabweichung wichtet. Daneben wird in dieser Arbeit der konventionelle R-Wert (R₁) angegeben, der als

$$\mathbf{R_1} = \frac{\sum\limits_{i=1}^{n} \left\| \mathbf{F_0} \right\| - \left| \mathbf{F_C} \right\|}{\sum\limits_{i=1}^{n} \left| \mathbf{F_0} \right|}$$

definiert ist und nicht auf den Quadraten der Strukturfaktoren, sondern auf deren Beträgen beruht. Ein weiteres Qualitätsmerkmal für das Strukturmodell ist der sogenannte »Goodness of fit«, abgekürzt GooF:

GooF = S =
$$\sqrt{\frac{\sum_{i=1}^{n} w(F_0^2 - F_c^2)^2}{n - p}}$$

mit n als Zahl der Reflexe und p als Zahl der verfeinerten Parameter. Dieser unterscheidet sich von allen anderen Werten dadurch, daß sein optimaler Wert 1 ist, während alle anderen 0 als idealen Wert aufweisen. Verwendete Geräte und Computerprogramme

Tab. 3: Verwendete Geräte

Gerätetyp	Modell	Hersteller
Argon-Glove-Box	Labmaster MB 150B-G-I	Braun
Mikroskop	SZ 40	Olympus
Einkristalldiffraktometer	IPDS	Stoe
Pulverdiffraktometer	STADIP	Stoe
Weissenberg-Kamera	WB-Goniometer 100	Huber
Buerger-Kamera	AED2-Goniometer	Stoe

Tab. 4: Verwendete Computerprogramme und deren Funktion

Proramm	Funktion
Stoe Visual X ^{pow} [59]	Programmpaket zur Auswertung und Simulation
	von Pulverdiffraktogrammen
SHELXS-86 [61]	Programm zur Lösung von Kristallstrukturen aus
	Röntgen-Beugungsdaten mittels Patterson-Synthese
	oder direkten Methoden
SHELXL-93 [62]	Programm zur Verfeinerung von Kristallstrukturen
SHELX-97 [63]	Weiterentwicklung von SHELXL-93 und SHELXS-86
XRED [64]	Programm zur Raumgruppenbestimmung sowie zur
	numerischen Absorptionskorrektur
X-SHAPE [65]	Programm zur Berechnung eines möglichen Kristall-
	habitus mittels symmetrieäquivalenter Reflexe
Diamonds 2 [66]	Programm zur graphischen Darstellung von
	Kristallstrukturen
MAPLE 4.0 [67]	Programm zur Berechnung von Teilchenabständen
	und Bindungswinkeln aus Strukturdaten

I. SPEZIELLER TEIL

3.1 Binäre Sulfide

Während die Sesquisulfide der Lanthanide vom A-Typ formal ein Schichtgitter ausbilden, das aus überkappt trigonal-prismatischen Koordinationspolyedern des Lanthanidmetalls mit Schwefel aufgebaut wird, herrschen bei den Lanthanidsulfiden vom MS₂- bzw. MS_{1.9}-Typ andere Bindungsverhältnisse vor. Obwohl MS₂ in derselben Raumgruppe wie M_2S_3 kristallisiert (vgl. A-Nd₂S₃: Pnma, a = 743,97(5), b = 402,78(3), c = 1551,96(9), Z = 4 [71]), liegt dennoch ein völlig anderes Aufbauprinzip zugrunde (Tab. 5, 15+16). So weist die Struktur der Disulfide wesentlich mehr Gemeinsamkeiten mit derjenigen der MS_{1,2}-Phasen (tetragonal, P4₂/n) auf. Die charakteristische Baueinheiten sowohl von MS1,9 wie auch von MS2 setzt sich aus einer alternierenden Folge zweier kristallographisch unterschiedlicher Schichten zusammen. Eine Doppelschicht aus ecken- und kantenverknüpften M-S-Polyedern in Form von einfach überkappten quadratischen Antiprismen baut alternierend mit einer Schicht, welche ausschließlich aus Sulfidanionen gebildet wird, das Kristallgitter auf (Abb. 10+11 bzw. Abb. 18). Diese Sulfid-Anionenschicht besteht aus Disulfid-Einheiten, welche gleichzeitig zur Koordinationsumgebung des Lanthanidkations gehören und dadurch die Schichten zum Raumgitter verbinden (Abb. 13+19). Daraus resultiert für einen Teil dieser Schwefelanionen eine fünffache Koordination (Abb. 9+17).

3.1.1 $MS_2 (M = La - Pr)$

Darstellung von MS₂ (M = La-Pr)

Bei Versuchen zur Darstellung von CuMS₂ aus den Elementen im CsCl-Flux konnte bei einer Reaktionstemperatur von 700°C als Nebenprodukt MS₂ (orthorhombisch, Pnma) isoliert werden [14, 72, 73]. Dabei wurden Lanthanidmetall mit Kupfer und Schwefel im molaren Verhältnis Cu:M:S = 1:1:2 eingesetzt. Als Flußmittel diente ein starker Überschuß an CsCl. Auch bei den Umsetzungen von Kupfer, Lanthanidmetall und Schwefel im CsCl-Flux bei 700–1000°C entstand innerhalb von sieben Tagen als Nebenprodukt MS₂, das in Form plättchenförmiger, schwarzer, hydrolyseunempfindlicher Kristalle anfiel.

$$M + 2 S \longrightarrow MS_2 (M = La - Pr)$$

Kristallstruktur von MS₂

Die Elementarzelle von MS₂ (orthorhombisch, Pnma, Z = 8) ($\equiv (M^{3+})_8([(S_2)^{2-}]_4)(S^{2-})_8$ pro Elementarzelle) enthält [MS₉]¹¹⁻-Einheiten, bei denen die Sulfidanionen das Metallkation in Form eines einfach überkappten quadratischen Antiprismas koordinieren (Abb. 12).

Durch die Kondensation dieser Polyeder in Richtung [010] über deren Kanten entstehen Einheiten der Zusammensetzung ${}^{2}_{*}\{(M_{2/1}S_{16/4})^{2^{-}}\}$. Durch die weitere Verknüpfung in Richtung [001] über deren Kanten entsteht eine Doppelschicht der Zusammensetzung ${}^{2}_{*}\{(M_{8}S_{8})^{8^{+}}\}$ (Abb. 10, 12). Diese sind in alternierender Folge mit einer anionischen Schicht angeordnet, welche ausschließlich von $(S_{2})^{2^{-}}$ -Einheiten gebildet wird (Abb. 11).

Abb. 9: Koordinationspolyeder mit Schwefelanion $([S_2]^{2-})$ als Zentralion in MS₂

Diese bilden ein fischgrätartiges Muster parallel (010) und verknüpfen in Richtung [010] die lanthanid-zentrierte Polyederschicht. Somit wird die dreidimensionale Vernetzung zum Raumgitter sowie der Ladungsausgleich gewährleistet. Daraus resultiert für die Schwefelionen dieser Disulfideinheiten eine fünfbindige Koordination (Abb. 9).

Die Schwefelatome besetzen folglich drei kristallographisch unterschiedliche Lagen. Diejenigen, welche die Lage 4c besetzen, sind vierfach koordiniert, während

Abb. 10: Schicht der lanthanid-zentrierten Schwefelpolyeder

Abb. 11: Blick längs [010] auf die Disulfidschicht der MS₂-Struktur

die Anionen, welche die Lage 8d einnehmen, eine Fünffachkoordination ausbilden, da sie über die Disulfidbrücken ($d(S1-S2) \approx 211 \text{ pm}$) auch untereinander verbunden sind.

Dadurch wird eine fortlaufende Kette aus Disulfideinheiten gebildet, mittels deren die Lanthanidkationen μ^2 -verbrückt werden. Die Bindungslängen überstreichen mit 280–320pm ein sehr weites Intervall (Tab. 13), und folglich weichen auch die Winkel der Metall-Schwefel-Bindungen vom Idealwert des quadratischen Antiprismas stark ab (Tab. 14).

M³⁺

Abb. 12: Kristallstruktur von MS2 mit Blick längs [001]

Abb. 13: Blick auf die M–S-Schicht der MS₂-Struktur längs [010]

	La	Ce	Pr	
Kristallsystem	orthorhombisch			
Raumgruppe	Pnr	na (Nr. 62)		
Gitterkonstanten	a = 813,98(5)	a = 806,76(5)	a = 804,38(5)	
(l/pm)	b = 1637,85(9)	b = 1621,64(9)	b = 1616,06(9)	
	c = 414,36(3)	c = 409,50(3)	c = 407,34(3)	
Zahl der Formel-		8		
einheiten (Z)				
Berechnete Dichte				
$(D_x/g \cdot cm^{-3})$	4,882	5,064	5,144	
Molares Volumen	41,583	40,328	39,859	
$(V_m/cm^3 \cdot mol^{-1})$				
F(000)	712	720	728	
Meßbereich (Θ_{max}/grd)	32,8	27,5	32,8	
	$-12 \leq h \leq 12$	$-10 \le h \le 10$	$-12 \leq h \leq 12$	
	$-24 \leq k \leq 24$	$-21 \leq k \leq 21$	$-24 \leq k \leq 24$	
	$-6 \le l \le 6$	$-5 \le l \le 5$	$-5 \le l \le 5$	
gemessene Reflexe	8045	9378	7668	
davon symmetrie-	1056	635	973	
unabhängig				
µ/mm ⁻¹	16,60	18,16	19,59	
Absorptionskorrektur	X·	SHAPE		
R _{int}	0,074	0,049	0,071	
R _σ	0,049	0,017	0,040	
Strukturverfeinerung	SH	ELXL-97		
Extinktionskoeffizient	0,0033(2)	0,0046(3)	0,0030(3)	
R ₁	0,058	0,026	0,050	
wR ₂	0,053	0,064	0,071	
GooF	0,870	1,083	0,918	

Tab. 5: Kristallographische Daten von MS_2 (M = La, Ce, Pr) [32]

Atom	Lage	x/a	y/b	z/c
La	8d	0,12919(4)	0,11187(2)	0,21918(6)
S1	4c	0,3920(3)	1/4	0,1421(4)
S2	4c	0,0991(3)	1/4	0,6650(4)
S3	8d	0,3748(2)	0,06741(6)	0,7399(4)

Tab. 6: Lageparameter von LaS₂

Tab. 7: Lageparameter von CeS₂

Atom	Lage	x/a	y/b	z/c
Ce	8d	0,12901(3)	0,11176(2)	0,22130(8)
S1	4c	0,3920(3)	1/4	0,1475(5)
S2	4c	0,1001(3)	1/4	0,6668(5)
S3	8d	0,3749(2)	0,06726(9)	0,7404(4)

Tab. 8: Lageparameter von PrS₂

Atom	Lage	x/a	y/b	z/c
Pr	8d	0,12905(4)	0,11180(2)	0,21954(7)
S1	4c	0,3924(2)	1/4	0,1472(5)
S2	4c	0,1010(2)	1/4	0,6660(5)
S3	8d	0,3749(2)	0,06696(8)	0,7399(4)

Atom	U11	U22	U33	U ₂₃	U13	U12	
La	80(1)	84(1)	104(1)	-7(1)	0(1)	2(2)	
S 1	120(9)	86(7)	146(7)	0	2(6)	0	
S2	121(9)	102(7)	119(7)	0	3(6)	0	
S 3	91(4)	91(4)	119(4)	6(4)	15(4)	9(7)	

Tab. 9: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm²) von LaS₂

Tab. 10: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) von CeS₂

Atom	U11	U22	U33	U23	U13	U12	
Се	97(2)	91(2)	93(2)	-8(1)	-2(1)	2(1)	
S 1	144(8)	138(9)	151(9)	0	-13(7)	0	
S2	146(8)	145(9)	143(9)	0	6(7)	0	
S3	92(7)	93(6)	97(7)	-7(4)	15(4)	2(4)	

Tab. 11: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) von PrS_2

Atom	U11	U22	U33	U ₂₃	U13	U12	
Pr	49(2)	92(2)	76(2)	-9(1)	-3(1)	4(1)	
S1	38(7)	85(7)	80(9)	0	4(6)	0	
S2	44(7)	94(8)	68(9)	0	-1(6)	0	
S 3	51(5)	106(5)	80(6)	-9(4)	8(4)	1(5)	

Tab. 12: Motive der gegenseitigen Zuordnung in den Disulfiden MS₂

	S1	S2	S3	CN	
М	2/4	2/4	5/5	9	
CN	4	4	5		

LaS ₂		CeS ₂		PrS ₂	
Bindung	d/pm	Bindung	d/pm	Bindung	d/pm
La-S1	302,9	Ce-S1	299,5	Pr-S1	298,4
-S1'	313,0	-S1'	310,1	-S1'	309,2
-S2	293,1	-\$2	290,0	-S2	288,9
-S2'	323,3	-S2'	319,9	-S2'	318,1
-\$3	290,5	-\$3	288,1	-\$3	286,5
-\$3'	291,1	-\$3'	288,7	-\$3'	287,3
-\$3''	293,8	-\$3"	290,5	-S3''	289,0
-\$3'''	303,0	-\$3'''	299,6	-S3'''	298,8
-\$3''''	313,7	-\$3''''	309,5	-S3''''	309,1
S1-S2	211,2	S1-S2	211,6	S1-S2	210,8

Tab. 13: Bindungsabstände in den Disulfiden MS₂ (M = La, Ce, Pr)

Tab. 14: Ausgesuchte Bindungswinkel in den Disulfiden MS₂ (M = La, Ce, Pr)

Winkel	$M = La: \ll/grd$	$M = Ce: \measuredangle/grd$	$M = Pr: \ll/grd$
S1-M-S2'	64,1	63,6	63,8
S1'-M-S2'	58,2	58,3	58,3
S3-M-S3'	88,7	88,8	89,0
S3-M-S3'''	151,2	151,3	151,0
S3-M-S1	81,8	81,4	81,6
S3'-M-S2	132,9	132,7	132,6
S3'-M-S3'''	88,4	88,2	88,0
S3''-M-S3'''	75,3	75,4	75,2
S3''-M-S3''''	75,9	75,0	74,8
S3''-M-S1'	137,2	137,1	137,1
S3''''-M-S2'	128,3	128,3	128,5

3.1.2 $M_{10}S_{19}$ (M = La – Gd)

Darstellung von M₁₀S₁₉

Bei der Umsetzung von äquimolaren Mengen an Lanthanidmetall mit Schwefel und Quecksilbersulfid in einem Überschuß von CsCl als Flußmittel entstehen in evakuierten Quarzglasampullen bei einer Reaktionstemperatur von 700°C in fast quantitativer Ausbeute dunkle, metallisch glänzende, achteckige Kristalle von MS_{1,9} (tetragonal, P4₂/n) [29]. Lange Reaktionszeiten von bis zu 21 Tagen begünstigen diese Reaktion. Die Umsetzung verläuft gemäß der Gleichung:

 $15 \text{ HgS} + 10 \text{ M} + 4 \text{ S} \longrightarrow 15 \text{ Hg} + M_{10}S_{19}$

Kristallstruktur der Polysulfide M₁₀S₁₉

Ähnlich wie für MS₂ liegen in der Struktur von M₁₀S₁₉ (Abb. 20) (\equiv (M₂₀(S²⁻)₂₂([S₂]²⁻)₈ pro Elementarzelle) [MS₉]¹¹⁻- sowie [MS₈]¹³⁻-Einheiten vor. Zum Einen wird M³⁺ von den Sulfidionen in Form eines einfach überkappten quadratischen Antiprismas (CN = 9) koordiniert, welches zwei Disulfideinheiten enthält, deren S–S-Bindung zwei der Kanten des Polyeders bilden (Abb. 15 + 16). Das andere Koordinationspolyeder liegt in Form eines zweifach überkappten trigonalen Prismas (CN = 8) vor (Abb. 14). Die Bindungslängen variieren dabei mit 292 bis 325 pm sehr stark (Tab. 28 – 30), wodurch die starke Verzerrung der Polyeder erklärt wird (Tab. 31). Sie sind analog zur Struktur der Disulfide MS₂ mittels Kantenverknüpfung zu einer [M₂S₁₇]²⁸⁻-Einheit verbunden, welche ihrerseits in Richtung [100] zu einer Doppelschicht mit der Zusammensetzung $\frac{2}{\pi}$ {(M₁₀S₁₀)¹⁰⁺} verknüpft ist. Diese ordnet sich alternierend mit einer reinen Sulfidanionenschicht an (vgl. Kap. 3.1.1), welche aus S²⁻- und (S₂)²⁻-Ionen besteht. Dabei sind je acht Disulfid-Hanteln ringförmig um ein Sulfidion angeordnet, so daß sich eine geschichtete Teilstruktur der Zusammensetz

 $\operatorname{zung}_{\infty}^{2}\{(S(S_{2})_{8/2})^{10-}\}$ ergibt (Abb. 18). Das Sulfidion ist von den Lanthanidkationen tetraedrisch koordiniert, die Disulfideinheit über Lanthanidkationen μ^{2} -verbrückt (Abb. 17). Daraus resultiert für die Disulfidanionen selbst eine sechsbindige

Abb. 14: Koordinationspolyeder um $(M1)^{3+}$ in 8g

Abb. 15: Koordinationspolyeder um (M2)³⁺ in 8g

Abb. 16: Koordinationspolyeder um (M3)³⁺ in 4e

Abb. 17: Koordinationsumgebung des fünfbindigen Schwefels im $(S_2)^{2-}$ -Anion in den Polysulfiden $M_{10}S_{19}$

Koordination, wobei die beiden einzelnen Schwefelatome der $(S_2)^{2-}$ -Hantel jeweils tetraedrisch von M³⁺-Kationen umgeben sind (Abb. 17, 19, 20). Dadurch können nicht alle Kationen das gleiche Verknüpfungsmuster mit der Schwefelanionenschicht eingehen. So haben nicht alle Koordinationspolyeder, welche Lanthanid als Zentralatom enthalten, eine Disulfidbindung als Polyederkante. Daraus resultieren drei kristallographisch unterschiedliche Lagen, welche die Metallkationen einnehmen. Die weitere räumliche Anordnung der Schichten ist analog angeordnet wie bei den Disulfiden vom Typ MS₂. Der Abstand der Disulfid-Einheiten zum Sulfidanion beträgt 330 pm, was deutlich belegt, daß hier keine polysulfidischen Elemente vom Typ $(S_3)^{2-}$ o. ä. vorhanden sind.

Abb. 18: Blick in die Ebene der Sulfid- und Disulfid-Anionen in den Polysulfiden vom Typ $M_{10}S_{19}$

47

	La	Ce
Kristallsystem	tetragonal	
Raumgruppe	P4 ₂ /n (Nr. 86)	
Gitterkonstanten	a = 914, 11(4)	a = 899,81(5)
(l/pm)	c = 1633,02(8)	c = 1616,39(9)
Zahl der Formel-	20	
einheiten (Z)		
Berechnete Dichte	4,864	5,102
$(D_x/g \cdot cm^{-3})$		
Molares Volumen	41,087	39,406
$(V_m/cm^3 \cdot mol^{-1})$		
F(000)	1748	1768
Meßbereich (Θ_{max}/grd)	32,85	32,88
	$-13 \le h \le 13$	$-12 \le h \le 11$
	$-13 \leq k \leq 12$	$-13 \le k \le 13$
	$-24 \le l \le 24$	$-24 \le 1 \le 24$
gemessene Reflexe	19545	18457
davon		
symmetrieunabhängig	2531	2423
μ/mm^{-1}	15,11	18,51
Absorptionskorrektur	X-SHAPE	
R _{int}	0,112	0,102
R _σ	0,069	0,077
Strukturverfeinerung	SHELXL-97	
Extinktionskoeffizient	0,0030(7)	0,007(3)
R ₁	0,045	0,035
wR ₂	0,115	0,069
GooF	0,928	0,864

Tab. 15: Kristallographische Daten der Polysulfide MS_{1,9} (M = La, Ce)

	Pr	Nd
Kristallsystem	tetragonal	
Raumgruppe	P4 ₂ /n (Nr. 86)	
Gitterkonstanten	a = 894,16(5)	a = 890,75(4)
(l/pm)	c = 1607,83(9)	c = 1606, 15(8)
Zahl der Formel-	20	
einheiten (Z)		
Berechnete Dichte	5,214	5,346
$(D_x/g \cdot cm^{-3})$		
Molares Volumen	38,707	38,372
$(V_m/cm^3 \cdot mol^{-1})$		
F(000)	1788	1808
Meßbereich (Θ_{max}/grd)	32,90	32,92
	$-9 \le h \le 9$	$-12 \le h \le 12$
	$0 \le k \le 13$	$-13 \le k \le 13$
	$0 \le l \le 24$	$-24 \le l \le 24$
gemessene Reflexe	21485	21969
davon		
symmetrieunabhängig	2400	2387
μ/mm^{-1}	20,09	21,51
Absorptionskorrektur	X-SHAPE	
R _{int}	0,081	0,067
R _σ	0,063	0,038
Strukturverfeinerung	SHELXL-97	
Extinktionskoeffizient	0,0006(1)	0,0006(8)
R ₁	0,057	0,083
wR ₂	0,187	0,229
GooF	0,886	1,149

Tab. 16: Kristallographische Daten der Polysulfide MS_{1,9} (M = Pr, Nd)

	Sm [122]	Gd				
Kristallsystem	em tetragonal					
Raumgruppe	P4 ₂ /n (Nr. 86)					
Gitterkonstanten	a = 881,8(1)	a = 874,4(1)				
(l/pm)	c = 1592,8(1)	c = 1590,9(1)				
Zahl der Formel-	20					
einheiten (Z)						
Berechnete Dichte	5,660	5,957				
$(D_x/g \cdot cm^{-3})$						
Molares Volumen	37,292	36,625				
$(V_m/cm^3 \cdot mol^{-1})$						
F(000)	1848	1888				
Meßbereich (Θ_{max}/grd)	35,0	32,87				
	$-19 \le h \le 19$	$-8 \le h \le 9$				
	$0 \le k \le 19$	$0 \le k \le 13$				
	$0 \le 1 \le 32$	$0 \le l \le 24$				
gemessene Reflexe	11800	21750				
davon						
symmetrieunabhängig	3478	2275				
μ/mm^{-1}	26,32	28,46				
Absorptionskorrektur	numerische Integratio	on X-SHAPE				
R _{int}	0,053	0,118				
R _σ	0,035	0,063				
Strukturverfeinerung	JANA	SHELXL-97				
Extinktionskoeffizient	0,008(5)	0,0006(8)				
R ₁	0,036	0,103				
wR ₂	0,045	0,187				
GooF	1,123	0,781				

Tab. 17: Kristallographische Daten der Polysulfide $MS_{1,9}$ (M = Sm, Gd)

Atom	Lage	x/a	y/b	z/c
La1	8g	0,14664(6)	0,44422(5)	0,10253(3)
La2	8g	0,54160(6)	0,65149(5)	0,12244(3)
La3	4e	3/4	1/4	0,11260(2)
S1	8g	0,8483(3)	0,5490(2)	0,0747(1)
S2	8g	0,5533(2)	0,6483(2)	0,9373(1)
S3	8g	0,3023(3)	0,5296(2)	0,2511(1)
S4	8g	0,4180(2)	0,8881(3)	0,2501(1)
S5	4e	3⁄4	1/4	0,9323(2)
S6	2b	3/4	3/4	1/4

Tab. 18: Atomlagen von LaS_{1,9}

Tab. 19: Atomlagen von CeS_{1,9}

Atom	Lage	x/a	y/b	z/c
Ce1	8g	0,15162(6)	0,45881(5)	0,12274(2)
Ce2	8g	0,55596(5)	0,64646(6)	0,10208(2)
Ce3	4e	3/4	1/4	0,11258(2)
S1	8g	0,8519(3)	0,5527(2)	0,0622(1)
S2	8g	0,5489(3)	0,6519(3)	0,9250(1)
S3	8g	0,3686(3)	0,5798(3)	0,2501(1)
S 4	8g	0,4710(2)	0,8016(3)	0,2509(1)
S 5	4e	3/4	1/4	0,9329(2)
S6	2b	3/4	3/4	1/4

Atom	Lage	x/a	y/b	z/c
Pr1	8g	0,14649(9)	0,44498(8)	0,10333(5)
Pr2	8g	0,54203(8)	0,65135(9)	0,12115(5)
Pr3	4e	3/4	1/4	0,11281(9)
S1	8g	0,8482(4)	0,5489(3)	0,0737(2)
S2	8g	0,5529(3)	0,6481(4)	0,9374(2)
S3	8g	0,3082(4)	0,5317(4)	0,2506(2)
S4	8g	0,4185(4)	0,8893(4)	0,2501(3)
S5	4e	3⁄4	1/4	0,9331(3)
S6	2b	3/4	3/4	1/4

Tab. 20: Atomlagen von PrS_{1,9}

Tab. 21: Atomlagen von NdS_{1,9}

Atom	Lage	x/a	y/b	z/c
Nd1	8g	0,14717(11)	0,44622(9)	0,10440(5)
Nd2	8g	0,54361(9)	0,65124(10)	0,12079(5)
Nd3	4e	3⁄4	1/4	0,11362(9)
S 1	8g	0,8486(4)	0,5488(4)	0,0727(2)
S2	8g	0,5524(4)	0,6491(4)	0,9361(2)
S 3	8g	0,3061(6)	0,5309(6)	0,2503(3)
S4	8g	0,4213(5)	0,8864(6)	0,2502(3)
S5	4e	3/4	1/4	0,9332(3)
S6	2b	3/4	3/4	1/4

Atom	Lage	x/a	y/b	z/c
Sm1	8g	0,55508(2)	0,85422(2)	0,89754(1)
Sm2	8g	0,54110(2)	0,84851(2)	0,37742(1)
Sm3	4e	1/4	3/4	0,11397(2)
S 1	8g	0,55348(9)	0,85168(9)	0,56202(7)
S2	8g	0,54852(9)	0,84823(9)	0,07405(7)
S3	8g	0,38463(11)	0,92390(10)	0,74993(6)
S4	8g	0,30336(11)	0,97166(11)	0,24953(7)
S5	4e	3/4	1/4	0,06604(8)
S6	2b	1/4	1/4	3/4

Tab. 22: Atomlagen von SmS_{1,9} (Literaturwerte gemäß [122])

Tab. 23: Atomlagen von GdS_{1,9}

Atom	Lage	x/a	y/b	z/c
Gd1	8g	0,1513(3)	0,4552(3)	0,1200(1)
Gd2	8g	0,5535(3)	0,6477(4)	0,1062(1)
Gd3	4e	3/4	1/4	0,1123(3)
S 1	8g	0,8506(16)	0,5526(15)	0,0629(5)
S2	8g	0,5481(14)	0,6509(15)	0,9290(5)
S3	8g	0,3834(19)	0,5757(15)	0,2517(7)
S4	8g	0,4691(18)	0,8091(18)	0,2494(6)
S 5	4e	3/4	1/4	0,0672(9)
S6	2b	3/4	3/4	1/4

Atom	U11	U22	U33	U ₂₃	U13	U12
La1	60(3)	59(3)	90(3)	-6(2)	5(2)	0(2)
La2	72(3)	54(3)	107(3)	5(2)	-18(2)	-1(2)
La3	68(3)	59(4)	61(3)	0	0	-2(3)
S 1	115(12)	50(11)	73(8)	-6(6)	-1(7)	-50(11)
S2	116(12)	46(11)	68(8)	-16(7)	4(6)	-52(11)
S 3	162(11)	128(10)	86(9)	0(8)	-10(8)	40(8)
S4	105(10)	133(10)	135(10)	-2(8)	-10(8)	34(9)
S 5	108(15)	43(13)	57(11)	0	0	-54(11)
S6	100(12)	= U ₁₁	81(17)	0	0	0

Tab. 24: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm²) von LaS_{1,9}

Tab. 25: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm²) von CeS_{1,9}

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U13	U ₁₂
Ce1	53(3)	84(3)	66(2)	11(1)	2(1)	6(3)
Ce2	69(3)	75(3)	53(8)	2(1)	10(1)	3(3)
Ce3	54(4)	71(4)	54(2)	0	0	8(3)
S 1	102(18)	49(17)	61(5)	10(5)	3(6)	-4(18)
S2	94(17)	86(16)	90(5)	11(6)	-3(5)	-2(17)
S 3	115(11)	92(10)	52(7)	3(6)	-1(9)	97(4)
S4	157(11)	118(10)	52(7)	-5(5)	-4(6)	-14(8)
S5	129(21)	62(19)	40(11)	0	0	-9(18)
S6	137(14)	= U ₁₁	44(13)	0	0	0

Atom	U11	U ₂₂	U33	U ₂₃	U13	U ₁₂
Pr1	73(4)	76(4)	132(4)	-4(3)	2(3)	6(4)
Pr2	82(4)	72(4)	158(4)	4(3)	-3(3)	1(4)
Pr3	84(5)	86(5)	89(5)	0	0	-2(4)
S1	104(17)	73(17)	131(13)	4(10)	2(12)	33(16)
S2	87(17)	94(17)	102(12)	0(12)	2(10)	27(16)
S3	257(17)	128(14)	80(13)	3(12)	-3(13)	93(13)
S4	118(14)	173(16)	266(19)	7(15)	-7(15)	87(13)
S5	82(20)	66(20)	105(21)	0	0	38(16)
S6	44(14)	= U ₁₁	65(22)	0	0	0

Tab. 26: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) von $PrS_{1,9}$

Tab. 27: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) von NdS_{1,9}

Atom	U11	U ₂₂	U33	U ₂₃	U13	U ₁₂
Nd1	147(5)	144(4)	282(4)	6(2)	14(2)	-4(4)
Nd2	176(5)	129(4)	278(4)	3(2)	-34(2)	-4(4)
Nd3	135(5)	118(5)	246(5)	0	0	-5(4)
S 1	165(18)	129(18)	189(12)	-12(9)	-5(10)	2(19)
S2	158(18)	125(17)	200(12)	1(10)	-1(10)	2(18)
S3	423(26)	373(23)	180(16)	6(15)	-17(14)	88(19)
S 4	276(20)	392(23)	269(18)	-5(16)	-7(15)	31(19)
S5	133(21)	108(20)	173(18)	0	0	12(17)
S6	265(23)	= U ₁₁	166(25)	0	0	0

Atom	U11	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
Sm1	96(1)	92(1)	81(1)	-3(1)	-11(1)	1(1)
Sm2	97(1)	94(1)	89(1)	1(1)	8(1)	-1(1)
Sm3	96(1)	93(1)	78(1)	0	0	-1(1)
S1	98(5)	106(5)	89(4)	4(2)	4(2)	0(5)
S2	102(6)	100(5)	85(4)	1(2)	0(2)	1(5)
S3	120(4)	117(3)	89(3)	3(3)	-2(3)	5(3)
S4	126(4)	142(4)	95(4)	5(3)	2(3)	-10(3)
S5	100(6)	98(6)	93(4)	0	0	-2(5)
S6	118(4)	= U ₁₁	48(6)	0	0	0

Tab. 28:	Koeffizienten der anisotropen Temperaturfaktoren ($\mathrm{U}_{ij}/\mathrm{pm}^2$) von SmS _{1,9}
	(Literaturwerte gemäß [122])

Tab. 29: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) von GdS_{1,9}

Atom	U11	U22	U33	U ₂₃	U13	U12
Gd1	242(15)	255(15)	495(10)	-14(8)	-28(8)	-39(12)
Gd2	240(14)	256(15)	494(8)	2(9)	62(8)	-14(12)
Gd3	106(17)	95(16)	1595(49)	0	0	-27(15)
S 1	290(73)	199(69)	425(33)	-8(37)	51(40)	104(61)
S2	207(67)	248(75)	448(35)	22(40)	-22(37)	-90(61)
S 3	519(71)	320(55)	239(27)	-7(30)	32(35)	-72(46)
S4	456(91)	185(52)	1064(103)	31(54)	17(71)	-52(55)
S5	270(101)	196(97)	716(115)	0	0	39(72)
S6	640(107)	= U ₁₁	111(49)	0	0	0

M = La		M = Ce		
Bindung	Abstand	Bindung	Abstand	
La1–S1	291,0	Ce1–S1	286,9	
-S1'	294,9	-S1'	290,4	
-S2	289,6	-S2	286,2	
-S2'	292,4	-\$2'	287,7	
-S3	291,4	-\$3	289,8	
-S5	300,5	-S5	295,9	
-S4	292,0	-S4	288,7	
-S4'	316,0	S4'	312,8	
-S6	305,7	-S6	310,6	
La2–S1	302,4	Ce2–S1	299,2	
-S1'	303,4	-S1'	299,2	
-S2	302,0	-\$2	297,3	
-S2'	305,6	-\$2'	301,1	
-S5	295,3	-\$5	291,0	
-S3	305,0	-\$3	299,6	
-S3'	321,2	-\$3'	314,8	
-S4	323,0	-S4	318,8	
La3–S1	303,3 (2×)	Ce3–S1	298,9 (2×)	
-S2	294,3 (2×)	-S2	289,6 (2×)	
-S3	299,7 (2×)	-\$3	296,0 (2×)	
-S4	304,0 (2×)	-S4	300,4 (2×)	
-\$5	294,5	-S5	290,7	
S3–S4	214,9	S3–S4	213,7	

Tab. 30: Interatomare Abstände in $LaS_{1,9}$ (d/pm) und $CeS_{1,9}$ (d/pm)

M = Pr		M = Nd	
Bindung	Abstand	Bindung	Abstand
Pr1–S1	295,4	Nd1–S1	294,3
-S1'	298,6	-S1'	296,8
-S2	295,6	-S2	295,3
-S2'	296,3	-S2'	296,8
-\$3	313,8	-S3	315,5
-\$5	309,0	-S5	289,2
-S4	300,0	-S4	314,5
-S4'	316,9	-S4'	298,0
-S6	292,0	-S6	290,9
Pr2–S1	284,7	Nd2-S1	281,3
-S1'	286,4	-S1'	284,7
-S2	285,9	-S2	283,9
-S2'	288,9	-S2'	292,6
-S4	284,6	-S4	283,2
-\$3	288,0	-\$3	286,4
-S3'	293,0	-\$3'	306,1
-\$5	292,0	-S5	293,5
Pr3–S1	288,3 (2×)	Nd3-S1	287,8 (2×)
-S2	297,0 (2×)	-S2	295,0 (2×)
-\$3	298,6 (2×)	-S3	297,2 (2×)
-S4	294,6 (2×)	-S4	293,1 (2×)
-S5	289,0	-S5	289,8
S3-S4	214,7	S3–S4	215,5

Tab. 31: Interatomare Abstände in $PrS_{1,9}$ (d/pm) und NdS_{1,9} (d/pm)

M = Sm		M = Gd	
Bindung	Abstand	Bindung	Abstand
Sm1–S1	294,2	Gd1–S1	291,0
-S1'	293,5	-S1'	291,0
-S2	295,9	-S2	289,4
-S2'	292,4	-\$2'	291,5
-S3	311,8	-\$3	284,6
-S5	285,6	-\$5	284,5
-S4	292,8	-S4	291,6
-S4'	306,9	-S4'	309,7
-S6	287,5	-S6	287,0
Sm2–S1	283,4	Gd2–S1	281,4
-S1'	285,1	-S1'	283,6
-S2	283,4	-\$2	281,5
-S2'	283,5	-\$2'	282,0
-S4	290,2	-S4	282,1
-S3	283,3	-\$3	277,9
-S3'	306,5	-\$3'	302,6
-S5	285,6	-\$5	286,9
Sm3–S1	294,1 (2×)	Gd3–S1	289,8 (2×)
-S2	284,3 (2×)	-\$2	282,5 (2×)
-S3	290,7 (2×)	-\$3	289,3 (2×)
-S4	295,0 (2×)	-S4	296,2 (2×)
-\$5	286,7	-S5	285,5
S3–S4	214,6	S3–S4	217,5

Tab. 32: Interatomare Abstände in $SmS_{1,9}$ (d/pm) [122] und GdS_{1,9} (d/pm)

	Winkel (∢/grd)					
Bindung	La10S19	Ce10S19	Pr10S19	Nd10S19	Sm10S19	Gd10S19
S1-M1-S1'	81,5	70,5	81,0	80,2	87,1	85,2
S1-M1-S2	78,5	74,9	78,1	77,9	78,2	74,2
S1-M1-S2'	78,5	73,1	76,3	76,5	78,2	71,9
S1-M1-S3	144,8	131,3	143,9	144,5	125,0	134,7
S1-M1-S3'	140,6	135,1	140,9	140,3	144,8	133,4
S1-M1-S4	144,9	134,1	145,3	144,9	122,5	133,7
S1-M1-S5	77,6	74,1	77,2	77,0	75,2	74,2
S1'-M1-S2	158,1	145,8	157,3	156,7	157,6	146,1
S1'-M1-S2'	76,7	76,5	76,3	77,9	76,3	73,1
S1'-M1-S3	76,6	71,3	77,0	77,3	78,9	70,5
S1'-M1-S3'	121,6	134,4	121,1	121,7	121,4	137,5
S1'-M1-S4	76,6	73,1	77,2	77,2	77,0	72,9
S1'-M1-S5	87,7	85,3	87,7	87,6	87,8	85,2
S2-M1-S2'	87,5	84,6	87,3	87,1	81,4	85,2
S2-M1-S3	125,3	132,0	125,8	125,6	121,4	133,4
S2-M1-S3'	68,8	73,4	69,9	69,2	76,2	72,3
S2-M1-S4	127,9	135,1	127,8	127,7	144,7	134,5
S2-M1-S5	86,1	86,9	86,0	86,3	77,0	86,3
S2'-M1-S3	78,8	73,7	78,3	78,6	77,8	77,3
S2'-M1-S3'	121,6	134,4	122,5	121,9	141,4	133,9
S2'-M1-S4	121,5	132,9	121,9	122,7	144,7	132,8
S2'-M1-S5	86,6	84,2	86,1	86,3	85,9	86,3
S3-M1-S3'	74,3	73,7	75,0	74,9	73,5	75,2
S3-M1-S5	75,8	72,0	75,9	76,6	76,2	72,1
S3-M1-S4	43,2	60,2	44,0	44,6	44,3	56,4
S3'-M1-S4	59,2	62,6	58,0	58,6	58,5	63,1
S3'-M1-S5	133,2	131,2	132,9	133,9	133,5	127,5
S4-M1-S5	74,4	72,3	75,3	75,6	75,3	72,3

Tab. 33:	Ausgesuchte Winkel (\measuredangle/grd) der Lanthanoid-zentrierten Koordinations-
	polyeder in den Polysulfiden $M_{10}S_{19}$ (M = La – Nd, Sm, Gd)

Tab. 33: Fortsetzung

	Winkel (≮/grd)					
Bindung	La10S19	Ce10S19	Pr10S19	Nd10S19	Sm10S19	Gd10S19
S1-M2-S1'	84,6	87,6	84,7	85,0	84,4	86,6
S1-M2-S2'	74,9	78,5	84,5	74,6	74,5	76,9
S1-M2-S4	137,8	125,1	133,9	137,6	136,4	126,6
S1-M2-S4'	71,0	69,0	71,1	71,4	71,4	70,5
S1-M2-S3	130,1	130,1	134,6	134,5	135,4	128,4
S1-M2-S5	147,6	156	146,4	147,5	146,5	153,3
S1-M2-S6	72,0	74,8	72,4	72,6	72,5	75,2
S1'-M2-S4	127,6	121,4	72,4	77,2	71,0	78,9
S1'-M2-S4'	137,8	125,1	134,6	133,9	133,4	122,9
S1'-M2-S5	86,9	86,0	86,9	86,6	86,6	86,2
S1'-M2-S3	120,1	121,7	132,5	132,9	135,4	124,1
S1'-M2-S6	71,5	74,3	72,0	72,6	72,5	74,9
S2-M2-S1	73,1	78,5	73,2	73,4	74,5	76,9
S2-M2-S1'	73,1	76,6	74,9	72,1	71,4	75,7
S2-M2-S2'	71,3	76,1	71,5	72,1	71	78,8
S2-M2-S3	132,1	142,4	132,9	134,5	132,4	144,4
S2'-M-S4'	131,9	119,5	135,6	132,4	135,4	123,4
S2-M2-S4	132,9	141,0	132,5	135,0	133,4	144,1
S2-M2-S4'	134,0	145,0	132,2	137,6	136,7	140,4
S2-M2-S5	74,5	77,5	74,4	74,1	73,8	76,4
S2-M2-S6	133,1	140,9	133,7	134,3	133,3	140,3
S2'-M2-S6	133,2	125,5	132,9	132,7	128,9	127,6
S2'-M2-S1'	146,2	158,4	146,4	146,7	145,4	154,5
S2'-M2-S4	69,4	77,3	69,6	69,7	71,0	78,3
S3-M2-S6	94,8	76,1	93,3	93,2	94,3	75,1
S4-M2-S3	57,1	43,9	56,1	56,5	57,3	45,7
S4-M2-S4'	95,9	73,7	95,0	94,1	94,4	75,2
S4-M2-S5	70,9	76,2	127,2	127,4	128,9	133,8
S4'-M2-S5	85,4	79,0	71,2	71,5	72,7	76,9
S4'-M2-S6	66,3	50,3	63,6	63,0	63,0	49,2

Tab. 33: Fortsetzung

	Winkel (≮/grd)					
Bindung	La10S19	Ce10S19	Pr10S19	Nd10S19	Sm10S19	Gd10S19
S5-M2-S6	134,5	125,1	134,2	133,9	135,0	127,0
S4-M2-S5	66,3	76,2	71,5	71,4	72,7	76,9
S4-M2-S3	64,7	61,4	64,1	63,7	57,3	45,7
S4-M2-S6	64,2	48,3	65,8	65,1	64,8	51,3
S3-M2-S5	72,0	72,1	72,7	72,2	73,0	76,1
S2'-M2-S5	84,5	87,8	85,5	85,5	86,4	87,4
S2'-M2-S3	72,8	75,5	73,3	72,7	73,1	78,8
S1-M3-S1'	155,8	148,2	154,8	153,6	154,2	148,5
S2-M3-S1'	86,4	87,1	86,2	86,6	86,7	86,4
S1'-M3-S3	134,9	135,0	121,4	121,6	120,9	137,0
S1-M3-S3' (2×)	78,8	73,2	78,4	79,2	79,2	74,3
S1-M3-S4 (2×)	120,3	139,2	120,6	121,7	122,0	137,7
S1-M3-S5 (2×)	77,9	74,1	77,4	76,8	77,1	74,3
S1'-M3-S2 (2×)	87,1	86,3	87,0	86,3	86,7	86,4
S1'-M3-S4 (2×)	79,1	69,2	79,5	79,4	78,6	70,4
S2-M3-S2'	148,8	155,6	148,5	148,6	147,3	153,1
S2'-M3-S1' (2×)	87,1	87,1	86,2	86,6	86,1	86,4
S2-M3-S3' (2×)	68,9	77,5	69,9	69,5	69,6	79,1
S2-M3-S3 (2×)	138,9	122,7	138,0	138,4	120,9	122,5
S2-M3-S4 (2×)	138,0	120,0	138,2	137,6	122,0	122,2
S2-M3-S4' (2×)	70,1	79,0	70,2	70,4	78,6	79,3
S2-M3-S5 (2×)	74,4	77,8	74,2	74,3	77,1	76,6
S3-M3-S3'	85,9	80,2	85,2	85,3	85,9	83,2
S3-M3-S4	69,6	66,5	68,7	68,7	69,0	67,3
S3'-M3-S4' (2×)	41,7	43,7	42,4	42,8	42,5	43,6
S3-M3-S5 (2×)	137,1	139,9	137,4	137,3	137,0	138,4
S4-M3-S4'	83,1	85,7	83,1	83,4	83,7	84,1
S4-M3-S5 (2×)	138,4	137,2	138,4	138,3	138,2	138,0
S3'-M3-S1'	120,1	135,0	121,4	121,6	120,9	137,0
S3'-M3-S4	69,6	66,4	69,4	68,7	69,6	67,3

	S1	S2	S3	S4	S5	S6	CN
M1	2/2	2/2	1/2	1/1	2/2	0/0	8
M2	1/1	2/2	1/2	2/2	1/1	1/4	9
M3	2/1	2/1	1/1	2/1	2/1	0/0	9
CN	4	5	5	4	4	4	

Tab. 34: Motive der gegenseitigen Zuordnung in der MS_{1,9}-Struktur

3.2 Ternäre Sulfide

3.2.1 CsCuS₆

Darstellung von CsCuS₆

Bei Versuchen zur Darstellung von $CuYbS_2$ im CsCl-Flux wurden neben $Cu_{1,45}Yb_{0,85}S_2$ als Nebenprodukt auch Einkristalle einer Verbindung der Zusammensetzung CsCuS₆ [74] erhalten.

 $34,5 \text{ Cu} + 8,5 \text{ Yb} + 80 \text{ S} + 10 \text{ CsCl} \longrightarrow 10 \text{ Cu}_{1,45} \text{ Yb}_{0,85} \text{S}_2 + 10 \text{ CsCu} \text{S}_6 + 10 \text{ CuCl}$

Sie entstanden bei der Umsetzung von Kupfer mit Ytterbium und Schwefel im molaren Verhältnis 1:1:2 in Gegenwart von CsCl als Flußmittel bei einer Reaktionstemperatur von 700°C innerhalb von sieben Tagen. Diese Verbindung bildet Kristalle vom Habitus dünner, hellroter, graphitartiger Plättchen, welche luftstabil und hydrolyseunempfindlich sind.

Kristallstruktur von CsCuS₆

Die Kristallstruktur von CsCuS₆ (triklin, PĪ (Nr. 2); a = 717,10(5), b = 1067,53(9), c = 1123,14(9) pm, α = 74,013(8), β = 85,396(8), γ = 78,825(8)°, Z = 4) enthält *trans*kantenverknüpfte [CuS₄]⁷-Tetraeder, welche in [001]-Richtung Ketten der Zusammensetzung $\frac{1}{\alpha}$ {[CuS_{4/2}]⁻} bilden (Abb. 21). Diese kantenverknüpften Tetraeder werden außerdem von einer S₄-Polysulfid-Einheit dermaßen verbrückt, daß die *cis*ständigen Ecken eines kondensierten Tetraeder-Bausteins alternierend mit einer Tetrasulfid-Einheit (S₄) verbunden ist und so die Zusammensetzung dieses Bandes mit $\frac{1}{\alpha}$ {(CuS_{4/2}(S₄'))⁻} beschrieben werden kann (Abb. 24).

Der Zusammenhalt dieser Bänder wird in der (101)-Ebene durch die Caesiumkationen , welche die Lücken zwischen den Bändern besetzen, gewährleistet. Jedes Cs*-Kation wird von den Schwefelanionen 12+2-fach koordiniert (Abb. 23). Die starke Verzerrung der Polysulfidbrücken zu der sesselförmigen Konformation verhindert

die Ausbildung einer höheren Symmetrie dieser Polysulfid-Einheiten. Die Werte der Bindungswinkel (Tab. 39) in diesem System überstreichen daher ein weites Intervall.

Auch innerhalb der kupfer-zentrierten Tetraeder fallen sowohl die Bindungsabstände und -winkel sehr uneinheitlich aus und weichen daher von den Idealmaßen recht stark ab (Tab. 38 + 39). So variiert z. B. der S–S-Bindungsabstand von 203,9 bis 207,7 pm. Daher sorgen die Cs⁺-Kationen lediglich in Richtung [100] für den Zusammenhalt der Schichtstruktur. Die Schichten werden in Richtung [010] analog der Graphitstruktur nur durch die van-der-Waals-Kräfte zwischen den Polysulfidbrücken zusammengehalten (Abb. 22), wodurch die Neigung dieser Kristalle, in sehr dünne Plättchen zu zerfallen, hinreichend erklärt ist.

Auch die Verteilung der Ladung auf die Schwefelanionen gestaltet sich sehr variabel. So liefern diejenigen Sulfidionen, welche direkt an Kupferkationen gebunden sind, laut MAPLE-Daten [67] schon 95% der ionischen negativen Ladung. Die Polysulfid-Einheiten tragen dagegen aufgrund ihres hohen kovalenten Bindungsanteils viel weniger zum Ladungsausgleich und somit auch zum elektrostatischen Zusammenhalt der Kristallstruktur bei.

Abb. 23: Koordinationsumgebung von (Cs1)* (rechts) und (Cs2)* (links) in CsCuS₆

Kristallsystem	triklin		
Raumgruppe	P1 (Nr. 2)		
Gitterkonstanten	a = 717,10(5)	$\alpha = 74,013(8)$	
(l/pm,≮/grd)	b = 1067,53(9)	$\beta = 85,396(8)$	
	c = 1123, 14(9)	$\gamma = 78,825(8)$	
Zahl der Formel-	4		
einheiten (Z)			
Berechnete Dichte	3,186		
$(D_x/g \cdot cm^{-3})$			
Molares Volumen	122,028		
$(V_m/cm^3 \cdot mol^{-1})$			
F(000)	720		
Meßbereich (Θ_{max}/grd)	27,94		
	$-9 \le h \le 9$		
	$-14 \leq k \leq 14$		
	$-14 \le l \le 14$		
gemessene Reflexe	10159		
davon symmetrie-	3581		
unabhängig			
μ/mm^{-1}	8,56		
Absorptionskorrektur	X-SHAPE		
R _{int}	0,069		
R _σ	0,052		
Strukturverfeinerung	SHELXL-97		
Extinktionskoeffizient	0,008(2)		
R ₁	0,101		
wR ₂	0,091		
GooF	0,753		

Tab. 35: Kristallographische Daten von CsCuS₆

Atom	Lage	x/a	y/b	z/c
Cs1	2i	0,17091(11)	0,30236(7)	0,42191(6)
Cs2	2i	0,32053(11)	0,69763(7)	0,07268(6)
Cu1	2i	0,15157(21)	0,49658(14)	0,86999(11)
Cu2	2i	0,60161(20)	0,49383(13)	0,38594(12)
S1	2i	0,1574(4)	0,3911(3)	0,0770(2)
S2	2i	0,2965(4)	0,1982(3)	0,1342(2)
S3	2i	0,1656(4)	0,0814(3)	0,0627(2)
S4	2i	0,2919(4)	0,0807(3)	0,8898(2)
S5	2i	0,1036(4)	0,1996(3)	0,7607(2)
S6	2i	0,1513(4)	0,3911(3)	0,7186(2)
S7	2i	0,6190(4)	0,3795(3)	0,2353(2)
S8	2i	0,8084(4)	0,1992(3)	0,2681(2)
S9	2i	0,6822(4)	0,0670(3)	0,4031(2)
S10	2i	0,2171(4)	0,9337(3)	0,4311(2)
S11	2i	0,4087(4)	0,8020(3)	0,3615(2)
S12	2i	0,3072(4)	0,6234(3)	0,4134(2)

Tab. 36: Lageparameter für CsCuS₆

Atom	U11	U ₂₂	U33	U ₂₃	U13	U ₁₂	
Cs1	399(4)	361(4)	253(3)	-93(3)	10(3)	-52(3)	
Cs2	448(5)	414(4)	291(4)	-109(3)	46(3)	-48(3)	
Cu1	530(10)	427(8)	248(6)	-54(6)	13(6)	-144(7)	
Cu2	429(9)	387(8)	358(7)	-136(6)	17(6)	16(6)	
S 1	379(16)	287(13)	224(11)	-24(10)	-12(11)	14(11)	
S2	304(15)	330(13)	317(12)	-40(10)	-34(11)	34(11)	
S 3	501(19)	346(14)	328(13)	-18(11)	62(13)	-127(13)	
S4	456(18)	316(14)	410(14)	-118(11)	73(13)	35(12)	
S5	361(16)	347(13)	334(12)	-126(10)	26(11)	-127(12)	
S 6	448(17)	295(14)	298(13)	-113(11)	97(12)	-72(12)	
S 7	313(15)	292(14)	246(11)	-42(10)	17(11)	-33(11)	
S 8	379(16)	385(14)	352(13)	-147(11)	125(12)	-43(12)	
S 9	535(19)	285(14)	425(14)	-88(11)	29(14)	-91(13)	
S10	444(18)	304(14)	382(14)	-25(11)	-12(13)	18(12)	
S11	409(17)	399(14)	315(12)	-64(11)	123(12)	-100(12)	
S12	299(15)	313(14)	321(13)	-102(11)	5(11)	-26(11)	

Tab. 37: Koeffizienten der anisotropen thermischen Auslenkungsparameter
 (U_{ij}/pm^2) für CsCuS6

Abstände	d/pm	
Cs1–S1	373,0	
-S2	369,0	
-S5	367,8	
-S6	365,3	
-S6'	369,2	
-S7	379,3	
-S8	371,9	
-S9	387,0	
-S9'	404,9	
-S10	385,8	
-S10'	406,3	
-S11	382,5	
-S12	371,7	
-S12'	381,3	
Cu1–S1	228,7	
-S1'	241,9	
-S6	228,4	
-S7	235,0	

Tab. 38: Ausgewählte Bindungsabstände (d/pm) in CsCuS₆

-S1' 402,9 -S2 359,4 -S3 396,4 -S3' 400,4 -S4 401,2 -S4' 409,8 -S5 358,9 -S6 407,2 -S7 372,1 -S7' 374,4 **-**S8 381,7 -S11 384,2 -S12 368,5 Cu2-S6 239,6 -S7 232,6 -S12 233,2 -S12' 233,8 S1-S2 205,7 S2-S3 205,1 S3-S4 207,7 204,3 S4-S5 S5-S6 205,7 S7-S8 208,8 S8–S9 205,1 S9-S10 204,8 S10-S11 203,9

208,9

S11-S12

Abstände

Cs2-S1

d/pm

366,8

Bindung	Winkel (≮/grd)	Bindung	Winkel (≮/grd)		
S6-Cu1-S1	123,7	S7-Cu2-S12	119,0		
S6-Cu1-S7	93,4	S7-Cu2-S12'	116,2		
S6-Cu1-S1'	114,8	S7-Cu2-S6	91,2		
S1-Cu1-S7	123,9	S12-Cu2-S12'	104,2		
S1-Cu1-S1'	83,7	S12-Cu2-S6	109,6		
S7-Cu1-S1'	119,9	S12'-Cu2-S6	116,9		

Tab. 39: Ausgesuchte Bindungswinkel (⊄/grd) der kupfer-zentrierten Koordinationspolyeder in CsCuS₆

Tab. 40: Motive der gegenseitigen Zuordnung in CsCuS₆

	S 1	S2	S3	S 4	S5	S 6	S7	S 8	S9	S10	S11	S12	CN
Cs1	1/1	1/1	0/0	0/0	1/1	2/2	2/2	1/2	3/3	2/3	1/2	1/3	14
Cs2	3/3	1/1	3/3	3/3	1/1	2/2	2/2	1/1	0/0	0/0	1/1	1/1	14
Cu1	2/2	0/0	0/0	0/0	0/0	1/1	1/1	0/1	0/0	0/0	0/0	0/0	4
Cu2	0/0	0/0	0/0	0/0	0/0	1/1	1/1	0/0	0/0	0/0	0/1	2/2	4
CN	6	2	3	3	2	6	6	4	3	3	4	6	
3.2.2 Die Kristallstrukturen von CuMS₂

Während die ternären Verbindungen LiMS₂ in den Systemen Li₂S-M₂S₃ (M = Sc, Y, La, Ce – Lu) [5, 29, 31, 76, 77, 78] bereits gut beschrieben wurden, war über die Kristallstruktur des »missing link« CuYS₂ überraschenderweise kaum etwas bekannt [19]. Während jene auf der Basis einer kubisch-dichtesten S²⁻-Anionenpackung mit ungeordneten oder geordneten Kationenteilgitter (α -NaFeO₂-Typ) [79,103] und oktaedrisch bzw. trigonal-antiprismatisch koordinierten Li⁺- und M³⁺-Kationen in der Halitstruktur (NaCl-Typ) kristallisieren, findet man für die bisher bekannten, formalen Kupfer(I)-Analoga CuMS₂ völlig andere Aufbauprinzipien vor. Trotz nahezu identischer Ionenradien ($r_i(Li^*) = 59$, $r_i(Cu^*) = 60$ pm für CN = 4 bzw. $r_i(Li^*) = 76$, $r_i(Cu^+) = 77 \text{ pm für } CN = 6)$ [81] weist die Kristallstruktur von CuScS₂ (C-Typ; trigonal, P3m1) [71, 107] zwar immer noch trigonal-antiprismatisch koordiniertes Sc³⁺ $(r_i = 75 \text{ pm}, \text{CN} = 6)$ [81] auf, dagegen besetzt Cu⁺ nun tetraedrische Lücken innerhalb der hexagonal-dichtest gepackten S²⁻-Teilstruktur. Dies gilt bezüglich der Cu⁺-Kationen auch für den Aufbau von CuLaS₂ (A-Typ; monoklin, P2₁/c) [14], während der größere Ionenradius der La³⁺- Kationen (r_i = 110 pm, CN = 7) [81] diesen zu einer einfach-überkappt trigonal-prismatischen Siebenerkoordination durch die S²⁻-Anionen verhilft. Obwohl in beiden ternären Sulfiden vom Typ $CuMS_2$ (M = Sc, La) untereinander zu Schichten verknüpfte [CuS₄]⁷-Tetraeder vorliegen, ist deren Konnektivitätsmuster grundverschieden.

In der CuScS₂-Struktur erfolgt die wechselweise Verknüpfung über drei Ecken, in der CuLaS₂-Struktur über je zwei Ecken und eine Kante pro $[CuS_4]^{7-}$ -Einheit, wobei sich in beiden Fällen gemäß ${}^2_{*}{[CuS_{3/3}^eS_{1/1}^e]^{3-}}$ jeweils eine einzige Tetraederecke nicht an der Kondensation beteiligt. Die Kristallstruktur von CuYS₂ (B-Typ; orthorhombisch, Pnma) weist parallel [010] verlaufende Ketten ${}^1_{*}{[CuS_{3/3}^kS_{1/1}^e]^{3-}}$ aus *cis*-kantenverknüpften $[CuS_4]^{7-}$ -Tetraedern auf, die nach Art einer dichtesten Stabpackung hexagonal gebündelt sind, und durch oktaedrisch koordinierte Y³⁺-Kationen dreidimensional vernetzt werden. Die ternären monoklinen Verbindungen CuMS₂ (A-Typ; monoklin P2₁/c) (M = La, Nd, Pr, Gd) haben im Unterschied zu CuYS₂ allesamt als Baueinheit eine Siebenerkoordination, da durch den größeren Radius dieser Lanthanidmetall-Kationen eine höhere Koordinationszahl begünstigt wird.

Abb. 25: Auftragung der Gitterkonstanten a, b und c von CuMS₂ (M = Y, La–Gd) gegen den Ionenradius r_i (M³⁺) der Lanthanidkationen für CN = 7 (M = La–Gd), bzw. CN = 6 (CuYS₂) für Y³⁺. Rechts: Ausschnittvergrößerung für CuMS₂ (A-Typ, monoklin).

Im Sinne des *anti*-isotypen Isopuntalprinzips läßt sich diese Struktur mit dem Aufbaukonzept des Selten-Erd(III)-Oxidsulfids Dy_2OS_2 -II (monoklin, $P2_1/c$) vergleichen [87] (Abb. 26). Bei dieser Strukturbeschreibung fällt auf, daß eine ganz ähnliche bereits für beide Formen von Dy_2OS_2 [87] verwendet wurde. Hier ordnen

sich allerdings die Dy³⁺-Kationen nach dem Motiv der hexagonal-dichtesten Kugelpackung an, während die Anionen in geordneter Weise sämtliche oktaedrische (S²⁻) und ein Viertel der tetraedrischen Lücken (O²⁻) besetzen (Abb. 30). Gemäß der *anti*-isotypen Schreibweise [O(S1)(S2)(Dy1)(Dy2)] für das orthorhombische Dy₂OS₂-I (Raumgruppe: Pnma) liegen in CuYS₂ sogar isopuntale Verhältnisse vor, wenn man entsprechend der Formel [Cu(Y) \square (S1)(S2)] Cu gegen O, Dy1 gegen S1, Dy2 gegen S2 sowie S1 gegen Y austauscht und S2 streicht. Das gleiche *anti*-isotype Isopuntalprinzip läßt sich auch auf das dichtere Dy₂OS₂-II (monoklin, P2₁/c) in Bezug auf CuMS₂ (M = Pr-Gd; monoklin, P2₁/c) [14] übertragen.

3.2.2.1 CuYS₂

Darstellung von CuYS₂

Die Darstellung von CuYS₂ gelingt durch Oxidation äquimolarer Mengen Kupfer und Yttrium mit Schwefel im molaren Verhältnis von 1:1:2. Nach vierzehn Tagen bei 900°C bildet sich in evakuierten Quarzglasampullen das kristalline Produkt in Form dünner zartgelber Nädelchen, die sich gegenüber feuchter Luft und Wasser als hydrolyseunempfindlich erweisen. Zur Röntgenstrukturanalyse geeignete, stäbchenförmige Einkristalle werden durch Zugabe größerer Menge an CsCl als Flußmittel zu den Ausgangselementen bei nur 700°C innerhalb von sieben Tagen erhalten:

 $Cu + Y + 2 S \longrightarrow CuYS_2.$

Höhere Reaktionstemperaturen und längere Reaktionszeiten bewirken die Bildung von CsCu₃Y₂S₅ im CsCu₃Er₂S₅-Typ [83] (s. Kap. 3.3.1) durch die Mobilisierung von Cs⁺-Kationen aus dem Flußmittel und von Y₄S₃[Si₂O₇] im Sm₄S₃[Si₂O₇]-Typ [84, 85] bzw. Y₂S[SiO₄] im Er₂S[SiO₄]-Typ [86] durch Aktivierung der SiO₂-Ampullenwand unter dem Einfluß basischer Oxidkontamination.

Abb. 26: Koordination sumgebung von Cu^+ (links) und Y^{3+} (rechts) in $CuYS_2$

Kristallstruktur von CuYS2 im B-Typ

Die Kristallstruktur von CuYS₂ (Abb. 29) (orthorhombisch, Pnma; a = 1345,3(1), b = 389,12(4), c = 629,08(6) pm, Z = 4; Tab. 41) enthält [CuS₄]⁷⁻-Tetraeder und [YS₆]⁹⁻-Oktaeder (beide mit der Punktsymmetrie *m*, Abb. 26) als charakteristische Baugruppen. Parallel [010] verlaufen Ketten der Zusammensetzung ${}^{2}_{*}{[Cu(S1)_{3/3}(S2)_{1/1}]^{3-}}$ aus *cis*-kantenverknüpften [CuS₄]⁷⁻-Tetraedern (Abb. 27), die nach Art einer dichtesten Stabpackung hexagonal gebündelt sind und durch oktaedrisch koordinierte Y³⁺-Kationen dreidimensional vernetzt werden (Abb. 29). Die Metall-Schwefel-Abstände in den [CuS₄]⁷⁻-Tetraedern überstreichen mit 229 bis 253 pm ein sehr weites

Intervall, während jene in den $[YS_6]^{9}$ -Oktaedern recht eng beieinander liegen (Tab.44).Auch in den Winkeln (S-M-S) liegen jene für die $[YS_6]^{9}$ -Einheiten (85–96° bzw. 173 – 176°) näher an den Idealwerten als diejenigen (104 – 121°) innerhalb der $[CuS_4]^{7}$ -Gruppen (Tab. 45). Erwartungsgemäß sind die bezüglich der Tetraederverknüpfung terminalen Cu–S-Abstände (d(Cu–S2) = 230pm) die kürzesten, während jene von Cu⁺ zu den S²-Anionen der verknüpfenden Kanten (d(Cu–S1), 2×) mit 259 pm am längsten ausfallen. Vergleichbares gilt für die sechs Kantenlängen (= $d(S^{2-}-S^{2-})$) der $[CuS_4]^{7-}$ -Tetraeder: Hier stehen 376pm für die beiden verknüpfenden Werte von 384 bis 398pm für die vier übrigen Kanten gegenüber. Im $\{Y(S1)(S2)\}^{-}$ -Teil der CuYS₂-Struktur bilden die Y³⁺-Kationen mit den S²⁻-Anionen ein $\frac{3}{*}[Y(S1)_{3/3}(S2)_{3/3}]^{-}$ -Netzwerk ecken- und kantenverknüpfter $[YS_6]^{9-}$ -Oktaeder nach Art der Ramsdellit-Topologie von γ -MnO₂ [99, 100] aus. Es liegen also zunächst über gemeinsame Kanten (S1–S1 und S1–S2, je 2×) zu Doppelketten parallel [010] ecken- und kantenverknüpfter $[YS_6]^{9-}$ -Oktaeder vor, deren dreidimensionaler Zusammenhalt durch Eckenverknüpfung der diesbezüglich noch nicht

Abb. 30: Kristallstruktur von Dy₂OS₂-I mit Blick entlang [010]

betroffenen Oktaederecken innerhalb der (010)-Ebene gewährleistet wird (Abb. 28). Hier treten mit 374 (S1–S2) pm und 376 (S1–S1) pm auch die kürzesten S^{2–}–S^{2–}-Abstände im gesamten System auf, die jedoch die Summe der S^{2–}-Ionenradien ($r_i = 184$ pm, CN = 6) [81] problemlos überschreiten. Durch Auffüllung der Tetraederlücken in den Kanälen entlang [010] mit Cu⁺ unter Ausbildung der ¹/₂{[Cu(S1)_{3/3}(S2)_{1/1}]^{3–}}-Teilstruktur erfolgt schließlich der Ladungsausgleich (Abb. 29). So läßt sich die Kristallstruktur von CuYS₂ auch mit dem Motiv einer hexagonal-dichtesten Kugelpackung aus S^{2–}-Anionen beschreiben, wobei in geordneter Weise die Hälfte der oktaedrischen Lücken durch Y³⁺- und ein Viertel der tetraedrischen Lücken durch Cu⁺-Kationen besetzt sind.

Vergleicht man den Madelung-Anteil der Gitterenergie (nach *Hoppe*: MAPLE [67, 101, 102] von CuYS₂ (MAPLE = 1858 kcal/mol) mit der MAPLE-Summe der binären Komponenten ($\frac{1}{2} \times MAPLE(Cu_2S)$ [43] + $\frac{1}{2} \times MAPLE(Y_2S_3)$ [103] = $\frac{1}{2} \times 677$ kcal/mol + $\frac{1}{2} \times 3022$ kcal/mol), so ergibt sich mit 1850 kcal/mol ein Wert, der eine Abweichung von nur 0,4% aufweist. Dies erstaunt umso mehr, als die interatomaren Abstände (Cu⁺-S²⁻) in Cu₂S (224 – 242 pm für CN = 3 (21×),218 – 224 *plus* 290 pm für CN= 2+1 (2×) sowie 225, 234, 256 *plus* 287 pm für CN= 3+1 (1×); Chalkosin-Typ [38, 43]) bzw. (Y³⁺-S²⁻) in Y₂S₃ (263 – 285 pm für CN = 6 (3×); D-Typ der Selten-Erd-Sesquisulfide [103]) nicht allzu gut mit jenen in CuYS₂ (Tab. 44) übereinstimmen. Innerhalb der Serie CuMS₂ stehen die sinkenden MAPLE-Werte allerdings sehr gut in Einklang mit den bei steigender Ordnungszahl anwachsenden M³⁺-Ionenradien: CuSC₂ (MAPLE = 1915kcal/mol), CuYS₂ (MAPLE = 1858kcal/mol).

Tab. 41: Kristallographische Daten von CuYS₂

Kristallsystem	orthorhombisch
Raumgruppe	Pnma (Nr. 62)
Gitterkonstanten	a = 1345,3(1)
(l/pm)	b = 398,12(4)
	c = 629,08(6)
Zahl der Formel-	4
einheiten (Z)	
Berechnete Dichte	4,269
$(D_x/g \cdot cm^{-3})$	
Molares Volumen	50,725
$(V_m/cm^3 \cdot mol^{-1})$	
F(000)	400
Meßbereich (Θ_{max}/grd)	27,9
	$-17 \le h \le 17$
	$-5 \le k \le 5$
	$-8 \le 1 \le 8$
gemessene Reflexe	3254
davon symmetrie-	460
unabhängig	
μ/mm^{-1}	24,39
Absorptionskorrektur	numerisch, Programm HABITUS
R _{int}	0,087
R _σ	0,061
Strukturbestimmung	SHELXS-86
Strukturverfeinerung	SHELXL-93
R ₁	0,065 (für alle 460 Reflexe)
	0,036 (für 313 Reflexe
	mit $F_0 \ge 4\sigma(F_0)$)
wR ₂	0,067 (für alle Reflexe)
GooF	0,917

Atom	Lage	x/a	y/b	z/c
Cu	4c	0,4465(1)	1/4	0,39193(24)
Y	4c	0,13488(7)	1/4	0,49254(16)
S 1	4c	0,4623(2)	1/4	0,7597(4)
S2	4c	0,2934(2)	1/4	0,2310(4)

Tab. 42: Lageparameter von CuYS₂

Tab. 43: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) von CuYS₂

Atom	U11	U22	U33	U ₂₃	U13	U ₁₂
Cu	335(7)	502(9)	246(8)	0	-82(6)	0
Y	113(3)	138(4)	152(4)	0	6(4)	0
S 1	113(8)	148(12)	98(10)	0	14(8)	0
S2	135(9)	174(13)	117(11)	0	40(8)	0

Tab. 44: Ausgewählte interatomare Abstände (d/pm) für CuYS₂

Abstände	d/pm	Abstände	d/pm
Cu-S1	232,4	Y-S1	279,6 (2×)
-S1'	252,5 (2×)	-S1'	279,7
-S2	229,5	-\$2	267,3 (2×)
		-\$2'	269,3

Bindung	Winkel (≮/grd)
S2-Cu-S1	121,4
S2-Cu-S1'	105,6 (2x)
S1'-Cu-S1'	109,4 (2×)
S1''-Cu-S1''	104,0
S2-Y-S2'	96,3
\$2-Y-\$1"	86,1(2×)
S2-Y-S1''''	89,2 (2x)
S2-Y-S2'	93,3 (2x)
S2-Y-S1"	173,3 (2×)
S2'-Y-S1''	92,9 (2×)
S2'-Y-S1''''	176,2
S1''-Y-S1'''	90,8
S1''-Y-S1''''	84,5 (2x)

Tab 45:	Ausgesuchte	Bindungswinkel ((≮/grd)) für CuYS ₂
---------	-------------	------------------	---------	-------------------------

Tab. 46: Motive der gegenseitigen Zuordnung in CuYS₂

	S1	S2	CN
Cu	3/3	1/1	4
Y	3/3	3/3	6
CN	6	4	

3.2.2.2 $CuMS_2$ (M = Pr-Gd)

Darstellung von CuMS₂ (M = Pr-Gd) im A-Typ

Die Darstellung von CuMS₂ gelingt analog derjenigen von CuYS₂ durch Oxidation äquimolarer Mengen Kupfer und Lanthanidmetall mit Schwefel im molaren Verhältnis von 1:1:2 unter Verwendung eines Überschusses an CsCl als Flußmittel. Nach sieben Tagen bei einer Reaktionstemperatur von 800°C bildet sich in evakuierten Quarzglasampullen das kristalline Produkt gemäß

$$Cu + M + 2 S \longrightarrow CuMS_2$$

im Habitus derber Plättchen, welche sich als luft- und wasserstabil erweisen.

Kristallstruktur von CuMS2 im A-Typ

Die Kristallstruktur von CuMS₂ (Abb. 37) (monoklin, P2₁/c) enthält $[CuS_4]^{7-}$ Tetraeder und $[MS_7]^{11-}$ -Polyeder (Abb. 31) als charakteristische Baugruppen. Zunächst treten zwei $[CuS_4]^{7-}$ Einheiten zu Tetraederdoppeln $[Cu_2S_6]^{10-}$ mit gemeinsamer Kante zusammen (Abb. 35).

Durch deren Weiterkondensation über gemeinsame Ecken entstehen parallel (100)

Abb.31: Koordinationspolyeder um M³⁺ (links) und Cu⁺ (rechts) in CuMS₂ (A-Typ)

Abb. 32: Koordinationspolyeder von S²⁻ (S1: links, S2: rechts) in CuMS₂ (A-Typ)

verlaufende gewellte Schichten der Zusammensetzung ${}^{2}_{\infty} \{ [Cu(S1)_{3/3}(S2)_{1/1}]^{3-} \}$ (Abb. 33), welche durch M³⁺-Kationen in überkappt-trigonal-prismatischer Siebenerkoordination von S²⁻-Anionen dreidimensional vernetzt werden (Abb. 34 + 37). Die Cu–S-Abstände in den [CuS₄]⁷⁻-Tetraedern überstreichen mit 231–246 pm (CuSmS₂) bzw. 233–248 pm (CuPrS₂) ein recht weites Intervall, während jene innerhalb der [MS₇]¹¹⁻-Polyeder vergleichsweise enger beieinanderliegen (Tab. 57 + 58). Auch die

Cu⁺

Abb. 34: Koordinationsumgebung der $[Cu_2S_6]$ - ietraederdopper (rechts) in CuMS₂ (A-Typ)

Winkel innerhalb der $[CuS_4]^7$ -Gruppen weichen recht stark vom idealen Tetraederwert (109,5°) ab (Tab. 59).

Erwartungsgemäß sind die bezüglich der Tetraederverknüpfung terminalen Cu–S-Abstände die kürzesten, während jene von Cu⁺ zu den $(S1')^{2-}$ -Anionen der verknüpfenden Kante mit 247 und 248 pm am längsten ausfallen. Dieser Effekt tritt auch bei den sechs Kantenlängen ($\equiv d(S^{2-}-S^{2-})$ der $[CuS_4]^{7-}$ -Tetraeder in Erscheinung: Hier variieren die Werte für die verknüpfenden Kanten des Tetraeders um bis zu 20%.

Abb.36: Kristallstruktur von Dy₂O₂S-II (monoklin) mit Blick entlang [100]

Im $[M(S1)(S2)]^{-}$ -Teil der CuMS₂-Struktur bilden die M³⁺-Kationen mit den S²⁻-Anionen ein komplexes ${}^{3}_{\alpha}[[M(S1)_{3/3}(S2)_{4/4}]^{-}]$ -Netzwerk aus ecken- und kantenverknüpften $[MS_7]^{11-}$ -Polyedern aus, das der Kristallstruktur von EuI₂ [80] entspricht (Abb. 37).

	Pr	Nd	
Kristallsystem monoklin (Nr. 14)			
Raumgruppe	P21/c		
Gitterkonstanten	a = 655,72(6)	a = 653,94(6)	
(l/pm,≮/grd)	b = 722,49(6)	b = 719,67(6)	
	c = 686,81(6)	c = 683,98(6)	
	$\beta = 98,686(7)$	$\beta = 98,452(7)$	
Zahl der Formeleinheiten	(Z) 4		
berechnete Dichte	5,546	5,672	
$(D_x/g \cdot cm^{-3})$			
Molares Volumen	48,424	47,757	
$(V_m / cm^3 \cdot mol^{-1})$			
F(000)	480	484	
Meßbereich (Θ_{max}/grd)	32,81	32,79	
	$-9 \le h \le 9$	$-9 \le h \le 9$	
	$-10 \le k \le 10$	$-10 \le k \le 10$	
	$-10 \le l \le 10$	$-10 \le l \le 10$	
gemessene Reflexe	5194	4592	
davon	1181	1177	
symmetrieunabhängig			
µ/mm ⁻¹	22,56	23,80	
Absorptionskorrektur	X-SHAPE		
Extinktionskoeffizient	0,029(2)	0,0066(3)	
R _{int}	0,045	0,034	
R _σ	0,0299	0,028	
Strukturverfeinerung	SHELXL-97		
R ₁	0,031	0,035	
	(für 985 Reflexe	(für 1091 Reflexe	
	mit $ F_0 \ge 4\sigma(F_0)$)	mit $ F_0 \ge 4\sigma(F_0)$)	
	0,040 (für alle	0,037 (für alle	
	1181 Reflexe)	1177 Reflexe)	
wR ₂	0,076	0,091	
GooF	0,989	1,074	

Tab. 47: Kristallographische Daten von CuMS₂ (M = Pr, Nd)

	Sm	Gd			
Kristallsystem	monoklin (Nr. 14)				
Raumgruppe	P2 ₁ /c				
Gitterkonstanten	a = 647,05(6)	a = 643,91(6)			
(l/pm,≮/grd)	b = 710,80(6)	b = 704,00(6)			
	c = 678,12(6)	c = 673,90(6)			
	$\beta = 98,27(7)$	$\beta = 98,31(7)$			
Zahl der Formel-	4				
einheiten (Z)					
berechnete Dichte	5,818	5,901			
$(D_x/g \cdot cm^{-3})$					
Molares Volumen	46,465	45,261			
$(V_m / cm^3 \cdot mol^{-1})$					
F(000)	492	500			
Meßbereich (Θ_{max}/grd)	32,90	32,85			
	$-9 \le h \le 9$	$-9 \le h \le 9$			
	$-10 \le k \le 10$	$-10 \le k \le 10$			
	$-10 \le l \le 9$	$-10 \le l \le 10$			
gemessene Reflexe	4503	1119			
davon	177	184			
symmetrieunabhängig					
μ/mm^{-1}	20,07	29,61			
Absorptionskorrektur	X-SHAPE				
Extinktionskoeffizient	0,180(5)	0,152(5)			
R _{int}	0,060	0,109			
R _σ	0,046	0,095			
Strukturverfeinerung	SHELXL-97				
R ₁	0,062	0,042			
wR ₂	0,193	0,120			
GooF	1,490	0,826			

Tab. 48: Kristallographische Daten von CuMS₂ (M = Sm, Gd)

Atom	Lage	x/a	y/b	z/c
Cu	4e	0,4135(1)	0,1558(1)	0,4372(1)
Pr	4e	0,80755(4)	0,05263(4)	0,19761(4)
S1	4e	0,4116(2)	0,6161(2)	0,7196(2)
S2	4e	0,0832(2)	0,2279(2)	0,5008(2)

Tab. 49: Atomlagen von CuPrS₂

Tab. 50: Atomlagen von CuNdS₂

Atom	Lage	x/a	y/b	z/c
Cu	4e	0,4129(2)	0,1564(1)	0,4377(1)
Nd	4e	0,80740(4)	0,05211(3)	0,19748(3)
S1	4e	0,4115(2)	0,6159(2)	0,7191(2)
S2	4e	0,0813(2)	0,2280(2)	0,5007(2)

Tab. 51: Atomlagen von CuSmS₂

Atom	Lage	x/a	y/b	z/c
Cu	4e	0,4117(1)	0,1563(1)	0,4379(2)
Sm	4e	0,80692(4)	0,05128(4)	0,19726(5)
S 1	4e	0,4098(2)	0,6158(2)	0,7175(2)
S2	4e	0,0783(2)	0,2279(2)	0,4999(2)

Tab. 52: Atomlagen von CuGdS₂

Atom	Lage	x/a	y/b	z/c
Cu	4e	0,4099(1)	0,1556(1)	0,4385(2)
Gd	4e	0,80621(4)	0,05042(4)	0,19696(4)
S 1	4e	0,4098(2)	0,6155(2)	0,7161(2)
S2	4e	0,0749(2)	0,2283(2)	0,4999(2)

Atom	U11	U22	U33	U ₂₃	U13	U_{12}	
Cu	164(4)	179(4)	281(4)	64(3)	106(3)	43(3)	
Pr	58(2)	61(2)	66(2)	-4(1)	13(1)	-7(1)	
S 1	69(5)	81(6)	74(5)	1(4)	-2(4)	16(4)	
S2	57(5)	63(6)	62(5)	2(4)	10(4)	1(4)	_

Tab. 53: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) von CuPrS₂

Tab. 54: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) von CuNdS₂

Atom	U ₁₁	U22	U33	U23	U13	U12	
Cu	169(4)	165(3)	270(4)	58(3)	94(3)	40(3)	
Nd	83(2)	57(2)	70(2)	-5(1)	17(1)	-6(1)	
S 1	93(5)	75(5)	75(4)	4(3)	2(4)	9(4)	
S2	85(5)	69(4)	70(4)	1(3)	10(4)	-5(4)	

Tab. 55: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) von CuSmS₂

Atom	U11	U22	U33	U ₂₃	U13	U_{12}
Cu	135(3)	120(4)	277(6)	59(4)	117(4)	35(3)
Sm	49(2)	28(2)	101(3)	-7(1)	39(2)	-7(1)
S 1	45(5)	40(5)	99(7)	6(6)	21(5)	-1(4)
S2	45(5)	37(5)	92(7)	5(5)	26(4)	-7(4)

Tab. 56: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) von CuGdS₂

Atom	U11	U ₂₂	U33	U ₂₃	U13	U12	
Cu	100(4)	115(4)	200(5)	42(3)	51(4)	28(3)	
Gd	20(2)	26(2)	55(2)	-3(1)	-6(1)	-5(1)	
S 1	38(6)	44(6)	60(7)	-2(5)	-17(5)	1(5)	
S2	18(6)	29(5)	55(6)	-1(5)	-10(5)	3(4)	

M = Pr		M = Nd		
Bindung	Abstand	Bindung	Abstand	
Pr-S1	289,2	Nd-S1	288,5	
-S1'	289,3	-S1'	288,0	
-S1''	304,0	-S1''	303,0	
-S2	284,1	-\$2	283,2	
-S2'	285,8	-\$2'	284,6	
-S2''	288,9	-\$2''	286,9	
-S2'''	290,9	-\$2'''	290,1	
Cu-S1	235,9	Cu-S1	235,1	
-S1'	246,7	-S1'	246,2	
-S1''	247,7	-S1''	247,4	
-S2	233,2	-\$2	233,1	
		I		

Tab. 57: Ausgewählte interatomare Abstände (d/pm) von CuMS₂ (M = Pr, Nd)

Tab. 58: Ausgewählte interatomare Abstände (d/pm) von CuMS₂ (M = Sm, Gd)

M = Sm		M = Gd		
Bindung	Abstand	Bindung	Abstand	
Sm-S1	285,1	Gd-S1	282,3	
-S1'	285,1	-S1'	284,0	
-S1''	299,4	-S1''	296,5	
-S2	279,8	-\$2	277,3	
-S2'	281,1	-\$2'	279,7	
-S2''	283,4	-S2''	280,7	
-S2'''	287,6	-\$2'''	284,9	
Cu-S1	233,2	Cu-S1	232,2	
-S1'	244,5	-S1'	242,2	
-S1''	246,4	-S1''	245,6	
-S2	231,0	-\$2	231,4	

Winkel	Winkel (≮/grd) für M = Pr	Winkel ($\langle / \text{grd} \rangle$ für M = Gd
S1-M-S1'	82,1	81,9
S1-M-S1''	83,2	83,6
S1-M-S2'''	120,9	120,7
S1'-M-S1''	79,2	78,7
S1'-M-S2'''	78,2	78,7
S2-M-S1	76,5	75,5
S2-M-S1'	128,8	128,4
S2-M-S1''	141,4	141,4
S2-M-S2'	122,5	121,9
S2-M-S2''	74,0	72,8
S2-M-S2'''	74,2	74,7
S2'-M-S1	160,2	161,6
S2'-M-S1'	88,3	89,9
S2'-M-S1''	78,0	80,5
S2'-M-S2''	90,5	90,0
S2'-M-S2'''	73,5	73,7
S2''-M-S1	90,1	89,3
S2''-M-S1'	152,3	151,1
S2''-M-S1''	73,5	73,0
S2''-M-S2'''	127,7	127,0
S2'''-M-S1''	143,8	145,1
S2-Cu-S1'	117,3	117,8
S2-Cu-S1''	111,8	111,6
S1'-Cu-S1''	103,8	103,1
S2-Cu-S1'''	99,1	100,4
S1'-Cu-S'''	109,2	107,8
S1''-Cu-S1'''	116,3	116,8

Tab.59: Ausgewählte Winkel am Beispiel von CuPrS₂ und CuGdS₂ im A-Typ

Tab. 60: Motive der gegenseitigen Zuordnung in CuMS₂ (A-Typ)

	S1	S2	CN
Cu	3/3	1/1	4
М	3/3	4/4	7
CN	6	5	

3.2.3 $Cu_{1,45}M_{0,85}S_2$ (M = Tb – Lu)

Für die ternären Kupfer(I)-Selten-Erd(III)-Sulfide kennt man derzeit drei Strukturtypen: A-CuMS₂ (M = La; monoklin, P2₁/c) [14, 81], B-CuMS₂ (M = Y; orthorhombisch, Pnma [72]) und C-CuMS₂ (M = Sc; trigonal, P3m1) [71]. Daneben wurde gelegentlich über trigonale Verbindungen des Formeltyps Cu_{2-x}M_{(2+x)/3}S₂ (M = Y, Tb –Lu) mit zum Teil erheblicher Phasenbreite (0 ≤ x ≤ 0,67) berichtet [70]. Die Kristallstruktur von CuScS₂ im trigonalen C-Typ in der Raumgruppe P3m1 [107] weist oktaedrisch koordiniertes Sc³⁺ und tetraedrisch koordiniertes Cu⁺ innerhalb der hexagonal-dichtest gepackten S²⁻-Teilstruktur auf. Das Verhältnis der die Tetraederlücken besetzenden Cu⁺-Kationen kann bis zu einer Grenzzusammensetzung von Cu_{2,000}M_{0,667}S₂ erhöht werden, wobei sich im Gegenzug der Anteil der die Oktaederlücken besetzenden M³⁺-Kationen absenkt.Hierbei erfolgt außerdem ein Raumgruppenwechsel von P3m1 nach P3m1, wie das folgende Kapitel nun belegt [108]. Unter denselben Reaktionsbedingungen wie zur in Kap. 3.2.2 beschriebenen Darstellung von CuMS₂ entstanden mit den schwereren Lanthanoid-Metallen (M = Tb–Lu) in guter Ausbeute Cu_{1,45}M_{0,85}S₂-Phasen.

Darstellung von $Cu_{1,45}M_{0,85}S_2$ (M = Tb – Lu)

Bei der Umsetzung von elementarem Kupfer mit Lanthanoid-Metallen und Schwefel in evakuierten, gasdicht abgeschmolzenen Quarzglasampullen bei einer Reaktionstemperatur von 900°C (im molaren Verhältnis Cu:M:S = 1:1:2) mit einem Zusatz von äquimolaren Mengen an CsCl als Flußmittel entstehen innerhalb von sieben Tagen Einkristalle der Zusammensetzung Cu_{1,45}M_{0,85}S₂.

Diese Verbindungen fallen als luft- und hydrolyseunempfindliche, goldgelbe, glänzende Plättchen mit drei- oder sechseckigem Querschnitt an, welche das Licht sehr stark reflektieren.

10,45 Cu + 7,85 M + 17 S + 6 CsCl - Cu_{1,45}M_{0,85}S₂ + 3 CsCu₃M₂S₅ + Cs₃MCl₆

Abb. 38: Auftragung der Gitterkonstanten a und c von Cu_{1,45}M_{0,85}S₂-Phasen (M = Tb - Lu) gegen den Ionenradius r_i(M³⁺) der Lanthanoidkationen für CN = 6

Kristallstruktur von Cu_{1,45}M_{0,85}S₂

Der Aufbau von Cu_{1,45}M_{0,85}S₂ (Abb. 42) kann mit Hilfe von CdI₂-analogen Schichten der Zusammensetzung ${}^{2}_{x}{[(M^{3+})(S^{2-})_{6/3}]^{-}}$ beschrieben werden, innerhalb derer [MS₆]⁹⁻-Oktaeder (z. B. d(Er³⁺-S²⁻) = 272 pm, 6×; Abb. 40 + 42) über sechs ihrer insgesamt zwölf Kanten miteinander verknüpft sind. Die Stapelung der anionischen Schichten erfolgt parallel (001) und ihr Zusammenhalt wird durch interstitielle Cu⁺-Kationen in tetraedrischer Koordination der S²⁻-Anionen (d(Cu⁺-S²⁻) = 236 pm, 1×; 240 pm, 3×; Tab. 70) gewährleistet (Abb. 43).

Dabei bilden sich ebenfalls anionische Schichten der Zusammensetzung ${}^{2}_{\infty}$ {[(Cu⁺)(S²⁻)_{4/4}]⁻)₂} aus, die sich durch Kondensation der [CuS₄]⁷-Tetraeder über drei (nicht-coplanare *cis*-ständige) ihrer sechs Kanten ergeben (Abb. 41). Die kürzesten Abstände zwischen gleichgeladenen Ionen fallen nicht ungewöhnlich kurz aus (Tab. 70), und auch die Winkel (S–Cu–S) um Cu⁺ bzw. (S–M–S) um M³⁺ weichen nicht dramatisch von den Idealwerten für ein Tetraeder bzw. Oktaeder ab (Tab. 71). Für S²⁻ trifft man schließlich ein überkapptes trigonales Antiprisma aus vier Cu⁺ und drei M³⁺-Kationen (jeweils mit Unterbesetzung) als Koordinationspolyeder an (Abb. 39 + 40).

Wenn sich die S²⁻-Anionen nach Art einer hexagonal-dichtesten Kugelpackung anordnen und die entsprechenden Anionenschichten durch lateinische Großbuchstaben repräsentiert werden, dann besetzen die M³⁺-Kationen (symbolisiert durch lateinische Kleinbuchstaben) und die Cu⁺-Kationen (durch griechische Kleinbuchstaben bezeichnet) schichtweise alternierend die Hälfte der Oktaeder- (M³⁺) und Tetraederlücken (Cu⁺) gemäß AcB $\alpha\beta$ AcB $\alpha\beta$ A... (Abb. 42 + 43). Beide Kationensorten nehmen jedoch zum Ladungsausgleich nur einen bestimmten Prozentsatz (Cu⁺: 72,6%; M³⁺: 85,1%) ihrer regulären Positionen ein, weshalb die Kristallstruktur von Cu_{1,45}M_{0,85}S₂ auch als doppelt kationendefektes CaAl₂Si₂-Typ-Arrangement [73,88] gemäß (Cu_{1,45} $\square_{0,55}$)(M_{0,85} $\square_{0,15}$)S₂ bezeichnet werden kann. Die Teilbesetzung der Kationen ließ sich sowohl durch die Freigabe der Besetzungsfaktoren im

Verlaufe der Kristallstrukturverfeinerung als auch durch Elektronenstrahl-Mikrosonden-Untersuchungen (DX-4, Fa. EDAX: 34(2) mol-% Cu, 20(1) mol-% Er, 46(2) mol-% S, gemessen an Cu_{1,45}Er_{0,85}S₂) nachweisen. Dies ist von besonderem Interesse, da es zeigt, daß z. B. Cu_{1,45}Er_{0,85}S₂ als Repräsentant der Er₂S₃-reichsten Seite der Mischkristallreihe zwischen den Grenzzusammensetzungen Er₂S₃ · 3Cu₂S (= Cu_{2,000}Er_{0,667}S₂) und Er₂S₃ · 3/2 Cu₂S (= Cu_{1,333}Er_{0,889}S₂) offenbar zu keiner

Abb. 43: Ansicht der $[CuS_4]^{7-}$ -Tetraederschichten ${}^2_{\approx}{[Cu_2S_2]^{2+}}$ in den $Cu_{1,45}M_{0,85}S_2$ -Phasen und ihre Verknüpfung durch die M^{3+} -Kationen als (110)-Schnitt der Kristallstruktur

Ausordnung der Kationenvakanzen befähigt zu sein scheint, während dies für die Er³⁺-Leerstellen in der Phase am Cu₂S-reichsten Ende, Cu_{2,000}Er_{0,667}S₂ (Subzelle: trigonal, P $\overline{3}$; a = 387,9(1), c = 630,3(3) pm; Z = 1; d(Cu⁺-S²⁻) = 238 (3×) + 241 pm (1×), d(Er³⁺-S²⁻) = 272 pm, 6×) (Tab. 70) [89], mit intakter Cu⁺-Teilstruktur, aber nur zu 2/3 besetzten, dichtest-gepackten M³⁺-Schichten mit graphit-analoger, hexagonaler Bienenwaben-Topologie durchaus diskutiert und auch detektiert worden ist [90].

	Tb	Dy	Но	
Kristallsystem		trigonal		
Raumgruppe		P3m1 (Nr. 164)		
Gitterkonstanten	a = 389,4(3)	a = 392,38(3)	a = 390,12(2)	
(l/pm)	c = 638,1(5)	c = 627,07(5)	c = 627,81(5)	
Zahl der Formel-		1		
einheiten(Z)				
Berechnete Dichte	5,773	5,834	5,950	
$(D_x/g \cdot cm^{-3})$				
Molares Volumen	50,469	50,359	49,839	
$(V_m/cm^3 \cdot mol^{-1})$				
F(000)	129,30	130,15	131,00	
Meßbereich (Θ_{max}/grd)	27,35	32,78	27,29	
	$-5 \leq h \leq 5$	$-5 \le h \le 5$	$-4 \le h \le 4$	
	$-5 \leq k \leq 4$	$-5 \le k \le 5$	$-4 \le k \le 5$	
	$-7 \le l \le 7$	$-9 \le 1 \le 9$	$-7 \le l \le 8$	
gemessene Reflexe	461	1463	472	
davon symmetrie-	97	142	85	
unabhängig				
μ/mm^{-1}	27,88	28,90	31,11	
Absorptionskorrektur		X-SHAPE		
Extinktionskoeffizient	_	0,48(48)	2,72(82)	
R _{int}	0,085	0,126	0,123	
R _σ	0,035	0,037	0,062	
Strukturverfeinerung		SHELXL-97		
R ₁	0,254	0,179	0,074	
wR ₂	0,516	0,439	0,172	
GooF	4,653	2,524	1,611	

Tab. 61: Kristallographische Daten von $Cu_{1,45}M_{0,85}S_2$ (M = Tb – Lu)

Er	Tm	Yb	Lu				
trigonal							
	P3m1 (Nr. 164)						
a = 389,51(4)	a = 388,95(4)	a = 388,01(4)	a = 387,56(4)				
c = 627,14(6)	c = 625, 65(7)	c = 620,73(6)	c = 619,45(7)				
	1						
6,014	6,076	6,224	6,284				
49,63	49,35	48,74	48,54				
131,85	132,70	133,55	134,40				
32,65	32,72	32,46	32,52				
$-5 \le h \le 5$	$-5 \le h \le 5$	$-5 \le h \le 5$	$-5 \le h \le 5$				
$-5 \le k \le 5$	$-5 \le k \le 5$	$-5 \le k \le 5$	$-5 \leq k \leq 5$				
$-9 \le 1 \le 9$	$-9 \le l \le 9$	$-9 \le l \le 9$	$-9 \le 1 \le 9$				
1158	1169	1129	1154				
143	143	137	138				
31,76	33,18	34,86	36,38				
	X-SHAPE						
0,27(2)	0,15(9)	0,31(20)	0,59(36)				
0,028	0,116	0,119	0,057				
0,011	0,040	0,053	0,023				
	SHELXL-97						
0,012	0,071	0,113	0,073				
0,026	0,187	0,300	0,205				
1,180	1,740	2,861	2,091				
	Er a = $389,51(4)$ c = $627,14(6)$ 6,014 49,63 131,85 32,65 $-5 \le h \le 5$ $-5 \le h \le 5$ $-9 \le 1 \le 9$ 1158 143 31,76 0,27(2) 0,028 0,011 0,012 0,026 1,180	ErTmtrigonal $P\bar{3}m1 (Nr. 164)$ $a = 389,51(4)$ $a = 388,95(4)$ $c = 627,14(6)$ $c = 625,65(7)$ $c = 627,14(6)$ $c = 625,65(7)$ 1 1 $6,014$ $6,076$ $49,63$ $49,35$ $131,85$ $132,70$ $32,65$ $32,72$ $-5 \le h \le 5$ $-9 \le 1 \le 9$ $-9 \le 1 \le 9$ 1158 1169 143 143 $31,76$ $33,18$ $50,27(2)$ $0,15(9)$ $0,028$ $0,116$ $0,011$ $0,040$ SHELXL-97 $0,012$ $0,071$ $0,026$ $0,187$ $1,180$ $1,740$	ErTmYbtrigonalP $\overline{3}m1$ (Nr. 164)a = 389,51(4)a = 388,95(4)a = 388,01(4)c = 627,14(6)c = 625,65(7)c = 620,73(6)c = 627,14(6)c = 625,65(7)c = 620,73(6)1116,0146,0766,22449,6349,3548,74131,85132,70133,5532,6532,7232,46-5 ≤ h ≤ 5-5 ≤ h ≤ 5-9 ≤ 1 ≤ 9-9 ≤ 1 ≤ 9-9 ≤ 1 ≤ 911581169112914314313731,7633,1834,86X-SHAPE0,27(2)0,15(9)0,31(20)0,0280,1160,1190,0110,0400,053SHELXL-970,0120,0710,1130,0260,1870,3001,1801,7402,861				

Atom	Lage	x/a	y/b	z/c
М	1a	0	0	0
Cu	2d	1/3	2/3	M = Tb: 0,6281(18)
				Dy: 0,6207(3)
				Но: 0,6223(12)
				Er: 0,6212(1)
				Tm: 0,6178(9)
				Yb: 0,6010(30)
				Lu: 0,6070(21)
S	2d	1/3	2/3	M = Tb: 0,2588(38)
				Dy: 0,2482(3)
				Ho: 0,2482(1)
				Er: 0,2446(1)
				Tm: 0,2428(9)
				Yb: 0,2437(23)
				Lu: 0,2431(17)

Tab. 62: Atomlagen von $Cu_{1,45}M_{0,85}S_2$ (M = Tb-Lu)

Tab. 63:	Koeffizienten	der anisotropen Temperaturfaktoren ((U _{ij} /pm²)
	für Cu _{1,45} Tb _{0,85}	S ₂	

Atom	U11	U22	U33	U ₂₃	U13	U ₁₂
Cu	140(78)	= U ₁₁	386(100)	0	0	$= \frac{1}{2} U_{11}$
Tb	51(51)	= U ₁₁	117(62)	0	0	$= \frac{1}{2} U_{11}$
S	60(87)	= U ₁₁	134(110)	0	0	$= \frac{1}{2} U_{11}$

Tab. 64:	Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2)
	für $Cu_{1,45}Dy_{0,85}S_2$

Atom	U11	U22	U33	U ₂₃	U13	U ₁₂
Cu	574(103)	= U ₁₁	245(80)	0	0	$= \frac{1}{2} U_{11}$
Dy	110(30)	= U ₁₁	144(31)	0	0	$= \frac{1}{2} U_{11}$
S	229(56)	= U ₁₁	158(70)	0	0	$= \frac{1}{2} U_{11}$

Tab. 65: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) für $\text{Cu}_{1,45}\text{Ho}_{0,85}\text{S}_2$

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu	352(35)	= U ₁₁	278(49)	0	0	$= \frac{1}{2} U_{11}$
Но	172(20)	= U ₁₁	187(23)	0	0	$= \frac{1}{2} U_{11}$
S	197(37)	= U ₁₁	160(48)	0	0	$= \frac{1}{2} U_{11}$

Tab. 66: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) für Cu_{1,45}Er_{0.85}S₂

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U13	U ₁₂
Cu	230(4)	= U ₁₁	166(5)	0	0	$= \frac{1}{2} U_{11}$
Er	93(2)	= U ₁₁	99(2)	0	0	$= \frac{1}{2} U_{11}$
S	74(4)	= U ₁₁	83(5)	0	0	$= \frac{1}{2} U_{11}$

Tab. 67: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) für $Cu_{1,45}\text{Tm}_{0,85}\text{S}_2$

Atom	U11	U22	U33	U ₂₃	U13	U ₁₂
Cu	252(26)	= U ₁₁	239(35)	0	0	$= \frac{1}{2} U_{11}$
Tm	65(11)	= U ₁₁	139(13)	0	0	$= \frac{1}{2} U_{11}$
S	71(22)	= U ₁₁	127(33)	0	0	$= \frac{1}{2} U_{11}$

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu	631(85)	= U ₁₁	433(71)	0	0	$= \frac{1}{2} U_{11}$
Yb	94(19)	= U ₁₁	205(21)	0	0	$= \frac{1}{2} U_{11}$
S	201(40)	= U ₁₁	291(55)	0	0	$= \frac{1}{2} U_{11}$

Tab. 68: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) für $Cu_{1,45} Yb_{0,85} S_2$

Tab. 69: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) für $Cu_{1,45}Lu_{0,85}S_2$

Atom	U11	U22	U33	U ₂₃	U13	U ₁₂
Cu	393(83)	= U ₁₁	156(67)	0	0	$= \frac{1}{2} U_{11}$
Lu	97(19)	= U ₁₁	146(20)	0	0	$= \frac{1}{2} U_{11}$
S	146(48)	= U ₁₁	162(59)	0	0	$= \frac{1}{2} U_{11}$

Tab.70: Interatomare Abstände (d/pm) in $Cu_{1,45}M_{0,85}S_2$ (M = Tb - Lu)

Bindung	Abstand
Tb-S	278,9 (6×)
Cu–S	238,4 (3×)
-S'	243,3 (1×)
Dy-S	274,8 (6×)
Cu–S	241,2 (3×)
-S'	233,6 (1×)
Ho-S	273,9 (6×)
Cu–S	239,5 (3×)
-S'	234,8 (1×)
Er-S	272,2 (6×)
Cu–S	240,1 (3×)
-S'	236,2 (1×)

Bindung	Abstand
Tm-S	271,0 (6×)
Cu–S	240,4 (3×)
-S'	233,5 (1×)
Yb-S	270,3 (6×)
Cu–S	241,7 (3×)
-S'	227,3 (1×)
Lu-S	269,7 (6×)
Cu–S	242,3 (3×)
-S'	225,4 (1×)

Winkel	≮/grd	
S - Er - S	91,4 (6×)	
S - Er - S'	88,6 (6×)	
S'- Er - S'	180,0 (3×)	
S - Cu - S'	110,5 (3×)	
S - Cu - S'	108,4 (3×)	

Tab. 71: Ausgewählte Bindungswinkel (\measuredangle/grd) am Beispiel von Cu_{1,45}Er_{0,85}S₂

Tab. 72: Motive der gegenseitigen Zuordnung in den $Cu_{1,45}M_{0,85}S_2$ -Phasen

	S	CN	
Cu	4/4	4	
М	6/3	6	
CN	7		

3.3 Quaternäre Chalkogenide

Bei den Versuchen zur Darstellung der ternären kupferhaltigen Phasen CuMS₂ (monoklin, P2₁/c) wurden auch geringe Mengen an quaternären Nebenprodukten gebildet.

Hohe Temperaturen und lange Reaktionszeiten führten auch bei der Synthese von $Cu_{1,45}M_{0,85}S_2$ (M = Tb – Lu, trigonal, P $\overline{3}m1$) zur Freisetzung von Cs⁺-Kationen aus der Schmelze des als Flußmittel verwendeten Caesiumchlorids und somit zur Bildung der quaternären Phasen CsCu₃M₂S₅ (M = Dy, Er).

Bei Versuchen zur Synthese von CuMS₂ entstanden durch den Einsatz von oberflächlich oxidiertem Praseodym bzw. Lanthan die Verbindungen CuPrOS und CuLaOS [104] sowie geringe Mengen an CuLa₃OS₄.

3.3.1 $CsCu_3M_2S_5$ (M = Dy, Er)

Die Kristallstrukturen der quaternären Sulfide CsCu₃M₂S₅ (M = Dy, Er) (Abb. 48) zeigen große Analogien zu jener des kürzlich beschriebenen KCuGd₂S₄ [91], das ebenfalls eine Kanalstruktur, jedoch einen geringerem Cu₂S-Gehalt aufweist. Letzteres äußert sich darin, daß zwar die [GdS₆]⁹⁻-Oktaeder in KCuGd₂S₄ ein ganz ähnliches Konnektivitätsmuster (${}^{2}_{*}{(Gd_{2}S_{4})^{2-}}$ -Schichten) aufweisen wie jene ([MS₆]⁹⁻) in CsCu₃M₂S₅ (M = Dy, Er) und auch die K⁺-Kationen in Übereinstimmung mit ihren Cs⁺-Analoga durch 8+1 S²⁻-Liganden umgeben sind, aber die Funktion der (Cu2)⁺-Kationen wegfällt. Dadurch entstehen für die Cu–S–Teilstruktur in KCuGd₂S₄ lediglich Ketten vom Typ ${}^{1}_{*}{(CuS_{2/2}^{e}S_{2/1}^{t})^{5-}}$, die sich auch als (Cu1)–S-Teilstruktur in CsCu₃M₂S₅ (M = Dy, Er) wiederfinden lassen (Abb. 46).

Erst vor kurzer Zeit konnten darüber hinaus weitere mit KCuGd₂S₄ isotype Chalkogenide beschrieben werden, z. B. RbCuM₂S₄ (M = Nd, Sm), RbCuM₂Se₄ (M = Sm, Gd, Dy) und CsCuM₂Se₄ (M = La, Sm) [92, 93]. Auch der CsCu₃Er₂S₅-Typ wurde in Folge davon und am Beispiel von ACu₃M₂S₅ (A = Alkalimetalle, M = Selten-Erd-Metalle) und CsAg₃M₂Se₅ (M = Gd, Tb) [93, 94, 95] mittlerweile mehrfach verifiziert und überflüssigerweise als RbAg₃Sm₂Se₅-Typ [97] noch einmal in die Literatur eingeführt.
Darstellung von $CsCu_3M_2S_5$ (M = Dy, Er)

Bei der Umsetzung von Dysprosium- bzw. Erbium-Metall mit Kupfer und Schwefel im molaren Verhältnis von jeweils 1:1:2 bei 900°C wurden innerhalb von 14 Tagen in Gegenwart von CsCl als Flußmittel fast farblose bzw. blaßrosafarbene, hydrolyseunempfindliche, nadelförmige Einkristalle von CsCu₃M₂S₅ erhalten:

$$6 \operatorname{CsCl} + 15 \operatorname{S} + 9 \operatorname{Cu} + 7 \operatorname{M} \longrightarrow 3 \operatorname{CsCu}_3\operatorname{M}_2\operatorname{S}_5 + \operatorname{Cs}_3\operatorname{MCl}_6$$

Folglich ist bei den im Rahmen dieses Kapitels beschriebenen Synthesen die Freisetzung von Cs⁺-Kationen aus der Schmelze des als Flußmittels verwendeten Caesiumchlorids zur Bildung der quaternären Phasen CsCu₃M₂S₅ und CsCu₃M₂Se₅ [95] Bedingung. Die Umsetzung zur Darstellung von Verbindungen der Bruttoformel CuMS₂ bzw. Cu_{1,45}M_{0,85}S₂, bei denen diese quaternären Phasen als Nebenprodukte entstehen, kann also nicht nur gemäß der Reaktionsgleichung:

$$Cu + M + S + CsCl \longrightarrow CuMS_2 + CsCl$$

unter Nichtbeteiligung der freien Cs⁺- und Cl⁻-Ionen erfolgt sein. Vielmehr läßt sich die Entstehung der zahlreichen Nebenprodukte nur mit dem anteiligen Formelumsatz gemäß der Gleichung:

$$10,45 \text{ Cu} + 7,85 \text{ M} + 17 \text{ S} + 6 \text{ CsCl} \longrightarrow \text{Cu}_{1,45}\text{M}_{0,85}\text{S}_2 + 3 \text{ CsCu}_3\text{M}_2\text{S}_5 + \text{Cs}_3\text{MCl}_6$$

erklären. Eindeutig dafür spricht, daß sämtliche Produkte durch röntgenographische Methoden auch tatsächlich nachgewiesen werden konnten.

Kristallstruktur von CsCu₃M₂S₅ (M = Dy, Er)

Die Kristallstruktur (orthorhombisch, Cmcm (Nr. 63)) enthält $[MS_6]^9$ -Einheiten, die mit M–S-Abständen zwischen 269 und 278 pm (M = Er) bzw. 272 und 282 pm (M = Dy) und S–M–S-Winkeln im Bereich von 86 bis 94° sowie 174 bis 186° nahezu oktaedrische Gestalt aufweisen (Abb. 45; Tab. 78 + 79). Durch deren Verknüpfung

Abb. 44: Koordinationspolyeder um Cs⁺

Abb. 45: Koordinationspolyeder $um M^{3+}$

Abb. 46: Schicht der ecken- und kantenverknüpften [CuS₄]⁷-Tetraeder in der CsCu₃M₂S₅-Struktur (oben) und die Kette der eckenverknüpften [CuS₄]⁷-Tetraeder in der KCuGd₂S₄-Struktur (unten)

über Ecken und Kanten entstehen parallel (010) Schichten der Zusammensetzung ${}^{2}_{w}$ {(M₂S₅)⁴⁻} (Abb. 47). Zwei kristallographisch unterschiedliche Cu⁺-Kationen in verzerrt tetraedrischer Koordination von S²⁻-Anionen (d(Cu–S) = 227 – 266 pm für CsCu₃Er₂S₅; 229 – 269 pm für CsCu₃Dy₂S₅) vernetzen diese gemäß ${}^{3}_{w}$ {(Cu₃M₂S₅)⁻} längs [010] dreidimensional, wobei sich unter Ecken- und Kantenverknüpfung der [CuS₄]⁷⁻-Tetraeder ein ebenfalls schichtstrukturiertes Cu–S-Teilgitter der Zusammensetzung ${}^{2}_{w}$ {(Cu₃S₅)⁷⁻} parallel (010) ergibt. In letzterem erfolgt die Verknüpfung der [(Cu1)S₄]-Tetraeder über gemeinsame Ecken (S1) zu Ketten der

Zusammensetzung $\frac{1}{\alpha} \{ [(Cu1)(S1)_{2/2}^{e}(S2)_{2/1}^{t}]^{5-} \}$ (Abb. 46, unten) jene der $[(Cu2)S_4]$ -Tetraeder allerdings über gemeinsame Ecken (S3) und Kanten (S2…S2) zu $\frac{1}{\alpha} \{ [(Cu2)(S2)_{2/2}^{k}(S3)_{2/2}^{e}]^{3-} \}$ -Ketten, die sich jeweils entlang [100] ausbreiten (Abb. 46). Erst deren weitere Kondensation über gemeinsame (S2)²⁻-Anionen führt zu den bereits erwähnten Schichten $\frac{2}{\alpha} \{ (Cu_3S_5)^{7-} \}$ (Abb. 46 + 48), die parallel (010) gestapelt sind. Die Winkel S–Cu–S überstreichen ein breites Intervall (104 – 123° für Cu1 bzw. 105 – 114° für Cu2) und weichen recht stark vom idealen Tetraederwinkel ab (Tab. 78 + 79). Die Verknüpfung der jeweils parallel (010) verlaufenden Schichten $\frac{2}{\alpha} \{ (Cu_3S_5)^{7-} \}$ und $\frac{2}{\alpha} \{ (M_2S_5)^{4-} \}$ über sämtliche verfügbaren S²⁻-Anionen liefert schließlich das dreidimensionale Netz $\frac{3}{\alpha} \{ (Cu_3M_2S_5)^{-} \}$ (Abb. 48).

Innerhalb dieses ${}_{x}^{3}$ {(Cu₃M₂S₅)⁻}-Gerüstes verlaufen längs [100] große Kanäle, die zur Aufnahme der hochkoordinierten Cs⁺-Kationen dienen (Abb. 48). Mit acht Cs–S-Abständen zwischen 340 und 355 pm (für CsCu₃Er₂S₅) bzw. zwischen 340 und 358 pm (für CsCu₃Dy₂S₅) sowie einem neunten von 420 pm (für CsCu₃Er₂S₅) bzw. 421 pm (für CsCu₃Dy₂S₅) wird ein 2+1-fach überkapptes trigonales Prisma aus S²⁻ um Cs⁺ aufgebaut (Abb. 44).

	Dy	Er	
Kristallsystem	orthorhombis	ch	
Raumgruppe	Cmcm (Nr. 63)		
Gitterkonstanten	a = 397,54(4)	a = 394,82(3)	
(l/pm)	b = 1414,8(1)	b = 1410,9(1)	
	c = 1685,7(2)	c = 1667, 2(2)	
Zahl der Formel-	4		
einheiten (Z)			
berechnete Dichte	5,666	5,853	
$(D_x/g \cdot cm^{-3})$			
Molares Volumen	142,74	139,82	
$(V_m / cm^3 \cdot mol^{-1})$			
F(000)	1416	1432	
Meßbereich (Θ_{max}/grd)	33	28	
	$-4 \le h \le 4$	$-5 \le h \le 5$	
	$-21 \leq k \leq 21$	$-18 \le k \le 18$	
	$-25 \le l \le 25$	$-21 \le l \le 21$	
gemessene Reflexe	7584	4841	
davon	991	633	
symmetrieunabhängig			
μ/mm^{-1}	26,99	29,54	
Absorptionskorrektur	X-SHAPE/HAB	BITUS	
R _{int}	0,093	0,095	
R _σ	0,074	0,057	
Strukturbestimmung	SHELXS-8	6	
Strukturverfeinerung	SHELXL-9	93	
Extinktionskoeffizient	0,0063(4)	0,0002(5)	
R ₁	0,054	0,043	
	(für Reflexe mit	(für Reflexe mit	
	$F_{0} \geq 4\sigma(F_{0}))$	$F_0 \ge 4\sigma(F_0))$	
	0,116 (für	0,080 (für	
	alle Reflexe)	alle Reflexe)	
wR ₂	0,115	0,076	
GooF	0,836	0,940	

Tab. 73: Kristallographische Daten von $CsCu_3M_2S_5$ (M = Dy, Er)

Atom	Lage	x/a	y/b	z/c
Cs	4c	0	0,9349(13)	1/4
Cu1	4c	0	0,6522(3)	1/4
Cu2	8f	0	0,4174(2)	0,0378(2)
Dy	8f	0	0,19149(7)	0,40765(6)
S1	4c	0	0,2325(5)	1/4
S2	8f	0	0,4380(3)	0,6094(3)
S3	8f	0	0,1698(3)	0,5685(3)

Tab. 74: Atomlagen von CsCu₃Dy₂S₅

Tab. 75: Atomlagen von CsCu₃Er₂S₅

Atom	Lage	x/a	y/b	z/c
Cs	4c	0	0,9356(1)	1/4
Cu1	4c	0	0,6537(3)	1/4
Cu2	8f	0	0,4184(2)	0,03916(17)
Er	8f	0	0,19214(6)	0,40745(5)
S1	4c	0	0,2329(5)	1/4
S2	8f	0	0,4366(3)	0,6099(3)
S3	8f	0	0,1727(3)	0,5681(3)

Tab. 76: Koeffizienten der anisotropen Temperaturfaktoren $(\rm U_{ij}/pm^2)$ für CsCu_3Dy_2S_5

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U13	U ₁₂
Cs	384(12)	338(8)	390(10)	0	0	0
Cu1	476(31)	440(21)	652(29)	0	0	0
Cu2	509(20)	351(12)	425(16)	-17(11)	0	0
Dy	319(6)	279(4)	393(5)	6(4)	0	0
S1	194(38)	392(33)	348(33)	0	0	0
S2	280(29)	327(20)	421(29)	-55(18)	0	0
S3	358(30)	207(18)	292(21)	-44(13)	0	0

Atom	U11	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
Cs	108(11)	181(9)	198(10)	0	0	0
Cu1	164(23)	244(20)	271(26)	0	0	0
Cu2	161(17)	173(12)	259(14)	-17(11)	0	0
Er	94(5)	120(4)	139(4)	4(4)	0	0
S 1	89(44)	127(32)	178(35)	0	0	0
S2	95(29)	126(21)	148(27)	9(17)	0	0
S3	98(31)	161(28)	157(24)	28(17)	0	0

Tab. 77: Koeffizienten der anisotropen Temperaturfaktoren $(\rm U_{ij}/pm^2)$ für CsCu_3Er_2S_5

Tab. 78: Ausgewählte interatomare Abstände (d/pm) für $C_s Cu_3 M_2 S_5$ (M = Dy, Er)

CsCu ₃ Dy ₂ S ₅	S_5
--	-------

Bindung	d/pm
Cs-S1	348,6 (2×)
-S1'	421,0 (1×)
-S2	357,8 (4×)
-\$3	339,9 (2×)
Dy-S1	272,0 (1×)
-S2	271,8 (2×)
-\$3	282,2 (2×)
-\$3'	272,9 (1×)
Cu1-S1	228,9 (2×)
-S2	269,2 (2×)
Cu2-S2	237,5 (1×)
-S2'	249,8 (1×)
-\$3	239,6 (2×)

$CsCu_3Er_2S_5$	
Bindung	d/pm
Cs-S1	347,5 (2×)
-S1'	419,5 (1×)
-S2	355,0 (4×)
-\$3	339,6 (2×)
Er-S1	268,7 (1×)
-S2	269,8 (2×)
-\$3	277,5 (2×)
-\$3'	269,2 (1×)
Cu1-S1	226,8 (2×)
-S2	266,1 (2×)
Cu2-S2	236,1 (1×)
-S2'	249,9 (1×)
-\$3	240,4 (2×)

Bindung	Winkel (≮/grd) für M = Dy	Winkel (∢/grd) für M = Er
S1-Cu1-S1'	120,5	121,0
S1-Cu1-S2	103,6 (4×)	103,6 (4×)
S2'-Cu1-S2''	123,4	122,7
S2-Cu2-S2'	113,8	114,1
S2-Cu2-S3	109,5 (2×)	111,3 (2×)
S2'-Cu2-S3	105,9 (2×)	104,7 (2×)
\$3-Cu2-\$3'	112,1	112,3
S1-M-S2	92,3 (2×)	92,3 (2×)
S1-M-S3	174,1	173,5
S1-M-S3''	89,5 (2×)	89,8 (2×)
S2-M-S2'	94,0	94,1
S2-M-S3	91,7 (2×)	92,2 (2×)
S2'-M-S3	177,1 (2×)	177,3 (2×)
S3'-M-S2	88,2 (2×)	87,6 (2×)
S3'-M-S3''	86,4 (2×)	85,3 (2×)
S3''-M-S3'''	89,6	90,7

Tab. 79: Ausgewählte Bindungswinkel ($\not</grd$) in den quaternären Sulfiden CsCu_3M_2S_5 (M = Dy, Er)

Tab. 80: Motive der gegenseitigen Zuordnung in der CsCu₃M₂S₅-Struktur

	S1	S2	S3	CN
Cs	2+1/2+1	4/2	2/1	8+1
Cu1	2/2	2/1	0/0	4
Cu2	0/0	2/2	2/2	4
М	1/2	2/2	3/3	6
CN	6+1	7	6	

3.3.2 Kristallstruktur von CuPrOS

Darstellung von CuPrOS

Bei der Umsetzung von elementarem Kupfer mit Praseodym und Schwefel im CsCl-Flux bei 850°C entstanden innerhalb von sieben Tagen in evakuierten Quarzglasampullen neben dem erhofften Zielprodukt CuPrS₂ auch einige Kristalle von CuPrOS. Diese Reaktion wurde durch den Einsatz von oberflächlich oxidiertem Praseodym-Metall ermöglicht:

 $Pr_2O_3 + 3 Cu + 3 S + Pr \longrightarrow 3 CuPrOS.$

Die gezielte Darstellung von CuPrOS gelang bei der Umsetzung von Cu₂O mit Praseodym und Schwefel unter denselben Reaktionsbedingungen nahezu quantitativ gemäß der Gleichung:

 $2 \operatorname{Cu_2O} + 2 \operatorname{Pr} + 3 \operatorname{S} \longrightarrow 2 \operatorname{CuPrOS} + \operatorname{Cu_2S}.$

CuPrOS ist eine gelbgrüne Substanz in Form hydrolyseunempfindlicher, dünner, plättchenförmiger Einkristalle mit quadratischem Querschnitt.

Kristallstruktur von CuPrOS

Der Aufbau von CuPrOS (Abb. 49) [69] kann auf der Basis einer anionischen Teilstruktur vom PbFCl-Typ [73] gemäß ${}^{2}_{\alpha}$ [[(Pr³⁺)(O²⁻)_{4/4}(S²⁻)_{4/4}]⁻] (Abb. 49) mit Pr³⁺ in quadratisch-antiprismatischer Koordination aus jeweils vier O²⁻- und S²⁻-Anionen (Abb. 53) beschrieben werden, in der zum Ladungsausgleich Cu⁺-Kationen in die tetraedrischen Lücken zwischen den S²⁻-Doppelschichten eingelagert sind. Eine andere Beschreibung beruht auf zwei Arten von Schichten, eine anionische der Zusammensetzung ${}^{2}_{\alpha}$ [[(Cu⁺)(S²⁻)_{4/4}]⁻] (Abb. 51) und eine kationische gemäß ${}^{2}_{\alpha}$ [[(O²⁻)(Pr³⁺)_{4/4}]⁺] (Abb.50), die aus kondensierten [(Cu⁺)(S²⁻)₄]⁷⁻ und [(O²⁻)(Pr³⁺)₄]¹⁰⁺-Tetraedern bestehen. Beide Arten von Tetraedern sind über vier ihrer insgesamt sechs Kanten zu quadratischen Schichten mit identischer Topologie verknüpft, deren alternierende Stapelung parallel (001) erfolgt (Abb. 52).

Abb. 49: Blick auf die Kristallstruktur von CuPrOS entlang [100]

Abb. 50: Blick auf die $[OPr_4]$ -Tetraederschicht ${}^2_{\infty}{[(O^{2-})(Pr^{3+})_{4/4}]^+}$ in CuPrOS entlang [001]

Die wichtigsten interatomaren Abstände zwischen entgegengesetzt geladenen Ionen reichen von 233 pm (d($O^{2-}-Pr^{3+}$), 4×) über 243 pm (d($Cu^{+}-S^{2-}$), 4×) bis hin zu 320 pm (d($Pr^{3+}-S^{2-}$), 4×) und auch die Abstände zwischen den gleichgeladenen Teilchen in tetraedrischer Koordination fallen mit 279 pm (d($O^{2-}\cdots O^{2-}$) = d($Cu^{+}\cdots Cu^{+}$), je 4×) recht kurz aus (Tab. 83). Dagegen trifft man sehr lange Abstände zwischen den Kationen (d($Cu^{+}\cdots Pr^{3+}$) = 357 pm, d($Pr^{3+}\cdots Pr^{3+}$) = 373 und 394 pm) und den Anionen (d($O^{2-}\cdots S^{2-}$) = 343 pm, d($S^{2-}\cdots S^{2-}$) = 394 und 397 pm), aber auch zwischen Cu⁺ und O^{2-} (422 pm) an (Tab. 83). Die Winkel um die tetraedrisch koordinierten Zentralteilchen weichen mit 108,6 (2×) und 109,9° (4×) für \leq (S–Cu–S) bzw. 106,4 (4×) und 115,7° (2×) für \leq (Pr–O–Pr) nicht allzu dramatisch vom Idealwert ab, wobei aber bemerkenswert ist, daß beim »härteren« Paar O^{2-}/Pr^{3+} größere Abweichungen auf-

Abb. 51: Blick entlang [001] auf die [CuS₄]-Tetraederschicht $\frac{2}{\pi} \{ [(Cu^{+})(S^{2-})_{4/4}]^{-} \}$ in CuPrOS

treten als beim »weicheren« Cu⁺/S²⁻. Vergleicht man das anionische Arrangement ${}^{2}_{\infty}$ {[(Pr³⁺)(O²⁻)_{4/4}(S²⁻)_{4/4}]⁻} mit dem *quasi*-isostrukturellen, elektroneutralen ${}^{3}_{\infty}$ {[(Pr³⁺)(F⁻)_{4/4}(S²⁻)_{5/5}]} in A-PrFS [21] (»nicht-aufgefüllter« PbFCl-Typ), so sind in letzterem mit 254 pm (4×) deutlich längere Abstände von Pr³⁺ zum Leichtanion (F⁻) anzutreffen als in CuPrOS (d(Pr³⁺-O²⁻) = 233 pm, 4×). Dagegen bleiben die Pr³⁺-S²⁻ Abstände in CuPrOS als Folge der Cu⁺-Intercalation nicht nur quantitativ (vier gegenüber fünf), sondern auch qualitativ (4 × 320 pm *versus* 1 × 290 und 4 × 292 pm) hinter denen in A-PrFS zurück.Eine bessere Übereinstimmung zeigen dagegen sowohl die Cu⁺-S²⁻-Abstände (243 pm, 4×) als auch die Pr³⁺-S²⁻-Abstände (320 pm, 4×) im Vergleich zu jenen (d(Cu⁺-S²⁻) = 233 – 248 pm, CN = 4 bzw. d(Pr³⁺-S²⁻) = 284 – 304 pm, CN = 7) im monoklinen CuPrS₂.

Cu⁺

Kristallsystem	tetragonal
Raumgruppe	P4/nmm (Nr. 129)
Gitterkonstanten	a = 394,19(4)
(l/pm)	c = 843,98(9)
Zahl der Formel-	2
einheiten (Z)	
Berechnete Dichte	6,396
$(D_x/g \cdot cm^{-3})$	
Molares Volumen	39,487
$(V_m/cm^3 \cdot mol^{-1})$	
F(000)	224
Meßbereich (Θ_{max}/grd)	32,59
	$-5 \le h \le 5$
	$-5 \le k \le 5$
	$-12 \le l \le 12$
gemessene Reflexe	1842
davon symmetrie-	175
unabhängig	
μ/mm^{-1}	26,91
Absorptionskorrektur	X-SHAPE
R _{int}	0,0672
R _σ	0,0236
Strukturverfeinerung	SHELXL-97
Extinktionskoeffizient	0,03087(4)
R ₁	0,032
wR ₂	0,062
GooF	1,045

Tab. 81: Kristallographische Daten von CuPrOS

Atom	Lage	x/a	y/b	z/c
Cu	2b	3/4	1/4	1/2
Pr	2c	1/4	1/4	0,14671(8)
0	2a	3/4	1/4	0
S	2c	1/4	1/4	0,6678(3)

Tab. 82: Lageparameter von CuPrOS

Tab. 83: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm²) für CuPrOS

Atom	U11	U22	U33	U ₂₃	U13	U12
Cu	201(5)	= U ₁₁	204(8)	0	0	0
Pr	57(3)	= U ₁₁	92(4)	0	0	0
0	38(17)	= U ₁₁	90(30)	0	0	0
S	76(7)	= U ₁₁	87(12)	0	0	0

Tab. 84: Interatomare Abstände(d/pm) in CuPrOS

Bindung	d/pm
Cu-S	242,7 (4×)
Pr-O	232,8 (4×)
-S	319,7 (4×)

Tab.85: Ausgewählte Bindungswinkel (≮/grd) in CuPrOS

Bindung	Winkel (∢/grd)		
S-Cu-S'	108,6 (2×)		
S-Cu-S"	109,9 (4×)		
Pr-O-Pr'	115,7 (2×)		
Pr-O-Pr''	106,4 (4×)		

Tab. 86: Motive der gegenseitigen Zuordnung in CuPrOS

	0	S	CN
Cu	0/0	4/4	4
Pr	4/4	4/4	8
CN	4	8	

3.3.3 CuLa₃OS₄

Der Einsatz von oberflächlich oxidierten Metallen bei der Synthese von ternären Kupfer-Lanthan-Sulfiden (z. B. CuLaS₂) führte zur Bildung von zwei unterschiedlichen quaternären Phasen im System Cu/La/O/S. Zum Einen entstehen farblose, dünne, plättchenförmige Einkristalle von CuPrOS-analogem CuLaOS (tetragonal, P4/nmm) mit quadratischem Querschnitt und aufgefüllter PbFCl-Struktur [104] (AgLaOS-Typ [13]). Zum Anderen treten in sehr geringer Menge auch fast farblose Nädelchen des bislang unbekannten Kupfer(I)-Lanthan(III)-Oxidsulfids CuLa₃OS₄ (orthorhombisch, Pnma) in Erscheinung.

Darstellung von CuLa₃OS₄

Bei Versuchen zur Synthese von CuLaS₂ (monoklin, P2₁/c) durch Umsetzung von Lanthan-Metall mit Schwefel und Kupfer im molaren Verhältnis 1:1:2 im CsCl-Flux bei 850°C bildeten sich innerhalb von sieben Tagen in evakuierten Quarzglasampullen als Nebenprodukt einige blaß-strohfarbene, nadelförmige Kristalle von CuLa₃OS₄, die sich als wasser- und luftstabil erwiesen:

$$7 \text{La} + \text{La}_2\text{O}_3 + 3 \text{Cu} + 12 \text{S} \longrightarrow 3 \text{CuLa}_3\text{OS}_4$$

Kristallstruktur von CuLa₃OS₄

Die Kristallstruktur enthält wie jene von CuPrOS (bzw. CuLaOS) Cu⁺-Kationen in tetraedrischer Koordination von S²⁻-Anionen und sowohl O²⁻-Anionen in tetraedrischer als auch nahezu trigonaler Koordination von La³⁺ (Abb. 56). Während sowohl die [CuS₄]⁷⁻ als auch die [OLa₄]¹⁰⁺-Tetraeder in der CuLaOS-Struktur (s. Kap. 3.3.2 bez. CuPrOS) mit ihresgleichen über je vier Kanten zu quadratischen Schichten der Zusammensetzung $\frac{2}{2}$ {[CuS_{4/4}]⁻} bzw. $\frac{2}{2}$ {[OLa_{4/4}]⁺} verknüpft sind, welche parallel (001) alternierend gestapelt werden, zeichnet sich die CuLa₃OS₄-Struktur eher durch kettenförmige Strukturelemente längs [010] aus. Die [OLa₄]¹⁰⁺-Einheiten treten hierbei über gemeinsame Ecken zu vier Einer-Dreifach-Ketten vom Typ

Abb. 55: Band der eckenverknüpften [OLa₄]¹⁰⁺-Tetraeder in CuLa₃OS₄ mit Blick in Richtung [010]

Abb. 56: Sauerstoff-zentrierte Tetraeder mit Lanthan-Liganden in CuLa₃OS₄ $([(O1)-La_4]^{10+}, links; [(O2)-La_4]^{10+}, Mitte; [(O3)-La_4]^{10+}, rechts)$

Abb. 57: Schicht der verknüpften [CuS₄]⁷⁻-Tetraeder in CuLa₃OS₄ mit Blick in Richtung [010]

Abb. 58: Sicht auf die eckenverknüpften [CuS₄]⁷⁻-Tetraeder in CuLa₃OS₄ in Richtung [010]

 ${}_{a}^{1}[[O_{3}La_{7}]^{15+}]$ zusammen (Abb. 55). Die $[CuS_{4}]^{7-}$ Einheiten bilden ebenfalls durch Eckenverknüpfung miteinander sowohl vier Einer-Einfach-Ketten mit dem Motiv ${}_{a}^{1}[[CuS_{3}]^{5-}]$ (Abb. 58) als auch zwei Einer-Vierfach-Ketten der Zusammensetzung ${}_{a}^{1}[[Cu_{4}S_{8}]^{12-}]$ pro Elementarzelle aus (Abb. 57). Diese bestehen aus zwei flächenverknüpften $[Cu_{2}S_{5}]^{8-}$ Einheiten, welche ihrerseits mittels Kondensation der jeweils *trans*-ständigen Kante $[Cu_{4}S_{8}]^{12-}$ Einheiten längs [100] ausbilden. An den bezüglich der Flächenverbindung terminalen Sulfidanionen werden mittels *trans*-Eckenver-

Abb. 59: Schicht der verknüpften [CuS₄]⁷⁻-Tetraeder in CuLa₃OS₄ mit Blick in Richtung [010]

knüpfung zwei weitere $[CuS_4]^7$ -Tetraeder-Einheiten zu einem Band der formalen Zusammensetzung ${}^{1}_{*}[[Cu_6S_{14}]^{22}]$ ankondensiert (Abb. 57).

Im direkten Vergleich der Bindungsabstände innerhalb der Tetraeder der Einer-Einfach-Kette mit denjenigen der Einer-Vierfach-Ketten fallen die stark variierenden Bindungslängen innerhalb der vierfach-kondensierten Cu–S-Polyeder auf, welche eine starke Verzerrung dieser Tetraeder bewirken.

So liegen die Bindungsabstände in den lediglich längs [010] eckenverknüpften $[(Cu1)S_4]^7$ -Einheiten im Bereich von 228 bis 239 pm, während diejenigen der höher

Abb. 60: Koordinationspolyeder um (La1)³⁺ (links) und (La2)³⁺ (rechts)

Abb. 61: Koordinationspolyeder um (La3)³⁺ (links) und (La4)³⁺ (rechts)

Abb. 62: Koordinationspolyeder um (La5)³⁺ (links) und (La6)³⁺ (rechts)

Abb. 63: Koordinationspolyeder um (La7)³⁺ (links) und (La8)³⁺ (rechts)

kondensierten Tetraeder-Einheiten von 229 bis 251 pm ein sehr weites Intervall überstreichen. Dabei sind innerhalb der $[Cu_4S_9]^{14}$ -Einheiten die bezüglich der Flächenverknüpfung terminalen Cu–S-Abstände am längsten (243 – 251 pm), während diejenigen Cu–S-Abstände, welche an der Eckenverknüpfung in Richtung [010] beteiligt sind, mit 229 – 230 pm am kürzesten ausfallen.

Die Rechendaten geben den Abstand d(Cu3 – Cu4) mit 124 pm an, was physikalisch gesehen auf eine Teilbesetzung der Cu3- sowie ihrer benachbarten Cu4-Lage hinweist. Durch Freigabe der Besetzungsfaktoren im Verlaufe der Kristallstrukturverfeinerung wird ersichtlich, daß tatsächlich eine statistische Halbbesetzung der Cu3- sowie der Cu4-Lage vorliegt. So läßt sich die genaue Zusammensetzung dieser Teilstruktur korrekterweise durch die Formel $\frac{1}{\alpha} \{ [Cu_2 \Box_2 S_8]^{12-} \}$ anstatt $\frac{1}{\alpha} \{ [Cu_4 S_8]^{12-} \}$ beschreiben, wobei die Cu3- mit der Cu4-Lage natürlich korreliert.

Physikalisch sinnvoll kann so diese Struktur für das Einer-Vierfach-Band anstatt mit ${}^{1}_{x}$ {[(Cu3(4))(S^t_{1/1}S^t_{1/3}S^k_{2/5}) \Box (S^t_{1/1}S^k_{1/3}S^k_{2/5})((Cu2)S^e_{2/2}S^t_{1/1}S^t_{1/3})₂]²⁴⁻} durch die vereinfachte *Niggli*-Formel ${}^{1}_{x}$ {[(Cu3(4))S^t_{1/1}S^e_{1/2}S^k_{2/3})₂((Cu2)S^e_{2/2}S^t_{1/1}S^t_{1/3})₂]²⁴⁻} beschrieben werden (Abb. 59).

Ein weiterer Hinweis für die Halbbesezung der Kupferlagen bilden die hohen Werte der anisotropen Temperaturfaktoren von Cu3 und Cu4, welche sich von Cu1 und Cu2 deutlich unterscheiden (Tab. 89). Daraus könnte auch eine hohe Ionenleitfähigkeit dieser Festkörperverbindung resultieren. Ein weiteres Indiz dafür liefern die ECoN-Werte der MAPLE-Daten, besonders diejenigen von S5 und S7, welche die verbrückenden Liganden des flächenverknüpften Tetraederdoppels um Cu3… Cu4 bilden. Sie liegen mit dem Wert von sieben bis acht außergewöhnlich hoch, während sich diejenigen der übrigen Sulfidanionen dieses Systems im üblichen Bereich von fünf bis sechs bewegen.

Die Einer-Einfach-Kette ist im Vergleich dazu recht einfach aufgebaut. Sie besteht aus eckenverknüpften kupfer-zentrierten Tetraedern der Zusammensetzung $\frac{1}{\alpha}$ {[CuS^e_{2/2}S^t_{2/1}]⁵⁻}, welche sehr regelmäßig ausgebildet sind (Abb. 58). Die Bindungsabstände bewegen sich mit d(Cu1–S) von 228 – 238 pm im üblichen Bereich. Im Vergleich mit CuLaOS [121] fallen auch die starken Unregelmäßigkeiten der lanthan-zentrierten Polyeder auf.

Während der La–S-Abstand in CuLaOS mit 323 pm sehr lang erscheint und Lanthan sich in einer regelmäßigen achtfachen Koordination mit je vier Oxid- und Sulfidanionen befindet, fallen die Abstände La–S in La₃CuOS₄ bei vergleichbarer Koordinationsumgebung (vgl. Abb. 55 + 66) sehr viel kürzer aus. Auch die Werte der La–O-Abstände sind ungewöhnlich breit gestreut. Sie reichen über die schon beschriebenen und durchaus üblichen 233 pm bis hin zu 285 pm, also in den Bereich, in dem auch die Werte der La–S-Bindungen liegen. Die La–S-Abstände variieren mit 283 – 353 pm genauso stark, wodurch eine extrem starke Verzerrung der lanthan- bzw. sauerstoff-zentrierten Koordinationspolyeder resultiert. Die La³⁺-Kationen nehmen hierbei Koordinationszahlen von sieben, acht und neun gegen-über den Chalkogenidanionen ein (Abb. 60 – 64).

Die $[OLa_4]^{10+}$ -Einheiten sind über Eckenverknüpfung zu Einer-Dreifach-Ketten mit der Zusammensetzung ${}^{1}_{2} \{ [(O3)(La_{2/2}^{e}La_{1/2}^{t}La_{1/1}^{e})] [(O2)(La_{4/4})(O1)(La_{2/2}^{e}La_{1/2}^{t}La_{1/1}^{e})]^{5-} \}$ kondensiert (Abb. 55), wobei sich diese drei Tetraeder-Einheiten sowohl im Konnektivitätsmuster als auch in den Bindungsabständen unterscheiden.

Die verbrückenden Polyeder der Dreierkette sind über sämtliche Ecken mit den benachbarten Polyedern verknüpft. Die Bindungsabstände variieren hierbei extrem stark, wobei die Bindung zum Lanthan-Kation, welches die terminalen Polyeder verbrückt, am längsten sind (d(O2-La) = 285 und 251 pm), während diejenige Bindung in Richtung [010], also zum identischen Nachbarn, sehr kurz ausfällt (d(O2-La) = 235 pm).

Die beiden terminal verknüpften Einheiten sind an zwei ihrer drei Ecken verbunden, wobei sie sich aber bezüglich ihrer Bindungslängen beträchtlich unterscheiden: Während das Polyeder um das $(O1)^{2-}$ -Anion stark variierende Bindungsabstände von 233 – 279 pm aufweist, fallen die Werte des Polyeders mit $(O3)^{2-}$ als Zentralanion mit Werten von 241 – 256 pm relativ einheitlich aus.

Die noch zur Realisierung der verzwölffachten Formel Cu₁₂La₃₆O₁₂S₄₈ verbleibenden acht La³⁺- und achtzehn S²⁻-Ionen füllen schließlich die Elementarzelle auf und sorgen so für den Zusammenhalt der kationischen und anionischen Bänder sowie den Ladungsausgleich (Abb. 65 + 66).

Kristallsystem	orthorhombisch
Raumgruppe	Pnma (Nr. 62)
Gitterkonstanten	a = 1187,8(1)
(l/pm)	b = 408,61(3)
	c = 4684, 6(3)
Zahl der Formel-	12
einheiten (Z)	
Berechnete Dichte	5,473
$(D_x/g \cdot cm^{-3})$	
Molares Volumen	114,10
$(V_m/cm^3 \cdot mol^{-1})$	
F(000)	3264
Meßbereich (Θ_{max}/grd)	20,82
	$-11 \le h \le 11$
	$-4 \le k \le 4$
	$-46 \le l \le 46$
gemessene Reflexe	11814
davon symmetrie-	1398
unabhängig	
μ/mm^{-1}	20,34
Absorptionskorrektur	X-SHAPE
R _{int}	0,086
R _σ	0,078
Strukturverfeinerung	SHELXL-93
R ₁	0,072
wR ₂	0,079
GooF	0,841

Tab. 87: Kristallographische Daten von CuLa₃OS₄

Atom	Lage	x/a	y/b	z/c
Cu1	4c	0,4290(4)	1/4	0,8318(1)
Cu2	4c	0,2304(4)	1/4	0,5849(1)
Cu3 ^{a)}	4c	0,3212(8)	1/4	0,4919(2)
Cu4 ^{b)}	4c	0,4209(8)	1/4	0,4000(2)
La1	4c	0,2874(2)	1/4	0,9379(1)
La2	4c	0,3706(2)	1/4	0,6475(1)
La3	4c	0,2863(2)	1/4	0,7724(1)
La4	4c	0,3237(2)	1⁄4	0,3652(1)
La5	4c	0,4956(2)	1/4	0,2885(1)
La6	4c	0,0104(2)	1/4	0,0612(1)
La7	4c	0,3643(2)	1⁄4	0,2085(1)
La8	4c	0,3632(2)	1/4	0,0285(1)
La9	4c	0,4616(2)	1/4	0,1189(1)
01	4c	0,290(2)	1/4	0,4243(6)
O2	4c	0,043(2)	1/4	0,1593(6)
O3	4c	0,312(2)	1/4	0,2615(6)
S 1	4c	0,1112(7)	1⁄4	0,3126(2)
S2	4c	0,3480(7)	1/4	0,8779(2)
S3	4c	0,1259(7)	1/4	0,6581(2)
S4	4c	0,2220(7)	1⁄4	0,1054(2)
S5	4c	0,3158(7)	1/4	0,5400(2)
S6	4c	0,0428(7)	1/4	0,5703(2)
S7	4c	0,1031(7)	1/4	0,9761(2)
S8	4c	0,1124(7)	1/4	0,4831(2)
S9	4c	0,1225(7)	1⁄4	0,8201(2)
S10	4c	0,0298(7)	1/4	0,7426(2)
S11	4c	0,0446(7)	1/4	0,8955(2)
S12	4c	0,3195(7)	1/4	0,7099(2)

Tab. 88: Atomlagen von CuLa₃OS₄

^{a)} Besetzungsfaktor: sof (Cu3) = 0,504(9)

^{b)} Besetzungsfaktor: sof (Cu4) = 0,498(9)

U11	U ₂₂	U ₃₃	U ₂₃	U13	U12
268(26)	176(29)	276(25)	0	20(19)	0
305(26)	217(31)	237(24)	0	26(19)	0
351(83)	297(70)	245(61)	0	130(46)	0
184(78)	244(72)	174(9)	0	-68(43)	0
167(11)	133(13)	159(10)	0	-9(8)	0
133(11)	91(13)	106(10)	0	6(7)	0
156(11)	68(13)	129(10)	0	30(8)	0
342(13)	45(13)	265(12)	0	-61(9)	0
389(14)	136(13)	198(12)	0	-113(9)	0
298(12)	52(13)	187(10)	0	-28(9)	0
324(13)	100(14)	267(12)	0	121(9)	0
177(11)	54(13)	197(11)	0	14(8)	0
137(11)	51(13)	212(11)	0	57(8)	0
392(151)	161(144)	209(118)	0	-145(100)	0
441(182)	212(177)	373(139)	0	-14(104)	0
216(150)	194(163)	460(157)	0	129(115)	0
84(44)	116(58)	208(45)	0	-63(34)	0
177(47)	70(54)	138(43)	0	-43(32)	0
151(45)	130(58)	102(41)	0	-13(33)	0
126(43)	103(54)	123(39)	0	59(31)	0
118(45)	179(60)	272(48)	0	-79(38)	0
94(39)	103(54)	112(40)	0	-38(31)	0
275(52)	85(58)	146(45)	0	51(36)	0
247(53)	159(60)	67(38)	0	118(34)	0
227(53)	271(67)	135(46)	0	-53(36)	0
189(51)	190(59)	110(42)	0	73(34)	0
155(40)	179(60)	200(43)	0	43(32)	0
198(50)	373(81)	114(45)	0	-1(33)	0
	U ₁₁ 268(26) 305(26) 351(83) 184(78) 167(11) 133(11) 156(11) 342(13) 342(13) 389(14) 298(12) 324(13) 177(11) 137(11) 392(151) 441(182) 216(150) 84(44) 177(47) 151(45) 126(43) 118(45) 94(39) 275(52) 247(53) 227(53) 189(51) 155(40) 198(50)	U_{11} U_{22} 268(26)176(29)305(26)217(31)351(83)297(70)184(78)244(72)167(11)133(13)133(11)91(13)135(13)45(13)342(13)45(13)342(13)45(13)389(14)136(13)298(12)52(13)324(13)100(14)177(11)54(13)392(151)161(144)441(182)212(177)216(150)194(163)84(44)116(58)177(47)70(54)151(45)130(58)126(43)103(54)126(43)103(54)126(43)103(54)275(52)85(58)247(53)159(60)227(53)271(67)189(51)190(59)155(40)179(60)198(50)373(81)	U_{11} U_{22} U_{33} 268(26)176(29)276(25)305(26)217(31)237(24)351(83)297(70)245(61)184(78)244(72)174(9)167(11)133(13)159(10)133(11)91(13)106(10)135(13)45(13)265(12)389(14)136(13)198(12)298(12)52(13)187(10)324(13)100(14)267(12)177(11)54(13)197(11)37(11)51(13)212(11)392(151)161(144)209(118)441(182)212(177)373(139)216(150)194(163)460(157)84(44)116(58)208(45)177(47)70(54)138(43)151(45)130(58)102(41)126(43)103(54)123(39)118(45)179(60)272(48)94(39)103(54)112(40)275(52)85(58)146(45)247(53)159(60)67(38)227(53)271(67)135(46)189(51)190(59)110(42)155(40)179(60)200(43)198(50)373(81)114(45)	U_{11} U_{22} U_{33} U_{23} 268(26)176(29)276(25)0305(26)217(31)237(24)0351(83)297(70)245(61)0184(78)244(72)174(9)0167(11)133(13)159(10)0133(11)91(13)106(10)0156(11)68(13)129(10)0342(13)45(13)265(12)0389(14)136(13)198(12)0298(12)52(13)187(10)0324(13)100(14)267(12)0177(11)54(13)197(11)0392(151)161(144)209(118)0392(151)161(144)209(118)0441(182)212(177)373(139)0216(150)194(163)460(157)084(44)116(58)208(45)0177(47)70(54)138(43)0151(45)130(58)102(41)0126(43)103(54)123(39)0118(45)179(60)272(48)094(39)103(54)112(40)0227(53)271(67)135(46)0189(51)190(59)110(42)0155(40)179(60)200(43)0198(50)373(81)114(45)0	U_{11} U_{22} U_{33} U_{23} U_{13} 268(26)176(29)276(25)020(19)305(26)217(31)237(24)026(19)351(83)297(70)245(61)0130(46)184(78)244(72)174(9)0-68(43)167(11)133(13)159(10)0-9(8)133(11)91(13)106(10)06(7)156(11)68(13)129(10)030(8)342(13)45(13)265(12)0-61(9)389(14)136(13)198(12)0-113(9)298(12)52(13)187(10)0-28(9)324(13)100(14)267(12)0121(9)177(11)54(13)197(11)014(8)137(11)51(13)212(11)057(8)392(151)161(144)209(118)0-145(100)441(182)212(177)373(139)0-144(104)216(150)194(163)460(157)0129(115)84(44)116(58)208(45)0-63(34)177(47)70(54)138(43)0-43(32)151(45)130(58)102(41)0-38(31)126(43)103(54)112(40)0-38(31)275(52)85(58)146(45)051(36)247(53)159(60)67(38)0118(34)227(53)271(67)135(46)0-53(36)189(51)190(59)110(42)<

Tab. 89: Koeffizienten der anisotropen Temperaturfaktoren $({\rm U}_{ij}/{\rm pm}^2)$ für CuLa_3OS_4

Bindung	d/pm
La1–O1	233,0 (2×)
-S2	290,4
-S6	305,8
-S7	282,6
-\$8	317,2 (2×)
-S11	350,3
La2-O2	235,1 (2×)
-\$3	294,8
-S4	304,8 (2×)
-\$9	335,3
-S11	288,9
-S12	289,1
La3-O3	240,8 (2×)
-S1	303,3 (2×)
-\$9	296,2
-S10	297,6
-S10'	335,1
-S12	295,5
La4-O1	279,6
-O2	284,7
-\$1	352,9
-\$2	294,7 (2×)
-\$9	300,9 (2×)
-S11	293,8 (2×)
La5-O2	250,5
-03	252,3
-89	288,5 (2×)
-S10	298,4 (2×)
-S12	300,0 (2×)

Bindung	d/pm
La6-01	270,4
-S4	325,5
-\$5	305,5 (2×)
-S7	300,8 (2×)
-S11	295,1 (2×)
La7-O3	255,8
-S1	309,5
-\$3	312,6 (2×)
-S10	288,1 (2×)
-S12	299,1 (2×)
La8-S5	300,7 (2×)
-S6	304,4 (2×)
-S8	300,9
- S 8'	296,1
- S 8''	296,1
La9-S1	366,6
-S2	305,1 (2×)
-\$3	293,6 (2×)
-S4	291,6
-S6	306,1 (2×)
O1-La1	233,0 (2×)
-La4	279,6
-La6	270,4
O2-La2	235,1 (2×)
-La4	284,7
-La5	250,5
O3–La3	240,8 (2×)
-La5	252,3
-La7	255,8

Tab. 90: Bindungsabstände (d/pm) in CuLa₃OS₄

Tab. 90: Fortsetzung

d/pm
228,3 (2×)
236,3
238,6
232,7 (2×)
229,4
233,1
230,1
235,2 (2×)
251,4
229,5
234,5 (2×)
243,9

Tab. 92: Motive der gegenseitigen Zuordnung in CuLa₃OS₄

	01	O2	O3	S1	S2	S3	S4
Cu1	0/0	0/0	0/0	2/2	1/1	1/1	0/0
Cu2	0/0	0/0	0/0	0/0	0/0	0/0	2/2
Cu3	0/0	0/0	0/0	0/0	0/0	0/0	0/0
Cu4	0/0	0/0	0/0	0/0	0/0	0/0	0/0
La1	2/2	0/0	0/0	0/0	1/1	0/0	0/0
La2	0/0	2/2	0/0	0/0	0/0	1/1	2/2
La3	0/0	0/0	2/2	2/2	0/0	0/0	0/0
La4	1/1	1/1	0/0	1/1	2/2	0/0	0/0
La5	0/0	1/1	1/1	0/0	0/0	0/0	0/0
La6	1/1	0/0	0/0	0/0	0/0	0/0	1/1
La7	0/0	0/0	1/1	1/1	0/0	2/2	0/0
La8	0/0	0/0	0/0	0/0	0/0	0/0	0/0
La9	0/0	0/0	0/0	1/1	2/2	2/2	1/1

Winkel (∢/grd)
126,9
106,0 (2×)
106,4 (2×)
102,6
105,2 (2×)
99,2
122,8
110,7 (2×)
109,0 (2×)
97,8
120,6
109,0 (2×)
109,4 (2×)
95,5
121,2
109,1 (2×)

Tab. 91:	Ausgewählte	Bindungswinkel ((≮/grd) in CuLa ₃ OS ₄
----------	-------------	------------------	--------	--

Bindung	Winkel (≮/grd)
La1–O1–La1'	122,5
La1-O1-La6	108,3 (2×)
La1-O1-La4	109,2 (2×)
La6-O1-La4	96,3
La2-O2-La2'	120,7
La2-O2-La4	100,8
La2-O2-La5	109,0 (2×)
La2'-O2-La4	107,8 (2×)
La3-O3-La3'	116,1
La3-O3-La5	108,2 (2×)
La3-O3-La7	108,9 (2×)
La5-O3-La7	106,1

S5	S6	S7	S 8	S9	S10	S11	S12
0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
1/1	1/1	0/0	0/0	0/0	0/0	0/0	0/0
1/1	0/0	2/2	1/1	0/0	0/0	0/0	0/0
1/1	0/0	3/3	0/0	0/0	0/0	0/0	0/0
0/0	1/1	1/1	2/2	0/0	0/0	1/1	0/0
0/0	0/0	0/0	0/0	1/1	0/0	1/1	1/1
0/0	0/0	0/0	0/0	1/1	2/2	0/0	1/1
0/0	0/0	0/0	0/0	2/2	0/0	2/2	0/0
0/0	0/0	0/0	0/0	2/2	2/2	0/0	2/2
2/2	0/0	2/2	0/0	0/0	0/0	2/2	0/0
0/0	0/0	0/0	0/0	0/0	2/2	0/0	2/2
2/2	2/2	0/0	3/3	0/0	0/0	0/0	0/0
0/0	2/2	0/0	0/0	0/0	0/0	0/0	0/0

IV. ZUSAMMENFASSUNG UND AUSBLICK

4.1. Zusammenfassung

Im Rahmen der vorliegenden Dissertation sollten zum Einen die Experimente als Fortsetzung der Diplomarbeit weitergeführt, zum Anderen an die Arbeit von *Guittard* angeknüpft werden. Im Anschluß an die Studien von *Wiegers*, der besonders die silberhaltigen Phasen im System M₂S₃-Ag₂S (M = Sc, Y, La – Lu) untersuchte, blieb die Frage, ob man weitere Strukturen aus ähnlichen Systemen erhalten könnte, und daran anschließend, wie sich wohl ein solches System verhält, wenn man Silber durch dessen Analogon Kupfer ersetzt.

Die Kristallstruktur des bei den Umsetzungen von Lanthaniden mit HgS schon im Rahmen der Diplomarbeit erhaltenen NdS_{1,9} wurde aufgeklärt sowie die Reihe der binären Lanthanidsulfide vom Typ MS₂ und MS_{1,9} (\equiv M₁₀S₁₉) erweitert. Eine sichere Synthesemethode für Sulfide vom Typ M₁₀S₁₉ (\equiv MS_{1,9}; M = La-Gd) mit zufriedenstellenden Ausbeuten konnte somit entwickelt werden.

Bei den Versuchen zur Darstellung von CuMS₂ bzw. Cu_{1,45} $M_{0,85}S_2$ konnten darüber hinaus interessante Nebenprodukte wie CuPrOS, CsCu₃Er₂S₅ und CuLa₃OS₄ röntgenographisch charakterisiert werden.

Das einfach geladene Kupferkation gilt im Gegensatz zu den relativ kleinen, aber hochgeladenen M³⁺-Ionen als »weich« im Sinne des *Pearson*-Konzeptes. Dies erklärt auch die Tatsache, daß das Cu⁺-Ion bevorzugt Schwefel koordiniert, was ganz besonders bei den Verbindungen CuPrOS sowie CuLa₃OS₄ ersichtlich ist, da hier der Sauerstoff durchweg an das Lanthanidkation gebunden wird. Daher liegt bei sämtlichen in dieser Abhandlung beschriebenen kupferhaltigen Phasen das Cu⁺-Kation als ein kupferzentrierter Tetraeder mit Sulfidanionen als Liganden vor. Dabei nimmt Kupfer gelegentlich nur eine teilbesetzte Lage im Kristallgitter ein, und seine anisotropen Temperaturfaktoren sind sehr hoch, was bedeutet, daß das Kupferkation eine hohe potentielle Beweglichkeit im Kristallgitter besitzt, was folglich eine deutliche Ionenleitfähigkeit dieser Verbindungen bedingt.

Bei Versuchen zur Darstellung von ternären Kupferphasen des Typs CuMS₂ wurde ein präparativ neuer Weg eröffnet: Anstatt die Sesquisulfide mit Ag₂S bzw. Cu₂S im Alkalimetallsulfid-Flux umzusetzen, konnten die in dieser Dissertation behandelten Verbindungen allesamt direkt aus den Elementen mit Hilfe von Caesiumchlorid als Flußmittel dargestellt werden. Die Umsetzungen verliefen noch dazu bei tieferen Temperaturen als die in der Literatur beschriebenen Synthesen; dafür waren aber längere Reaktionszeiten notwendig. Diese Methode erwies sich auch bei der Synthese von Verbindungen des Typs $Cu_{2-x}Er_{(2+x)/3}S_2$ als brauchbar. Daher wurden auch Kristalle der Bruttoformel $M_{0,85}Cu_{1,45}S_2$ (M = Dy - Lu) auf diese Weise dargestellt und deren Struktur röntgenographisch bestimmt.

Durch sauerstoffkontaminierte Lanthanidmetalle als Edukte wurden Nebenprodukte der Zusammensetzung CuPrOS und CuLa₃OS₄ in kleinen Mengen erhalten. Durch den Einsatz von Cu₂O anstatt reinem Kupfer als Edukt konnte CuPrOS in guter Ausbeute gezielt dargestellt werden. Damit wurde wiederum die silberhaltige Phase AgLaOS im System Ag₂S-M₂O₂S um diese formelgleiche kupferhaltige Phase im System Cu₂S-M₂O₂S erweitert.

4.1.1 Binäre Lanthanid-Sulfide

4.1.1.1 Der Formeltyp MS₂

Symmetrie: orthorhombisch, Raumgruppe: Pnma (Nr. 62) Z = 8

MS_2	a/pm	b/pm	c/pm	$V_m / cm^3 \cdot mol^{-1}$	
LaS ₂	813,98(5)	1637,85(9)	414,36(3)	41,583	
CeS ₂	806,76(5)	1621,64(9)	409,50(3)	40,328	
PrS ₂	804,38(5)	1616,06(9)	407,34(3)	39,859	

4.1.1.2 Der Formeltyp $MS_{1,9}$ (= $M_{10}S_{19}$)

Symmetrie: tetragonal, Raumgruppe: P4₂/n (Nr. 86) Z = 20

MS _{1,9}	a/pm	c/pm	$V_m / cm^3 \cdot mol^{-1}$	
LaS _{1,9}	914,11(4)	1633,02(8)	41,087	
CeS _{1,9}	899,81(5)	1616,39(9)	39,406	
PrS _{1,9}	894,16(5)	1607,83(9)	38,707	
NdS _{1,9}	890,75(4)	1606,15(8)	38,372	
SmS _{1,9}	881,8(1)	1592,8(1)	37,292	
GdS _{1,9}	874,4(1)	1590,9(1)	36,625	

Als Nebenprodukt bei Umsetzungen von Kupfer, Lanthanidmetall und Schwefel entstehen Disulfide vom Typ MS₂, wobei ein leichter Schwefelüberschuß verbunden mit niedriger Reaktionstemperatur (700°C) die Bildung der MS₂-Phasen sehr begünstigt. Verbindungen vom Typ MS_{1,9} (\equiv M₁₀S₁₉) bilden sich dagegen fast quantitativ bei der Umsetzung von HgS mit Lanthanidmetall und Schwefel, wobei auch hier eher niedrige Temperaturen (700°C) von Vorteil sind.

Im Vergleich beider Strukturen fällt ihre große Ähnlichkeit auf: Beide bilden kationische Doppelschichten aus $[MS]_n$ -Polyedern (n=7-9), welche alternierend mit reinen Sulfidanionen-Schichten angeordnet sind.

In der Anordnung dieser Sulfidschicht unterscheiden sich jedoch die beiden Strukturen: $MS_{1,9}$ -Vertreter enthalten in dieser Sulfidschicht sowohl S²⁻- als auch Disulfid-Einheiten (S²⁻). Die Disulfid-Anionen ordnen sich dabei fast ringförmig um ein S²⁻-Ion an. Die Verknüpfung zur Lanthanidpolyederschicht erfolgt dabei über sämtliche Schwefelanionen. Daraus resultieren nicht nur drei kristallographisch unterschiedliche Lanthanidkationen, sondern auch ein fünfbindiges Sulfidanion. Die MS₂-Struktur dagegen enthält in ihrer reinen Schwefelschicht ausschließlich Disulfid-Einheiten, welche fischgrätenartig angeordnet sind. Da die Verknüpfung zur Nachbarschicht aber ebenfalls über sämtliche Schwefelanionen stattfindet,ist erneut ein Teil der Schwefelatome fünfbindig. Hier existiert aber nur eine einzige kristallographische Lage des Metallkations.
4.1.2 Ternäre Lanthanid-Sulfide

4.1.2.1 Der Formeltyp CuMS₂

Von Verbindungen der Formel CuMS₂ wurden im Rahmen dieser Arbeit zwei verschiedene Modifikationen erhalten: Zum Einen bildet sich der sogenannte B-Typ in der Raumgruppe Pnma, zum Anderen liegt der monokline A-Typ in der Raumgruppe P2₁/c vor.

CuYS₂:

Symmetrie: orthorhombisch Raumgruppe: Pnma (Nr. 62) Z = 4a = 1345,3(1) pmb = 398,12(4) pmc = 629,08(6) pm $V_m = 50,725 \text{ cm}^3 \cdot \text{mol}^{-1}$

CuYS₂ enthält als charakteristische Baueinheit *cis*-kantenverknüpfte $[CuS_4]^{7-}$ Tetraeder sowie oktaedrisch koordinierte Y³⁺-Ionen. Jene sind zu parallel [010] verlaufenden Ketten der Zusammensetzung $\frac{1}{\alpha}{[Cu(S1)_{3/3}(S2)_{1/1}]^{3-}}$ verknüpft und im Kristallgitter nach Art einer dichtesten Stabpackung hexagonal gebündelt. Die Cu–S-Abstände variieren dabei sehr stark. Erwartungsgemäß sind die bezüglich der Tetraederverknüpfung terminalen Cu–S-Abstände (d(Cu–S2) = 229 pm) die kürzesten, während jene von Cu⁺ zu den S²⁻-Anionen der verknüpfenden Kanten (d(Cu–S1), 2×) mit 259 pm am längsten ausfallen.

Im ${}^{3}_{\infty}{[Y(S1)_{3/3}(S2)_{3/3}]}$ -Teilgitter der CuYS₂-Struktur liegen zunächst zu Doppelketten parallel [010] ecken- und kantenverknüpfte $[YS_6]^9$ -Oktaeder vor, deren dreidimensionaler Zusammenhalt durch Verknüpfung der noch unbelasteten Oktaederecken innerhalb der (010)-Ebene gewährleistet wird. Durch Auffüllung der Tetraederlücken mit den Kupferkationen in den Kanälen entlang [010] unter Ausbildung der ${}^{4}_{\infty}[Cu(S1)_{3/3}(S2)_{1/1}]^{3-}$ -Teilstruktur erfolgt schließlich der Ladungsausgleich.

$CuMS_2 (M = Pr - Gd)$

Symmetrie: monoklin Raumgruppe: $P2_1/c$ (Nr. 14) Z = 4

CuMS ₂	a/pm	b/pm	c/pm	β/pm	$V_m / cm^3 \cdot mol^{-1}$
CuPrS ₂	655,72(6)	722,49(6)	686,81(6)	98,686(7)	48,424
CuNdS ₂	653,94(6)	719,67(6)	683,98(6)	98,452(7)	47,757
CuSmS ₂	647,05(6)	710,80(6)	678,12(6)	98,27(7)	46,465
CuGdS ₂	643,91(6)	704,00(6)	673,90(6)	98,31(7)	45,261

Die Lanthanidmetalle der im monoklinen A-Typ kristallisierenden Verbindungen CuMS₂ (M = La, Pr, Nd, Sm, Gd) bevorzugen im Unterschied zu CuYS₂ (CN (Y^{3+}) = 6) als charakteristische Baueinheit eine Siebenerkoordination in Gestalt eines einfach überkappten trigonalen Prismas. Die Ursache dafür liegt im größeren Ionenradius dieser Lanthanide, welcher eine höhere Koordinationszahl begünstigt.

Die Kupferkationen sind ebenfalls tetraedrisch von Sulfidanionen koordiniert und bilden zunächst $[Cu_2S_6]^{10}$ -Doppel aus zwei kantenverknüpften $[CuS_4]^{7-}$ -Tetraedern aus, welche mittels Eckenverknüpfung parallel (100) zu gewellten Schichten verbunden sind. Diese Schichten werden durch die siebenfach koordinierten M³⁺-Kationen zum Raumgitter vernetzt.

4.1.2.2 Der Formeltyp Cu_{1,45}M_{0,85}S₂

Symmetrie: trigonal

Raumgruppe: P3m1(Nr. 164)

Z = 1

$Cu_{1,45}M_{0,85}S_2$	a/pm	c/pm	V_m / cm ³ · mol ⁻¹	
$Cu_{1,45}Tb_{0,85}S_2$	389,4(3)	638,1(5)	50,469	
Cu _{1,45} Dy _{0,85} S ₂	392,38(3)	627,07(5)	50,359	
Cu _{1,45} Ho _{0,85} S ₂	390,12(2)	627,81(5)	49,839	
Cu _{1,45} Er _{0,85} S ₂	389,51(4)	627,14(6)	49,630	
Cu _{1,45} Tm _{0,85} S ₂	388,95(4)	625,65(7)	49,353	
Cu _{1,45} Yb _{0,85} S ₂	388,01(4)	620,73(6)	48,740	
$Cu_{1,45}Lu_{0,85}S_2$	387,56(4)	619,45(7)	48,540	

Der Aufbau des Kristallgitters der Cu_{1,45}M_{0,85}S₂-Vertreter besteht aus CdI₂-analogen Schichten der Zusammensetzung ${}^{2}_{\infty}{[(M^{3+})(S^{2-})_{6/3}]^{-}}$, innerhalb derer die [MS₆]⁹⁻-Oktaeder über sechs ihrer insgesamt zwölf Kanten miteinander verknüpft sind. Die Stapelung dieser anionischen Schichten erfolgt parallel (001). Ihr Zusammenhalt wird durch interstitielle Cu⁺-Kationen in tetraedrischer Koordination mit S²⁻-Anionen gewährleistet. Dabei bilden sich ebenfalls anionische Schichten der Zusammensetzung ${}^{2}_{\infty}{[(Cu^{+})(S^{2-})_{4/4}]^{-}_{2}}$ aus, die sich durch Kondensation der [CuS₄]⁷⁻-Tetraeder über drei *cis*-ständige Kanten ergeben.

Die M³⁺-Kationen und die Cu⁺-Kationen besetzen schichtweise alternierend Oktaeder- (M³⁺) und Tetraederlücken (Cu⁺). Da sowohl die Kupfer- als auch die Lanthanidmetallkationen jedoch zum Ladungsausgleich nur einen bestimmten Prozentsatz (Cu⁺: 72,6%; M³⁺: 85,1%) ihrer regulären Positionen einnehmen, kann die Kristallstruktur von Cu_{1,45}M_{0,85}S₂ auch als doppelt-kationendefekte Variante des CaAl₂Si₂-Typs gemäß (M_{0,85} $\Box_{0,15}$)(Cu_{1,45} $\Box_{0,55}$)S₂ bezeichnet werden.

4.1.3 Quaternäre Chalkogenide

4.1.3.1 Der Formeltyp CsCu₃M₂S₅

Symmetrie: orthorhombisch Raumgruppe: Cmcm (Nr. 63) Z = 4

$CsCu_3M_2S_5$	a/pm	b/pm	c/pm	V_m / cm ³ · mol ⁻¹
CsCu ₃ Dy ₂ S ₅	397,54(4)	1414,8(1)	1685,7(2)	142,74
$CsCu_3Er_2S_5$	394,82(3)	1410,9(1)	1667,2(2)	139,82

Bei Versuchen zur Synthese von CuMS₂-Vertretern konnten auch einige wenige dünne nadelförmige Kristalle isoliert werden, deren Zusammensetzung als CsCu₃M₂S₅ bestimmt wurde. Die CsCu₃M₂S₅-Struktur enthält nahezu oktaedrische [MS₆]⁹-Einheiten. Durch deren Verknüpfung über Ecken und Kanten entstehen parallel (010) Schichten der Zusammensetzung ${}^{2}_{\infty}{(M_{2}S_{5})^{4}}$, welche mittels Eckenverknüpfung längs [010] verbunden sind. Über Ecken- und Kantenverknüpfung der verzerrten $[CuS_4]^7$ -Tetraeder wird dieses gemäß $\frac{3}{2}[(Cu_3M_2S_5)^-]$ längs [010] dreidimensional vernetzt, wobei sich unter Ecken- und Kantenverknüpfung der [CuS₄]⁷-Tetraeder sich parallel (010) ebenfalls verknüpfte Schichten der Zusammensetzung ${}^{2}_{\infty}$ {(Cu₃S₅)⁷⁻} ergeben. Die Verknüpfung der jeweils parallel (010) verlaufenden Schichten ${}^{2}_{\infty}\{(Cu_{3}S_{5})^{7-}\}$ und ${}^{2}_{\infty}\{(M_{2}S_{5})^{4-}\}$ über sämtliche verfügbaren S²-Anionen liefert schließlich das dreidimensionale Netz ${}^{3}_{\infty}$ {(Cu₃M₂S₅)]. Innerhalb dieses a_{α}^{3} {(Cu₃M₂S₅)⁻}-Gerüstes verlaufen längs [100] große Kanäle, in denen sich die hochkoordinierten Cs⁺-Kationen befinden. Das um jedes Caesiumkation aufgebaute Koordinationspolyeder (CN = 8+1) besitzt die Gestalt eines (2+1)-fach überkappten trigonalen Prismas.

4.1.3.2 Das Oxidsulfid CuPrOS

Symmetrie: tetragonal Raumgruppe: P4/nmm (Nr. 129) Z = 2a = 394,19(4) pmc = 843,98(9) pm $V_m = 39,487 \text{ cm}^3 \cdot \text{mol}^{-1}$

Die Struktur der Verbindung mit der Bruttoformel CuPrOS besteht aus zwei Arten von Schichten, einer anionischen der Zusammensetzung ${}^{2}_{x}[[(Cu^{+})(S^{2-})_{4/4}]^{-}]$ und einer kationischen gemäß ${}^{2}_{x}[[(O^{2-})(Pr^{3+})_{4/4}]^{*}]$, welche aus kondensierten ${}^{1}_{x}[(Cu^{+})(S^{2-})_{4}]^{7-}$ bzw. ${}^{1}_{x}[(O^{2-})(Pr^{3+})_{4}]^{10+}$ -Tetraedern bestehen. Beide Arten von Tetraeder sind über vier ihrer insgesamt sechs Kanten zu quadratischen Schichten mit identischer Topologie verknüpft, deren alternierende Stapelung parallel (001) erfolgt.

Das Praseodymkation betätigt dabei die Koordinationszahl von 4+4 in Form eines quadratischen Antiprismas. Der Aufbau dieser anionischen Teilstruktur ${}^{2}_{x}\{[(Pr^{3+})(O^{2-})_{4/4}(S^{2-})_{4/4}]^{-}\}$ der zu Schichten verknüpften quadratischen Antiprismen ist *quasi*-isostrukturell mit dem elektroneutralen ${}^{3}_{x}\{[(Pr^{3+})(F^{-})_{4/4}(S^{2-})_{5/5}]\}$ in A-PrFS (PbFCl-Typ).Daher kann die CuPrOS-Struktur auch als aufgefüllte PbFCl-Variante bezeichnet werden.

4.1.3.3 Das Oxidsulfid CuLa₃OS₄

Symmetrie: orthorhombisch Raumgruppe: Pnma (Nr. 62) Z = 12a = 1187,8(1) pmb = 408,61(3) pmc = 4684,6(3) pm $V_m = 114,10 \text{ cm}^3 \cdot \text{mol}^{-1}$

Durch Oxidkontamination des als Edukt eingesetzten Lanthanmetalls entstand als seltenes Nebenprodukt bei der CuLaS₂-Synthese auch eine kupferhaltige quaternäre Phase der Zusammensetzung CuLa₃OS₄. Die Kristallstruktur von CuLa₃OS₄ enthält außer tetraedrisch von Sulfidanionen koordinierten Kupferkationen auch Lanthankationen, welche sowohl von Sulfid- als auch von Oxidionen umgeben sind. Dabei liegen sowohl [OLa₄]¹⁰⁺-Tetraeder als auch [SLa₅]¹³⁺-Pyramiden und [SLa₆]¹⁶⁺-Oktaeder bzw. -Prismen vor. Die CuLa₃OS₄-Struktur zeichnet sich durch kettenförmige Strukturelemente längs [010] aus. Die [OLa₄]¹⁰⁺-Einheiten treten dabei über gemeinsame Ecken zu vier Einer-Dreifach-Ketten vom Typ ¹/₂{[O₃La₇]¹⁵⁺} zusammen, die [CuS₄]⁷-Einheiten bilden ebenfalls durch Eckenverknüpfung miteinander sowohl vier Einer-Einfach-Ketten mit der Formel ¹/₂{[CuS₃]⁵⁻} als auch zwei Einer-Vierfach-Ketten der Zusammensetzung $\frac{1}{2}{[Cu_4S_0]^{14-}}$ mit Cu⁺-Teilbesetzung pro Elementarzelle aus. Die Lanthankationen nehmen die Koordinationszahlen von sieben, acht und neun gegenüber den Chalkogenidanionen ein, wobei die Gestalt von ein-, zwei- und dreifach überkappten trigonalen Prismen bevorzugt ausgebildet wird.

4.1.4 Das ternäre Polysulfid CsCuS₆

Symmetrie: triklin Raumgruppe: $P\bar{1}(Nr. 2)$ Z = 4 a = 717,10(5) pm $\alpha = 74,013(8)^{\circ}$ b = 1067,53(9) pm $\beta = 85,4396(8)^{\circ}$ c = 1123,14(9) pm $\gamma = 78,825(8)^{\circ}$ $V_m = 122,028 \text{ cm}^3 \cdot \text{mol}^{-1}$

Bei Versuchen zur Darstellung von CuYbS₂ im CsCl-Flux wurden neben Cu_{1,45}Yb_{0,85}S₂ auch Einkristalle einer Verbindung der Zusammensetzung CsCuS₆ erhalten. Kurze Reaktionszeiten von 5 Tagen begünstigen die Bildung dieses Polysulfids. Die Kristallstruktur enthält in [001]-Richtung kantenverknüpfte [CuS₄]^{7–} Tetraeder, welche in Richtung [100] zu lockeren Bändern zusammentreten. Diese Tetraeder werden außerdem von einer S₄-Einheit dermaßen miteinander verbunden, daß jede *cis*-ständige Ecke der kondensierten Kupfertetraeder alternierend über die Tetrasulfideinheit, welche in der Sessel-Konformation vorliegt, verbrückt ist. Die Zusammensetzung einer jeden Kette kann also mit $\frac{1}{\alpha} \{ [(CuS_{4/2}(S_4))]^{-} \}$ beschrieben werden. Durch die Cs⁺-Kationen zwischen den Bändern wird die Ausbildung einer Schichtstruktur parallel (010) bewirkt und der Ladungsausgleich innerhalb des Raumgitters gewährleistet. Daraus ergibt sich eine selbst für Caesium sehr hohe Koordinationszahl von CN = 12+2.

4.2. Ausblick

Im Unterschied zu den Kupfer-Lanthanid-Sulfiden wurden die Strukturen einiger Silber-Lanthanid-Sulfide in den Systemen La₂O₃–Ag₂S sowie AgMS₂ schon vor geraumer Zeit veröffentlicht. Meist wurden aber lediglich Röntgendaten aus pulverdiffraktometrischen Messungen angegeben. In der vorliegenden Abhandlung wurde in Fortsetzung von früheren Arbeiten, welche die Systeme La₂O₃–Ag₂S sowie AgMS₂ beschreiben, die Reihe der ternären sowie quaternären Kupfer-Lanthanid-Sulfide erweitert. So konnte eine Vielzahl neuer, interessanter Verbindungen erhalten werden, welche sich durch eine hohe Beweglichkeit des Cu⁺-Kations im Festkörper auszeichnen, wie Ionenleitfähigkeitsmessungen belegen. Des weiteren wären folglich die Verbindungen mit dem bisher noch nicht im System $M_2O_3-M'_2S$ (M= Lanthanidmetall, M' = Münzmetall) umgesetzten Gold von Bedeutung.

Im Vergleich zu Ag⁺ und Cu⁺ ist das Au⁺-Ion im Sinne des *Pearson*-Prinzips ein sehr weiches Ion. Auch die Reaktivität des elementaren Goldes ist im Vergleich zu Silber oder gar Kupfer deutlich geringer, so daß die direkte Darstellung von goldhaltigen Selten-Erd-Sulfiden aus den Elementen in der Caesiumchloridschmelze stark erschwert ist.

Es liegen jedoch Berichte über Verbindungen des Goldes mit Schwefel und Chrom bzw. mit Germanium und Zinn sowie Alkalimetallen vor. Ein weiteres Interesse gilt natürlich auch dem Quecksilber, das nach dem *Pearson*-Prinzip als Hg⁺ ein noch viel »weicheres« Kation bildet als das Gold. Die geringe Reaktivität des Quecksilbers, verbunden mit dessen Vorliebe, eher kovalente Bindungen einzugehen, ist für den Einbau der Quecksilberkationen in ein ionisches Kristallgitter nicht förderlich.

Als Folge der hier vorliegenden Untersuchungen wurden weitere Münzmetall-Lanthanidmetall-Chalkogenide durch den Einsatz der schwereren Homologen Selen sowie Tellur an Stelle von Schwefel, dargestellt und charakterisiert. Dabei waren bei den quaternären Chalkogeniden vom Typ $AM_3M_2X_5$ (A = Alkalimetall, M' = Münzmetall, M = Lanthanidmetall, X = Chalkogenid) die Anzahl der Verbindungen recht groß, bei der die *Laue*-Symmetrie erhalten bleibt. Dies wurde aber nur für Verbindungen mit den großen Alkalimetallkationen, also Cs⁺, Rb⁺ und K⁺ untersucht, dagegen liegen bislang keine Veröffentlichungen von ähnlichen Verbindungen mit den kleineren Alkalimetallen, dem Natrium oder Lithium, vor. So könnte die Ähnlichkeit der Ionenradien von Li⁺ bzw. Na⁺ und dem Cu⁺-Kation zu einem merklichen Austausch von Kupferkationen gegen Alkalimetallkationen innerhalb der Kristallstruktur führen. So kristallisiert beispielsweise sowohl CuScS₂ als auch AScS₂ (A = Li, Na) in der α -NaFeO₂-Struktur. Daher steht zu erwarten, daß Untersuchungen in dieser Richtung eine Fülle neuer kristalliner Verbindungen mit interessanten physikalischen Eigenschaften hervorbringen.

V. SUMMARY AND FUTURISTIC VIEW

5.1. Summary

The following dissertation is a continuation of the experimential work done for the diploma thesis for one and Guittard. Wiegers whose research was mainly focussed on silver-containing phases in M_2S_3 - Ag_2S (M = Sc, Y, La - Lu) left the question open of whether fore any more structures from similar systems could be obtained. Containing along these lines one could also find out these systems reacted, if silver was substituted by the analogous copper. The crystal structures of NdS_{1.9}, synthesized during the diploma work by reaction of Lanthanide with HgS was fully analysed, as well as whole range of binary lanthanide sulfides from type MS₂ and $MS_{1,9}$. Thus, a reliable method of synthesis for sulfides of the type $MS_{1,9}$ (M = La – Gd) with satisfactory yields could be developed. While trying to synthesize CuMS₂ and Cu1.45 M0.85S2 interesting by-products such as CuPrOS, CsCu3Er2S5 and CuLa₃OS₄ were obtained and could be characterized by using x-ray methods. The weakly charged copper ion, as in comparison to the relative small but highly charged M³⁺ions is considered as "soft" as per *Pearson*-concept. This also explains why the Cu⁺cation prefers sulfur coordination, which is specially obvious in the compounds CuPrOS and CuLa₃OS₄, as the oxygen being bond to the lanthanide cation. Therefore, in all the copper-containing phases described here, the Cu⁺cation is present as a copper-centered tetrahedra whith sulfide anions as ligands.

Thereby copper sometimes assumes a partially occupied position in the crystal lattice and its anisotropic temperature factors are very high. This means, that the copper cation possesses a high potential mobility in the crystal lattice giving these compounds a marked ionconductivity. Attemps to synthesize copper-phases of the type CuMS₂ opened new preparatory paths: Instead of reaching the sesquisulfide with Ag₂S or Cu₂S in alkalimetalsulfide flux all the compounds described in this work could be synthesized directly from the elements using Caesiunchloride as flux. The reactions took place at lower temperature than those described in literature, the reaction time was longer. These methods could also be used for compounds of the type Cu_{2-x}Er_{(2+x)/3}S₂. Therefore, crystals of the formula M_{0.85}Cu_{1.45}S₂ (M = Dy – Lu) were synthesized likewise and their structures determined by x-rays. Using

oxygen contaminated lanthanide metals as educts, by-product of the composition CuPrOS and CuLa₃OS₄ could be obtained in small quantities. When Cu₂O was used as educt instead of pure copper, CuPrOS could be synthesized in good yield. With this, the silver-containing phase AgLaOS in the system Ag₂S–M₂O₂S was extended to the copper-containing phases in the system Cu₂S–M₂O₂S.

5.1.1 Binary Lanthanide Sulfide

5.1.1.1 The formula type MS₂

Symmetry: orthorhombic, Space group: Pnma (No. 62) Z = 8

MS_2	a/pm	b/pm	c/pm	V_m / cm ³ · mol ⁻¹
LaS ₂	813.98(5)	1637.85(9)	414.36(3)	41.583
CeS ₂	806.76(5)	1621.64(9)	409.50(3)	40.328
PrS ₂	804.38(5)	1616.06(9)	407.34(3)	39.859

5.1.1.2 The formula type $MS_{1.9}$ (= $M_{10}S_{19}$)

Symmetry: tetragonal, Space group: P4₂/n (No. 86) Z = 20

MS _{1.9}	a/pm	c/pm	V_m / cm ³ · mol ⁻¹	
LaS _{1.9}	914.11(4)	1633.02(8)	41.087	
CeS _{1.9}	899.81(5)	1616.39(9)	39.406	
PrS _{1.9}	894.16(5)	1607.83(9)	38.707	
NdS _{1.9}	890.75(4)	1606.15(8)	38.372	
SmS _{1.9}	881.8(1)	1592.8(1)	37.292	
GdS _{1.9}	874.4(1)	1590.9(1)	36.625	

Disulfide of the type MS₂ is formed as a by-product by reacting copper, lanthanidemetal and sulfur, where a slight excess of sulfur together with lower reaction temperatur (700°C) benefits the building of MS₂-phases. Compounds of the type MS_{1.9} $(\equiv M_{10}S_{19})$ on the other hand are obtained in good quantities by the reaction of HgS with Lanthanide metal and sulfur, and even here the lower temperature (700°C) are more of an advantage. Comparing both the structures, their large similarities become obvious: Both build cationic double layers from $[MS_n]$ -polyhedra (n = 7-9), which are ordered alterately pure sulfide anion layers. In the ordering of these sulfide layers, however, the two structures differ: MS_{1.9} representatives contain S²⁻ as well as disulfide units (S_2^{2-}) in these sulfide layers. The disulfide anions are thereby ordered almost in a ring form around the S²⁻ion. The link to the polyhedra layer takes place via all the sulfur anions. Not only do three crystallographically different Lanthanide cations result from this but also a five-binding sulfide anion. Contrary to this the MS₂ structure contains in its pure sulfur layer fish-bone like ordered disulfide units only since the linking to the neighbouring layer takes place like-wise via all the sulfur anions, a part of the sulfur anions are again five-binding. However, only a single crystallographic position of the metall cation exists here.

5.1.2 Ternary Lanthanide Sulfides

5.1.2.1 The formula type CuMS₂

Two different modifications of the type $CuMS_2$ are presented in the following work: The so-called B-type exists in the space group Pnma and the monoclinic A-type in the space group $P2_1/c$.

CuYS₂:

Symmetry: orthorhombic Space group: Pnma (No. 62) Z = 4a = 1345.3(1) pmb = 398.12(4) pmc = 629.08(6) pm $V_m = 50.725 \text{ cm}^3 \cdot \text{mol}^{-1}$

CuYS₂ contains *cis*-edge-linked [CuS₄]⁷-tetrahedra as well as octahedric coordinated Y³⁺ ions as characteristic building units. Those are linked to parallel [010] running chains of the composition $\frac{1}{\alpha} \{ [Cu(S1)_{3/3}(S2)_{1/1}]^3 \}$ and are bundled hexagonally as a closest rodpacking in the crystal lattice. The Cu-S distances vary strongly. As expected, the Cu-S distances (d(Cu–S) = 229 pm) with respect to the tetrahedra linking terminals are the shortest, whereas those of Cu⁺ cations to the S²⁻ anions of the linking edges (d(Cu–S1), 2×) with 259 pm are the longest. In the $\frac{3}{\alpha} \{ [Y(S1)_{3/3}(S2)_{3/3}]^{-} \}$ partial lattice of the CuYS₂ structure, double chains parallel [010] corner and edge linked $[YS_6]^{9-}$ octahedra are initially present, whose three-dimensional unity is ensured by the linkage of the still unoccupied octahedra corners within the (010) level. Filling up the tetrahedral spaces with copper cations in the channels along [010] building $\frac{1}{\alpha} \{ [Cu(S1)_{3/3}(S2)_{1/1}]^{3-} \}$ partial structure, charge equilibrium follows.

$CuMS_2 (M = Pr - Gd)$

Symmetry: monoclinic Space group: $P2_1/c$ (No. 14) Z = 4

CuMS ₂	a/pm	b/pm	c/pm	β/pm	$V_m / cm^3 \cdot mol^{-1}$
CuPrS ₂	655.72(6)	722.49(6)	686.81(6)	98.686(7)	48.424
CuNdS ₂	653.94(6)	719.67(6)	683.98(6)	98.452(7)	47.757
CuSmS ₂	647.05(6)	710.80(6)	678.12(6)	98.27(7)	46.465
CuGdS ₂	643.91(6)	704.00(6)	673.90(6)	98.31(7)	45.261

In contrast to $CuYS_2$ ($CN(Y^{3*}) = 6$) the lanthanide metals of compounds crystallizing in the monoclinic A-Type $CuMS_2$ (M = La, Pr, Nd, Sm, Gd) prefer a seven oriented coordination in the form of a single overcapped trigonal prism as its characteristic building unit. This is caused by the larger ion-radius of these lanthanides, which have higher coordination numbers. The copper cation are, likewise, tetrahedrically coordinated by sulfurions and at first build a $[Cu_2S_6]^{10}$ -double from two edge-linked $[CuS_4]^7$ -tetrahedra which are bound to conjugated layers via cornerlinking. The sevenfold coordinated M^{3*} cations linked layers to the lattice.

5.1.2.2 Formula type Cu_{1.45}M_{0.85}S₂

Symmetry: trigonal Space group: P3m1(No. 164) Z = 1

$Cu_{1.45}M_{0.85}S_2$	a/pm	c/pm	$V_m / cm^3 \cdot mol^{-1}$
$Cu_{1.45}Tb_{0.85}S_2$	389.4(3)	638.1(5)	50.469
Cu _{1.45} Dy _{0.85} S ₂	392.38(3)	627.07(5)	50.359
Cu _{1.45} Ho _{0.85} S ₂	390.12(2)	627.81(5)	49.839
Cu _{1.45} Er _{0.85} S ₂	389.51(4)	627.14(6)	49.630
Cu _{1.45} Tm _{0.85} S ₂	388.95(4)	625.65(7)	49.35
$Cu_{1.45}Yb_{0.85}S_2$	388.01(4)	620.73(6)	48.74
Cu _{1.45} Lu _{0.85} S ₂	387.56(4)	619.45(7)	48.54

The crystal lattice of the Cu_{1.45}M_{0.85}S₂ representatives are built up of CdI₂-analogous layers of the composition ${}^{2}_{*}[[(M^{3+})(S^{2-})_{6/3}]^{-}]$ within which the $[MS_{6}]^{9-}$ octahedra are linked to each other by six of their twelve edges. The anionic layers are piled parallel (001). Their connection is guaranteed by the interstitic Cu⁺ cations in tetrahedral coordination with S²⁻ anions. Thereby anionic layers of the composition ${}^{2}_{*}[[(Cu^{+})(S^{2-})_{4/4}]^{-})_{2}]$ are built likewise, resulting from the condensation of the $[CuS_{4}]^{7-}$ tetrahedra via three *cis*-shared edges. The M³⁺ cations and the Cu⁺ cations possess layerwise, alternate octahedra (M³⁺) and tetrahedra (Cu⁺) spaces. Since the copper as well as the lanthanide metal cations need only a definitive percentage (Cu⁺: 72,6%; M³⁺: 85,1%) of their regular positions for charge equilibrium, the crystal structure of Cu_{1.45}M_{0.85}S₂ can also be discribed as double cation defect variant of the CaAl₂Si₂ type acoording to (M_{0.85}-_{0.15})(Cu_{1.45}-_{0.55})S₂.

5.1.3 Quaternary Chalkogenides

5.1.3.1 Formula type CsCu₃M₂S₅

Symmetry: orthorhombic Space group: Cmcm (No. 63) Z = 4

$CsCu_3M_2S_5$	a/pm	b/pm	c/pm	V_m / cm ³ · mol ⁻¹
$CsCu_3Dy_2S_5$	397.54(4)	1414.8(1)	1685.7(2)	142.74
$CsCu_3Er_2S_5$	394.82(3)	1410.9(1)	1667.2(2)	139.82

While synthesizing CuMS₂ compounds, a few thin needles shaped crystals were also isolated, whose composition was determined as $CsCu_3M_2S_5$. The $CsCu_3M_2S_5$ structure contains almost only octahedral $[MS_6]^{9-}$ units. By corner and edge linkage, parallel (010) layers of the composition ${}^2_{\alpha}\{(M_2S_5)^{4-}\}$ result, which are corner linked parallel [010]. By corner and edge linking of the distorted $[CuS_4]^{7-}$ tetrahedra, these are cross-connected three-dimensionally according to ${}^3_{\alpha}\{(Cu_3M_2S_5)^{-}\}$ along [010], whereby linked layers of the composition ${}^2_{\alpha}\{(Cu_3S_5)^{7-}\}$ also result via corner and edge linkage of the $[CuS_4]^{7-}$ tetrahedra, parallel (010). The linkage of the layers ${}^2_{\alpha}\{(Cu_3S_5)^{7-}\}$ and ${}^2_{\alpha}\{(M_2S_5)^{4-}\}$ via all the available S²⁻ anions, finally gives the three dimensional network ${}^3_{\alpha}\{(Cu_3M_2S_5)\}$. Within the ${}^3_{\alpha}\{(Cu_3M_2S_5)^{-}\}$ framework, big channels run along [100], where the highly coordinated Cs⁺ cations are present. The coordination polyhedra (CN= 8+1) built around each Caesium cation has a (2+1) twofold overcapped trigonal prism.

5.1.3.2 The Oxidsulfide CuPrOS

Symmetry: tetragonal Space group: P4/nmm (No. 129) Z = 2a = 394.19(4) pmc = 843.98(9) pm $V_m = 39.487 \text{ cm}^3 \cdot \text{mol}^{-1}$ The structure of the compound with the formula CuPrOS is made up of two kinds of layers, an anionic one of the composition ${}^{2}_{\omega}[[(Cu^{+})(S^{2-})_{4/4}]^{-}]$ and a cationic one as in ${}^{2}_{\omega}[[(O^{2-})(Pr^{3+})_{4/4}]^{+}]$ which are made up from condensed ${}^{1}_{\omega}[(Cu^{+})(S^{2-})_{4}]^{7-}$ and ${}^{1}_{\omega}[(O^{2-})(Pr^{3+})_{4}]^{10+}$ tetrahedra respectively. Both kinds of tetrahedron are linked via their four of their six edges to quadratic layers with identical topology, whose alternate piling takes place parallel (001). The Praseodym cation takes on a coordination number of 4+4 in the form of a quadratic antiprism. The building up of these anionic partial structure ${}^{2}_{\omega}\{[(Pr^{3+})(O^{2-})_{4/4}(S^{2-})_{4/4}]^{-}\}$ to layer linked quadratic antiprisms is *quasi*-isostructural with the electroneutral ${}^{3}_{\omega}\{[(Pr^{3+})(F^{-})_{4/4}(S^{2-})_{5/5}]\}$ in A-PrFS. Therefore, the CuPrOS structure can also be described as a filled PbFCI variant.

5.1.3.3 The Oxidsulfide CuLa₃OS₄

Symmetry: orthorhombic Space group: Pnma (No. 62) Z = 12a = 1187.8(1) pmb = 408.61(2) pmc = 4684.7(2) pm $V_m = 114.10 \text{ cm}^3 \cdot \text{mol}^{-1}$

During the synthesis of CuLaS₂, a copper-containing quaternary phase of the composition CuLa₃OS₄ was also obtained as a rare by-product through oxide contamination of the Lanthanide metal used as an educt. Besides tetrahydrically sulfide ion coordinated copper cations, the crystal structure of CuLa₃OS₄ also contains Lanthanide cations, surrounded by both sulfur and oxygen. Thereby $[OLa_4]^{10+}$ tetrahedra as well as $[SLa_5]^{13+}$ pyramides and $[SLa_6]^{16+}$ octahedra and prisms are present. The CuLa₃OS₄ structure contains chain shaped structure elements along [010]. The $[OLa_4]^{10+}$ units join via common corners to four single-triple-chains of the type $\frac{1}{2}{[O_3La_7]^{15+}}$, the $[CuS_4]^{7-}$ units likewise build, via corner linking with each other, four single-single chains having the formula $\frac{1}{2}{[CuS_3]^{5-}}$ as well as two single-quadruple chains of the composition $\frac{1}{2}{[Cu_4S_9]^{14-}}$ with the Cu⁺ partial occupation per elementary cell. The Lanthanide cation assume coordination numbers of seven,

eight and nine with respect to the chalkogenide anions, whereby single, twofold and threefold overcapped trigonal prism is preferably built.

5.1.4 The ternary Polysulfide CsCuS₆

 $\begin{array}{l} \mbox{Symmetry: triclic} \\ \mbox{Space group: } P\bar{1}(No. 2) \\ \mbox{Z} = 4 \\ \mbox{a} = 717.10(5) \mbox{ pm } \ \alpha = 74.013(8)^{\circ} \\ \mbox{b} = 1067.53(9) \mbox{ pm } \ \beta = 85.4396(8)^{\circ} \\ \mbox{c} = 1123.14(9) \mbox{ pm } \ \gamma = 78.825(8)^{\circ} \\ \mbox{V}_{m} = 122.028 \mbox{ cm}^{3} \cdot \mbox{mol}^{-1} \end{array}$

During attempts to synthesize CuYbS₂ in CsCl-Flux, single crystals of the compound having composition CsCuS₆ was also obtained besides Cu_{1.45}Yb_{0.85}S₂. Short reaction times of 5 days favoured the production of this polysulfide. The crystal structure contains edge-sharing [CuS₄]⁷⁻ tetrahedra in the [001] direction, which join to close bands towards [001]. Additionally these tetrahedra are connected to each other by a S₄ unit such, that each *cis*-shared corner of the condensed copper tetrahedra is bridged alternately via the tetrasulfide unit present in the chair conformation. The composition of each chain can be described as $\frac{1}{6}[(CuS_{4/2}(S_4))]^-]$. The Cs⁺ cations between the bands cause the building of a layered structure parallel (010) and takes care of the charge equilibrium within the space lattices. A very high coordination number of CN= 12+2 even for the Caesium cation results from this.

5.2. Futuristic view

The difference to the copper-lanthanide-sulfide has already been open to the public, about the structure of silver-lanthanide-sulfide within the system $La_2O_3 - Ag_2S$ and with AgMS₂.

Mostly but slowly given data was shown through powder diffractometric measurements.

The presented acts are to be as an advance in the earlier works, which describe the systems of $La_2O_3 - Ag_2S$ as the AgMS₂; and enhances the range of ternary as with quaternary copper-lanthanide-sulfides. So we could prove the new and interesting compounds which we have attained; which surely compliments the highly oriented Cu⁺ cation in its abilities, exactly like the measured ionic conductivity.

This is why, the following connections were not in the system $M_2O_3-M_2^*S$ (M = lanthanide metal, M" = coin metal) and why gold was not in a valueable position. In comparison to Ag^* and Cu^* , Au^* is in the attitude of *Pearson*-principles a weak ion. Evenmore, is the reactivity much lesser than in the element of gold in comparison to silver or copper; so that the direct production more difficult with gold contained rare-earth-sulfides, which is from the element of molten caesium-chloride.

Reports about compounds of gold with sulfur and chrome, and more, with germanium and pewter and even with alkali metals are available. A further interest is likewise by mercury, being seen by *Pearson*-principles as Hg⁺ and also as a weaker cationic as of gold. The lesser reactivity of mercury and his preferences in covalent bondings, do not support the intergration of mercury cation in a ionic lattice.

Through further research were the coin metal like lanthanide metal-chalkogenide through a heavy homologues selen and tellur in place of sulfur synthesized and characterised.

Therefore, within the quaternary chalkogenides from type $AM_3M_2X_5$ (A = alkali metal, M'= coin metal, M = lanthanide metal, X = chalkogenide) that the count of compounds was very large and that the *Laue*-symmetrics remained. This was mainly researched for compounds with a larger alkali metal cations, like Cs^+ , Rb^+ and K^+ ; however, up to now, there is no information for the public for the smaller alkali metals, about natrium or lithium.

This leads us to the simularities of ions radius from Li^{*}, Na^{*} and the Cu^{*} cations, which leads us to respectfilly utilise the copper cation instead of alkali-metal cations with the crystal structure. So the criytalised examples as CuScS₂ and also AScS₂ (A = Li, Na) are in there α -NaFeO₂-structure. Thereby, we strongly await, that research in the direction of a new form from crystal compounds should be brought forth showing the interesting physical capabilities.

VI. LITERATUR

- [1] W. H. Zachariasen, Acta Cryst. 1 (1948) 263.
- [2] W. Nueiwenkamp, J. M. Bijvoet, Z. Kristallogr. 81 (1932) 469.
- [3] W. H. Zachariasen, Acta Cryst. 2 (1949) 60.
- [4] F. Lissner, Th. Schleid, Z. Naturforsch. 47 B (1992) 1614.
- [5] R. E. Marsh, F. H. Herbstein, Acta Cryst. B 39 (1983) 280.
- [6] Th. Schleid, Habilitationsschrift, Universität Hannover, 1993.
- [7] H. Rickert, Angew. Chemie 38 (1978) 90.
- [8] A.van der Lee, R.van der Belt, G.A. Wiegers, J. Alloys Compds. 178 (1992) 57.
- [9] J. Carpenter, S.-J.-Hwu, J. Solid State Chem. 97 (1992) 332.
- [10] F. H. Vollebregt, D. J. Ijdo, Acta Cryst. B 38 (1982) 2442.
- [11] P. Lemoine, A. Tomas, T. Vovan, M. Guittard, Acta Cryst. C 46 (1990) 365.
- [12] A. Tomas, V. Tien, M. Guittard, J. Flahaut, Mater. Res. Bull. 20 (1985) 1027.
- [13] M. Palazzi, S. Jaulmes, Acta Cryst. B 37 (1981) 1337.
- [14] M. Julien-Pouzol, S. Jaulmes, A. Mazurier, M. Guittard, Acta Cryst. B 37 (1981) 1901.
- [15] E. A. Axtell, M. G. Kanatzidis, Chem. Eur. J. 4 (12) (1998) 2435.
- [16] H.Fukuoka, S. Shakashita, S. Yamanaka, J. of Solid State Chem. 148 (1999) 487.
- [17] S. Löken, W. Tremel, Z. Anorg. Allgem. Chemie 624 (1998) 1588.
- [18] W. Rüdorff, H. G. Schwarz, M. Walter, Z. Anorg. Allgem. Chem. 269 (1952) 141.
- [19] M. Julien-Pouzol, A. Mazurier, M. Guittard, C. R. Sc. Paris Serie Ct. 271 (1970) 1317.
- [20] R. Schmid, H. Hahn, Z. Allgem. Anorg. Chemie 373 (1970) 168.
- [21] H. Grossholz, Th. Schleid, Z. Allgem. Anorg. Chemie 628 (2002) 2169.
- [22] A. Knizhnik, A. N. Men, J. of Phys. Chem. sol. 62 Is. 3 (2001) 513.
- [23] H. Grossholz, Th. Schleid, Z. Kristallogr. Suppl. 16 (1999) 33.
- [24] H. Oesterreicher, J. Alloys Compounds 319 (2001) 131.
- [25] L. Sochow, A. Ando, J. of Solid State Chem. 2 (1970) 156.
- [26] B. Bandyopadhyay, A. Poddar, J. Alloys Comp. 326 1-2 (2001) 137.
- [27] O. Sologub, K. Hiebl, P. Rogl, O. Bodak, H. Noel, J. Alloys Comp. 210 (1994) 153.

- [28] L. D. Olekseyuk, H. Y. Davidyuk, O. V. Parasyuk S. V. Voronyuk, V. O. Halka, V. A. Oksyuta, J. Alloys Comp. 309 (2000) 39.
- [29] R. Ballestracci, E. F. Bertaut, Bull. Soc. Fr. Mineral. Crist. 88 (1965) 575.
- [30] P. Lauxmann, Th Schleid, Z. Allgem. Anorg. Chemie 625 (1999) 153.
- [31] R. Ballestracci, Bull. Soc. Fr. Mineral. Crist. 88 (1965) 207.
- [32] P. Lauxmann, Diplomarbeit, 1998.
- [33] R. G. Pearson, Chemical Hardness, WILEY-VCH-Verlag, Weinheim 1997.
- [34] Th. Schleid, F. Lissner, J. of the Less-Common-Metals 175 (1991) 309.
- [35] P. Basancon, P. Adolphe, J. Flahaut, P. Laruelle Mat. Res. Bull. 4 (1969) 227.
- [36] J. Dugue, D. Carré, M. Guittard, Acta Cryst. B 34 (1978) 403.
- [37] W. H. Zachariasen, Acta Cryst. 1 (1967) 1948.
- [38] H.T. Evans jr., Z. Kristallographie 149 (1979) 299.
- [39] N. V. Belov, V. P. Butuzov, Dokladi Akademii Nauk SSR 54 (1946) 717.
- [40] A. Janosi, Acta Cryst. 17 (1964) 311.
- [41] T. Djurle, Acta Chem. Scand. 12 (1958) 1415.
- [42] H. T. Evans, Science 203 (1979) 356.
- [43] H.T. Evans jr., Nature 232 (1971) 69.
- [44] H.T. Evans jr., The American Mineralogist 43 (1958) 228.
- [45] S. Kashida, K. Yamamoto, J. of Physics, cond. matter (1991) 6559.
- [46] I. Oftedal, Z. Kristallographie 83 (1932) 9.
- [47] K. Koto, N. Morimoto, Acta Cryst. B 26 (1970) 915.
- [48] Y. Takeuchi, Y. Kudoh, G. Sato, Z. Kristallographie 173 (1985) 119.
- [49] H. T. Evans jr., J. A. Konnert, The American Mineralogist 61 (1976) 996.
- [50] H. Fjellvag, F. Gronwold, S. Stolen, A. F. Andresen, R. Müller-Käfer, A. Simon, Z. Kristallographie 184 (1988) 111.
- [51] H. E. King, C. T. Prewitt, *The American Mineralogist* (1979) 1265.
- [52] K. Koto, N. Morimoto, Acta Cryst. B 24 (1968) 38.
- [53] J. L. C. Daams, P. Villars, J. Flahaut, M. Guittard, M. Patrie, J. Alloys and Compounds 201 (1958) 11.
- [54] F. H. A. Vollebregt, C. M. Plug, M. Bakker, J. of Solid State Chem. 42 (1982) 11.
- [55] M. Melchinger, technische Illustration.
- [56] E. R. Wölfel, Theorie und Praxis der Röntgenstrukturanalyse, Vieweg-Verlag, (1987).

- [57] W. Massa, Kristallstrukturbestimmung, Teubner-Verlag, (1996).
- [58] R. A. Young, The Rietveld Method, Oxford University Press, (1993).
- [59] STOE & CIE GmbH, STOE Visual X^{pow}, Darmstadt, (1995).
- [60] STOE & CIE GmbH, X-STEP, Darmstadt, (1997).
- [61] G. M. Sheldrick, SHELXS-86, Göttingen, (1996).
- [62] G. M. Sheldrick, SHELXS-93, Göttingen, (1993).
- [63] G. M. Sheldrick, SHELXL-97, Göttingen, (1997).
- [64] STOE & CIE GmbH, X-RED, Darmstadt, (1996).
- [65] STOE & CIE GmbH, X-SHAPE, Crystal optimisation program for numerical absorption correction, based on the program »HABITUS« by W. Herrendorf, Gießen, (1995).
- [66] K. Brandenburg, Diamond 2.0, Copyright © Crystal Impact, (1996-2000).
- [67] R. Hübenthal, R. Hoppe, MAPLE 4.0, Gießen, (1995).
- [68] Th. Schleid, F. Lissner, Z. Anorg. Allgem. Chem. 615 (1992) 19.
- [69] P. Lauxmann, Th. Schleid, Z. Anorg. Allgem. Chem. 626 (2000) 2253.
- [70] P. Lemoine, D. Carre, M. Guittard, Acta Cryst. C 42 (1986) 390.
- [71] J. P. Dismukes, R.T. Smith, J. G. White, J. Phys. Chem. Solids 32 (1971) 913.
- [72] G. G. Guseinov, A. S. Amirov, I. R. Amiraslanov, K. S. Mamedov, Doklady Akademii Nauk Azerbaidzhanskoi SSR 40, Issue 10 (1984) 62.
- [73] E. I. Glayskevskii, P. I. Kripjakevic, O. I. Bodak, Ukr. Fiz. Zh. (russ, Ed.) 12 (1967) 447.
- [74] C. Raymond, P. K. Dorhout, Inorg. Chem. 35 (1996) 5634.
- [75] J. P. Dismukes, J. G. White, *Inorg. Chem.* **3** (1964) 1220.
- [76] M. Tromme, C. R. Acad. Sci. C 273 (1971) 849.
- [77] C. M. Plug, A. Prodan, Acta Cryst. A 34 (1978) 250.
- [78] M. van Dijk, C. M. Plug, *Mater. Res. Bull.* **15** (1980) 103.
- [79] S. Goldsztaub, Bull. Soc. Fr. Mineral. Crist. 58 (1935) 6.
- [80] H. Bärnighausen, Acta Cryst. 25 (1969) 1104.
- [81] R. D. Shannon, Acta Cryst. A32 (1976) 751.
- [82] M. O. Keeffe, B. G. Hyde, *Phil. Mag.* B3 (1976) 219.
- [83] P. Lauxmann, Th. Schleid, Z. Kristallogr. 2000, Suppl., vorgestellt auf der 8. Jahrestagung der Deutschen Gesellschaft für Kristallographie (DGK) Aachen, 13.-16. März 2000
- [84] T. Siegrist, W. Petter, F. Hulliger, Acta Cryst. B38 (1982) 2872.

- [85] C. Sieke, Th. Schleid, Z. Anorg. Allgem. Chem. 625 (1999) 131.
- [86] P. Lauxmann, I. Hartenbach, Th. Schleid, Z. Anorg. Allgem. Chem. Vol. 630 Is. 10 (2004) 1408.
- [87] Th. Schleid, Z. Allgem. Anorg. Chem. 602 (1991) 39.
- [88] W. Bronger, B. Lenders, J. Huster, Z. Anorg. Allgem. Chem. 623 (1997) 1357.
- [89] M. Guymont, A. Tomas, M. Julien-Pouzol, S. Jaulmes, M. Guittard, *Phys. Stat. Sol.* A 121 (1990) 21.
- [90] M. Onada, X.-A. Chen, A. Sato, H. Wada, J. Solid State Chem. 152 (2000) 332.
- [91] P. Stoll, P. Dürichen, C. Näther, W. Bensch, Z. Anorg. Allgem. Chem. 624 (1998) 1807.
- [92] F. Q. Huang, J. A. Ibers, J. Solid State Chem. 151 (2000) 317.
- [93] F. Q. Huang, J. A. Ibers, J. Solid State Chem. 158 (2001) 299.
- [94] F. Q. Huang, J. A. Ibers, J. Solid State Chem. 160 (2001) 1.
- [95] S. Strobel, Th. Schleid, Z. Anorg. Allgem. Chem. Vol. 630 (2004) 706.
- [96] S. Strobel, Th. Schleid, Z. Anorg. Allgem. Chem. Vol. 630 (2004) Is. 11, 1761.
- [97] Q. H. Fu, P. Brazis, C. R. Kannewurf, J. A. Ibers, J. Solid State Chem. 155 (2000) 366.
- [98] L. N. Eatough, A. W. Webb, H. T. Hall, *Inorg. Chem.* 8 (1969) 2069.
- [99] A. M. Bayström, Acta chem. Scand. 3 (1949) 163.
- [100] C. Fong, B. J. Kennedy, M. M. Elcombe, Z. Kristallogr. 209 (1994) 941.
- [101] R. Hoppe, Angew. Chem. 78 (1966) 52; 82 (1970) 7; 92 (1980) 106;
 Angew. Chem. Ed. Engl. 5 (1966) 95; 9 (1970) 25; Z. Naturforsch. 50 A
 (1995) 555; Adv. Fluorine Chem. 6 (1970) 387; Izvj. Jugosl. Centr. Krist.
 [Zagreb] 8 (1973) 21.
- [102] Cryst. Structure and Chemical Bonding in Inorganic Chemistry, C. J. M. Rooymans, A. Rabenau (Eds.) Amsterdam 1975.
- [103] F. Lissner, Th. Schleid, Eur. J. Solid State Inorg. Chem. 30 (1993) 829.
- [104] M. Palazzi, Compt. Rend. Acad. Sci. Paris C 292 (1981) 7899.
- [105] F. Lissner, Th. Schleid, Z. Allgem. Anorg. Chem. 619 (1993) 1771.
- [106] P. Lauxmann, S. Strobel, Th. Schleid, Z. Allgem. Anorg. Chem. 628 (2002) 2403.
- [107] T. Murugesan, J. Gopalakrishnan, Ind. J. Chem. 22 A (1983) 469.
- [108] P. Lauxmann, Th. Schleid, Z. Allgem. Anorg. Chem. 627 (2001) 9.

- [109] H. Zeng, J. Mao, J. Chen, Z. Dong, G. Guo, J. Huang, J. of Alloys and Comp. 1 (2001).
- [110] T. Nilges, S. Zimmerer, D. Kurowski, A. Pfitzner, Z. Allgem. Anorg. Chem. Vol. 628 Is. 12 (2002) 2809.
- [111] R. Reisfeld, J. of Alloys and Comp. 341 (2002) 56.
- [112] M. Gruppe, W. Urland, J. of the less-common metals 170 (1991) 271.
- [113] C.M.Fang, A. Meetsma, G.A. Wiegers, J. of Alloys and Comp. 218 (1995) 224.
- [114] A. Tomas, J. Rigoult, M. Guittard, P. Laruelle, Acta Cryst. B 36 (1980) 1987.
- [115] A.Tomas, L. Brossard, M. Guittard, J. of Solid State Chem. 34 (1980) 11.
- [116] K. L. Lewis, J. A. Savage, K. J. Marsh, A. P. C. Jones, *Proc. SPIE-Int. Soc. Opt. Eng.* 21 (1983) 400; 79 (1986) 683.
- [117] G. Meyer, Th. Schleid, H. Schmidt, Z. Allgem. Anorg. Chem. 38 (1992) 103.
- [118] M. Julien-Pouzol, M. Guittard, Ann. Chim. [Paris] 7 (1972) 253.
- [119] R. Ibañez, A. Garcia, C. Fouassier, P. Hagenmüller, J. of Solid State Chem. 53 (1984) 406.
- [120] A. Mazurier, S. Jaulmes, M. Guittard, Acta Cryst. B 36 (1980) 1990.
- [121] B. A. Kolesov, J. G. Vasilyeva, Mater. Res. Bull. 27 (1992) 775.
- [122] R. Tamazyan, H. Arnold, V. N. Molchanov, G. M. Kuzmicheva, I. G. Vasileva, Z. Kristallogr. 215 (2000) 346.
- [123] W. Bronger, A. Kyas, P. Müller, J. of Solid State Chem. 70 (1984) 262.

Die experimentellen Arbeiten zur vorliegenden Dissertation wurden im Zeitraum von Dezember 1998 bis Dezember 2002 am Institut für Anorganische Chemie der Universität Stuttgart (Pfaffenwaldring 55, 70569 Stuttgart) unter Leitung von Herrn Prof. Dr. Thomas Schleid durchgeführt. Ich versichere hiermit an Eides statt, die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebenen Hilfsmittel angefertigt zu haben.

Danksagung

Allen, die mich bei der Anfertigung dieser Arbeit unterstützt haben, danke ich hiermit ganz herzlich.

Mein ganz besonderer Dank gilt hierbei meinem Doktorvater Herrn Prof. Dr. Thomas Schleid für sein stetes Vertrauen in meine Arbeit, trotz der vielen auf den ersten Blick kurios anmutenden Ergebnisse und der unkonventionellen Vorgehensweisen, Herrn Prof. Dr. Paul Keller für die Übernahme des Korreferats sowie Herrn Prof. Dr. Gerd Becker für seine Hilfsbereitschaft bezüglich der Doktorprüfung, Herrn Dr. Falk Lissner für seine nie ermüdende Ausdauer bei den Messungen meiner Verbindungen, selbst bei einigen extrem unschönen Kristallen, Herrn Dr. Helge Müller-Bunz für seine extrem gute Einführung in die Materie der Strukturlösung, meinem Ehemann Herrn Michael Melchinger für seine Unterstützung beim Layout sowie beim Druck dieser Dissertation.

Des weiteren möchte ich Herrn Bradford Macy für die gewährte Hilfe bei der englischen Übersetzung danken.

Mein Dank gilt ebenfalls meinem Freundeskreis und besonders Herrn Dr. Armin Buchthal. Sie alle haben mir den nötigen privaten Rückhalt gegeben.

L e b e n s l a u f

Dipl.-Chem. Petra Lauxmann-Melchinger

Anschrift

Bahnhofstraße 27 55270 Ober-Olm

Persönliche Daten

Geboren am 7. 1. 1966 in Stuttgart Staatsangehörigkeit: deutsch Familienstand: verheiratet

Ausbildung

1972-1976	Grundschule, Pestalozzischule Stuttgart-Rohr		
1976-1985	Hegel-Gymnasium Stuttgart-Rohr		
1985	mit Abitur (allgemeiner Hochschulreife) abgeschlossen		
1986-1998	Studium der Chemie an der Universität Stuttgart		
ws 1997/98	Diplomprüfung		
1998	Diplomarbeit am Institut für Anorganische Chemie		
	bei Prof. Dr. Thomas Schleid.		
	Thema: Versuche zur Synthese ternärer		
	Selten-Erd-Metall-Sulfide		
September 1998	Beginn der Promotionsarbeit am Institut für		
	Anorganische Chemie		

Sonstige Tätigkeiten

1987-1991	Mitarbeit am Fraunhofer-Institut Stuttgart
	als wissenschaftliche Hilfskraft

1998-2002 Mitarbeit am Institut für Anorganische Chemie Stuttgart als wissenschaftliche Hilfskraft

Hobbies/Ehrenamt

1996-2002	Leiterin der Sparte Iaido in der
	Sportvereinigung Feuerbach e.V.