# Synthesis of Branched Amino Polyols and Amino Hydroxy Acids: Stereoselective Addition of C-Nucleophiles to Isoxazolines and Isoxazolinium Salts and Assignment of Configurations 

Von der Fakultät Chemie der Universität Stuttgart<br>zur Erlangung der Würde eines<br>Doktors der Naturwissenschaften

(Dr. rer. nat.)
genehmigte Abhandlung
vorgelegt von
Yaser Bathich
aus Aleppo/Syrien

| Hauptberichter: | Prof. Dr. V. Jäger |
| :--- | :--- |
| Mitberichter: | Prof. Dr. S. Hashmi |
| Tag der mündlichen Prüfung: | 9.03 .2006 |

Institut für Organische Chemie der Universität Stuttgart

First, to those closest to me: my parents, my sisters and brothers, and second to my Doktorvater Prof. V. Jäger. Without the help and encouragement from all of you, this dissertation could never have been accomplished.

Part of this work has been presented in:

Publications:

Frey, W.; Imerhasan, M.; Bathich, Y.; Jäger, V. Crystal structure of (5S,8S)-8-hydroxymethyl-1-methyl-2,7-dioxa-1-aza-spiro[4,4]nonan-6-one, $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{4}$. Z. Krist. NCS 220, 2005, 151-152.

Posters:

1. Yaser Bathich, Mukhtar Imerhasan, Marco Henneböhle, Pierre-Yves LeRoy, Volker Jäger*, N-Methylisoxazolinium Salts: New Building Blocks in the Stereoselective Synthesis of Amino Polyols and Amino Acids; poster presented at the $6^{\text {th }}$ IMINIUMSALZ-TAGUNG (ImSaT-6), September 15-18, 2003, Stimpfach-Rechenberg, Germany; Book of abstracts, pp. 99-107.
2. Yaser Bathich, Marco Henneböhle, Pierre-Yves LeRoy, Mukhtar Imerhasan, Volker Jäger, N-Methylisoxazolinium Salts: New Building Blocks in the Stereoselective Synthesis of Amino Polyols and Amino Acids; poster presented at ORCHEM 2004, September 9-11, 2004, Bad Nauheim, Germany; Book of abstracts, p 220.

## Lectures:

1. Shiva Sunitha, Yaser Bathich, Marco Henneböhle, Pierre-Yves LeRoy, Volker Jäger, NMethylisoxazolinium Salts: New Building Blocks for the Stereoselective Synthesis of Branched Amino Polyols and Amino Acids, lecture presented by Ms. Shiva at 1. BBSSYMPOSIUM ON ORGANIC CHEMISTRY: N,O-HETEROCYCLES AND MORE, April 7-10, 2005, Bratislava, Slovak Republic; Book of abstracts, p 28.
2. Y. Bathich and V. Jäger, Synthesis of Branched Amino Hydroxy Acids and Amino Polyols by Stereoselective Addition of C-Nucleophiles to Isoxazolines and Isoxazolinium Salts, 10. Tag der Organischen Chemie der Universität Stuttgart (TOCUS 10), 14.10.2005.

## Table of Contents

1. Introduction and Aims ..... 1
2. Preparation of Isoxazolines and N-Methylisoxazolinium Salts ..... 7
2.1 State of knowledge ..... 7
2.1.1 Preparation of optically active isoxazolines by 1,3-dipolar nitrile oxide cycloaddition
2.1.2 Preparation of N -methylisoxazolinium salts ..... 8
2.2 Own results ..... 8
2.3 NMR data of isoxazolines and isoxazolinium salts and assignment of configuration ..... 13
2.4 Correlation between the values of optical rotation and the configuration of isoxazolines 15 and 16 ..... 17
$3 \quad$ Addition of $\mathbf{C}$-Nucleophiles to N -Methylisoxazolinium Salts ..... 19
3.1 Reaction of sodium diethyl malonate and lithium ester enolate with N - methylisoxazolinium salts ..... 19
3.1.1 State of knowledge ..... 19
3.1.2 Own results ..... 20
3.1.3 Assignment of configuration of ethyl $N$-methylisoxazolidine-3-carboxylates 26a and 26b ..... 21
3.2 Reaction of metal organyls with N-methylisoxazolinium salts ..... 22
3.2.1 State of knowledge ..... 22
3.2.2 Own results ..... 23
3.2.3 Assignment of configuration to 3-methylisoxazolidines 25a and 25b ..... 24
4 Addition of $C$-Nucleophiles to Isoxazolines ..... 25
4.1 Reactions of Grignard reagents with isoxazolines ..... 25
4.1.1 State of knowledge ..... 25
4.1.2 Own results ..... 25
4.1.3 NMR data of 3-allyl- and 3-benzylisoxazolidines 33a/b, 34a/b and 35a/b ..... 30
4.2 Reaction of organolithium compounds with isoxazolines: methyllithium and phenyllithium-lithium bromid complex ..... 35
4.2.1. State of knowledge ..... 35
4.2.2 Own results ..... 36
4.2.3 NMR data of 3-methylisoxazolidines 32a/b and assignment of configurations ..... 38
5 Catalytic Hydrogenation of Isoxazolidines and Isoxazolidinium Salts ..... 40
5.1 Synthesis of $N$-methylaminoalcohols, amino alcohols, and amino polyols ..... 40
5.1.1 State of knowledge ..... 40
5.1.2 Own results ..... 40
5.1.3 NMR data of $N$-methylaminoalcohols, aminoalcohols and aminopolyols ..... 42
5.2 Catalytic hydrogenation of isoxazolidine esters ..... 45
5.2.1 State of knowledge. ..... 45
5.2.2 Own results ..... 46
6 Hydrolysis of Isoxazolidine Acetals and Esters ..... 50
6.1 Preparation of isoxazolidinium salts $51,52 \cdot \mathbf{H C l}, 53 \cdot \mathrm{HCl}$ and diols 52,53 ..... 50
6.1.1 State of knowledge ..... 50
6.1.2 Own results ..... 51
6.1.3 NMR data of NMR data of the diols $52,52 \cdot \mathrm{HCl}, 53,53 \cdot \mathrm{HCl}$ and the $N$-methylamino triols $70,70 \cdot \mathrm{HCl}, 71,71 \cdot \mathrm{HCl}$ ..... 56
6.1.4 Discussion of the crystal structure data of the isoxazolidinolactone 54 ..... 60
7 Synthesis of Protected Amino Alcohols and Polyols ..... 62
7.1 State of knowledge. ..... 62
7.2 Own results ..... 63
7.3 NMR data of protected amino alcohols and polyols ..... 67
8 Preparation of Isoxazolidine-3-carbaldehydes ..... 69
8.1 State of knowledge ..... 69
8.2 Own results ..... 69
$9 \quad$ Synthesis of Branched $\beta$-Amino Acids ..... 71
9.1 State of knowledge. ..... 71
9.2 Own results ..... 76
9.3 NMR data of branched $\beta$-amino acids 84 and 85 ..... 84
10 Detailed Summary and Outlook ..... 86
11 Experimental Part ..... 96
11.1 General ..... 96
11.2 Synthesis of isoxazolines and N -methylisoxazolinium salts ..... 100
11.3 Addition of $C$-nucleophiles to $N$-methylisoxazolinium salts ..... 116
11.4 Addition of $C$-nucleophiles to isoxazolines ..... 122
11.5 Catalytic hydrogenation of isoxazolidines ..... 140
11.6 Hydrolysis of isoxazolidines ..... 153
11.7 Synthesis of protected amino alcohols and polyols ..... 161
11.8 Synthesis of amino polyols ..... 174
11.9 Oxidation of isoxazolinyl-1,2-diols ..... 177
11.10 Catalytic hydrogenation of isoxazolidinium salts ..... 178
11.11 Synthesis of protected branched $\beta$-amino acids ..... 180
11.12 Synthesis of free branched $\beta$-amino acids ..... 186
12 Appendix: Crystal Structure Data and GC diagrams ..... 191
12.1 Crystal Structure Data ..... 191
12.1.1 Crystal structure data of 3,3-Diphenyl-isoxazolidine (27) ..... 191
12.1.2 Crystal structure data of 3-Allyl-3-phenyl-isoxazolidine (30) ..... 196
12.1.3 Crystal structure data of ((3R,5S)-3-Allyl-3-(S)-1,4-dioxa-spiro[4.5]dec-2-yl- isoxazolidin-5-yl)-methanol (35a) ..... 199
12.1.4 Crystal structure data of 3-Carboxymethyl-2-methyl-3-phenyl-isoxazolidin-2-ium; chloride (51) ..... 203
12.1.5 Crystal structure data of (S)-3-((S)-1,2-Dihydroxy-ethyl)-2,3-dimethylisoxazolidin-2- ium; chloride $(52 \cdot \mathrm{HCl})$ ..... 206
12.1.6 Crystal structure data of (1S,6S)-6-Hydroxymethyl-1-methyl-2,7-dioxa-1-azaspiro [4.4]nonan-8-one (54) ..... 209
12.1.7 Crystal structure data of [(1S,2S)-2,3-Dihydroxy-1-(2-hydroxyethyl)-1- methylpropyl]-methylammonium; chloride $(\mathbf{7 0} \cdot \mathrm{HCl})$ ..... 212
12.1.8 Crystal structure data of Methyl-(2-oxo-4-phenyl-tetrahydro-pyran-4-yl)-ammonium; chloride (74) ..... 215
12.1.9 Crystal structure data of ((2S,3S)-2-Hydroxymethyl-5-oxo-3-propyl-tetrahydro- furan-3-yl)-carbamic acid tert-butyl ester (79) ..... 218
12.2 GC Diagrams ..... 223
12.2.1 GC diagram of the racemic mixture of the isoxazoline $\mathbf{9}$ ..... 223
12.2.2 GC diagram of the isoxazoline mixture 9 , with e.r. 98:2 ..... 224
13 References ..... 225
14 Acknowledgements ..... 232
15 Curriculum Vitae ..... 233
16 Formula Tables of Structures Prepared ..... 234

## Preliminary remarks and abbreviations

Figures, equations, literature citations, Schemes and Tables are numbered consecutively.

All compounds prepared during this work and cited in the Experimental Part are consecutively numbered 1, 2, 3 etc. and are assembled in the Formula Tables of Structures Prepared at the end. Some preparations yielded diastereomeric mixtures; the diastereomers are assigned as a (major diastereomer) and b (minor diastereomer).

Starting in chapter 1, all other formulas and structures are consecutively labeled in boldprinted capital letters, i.e. A, B, ... , Z, AA, AB etc.

## List of abbreviations used:

| abs. | absolute | FT | Fourier Transformation |
| :--- | :--- | :--- | :--- |
| Boc | tert-butyloxy carbonyl | h | hour(s) |
| Bn | benzyl | HPLC | High Pressure Liquid |
| Bu | butyl |  | Chromatography |
| c | concentration | Hz | Hertz |
| calc. | calculated | i | ipso |
| cat. | catalytic | IR | Infrared spectroscopy |
| Chap. | Chapter | J | coupling constant |
| conc. | concentrated | lit. | literature |
| corr. | corrected | $m$ | meta |
| COSY | correlated spectroscopy | M | molarity |
| d | day(s) | m.p. | melting point |
| d.r. | diastereomeric ratio | Me | methyl |
| DEPT | distortionless enhancement | min | minutes) |
|  | by polarization transfer | MPLC | Medium Pressure Liquid |
| dist. | distilled |  | Chromatography |
| DMF | $N, N$-dimethylformamide | N | normality |
| DMSO | dimethyl sulfoxide | NCS | N-chlorosuccinimide |
| eq | equivalent (s) | NMR | Nuclear Magnetic |
| Eq. | equation |  | Resonance |
| Et | ethyl | orperiment No. in | $p$ |
| Exp. | Experimental Part | PG | para |
|  |  |  | protecting group |


| Ph | phenyl |
| :--- | :--- |
| Py | pyridine |
| r.t. | room temperature |
| s | secondary |
| sat. | saturated |
| $t$ | tertiary |
| TFA | trifluoroacetic acid |
| THF | tetrahydrofuran |
| TLC | Thin Layer Chromatogarphy |
| TMS | trimethylsilyl |
|  | tetramethylsilane |
| TP | Typical Procedure |
| UV | Ultraviolett |
| Z | benzyloxycarbonyl |

## Zusammenfassung

$\beta$-Aminosäuren sind aufgrund ihres Vorkommens in einer großen Anzahl von Naturprodukten, pharmazeutischen Wirkstoffen und von Proteinmimetika lohnenswerte Syntheseziele. Aufgrund dieser Wichtigkeit der $\beta$-Aminosäuren bestand die diese Arbeit darin, effizienten Zugang zu Aminoalkoholen und -polyolen, sowie zu verzweigten $\beta$ Aminosäuren als Zielverbindungen zu entwickeln.

Dabei wird die Umwandlung von Isoxazolinen als Schlüsselzwischenstufen, die entweder durch Lewis-Säuren oder durch Überführen in das entsprechende $N$-MethylisoxazoliniumSalz aktiviert werden, verwendet. Dazu wurde die hoch-stereoselektive Addition von CNucleophilen an diese „aktivierten" Isoxazoline untersucht, gefolgt von der Umwandlung zu den Zielstrukturen. Die absolute Konfiguration der verschiedenen enantiomerenreinen Verbindungen wurde bestimmt. Die leicht zugänglichen und unterschiedlich substituierten Verbindungen sollten zukünftige Studien bezüglich Struktur und Funktion dieser wichtigen Verbundungsklasse erleichtern.

## A) Darstellung der Isoxazoline und $N$-Methylisoxazolinium-Salze

Die Isoxazoline wurden durch 1,3-dipolare Cycloaddition der entsprechenden Olefine und Nitriloxide, die in situ aus Oximen über die Hydroxamsäurechloride erhalten wurden, dargestellt (siehe Tabelle I).

Tabelle I. Darstellung der Isoxazoline


| Cycloaddukt | Ausbeute | Cycloaddukt | Ausbeute |
| ---: | ---: | ---: | ---: |
| N-N |  |  |  |

(20\%

Eine Möglichkeit der Aktivierung, die in dieser Arbeit verfolgt wurde, ist die $N$-Alkylierung der Isoxazoline mit Meerwein-Salz (Trimethyloxoniumtetrafluoroborat), um in hoher Ausbeute das entsprechende Isoxazolinium-Salz zu erhalten (Tabelle II).

Tabelle II Darstellung der Isoxazolinium-Salze


| Isoxazolinium-Salz | Ausbeute | Isoxazolinium-Salz | Ausbeute |
| :---: | :---: | :---: | :---: |
|  | 95 \% |  <br> 8 | $(79 \%)^{[a]}$ |
|  <br> 6 | 88 \% |  | 88 \% |

${ }^{[\text {a] }}$ Elementaranalyse leicht abweichend.
B) Reaktion der $N$-Methylisoxazolinium-Salze mit C-Nucleophilen

1. Addition von Malonsäurediethylester-Natrium-Salz und Lithiumessigesterenolat an N -Methylisoxazolinium-Salze

Die Verwendung von Malonsäurediethylester-Natrium-Salz und Lithiumessigesterenolat als C-nucleophile Reagenzien für verwandte Addukte wurde untersucht. Die Addition von Malonat an ein Modell-Isoxazolinium-Salz 3 wurde bereits von LeRoy in unserer Gruppe durchgeführt, was nun optimiert wurde. Die Addition eines neuen Esterenolats an das Isoxazolinium-Salz 3 erwies sich als glatte Umsetzung mit hoher Ausbeute (GI. I).
(I)


24


94 \%
(II)



13


3
23

In dieser Arbeit wurde das chirale $N$-Methylisoxazolinium-Salz 14 (aus 13) bei der EnolatAddition verwendet, was das entsprechende Addukt in guter Ausbeute, aber mäßiger Diastereoselektivität lieferte (GI. II)


## 2. Addition von Metallorganylen an N-Methylisoxazolinium-Salze

In der vorausgehenden Dissertation unserer Gruppe auf diesem Gebiet hat Henneböhle die Addition verschiedener Grignard-Reagenzien an $N$-Methylisoxazolinium-Salze, wobei die Konfiguration der Addukte unbekannt blieb. Die Addition von Methylmagnesiumbromid an das N -Methylisoxazolinium-Salz 13 wurde nun wiederholt und das Addukt dann in das entsprechende Diol $52 \cdot \mathbf{H C l}$ überführt. Daraus wurde die Konfiguration durch eine Röntgenstrukturanalyse bestimmt, was auch die Bestimmung der bis dahin nicht bekannten Konfiguration an $\mathrm{C}-3$ des Diols $52 \cdot \mathbf{H C l}$ und dessen Isoxazolidin-Vorläufer 25a [GI. III], erlaubte.
(III)


13


25a

$52 \cdot \mathrm{HCl}$
("X-ray")

## C) Reaktion von Isoxazolinen mit C-Nucleophilen bei Anwesenheit von Lewis-Säure

## 1. Addition von Grignard-Reagenzien an Isoxazoline bei Anwesenheit von Lewis-Säure

Als alternative Route, um Isoxazoline als Akzeptoren für C-Nucleophile am C-3 zu aktivieren und die Anwesenheit einer Methylgruppe am Stickstoff des Isoxazolins, die durch die Aktivierung durch Meerwein-Salz auftritt, zu vermeiden, können spezielle C-Nucleophile auch durch vorausgehende Aktivierung durch Lewis-Säure an die Isoxazoline addiert werden, häufig mit sehr guten Diastereoselektivitäten und in hohen Ausbeuten (Tabelle III).

Tabelle III. Addition von Allylmagnesiumbromid an Isoxazoline in Gegenwart von LewisSäure

Nr.

Tabelle III, Fortsetzung
Nr.

[^0]Der Einfluss von Temperatur und Lewis-Säure auf Ausbeute und Stereoselektivät der Addition wurde untersucht, es zeigte sich jedoch kein signifikanter Effekt. Bei diesen Versuchen was es nun möglich, die absolute Konfiguration der erhaltenen Isoxazolidine zu bestimmen, nachdem mehrere Kristallstrukturen erhalten werden konnten.

## 2. Addition von Alkyllithium-Lithiumbromid-Komplexen an Isoxazoline in Gegenwart von Lewis- Säure

Die Addition von Alkyllithium-Lithiumbromid-Komplexen an Isoxazoline wurde bislang nur selten untersucht. In der vorliegenden Arbeit wurde die Addition unter Verwendung von Methyllithium-Lithiumbromid in Gegenwart von Bortrifluorid-Etherat als Lewis-Säure
durchgeführt. Die Addukte wurden in hohen Ausbeuten erhalten, bei Verwendung des chiralen Isoxazolins 13 mit mäßigen Diastereoselektivitäten (Tabelle IV).

Tabelle IV. Addition des Methyllithium-Lithiumbromid-Komplexes an die Isoxazoline 2, 13 in Gegenwart von Bortrifluorid-Etherat

Isoxazolin
[a] Die Bestimmung der Diastereomereneverhältnisse basiert auf den Intensitäten getrennter Signalpaare in den ${ }^{13} \mathrm{C}$-NMR-Spektren der Rohprodukte. a : Hauptdiastereomer, b : Nebendiastereomer.

## C) Umwandlungen der Isoxazoline

Ein Großteil dieser Arbeit befasste sich mit der Umwandlung der erhaltenen Isoxazolidine zu unterschiedlichen Zielstrukturen wie Aminoalkoholen and -polyolen oder $\alpha$ - and $\beta$ Aminosäuren, erstens, um die Konfiguration der Additionsprodukte zu bestimmen und zweitens um zu zeigen, dass Isoxazoline vielversprechende zwischenstufen bezüglich Synthesen von Aminosäuren sind.

1. Synthese von N-(un)substitutierten Aminoalkoholen and -polyolen

Um Aminoalkohole and -polyole ausgehend von den Isoxazolidinen zu erhalten, war es lediglich nötig, die N-O-Bindung der Isoxazolidine zu spalten. Hierzu erwies sich die
palladium-katalysierte Hydrierung als effektiv und lieferte die Zielstrukturen meistens in hoher Ausbeute [GI. IV].

$R^{2}=\mathrm{H}, \mathrm{Me}$
25a, 25b, 32a, 34a, 34b, 35a, 35b, 52
$\mathrm{R}^{3}=\mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$
$41,42,45,47,48,49,50,70$

Die absoluten Konfigurationen der dargestellten 3,3-disubstituierten Aminoalkohole and polyole wurden basierend auf der relativen Konfiguration von entsprechenden Verbindungen der gleichen Serie, z. B. der 3,3-disubstituierten Isoxazolidine, von denen eine Kristallstruktur erhalten werden konnte, festgelegt. Ein abweichendes Verhalten wurde beobachtet, als ester-substituierte Isoxazolidine in der katalytischen Hydrierung untersucht wurden. Hier wurde zum Teil auch die C-N-Bindung statt der N -O-Bindung gespelten, wie das folgende Beispiel zeigt. [GI. V]:


74 \% [63:37]
16 \% [65:35]

Die Spaltung der N-O-Bindung wurde später durch eine Lösung von Samariumdiiodid in THF erreicht, wie in GI. VI gezeigt, lieferte.



37
2. Hydrolyse der Isoxazolidin-Derivative: Acetale und Ester

Ein anderer Aspekt dieser Arbeit war, die Konfiguration der dargestellten Isoxazolidine zu bestimmen. Saure Hydrolyse des Isoxazolidins 25a führte zum entsprechenden Diol $52 \cdot \mathbf{H C I}$
in Form des Hydrochlorids [GI. VII]. Die Struktur dieses Diols $52 \cdot \mathrm{HCl}$ wurde durch röntgenkristallographische Untersuchung bestätigt.


Auf gleiche Weise erfolgte die Hydrolyse des Isoxazolidinesters 26a [GI. VIII], wodurch das Isoxazolidinolacton 54 erhalten wurde; dessen Struktur wurde durch eine Röntgenstrukturanalyse bestätigt.


Interessanterweise wurden die $N$-Methylaminopolyole auf ähnlichem Weg problemlos dargestellt, wenn es auch teilweise schwierig war, korrekte Elementaranalysen zu erhalten. Auch hier war es möglich die Konfiguration eines Isoxazolidin (25a) durch Bestimmung der Kristallstruktur des Aminotriol-Hydrochlorids $\mathbf{7 0 \cdot H C I}[\mathrm{GI}$. IX] aufzuklären.


Abschließend sei gesagt, dass Transformationen zu einer Reihe solcher Strukturen durch einfache Schritte (katalytische Hydrierung, Hydrolyse) möglich waren, und damit die Vielseitigkeit dieses Zugangs zu den verschiedenen Zielstrukturen auf gezeigt werden könnte.

## 3. Synthese verzweigter $\beta$-Aminosäuren

Anlass zu dieser Studie war, einen neuen Zugang zu (verzweigten) Aminosäuren zu finden, was durch die Umsetzung von $N$-(un)substituierten Aminoalkoholen und -polyolen zu den entsprechenden Aminosäuren gelang.

Dabei wurde nach dem Aufbau des "aktivierten Isoxazolin-Rings" eine Reihe von C-Nucleophilen addiert, was die entsprechenden Isoxazolidine in hoher Ausbeute und meistens mit hoher Selektivität lieferte. Nach katalytischer Hydrierung wurden die erhaltenen Aminoalkohole oder Aminopolyole geschützt und konnten nun zu einer Anzahl $\beta$ Aminosäuren durch Oxidation des primären Alkohols oder in einigen Fällen der Diol-Einheit, gefolgt von der Abspaltung der Schutzgruppe am Stickstoff, überführt werden (Schema I).

Schema I
A) Aktivierung durch Lewis-Säure

B) Aktivierung durch N -Methylierung


Mit der zuvor dargelegten Strategie war es naheliegend, die hochfunktionalisierten N (un)substituierten Aminoalkohole und -polyole in die entsprechenden $\beta$-Aminosäuren zu überführen. Dazu wurden die $N$-(un)substituierten Aminoalkohole und -polyole als N -BocDerivative geschützt, die dann zu den geschützten $\beta$-Aminosäuren 76-81. Nach Abspaltung der Schutzgruppen durch trifluoressigsäure und Reinigung am lonenaustauscher wurden mehrere $\beta$-Aminosäuren in guter Gesamtausbeute erhalten. Die Konfiguration aller geschützten und ungeschützten $\beta$-Aminosäuren wurde durch Röntgenkristallographie von entsprechenden Verbindungen der gleichen Serie (Schema II) 82-86.

Schema II


59, 62, 63, 66, 68, 69



76-81


Somit wird ein vielseitiger und effizienter Weg zu verschiedenen Aminoalkoholen und polyolen gezeigt. Die Synthese verläuft über chirale Isoxazolidine als Schlüsselzwichenstufen, zum Teil unter hoher Selektivität der 1,3-dipolaren Cycloaddition bei der Bildung weiterer Strukturen mit bis zu drei benachbarten stereogenen Zentren. Dadurch war es möglich, neue, flexible und effiziente Wege zu verzweigten $N$-(un)substituierten Aminoalkoholen bzw. -polyolen und zu $\beta$-Aminosäuren zu entwickeln. Insbesondere wurde gezeigt, dass Isoxazoline in hohem Maße brauchbare Vorläufer für Zielstrukturen mit tertiären und quartären stickstoffhaltigen Stereozentren darstellen, was sich in der Zukunft bei der Synthese anderer interessanter verzweigter Aminoverbindungen als nützlich erweisen sollte.

## 1. Introduction and Aims

The main aim of this work is the development of synthetic routes towards amino alcohols as well as branched $\alpha$ - and $\beta$-amino acids starting from achiral and chiral (racemic and optically active) isoxazolines $\mathbf{A}$ and $N$-methylisoxazolinium salts $\mathbf{B}$.

A

B

C

D

The isoxazolines were treated with a variety of Grignard reagents and organolithium complexes as C -nucleophiles. These results were comparable to the findings of analog additions to the "activated" isoxazolines, that is, to the isoxazolinium salts B. The latter react smoothly with Grignard reagents, as well as with weaker C-nucleophiles such as sodium diethyl malonate or lithium ester enolate. At the same time it was observed, that the addition proceeds with -particly- good diastereoselectivity under mild reaction conditions, leading to good yields of the corresponding substituted isoxazolidines $\mathbf{C}$.

Isoxazolines A and isoxazolinium salts B serve as versatile synthetic building blocks which were transformed into structurally very different, but nonetheless important target compounds. Related to this was the synthesis of amino alcohols and amino polyols, primarily by use of $\mathbf{B}$. This approach required reductive opening of the $\mathrm{N}-\mathrm{O}$ bond, and was achieved with almost quantitative yields through catalytic hydrogenation.

The synthesis of branched $\beta$-amino acids D was achieved via 1,3-aminoalcohols (-polyols), which were accessible with good yields and mostly high diastereoselectivity. After the introduction of the Boc protecting group at nitrogen, the amino alcohols were oxidized to carboxylic acids (cf. B). In some cases $\beta$-aminolactones were obtained instead of the openchain $\beta$-amino hydroxy acids.

Attempts to N -demethylate the isoxazolidines remained unsuccessful. Therefore, later in this work, additions of a variety of $C$-nucleophiles to isoxazolines were performed using different Lewis acids to synthesize the required isoxazolidines in one step, thus avoiding the activation step of N -methylation with Meerwein salt. As done with the substituted isoxazolidines $\mathbf{C}$, the isoxazolidines E were transformed into branched $\beta$-amino acids $\mathbf{F}$ through the cleavage of
the N-O bond followed by N-protection, which gave the possibility for alcohol or diol oxidation; the last step then was the removal of the Boc group.


E


F

This work centered on the results of Hennböhle ${ }^{1}$ and LeRoy ${ }^{2}$, the first two dissertations in this project in our research group, in which the addition of several $C$-nucleophiles such as, metal organyls, cyanide reagents, sodium borohydride, Grignard reagents, sodium malonate and lithium methanenitronate were added to isoxazolinium salts. The transformation of the isoxazolidine $\mathbf{C}$ into the corresponding branched $\beta$-amino acid $\mathbf{D}$ was described. ${ }^{1}$

Apart from the previous research work in the Jäger group, very few examples of isoxazolinium salts can be found in the literature. The first isoxazolinium salt was reported in $1955 .{ }^{3}$ In 1973, Belly et al. reported that isoxazolines can be methylated with dimethyl sulfate to produce the corresponding isoxazolinium salts [(Eq. 1) and (Eq. 2)].



55 \%
35 \%
(2)




During the last 40 years, several other alkylating agents were used to produce N alkylisoxazolinium salts such as: methyl iodide, ${ }^{4,5}$ dimethyl sulfate, ${ }^{3,5,6,7}$ triethyloxonium ${ }^{8}$ and trimethyloxonium tetrafluoroborate. ${ }^{9,10}$

In 1974 Gandolfi et al. published their results on the addition of sodium borohydride to a $N$ methylisoxazolinium salt in which the diastereomeric ratio was cited as " $100 \%$ ", and the yields were 88-98 \% [Eq. (3)]. ${ }^{11}$
(3)



Additions of Grignard reagents were also reported, with excellent diastereoselectivity albeit unsatisfactory yields; when triethyloxonium tetrafluoroborate was used instead of trimethyloxonium tetrafluoroborate, the yield was improved in one case [Eq. (4)] ${ }^{11}$.
(4)


$$
\begin{gathered}
\underset{\text { d.r. }>99: 1}{\begin{array}{l}
\text { 1. } R_{3} O B F_{4} \\
\text { 2. } R^{2} M g X
\end{array}} \\
R^{1}=P h, R^{2}=M e, R=M e \quad 30 \% \\
R^{1}=M e, R^{2}=P h, R=M e \quad 42 \% \\
R^{1}=H, R^{2}=P h, R=E t \quad 95 \%
\end{gathered}
$$





The addition of $C$-nucleophiles to the $\mathrm{C}=\mathrm{N}$ bond of isoxazolines was also mentioned in the literature. In 1980, it was described the isoxazoline $\mathbf{G}$ by treatment with sodium cyanoborohydride under acidic conditions led to a $2: 1$ mixture of the two diastereomeric isoxazolidines HA and HB, but in poor yield [Eq. (5)]. ${ }^{12}$


G
20 \%

HA
$+$

HB

Better results have been disclosed by Uno et al. in 1989. The isoxazoline was first activated with borontrifluoride etherate $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, then the lithium organyls were added [Eq. (6)]. ${ }^{13}$ However, when $t$-butyllithium, lithium phenylacetylide, phenylmagnesium bromide or $n$ butylmagnesium bromide were used, no reaction was observed. Nevertheless, low to excellent yields were stated, for other cases [Eq. (6)].


(6)

$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2},{ }^{\mathrm{n}} \mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{Li}$ $\mathrm{LiBr}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$




During the last few years, the preparation of enantiopure $\beta$-amino acids has emerged as an important and challenging synthetic endeavour. The increasing attention given to the chemistry of $\beta$-amino acids is partly due to the fact that they are components of a variety of natural products such as taxol, ${ }^{14}$ the dolastatins $11,{ }^{15}$ and many others (Figure 1). ${ }^{16}$

Figure 1


Dolastatin 11


Taxol

Also, a number of research groups have embarked on the synthesis of oligomers from $\beta$ amino acids which gives rise to stabilized helical structures that exhibit a resistance towards enzymatic hydrolysis. ${ }^{17}$ Much of the work pertaining to enantioselective synthesis of $\beta$-amino acids has been reviewed. ${ }^{18}$ Further remarkable applications of $\beta$-amino acids are the use as protease inhibitors, ${ }^{19}$ as precursors for antibiotics, ${ }^{20}$ and as building blocks in cryptophycins. ${ }^{21}$

To peruse this ambition of preparation of enantiopure $\beta$-amino acids, ${ }^{1}$ amino polyols, lactones. The isoxazoline was built by cycloaddition of nitrile oxides with a variety of olefins, however, final introduction of a $C$-nucleophile is hampered by insufficient electrophilicity of the isoxazoline $\mathrm{C}=\mathrm{N}$ bond. ${ }^{22}$

A general solution of this might be offered when "activated" derivatives, such as N methylisoxazolinium salts, were employed. The strategy to use these cyclic oxy-iminium salts for synthesis of branched amino polyols, leading to branched $\alpha$ - and $\beta$-amino acids, is outlined in Scheme 1.

Because of the difficulty of removal of the $N$-methyl group from the isoxazolidines produced, an alternative way was sought using several Lewis acids to activate the isoxazolines used for addition of $C$-nucleophiles (Scheme 2 ).

Scheme 1. Isoxazolinium salts: Stratygy to build a variety of structures with an $\alpha$-tertalkylamine unit


Scheme 2. The isoxazoline route to build a variety of structures concerning enantiopure amino acids


## 2 Preparation of Isoxazolines and $N$-Methylisoxazolinium Salts

In this chapter, preparation of isoxazolines and isoxazolinium salts will be described.

### 2.1 State of knowledge

### 2.1.1 Preparation of optically active isoxazolines by 1,3-dipolar nitrile oxide cycloaddition

The nitrile oxide cycloaddition has attracted much attention in synthetic organic chemistry. The value of this cycloaddition is ascribed mainly to the utility of the cycloaddition products as synthetic equivalents. ${ }^{23}$ Generally, nitrile oxides are not isolable dipoles but are prepared in situ in the presence of a dipolarophile. A common source of nitrile oxides (IA) are aldehydes (IB) (chosen in this work, because of the availability of chiral, optically active derivatives) that are converted into the respective oximes (IC). From these, there is a choice concerning the actual precursor. A hydroximoyl halide (ID) or nitroalkane (IE) can be used. In most cases, the nitrile oxide (IA) tends to dimerize to produce a furoxan. ${ }^{24}$


Hydroximoyl halides (ID) are prepared by halogenation of the respective aldoxime (IC), for which a number of halogenating agents such as chlorine, ${ }^{25}$ tert-butyl hypochlorite, N chlorosuccinimide (NCS), ${ }^{26}$ or N -bromosuccinimide (NBS) ${ }^{27}$ have been employed.

Nitrile oxides can be obtained from hydroximoyl halide (ID) by dehydrohalogenation with base. It must be underlined here that hydroximoyl halides are strong skin irritants and may cause abscess at the area of contact. ${ }^{28}$

### 2.1.2 Preparation of N -methylisoxazolinium salts

Based on the fact that isoxazolines are weak bases and weak $N$-nucleophiles, ${ }^{29,30,31}$ alkylating agents can lead to activation by conversion to N -alkylisoxazolinium salts. Isoxazolinium salts represent potentially versatile intermediates for synthesis, even though relatively few transformations of these salts are known ${ }^{1,2,32,11}$ and synthetic uses so far have been scarce. ${ }^{1,2}$ A notable exception involves the use of an N -methylisoxazolinium salt: Its reduction to an isoxazolidine and subsequent cleavage to an N -methylaminoalcohol was used in a synthesis of paliclavine. ${ }^{32}$

In the present work, trimethyloxonium tetrafluoroborate $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ was chosen as the alkylating agent to activate the isoxazolines used. The Meerwein salt was dissolved in dichloromethane ( 1.1 eq ) with the isoxazoline at room temperature and kept with stirring overnight. After concentration of the solvent in vacuo the crude product was recrystallized from abs. ethanol to give the usually pure isoxazolinium salt in 79-96 \% yield [Eq. (7)].


In comparison to other known alkylating agents in literature, ${ }^{3,33,34}$ our experience has shown that Meerwein salts are the best alkylating agents for such isoxazolines.

### 2.2 Own results

The isoxazolinium salt $\mathbf{3}$ was prepared from the hydroximoyl chloride $\mathbf{1}$ which was obtained starting from benzaldehyde as described in literature. ${ }^{35}$ The isoxazoline 2 prepared by reaction of 1 with ethylene in the presence of triethylamine as a base (Scheme 3) with good yield $87 \%$ (lit. ${ }^{36} 81 \%$ ). Next, the isoxazoline 2 was treated with 1.1 eq of trimethyloxonium tetrafluoroborate in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with stirring overnight. After evaporation of the solvent and recrystallization from ethanol the isoxazolinium salt $\mathbf{3}$ was obtained in $95 \%$ yield (lit. ${ }^{2} 96 \%$ ). The isoxazoline 9 was prepared in an enantioselective manner according to Ukaji et al. ${ }^{37}$ Allyl alcohol was treated with 1.1 eq of diethylzinc at $0{ }^{\circ} \mathrm{C}$, followed by the addition of 1.1 eq of $(+)$-L-DIPT after 10 min ; then another 1.1 eq of diethylzinc and hydroximoyl chloride were added. The enantiomeric ratio of the isoxazoline 9 obtained was $98: 2$ (see appendix 12.2.1 and 12.2.2), measured by means of GC for the crude isoxazoline 9 , with excellent yield 93 $\%$.

The isoxazoline 9 was crystallized from petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the pure enantiomer, the configuration of which was assigned to be (5R), by comparing the optical rotation of the sample obtained here with the known literature value (Scheme 3). ${ }^{37}$

Scheme 3. Preparation of the isoxazoline 9 and the $N$-methylisoxazolinium salt 3


The isoxazolinium salts $\mathbf{6}$ and $\mathbf{8}$ were prepared from the corresponding isoxazolines 5 and 7, which in turn were available by reaction of chlorooximidoacetate 4 with isobutene and ethylene, respectively. The hydroximoyl chloride 4 was prepared by reaction of ethyl glycinate hydrochloride with sodium nitrite in acidic medium and was obtained 4 in $41 \%$ yield (lit. ${ }^{38} 54 \%$ ). In presence of triethylamine, the isoxazoline 5 was obtained from the corresponding hydroximoyl chloride 4. Purification of the crude product by MPLC afforded the isoxazoline 5 in $70 \%$ yield (lit. ${ }^{2} 67 \%$ ). In the same manner the hydroximoyl chloride 4 was treated with ethylene with slowly dropping 1.1 eq of triethylamine into this solution. After purification by MPLC, the isoxazoline 7 was isolated in $58 \%$ yield (lit. ${ }^{39} 77 \%$ ).

Treatment of the isoxazolines 5 and 7, respectively, with trimethyloxonium tetrafluoroborate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded after recrystallization from abs. ethanol $88 \%$ (lit. ${ }^{2} 95 \%$ ) of pure isoxazolinium salt 6, and $79 \%$ of spectroscopically pure, but analytically impure isoxazolinium salt 8 (Scheme 4).

Scheme 4. Preparation of $N$-methylisoxazolinium salts $\mathbf{6}$ and $\mathbf{8}$


The synthesis of the $N$-methylisoxazolinium salt 14 was done according to the literature. ${ }^{1,2,10}$ D-Mannitol was protected using cyclohexanone to afford 1,2:5,6-Di-O-cyclohexylidene-Dmannitol 10 in $57 \%$ yield (lit. ${ }^{40} 56 \%$ ), which in turn was transformed to the respective oxime by diol cleavage with sodium periodate, then treatment with hydroxylamine hydrochloride.

Purification by column chromatography afforded 2,3-O-cyclohexylidene-(S)-glyceraldoxime 11 in very good yield $81 \%$ (lit. ${ }^{2} 88 \%$ ). Treatment of 11 with $N$-chlorosuccinimide in DMF after introducing HCl gas into the solution and then leaving the reaction mixture with stirring for 3 h , gave 2,3-O-cyclohexylidene-D-glycerohydroximoyl chloride 12 in $99 \%$ yield [(lit. ${ }^{2} 99$ \% (corrected)] (Scheme 5).

Cycloaddition of the nitrile oxide derived from 2,3-O-cyclohexylidene-D-glycerohydroximoyl chloride 12 to ethylene in toluene with continuous dropping the triethylamine solution into the mixture during 24 h resulted in a yellowish oil. Recrystallization from hexane gave (1'S)-3-(1',2'-O-cyclohexylidenedioxyethyl)-4,5-dihydro-1,2-oxazole 13 in good yield $84 \%$ (calculated from the oxime 11) (lit. ${ }^{10} 84 \%$ ). Methylating 13 with trimethyloxonium tetrafluoroborate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, after evaporation of the solvent and recrystallization from abs. ethanol afforded (1'S)-3-(1',2'-O-cyclohexylidenedioxyethyl)-2-methyl-4,5-dihydro-1,2oxazolium tetrafluoroborate 14 in high yield $88 \%$ (lit. ${ }^{10} 84$ \%) (Scheme 5).

Scheme 5. Synthesis of the $N$-methylisoxazolinium salt 14



The cycloadditions of 2,3-O-cyclohexylidene-D-glyceronitrile oxide (from 12) to allyl alcohol and isobutene were also carried out successfully. Allyl alcohol was first treated with diethylzinc ( 1.1 eq ) in $\mathrm{CHCl}_{3}$, followed by addition of 1.1 eq of (-)-D-DIPT and another 1.1 eq of diethylzinc and finally of the hydroximoyl chloride 12. The ratio of the two resulting diastereomers was found as 87:13 for ( $5 R$, 1'S)- and ( $5 S$, 1'S)-3-(1',2'-O-cyclohexylidenedioxyethyl)-5-hydroxymethyl-2-isoxazoline 15 and 16, respectively, with excellent yield 91 \% (Scheme 6). Unfortunately, it was not possible to separate these diastereomers by MPLC.

When (+)-L-DIPT was used instead of (-)-D-DIPT, the isoxazolines 15 and 16 were obtained again, but now 16 constituted the major diastereomer ( $86 \%$ yield, 15:85 diastereomeric ratio for $15 / 16$ ). When the same reaction was performed without (+)-L- or (-)-D-DIPT, the diastereomeric ratio of the isoxazolines $\mathbf{1 5} / \mathbf{1 6}$ was $55: 45$ in $78 \%$ yield. This clearly shows the effect of the chiral mediator DIPT on the diastereomeric ratio.

[^1]In a similar manner, when isobutene was introduced into the solution of hydroximoyl chloride 12 with continuous addition of triethylamine solution ( 1.0 N ) in abs. toluene over 24 h , the isoxazoline 22 was obtained as a yellowish oily crude product. Recrystallization from hexane afforded (1'S)-3-(1',2'-O-cyclohexylidenedioxyethyl)-5,5-dimethyl-4,5-dihydroisoxazole 22 in good yield (82 \%) as a colourless solid (Scheme 6).

Scheme 6. Synthesis of isoxazolines 15, 16, 22


According to Henneböhle et al. ${ }^{10,41}$ the isoxazoline 21 was prepared starting from D-mannitol, which was first protected using 2,2-dimethoxypropane in pyridine, to produce 1,2:5,6-Di-O-diisopropylidene-D-mannitol 17 in 65 \% yield (lit. ${ }^{42} 54$ \%) (Scheme 7).

Diol cleavage with lead(IV) tetraacetate and base gave the corresponding aldehyde ${ }^{43}$, which was transformed into the respective hydroximoyl chloride in two steps ${ }^{44}$. Cycloaddition of 2,3-O-isopropylidene-D-glyceronitrile oxide 20 to ethylene afforded the corresponding (1'S)-3-(2,2-dimethyl-1,3-dioxolan-4-yl)-4,5-dihydroisoxazole 21 in fair yield $57 \%$ (lit. ${ }^{10} 83 \%$ ) (Scheme 7).

Scheme 7. Synthesis of the isoxazoline 21

$\xrightarrow[\substack{80 \% \text { (corr.) (Exp 15) } \\ \text { Lit. }{ }^{43} 97 \text { \% (corr.) }}]{\substack{\text { NCS, } \mathrm{HCl} \text { (kat.) } \\ \text { DMF, r.t., } 1.5 \mathrm{~h}}}$


20


### 2.3 NMR data of isoxazolines and N-methylisoxazolinium salts and assignment of configurations

## ${ }^{1} \mathrm{H}$ NMR data

Generally, the proton absorptions of the isoxazolinium salts show deshielding as compared to those of the corresponding isoxazolines (Tab. 1). As expected, the smallest deviation in the chemical shifts $(\Delta \delta)$ was found for $\mathrm{CH}_{2} \mathrm{CH}_{3}$ of the ester group of the compounds $5-8$, with a difference of $0.02-0.05 \mathrm{ppm}$. The highest deviation was observed for the $4-\mathrm{H}$ signals with $0.69-0.80 \mathrm{ppm}$. In the case of $5-\mathrm{H}$ the shift difference was $0.41-0.48 \mathrm{ppm}$, for the $\mathrm{CH}_{2} \mathrm{CH}_{3}$ protons about 0.1 ppm only, and 0.21 ppm for the 3 -phenyl groups. These deshieldings are due to the positively charged nitrogen atom (electronegativity effect).

It is important to be mentioned here that all isoxazolines were measured using $\mathrm{CDCl}_{3}$ as a solvent, which was not the case with the corresponding isoxazolinium salts for which $\mathrm{CD}_{3} \mathrm{OD}$ was used.

Coupling between the N -methyl group protons and 4 -H was found. ${ }^{10,1,2}$ This coupling over five bonds was detected in most isoxazolinium salts prepared, with values of 1.8 to 2.4 Hz . It was not possible, however, to detect this ${ }^{5} \mathrm{~J}$-coupling in case of isoxazolinium salt 8. Henneböhle ${ }^{1}$ had cited similar values of $1.8-2.1 \mathrm{~Hz}$, also LeRoy ${ }^{2}$ had found similar range of
${ }^{5} \mathrm{~J}=1.6-2.4 \mathrm{~Hz}$, depending on the isoxazolinium salt. Hence, the observed values in this work were in the same range. The homoallylic ${ }^{5} \mathrm{~J}$-coupling is also known from many other cases in the literature, with a range of $0-2.5 \mathrm{~Hz} .{ }^{45}$

## ${ }^{13}$ C NMR data

The chemical shifts of the carbon atoms of isoxazolinium salts also suffer deshielding as compared to the cases of the corresponding isoxazolines (Tab. 2). The differences in chemical shifts ( $\Delta \delta$ ) were similar to those reported by Henneböhle ${ }^{1}$ and LeRoy. ${ }^{2}$ For C-3 the chemical shifts were shifted by 3.8-9.9 ppm, however, for $\mathrm{C}-4$ this was less (in the range of 0.7 to 6.9 ppm ) and for C-5 it was $1.7-5.9 \mathrm{ppm}$. The observed chemical shifts ( $\Delta \delta$ values) reflect the transformation from imine to the iminium salt structure. ${ }^{46}$

Comparing the ${ }^{13} \mathrm{C}$ absorptions of $o-, m-, p-C$ of the phenyl group in the isoxazoline 2 with those of the isoxazolinium salt 3, we observed deshielding in the range of $3.6-7.2 \mathrm{ppm}$. In contrast to this, shielding of $i-C$ of the phenyl group was observed with the isoxazolinium salt 3, as compared to that of the corresponding isoxazoline 2 ( $\Delta \delta=-3.6 \mathrm{ppm}$ ), which is difficult to interpret. Shifting of the carbonyl carbon to low-field of about 4.85 ppm was noticed also in case of the isoxazolines 6 and 8 .

Table 1. Selected ${ }^{1} \mathrm{H}$ NMR data ( $\delta$ in ppm, $J$ in Hz ) of the isoxazolines and $N$-methylisoxazolinium salts prepared


[^2]Tab. 2. Selected ${ }^{13} \mathrm{C}$ NMR data ( $\delta$ in ppm) of the isoxazolines and $N$-methylisoxazolinium salts prepared

| Compound | C-5 | C-4 | C-3 | $\left(\mathrm{CWH}_{3}\right)_{2}$ | $\left(\underline{\mathrm{CH}} \mathrm{H}_{2} \mathrm{CH}_{3}\right)$ | $o-, m-, p-\mathrm{C}$ of $3-\mathrm{C}_{6} \mathrm{H}_{5}$ | $i-\mathrm{C}$ of $3-\mathrm{C}_{6} \mathrm{H}_{5}$ | $\mathrm{N}^{+}-\mathrm{CH}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 69.2 | 35.2 | 156.8 | - | - | 126.7, 128.7, 130.0 | 129.5 | - |
| 3 | 72.8 | 42.1 | 166.7 | - | - | 132.1, 132.3, 137.2 | 125.9 | 42.1 |
| $\Delta \delta$ | +3.6 | +6.9 | +9.9 | - | - |  | -3.6 | - |
|  |  |  |  |  |  | $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ | $\mathrm{C}=0$ |  |
| 5 | 88.5 | 45.2 | 151.1 | 27.2 | 61.9 | 14.1 | 161.1 | - |
| 6 | 94.4 | 49.3 | 155.7 | 26.9 | 66.2 | 14.2 | 156.2 | 42.9 |
| $\Delta \delta$ | +5.9 | +4.1 | +4.6 | -0.3 | +4.3 | +0.1 | -4.9 | - |
| 7 | 71.4 | 33.8 | 151.9 | - | 62.1 | 14.1 | 160.7 | - |
| 8 | 73.6 | 38.0 | 155.7 | - | 66.2 | 14.2 | 155.9 | 42.2 |
| $\Delta \delta$ | +2.2 | +4.2 | +3.8 | - | +4.1 | +0.1 | -4.8 | - |
|  |  |  |  | C-1' | C-2' |  |  |  |
| 13 | 68.8 | 35.9 | 158.4 | 70.7 | 66.8 | - | - | - |
| 14 | 70.5 | 36.6 | 166.7 | 69.5 | 66.5 | - | - | 39.4 |
| $\Delta \delta$ | +1.7 | +0.7 | +8.3 | -1.2 | -0.3 | - | - | - |

[^3]
### 2.4 Correlation between the values of optical rotation and the absolute configuration of isoxazolines 15,16

A correlation between optical rotation values / sign and the absolute configuration of selected isoxazolines was discussed in our research group. ${ }^{44,48,49,47}$ For example, the optically active furoisoxazoline JB with ( $3 \mathrm{a} R, 6 \mathrm{aR}, 1$ 'S)-configuration has a large optical rotation with positive sign (Tab. 3), while the furoisoxazoline JA with (3aS,6aS,1'S)-configuration shows a negative sign of a similarly large optical rotation. ${ }^{48}$ The configuration at $\mathrm{C}-1$ ' seems to have little influence on the sign of the optical rotation, i.e. the furoisoxazoline JC has a rotational value with negative sign, opposite to the furoisoxazoline JD which again shows a positive rotation. ${ }^{44}$ The same behaviour was observed by Lee and Jäger ${ }^{49}$ with the isoxazolines JE/JF.

Similarly, the isoxazoline 15 obtained here can be assigned the (5S)-configuration $\left[[\alpha]_{D}^{20}=\right.$ +72.7 (mixture of $15 / 16$ 87:13)], and the isoxazoline 16 should have the $(5 R)$-configuration $\left[[\alpha]_{D}^{20}=-63.0\right.$ (mixture of 15/16 15:85)].

Transformation of isoxazolines $15 / 16$ to the corresponding isoxazolidines $35 a$ and $35 b$ by the addition of allylmagnesium bromide led to the isoxazolidine $\mathbf{3 5 a}$ (major product) a single crystal of which proved suitable for crystal structure analysis: This showed the configuration at C-5 to be (S), since the absolute configuration at $\mathrm{C}-1$ ' is known from the mannitol precursor. This all correlates very well with the previous assignment for the isoxazolines 15 and 16.

Table 3. Optical rotation values of selected isoxazolines.
c $\alpha \alpha]_{D}^{20}$

[^4]
## 3 Addition of C-Nucleophiles to $N$-Methylisoxazolinium Salts

In this chapter, the addition of a variety of $C$-nucleophiles to $N$-methylisoxazolinium salts will be described.

### 3.1 Reaction of sodium diethyl malonate and lithium ester enolate with $N$ methylisoxazolinium salts

### 3.1.1 State of knowledge

The use of diethyl malonate as a C-nucleophile in addition to $N$-methylisoxazolinium salts was investigated only in our research group. LeRoy performed the addition of diethyl malonate in the presence of sodium hydride NaH as base to the model isoxazolinium salt 3 with good yield and without observing deprotonated product JG [Eq. (8)] ${ }^{2}$.
(8)


3



Lit. ${ }^{2} 77$ \%


23


JG

Henneböhle ${ }^{1}$ studied the diastereoselectivity of this reaction with two isoxazolinium salts. He found good diastereomeric ratios of $86: 14$ to $96: 4$, with yields varying from $20 \%$ to $80 \%$ [Eq. (9) and (10)].
(9)




13



L


Ma/b

The isoxazolidine $\mathbf{2 3}$ produced similarly could be a promising precursor for $\beta$-amino acids like $\mathbf{N}$, this would be prepared by acidic hydrolysis decarboxylation followed by catalytic hydrogenation [Eq. (11)].


Addition of lithium ester malonate as a C -nucleophile is known in literature ${ }^{50}$, But exclusively to aldehydes and ketones. However, Refomatskii reaction was applied to such additions. ${ }^{51 a-c}$ Additions of lithium ester enolate to isoxazolinium salts so far are unknown to the best of our knowledge.

### 3.1.2 Own results

The addition of sodium diethyl malonate to the model isoxazolinium salt 3 was repeated in this work to afford the corresponding isoxazolidine $\mathbf{2 3}$ in improved yield $94 \%$; the reaction time here was shorter ( 1 h instead of 1 d ) than that used by LeRoy ${ }^{2}$ [Eq. (12)].


3

(lit. ${ }^{2} 77 \%$ )


23

Aiming to prepare the $\beta$-amino acid $\mathbf{N}$, tests were done with the isoxazolidine 23, i.e. acidic and basic hydrolysis, catalytic hydrogenation, but all without success: This resulted either in decomposition or in a product mixture difficult to separate [Eq. (13)].


From the model isoxazolinium salt 3, the corresponding isoxazolidine 24 was prepared by addition of lithium ester enolate in 94 \% yield [Eq. (14)].


The diastereoselectivity of this was studied with the chiral isoxazolinium salt 14, it proved moderate (d.r. 68:32). After MPLC the isoxazolidines 26a and 26b were obtained as pure diastereomers in good yield (79 \%; 53 \% + 26) [Eq. (15)].


13

1. diisopropylamine, $0^{\circ} \mathrm{C}$,
0.5 h
2. n-butyllithium, 0.5 h
3. ethyl acetate, $-78^{\circ} \mathrm{C}$,
0.5 h , then crude 14 ,

THF, $-78^{\circ} \mathrm{C}, 1.0 \mathrm{~h}$
(d.r. 68:32)

53 \% + 26 \% (Exp. 21)


### 3.1.3 Assignment of configuration to ethyl N -methylisoxazolidinyl acetate 26a and

 26b.Acidic hydrolysis of the major diastereomer 26a afforded the corresponding spirolactone 54 in the form of colourless crystals, suitable for crystal structure analysis; this confirmed the configuration at $\mathrm{C}-3$ to be $(3 R)$ for the isoxazolidine $\mathbf{2 6 a}$, hence ( $3 S$ ) for the minor diastereomer 26b.

### 3.2 Reaction of metal organyls with N-methylisoxazolinium salts

### 3.2.1 State of knowledge

The addition of metal organyls to isoxazolinium salts has been studied earlier. Cerri et al. in 1974 have reported on the addition of methylmagnesium bromide to a tetracyclic isoxazolinium salt, with excellent diastereoselectivity but unsatisfactory yields. When triethyloxonium tetrafluoroborate $\mathrm{Et}_{3} \mathrm{OBF}_{4}$ was used instead of trimethyloxonium tetrafluoroborate $\mathrm{Me}_{3} \mathrm{OBF}_{4}$, the yield was improved [Eq. (16)]. ${ }^{11}$
(16)


$$
\begin{gathered}
\begin{array}{c}
\begin{array}{l}
\text { 1. } \mathrm{R}_{3} \mathrm{OBF}_{4} \\
\text { 2. } \mathrm{R}^{2} \mathrm{MgX}
\end{array} \\
\mathrm{R}_{\text {d.r. }>99: 1}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}=\mathrm{Me} \quad 30 \% \\
\mathrm{R}^{1}=M e, R^{2}=\mathrm{Ph}, \mathrm{R}=\mathrm{Me} \quad 42 \% \\
\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}=\mathrm{Et} \quad 95 \%
\end{array}
\end{gathered}
$$



Additions of metal organyls to isoxazolinium salts were investigated by LeRoy, when methylmagnesium bromide was added to the isoxazolinium salt $\mathbf{O}$ to furnish the isoxazolidine $\mathbf{P}$ in good yield [Eq. (17)]. ${ }^{11}$


0


83 \%


P

However, copper organyls such as $\mathrm{Me}_{2} \mathrm{CuLi}$ and $\mathrm{Me}_{2} \mathrm{CuMgBr}$ were also tested, The basic character of these organyls was the predominant, of which the ratio of the deprotonation product $\mathbf{Q}$ to the addition product $\mathbf{P}$ was (95:5, $\mathbf{Q}: \mathbf{P}$ ) in quantitative yield [Eq. (18)]. ${ }^{2}$


Henneböhle studied the effects of temperature and solvent on the diastereoselectivity of this addition. Since there was only a very weak temperature effect observed, the solvent seems to have a more significant influence on the selectivity of the Grignard addition (Tab. 4).

In the dissertation of Henneböhle, ${ }^{1}$ the addition of lithium organyls to chiral N methylisoxazolinium salts was also investigated. Treatment of the isoxazolinium salt 14 with methyllithium afforded the corresponding 3-methylisoxazolidines $25 a / b$ in a nonstereoselective manner (d.r. $\approx 1: 1$, entry 3 in table 4 ) and with only $48 \%$ yield. ${ }^{1}$ Hence, the Grignard addition appeared much more suitable for the stereoselective synthesis of 3,3disubstituted isoxazolidines, and this method was preferred in the present.

Table 4. Addition of Grignard reagents / lithium organyls to the $N$-methyl-isoxazolinium salt 14


| Entry | Reagent (RM) | Product | d.r. | Yield |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | a | b | $\Sigma$ |
| $\mathbf{1}$ | $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHMgBr}$ | $\mathbf{R a} / \mathbf{b}$ | $67: 33$ | $59 \%$ | $26 \%$ | $85 \%$ |
| 2 | MeMgBr | $\mathbf{2 5 a} / \mathbf{b}$ | $88: 12$ | $64 \%$ | $7 \%$ | $71 \%$ |
| 3 | MeLi | $\mathbf{2 5 a} / \mathbf{b}$ | $47: 53$ | $23 \%$ | $25 \%$ | $48 \%$ |
| 4 | $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{MgCl}$ | $\mathbf{S a / b}$ | $69: 31$ | $64 \%$ | $24 \%$ | $88 \%$ |

### 3.2.2 Own results

In this work the task concerning 3-methylisoxazolidine $\mathbf{2 5}$ was to assign the configuration at C-3, which had not been possible in the work of Henneböhle. ${ }^{1}$ Therefore, ( $3 S, 1$ 'S)- and ( $3 R$, 1'S)-3-(1',2'-O-cyclohexylidenedioxyethyl)-2,3-dimethylisoxazolidines 25a and 25b were prepared from the corresponding isoxazoline 13 by treatment with $\mathrm{Me}_{3} \mathrm{OBF}_{4}$, then addition of methylmagnesium bromide in THF at $-78^{\circ} \mathrm{C}$, to afford the two diastereomers in $90: 10$ ratio and $78 \%$ yield [Eq. (19)].


### 3.2.3 Assignment of configuration of 3-methylisoxazolidine 25 a and 25 b.

The assignment of configuration at $\mathrm{C}-3$ of the isoxazolinium salt 14 could not been done by Henneböhle because the isoxazolidines $\mathbf{2 5 a}$ and $\mathbf{2 5 b}$ had been obtained as oily substances. Acidic hydrolysis of 25a now afforded the corresponding diol $\mathbf{5 2 \cdot} \cdot \mathrm{HCl}$ (Eq. 20), which has (S)configuration at $\mathrm{C}-3$, this reflects on 3-methylisoxazolidine 25 a to have (3S, 1'S)configuration. Hence, the 3-methylisoxazolidine 25b has ( $3 R, 1$ 'S)-configuration.



## 4 Addition of C-Nucleophiles to Isoxazolines

### 4.1 Reactions of Grignard reagents with isoxazolines

### 4.1.1 State of knowledge

Preparation of isoxazolidines by activation of the isoxazoline ring with Lewis acid followed by the addition of Grignard reagents was rarely studied in literature. In 1999, Castro et al. ${ }^{52}$ cited the addition of diallylzinc to 5-phenyl-4,5-dihydroisoxazoline $\mathbf{R}$ to afford the isoxazolidines $\mathbf{S}$ and $\mathbf{T}$ with 87:13 diastereoselectivity and good yield [Eq. (19)].


Kurth et al. reported on transformations of furanoisoxazolines Ua-c that led only to cis-fused allyl addition products Va-c by activation of the $\mathrm{C}=\mathrm{N}$ bond with boron trifluoride etherate at $-78{ }^{\circ} \mathrm{C}$, followed by addition of an etheral solution of allylmagnesium bromide (80-88 \%) [Eq. (20)]. ${ }^{53}$
(20)


Ua-c


Ua, Va: $n=1, R=H, \alpha-P h, 88 \%$
Ub, Vb: $n=1, R=C_{6} H_{5}, \alpha-P h, 80 \%$
Uc, Vc: $n=2, R=H, \beta-P h, 80 \%$

### 4.1.2 Own results

In this work, a variety of Grignard reagents were tested concerning the addition to isoxazolines. The best results were obtained when allylmagnesium bromide was used with a Lewis acid present. Table 5 illustrates the range of isoxazolines used and the respective isoxazolidines formed.

Table 5. Addition of allylmagnesium bromide to isoxazolines in the presence of a Lewis acid
Entry Isoxazoline
12 (2) 12
${ }^{[a]}$ The determinations of the diastereomeric ratios are based on the intensities of separate signal pairs in the ${ }^{13} \mathrm{C}$ NMR spectra of the crude products. ${ }^{[b]}$ Yields are calculated over two steps starting from the corresponding isoxazoline; $\mathbf{a}$ : major diastereomer, $\mathbf{b}:$ minor diastereomer.

The addition was first performed with the isoxazoline 2, from which the isoxazolidine $\mathbf{3 0}$ was obtained. The reaction was done in absolute THF at $-78^{\circ} \mathrm{C}$ in all cases. Three different Lewis acids were used: borontrifluoride etherate $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, zinc bromide $\mathrm{ZnBr}_{2}$, and zinc chloride $\mathrm{ZnCl}_{2}$. The results (entries $1-3$ in Table 1) show almost no influence of the Lewis acid used, although the yields differ slightly ( $59 \%-76 \%$ ). It was easier to handle zinc bromide $\mathrm{ZnBr}_{2}$ or zinc chloride $\mathrm{ZnCl}_{2}$ as compared to the use of borontrifluoride etherate $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

The addition was then carried out with (1,3-induction) isoxazoline $\mathbf{9}$, in THF and zinc bromide as a Lewis acid. This afforded inseparable isoxazolidines 31a/b in high diastereoselectivity (d.r. 85:15, entry 4 in Table 5). When the isoxazoline 22 (1,2-induction) was applied to the addition of allylmagnesium bromide, this resulted in a bit higher diastereoselectivity varying from 88:12 in the case of the Lewis acid zinc bromide, and 87:13 in the case of zinc chloride and little lower 83:17 when borontrifluoride etherate was used (entries 5-7 in Table 5).

Similar results were obtained when the isoxazoline 13 (1,2-induction) was added to allylmagnesium bromide in the presence of zinc bromide, to give the addition products: the isoxazolidines 34a and 34b in high yield (81\%) and 80:20 diastereomeric ratio (entry 8 in Table 5).

Comparing the effect of the isoxazoline 9 which shows 1,3 -induction from $\mathrm{C}-5$ and the isoxazolidines 13, 22 (1,2-induction from $\mathrm{C}-1$ ') on the diastereomeric ratios results of the additions products; proves no significant indifference between the two inductions available. Applying the isoxazolines $\mathbf{1 5} / \mathbf{1 6}$ (87:13) with 1,2-induction from C-1' and 1,3-induction from C-5 to addition of allylmagnesium bromide in the presence of a Lewis acid, represented similar results. The additions were performed in THF in the presence of zinc chloride (entry 9 in Table 5), zinc bromide (entry 10 in Table 5), and borontrifluoride etherate (entry 11 in

Table 5). These additions led to almost the same results (compare entries 4-8 in Table 5), giving the isoxazolidines $\mathbf{3 5 a}$ and $\mathbf{3 5 b}$.

This was proven again, when the same isoxazolines $\mathbf{1 5 / 1 6}$ (d.r. 15:85 in this case) were used, to afford in the presence of a Lewis acid the corresponding isoxazolidines 36a and 36b in a 81:19 diastereomeric ratio (entry 12 in Table 5) when zinc chloride was used as a Lewis acid, and in a 78:22 diastereomeric ratio (entry 13 in Table 5) in the case of the Lewis acid zinc bromide.

Changing the temperature of the addition reaction had almost no significant influence neither on the reaction yield nor the diastereoselectivity; this was investigated with the mixture of the isoxazolidines 15/16 (87:13) [Table 6].

Table 6. Effect of temperature on the addition of allylmagnesium bromide to the isoxazolines 15/16 (d.r. 85:15) in the presence of Lewis acids


| Entry | Temperature | Lewis acid | d.r. $^{[\text {a] }}$ | Exp. No. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $0^{\circ} \mathrm{C}$ | $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ | $85: 15$ | 30 |
| 2 | $0^{\circ} \mathrm{C}$ | $\mathrm{ZnBr}_{2}$ | $76: 24$ | 30 a |
| 3 | $-78{ }^{\circ} \mathrm{C}$ | $\mathrm{ZnCl}_{2}$ | $77: 23$ | 30 b |

[a] The determination of the diastereomeric ratios (d.r.) are is on the intensities of separate signal pairs in the ${ }^{13} \mathrm{C}$
NMR spectra of the crude products.

All additions, as already mentioned, were performed at $-78{ }^{\circ} \mathrm{C}$, except for the case of the isoxazoline 15 , for which the yield of the isoxazolidines $\mathbf{3 5 a} / \mathbf{b}$ was somewhat better when the reaction was carried out at $0^{\circ} \mathrm{C}$ (entries 9-11 in Table 5)

Other Grignard reagents were tested and normally used in excess (up to 4 eq ), such as methylmagnesium bromide, ethylmagnesium bromide, vinylmagnesium bromide and isopropylmagnesium chloride. All there gave high recovery of at least $70 \%$ of the isoxazoline used. Changing the temperature and the solvent did not enhance the conversion, and in
some cases led to decomposition when the reaction was performed at room temperature. One example is shown below.


2
THF, $-78^{\circ} \mathrm{C}-\mathrm{r} . \mathrm{t}, 15 \mathrm{~h}$

This can be compared with the isoxazolidines $\mathbf{W a} / \mathbf{b}$ obtained when Henneböhle ${ }^{1}$ added vinylmagnesium bromide to the isoxazolinium salt 14, to afford the respective isoxazolidines Walb under mild conditions and good yield ( $85 \%$ ). This proves high partial positive charge on C-3 in the isoxazolinium salt 14 compared with that of the isoxazoline 2 , activated by borontrifluoride etherate; this led to $90 \%$ recovery of the starting material.



An exception was found with the isoxazoline 2 when benzylmagnesium chloride and borontrifluoride etherate were used at $-78^{\circ} \mathrm{C}$ : This afforded the addition product 28 albeit in poor yield, with $79 \%$ recovery of the isoxazoline 2.


### 4.1.3 NMR data of 3-allylisoxazolidines 33a/b, 34a/b and 35a/b

The ${ }^{1} \mathrm{H}$ NMR spectra of the major and the minor diastereomers of the 3 -allylisoxazolidines prepared show no significant difference of the chemical shifts (Table 7), which were $\leq 0.1$ ppm. The ${ }^{13} \mathrm{C}$ NMR spectra of the 3 -allylisoxazolidines present the same picture (Table 8). Here the chemical shifts are $\leq 1.0 \mathrm{ppm}$. Worth remarking is the difference in the chemical shifts of C-2' signals of the 3-allylisoxazolidines 33-35 ( $\Delta \delta=-2.5$ to +2.7 ppm ), and also that the difference in the chemical shifts of the major isoxazolidine $\mathbf{3 5 a}$ and the minor one $\mathbf{3 5 b}$ is 0.0 ppm .

In order to compare the effect of the acetal group on the chemical shifts of $4-\mathrm{H}_{\mathrm{a}}$ and $4-\mathrm{H}_{\mathrm{b}}$ in the 3-allylisoxazolidines prepared; the chemical shifts of the 3-allylisoxazolidines 34a/b, are compared with those of the isoxazolidines Wc/d prepared by Henneböhle ${ }^{1}$ by hydride addition to the N -methylisoxazolinium salt 14 in (Table 6a). Comparison according to Sustmann, ${ }^{54}$ shows little influence of the acetal group on the chemical shift difference of $4-\mathrm{H}_{\mathrm{a}}$ and $4-\mathrm{H}_{\mathrm{b}}$ for the isoxazolidine $\mathbf{W c}(\Delta \delta=0.13 \mathrm{ppm})$ with stronger effect ( $\Delta \delta=0.13 \mathrm{ppm}$ ) in the case of the isoxazolidine Wd. Lower chemical shift differences are observed in the case of the 3-allylisoxazolidine 34a ( $\Delta \delta=0.33 \mathrm{ppm}$ ) and the 3-allylisoxazolidine 34b ( $\Delta \delta=0.22 \mathrm{ppm}$ ).

Table 6a: Selected ${ }^{1} \mathrm{H}$ NMR data ( $\delta$ in ppm) of 3-allylisoxazolidines $\mathbf{3 4 a} / \mathrm{b}$ and isoxazolidines Wc/d
Compound

Table 7: Selected ${ }^{1} \mathrm{H}$ NMR data ( $\delta$ in ppm) of the 3-allylisoxazolidines prepared


Table 7: continue


[^5]Table 8: Selected ${ }^{13} \mathrm{C}$ NMR data ( $\delta$ in ppm) of the 3-allylisoxazolidines prepared

| 3-Allylisoxazolidine | Compound | $\mathrm{C}-1$ " ${ }^{\text {[a] }}$ | C-5 | C-4 | C-3 | C-1' | C-2' | C-1" | C-2" | C-3" |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|   | 33 a 33 b | - | 84.9 84.9 | 46.6 48.0 | 70.9 68.8 | 74.9 77.6 | 66.6 65.6 | 42.5 41.5 | 134.6 133.8 | $\begin{aligned} & 118.0 \\ & 119.5 \end{aligned}$ |
| $\\|_{3 "}^{2 "}\langle\longrightarrow$ | $\Delta \delta$ | - | 0.00 | +1.4 | -2.3 | +2.7 | -1.0 | -1.0 | -0.8 | +1.5 |
| 33 a |  |  |  |  |  |  |  |  |  |  |
|   | $34 a$ $34 b$ | - | 72.1 72.2 | 35.2 36.0 | 68.7 67.3 | 76.1 78.8 | 66.8 65.7 | 41.0 40.8 | $\begin{aligned} & 134.1 \\ & 133.1 \end{aligned}$ | $\begin{aligned} & 118.9 \\ & 120.0 \end{aligned}$ |
|     | $\Delta \delta$ | - | +0.1 | +0.8 | -1.4 | +1.7 | -1.1 | -0.2 | -1.0 | +1.1 |
| 34 a |  |  |  |  |  |  |  |  |  |  |
|  | $35 a$ $35 b$ | 63.0 63.0 | 83.2 84.3 | 34.9 36.0 | 67.7 69.4 | 78.1 75.6 | 66.1 66.0 | 40.0 40.8 | 132.6 133.8 | $\begin{aligned} & 119.9 \\ & 118.5 \end{aligned}$ |
|   | $\Delta \delta$ | 0.0 | +1.1 | +1.1 | +1.7 | -2.5 | -0.1 | +0.8 | +1.2 | -1.4 |
| 35 a |  |  |  |  |  |  |  |  |  |  |

Table 8: Continue

| 3-Allylisoxazolidine | Compound | C-1 ${ }^{\text {², }}$ [a] | C-5 | C-4 | C-3 | C-1' | C-2' | C-1" | C-2" | C-3" |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



36a


36b
${ }^{[\text {a] }}$ In case of compounds 35a/b and 36a/b.

### 4.2 Reaction of organolithium compounds with isoxazolines: methyllithium and phenyllithium-lithium bromide complex

### 4.2.1 State of knowledge

In the literature, the addition of alkyl/aryllithium lithiumhalide complexes to isoxazolines has seldom been investigated. The only example in the literature is due to Uno et al, ${ }^{13,55}$ who showed that in the presence of borontrifluoride etherate 3,4,5-tri-, 3,5,5-tri- and 3,5disubstituted 2-isoxazolines underwent nucleophilic addition of alkyl- and aryllithiums to give the respective $3,3,4,5-, 3,3,3,5$-, and $3,3,5$-substituted isoxazolidines in moderate to good yield.

The isoxazoline $\mathbf{X}$ can easily be prepared from nitroethane and norbornene according to Hoshino and Mukaiyama. ${ }^{56}$ High diastereoselectivity in the alkylation is anticipated because one face of the isoxazoline ring is completely blocked by the 4,5 -substituents. The limitations reported by authors were that no reaction was observed when $t$-butyllithium, lithium phenylacetylide, phenylmagnesium bromide, or $n$-butylmagnesium bromide were employed [Eq. (21)]. ${ }^{55}$


In each case the alkyl addition to a 4,5-disubstituted isoxazoline occurred from the opposite side of the substituents at C-4/C-5 to form one diastereomer. On the other hand, addition of phenyllithium to the 5-monosubstituted 2-isoxazoline in toluene also proceeded in a high stereoselective manner [Eq. (22)]. ${ }^{13,55}$
(22)



AD


AE

The diastereoselectivity of the addition of organolithium compounds to isoxazolines was studied by Uno ${ }^{55}$ with the 3,5 -disubstituted isoxazoline AC. Here a highly stereoselective reaction (>95:5 AD:AE) was observed using phenyllithium and borontrifluoride etherate to afford the isoxazolidines AD and AE in 74\% combined yield [Eq. (22)]. Its worth mentioning that the two diastereomers obtained were inseparable, albeit they were detected and analyzed by means of NMR and elemental analysis. The diastereomeric ratio of the mixture obtained was estimated by ${ }^{1} \mathrm{H}$ NMR analysis.

### 4.2.2 Own results

In this nucleophilic addition, methyllithium-lithium bromide complex was used to perform the addition to the isoxazolines 2 and 13. The addition was performed in the presence of borontrifluoride etherate as a Lewis acid in abs. dichloromethane at $-78^{\circ} \mathrm{C}$ [Table 9]; the diastereoselectivity of such addition was found to be moderate ( $68: 32$ ) when the chiral isoxazoline 13 used.

Table. 9. Addition of methyllithium-lithium bromide complex to the isoxazolines $\mathbf{2}$ and $\mathbf{1 3}$ in the presence of borontrifluoride etherate.


| Entry | Isoxazoline | Isoxazolidine | d.r. ${ }^{[a]}$ |  | Yield |  | Exp. No. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


[a] The determination of the diastereomeric ratios (d.r.) is based on the intensities of separate signal pairs in the
${ }^{13} \mathrm{C}$ NMR spectra of the crude products; $\mathbf{a}$ : major diastereomer, $\mathbf{b}:$ minor diastereomer.

The addition of phenyllithium PhLi to the model isoxazoline 2 gave the corresponding 3,3diphenylisoxazolidine 27. The reaction was performed according to Uno's procedure, but using zinc bromide as a Lewis acid instead of borontrifluoride etherate. The yield was rather poor ( $5 \%$ ), even when the reaction temperature was allowed to rise to room temperature, after the addition of phenyllithium and lithium bromide at $-78{ }^{\circ} \mathrm{C}$ [Eq. 23].


2


5 h, 5 \%


27

It was possible to obtain colourless crystals of the isoxazolidine 27, which were suitable for crystal structure determination (see appendix 12.1).


27


### 4.2.3 NMR data of the 3-methylisoxazolidines 32a and 32b and assignment of configurations

Tables 10 and 11 show selected ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data of the major and the minor diastereomer of the 3-methylisoxazolidines 32 prepared. The ${ }^{1} \mathrm{H}$ NMR chemical shifts of both diastereomers show no significant difference ( $\Delta \delta \leq 0.11 \mathrm{ppm}$ ). The ${ }^{13} \mathrm{C}$ NMR data show a similar picture, that is small chemical shift differences of $\Delta \delta \leq 2.2 \mathrm{ppm}$.

Table 10: Selected ${ }^{1} \mathrm{H}$ NMR data ( $\delta$ in ppm) of the 3-methylisoxazolidines 32

| 3-Methylisoxazolidine | $5-\mathrm{H}_{\mathrm{a}}$ | $5-\mathrm{H}_{\mathrm{b}}$ | $4-\mathrm{H}_{\mathrm{a}}$ | $4-\mathrm{H}_{\mathrm{b}}$ | $1^{\prime}-\mathrm{H}$ | $2^{\prime}-\mathrm{H}_{\mathrm{a}}$ | $2^{\prime}-\mathrm{H}_{\mathrm{b}}$ | $1^{\prime \prime}-\mathrm{H}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32a | $3.91^{[a]}$ | $3.91^{[a]}$ | 1.88 | 2.31 | 4.18 | 3.81 | 4.04 | 1.24 |
| 32b | $3.86^{[a]}$ | $4.02^{[a]}$ | 1.84 | 2.31 | 4.13 | 3.74 | 4.09 | 1.17 |
|  | -0.05 | +0.11 | -0.04 | 0.00 | -0.05 | -0.07 | +0.05 | -0.07 |

${ }^{[a]}$ Signals were not assigned, average of multiplet are given.

Table 11: Selected ${ }^{13} \mathrm{C}$ NMR data ( $\delta$ in ppm) of the 3-methylisoxazolidines 32

| 3-Methylisoxazolidine | C-5 | C-4 | C-3 | C-1' | C-2' | C-1" |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32a | 65.6 | 38.5 | 64.7 | 79.1 | 71.5 | 22.5 |
| 32b | 66.2 | 37.1 | 66.0 | 76.9 | 71.7 | 21.5 |
| $\Delta \delta$ | +0.6 | -1.4 | +1.3 | -2.2 | +0.2 | -1.0 |

In order to assign the absolute configuration of the 3-methylisoxazolidine $\mathbf{3 2} \mathbf{a}$ and $\mathbf{3 2} \mathbf{b}$ obtained, catalytic hydrogenation of the diastereomer 32a using palladium catalyst in the presence of tert-butyloxycarbonyl in methanol which transformed 32a into the corresponding N -Boc-protected amino alcohol 64. This, on $\mathrm{LiAlH}_{4}$ reduction afforded the N -methyl-3-methyl amino alcohol 42 (which was previously prepared from the isoxazolidine 25b), of which the absolute configuration had previously been confirmed to be ( $2 S, 3 R$ ). This means that the 3 methylisoxazolidine 32a has a ( $3 R$, 1'S)-configuration, and thence ( $3 S, 1$ 'S)-configuration for the isoxazolidine 32b [Eq. 24]. The analytical data if the resulted $N$-methyl-3-methyl amino alcohol 42 (Exp. 39) was fully complied with those had been found for the $N$-methyl-3-methyl amino alcohol 42 afforded from $\mathrm{N}-\mathrm{O}$ cleavage of the isoxazolidine 25b (Exp. 38).


## 5 Catalytic Hydrogenation of Isoxazolidines and Isoxazolidinium Salts

### 5.1 Synthesis of $N$-methyl amino alcohols, amino alcohols, and amino polyols

### 5.1.1 State of knowledge

Over the years, a number of routes have been elaborated for the cleavage of the $\mathrm{N}-\mathrm{O}$ bond of isoxazolidines, as a key step towards syntheses of amino alcohols, amino polyols, and many other important targets. The first known example of this, dates from 1975 when Sato et al. ${ }^{57}$ effected a catalytic hydrogenation of an isoxazoline with platinum oxide $\mathrm{PtO}_{2}$ as a catalyst, affording 4-amino-2-hydroxy-butyric acid methyl ester AG, no yield was given for this reaction as it was performed in multistep reaction [Eq. 25].


Catalytic hydrogenation was often performed over the last three decades using several catalysts such as palladium, ${ }^{58}$ palladium on carbon, ${ }^{1,2,10,59,60,61}$ palladium hydroxide on carbon, ${ }^{62,63,64}$ Raney Nickel, ${ }^{65,66}$ platinum oxide, ${ }^{67}$ rhodium on carbon, ${ }^{68}$ molybdenum hexacarbonyl. ${ }^{69}$ in our research group palladium on carbon ( $\mathrm{Pd} / \mathrm{C}$ ) was often employed as the most convenient catalyst for $\mathrm{N}-\mathrm{O}$ bond cleavage of isoxazolines ${ }^{1,2,10}$ and isoxazolidines. ${ }^{1,2,10}$

### 5.1.2 Own results

In this chapter, the synthesis of N-methylamino alcohols, amino alcohols, and amino polyols will be described. This catalytic hydrogenation of isoxazolidines using palladium on carbon is a typical procedure for $\mathrm{N}-\mathrm{O}$ bond cleavage in our research group. ${ }^{10}$ The hydrogenation can be taken place under different pressure of hydrogen. Fortunately, the catalytic hydrogenation of the isoxazolidines $\mathbf{2 5 a} / \mathrm{b}, \mathbf{3 0}, \mathbf{3 2 a}, \mathbf{3 4 a} / \mathrm{b}, \mathbf{3 5 a} / \mathrm{b}$ and 52 presented here took place at 1 bar at room temperature and in methanol as a solvent. The yield of the hydrogenations mostly was very high ( $83 \%-100 \%$ ). Difficulties were encountered concerning correct elemental
analysis for the amino polyols 48, 49, 50, albeit the samples were pure according to NMR (structures were ascertained by high resolution mass spectroscopy) [Table 12].
Table 12. Catalytic hydrogenation of isoxazolidines to give amino alcohols or polyols

Entry

6


35a

7


35b


49


50


70

$97 \%$
46
$98 \%$
47


52

83 \%
lit. $99 \%^{1}$

### 5.1.3 NMR data of $N$-methylamino alcohols, amino alcohols and amino polyols

An overview on tables 13 and 14, present small difference among the chemical shifts of the protons of the amino alcohols 41, 47, and their corresponding diastereomers obtained: the amino alcohols 42 and 48, and similarly for the amino polyols 49 and 50 . The differences were only $\leq 0.20 \mathrm{ppm}$. One exception is the case of the $1-\mathrm{H}_{\mathrm{a}}$ signal of amino alcohols 49 and 50 , which has a difference $(\Delta \delta)$ of 0.37 ppm .

The ${ }^{13} \mathrm{C}$ NMR spectra of the corresponding amino alcohols and amino polyols present the same picture: no significant differences of the chemical shifts of diastereomeric pairs were observed, with two exceptions from this: In the case of the C-2 and the case of C-3 signals of the amino polyols 49 and 50.

Table 13: Selected ${ }^{1} \mathrm{H}$ NMR data ( $\delta$ in ppm) of the amino alcohols 41, 42, 47, 48 and amino polyols 49,50 ${ }^{[a]}$

${ }^{[a]} \mathrm{CDCl}_{3}$ used as a solvent. ${ }^{[b]}$ Signals were not assigned; centers of multiplets are given. ${ }^{[c]}$ Signals were not identified due to overlap with the multiplet of $\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}$ protons.

Table 14: Selected ${ }^{13} \mathrm{C}$ NMR data ( $\delta$ in ppm) of the amino alcohols 41, 42, 47, 48 and amino polyols 49, 50 ${ }^{[a]}$


[^6]
### 5.2 Catalytic Hydrogenation of Isoxazolidine Esters

### 5.2.1 State of knowledge

Catalytic hydrogenation of isoxazolidine esters upon our knowledge has never been studied in literature. Screening the literature bring to Jurczak et al., ${ }^{70}$ who have published that the isoxazolidine AH can be hydrogenated in presence of Raney Nickel to give the respective bis-acetylamino-ester AI; the yield was not given [Eq. 26].
(26)


Catalytic hydrogenation of the isoxazolidinium trifluoromethansufonate salt AJ with palladium on carbon according to Romeo, Uccella et al. ${ }^{71}$ led to the lactone AK in 88 \% yield [Eq. 27].
(27)


Samarium (II) iodide has found widespread use as a reducing agent, ${ }^{72}$ it was as well revealed as a selective and mild reagent for the reduction for isoxazolidines. The yields of such reductions cited by Brandi et al. ${ }^{73}$ vary between 55 and $98 \%$ [Eq. 28].


### 5.2.2 Own results

Catalytic hydrogenation using palladium on carbon of the isoxazolidine esters 24, 26a unexpectedly afforded the corresponding esters 39, 40, 43, by elimination of methylamine [Table 15]. The reactions carried out at room temperature and under 1 bar pressure of hydrogen. The esters 39, 40 and 43 obtained in low yields, separated from mixture of products, could not be identified. The reaction progress was monitored by TLC and quenched when no more isoxazolidine remained.

Table 15. Catalytic hydrogenation of isoxazolidine esters 24, 26a

Entry

On the other hand, when the isoxazolidine 24 was first transformed to the isoxazolidinium salt 51 (see chapter 6.1.2) it was possible to reduce the resulting isoxazolidinium salt $\mathbf{5 1}$ with hydrogen/palladium on carbon ( $\mathrm{Pd} / \mathrm{C}$ ) in MeOH for 18 hour which produced the N methylaminoxy ester 77 in 37 \% yield [Eq. 29].


This suggests that in presence of an $\beta$-ester moiety in the isoxazolidine the cleavage of the $\beta-\mathrm{C}-\mathrm{N}$ bond is preferred over that of the $\mathrm{N}-\mathrm{O}$ bond. This will be discussed in detail in chapter 7. Fortunately, it was possible to isolate another product of from this reaction, the amino lactone $\mathbf{7 4}$ as a hydrochloride salt, after catalytic hydrogenation of the isoxazolidinium salt 51 by means of palladium on carbon ( $10 \%$ ) for 48 h . The yield here was poor; in spite of this it was possible to have an X-ray determination of the colourless crystals obtained [Eq. 30] (see appendix 12.8 ).


51


15\%


74


74


An interpretation of what is taking place in this catalytic hydrogenation can be given by the following sequence: The reduction of $\mathrm{C}-\mathrm{N}$ bond $\beta$ to the ester group is preferred in comparison with the $\mathrm{N}-\mathrm{O}$ bond:


This was clarified again when the ethyl 2-methyl-3-isoxazolidinyl acetate 26a was first hydrolyzed with hydrochloride ( 6.0 N ) to give the corresponding isoxazolidinolactone 54. Then catalytic hydrogenation was carried out with the crude product of 54 to afford the N -methylaminoxy-lactones $56 \mathrm{a} / \mathrm{b}$ as the major diastereomers. These two diastereomers could have been formed according to the mechanism suggested above, by hydrogenation of either the C-N bond or the temporary $\mathrm{C}=\mathrm{C}$ bond. The other two diastereomers isolated were the dihydroxy-lactones 57a/b, probably formed by cleavage of the N-O bond in 56a/b that had remained. The diastereomeric ratio (d.r.) of the aminoxy-lactones $\mathbf{5 6 a} \mathbf{a} \mathbf{b}$ was found as $63: 37$ and as $65: 35$ for the lactones 57a/b [Eq. 31].


26a


Using other catalysts such as palladium hydroxide on carbon $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, rhodium on carbon $\mathrm{Rh} / \mathrm{C}$, or rhuthinium (5 \% on alumina) in the hydrogenation of isoxazolidine 24 led to decomposition. When activated zinc in $\mathrm{HOAc} / \mathrm{H}_{2} \mathrm{O}$ (4:1) was employed, the lactone 38 was obtained in $92 \%$ yield, this product probably transformed from 37 (produced first) by elimination of the acidic proton which will lead in methylamine removal to give $\mathbf{3 8}$ [Eq. 32].


24

reflux, 2 h, 92 \%


38

At the end of this work, in order to avoid the deamination, milder reduction conditions were sought and found by use of $\mathrm{Sml}_{2}$ : This finally gave the desired lactone 37 in 71 \% yield [Eq. 33].
(33)




37

## 6 Hydrolysis of Isoxazolidine Acetals and Esters

### 6.1 Preparation of isoxazolidinium salts $51,52 \cdot \mathrm{HCl}, 53 \cdot \mathrm{HCl}$ and diols 52,53

### 6.1.1 State of knowledge

Within the scope of this work, acid-catalyzed hydrolysis was an important step on the way to prepare free amino polyols, and in the plan to obtain the target $\alpha$-amino acids. Acetal hydrolysis is known in the literature using a variety of acids; in our research group Jäger et al. ${ }^{1,10}$ cited the acetal hydrolysis of Z-protected amino alcohol AN with aqueous hydrochloric acid in THF [Eq. 34].
(34)


Trifluoroacetic acid was used similarly in such hydrolyses, f.e. Sharma et al. ${ }^{74}$ obtained (S)-5-bromopentane-1,2-diol from the protected diol in $72 \%$ yield. Other acids were also used, such as $p$-toluenesulfonic acid, ${ }^{75}$ acetic acid, ${ }^{76}$ Dowex $50 \mathrm{X}_{8}$ acidic ion-exchange resin [Eq. $35],{ }^{77}$ or sulfuric acid. ${ }^{78}$ Some other more selective hydrolysis used propane-1,3-dithiol in the presence of borontrifluoride etherate. ${ }^{40}$


AP

Dowex $50 \mathrm{X}_{8}$ acidic ion-exchange resin

MeOH, 23 h, 91 \%

AQ

### 6.1.2 Own results

On the way to prepare the target $\beta$-amino acids and also in order to assign the configuration at $\mathrm{C}-3$ of the isoxazolidines $\mathbf{2 5} \mathbf{a} / \mathbf{b}$ prepared, it was first necessary to hydrolyze these isoxazolidines. Henneböhle ${ }^{1}$ had done the hydrolysis of the diol 52 in $96 \%$ yield, but the assignment of configuration at C-3 of the isoxazolidine was not possible in his work. This was solved in this work by repeating the reaction and excluding the neutralization step in the preparation of the diol 52 , to afford the isoxazolidinium salt $\mathbf{5 2 \cdot H C l}$ as colourless crystals, suitable for crystal structure determination [Eq. 36] (see appendix 12.5).


52



In the same manner, the 3-methyl-3-methylamino alcohol 70 had been prepared by Henneböhle. ${ }^{1}$ This was reproduced now starting from the amino alcohol 41 to give the hydrochloride salt $70 \cdot \mathbf{H C l}$, collected as light-brown crystals, again suitable for crystal structure determination [Eq. 37] (see appendix 12.7).


70



This procedure for acetal hydrolysis worked well in other cases, f.e. with the isoxazolidines $\mathbf{2 5 a / b}$ and the amino alcohols 41, 42, giving high yields of products ( $86 \%-100 \%$ ). Tables 16 and 17 show the amino diols, and polyols obtained this way, and the exact configurations according to the X-ray structure determinations obtained for $52 \cdot \mathrm{HCl}$ and $\mathbf{7 0 \cdot H C I}$.

Table 16. Acidic hydrolysis of the isoxazolidine acetals 25a/b


25a and 25b

$52,52 \cdot \mathrm{HCl}, 53,53 \cdot \mathrm{HCl}$
Entry

[^7]Table 17. Acidic hydrolysis of the $N$-methylamino acetals 41, 42


41 and 42

$70 \cdot \mathrm{HCl}, 71,71 \cdot \mathrm{HCl}$
Entry

[^8]On acidic hydrolysis of the isoxazolidines $\mathbf{2 6 a}$ and $\mathbf{2 6 b}$, the respective isoxazolidinolactones were obtained. Difficulties in the separations by thick layer chromatography led to moderate to poor yields. Table 18 contains the isoxazolidinolactones obtained.

The assignment of configuration at C-3 of the isoxazolidines 26a and 26b was done when it was possible to get an X-ray structure determination (see appendix 12.6, see also detailed discussion in Chapter 6.1.4) for the isoxazolidinolactone 54. The absolute configuration of the isoxazolidinolactone 54 is $(5 S, 6 S)$, which in turn leads to the ( $5 R, 6 S$ )-configuration for the epimer 55. These results can be translated back to the (3S, 1'S)-configuration for the isoxazolidine 26a and ( $3 R$, 1 ' $S$ )-configuration for the isoxazolidine 26b.

Table 18. Acidic hydrolysis of the isoxazolidines 26a and 26b


26a and 26b
54 and 55
Entry


The isoxazolidinyl-ester 24 was hydrolyzed as well to give the isoxazolidinium salt $\mathbf{5 1}$ in excellent yield as colourless crystals, convenient to get an X-ray structure determination [Eq. 38] (see appendix 12.4).


6.1.3 NMR data of diols $52,52 \cdot \mathrm{HCl}, 53,53 \cdot \mathrm{HCl}$ and $N$-methylamino triols $70,70 \cdot \mathrm{HCl}$, 71, 71•HCI

The ${ }^{1} \mathrm{H}$ NMR spectra of the diol hydrochloride salts $52 \cdot \mathrm{HCl}$ and $53 \cdot \mathrm{HCl}$, on comparison with those of the diols 52 and 53, clearly show high-field shifts for all protons, with chemical shift differences varying from 0.0 ppm to 0.33 ppm in the case of the diol 52 and its salt $52 \cdot \mathrm{HCl}$, and chemical shift differences varying from 0.0 to 0.65 ppm for the diol 53 and it's salt $53 \cdot \mathrm{HCl}$. The same effects could be seen in the ${ }^{13} \mathrm{C}$ NMR spectra of corresponding pairs of compounds (Table 19).

The ${ }^{1} \mathrm{H}$ NMR chemical shifts differences ( $\Delta \delta$ ) between the signals of the diols 52 and 53 were small, as found for their salts $52 \cdot \mathrm{HCl}$ and $53 \cdot \mathrm{HCl}$. The chemical shifts differences $\Delta \delta$ in the case of the diols 52 and 53 were $\leq 0.13 \mathrm{ppm}$, and almost the same for the salts $52 \cdot \mathrm{HCl}$ and $53 \cdot \mathrm{HCl}(\Delta \delta \leq 0.15 \mathrm{ppm})$ except for $4-\mathrm{H}_{\mathrm{a}}, 1^{\prime}-\mathrm{H}$ and $\mathrm{N}-\mathrm{CH}_{3}$ protons, of which chemical shifts
differences ( $\Delta \delta$ ) rose to about 0.25 ppm . Coupling between $4-\mathrm{H}$ and $\mathrm{N}-\mathrm{CH}_{3}\left({ }^{4} \mathrm{~J}\right)$ was not observed in the case of these polyols (Table 19), cf. Chapter 2.3.

The same can be said about the ${ }^{13} \mathrm{C}$ NMR data, but with more exceptions: Chemical shifts differences $(\Delta \delta)$ rise up to 6.0 ppm in the case of $\mathrm{C}-3$ of the diols $52 \cdot \mathbf{H C l}$ and $53 \cdot \mathbf{H C l}$, and to 5.5 ppm observed for the C-4 signals, and finally to 3.8 ppm for $\mathrm{N}_{\mathrm{C}} \mathrm{H}_{3}$ of the same diols (Table 20).

The ${ }^{1} \mathrm{H}$ NMR spectra of the N -methylamino triols $\mathbf{7 0}, \mathbf{7 0 \cdot H C l}, 71,71 \cdot \mathrm{HCl}$, however, show no significant differences of the chemical shifts recorded ( $\Delta \delta \leq 0.08 \mathrm{ppm}$ ), with only one exception of $1-\mathrm{H}_{\mathrm{a}}$, for which $\Delta \delta=0.18 \mathrm{ppm}$ was found (Table 21). A similar picture is shown by the ${ }^{13} \mathrm{C}$ NMR data; the differences in chemical shift values were $\Delta \delta=0.3-1.8 \mathrm{ppm}$ (Table 22).

Table 19: Selected ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data ( $\delta$ in ppm) of the diols $52,53,52 \cdot \mathbf{H C l}, 53 \cdot \mathrm{HCl}^{[\mathrm{a]}}$

|  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{\text {[a] }} \mathrm{CDCl}_{3}$ used as a solvent in the case of 52 and $53, \mathrm{CD}_{3} \mathrm{OD}$ for $52 \cdot \mathrm{HCl}$ and $53 \cdot \mathrm{HCl}{ }^{[\text {[0] }}$ Signals are not assigned, center of multiplet given.

Table 20: Selected ${ }^{13} \mathrm{C}$ NMR data ( $\delta$ in ppm) of the diols $52,53,52 \cdot \mathrm{HCl}, 53 \cdot \mathrm{HCl}$

| Diol | C-4 | C-5 | C-3 | C-1' | C-2' | C-1" | $\mathrm{N}-\mathrm{CH}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 52 | 36.7 | 65.2 | 68.5 | 73.5 | 63.7 | 16.6 | 37.7 |
| 53 | 39.2 | 66.0 | 69.7 | 77.4 | 65.0 | 16.0 | 38.5 |
| $\Delta \delta$ | +2.5 | +0.8 | 1.2 | +3.9 | +1.3 | -0.6 | +0.8 |
| 52•HCl | 35.3 | 69.6 | 72.3 | 75.4 | 64.2 | 16.5 | 37.1 |
| 53•HCl | 40.8 | 71.5 | 78.3 | 75.5 | 64.5 | 15.7 | 40.9 |
| $\Delta \delta$ | +5.5 | +1.9 | +6.0 | +1.1 | +0.3 | -0.8 | +3.8 |

Table 21: Selected ${ }^{1} \mathrm{H}$ NMR data ( $\delta$ in ppm) of the $N$-methylamino triols $70,70 \cdot \mathrm{HCl}, 71,71 \cdot \mathrm{HCl}^{[a]}$


${ }^{\text {[a] }} \mathrm{CDCl}_{3}$ used as a solvent in the case of 70 and $71, \mathrm{CD}_{3} \mathrm{OD}$ for $\mathbf{7 0 \cdot} \mathbf{H C l}$ and $\mathbf{7 1} \cdot \mathbf{H C I}{ }^{[0]}$ Signals are not assigned, center of multiplet given.

Table 22: Selected ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data ( $\delta$ in ppm) of the $N$-methylamino triols $70,70 \cdot \mathrm{HCl}, 71,71 \cdot \mathrm{HCl}$

| $N$-methylamino triol | C-5 | C-4 | C-3 | C-2 | C-1 | C-1' | $\mathrm{N}-\mathrm{CH}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70 | 60.5 | 38.9 | 60.0 | 77.1 | 65.8 | 21.8 | 28.1 |
| 71 | 59.3 | 37.1 | 59.1 | 75.4 | 64.5 | 20.0 | 27.8 |
| $\Delta \delta$ | -1.2 | -1.8 | -0.9 | -1.7 | -1.3 | -1.8 | -0.3 |
| 70. HCl | 58.9 | 35.8 | 65.5 | 74.3 | 64.3 | 19.2 | 27.9 |
| 71•HCI | 58.2 | 34.6 | 65.1 | 72.7 | 63.9 | 17.6 | 27.3 |
| $\Delta \delta$ | -0.7 | -1.2 | -0.4 | -1.6 | -0.4 | -1.6 | -0.6 |

### 6.1.4 Discussion of the crystal structure data of the isoxazolidinolactone 54

With all the NMR spectra of the enolate addition products, the isoxazolidines 26a and 26b, as well as of the spirolactones 54 and $\mathbf{5 5}$, there was no possibility to assign the absolute configurations of these compounds at C-3. Isolation of flawless colourless crystals of the isoxazolidinolactone 54 changed the situation, since these were suitable to get a crystal structure determination (see appendix 12.6).

The configuration at C-5 of the isoxazolidinolactone 54 according to the X -ray data is (S), which automatically leads to the ( $R$ )-configuration of the 5 -epimer 55 . Thence, the new stereogenic center of 26a built by addition of the enolate to $\mathrm{C}-3$ of the isoxazolidinium salt is established to have ( $R$ )-configuration, and therefore the $(S)$-configuration is present in the 3 epimer 26b.

In the crystal structure of the isoxazolidine-spirolactone 54, both five-membered ring systems have an envelope conformation, where the nitrogen N1 of the isoxazolidine moiety and the spirocarbon of the furanone system are out-of-plane. The molecules are arranged in chains along the b-axis in two orientations (180 deg) with C-8 atoms (chemical numbering, corresponding to C6 of structural numbering) superposing. In these columns the, molecules are tied together by intermolecular hydrogen bonds, where the hydroxy function acts as donor and the strongly pyrimidalized nitrogen (bond angles: C-8/N-1/C-3 115.2 ${ }^{\circ}$, $\mathrm{C}-8 / \mathrm{N}-1 / \mathrm{O}-1$ $107.6^{\circ}, \mathrm{O}-1 / \mathrm{N}-1 / \mathrm{C}-3101.4^{\circ}$ ) as acceptor. The $\mathrm{H} 4{ }^{\cdots} \mathrm{N} 1$ distance is $2.0 \AA$ and the $\mathrm{OH}-\mathrm{H} 4 \cdots \mathrm{~N} 1$ angle is 167 deg.

For the isoxazolidine ring, the $\mathrm{C}-3 / \mathrm{C}-4 / \mathrm{C}-5 / \mathrm{O}-2$ torsional angle is $15.6^{\circ}$, for $\mathrm{C}-5 / \mathrm{O}-2 / \mathrm{C}-6 / \mathrm{C}-3$ it is $-20.9^{\circ}$, and for $\mathrm{C}-6 / \mathrm{O}-2 / \mathrm{C}-5 / \mathrm{C}-43.6^{\circ}$. In the furanone ring the $\mathrm{C}-3 / \mathrm{N}-1 / \mathrm{O}-1 / \mathrm{C}-1$ torsional angle is $-37.2^{\circ}$, for $\mathrm{O}-1 / \mathrm{C}-1 / \mathrm{C}-2 / \mathrm{C}-3$ it is $8.1^{\circ}$, and for $\mathrm{N}-1 / \mathrm{O}-1 / \mathrm{C}-1 / \mathrm{C}-218.1^{\circ}$.



54

Table 23 gives a comparison of the torsional angles in the crystal with the ${ }^{1} \mathrm{H}$ NMR coupling constants found and transformed according to the Karplus equation ${ }^{79}$ for estimation of the torsional angles. The values were taken from the "middle" Karplus curve (when $\phi=0^{\circ}, \mathrm{J}=$ 11.1 Hz and when $\phi=180^{\circ}, J=12.2 \mathrm{~Hz}$ ) according to the electronegativity of the isoxazolidinolactone 54.

Table 23. Comparison of the conformation of the isoxazolidinolactone 54 in solution and in the crystal

|  | Crystal data |  | Solution data |  |
| :---: | :---: | :---: | :---: | :---: |
| Dihedral angle | Torsion angle <br> in the crystal $\left[{ }^{\circ}\right]$ | J estimated <br> according to <br> Karplus [Hz] | $J$ measured in <br> solution [Hz] | Torsion angle <br> according to <br> Karplus [ $\left.{ }^{\circ}\right]$ |
| $1-\mathrm{H}_{\mathrm{A}} / \mathrm{C}-1 / \mathrm{C}-2 / 2-\mathrm{H}_{\mathrm{A}}$ | 9 | 10.7 | 10.2 | 17 |
| $1-\mathrm{H}_{\mathrm{A}} / \mathrm{C}-1 / \mathrm{C}-2 / 2-\mathrm{H}_{\mathrm{B}}$ | 113 | 1.4 | 8.9 | 151 |
| $1-\mathrm{H}_{\mathrm{B}} / \mathrm{C}-1 / \mathrm{C}-2 / 2-\mathrm{H}_{\mathrm{A}}$ | 129 | 4.3 | 4.3 | 129 |
| $1-\mathrm{H}_{\mathrm{B}} / \mathrm{C}-1 / \mathrm{C}-2 / 2-\mathrm{H}_{\mathrm{B}}$ | 7 | 10.9 | 7.7 | 12 |
| $6-\mathrm{H} / \mathrm{C}-6 / \mathrm{C}-7 / 7-\mathrm{H}_{\mathrm{A}}$ | 63 | 2.3 | 3.3 | 57 |
| $6-\mathrm{H} / \mathrm{C}-6 / \mathrm{C}-7 / 7-\mathrm{H}_{\mathrm{B}}$ | 56 | 3.5 | 4.9 | 48 |

## 7 Synthesis of Protected Amino Alcohols and Polyols

### 7.1 State of knowledge

The lone electron pair of the amino group of the amino alcohols and polyols obtained can easily be protonated and it generally is reactive towards electrophiles. In order to decrease the reactivity of such an amino group, it is commonly converted to an amide or carbamate. The benzyloxycarbonyl group [abbreviated Z or Cbz (in the older literature)] [Eq. 39] ${ }^{80}$ and the tert-butoxycarbonyl group (Boc) are the most frequently used amino-protecting group in organic synthesis [Eq. 40]. ${ }^{81,82}$ Examples are:

(40)



Tert-butoxycarbonyl protecting group (Boc) could overtake it is selectivity to amino groups, to protect any hydroxy group available. For example, Noe et al. ${ }^{83}$ reported that during protection of (2-aminophenyl)-methanol AR with $\mathrm{Boc}_{2} \mathrm{O}$ in THF the N -Boc derivative AS was separated in $91 \%$ yield besides $5 \%$ of $\mathrm{N}, \mathrm{O}-\mathrm{Boc}-$ protected derivative AT [Eq. 41].
(41)


Hudicky et al. ${ }^{84}$ reported on the isolation of the doubly protected product AV in $83 \%$ yield using tert-butoxycarbonyl for both nitrogen and oxygen transformation [Eq. 42].

(42)


AU
AV

### 7.2 Own Results

N-protection of the amino alcohols and amino triols of this work has faced some difficulties at the beginning. This problem was clearer with $N$-methylamino alcohols than with amino alcohols. The protection of the amino alcohol has to be selective with regard to the nitrogen atom, which is rivaled in some cases by the free primary hydroxy group.

Early in this work, benzylchloroformate was tested for N-protection of the amino alcohol 41; the reaction was performed in absolute dichloromethane at $0^{\circ} \mathrm{C}$ to produce Z-protected N methylamino alcohol 58, but in poor yield of $32 \%$ only. Therefore, $\mathrm{Boc}_{2} \mathrm{O}$ (tertbutoxycarbonyl) was chosen. When the same amino alcohol 41 was treated with 1.5 eq of $\mathrm{Boc}_{2} \mathrm{O}$, all three possible products were obtained, with the N -protected amino alcohol 59 isolated in $8 \%$ yield only, the O-protected amino alcohol 60 in $41 \%$ yield, and finally the N,O-protected amino alcohol 61 in 15 \% yield [Eq. 43].


41
(43)
$\left\lvert\, \begin{array}{r}\mathrm{Boc}_{2} \mathrm{O}(1.5 \mathrm{eq}) \\ \text { r.t, } \mathrm{MeOH}, 3 \mathrm{~d}\end{array}\right.$


This non-selectivity was improved and almost overcome when the solvent (methanol) was replaced by with dichloromethane. The amino alcohol 46 was treated with 2 eq of tertbutoxycarbonyl in dichloromethane and afforded $74 \%$ of the required protected amino alcohol 64 and only $8 \%$ of the O-protected amino alcohol 65 [Eq. 44].


Later-on in this work, the reaction of the amino alcohol 41 was repeated with tertbutoxycarbonyl ( 2.6 eq ) in absolute ethyl acetate to give the corresponding N -protected N methyl amino alcohol 59 in 75 \% yield [Eq. 45].


Table 24 gives the results of the use of benzyloxycarbonyl and Boc groups to protect amino alcohols and amino polyols with yields between 63 and $89 \%$. The protection was carried out using 2 equivalents of tert-butoxycarbonyl, the use of 2 equivalents is due to highest yield obtained, without the danger of O-protection. The reaction takes place in about 48 h in dichloromethane, then a short column chromatography is needed to obtain the $N$-protected amino alcohol or amino polyols in pure form.

It was possible to prepare the protected amino alcohols 68 and 69 in one step starting from the corresponding isoxazolidines $35 a$ and $\mathbf{3 5 b}$, f.e. when the isoxazolidine 35 a was mixed with 1.5 eq of tert-butoxycarbonyl and palladium on carbon (10 \%) in methanol over 48 hours; this afforded the required protected amino alcohol 69, after removal of the palladium on carbon in $77 \%$ yield (entry 9 in Table 24).

The assignments of the absolute configuration of the protected amino alcohols 58,59 and 63 were done according to the assignment obtained for the diol $\mathbf{5 2 \cdot} \cdot \mathrm{HCl}$. For the protected amino alcohol 66 and 67, the absolute configuration is confirmed according to the assignment of configuration of the X-ray structure determination obtained for the protected amino hydroxy lactone 79.

In addition, the exact configurations of the resulting protected amino alcohols 68 and 69 were assigned due to the absolute configuration of the isoxazolidine 35a, also derived from crystal structure determination. The other protected amino alcohols 47, 62 are racemic mixtures.

Table 24. Preparation of protected amino alcohols 58, 59, 62-64, 66 and 67 and protected amino polyols 68 and 69


$$
41,44-46,34 a / b, 35 a / b
$$

58, 59, 62-64, 66-69

Entry \begin{tabular}{c}
Amino alcohol or <br>
isoxazolidine ${ }^{[a]}$

$\quad$

Protected amino alcohol, <br>
polyol
\end{tabular} Yield Exp. No.

3


44


45

5


46

6


34 a

7


34 b


63


63


47


66


67


69


65 \%
64


35 a
9

35 b

69
${ }^{[a]}$ In the case of protected amino alcohols 68, 69 only: the products were obtained from the corresponding isoxazolidines $\mathbf{3 5 a}$ and $\mathbf{3 5 b}$, through catalytic hydrogenatation and protection by $\mathrm{Boc}_{2} \mathrm{O}$ in one pot.

### 7.3 NMR data of protected amino alcohols and polyols

The NMR data of the $N$-Boc-amino alcohols 66, 67 and $N$-Boc-amino diols 68, 69 are collected in tables 25 and 26 . The ${ }^{1} \mathrm{H}$ NMR data of the amino alcohols 66 and 67 as well as those of the $N$-Boc-aminodiols 68 and 69 show insignificant differences of the chemical shifts; f.e. the difference was $\leq 0.09 \mathrm{ppm}$ for the chemical shifts of the diastereomers $66 / 67$ and $68 / 69$. One exception was the shift difference of $\Delta \delta=0.2 \mathrm{ppm}$ for of $1^{\prime}-\mathrm{H}$ signals of the protected amino alcohols 66 and 67.

A similar picture is seen from the ${ }^{13} \mathrm{C}$ NMR spectra of the corresponding compounds; here the difference of chemical shifts was $\leq 1.3 \mathrm{ppm}$, with one larger value of 1.7 ppm for $\mathrm{C}-4$ of the protected amino diols 68 and 69. Larger values ( $\Delta \delta=2.6 \mathrm{ppm}$ ) have been observed also for $\mathrm{C}-1$ ', which could be interpreted according to its position next to the stereogenic center C 3.

Table 25: Selected ${ }^{1} \mathrm{H}$ NMR data ( $\delta$ in ppm) of the $N$-Boc-amino alcohols 66, 67 and $N$-Boc-amino diols 68, $69{ }^{[c]}$

${ }^{[\sqrt{2]}}$ Signals are not assigned, center of multiplet are given. ${ }^{[b]}$ Signals not identified because of overlap with $\mathrm{C}\left(\mathrm{CH}_{5}\right)_{2}$ signals. ${ }^{[d]} \mathrm{CDCl}_{3}$ used as a solvent.

Table 26: Selected ${ }^{13} \mathrm{C}$ NMR data ( $\delta$ in ppm) of the $N$-Boc-amino alcohols 66, 67 and $N$-Boc-amino diols 68, $69{ }^{[c]}$

| Protected amino alcohols, -polyols | C-6 | C-5 | C-4 | C-3 | C-2 | C-1 | C-1' | C-2' | C-3' | $\mathrm{C}=\mathrm{O}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 66 | - | 59.0 | 36.9 | 58.2 | 79.6 | 65.2 | 37.3 | 17.0 | 14.9 | 155.7 |
| 67 | - | 58.9 | 36.9 | 57.6 | 80.2 | 65.2 | 38.6 | 17.5 | 15.1 | 155.6 |
| $\Delta \delta$ | - | -0.1 | 0.0 | -0.6 | +0.6 | 0.0 | +1.3 | +0.5 | +0.2 | -0.1 |
| 68 | 64.8 | 67.8 | 39.2 | 57.0 | 79.9 | 67.2 | 39.4 | 17.3 | 14.8 | 155.3 |
| 69 | 64.7 | 67.5 | 37.5 | 57.8 | 79.3 | 67.4 | 42.0 | 16.9 | 14.5 | 156.0 |
| $\Delta \delta$ | -0.1 | -0.3 | -1.7 | +0.8 | -0.6 | +0.2 | +2.6 | -0.4 | -0.3 | +0.7 |

${ }^{[c]} \mathrm{CDCl}_{3}$ used as a solvent.

## 8 Preparation of Isoxazolidine-3-carbaldehydes

### 8.1 State of knowledge

As a typical means to oxidatively cleave a diol, sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ is the reagent of choice where a variety of solvent systems can be employed. ${ }^{85}$ For example, in our research group Jäger et al. ${ }^{86}$ reported on the cleavage of diols using $\mathrm{NaIO} \mathrm{O}_{4}$ in $\mathrm{iPrOH} / \mathrm{H}_{2} \mathrm{O}$ followed by oxidation of the resulting aldehyde to afford the respective protected amino acid AW, with good yield (75 \%) [Eq. 46].


Similar procedures were followed by Saita et al. ${ }^{87}$ using dichloromethane. Cleavage of $\mathrm{N}-\mathrm{O}$ bond of the resulted carbaldehyde -as will be described in this work- is unknown to our knowledge. Oxidation of a diol with an isoxazolidine moiety to the respective carboxylic acid is also unknown according to our knowledge.

### 8.2 Own results

As a last step to obtain the target $\alpha$-amino acid AY, oxidation of the diol 52 followed by reduction of the $\mathrm{N}-\mathrm{O}$ bond was envisaged [Eq. 47].


The diol cleavage was successfully performed with sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ in basic medium to give the corresponding isoxazolidine-3-carbaldehydes 72 and 73 in $56 \%$ and 89 \% yield respectively. It's worth mentioning that due to the volatile character of both aldehydes it was not possible to obtain correct elemental analysis (Table 27).

Table 27. Diol cleavage of isoxazolidine-1,2-diols 52 and 53
Entry

Other procedures were attempted, i.e. $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(6 \% \mathrm{~mol})$ with $\mathrm{NaIO}_{4}$ were mixed with the diol 52, and the reaction mixture was stirred for an hour; this resulted in decomposition [Eq. 49]. Sodium periodate with sodium bicarbonate and potassium permanganate as an oxidation reagent also led to decomposition.
(49)


Efforts for catalytic hydrogenation of the aldehyde 73 failed [Eq. 48]; the products obtained from this reaction were inseparable and could not be identified.
(48)


## $9 \quad$ Synthesis of Branched $\beta$-Amino Acids

### 9.1 State of knowledge

During the last decades, the preparation of enantiopure $\beta$-amino acids has emerged as an important and challenging synthetic endeavor. The increasing attention given to the chemistry of $\beta$-amino acids is partly due to the fact that they are constituents of several natural products (i.e. taxol, ${ }^{14}$ dolastatin ${ }^{15}$, and many others ${ }^{16}$ ). As well as pharmaceutical agents or valuable precursors to such structures as $\beta$-lactams. ${ }^{18 d, 88,18 \mathrm{e}}$ The most well-known, medicinally important class of nonpeptidic $\beta$-amino acids are found in $\beta$-lactams. These include antibiotics, ${ }^{89,90} \beta$-lactamase inhibitors, ${ }^{91}$ human leukocyte elastase inhibitors, ${ }^{92}$ and cholesterol uptake inhibitors. ${ }^{93}$ Also, a number of research groups have embarked on the synthesis of oligomers from $\beta$-amino acids, which gave rise to stabilized helical structures which can exhibit resistance to enzymatic hydrolysis. ${ }^{17}$

Recently, $\alpha$-substituted $\beta$-amino acids have received greater scrutiny since they also serve as important segments of bioactive molecules. For example, one of the promising anti-tumor agents in cancer chemotherapy, Paclitaxol ${ }^{\circledR}$, contains an $\alpha$-hydroxy- $\beta$-amino acid side-chain as one of the key pharmacophores. ${ }^{94}$


Paclitexol

In all of the $\beta$-amino acid applications, the substitution pattern and the configuration at the C 2 and/or C3 position strongly influence both the structural characteristics and stability. ${ }^{95}$ Thence, effective stereoselective synthetic approaches for $\beta$-amino acids remain highly sought-after. ${ }^{18 e, ~} 96,97,98$


Two particularly intriguing classes of $\beta$-amino acids are also among these challenging synthetic targets. The first of these contains geminal disubstitution at C2 and/or C3 such as the $\beta^{3,3}$ - and $\beta^{2,3,3}$-amino acids. ${ }^{98}$

$\beta^{3,3}$-amino acid

$\beta^{2,3,3}$-amino acid

Given the dense substitution pattern and their resistance to proteolytic degradation, this class of compounds provides excellent building blocks for bioactive molecules. Further, preliminary studies and predictive models indicate that the secondary structures adapted by $\beta$-peptides incorporating these amino acids will be unique and potentially quite stable. ${ }^{98}$

A second type of $\beta$-amino acids of particular interest includes cyclic proline analogues, cis-2aminocyclopentanoic acid BB (Cispentacin), and trans-2-aminocyclopentanoic acid BC (Scheme 8). ${ }^{99,100}$

Scheme 8


BB


BC

Cispentacin

Illustrative of the relationship between stereochemistry and structure, oligomers of BB form strands, ${ }^{101}$ whereas oligomers of BC form helices. ${ }^{102}$ Due to their predictable and welldefined structural characteristics, this class of $\beta$-amino acids is expected to have enormous potential for the formation of higher-order structures, transitioning to protein-like structure and function for catalyst development and pharmaceutical applications. ${ }^{103,104,105}$

In the chemical literature, several diastereoselective methods have been reported for the synthesis of $\beta$-amino acids. ${ }^{106}$ These include the elegant chemistry from the Davies group ${ }^{107}$ with the addition of chiral nitrogen nucleophiles to enoates and addition of achiral amines to chiral enoates by d'Angelo et al.. ${ }^{108}$ Other diastereoselective methodologies for synthesis of
$\beta$-amino acids, which do not involve conjugate amine additions, have also been reported. Most notable of these are Davis chemistry ${ }^{109}$ of chiral sulfinimines, Seebach's hydropyrimidines, ${ }^{110}$ Juaristi's pyrimidinones, ${ }^{111}$ and Konopelski's dihydropyrimidinones. ${ }^{112}$

L-aspartic acid BD, for example, is an ideal precursor of many enentiomerically pure $\beta$-amino acids $B E$, since it already possesses the butanoic backbone and only requires that the carbonyl group at C1 be differentiated from the other at C4 and transformed into the desired 4 -alkyl or other substituted product (Scheme 9). ${ }^{\text {18d }}$

## Scheme 9


syn $\mathrm{X}=$ substituent, $\mathrm{Y}=\mathrm{H}$ anti $\mathrm{X}=\mathrm{H}, \mathrm{Y}=$ substituent

A typical approach starts with 4-t-butyl L-aspartate BG in which the free carboxyl function is ready to be transformed into the required group, ${ }^{113,114}$ to furnish the $\beta$-amino acid $\mathbf{B N}$, a component of the antifungal peptide, iturin $A .{ }^{115}$ Hydrolysis and deprotonation of the other esters BL (where $\mathrm{R}=\mathrm{Bu}$ or $i-\mathrm{Pr}$ ) led to the corresponding ( $3 R$ )-3-aminooctanoic and heptanoic acids BO in six steps from N-benzyloxycarbonyl derivative BH in 35-48 \% overall yield (Scheme 10).

Scheme 10


The large number of methodologies available for the synthesis of $\alpha$-amino acids makes them ideal candidates for starting materials in the synthesis of $\beta$-amino acids. ${ }^{116,117}$ This transformation, introduced by Arndt and Eistert, involves the formation of a diazoketone with subsequent loss of nitrogen and Wolff rearrangement under silver ion catalysis, photolysis, or less commonly, thermolysis ${ }^{118,119}$ (Scheme 11).

Scheme 11


BR

Hua et al. reported on the diastereoselective addition of allylmagnesium bromide to sulfinimines like $\mathbf{B S a}$ and $\mathbf{B S b}(R=M e, n-B u)$ to give sulfinamides BT in $82-98 \%$ d.r. and in $92-96 \%$ yield. ${ }^{120}$ Following separation of the diastereoisomers, the sulfinamides BT were hydrolyzed with trifluoroacetic acid (TFA), and the allylic amines were acetylated to furnish the $N$-acetyl derivatives $\mathbf{B U}$. These acetamides were transformed into the free $\beta$-amino acids BV by ozonolysis, oxidation with $\mathrm{AgNO}_{3}$, and deacetylation with HCl , as shown in Scheme 12.

Scheme 12



### 9.2 Own results

As previously described, the isoxazoline ring can be built in high yield and in high stereoselectivity in some cases by 1,3-dipolar cycloaddition of nitrile oxides to a variety of olefins. After activation of the isoxazoline ring either by Lewis acid or $N$-methylation with Meerwein salt, a variety of optically pure isoxazolidines was at hand, prepared with high selectivity. Through catalytic hydrogenation of the isoxazolidines followed by protection of the resulting amino alcohols or amino polyols, the latter are ready to be transformed into a new set of $\beta$-amino acids by oxidation of the primary alcohol or diol unit in some cases, completed by N -deprotection (Scheme 13).

Scheme 13
A) Isoxazoline activation by Lewis acid

B) Isoxazoline activation by $N$-methylation


$$
\oint R^{2}=H
$$



The isoxazoline route here offers an advantage, since the cycloaddition step joins two widely variable components, alkenes and nitrile oxides (with precursor nitroalkane or aldehyde, respectively). However, the final introduction of a $C$-nucleophile is hampered by insufficient electrophilicity of the $\mathrm{C}=\mathrm{N}$ bond in the isoxazoline, which has been overcome by the different ways of activation mentioned previously.

To bring the retrosynthetic Scheme 13 to reality, an oxidation step is necessary with regard to the primary hydroxy group of the amino alcohols $59,62,63,66$, or oxidative diol cleavage of the amino polyols 68 and 69 , to afford in both cases the $N$-protected branched $\beta$-amino acids.

In Table 27 the $\beta$-amino acids obtained by oxidation of $N$-protected amino alcohols and polyols with 4.1 equivalents of sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ in the presence of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ as a catalyst are shown with yields varying from 68 to $89 \%$. The oxidation was first performed with the N -protected amino alcohol 62, and was done in a mixture of acetonitrile and carbon tetrachloride and water in 1 to 1 to 1.5 ratios. At room temperature sodium periodate and ruthenium trichloride ( $6 \% \mathrm{~mol}$ ) were added after one and a half hour, the catalyst was filtered off through celite and silica gel and the mixture was finally chromatographed to afford the $N$-protected amino acid 76 as a racemic mixture in high yield ( $84 \%$; entry 1 in Table 27). This was the model N -protected amino alcohol to be oxidized, in order to open the door to similar oxidations of the other N -protected amino alcohols and polyols.

The oxidation was then performed similarly as described in the case of the preparation of the $N$-protected amino acid 76, to afford the respective $N$-protected amino acids 77, 78, 80 and 81 (entries 2,3, 5 and 6 in Table 27), and in the case of the $N$-protected amino alcohol 66, for which the oxidation was performed as before, followed by another deprotection for the acetal group available by addition of trifluoroacetic acid to the crude product, which led to the lactone 79 in 89 \% over-all yield (entry 4 in Table 27).

Table 27. Synthesis of $N$-protected branched $\beta$-amino acids 76-81 from $N$-protected amino alcohol or polyols


59, 62, 63, 66, 68, 69
76-81
Entry N -protected amino alcohol
5

68

80
6

69

81
68 \%
79

[^9]Assignment of configuration of the $N$-Boc-aminohydroxylactone 79 was possible due to a crystal structure analysis obtained (see appendix 12.9).


79


As a last step to reach the target structures, deprotection is needed; the use of hydrochloric acid in this step in some cases caused difficulties concerning the separation of the products. Therefore, $\mathrm{CF}_{3} \mathrm{COOH}$ (TFA) was chosen; the hydrolysis was effected by stirring with the protected $\beta$-amino acid in dichloromethane overnight, followed by purification on ion exchange column [DOWEX $50 \mathrm{WX}_{8}\left(\mathrm{H}^{+}\right.$-form) ].

First of all, the deprotection of Boc group was performed for the N-protected amino acid 76, by stirring it with 2 mL of trifluoroacetic acid in dichloromethane at room temperature for 18 hours. The crude product was then purified through ion exchange column, to afford the pure free $\beta$-amino acid 82 with the ammonia fraction of the ion exchange column in high yield (86 \%) (entry 1 in Table 28).

In the case of the 3-amino-3-phenylhexanoic acid 83, oxidation followed by deprotection of the resulting product was carried out, without separation of the $N$-protected $\beta$-amino acid, in $75 \%$ yield [Eq. 49 and entry 2 in Table 28].


Similarly, the deprotection was carried out for the chiral N-protected amino acids $\mathbf{7 8}$ and $\mathbf{8 0}$, to afford the corresponding branched free $\beta$-amino acids 84 and 85 successively, deprotected from both protection groups (Boc, acetal) in high yields (entries 3 and 4 in Table 28).

The $\beta$-amino acids $\mathbf{8 2}, \mathbf{8 3}, \mathbf{8 4}, \mathbf{8 5}$ were obtained in yields of 71 to $94 \%$, they were isolated as solids except for the aminohydroxylactone 86, which was oily and did not afford a correct elemental analysis [Eq. 50 and entry 5 in Table 28).
(50)


1) $\mathrm{HCl}(6.0 \mathrm{~N})$ in MeOH , r.t. , 18 h
2) DOWEX, $71 \%$
(Exp. 84)


79

Table 28. Synthesis of branched $\beta$-amino acids $\mathbf{8 2}, \mathbf{8 3}, \mathbf{8 4}, 85$ and $\mathbf{8 6}$


64, 76, 78-80
82-86
Entry N -protected $\beta$-amino acid

[^10]The results presented above demonstrate the possibility to synthesize $\beta$-amino acids starting from D-mannitol by first building the isoxazoline ring, which upon activation with Lewis acid is ready to accept a variety of C-nucleophiles to give the corresponding isoxazolidines. These isoxazolidines by catalytic hydrogenation, then oxidation are transformed into the projected branched $\beta$-amino acids in an acceptable total yield of $36 \%$ in the case of the $\beta$-amino acid 84 (Scheme 14), and $27 \%$ over-all yield of the $\beta$-amino acid 85 (Scheme 15).

Scheme 14 Total synthesis of the $\beta$-amino acid 84



$63 \%$ (3 steps) $\uparrow^{\uparrow}$


13


32a





35a

In addition, the aminohydroxylactone $\mathbf{8 6}$ was prepared, upon addition of allylmagnesium bromide with Lewis acid, to afford the isoxazolidine 34 in high selectivity, which was transformed in 3 steps into the more stable lactone $\mathbf{8 6}$ form of the target $\beta$-amino acid $\mathbf{8 6}$ (Scheme 16).

Scheme 16 Total synthesis of the amino hydroxy lactone $\mathbf{8 6}$


The same strategy can be applied for the $N$-methylisoxazolidine 25a which was obtained through activation of isoxazoline 13 with Meerwein salt. The protected branched $\beta$-amino acid 77 was produced on transformation of the isoxazolidine $\mathbf{2 5 a}$ over 4 steps in $29 \%$ overall yield (calculated from the protected D-mannitol 10) (Scheme 17).

Scheme 17 Total synthesis of the protected branched $\beta$-amino acid 77

$\Sigma 29$ \% (7 steps from 10)

### 9.3 NMR data of branched $\beta$-amino acids 84 and 85

Table 29 compares the chemical shifts of the $N$-protected $\beta$-amino acids $\mathbf{7 8}, \mathbf{8 0}$ with those of the deprotected compounds, the $\beta$-amino acids 84 and 85 . The ${ }^{1} \mathrm{H}$ NMR data show a systematic shift of all protons to low-field, on the average varying from 0.09 ppm in the case of $3^{\prime}-\mathrm{H}$ the most far proton to the center of the deprotection act took place, and maximum difference $(\Delta \delta=0.75 \mathrm{ppm})$ for $4-\mathrm{H}$, the closest proton to the two sites where the protection groups have been removed.

The ${ }^{13} \mathrm{C}$ NMR data of the corresponding compounds reflect similar changes as seen in the ${ }^{1} \mathrm{H}$ NMR spectra. High-field shifts are clearly detected for C-3 of the $\beta$-amino acids $\mathbf{8 4}, \mathbf{8 5}$ in comparison with their protected forms $\mathbf{7 8}, \mathbf{8 0}$. No significant difference was observed for the chemical shifts of propyl moiety. In contrast to this, notable differences were observed for the signals of carbon atoms closest to the two protection groups removed, of which the chemical shifts changed for 7.0 ppm to low-field in the case of the $\mathrm{C}-4$ of the $\beta$-amino acid $\mathbf{8 5}$.

The configuration of the branched $\beta$-amino acids 84 and 85 have been assigned according to the absolute configuration confirmed for the diol $\mathbf{5 2 \cdot} \mathbf{H C l}$ (see chapter 6.1.2) and the isoxazolidine 35a (see chapter 4.1.2).

Table 29: Selected ${ }^{1} \mathrm{H}$ NMR data ( $\delta$ in ppm) of the branched $\beta$-amino acids 84 and 85

${ }^{[a]} \mathrm{D}_{2} \mathrm{O}$ used as a solvent. ${ }^{[b]}$ Signals not identified because of overlap with $\mathrm{C}\left(\mathrm{CH}_{5}\right)_{2}$ signals. ${ }^{[0]}$ Signals are not assigned, center of multiplet are given.

Table 30: Selected ${ }^{13} \mathrm{C}$ NMR data ( $\delta$ in ppm) of the branched $\beta$-amino acids $\mathbf{8 4}$ and $85^{[a]}$

| branched $\beta$-amino acids | C-1(C=O) | C-2 | C-3 | C-4 | C-5 | C-1' | C-2' | C-3' |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78 | 176.2 | 40.2 | 54.8 | 79.4 | 64.5 | 21.0 | - | - |
| 80 | 177.8 | 39.1 | 57.3 | 74.0 | 61.4 | 20.0 | - | - |
| $\Delta \delta$ | +1.6 | -1.1 | +2.5 | -5.4 | -3.1 | -1.0 | - | - |
| 80 | 176.8 | 38.0 | 57.6 | 79.2 | 64.8 | 38.6 | 17.0 | 14.2 |
| 85 | 178.1 | 39.2 | 59.9 | 72.2 | 61.5 | 34.7 | 16.2 | 13.7 |
| $\Delta \delta$ | +1.3 | +1.2 | +2.3 | -7.0 | -3.3 | -3.9 | -0.8 | -0.5 |

${ }^{[a]} \mathrm{D}_{2} \mathrm{O}$ used as a solvent.

## 10 <br> Detailed Summary and Outlook

$\beta$-Amino acids are important synthetic targets due to their presence in a wide variety of natural products, pharmaceutical agents, and mimics of protein structural motifs. According to this importance of $\beta$-amino acids, this work consisted in the development of efficient routes to amino alcohols and polyols, and branched $\beta$-amino acids as a target compounds.

Isoxazolines are employed as key intermediates, transformed by activation either by Lewis acid or by conversion to the corresponding N-methylisoxazolinium salt. Next, highly stereoselective $C$-nucleophile additions to the "activated isoxazolines" were examined, followed by transformation to the target structures. The absolute configurations were assigned to the various enantiomerically pure compounds. The readily accessible, diversely substituted products are expected to facilitate future studies of the structure and function of this important class of molecules.

## A) Preparation of Isoxazolines and N -Methylisoxazolinium Salts.

The isoxazolines were prepared by 1,3-dipolar cycloaddition of respective olefins and nitrile oxides obtained in situ from oximes via hydroximoyl chlorides, see Table 31.

Table 31. Preparation of Isoxazolines

Cycloadduct

3


9
93 \% 6
 82 \%

One of the activation methods followed in this work is by N -alkylation of isoxazolines with Meerwein's salt (trimethyloxonium tetrafluoroborate), to form the respective isoxazolinium salt in high yield (Table 32).

Table 32. Preparation of Isoxazolinium Salts


| Isoxazolinium salt | Yield | Isoxazolinium salt | Yield |
| :---: | :---: | :---: | :---: |
|  | 95 \% |  <br> 8 | $(79 \%)^{[a]}$ |
|  <br> 6 | 88 \% |  | 88 \% |

${ }^{[a]}$ It was not possible to have correct elemental analysis.

## B) Reaction of N -Methylisoxazolinium Salts with C -Nucleophiles

Addition of sodium diethyl malonate and lithium ester enolate to N -methylisoxazolinium salts

The use of sodium diethyl malonate and lithium ester enolate as $C$-nucleophilic reagents for the related adducts has been explored. This addition of malonate to a model isoxazolinium salt 3 has already been done by LeRoy in our group. ${ }^{2}$ This was now optimized. The new addition of an enolate to the isoxazolinium salt $\mathbf{3}$ also showed smooth conversion with high yield [Eq. 51].


In this work the chiral $N$-methylisoxazolinium salt 14 (from 13) was applied in the enolate addition to give the corresponding adduct, in high yield, but with modest diastereoselectivity [Eq. 52].


## Addition of metal organyls to N-methyl-isoxazolinium salts

In the preceding dissertation in our research group in this field, Henneböhle has studied the addition of several Grignard reagents to $N$-methylisoxazolinium salts, wherein the configuration of adducts remained unknown. Now, the addition of methylmagnesium bromide to the $N$-methyl-isoxazolinium salt 13 was repeated, and the adduct was then transformed to the corresponding diol $52 \cdot \mathrm{HCl}$. With this, the configuration was assigned by crystal structure determination, which allowed to further assign the hitherto unknown configuration at $\mathrm{C}-3$ of the diol $52 \cdot \mathrm{HCl}$ and of the precursor isoxazoline 25a [Eq. 53].


## C) Reaction of isoxazolines with C-nucleophiles in the presence of Lewis acid

Addition of Grignard reagents to isoxazolines in the presence of Lewis acid

As an alternative route to activate isoxazoline to accept $C$-nucleophiles at $C-3$, and avoiding the presence of methyl group at the nitrogen atom of the activated isoxazoline; which formed by activation with trimethyloxonium tetrafluoroborate. Now it's possible to add $C$-nucleophiles to the isoxazolines, with prior activation by Lewis acid, with often excellent diastereoselectivities and high yields (Table 33).

Table 5. Addition of allylmagnesium bromide to isoxazoline in the presence of a Lewis acid


Entry Isoxazoline $\quad$ Isoxazolidine | Lewis |  |
| :---: | :---: |
| Acid | d.r. ${ }^{[a]}$ | Yield ${ }^{[b]}$

[^11]8


13


15/16
d.r. $87: 13$


15/16


36 a/b


34 a/b $\mathrm{ZnBr}_{2} \quad 80: 20 \quad 64 \% \quad 17 \% \quad 81 \%$


| $85: 15$ | $65 \%$ | $13 \%$ | $78 \%$ |
| :--- | :--- | :--- | :--- |
| $76: 24$ | $55 \%$ | $15 \%$ | $70 \%$ |
| $77: 23$ | $47 \%$ | $16 \%$ | $63 \%$ |


| $\mathrm{ZnCl}_{2}$ | $81: 19$ | $61 \%$ | $19 \%$ | $80 \%$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{ZnBr}_{2}$ | $78: 22$ | $61 \%$ | $17 \%$ | $78 \%$ |

d.r. 15:85

The determinations of the diastereomeric ratios are based on the intensities of separate signal pairs in the ${ }^{13} \mathrm{C}$ NMR spectra of the crude products. ${ }^{[b]}$ Yields are calculated over two steps starting from the corresponding isoxazoline; $\mathbf{a}$ : major diastereomer, $\mathbf{b}$ : minor diastereomer.

The effects of temperature and Lewis acid on the yield and stereoselectivity of the addition products were studied, but did not show a significant change. Nevertheless, it was possible to determine the absolute configuration of the isoxazolidines obtained, according to several crystal structures analysis that became available.

Addition of alkyllithium-lithium bromide complex to isoxazolines in the presence of Lewis acid

The addition of alkyl/aryllithium-lithium bromide complex to isoxazolines has rarely been studied. In the current work the addition was performed using methyllithium-lithium bromide in the presence of borontrifluoride etherate as a Lewis acid. The adducts were obtained in high yields, and with modest diastereoselectivity when the chiral isoxazoline 13 was used (Table 34).

Table 34. Addition of methyllithium-lithium bromide complex to the isoxazolines $\mathbf{2 , 1 3}$ in the presence of borontrifluoride etherate


$-78{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$
Isoxazoline
${ }^{[\text {a] }}$ The determination of the diastereomeric ratio (d.r.) is based on the intensities of separated signal pairs in the ${ }^{13} \mathrm{C}$ NMR spectra of the crude products. $\mathbf{a}$ : Major diastereomer, $\mathbf{b}$ : Minor diastereomer.

## C) Transformation of isoxazolines

A major part of this work dealt with transformation of the isoxazolidines obtained into different target structures such as amino alcohols and polyols or $\alpha$ - and $\beta$-amino acids, first in order to assign the configuration of addition products, and secondly to demonstrate that isoxazolines are promising intermediates in field of amino acid synthesis.

Synthesis of N -(un)substituted amino alcohols and polyols

In order to obtain amino alcohols and polyols from the isoxazolidines, it was necessary to perform N-O bond cleavage of the isoxazolidine. For this, palladium-catalyzed hydrogenation proved effective, affording the respective target structures in mostly high yields [Eq. 54].
(54)


25a, 25b, 32a, 34a, 34b, 35a, 35b, 52
$R^{2}=\mathrm{H}, \mathrm{Me}$
$\mathrm{R}^{3}=\mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$
41, 42, 45, 47, 48,49, 50, 70

The absolute configurations of the 3,3-disubstituted amino alcohols and -polyols prepared were assigned according to the configurations of each of the 3,3-disubstituted isoxazolidines where crystal structure determinations had been obtained. A different behaviour was observed when ester-substituted isoxazolidines were examined in the catalytic hydrogenation. Here cleavage of the C-N bond prior to $\mathrm{N}-\mathrm{O}$ bond fission was encountered, as seen with the following example [Eq. 55]:


Prior cleavage of the $\mathrm{N}-\mathrm{O}$ bond has been achieved later in this work using samarium iodide solution in THF, to give the products of isoxazolidine ester, as illustrated in Eq. 56.


Hydrolysis of isoxazolidines derivatives: acetals and esters

Another aspect of this work was to assign the configuration of the isoxazolidines prepared. Acid hydrolysis performed on the isoxazolidine $\mathbf{2 5 a}$ led to the respective diol $\mathbf{5 2 \cdot \mathbf { H C l }}$ as a hydrochloride salt [Eq. 57]. The structure of this diol was confirmed by X-ray crystallographic analysis.
(57)


In the same manner, the isoxazolidinolactone 54 was obtained on hydrolysis and its configuration was confirmed by X-ray crystallographic analysis. Thus, the absolute configuration of the isoxazolidine esters 26a and 26b were also known [Eq. 58].
(58)


Interestingly $N$-methylamino polyols were similarly prepared smoothly, although in part with problems to get correct elemental analyses. Here it was as well possible to establish the configuration of the isoxazolidine $\mathbf{2 5 a}$ by crystal structure determination of the aminotriol hydrochloride $\mathbf{7 0} \cdot \mathrm{HCl}$ [Eq. 59].
(59)


In summary, it is worth mentioning that transformations towards a variety of such structures by means of simple steps (catalytic hydrogenation, hydrolysis) were feasible, demonstrating the wide flexibility of this access to these types of compounds.

Synthesis of branched $\beta$-amino acids

One of the incentives to this study, a new approach to (branched) amino acids, was put into practice with the conversion of $N$-(un)substituted amino alcohols and polyols into the corresponding amino acids.

Here, after building the "activated isoxazoline" ring, a variety of $C$-nucleophiles was added to afford the respective isoxazolidines in high yield, and mostly with high selectivity, through catalytic hydrogenation of isoxazolidines followed by protection of the resulting amino alcohols or amino polyols. The latter are ready to be transformed into a new set of $\beta$-amino acids by oxidation of the primary alcohol or diol unit in some cases, completed by N deprotection (Scheme 18).

Scheme 18
A) Activation by Lewis acid

B) Activation by N -methylation


Using the strategy previously outlined, it was straightforward to convert the highly functionalized $N$-(un)substituted amino alcohols and polyols to the corresponding $\beta$-amino acids. First, the $N$-(un)substituted amino alcohols and polyols were protected as the $N$-Boc derivatives, which were then oxidized to give the protected $\beta$-amino acids. After deprotection by treatment with TFA and purification by ion exchange, several $\beta$-amino acids were obtained in good overall yields. The configuration of all protected and deprotected $\beta$-amino
acids in each case were confirmed by X-ray crystallography of related compounds in the same series (Scheme 19).

Scheme 19


59, 62, 63, 66, 68, 69


76-81


In conclusion, a versatile and efficient approach for the synthesis of diverse amino alcohols and polyols and $\beta$-amino acids is demonstrated. The approach employs chiral isoxazolines as key intermediate, translating in part the high selectivity from the 1,3-dipolar cycloaddition reaction into the formation of further structures with up to three contiguous stereogenic centers. Thus, it was possible to develop new, flexible, and efficient routes to branched N (un)substituted amino alcohols and polyols, respectively, and to $\beta$-amino acids. In particular, it was shown that isoxazolines are highly useful precursors for targets containing tertiary and quaternary amine-bearing stereocenters; this should be beneficial in the future for synthesis of other interesting branched amino compounds.

## 11 Experimental Part

### 11.1 General

## Nuclear magnetic resonance spectroscopy

| ${ }^{1} \mathrm{H}$ NMR Spectra: | Bruker AC $250(250.1 \mathrm{MHz})$ |
| :--- | :--- |
|  | Bruker ARX $300(300.1 \mathrm{MHz})$ |
|  | Bruker ARX $500(500.1 \mathrm{MHz})$ |
| ${ }^{13} \mathrm{C}$ NMR Spectra: | Bruker AC $250(62.90 \mathrm{MHz})$ |
|  | Bruker ARX $300(75.50 \mathrm{MHz})$ |
|  | Bruker ARX $500(125.8 \mathrm{MHz})$ |

Chemical shifts are given in ppm. The TMS signal is taken as the reference ( $\delta=0.00 \mathrm{ppm}$ ). Coupling constants $(J)$ are given in Hertz (Hz). All chemical shift values and the multiplicity of NMR signals are shown with standard notations as follows: $s$ (singlet), d (doublet), t (triplet), $q$ (quartet), $m$ (multiplet), bs (broad signal).
The determinations of the diastereomeric ratios (d.r.) are based on the intensities of separated signal pairs in the ${ }^{13} \mathrm{C}$ NMR spectra. Assignment of the absorptions of carbon atoms - if not mentioned in text- has been done by means of $\mathrm{C}, \mathrm{H}-\mathrm{COSY}$.

## Elemental Analyses

Elemental analyses were performed at the Institut für Organische Chemie, Universität Stuttgart.

## Melting Points

Melting points were measured with a Fisher-Johns heating apparatus and are not corrected.

## Infrared Spectroscopy

FT-IR spectra were recorded on a Bruker (IFS 28) spectrophotometer. Measurements of samples were done directly without matrix. The positions of the absorption bands $\tilde{v}$ are given in $\mathrm{cm}^{-1}$, the intensities are given as follows: vs (very strong), s (strong), m (medium), w (weak), b (broad).

## Optical Rotations

Angles of rotation were measured with the polarimeter 241 MC of Perkin-Elmer. The optical rotations were calculated from the $\mathrm{Na}_{\mathrm{D}}$ absorption by means of the Drude equation by extrapolation of two Hg lines ( 546 and 578 nm ): ${ }^{121}$

$$
[\alpha]_{D}^{T}=\frac{[\alpha]_{578}^{T} \cdot 3.199}{4.199-\frac{[\alpha]_{578}^{T}}{[\alpha]_{546}^{T}}} \quad \text { with }[\alpha]_{\lambda}^{T}=\frac{\alpha \cdot 100}{c \cdot d}
$$

$\alpha=$ measured optical rotation. The sample is dissolved in absolute solvent and filled into the cuvette.
c $=$ concentration in $\mathrm{g} / 100 \mathrm{~mL}$
$\mathrm{d}=$ layer thickness in dm
$\mathrm{T}=$ temperature in ${ }^{\circ} \mathrm{C}$
$\lambda=$ wavelength in nm

## Crystal Structure Analysis

For the X-ray structure analyses a Nicolet P3 refractometer with graphite monochromator was used. The measurements were done with Mo- $\mathrm{K}_{\alpha}$ wavelength. The calculation of the structures was done with SHELXS-86 or SHELXL-93, ${ }^{122}$ XRAY $76,{ }^{123}$ ORTEP II, ${ }^{124}$ and FRIEDA ${ }^{125}$ programmes.

## Thin Layer Chromatography

Thin layer chromatography was performed on precoated aluminium sheets (silica gel $60 \mathrm{~F}_{254}$ ) purchased from E. Merck (layer thickness 0.2 mm ). The TLC plate was treated by staining with a solution prepared from $2 \mathrm{~g} \mathrm{KMnO}_{4}, 20 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}, 5 \mathrm{~mL}$ of NaOH solution (5 \%) in 300 mL water and developed by heating with a heat gun. ${ }^{126}$

## Medium Pressure Liquid Chromatography (MPLC)

A dosage pump FL1 with pulsation attenuator MPD 3 (both from Lewa company) was used. The detection was done using a UV/VIS spectrometer 97.00 (Knauer company) and a differential refractometer connected to a plotter 41.21 (Knauer company). Type C columns filled with silica gel (column dimensions: 69 cm length $\times 5 \mathrm{~cm}$ width, pressure 15-20 bar, flow $50-60 \mathrm{~mL} / \mathrm{min}$, theoretical plate number 11500) were prepared according to G. Helmchen and B. Glatz. ${ }^{127}$

## Gas Chromatography (GC)

For the GC analysis a HRGC 5300 (mega series) from Carlo Erba was used. One of the measurements was done with Amidex P22.10 column (glass capillary column length 20 m ), FID as detector, and Thermo Finnigan (Chrom-Card) as integrator.

## Solvents and Reagents

All solvents and reagents used were purified and dried according to standard methods.

## Filtration and Column Chromatography

Silica gel 60 with mesh size 40-62 $\mu \mathrm{m}$ (E. Merck) was used. The column dimensions and the eluent used are mentioned in each experiment separately.

## Purification by Acidic Ion Exchange Column Chromatography

Dowex 50WX8 ( $\mathrm{H}^{+}$-form, 200-400 mesh) purchased from Fluka was used for the acidic ion exchange column. The substance was filled into a glas frit ( $5 \mathrm{~cm} \times 1 \mathrm{~cm}$ ), then washed successively with 50 mL of the following solutions: demineralized water, ammonia ( 1.0 N ), water till neutralization, $\mathrm{HCl}(1.0 \mathrm{~N})$, water till neutralization, methanol, and water. The crude product was put on the column (dissolved in 10 mL water $/ \mathrm{MeOH}$ ) and washed successively with 50 mL of the following solitions: demineralized water, methanol, water. The product was finally collected by elution with 100 mL of ammonia ( 1.0 N ).

## Starting materials used and suppliers

Trimethyloxonium tetrafluoroborate $\left(\mathrm{Me}_{3} \mathrm{OBF}_{4}\right)$ : Aldrich Company.
Methyllithium-lithium bromide complex (MeLi•LiBr): Aldrich Company.
All Grignard reagents used in this work were purchased from Aldrich Company.
Pd/C (10 \% and 5 \%): Degussa Company.
Ethylene and isobutene: Linde Company.

Benzhydroximoyl chloride (1): prepared according to lit. ${ }^{35}$ yield $67 \%$, m. p. $50-51^{\circ} \mathrm{C}$ (lit. ${ }^{128,}$ ${ }^{129}$ : yield $92 \%$, m.p. $50-51^{\circ} \mathrm{C}$ ).

1,2:5,6-Di-O-cyclohexylidene-D-mannitol (10): Prepared according to lit., ${ }^{40}$ yield 57 \%, m.p. $101-103{ }^{\circ} \mathrm{C}$ (lit. $4^{40}$ yield $56 \%$, m.p. $104-105^{\circ} \mathrm{C}$ ).

1,2:5,6-Di-O-diisopropylidene-D-mannitol (17) : Prepared according to lit., ${ }^{42}$ yield $65 \%$ from D-Mannitol, m.p. $118{ }^{\circ} \mathrm{C},[\alpha]_{D}^{20}=2.8(c=1.0, \mathrm{MeOH}),\left[l i t . .^{42}\right.$ yield $54 \%$, m.p. $122-123^{\circ} \mathrm{C}$, $\left.[\alpha]_{D}^{20}=1.9(c=1.74, \mathrm{MeOH})\right]$.

2,3-O-Isopropylidene-D-glyceraldehyde (18) : Prepared from 1,2:5,6-di-O-diisopropylidene-D-mannitol (17) according to lit., ${ }^{130}$ yield $86 \%$ (lit.: $:^{2}$ yield $78 \%$; lit.: ${ }^{42}$ b.p. $72-74{ }^{\circ} \mathrm{C}(30$ $\mathrm{mmHg}),[\alpha]_{D}^{20}=73.1\left(c=1.34, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ ).

2,3-O-Isopropylidene-D-glyceraldoxime (E/Z = 65:35) (19): Prepared 1,2-O-isopropylidene-Dglyceraldehyde according to lit., ${ }^{10,43,130}$ yield $64 \%$ (lit. ${ }^{130}$ : yield $62 \%$ ).

The numbers of the experiments are given in order. The code and number given in the brackets correspond to the number in the lab journal, YB meaning Yaser Bathich, MI for Mukhtar Imerhasan (Undergraduate research fellow, 2003).

### 11.2 Synthesis of Isoxazolines and $N$-Methylisoxazolinium Salts

Experiment 1 (YB 3)
3-Phenyl-4,5-dihydroisoxazole (2), cf. lit. ${ }^{1,2,36,131}$


2

According to lit. ${ }^{10}$, ethylene was bubbled into a solution of $16.65 \mathrm{~g}(106.5 \mathrm{mmol})$ of benzhydroximoyl chloride 1 in 450 mL ether at $0^{\circ} \mathrm{C}$ for 30 min . The ethylene current was continued and $118 \mathrm{~mL}(1.00 \mathrm{M}, 118 \mathrm{mmol})$ of triethylamine solution in ether was added dropwise with a rate of 3 to 4 drops $/ \mathrm{min}$ within 48 h . The mixture was quenched with HCl ( $100 \mathrm{~mL}, 1.0 \mathrm{~N}$ ), partitioned against ether ( $3 \times 100 \mathrm{~mL}$ ), and the combined organic phases were washed with $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and water ( $2 \times 100 \mathrm{~mL}$ ), then dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo ( 50 mbar ) to give a colourless solid. Crystallization from ether gave 13.34 g ( $87 \%$; lit.: $77 \%,{ }^{10} 80 \%,{ }^{2} 69 \%,{ }^{131} 81 \%{ }^{36}$ ) of analytically and spectroscopically pure isoxazoline 2 in the form of colourless crystals (m. p. $62-64{ }^{\circ} \mathrm{C}$; lit.: $63-66{ }^{\circ} \mathrm{C},{ }^{10} 64-66{ }^{\circ} \mathrm{C},{ }^{2} 66-$ $67{ }^{\circ} \mathrm{C}^{36}$ ). The analytical and spectroscopic data fully complied with the literature values. ${ }^{2,10}$

| $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}$ | calc. | C 73.45 | H 6.16 | N 9.52 |
| :--- | :--- | :--- | :--- | :--- |
| $(147.2)$ | found | C 73.25 | H 6.21 | N 9.47 |

IR (KBr): $\tilde{v}=3061$ (w), 2959 (w), 2891 (w), 1567 (w), 1499 (w), 1473 (w), 1449 (s), 1431 (m), 1354 (s), 1314 (w), 1079 (w), 1005 (w), 927 (s), 884 (vs), 856 (s), 761 (vs), 695 (vs), 663 (m) $\mathrm{cm}^{-1}$.

${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=35.2(\mathrm{t}, \mathrm{C}-4), 69.2(\mathrm{t}, \mathrm{C}-5), 126.7,128.7,130.0(3 \mathrm{~d}, o-, \mathrm{m}-$, $p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), $129.5\left(\mathrm{~s}, i-\mathrm{C}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 156.8(\mathrm{~s}, \mathrm{C}-3)$.

## Experiment 2 (YB 7)

## 2-Methyl-3-phenyl-4,5-dihydroisoxazol-2-ium tetrafluoroborate

 (3), cf. lit. ${ }^{1,2}$

3

## Typical Procedure TP 1 for Transformation of Isoxazolines to Isoxazolinium Salts

According to lit., ${ }^{1,2} 2.20 \mathrm{~g}(14.9 \mathrm{mmol}, 1.1 \mathrm{eq})$ of $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ was added with stirring to a solution of $2.00 \mathrm{~g}(13.6 \mathrm{mmol})$ of the isoxazoline 2 in 30 mL abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temp. The mixture was left with stirring overnight, and then concentrated in vacuo ( 10 mbar ) to give 3.65 g of a yellowish solid, which crystallized from abs. ethanol to afford $3.2 \mathrm{~g}(95 \%$; lit.: 90 $\%,{ }^{1} 96{ }^{2}$ ) of pure isoxazolinium salt 3 in the form of colourless crystals (m. p. $103-104{ }^{\circ} \mathrm{C}$; lit.: 104-106 ${ }^{\circ} \mathrm{C}^{1}, 103-104{ }^{\circ} \mathrm{C}^{2}$ ). The analytical and spectroscopic data fully complied with the values given in lit. ${ }^{1,2}$

| $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BF}_{4} \mathrm{NO}$ | calc. | C 48.23 | H 4.86 | N 5.62 |
| :--- | :--- | :--- | :--- | :--- |
| $(249.0)$ | found | C 48.37 | H 4.89 | N 5.62 |

IR (KBr): $\tilde{v}=3400(\mathrm{~m}, \mathrm{~b}), 1651\left(\mathrm{w}, \mathrm{C}=\mathrm{N}^{+}\right), 1590(\mathrm{~m}), 1440(\mathrm{~m}), 1370(\mathrm{~m}), 1100$ (vs), 1083 (s), 1031 ( s$), 928$ (m), 769 (m), 670 (s) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=3.95\left(\mathrm{t},{ }^{5} \mathrm{~J}_{4,1}=1.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.14$ (qt, $\left.J_{4,5}=10.1,{ }^{5} J_{4,1}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}\right), 4.92\left(\mathrm{t}, \mathrm{J}_{4,5}=10.1 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}\right)$, 7.65-7.84 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ ).

${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=42.1$ ( $\mathrm{q}, \mathrm{NCH}_{3}$ ), 42.1 (t, C-4), 72.8 (s, C-5), 125.9 (s, i-C of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 132.1, 132.3, 137.2 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 166.7 ( $\mathrm{s}, \mathrm{C}-3$ ).

Experiment 3 (MI 35)
Ethyl Chlorooximidoacetate (4), cf. lit. ${ }^{2,38}$
 4

According to lit. ${ }^{38} 69.7 \mathrm{~g}$ ( 503 mmol ) of ethyl glycinate hydrochloride and $41.5 \mathrm{~mL}(494 \mathrm{mmol})$ of conc. HCl were added to $95 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ at $-5^{\circ} \mathrm{C}$ with stirring, and then $34.7 \mathrm{~g}(1 \mathrm{eq})$ of $\mathrm{NaNO}_{2}$ (in $50 \mathrm{H}_{2} \mathrm{O}$ ) was added. A second equivalent of hydrochloric acid ( 41.5 mL of conc. $\mathrm{HCl}, 494 \mathrm{mmol})$ and of sodium nitrite ( 34.7 g in $50 \mathrm{H}_{2} \mathrm{O}$ ) was then added in the same manner. The reaction mixture was partitioned against ether ( $5 \times 100 \mathrm{~mL}$ ) and dried $\left(\mathrm{MgSO}_{4}\right)$, then concentrated in vacuo ( 4 mbar). Crystallization from hexane gave 31 g ( $41 \%$; lit.: 54 $\%^{38}$ ) of analytically and spectroscopically pure 4 as colourless crystals (m. p. $75-76{ }^{\circ} \mathrm{C}$; lit.: 80 ${ }^{0} \mathrm{C}^{38}$ ).

| $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{NO}_{3} \mathrm{Cl}$ | calc. | C 31.70 | H 3.99 | N 9.24 |
| :--- | :--- | :--- | :--- | :--- |
| $(151.55)$ | found | C 32.22 | H 3.98 | N 9.29 |

$\mathrm{IR}(\mathrm{KBr}): \tilde{v}=3320(\mathrm{~s}), 2970(\mathrm{~m}), 1745(\mathrm{~s}), 1720(\mathrm{~m}), 1720(\mathrm{~m}), 1615(\mathrm{~m}), 1465(\mathrm{~m}), 1440$ (m), 1410 (m), 1375 (m), 1360 (m), 1290 ( s$), 1060(\mathrm{~s}), 1040(\mathrm{~m}), 980(\mathrm{~m}), 840(\mathrm{~m}), 800(\mathrm{w})$, $780(\mathrm{~m}), 735(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.39\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 4.41 (q, J = $7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$ ), 7.29 (s, $1 \mathrm{H}, \mathrm{NOH}$ ).

${ }^{13} \mathrm{C}$ NMR ( $62.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=13.9\left(\mathrm{q}, \mathrm{CH}_{2} \underline{\mathrm{CH}_{3}}\right)$, $63.9\left(\mathrm{t}, \underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{3}\right), 132.8(\mathrm{~s}, \underline{\mathrm{C}}=\mathrm{N}), 158.8$ (s, C=O).
The spectroscopic data were in full agreement with those given in lit. ${ }^{2}$

Experiment 4 (MI 36)
Ethyl 5,5-dimethyl-4,5-dihydroisoxazole-3-carboxylate (5). cf. lit. ${ }^{2,132}$


5

According to lit. ${ }^{2}$ isobutene was introduced for 30 min into a solution of 7.0 g ( 46.2 mmol ) of ethyl chlorooximidoacetate 4 in 150 mL ether at $-15^{\circ} \mathrm{C}$. The isobutene current was continued and $50.8 \mathrm{~mL}(1.00 \mathrm{M}, 5.14 \mathrm{~g})$ of triethylamine solution in ether was added dropwise at a rate of 3 to 4 drops $/ \mathrm{min}$ over 3 h . The mixture was left for 10 h with stirring at room temp., then
quenched with $\mathrm{HCl}(250 \mathrm{~mL}, 1.0 \mathrm{~N})$, partitioned against ether ( $5 \times 100 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo ( 6 mbar ) to give 7.0 g of a yellowish oil of 5 , which was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 1:1). Purification by MPLC (petroleum ether/ethyl acetate $7: 3$ ) gave $5.5 \mathrm{~g}\left(70 \%\right.$; lit. ${ }^{2}: 67 \%$ ) of an analytically impure but spectroscopically pure, light-yellow oil. The spectroscopic data were fully complied with those given in lit. ${ }^{2}$

| $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}$ | calc. | C 56.13 | H 7.56 | N 8.18 |
| :--- | :--- | :--- | :--- | :--- |
| $(171.2)$ | found | C 54.71 | H 7.30 | N 8.46 |

IR (film) : $\tilde{v}=2960$ ( w ), 2910 ( w ), 1735 ( m ), 1710 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ), 1660 ( m ), 1575 ( $\mathrm{s}, \mathrm{C}=\mathrm{N}$ ), 1460 (w), 1430 (w), 1395 (w), 1370 (m), 1360 (m), 1325 (m), 1275 (s), 1225 (s), 1115 (s), 1050 (w), 1000 (m), 930 (s), 840 (w), $740(\mathrm{~m}), 725(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.37\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ ), 1.47 [s, $6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ ], $2.98(\mathrm{~s}, 2 \mathrm{H}, 4-\mathrm{H}), 4.36(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ ).


5
 $\mathrm{CH}_{2} \mathrm{CH}_{3}$ ), 88.5 ( $\mathrm{s}, \mathrm{C}-5$ ), 151.1 ( $\mathrm{s}, \mathrm{C}-3$ ), 161.1 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ).

## Experiment 5 (MI 43)

Ethyl 2,5,5-trimethyl-4,5-dihydro-2-isoxazolium-3-carboxylate tetrafluoroborate (6), cf. lit. ${ }^{2}$

$\begin{array}{ll}\text { Scale: } & 2.00 \mathrm{~g}(11.7 \mathrm{mmol}) \text { isoxazoline } 5 \\ & 1.90 \mathrm{~g}(12.9 \mathrm{mmol}) \mathrm{Me}_{3} \mathrm{OBF}_{4} \\ & 50 \mathrm{~mL} \text { abs. } \mathrm{CH}_{2} \mathrm{Cl}_{2}\end{array}$
The reaction was performed according to TP 1 to afford a light-yellow solid of $6(2.8 \mathrm{~g}, 88 \%$; lit..$^{2}$ : $95 \%$ ) in the form of colourless crystals (m. p. $152-153{ }^{\circ} \mathrm{C}$; lit.: $150-153{ }^{\circ} \mathrm{C}^{2}$ ) after crystalization from abs. ethanol. The spectroscopic data were fully complied with those given in lit. ${ }^{2}$

| $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{BF}_{4}$ | calc. | C 39.59 | H 5.91 | N 5.13 |
| :--- | :--- | :--- | :--- | :--- |
| $(273.0)$ | found | C 39.02 | H 5.73 | N 5.09 |

IR (KBr) : $\tilde{v}=2970(\mathrm{~m}), 2910(\mathrm{w}), 2330(\mathrm{w}), 1740(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1660(\mathrm{~m}), 1460(\mathrm{~m}), 1370(\mathrm{~m})$, 1320 (m), 1280 (m), 1250 (m), 1160 (m), 1090 (m), 1015 (vs), $950(\mathrm{~s}), 920(\mathrm{~m}), 840(\mathrm{~m})$, $740(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=1.42\left(\mathrm{t}, \quad \mathrm{J}_{1^{\prime}, 2^{\prime}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.66\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.76\left(\mathrm{q},{ }^{5} \mathrm{~J}_{4,1}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}\right)$, 4.17 (s, $3 \mathrm{H}, \mathrm{NCH} \underline{H}_{3}$ ), $4.47\left(\mathrm{q}, \mathrm{J}_{1 ; 2}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ ).


6
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=14.2\left(\mathrm{q}, \mathrm{CH}_{2} \underline{\mathrm{C}} \mathrm{H}_{3}\right), 26.9\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 42.9\left(\mathrm{q}, \mathrm{NCH}_{3}\right)$, 49.3 (t, C-4), $66.2\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ ), 94.4 ( $\mathrm{s}, \mathrm{C}-5$ ), 155.7 ( $\mathrm{s}, \mathrm{C}-3$ ), 156.2 (s, C=O).

Experiment 6 (MI 37)
Ethyl 4,5-Dihydroisoxazole-3-carboxylate (7)


7

Ethylene was introduced into a solution of $7.0 \mathrm{~g}(46.2 \mathrm{mmol})$ of ethyl chlorooximidoacetate 4 in 150 mL ether at $-15^{\circ} \mathrm{C}$ for 30 min . The ethylene current was continued and $50.8 \mathrm{~mL}(50.8$ $\mathrm{mmol}, 1.00 \mathrm{M}$ ) of a triethylamine solution in ether was added dropwise at a rate of 3 to 4 drops/min over 3 h . The mixture was then left for 10 h with stirring at room temp., then was quenched with $\mathrm{HCl}(250 \mathrm{~mL}, 1.0 \mathrm{~N})$. The mixture was partitioned against ether ( $5 \times 100 \mathrm{~mL}$ ), the organic solutions were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo ( 6 mbar ) to give 7.0 g of a brownish oil, which was filtered through silica gel ( $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate $1: 1$ ) to furnish 5.56 g of 7 . This was purified by MPLC (petroleum ether/ethyl acetate $7: 3$ ) to give $3.84 \mathrm{~g} \mathrm{( } 58 \%$; lit. ${ }^{39}: 77 \%$ ) of 7 as an analytically and spectroscopically pure, lightbrown oil.

| $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{3}$ | calc. | C 50.13 | H 6.34 | N 9.79 |
| :--- | :--- | :--- | :--- | :--- |
| $(143.1)$ | found | C 50.23 | H 6.34 | N 9.58 |

IR (KBr) : $\tilde{v}=2970$ (vs), 2920 (w), 2880 (w), 1730 (s, C=O), 1580 (s), 1460 (m), 1430 (s), 1390 (s), 1370 (s), 1340 (m), 1320 (s), 1250 (vs), 1160 (m), 1110 (vs), 910 (vs), 840 (s), 805 (s), 760 (m), 730 (s).
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=1.39\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.24$ ( $\mathrm{t}, \mathrm{J}_{4,5}=10.7 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}$ ), $4.40\left(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.55\left(\mathrm{t}, \mathrm{J}_{4,5}\right.$ $=10.7 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H})$.


7
${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=14.1\left(\mathrm{q}, \mathrm{CH}_{2} \underline{\mathrm{C}} \mathrm{H}_{3}\right), 33.8(\mathrm{t}, \mathrm{C}-4), 62.1\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 71.4(\mathrm{t}$, C-5), 151.9 (s, C-3), 160.7 (s, C=O).

Experiment 7 (YB 316)
Ethyl 2-methyl-4,5-dihydro-2-isoxazolium-3-carboxylate tetrafluoroborate (8)


Scale: $\quad 39 \mathrm{mg}(0.27 \mathrm{mmol})$ isoxazoline 7
$44 \mathrm{mg}(0.30 \mathrm{mmol}) \mathrm{Me}_{3} \mathrm{OBF}_{4}$
5 mL abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
The reaction was performed according to TP 1 to afford a light-yellow oil of crude 8 afforded 53 mg ("79 \%") of a yellowish oil as spectroscopically pure isoxazolinium salt 8 but analytically impure.

| $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{BF}_{4} \mathrm{NO}_{3}$ | calc. | C 34.32 | H 4.94 | N 5.71 |
| :--- | :--- | :--- | :--- | :--- |
| $(245.0)$ | Found | C 29.69 | H 5.24 | N 5.12 |

IR (KBr) : $\tilde{v}=2970(\mathrm{~s}), 2920(\mathrm{~m}), 1740(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1460(\mathrm{~m}), 1435(\mathrm{~m}), 1410(\mathrm{w}), 1365(\mathrm{~s})$, 1340 (m), 1260 (s), 1190 (w), 1050 (s), 1010 (m), 745 (m), 730 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=1.41\left(\mathrm{t}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ ), 4.17 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$ ), 3.86-4.00 ( $\mathrm{m}, 2 \mathrm{H}, 4-\mathrm{H}$ ), $4.48\left(\mathrm{q}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=7.1 \mathrm{~Hz}, 2\right.$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.92-5.00(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H})$.

${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=14.2\left(\mathrm{q}, \mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right), 38.0(\mathrm{t}, \mathrm{C}-4), 42.2\left(\mathrm{q}, \mathrm{N} \underline{\mathrm{CH}} \mathrm{H}_{3}\right), 66.2(\mathrm{t}$, $\mathrm{C}_{2} \mathrm{CH}_{3}$ ), 73.6 (t, C-5), 155.7 ( $\mathrm{s}, \mathrm{C}-3$ ), 155.9 (s, C=O).

Experiment 8 (YB 273)
(5R)-Hydroxymethyl-3-phenyl-4,5-dihydroisoxazole (9) cf. lit. ${ }^{37}$


9

Similar to a procedure given by Ukaji, ${ }^{37}$ to a solution of allyl alcohol ( $\left.0.44 \mathrm{~g}, 7.5 \mathrm{mmol}\right)$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ diethylzinc ( 7.6 mL of a 1.0 M solution in hexane, 7.6 mmol ) was added at 0 ${ }^{\circ} \mathrm{C}$ under nitrogen, and the mixture was stirred for 10 min . Next, a solution of (+)-L-DIPT $(1.78 \mathrm{~g}, 7.60 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was added and the mixture was stirred for 1 h . Diethylzinc ( $8.2 \mathrm{~mL}, 8.2 \mathrm{mmol}$ ) and a solution of hydroximoylchloride $1(1.16 \mathrm{~g}, 7.5 \mathrm{mmol}, 1$ eq) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ were added successively, and the resulting solution was stirred for 3 h room temp.
The reaction was quenched by addition of a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, then the mixture was extracted with ether ( $3 \times 40 \mathrm{~mL}$ ). The organic solutions were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo ( $10 \mathrm{mbar}, 20^{\circ} \mathrm{C}$ ) to give 1.41 g (e.r. $\left.98: 2\right)^{\text {a }}$ of crude 9 . Crystallization from petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ produced $1.23 \mathrm{~g}(93 \%)$ of 9 as colourless crystals (m.p. $75-77{ }^{\circ} \mathrm{C}$; lit. ${ }^{133} 78-79$ ${ }^{\circ} \mathrm{C}$ ).

$$
\begin{array}{llllc}
{[\alpha]_{D}^{20}=-164.9\left(c=1.000, \mathrm{CHCl}_{3}\right)} & \text { lit. : }-164.0\left(c=0.700, \mathrm{CHCl}_{3}\right)^{37} \\
& & & \\
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2} & \text { calc. } & \mathrm{C} 67.78 & \mathrm{H} 6.26 & \mathrm{~N} 7.87 \\
(177.2) & \text { found } & \mathrm{C} 67.59 & \mathrm{H} 6.29 & \mathrm{~N} 7.90
\end{array}
$$

IR: $\tilde{v}=3469$ (sb, OH), 2940 (w), 2868 (w), 1757 (w), 1433 (w), 1361 (s), 1115 (s), 1033 (s), 896 (vs), 608 (vs) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.28\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=\right.$ $\left.16.6, J_{4 \mathrm{a}, 5}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 3.39\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=16.6, J_{4 \mathrm{a}, 5}=10.8 \mathrm{~Hz}, 1\right.$ $\left.\mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 3.69\left(\mathrm{dd}, \mathrm{J}_{1^{\prime} \mathrm{a}, \mathrm{Y}^{\mathrm{b}}}=12.2, \mathrm{~J}_{5,1^{\prime} \mathrm{a}}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.88(\mathrm{dd}$, $J_{1^{\prime}, 1^{\prime} \mathrm{b}}=12.2, J_{5, \imath^{\prime} \mathrm{b}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}$ ), 4.87 ("dddd", $J_{4 \mathrm{a}, 5}=7.8 \mathrm{~Hz}, J_{4 \mathrm{a}, 5}$


9 $=10.9, J_{5,1^{\prime} \mathrm{a}}=4.7 \mathrm{~Hz}, J_{5,1^{\prime} \mathrm{b}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$ ), $7.38-7.69(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$ ).
$\overline{{ }^{a} \mathrm{GC}}$ analyses with 0.4 bar $\mathrm{H}_{2}$; the sample was injected on column starting with $40^{\circ} \mathrm{C}$, first min, then the temperature was increased by $4^{\circ} \mathrm{C} / \mathrm{min}$ till $200^{\circ} \mathrm{C}$. Appendix 12.2 . 1 illustrates the diagram of the racemic mitxure of 9 (has been prepared following the same procedure without DIPT; appendix 12.2.2 illustrates the GC diagram of the mixture of 9 in e.r 98:2.
${ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=36.3(\mathrm{t}, \mathrm{C}-4), 63.7(\mathrm{t}, \mathrm{C}-6), 81.2(\mathrm{~d}, \mathrm{C}-5)$, 126.7, 128.7, 130.2 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), $129.3\left(\mathrm{~s}, i-\mathrm{C}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), $157.5(\mathrm{~s}, \mathrm{C}-3)$.

## Experiment 9 (YB 202)

2,3-O-Cyclohexylidene-(S)-glyceraldoxime (11), cf. lit. ${ }^{1,2,40,134}$


11

To a mixture of $\mathrm{H}_{2} \mathrm{O} /$ ethyl acetate ( $3: 1,500 \mathrm{~mL}$ ) 1,2:5,6-di-O-cyclohexylidene-D-mannitol 10 ( $30.0 \mathrm{~g}, 87.6 \mathrm{mmol}$ ) was added and the pH adjusted to $8-9$ by addition of NaOH solution (ca. $3 \mathrm{~mL}, 1.0 \mathrm{~N}$ ). Next, sodium periodate ( $18.73 \mathrm{~g}, 87.60 \mathrm{mmol}$ ) was added portionwise, then the mixture was stirred at room temp. for 2.5 h . The organic phase was extracted with ethyl acetate ( $5 \times 75 \mathrm{~mL}$ ) and the combined organic solutions were dried $\left(\mathrm{MgSO}_{4}\right)$ to give, after evaporating the solvent ( 50 mbar ), 29.2 g (" $98 \%$ ") of a colourless oil.

The oil was dissolved in 400 mL MeOH and 90.0 g ( 378 mmol ) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 23.1 g ( 333 mmol ) of $\mathrm{NH}_{4} \mathrm{OH} \cdot \mathrm{HCl}$ (dissolved in $400 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ ) were added at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight. The total volume was then reduced to one third by evaporation ( $15 \mathrm{mbar}, 50^{\circ} \mathrm{C}$ ) followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 60 \mathrm{~mL})$. The combined organic solutes were dried ( $\mathrm{MgSO}_{4}$ ) and concentrated in vacuo ( 5 mbar ), then the residual oil was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 6:4) to yield 26.24 g of the oxime 11 as a colourless oil ( $81 \%, \mathrm{E}: Z=60: 40$; lit.: $87 \%, E / Z=65: 35 ;{ }^{1} 88 \%, E / Z=70: 30^{2}$ ). The analytical and spectroscopic data were in accordance with the literature values. ${ }^{2,40,134}$

$$
\begin{aligned}
{[\alpha]_{D}^{20}=55.3\left(c=1.00, \mathrm{CHCl}_{3}\right) \quad \text { lit. }:[\alpha]_{D}^{20} } & =55.0\left(c=1.35, \mathrm{CHCl}_{3}\right)^{1} \\
{[\alpha]_{D}^{20} } & =51.6\left(c=1.58, \mathrm{CHCl}_{3}\right)^{2}
\end{aligned}
$$

IR (neat): $\tilde{v}=3350$ (sb), 2920 (vs), 2845 (s), 1650 ( w ), 1440 ( s$), 1355$ ( s$), 1320$ (m), 1270 (s), 1240 (m), 1220 (m), 1150 ( s), 1130 (m), 1085 ( s$), 1120$ ( s$), 950(\mathrm{~m}), 915(\mathrm{~s}), 835(\mathrm{~s})$, $815(\mathrm{~m}), 760(\mathrm{w}), 680(\mathrm{w}), 640(\mathrm{w}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (250.1 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{E}: Z=60: 40\right): \delta=1.42-1.63\left(\mathrm{~m}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right)$, 3.87, 3.80 (A for ABX, 3- $\mathrm{H}_{\mathrm{a}}$ ), 4.17, 4.35 (B for ABX, 3- $\mathrm{H}_{\mathrm{b}}$ ), 4.65, 5.08 ( dX for ABX, 2-H), 7.39, 6.96 (d, 1-H), 9.1, 9.35 (sb, $1 \mathrm{H}, \mathrm{NOH}$ ).


11
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{E}: Z=60: 40$ ) : (E) Isomer : $\delta=23.8,23.9,25.0,35.0,36.2(5 \mathrm{t}$, $\left.\mathrm{C}\left(\underline{\mathrm{C}}_{2}\right)_{5}\right), 67.0$ (t, C-3), 72.9 (d, C-2), 111.0 ( $\left.\mathrm{s}, i-\mathrm{C}\right), 149.8$ (d, C-1). (Z) Isomer : $\delta=34.8,35.7$ $\left(5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right), 67.5(\mathrm{t}, \mathrm{C}-3), 70.3(\mathrm{~d}, \mathrm{C}-2), 110.4(\mathrm{~s}, i-\mathrm{C}), 153.0(\mathrm{~d}, \mathrm{C}-1)$; the other signals were overpalled by those of the major diastereomer.

Experiment 10 (YB 203)
2,3-O-Cyclohexylidene-D-glycerohydroximoyl chloride (12), cf. lit. $1,35,40,134,48$


12

According to lit. ${ }^{1,35}, 10.4 \mathrm{~g}(77.94 \mathrm{mmol})$ of NCS was added portionwise to a solution of 26.24 g ( 141.7 mmol ) 2,3-O-cyclohexylidene-D-glyceraldoxime 11 in 200 mL of abs. DMF. HCI gas (from HCl vapor on bottle with conc. $\mathrm{HCl} 37 \%$ ) was then introduced by means of a syringe into the solution several times until the reaction started (the colour changed to green). After 5 min , a second portion of NCS ( $10.4 \mathrm{~g}, 77.94 \mathrm{mmol}$ ) was added and the reaction was kept with stirring for 3 h at room temp. To this mixture 500 mL of ice water was added, then it was extracted with ether ( $5 \times 75 \mathrm{~mL}$ ). The extracts were washed with water ( $2 \times 100 \mathrm{~mL}$ ) and dried $\left(\mathrm{MgSO}_{4}\right)$. Finally, the solvent was evaporated ( 10 mbar ) to afford 30.87 g of the hydroximoyl chloride 12 ( $99 \%$; lit.: $99 \%^{2}, 96 \%^{1}$ ) as a green oil. The analytical data complied with the literature values. ${ }^{1,2,10}$
${ }^{1} \mathrm{H}$ NMR $\left(250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.40-1.79\left[\mathrm{~m}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 4.14(\mathrm{dd}$, $\left.J_{2,3 \mathrm{a}}=5.8, J_{3 \mathrm{a}, 3 \mathrm{~b}}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 4.20\left(\mathrm{dd}, \mathrm{J}_{2,3 \mathrm{~b}}=6.7, \mathrm{~J}_{3 \mathrm{a}, 3 \mathrm{~b}}=8.7\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right), 4.83\left(\mathrm{dd}, \mathrm{J}_{2,3 \mathrm{a}}=5.8, \mathrm{~J}_{2,3 \mathrm{~b}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 9.75$ (sb, $1 \mathrm{H}, \mathrm{NOH}$ ).


12
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=23.81,23.83,25.0,35.0,35.5\left(5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right), 66.6(\mathrm{t}, \mathrm{C}-3)$, 75.9 (d, C-2), 112.1 (s, $i-\mathrm{C}$ ), 139.4 (d, C-1).

## Experiment 11 (YB 6)

(1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)-4,5-dihydro-1,2-oxazole (13), cf. lit. ${ }^{1,2,10,135}$


In analogy to lit. ${ }^{10} 10.80 \mathrm{~g}(49.17 \mathrm{mmol})$ of hydroximoyl chloride 12 at $0^{\circ} \mathrm{C}$ was dissolved in 250 mL of abs. toluene. Ethylene was bubbled into the solution till saturation ( 30 min ), then $53.8 \mathrm{~mL}(1.00 \mathrm{~N}$ in toluene, 53.8 mmol$)$ of triethylamine was added dropwise at a rate of 3 to 4 drops/min over 24 h . The mixture was then quenched by addition of $\mathrm{HCl}(150 \mathrm{~mL}, 1.0 \mathrm{~N})$ and partitioned against ether ( $4 \times 60 \mathrm{~mL}$ ). The combined organic phases were washed with $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and water ( $2 \times 100 \mathrm{~mL}$ ), then dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo (15 mbar) to give a yellowish oil. Crystallization from hexane gave analytically and spectroscopically pure isoxazoline 13 (9.00 g, $84 \%$ from 2,3-O-cyclohexylidene-Dglyceraldoxime; lit.: $89 \%^{1}, 65 \%^{2}, 63 \%^{135}$ ) as a colourless solid (m.p. $38-40{ }^{\circ} \mathrm{C}$; lit. : $45{ }^{\circ} \mathrm{C}^{1}$, $40^{\circ} \mathrm{C}^{2}$ ).

$$
\begin{aligned}
{[\alpha]_{D}^{20}=-3.9\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad \text { lit.: } } & {[\alpha]_{D}^{20}=-4.0\left(c=0.49, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{2} } \\
& {[\alpha]_{D}^{20}=-3.7\left(c=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{2} } \\
& {[\alpha]_{D}^{20}=-4.1\left(c=0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{135} }
\end{aligned}
$$

| $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3}$ | calc. | C 62.54 | H 8.11 | N 6.63 |
| :--- | :--- | :--- | :--- | :--- |
| $(211.3)$ | found | C 62.55 | H 8.09 | N 6.56 |

IR (KBr): $\tilde{v}=2920$ (vs), 2830 (s), 1610 ( w ), 1435 (m), 1350 (m), 1325 (w), 1270 (w), 1220 (w), 1150 (s), 1080 (vs), 1060 (w), 1030 (m), 910 (s), 890 (w), 850 (vs), 810 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=1.40-1.65\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right]$, 2.93$3.14(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.99\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{2} \mathrm{a}}=6.0,{ }^{2} \mathrm{~J}_{2^{\prime} \mathrm{a}, 2^{2} \mathrm{~b}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$, $4.22\left(d d, J_{1^{\prime}, 2 b}=6.8,{ }^{2} J_{2^{\prime}, 22^{2} b}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.33-4.41(\mathrm{~m}, 2 \mathrm{H}, 5-$ H), $4.97\left(d d, J_{1^{\prime}, 2^{\prime} a}=6.0, J_{1^{\prime}, 2^{\prime} b}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$.

${ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=23.8,24.0,25.0,34.1,34.6\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 35.9(\mathrm{t}, \mathrm{C}-4)$, 66.8 (t, C-2'), 68.8 (t, C-5), 70.7 (d, C-1'), $111.0\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right.$ ], 158.4 ( $\mathrm{s}, \mathrm{C}-3$ ).

The analytical and spectroscopic data complied with the literature values. ${ }^{1,2,10}$

Experiment 12 (YB 9)
(1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)-2-methyl-4,5-dihydro-
1,2-oxazolium tetrafluoroborate (14), cf. lit. ${ }^{1,2,10}$


Scale : $\quad 500 \mathrm{mg}(2.37 \mathrm{mmol})$ isoxazoline 13 $390 \mathrm{mg}(2.60 \mathrm{mmol}) \mathrm{Me}_{3} \mathrm{OBF}_{4}$ 25 mL abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

This reaction was performed according to TP 1. This led to a brownish solid, which after crystallization from ethanol gave 650 mg ( $88 \%$; lit. $184 \%$ ) of analytically and spectroscopically pure isoxazolinium salt 14 in the form of a colourless solid (m. p. $96-97^{\circ} \mathrm{C}$; lit. $105-106{ }^{\circ} \mathrm{C}^{1}$ ).

$$
[\alpha]_{D}^{20}=-12.9\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \quad \text { lit. }[\alpha]_{D}^{20}=-12.9\left(c=0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1}
$$

| $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{BF}_{4} \mathrm{NO}_{3}$ | calc. | C 46.03 | H 6.44 | N 4.47 |
| :--- | :--- | :--- | :--- | :--- |
| $(313.1)$ | found | C 45.84 | H 6.56 | N 4.40 |

IR (KBr): $\tilde{v}=2920(\mathrm{~s}), 2830(\mathrm{w}), 1625\left(\mathrm{w}, \mathrm{C}=\mathrm{N}^{+}\right), 1440(\mathrm{~m}), 1360(\mathrm{~m}), 1320(\mathrm{w}), 1275(\mathrm{~m})$, 1225 (m), 1150 (s), 1100 (vs), 1070 (vs), 1040 (vs), 1020 (vs), 800 (s), 830 (w), 810 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.35-1.76\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 3.68-$ $3.85(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.88\left(\mathrm{t},{ }^{5} \mathrm{~J}_{4,1}=2.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.33\left(\mathrm{dd}, \mathrm{J}_{1^{1 "}, 2^{\prime \prime a}}=\right.$ $\left.4.1,{ }^{2} J_{2^{\prime \prime} a, 2^{" b}}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.42\left(\mathrm{dd}, J_{1 ", 2 " b}=6.9,{ }^{2} J_{2^{\prime \prime} \mathrm{a}, 2^{2 " b}}=10.1\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.78-4.92(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 5.25\left(\mathrm{dd}, J_{1^{\prime \prime}, 2^{\prime a}}=4.1, J_{1^{\prime \prime}, 2^{\prime \prime} \mathrm{b}}=\right.$ $\left.6.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$.

${ }^{13} \mathrm{C}$ NMR $\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.6,23.9,24.8,33.7,35.6\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 36.6(\mathrm{t}, \mathrm{C}-4)$, $39.4\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 66.5\left(\mathrm{t}, \mathrm{C}-2^{\prime}\right), 69.5\left(\mathrm{~d}, \mathrm{C}-1{ }^{\prime}\right), 70.5(\mathrm{t}, \mathrm{C}-5), 113.4\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 166.7(\mathrm{~s}, \mathrm{C}-3)$.

## Experiment 13a-b

(5S, 1'S) and (5R, 1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)-5-hydroxymethyl-2-isoxazoline (15) and (16).


## a) Experiment 13a (YB 132):

Reaction of hydroximoyl chloride $\mathbf{1 2}$ with allyl alcohol and diethylzinc in the presence of (-)-DDIPT in $\mathrm{CHCl}_{3}$.

In analogy to $\mathrm{lit}^{37}$, diethylzinc ( $7.6 \mathrm{mmol}, 7.6 \mathrm{~mL}$ of 1.0 M solution in hexane) at $0{ }^{\circ} \mathrm{C}$ was added to a $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ solution of allyl alcohol ( $436 \mathrm{mg}, 7.50 \mathrm{mmol}$ ) under nitrogen, and the mixture was stirred for 10 min . To this, a solution of (-)-D-DIPT ( $1.78 \mathrm{~g}, 7.60 \mathrm{mmol}$ ) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was added and the mixture was stirred for 1 h . Diethylzinc ( $8.2 \mathrm{~mL}, 8.2 \mathrm{mmol}$ ) and a $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ solution of the hydroximoyl chloride $12(4.11 \mathrm{~g}, 18.8 \mathrm{mmol}, 2.5 \mathrm{eq})$ were added successively, and the resulting mixture was stirred at r.t. overnight. The reaction was quenched afterwards by addition of a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(30 \mathrm{~mL})$, then the mixture was partitioned against ether $(3 \times 100 \mathrm{~mL})$. The solutes were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo ( $10 \mathrm{mbar}, 20^{\circ} \mathrm{C}$ ) to give 5.0 g (d.r. $\left.87: 13\right)^{\mathrm{a}}$ of crude product $15 / 16$, which was chromatographed $\left(\mathrm{SiO}_{2}\right.$, column $3 \mathrm{~cm} \times 15 \mathrm{~cm}$, petroleum ether/ethyl acetate $1: 1$ ) to yield 1.64 g ( $91 \%$ ) of analytically and spectroscopically pure isoxazolines $15 / 16$ as a colourless oil (d.r. 87:13 after purification).
$[\alpha]_{D}^{20}=72.7\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

[^12]| $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}$ | calc. | C 59.74 | H 7.94 | N 5.81 |
| :--- | :--- | :--- | :--- | :--- |
| $(241.3)$ | Found | C 59.59 | H 8.02 | N 5.62 |

IR : $\tilde{v}=3420$ (vs, OH), 2918 (s), 2840 (vs), 1740 (w), 1615 (m, C=N), 1440 (w), 1360 (w), 1325 (m), 1270 (m), 1220 (m), 1150 (vs), 1130 (m), 1090 (vs), 1060 (m), 910 (vs), 890 (vs), 1270 (m), 1220 (m), 1150 (vs), 1130 (m), 1090 (vs), 1060 (m), 910 (vs), 890 (vs), 870 (vs), $830(\mathrm{~m}), 760(\mathrm{~m}), 710(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of $\left.\mathbf{1 5 / 1 6}=85: 13\right): \delta=1.39-$ $1.66\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 2.66(\mathrm{sb}, 1 \mathrm{H}, \mathrm{OH}), 2.95\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=17.3\right.$, $\left.J_{4 \mathrm{a}, 5}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 3.14\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=17.3, J_{4 \mathrm{~b}, 5}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $4-\mathrm{H}_{\mathrm{b}}$ ), $3.57\left(\mathrm{dd}, J_{1 " \mathrm{a}, 1^{\prime \prime} \mathrm{b}}=12.3, J_{5,1 " \mathrm{a}}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 1{ }^{\left.\prime \prime-\mathrm{H}_{\mathrm{a}}\right), 3.78(\mathrm{dd} \text {, }}\right.$

 $\left.=5.8,1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.20\left(\mathrm{dd}, \mathrm{J}_{2^{\mathrm{a}}, 2^{\prime} \mathrm{a}}=8.6, J_{1^{\prime}, 2^{2} \mathrm{~b}}=6.8,1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.73$ ("dddd", $J_{4 \mathrm{~b}, 5}=11.0, J_{4 \mathrm{a}, 5}=7.4, J_{5,1 " \mathrm{a}}=4.1, J_{5,1 " \mathrm{~b}}=3.6,1 \mathrm{H}, 5-\mathrm{H}$ ), $4.92\left(\mathrm{t}, J_{1^{\prime}, 2^{b}}=J_{1^{\prime} ; 2^{\prime} \mathrm{a}}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$. -The signals of the minor diasteromer were overlapped by those of the major one.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of $15 / \mathbf{1 6}=87: 13$ ) :
Major diastereomer: $\delta=24.1,24.3,25.4,35.0,35.5\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 36.2(\mathrm{t}, \mathrm{C}-4), 63.8(\mathrm{t}, \mathrm{C}-$ 1"), 67.0 (t, C-2'), 71.1 (d, C-1'), 81.2 (d, C-5), 111.4 [s, $\left.\underline{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 159.2$ (s, C-3).
Minor diastereomer: $\delta=63.6\left(\mathrm{t}, \mathrm{C}-1{ }^{\prime \prime}\right)$, $66.8\left(\mathrm{t}, \mathrm{C}-2^{\prime}\right), 70.9(\mathrm{~d}, \mathrm{C}-1$ '), 81.4 ( $\mathrm{d}, \mathrm{C}-5$ ), the other signals were overlapped by those of the major one.

## b) Experiment 13b (YB 317):

Reaction of hydroximoyl chloride $\mathbf{1 2}$ with allyl alcohol and diethylzinc without DIPT in $\mathrm{CHCl}_{3}$

Diethylzinc ( $8.0 \mathrm{mmol}, 8.0 \mathrm{~mL}$ of 1.0 M solution in hexane) at $0^{\circ} \mathrm{C}$ was added to a $\mathrm{CHCl}_{3}$ ( 15 mL ) solution of allyl alcohol ( $436 \mathrm{mg}, 7.50 \mathrm{mmol}$ ) under nitrogen, and the mixture was stirred for 15 min . Then diethylzinc ( $8.0 \mathrm{~mL}, 8.0 \mathrm{mmol}$ ) and a solution of hydroximoylchloride 12 $(4.11 \mathrm{~g}, 18.8 \mathrm{mmol}, 2.5 \mathrm{eq})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ were added successively, and the resulting solution was stirred at r.t. overnight.
The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and then partitioned against ether ( 2 x 50 mL ). The organic solutes were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo ( $5 \mathrm{mbar}, 20^{\circ} \mathrm{C}$ ) to give 4.3 g (d.r. $45: 55$ ) of crude product $\mathbf{1 5} / 16$, which was chromatographed $\left(\mathrm{SiO}_{2}\right.$, column
$3 \mathrm{~cm} \times 13 \mathrm{~cm}$, petroleum ether/ethyl acetate 6:4) to afford $1.41 \mathrm{~g} \mathrm{(78} \mathrm{\%}, \mathrm{d.r}. \mathrm{42:58} \mathrm{after}$ purification) of analytically and spectroscopically pure isoxazolines $15 / 16$ as a yellowish oil.
$[\alpha]_{D}^{20}=-21.5\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
c) Experiment 14 (MI 31, YB 311)

Reaction of hydroximoyl chloride 12 with allyl alcohol and diethylzinc in the presence of (+)-L-DIPT in $\mathrm{CHCl}_{3}$.


In analogy to lit. ${ }^{37}$ diethylzinc ( $7.6 \mathrm{mmol}, 7.6 \mathrm{~mL}$ of 1.0 M solution in hexane) at $0{ }^{\circ} \mathrm{C}$ was added to a $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ solution of allyl alcohol ( $436 \mathrm{mg}, 7.50 \mathrm{mmol}$ ) under nitrogen, and the mixture was stirred for 10 min . then, solution of $(+)$-L-DIPT ( $1.78 \mathrm{~g}, 7.60 \mathrm{mmol}$ ) in $\mathrm{CHCl}_{3}$ $(15 \mathrm{~mL})$ was added and the mixture was stirred for 1 h . Diethylzinc ( $8.2 \mathrm{~mL}, 8.2 \mathrm{mmol}$ ) and hydroximoylchloride $12(4.11 \mathrm{~g}, 18.8 \mathrm{mmol}, 2.5 \mathrm{eq})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ were added successively, and the resulting solution was stirred at r.t. overnight.
The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and then partitioned against ether ( 3 x 100 mL ). The organic solutes were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo ( $5 \mathrm{mbar}, 20^{\circ} \mathrm{C}$ ) to give 2.92 g (d.r. 15:85) of crude products $\mathbf{1 5} / \mathbf{1 6}$, which was chromatographed $\left(\mathrm{SiO}_{2}\right.$, column $3 \mathrm{~cm} \times 15 \mathrm{~cm}$, petroleum ether/ethyl acetate 1:1) to afford $1.55 \mathrm{~g}(86 \%$, d.r. 15:85 after purification) of analytically and spectroscopically pure isoxazolines 15/16 as a yellowish oil.

$$
[\alpha]_{D}^{20}=-63.0\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}$ | calc. | C 59.74 | H 7.94 | N 5.81 |
| :--- | :--- | :--- | :--- | :--- |
| $(241.3)$ | Found | C 59.20 | H 8.14 | N 5.73 |

IR : $\widetilde{v}=3420$ (vs), 2918 (s), 2840 (vs), 1740 (w), 1615 (m), 1440 (w), 1360 w ), 1325 (m), 1270 (m), 1220 (m), 1150 (vs), 1130 (m), 1090 (vs), 1060 (m), 910 (vs), 890 (vs), 870 (vs), $830(\mathrm{~m}), 760(\mathrm{~m}), 710(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of $\mathbf{1 5 / 1 6}=15: 85$ ) : $\delta=1.25-$ $1.65\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 2.28(\mathrm{sb}, 1 \mathrm{H}, \mathrm{OH}), 2.97\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=17.3\right.$, $\left.J_{4 \mathrm{a}, 5}=8.4, J_{4 \mathrm{a}, 1^{\prime}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 3.14\left(\mathrm{ddd}, J_{4 \mathrm{a}, 4 \mathrm{~b}}=17.3, J_{4 \mathrm{~b}, 5}=\right.$ $\left.10.3, J_{4 \mathrm{~b}, 1^{\prime}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 3.62\left(\mathrm{dd}, J_{1^{\prime \prime}, 1^{\prime \prime} \mathrm{b}}=12.2, J_{5,1^{\prime \prime a}}=4.9\right.$

 3.99 (dd, $J_{2^{\prime}, 2^{2} b}=8.5, J_{1^{\prime}, 2^{\prime} \mathrm{a}}=5.9,1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}$ ), 4.21 (dd, $J_{2^{\prime} \mathrm{a}^{2} 2^{2}}=8.5$, $J_{1,2,2^{b}}=6.7,1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}$ ), 4.72 ("dddd", $J_{4 \mathrm{~b}, 5}=10.3, J_{4 \mathrm{a}, 5}=8.4, J_{5,1^{\prime \prime} \mathrm{a}}=$ $\left.4.9, J_{5,1 " b}=3.3,1 \mathrm{H}, 5-\mathrm{H}\right), 4.92\left(\mathrm{dd}, J_{1^{\prime}, 2 \mathrm{~b}}=6.7, J_{1_{1}^{\prime}, 2^{\prime} \mathrm{a}}=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $1^{\prime}-\mathrm{H}$ ). -The signals of the minor diasteromer were overlapped by those of the major one.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of $\mathbf{1 5 / 1 6}=15: 85$ ) :
Minor diastereomer 15: $\delta=63.7$ ( $\mathrm{t}, \mathrm{C}-1$ "), 66.7 ( $\mathrm{t}, \mathrm{C}-\mathrm{2}^{\prime}$ ), 70.8 (d, C-1'), 80.8 (d, C-5), the other signals were overlapped by those of the major one.

Major diastereomer 16: $\delta=23.8,23.9,25.0,34.6,35.3\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right]$, $35.9(\mathrm{t}, \mathrm{C}-4), 63.6$ (t, C-1"), 66.7 (t, C-2'), 70.7 (d, C-1'), 81.0 (d, C-5), 111.1 [s, $i-\mathrm{C}$ of $\left.\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 158.9$ (s, C-3).

## Experiment 15 (MI 41)

2,3-O-Isopropylidene-D-glycerohydroximoyl chloride (20), cf. lit. 1,10,41


According to lit. ${ }^{1}$, to a solution of 8.40 g ( 57.9 mmol ) of 2,3-O-isopropylidene-Dglyceraldoxime 19 in 150 mL of abs. DMF one third of 8.51 g ( 63.7 mmol ) of NCS was added portionwise. HCl gas (from HCl vapor on bottle with conc. $\mathrm{HCl} 37 \%$ ) was then introduced into the solution several times, until the reaction started. After 5 min the rest of NCS was added and the reaction was kept with stirring for 1.5 h at room temp. To this mixture 150 mL of ice water was added, then it was extracted with ether ( $5 \times 75 \mathrm{~mL}$ ), washed with water ( 100 mL ), the combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$. Finally, the solvent was evaporated (10 mbar) to yield 9.00 g (" $87 \%$ ") of a yellowish oil which showed in according to NMR analysis the presence of ca. $2.5 \%$ DMF and $0.6 \%$ ether corresponding to $80 \%$ yield (corrected, lit. ${ }^{10}$ 89 \%) of hydroximoyl chloride 20, which was used without further purification for the next reaction. The analytical data fully complied with the literature values. ${ }^{1,39,41}$

Experiment 16 (MI 42)
(1'S)-3-(2,2-Dimethyl-1,3-dioxolan-4-yl)-4,5-dihydroisoxazole (21), cf. lit. ${ }^{1,10,41}$


According to lit. ${ }^{1} 9.00 \mathrm{~g}(50.1 \mathrm{mmol})$ of the hydroximoyl chloride 20 at $-10^{\circ} \mathrm{C}$ was dissolved in 500 mL ether and ethylene was bubbled into the solution till saturation ( 40 min ). The ethylene current was continued and 55 mL of a triethylamine solution in ether ( $1.0 \mathrm{M}, 55$ mmol ) was added dropwise at a rate of 3 to 4 drops $/ \mathrm{min}$ over 15 h . The mixture was quenched by addition of $\mathrm{HCl}(1.0 \mathrm{~N}, 200 \mathrm{~mL})$, partitioned against ether $(5 \times 100 \mathrm{~mL})$, and the combined organic phases were washed with water $(200 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo ( 15 mbar ) to give 4.60 g of a yellowish oil. This was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate $3: 7$ ) to afford $4.00 \mathrm{~g}(47 \%$; lit.: $83 \%{ }^{2} 86 \%{ }^{41}$ ) of the isoxazoline 21 as an analytically pure, bright-yellow oil. The spectroscopic and analytical data complied well with the literature values. 1,2,41

$$
\begin{aligned}
{[\alpha]_{D}^{20}=-5.7\left(c=1.00, \mathrm{CHCl}_{3}\right), \quad \text { lit. }: } & {[\alpha]_{D}^{20} }
\end{aligned}=-5.8\left(c=2.56, \mathrm{CHCl}_{3}\right)^{10}, ~(\alpha]_{D}^{20}=-4.85\left(c=2.59, \mathrm{CHCl}_{3}\right)^{41}
$$

Experiment 17 (YB 267)
(1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)-5,5-dimethyl-4,5dihydroisoxazole (22)

$6.90 \mathrm{~g}(28.7 \mathrm{mmol})$ of the hydroximoyl chloride 12 at $0^{\circ} \mathrm{C}$ was dissolved in 150 mL of abs. toluene. Ethylene was bubbled into the solution till saturation ( 30 min ), then 31.55 mL of a triethylamine solution ( $31.55 \mathrm{mmol}, 1.0 \mathrm{~N}$ in toluene) was added dropwise at a rate of 3 to 4 drops/min within 24 h . The mixture was quenched by addition of $\mathrm{HCl}(1.0 \mathrm{~N}, 100 \mathrm{~mL})$ and partitioned against ether ( $4 \times 60 \mathrm{~mL}$ ); the combined organic phases were washed with $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and water $(2 \times 100 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo (10 mbar) to give a yellowish oil. Crystallization from hexane gave analytically and spectroscopically pure isoxazoline 22 ( $5.65 \mathrm{~g}, 82 \%$ ) as a colourless soild (m.p. $65-67^{\circ} \mathrm{C}$ ).
$[\alpha]_{D}^{20}=-2.3\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{3}$ | calc. | C 65.24 | H 8.84 | N 5.85 |
| :--- | :--- | :--- | :--- | :--- |
| $(239.3)$ | found | C 65.12 | H 8.87 | N 5.74 |

IR (KBr): $\tilde{v}=2920$ (vs), 2840 (s), 1435 (m), 1360 (m), 1310 (m), 1270 (m), 1150 (s), 1080 (s), 1020 (m), 910 (m), $880(\mathrm{mw}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=1.39,1.43\left(2 \mathrm{~s}, 3 \mathrm{H}\right.$ each, $\left.5-\mathrm{CH}_{3}\right)$, 1.39-1.64 [m, $\left.10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 2.75\left(\mathrm{~d}, \mathrm{~J}_{4 \mathrm{a}, 4 \mathrm{~b}}=17.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right)$, $2.86\left(d, J_{4 \mathrm{a}, 4 \mathrm{~b}}=17.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 3.96\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{\prime} \mathrm{a}}=6.1,{ }^{2} \mathrm{~J}_{2^{\prime}, 2^{2} \mathrm{~b}}=8.6\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.20\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{\mathrm{b}}}=6.8,{ }^{2} J_{2^{\prime}, 2^{\prime} \mathrm{b}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$,
 4.91 (dd, $\left.J_{1^{\prime}, 2^{\prime} a}=6.1, J_{1^{\prime}, 2^{\prime} b}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=23.8,23.9,25.0,34.6,35.9\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 27.1(2 \mathrm{q}, 25-$ $\left.\left.\underline{C H}_{3}\right), 45.4(\mathrm{t}, \mathrm{C}-4), 66.7\left(\mathrm{t}, \mathrm{C}-2{ }^{\prime}\right), 71.2(\mathrm{~d}, \mathrm{C}-1)^{\prime}\right), 110.8\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 158.1(\mathrm{~s}, \mathrm{C}-3)$.

### 11.3 Addition of $C$-Nucleophiles to $N$-Methylisoxazolinium Salts

## Experiment 18 (YB 8)

Diethyl 2-(2-Methyl-3-phenylisoxazolidin-3-yl)-malonate (23)


23

According to lit., ${ }^{2} 210 \mathrm{mg}$ of NaH ( $55 \%$ in paraffin oil, 4.80 mmol ) was added to 40 mL abs. THF under nitrogen at $0{ }^{\circ} \mathrm{C}$, then $840 \mathrm{mg}(5.26 \mathrm{mmol})$ of diethyl malonate in 5 mL THF was added dropwise over 5 min The mixture was stirred for 1 h , then $1.0 \mathrm{~g}(4.0 \mathrm{mmol})$ of isoxazolinium salt 3 was added. After 1 h of stirring at $0^{\circ} \mathrm{C}, 20 \mathrm{~mL}$ of a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, then the mixture was partitioned against ether ( $4 \times 40 \mathrm{~mL}$ ). The combined organic phases were washed with sat. $\mathrm{NaHCO}_{3}$ solution $(30 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$ to give a yellowish oil. Crystallization from petroleum ether produced 1.21 g ( $94 \%$; lit. ${ }^{2} 77 \%$ ) of analytically and spectroscopically pure isoxazolidine 23 in the form of colourless crystals ( m . p. $43-45^{\circ} \mathrm{C}$, lit. $.^{2}: 43-45^{\circ} \mathrm{C}$ ).

| $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5}$ | calc. | C 63.54 | H 7.21 | N 4.36 |
| :--- | :--- | :--- | :--- | :--- |
| $(321.4)$ | found | C 63.27 | H 7.26 | N 4.23 |

IR (KBr): $\tilde{v}=2948(\mathrm{~m}), 1748$ (vs, C=O), 1709 ( s$), 1436(\mathrm{~m}), 1358(\mathrm{~m}), 1310(\mathrm{~s}), 1185(\mathrm{~m})$, 1120 (m), 1077 (m), $998(\mathrm{~m}), 742(\mathrm{~m}), 681(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.97\left(\mathrm{t}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ ), $1.3\left(\mathrm{t}, \mathrm{J}_{1^{\prime \prime}, 2^{n}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.27(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 2.82$ (ddd, $\mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=13.0, J_{4 \mathrm{a}, 5 \mathrm{a}}=6.2, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{~b}}=10.2 \mathrm{~Hz}, 1 \mathrm{H}$, $4-\mathrm{H}_{\mathrm{a}}$ ), 3.66 (ddd, $J_{4 \mathrm{a}, 4 \mathrm{~b}}=13.0, J_{4 \mathrm{~b}, 5 \mathrm{a}}=9.5, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ $\mathrm{H}_{\mathrm{b}}$ ), $3.90\left(\mathrm{q}, \mathrm{J}_{1^{\prime}, 2^{2}}=7.2,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ ), 4.01 (ddd, $\mathrm{J}_{4 \mathrm{a}, 5 \mathrm{a}}=6.2$,


23 $\left.J_{4 \mathrm{~b}, 5 \mathrm{a}}=9.5, J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 4.12[\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right], 4.14\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 5 \mathrm{~b}}=10.2, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{~b}}=5.0, J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.6 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 4.20\left(\mathrm{t}, \mathrm{J}_{1^{\prime \prime}, 2^{\prime \prime}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OC} \underline{H}_{2} \mathrm{CH}_{3}\right), 7.27-7.41$ (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ ).
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=13.7$, $14.1\left(2 \mathrm{q}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 32.7(\mathrm{t}, \mathrm{C}-4), 39.4\left(\mathrm{q}, \mathrm{NCH}_{3}\right)$, 60.2 [d, $\underline{\mathrm{CH}}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$ ], 61.0, $61.7\left(2 \mathrm{t}, \mathrm{O}_{\mathrm{C}}^{2} \mathrm{CH}_{3}\right), 65.8(\mathrm{t}, \mathrm{C}-5), 76.4$ (s, $\left.\mathrm{C}-3\right), 127.9,128.1$, 128.4 ( $3 \mathrm{~d}, o-, m-, p-C$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 139.0 ( $\mathrm{s}, i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 166.9, 167.6 ( $2 \mathrm{~s}, 2 \mathrm{CO}_{2} \mathrm{Et}$ ).

The analytical and spectroscopic data complied with the literature values. ${ }^{2}$

## Experiment 19 (YB 10)

## 3-Ethoxycarbonylmethyl-2-methyl-3-phenylisoxazolidine (24).



24

To a solution of diisopropylamine (abs. dist.; $1.2 \mathrm{~mL}, 8.0 \mathrm{mmol}$ ) in dry THF ( 20 mL ) at $0^{\circ} \mathrm{C}$ was added 5.2 mL of n -butyllithium ( $1.6 \mathrm{M}, 8.0 \mathrm{mmol}$ ). The mixture was stirred for 0.5 h , then the solution was cooled to $-78^{\circ} \mathrm{C}$ and ethyl acetate ( $0.8 \mathrm{~mL}, 8.0 \mathrm{mmol}$ ) was added, followed after 0.5 h by addition of the isoxazolinium salt $3(0.50 \mathrm{~g}, 2.0 \mathrm{mmol})$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h and quenched with aqueous $\mathrm{HCl}(40 \mathrm{~mL}, 20 \%)$. The mixture was added to water $(40 \mathrm{~mL})$, partitioned against ether $(4 \times 40 \mathrm{~mL})$, then washed with sat. NaCl solution ( 30 mL ), dried $\left(\mathrm{MgSO}_{4}\right.$ ), and concentrated in vacuo ( 5 mbar ) to yield 470 mg ( $94 \%$, m. p. 42$43^{\circ} \mathrm{C}$ ) of analytically and spectroscopically pure isoxazolidine 24 as a colourless solid. Crystallization from petroleum ether gave colourless crystals, m. p. $42{ }^{\circ} \mathrm{C}$.

| $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}$ | calc. | C 67.45 | H 7.68 | N 4.65 |
| :--- | :--- | :--- | :--- | :--- |
| $(249.31)$ | found | C 67.43 | H 7.77 | N 4.42 |

IR (KBr): $\tilde{v}=2950(\mathrm{~m}), 2860(\mathrm{~m}), 1715$ (vs, C=O), 1570 (w), 1480 (w), 1450 (s), 1440 (s), 1380 (m), 1360 (s), 1310 (vs), 1250 (m), 1210 (s), 1190 (m), 1160 (m), 1135 (s), 1110 (m), 1085 (m), 1070 (s), 1035 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.99\left(\mathrm{t}, \mathrm{J}_{2,3^{\prime}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ ), $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.79\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.6, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{a}}\right.$ $\left.=7.1, J_{4 a, 5 b}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.85\left(\mathrm{~d}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=14.3 \mathrm{~Hz}, 1\right.$ $\left.\mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.88\left(\mathrm{~d}, \mathrm{~J}_{1^{\prime} \mathrm{a},{ }^{\prime} \mathrm{b}}=14.3 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.00(\mathrm{~m}, 1 \mathrm{H}$,
 $\left.4-\mathrm{H}_{\mathrm{b}}\right), 3.88\left(\mathrm{q}, \mathrm{J}_{2,3}, 3^{\prime}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.10\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 5 \mathrm{a}}\right.$ $\left.=7.2, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{a}}=7.8, \mathrm{~J}_{5 \mathrm{a}, 5 \mathrm{~b}}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 4.23(\mathrm{~m}, 1 \mathrm{H}, 5-$ $\left.\mathrm{H}_{\mathrm{b}}\right), 7.25-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.9\left(\mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 34.1\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 39.4(\mathrm{t}, \mathrm{C}-4), 60.2(\mathrm{t}$, $\mathrm{O}_{\mathrm{CH}}^{2} \mathrm{CH}_{3}$ ), 65.5 (t, C-5), 72.6 (t, $\underline{\mathrm{C}}_{2} \mathrm{CO}_{2} \mathrm{Et}$ ), 76.6 (s, C-3), 127.6, 127.7, 128.3 (3 d, o-, m-, $p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 140.0 (s, $i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 170.9 (s, $\underline{\mathrm{CO}}_{2} \mathrm{Et}$ ).

## Experiment 20 (YB 79)

(3S, 1'S)- and (3R, 1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)-2,3dimethylisoxazolidine ( 25 a and 25b), cf. lit. ${ }^{1}$


According to lit. ${ }^{1}$, to 50 mL abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2.45 \mathrm{~g}(11.6 \mathrm{mmol})$ of the isoxazoline 13 and 1.89 g ( 12.5 mmol ) of $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ were added with stirring at room temp. overnight. The mixture was then concentrated in vacuo ( 10 mbar ) to give 3.88 g of a brownish solid, which was dissolved in 30 mL of abs. THF. To this, 5.92 mL ( $17.8 \mathrm{mmol}, 3.00 \mathrm{M}, 1.4 \mathrm{eq}$ ) of MeMgBr in ether (Aldrich) was added under $\mathrm{N}_{2}$ at $-78^{\circ} \mathrm{C}$. After stirring for 1 h , the mixture was hydrolyzed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 50 mL ), poured into water ( 50 mL ), and partitioned against ether ( 4 $\times 50 \mathrm{~mL}$ ) The ether extracts were washed with sat. $\mathrm{NaHCO}_{3}$ solution ( 50 mL ), dried ( $\mathrm{MgSO}_{4}$ ), and then concentrated in vacuo to give 4.12 g of a yellowish oil (d.r. 90:10), which was filtered through silica gel ( $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate $1: 1$ ) to give 3.98 g of crude product with the isoxazolidines $\mathbf{2 5 a} / \mathbf{b}$. Finally, the two diastereomers were separated by MPLC (petroleum ether/ethyl acetate 75:25), to yield 1.92 g ( $69 \%$ ) of ( $3 \mathrm{~S}, 1$ 'S)-3methylisoxazolidine 25 a and 0.26 g ( 9 \%) of ( $3 R$, 1 'S)-3-methylisoxazolidine 25b as analytically and spectroscopically pure, colourless oils in $78 \%$ yield (lit. $82 \%^{1}$ ),
corresponding to a d.r. of $88: 12$ (lit. ${ }^{1} 88: 12$ ). The analytical data fully complied with the values given in lit. ${ }^{1}$

## A) Major diastereomer

(3S, 1'S)-3-(1', 2'-O-Cyclohexylidenedioxyethyl)-2,3-dimethylisoxazolidine (25 a)

$$
[\alpha]_{D}^{20}=-46.2\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad \text { lit. : }[\alpha]_{D}^{20}=-47.7\left(c=0.94, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1}
$$

$\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{3} \quad$ calc. $\mathrm{C} 64.70 \quad \mathrm{H} 9.61 \quad \mathrm{~N} 5.80$
(241.3)
found
C 64.79
H 9.61
N 5.58

IR (Film): $\tilde{v}=2920$ (vs), 2865 (vs), 1440 (s), 1390 (w), 1355 (s), 1320 (m), 1270 (s), 1240 (m), 1220 (m), 1150 (vs), 1140 (w), 1085 (vs), 1050 (m), 1025 (s), 1005 (s), 940 (w), 920 (s), $890(\mathrm{w}), 830(\mathrm{w}), 810(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.14(\mathrm{~s}, 3 \mathrm{H}, 1$ "-H), 1.34-1.65
$\left[\mathrm{m}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 1.99\left(\mathrm{ddd},{ }^{2} \mathrm{~J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.4, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{a}}=6.8, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{~b}}=\right.$
$\left.9.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.48\left(\mathrm{ddd},{ }^{2} J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.4, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{a}}=9.3, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{~b}}=\right.$
$\left.5.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.84\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime} \mathrm{a}}=6.4\right.$, $\left.{ }^{2} J_{2^{\prime}, 2^{\prime} \mathrm{b}}=8.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$ and 3.87-3.92 (m,5-Ha; together 2 H$)$;

4.02 (dd, $J_{1^{\prime}, 2^{\prime} b}=6.9,{ }^{2} J_{2^{\prime}, 2^{\prime} \mathrm{b}}=8.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}$ and 4.05 ("ddd",
$J_{4 \mathrm{a}, 5 \mathrm{~b}}=9.7, \quad J_{4 \mathrm{~b}, 5 \mathrm{~b}}=5.1,{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.9 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{b}}$; together 2 H );
4.10 ("dd", J $\left.\mathrm{J}^{\prime}, 2^{\prime a}=6.4, J_{1^{\prime}, 2^{\prime} \mathrm{b}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\left.\mathrm{CDCl}_{3}\right): \delta=15.6(\mathrm{q}, \mathrm{C}-1 "), 24.1,24.4,25.6,34.6,36.3\left[5 \mathrm{t}, \mathrm{C}(\underline{\mathrm{CH}})_{5}\right)_{5}\right]$, 37.7 (t, C-4), 39.4 (q, NCH ${ }_{3}$ ), 65.4 ( $\mathrm{t}, \mathrm{C}-5$ ), 65.9 (t, C-2'), 68.3 (s, C-3), 78.2 (d, C-1'), 110.1 [s, $\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}$ ].

## B) Minor diastereomer

(3R, 1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)-2,3-dimethylisoxazolidine (25 b)
$[\alpha]_{D}^{20}=31.2\left(c=0.960, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad$ lit. : $[\alpha]_{D}^{20}=36.9\left(c=0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1}$
$\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{3}$
(241.3)
calc
C 64.70
H 9.61
N 5.80
found $\begin{array}{llll}\text { C } 64.58 & \text { H } 9.45 & \text { N } 5.72\end{array}$

IR (Film): $\tilde{v}=2920$ (vs), 2865 (vs), 1440 (s), 1390 (w), 1355 (s), 1320 (m), 1270 (s), 1240 (m), 1220 (m), 1150 (vs), 1140 (w), 1090 (vs), 1050 (m), 1025 (s), 1005 (s), 940 (w), 920 (s), $890(\mathrm{w}), 830(\mathrm{w}), 810(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=1.19$ (s, $3 \mathrm{H}, 1$ "-H), 1.39-1.71 $\left[\mathrm{m}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 1.92\left(\mathrm{ddd},{ }^{2} J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.5, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{a}}=6.0, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{~b}}=\right.$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$ ), 2.14 (ddd, ${ }^{2} J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.4, J_{4 \mathrm{~b}, 5 \mathrm{a}}=9.4, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=5.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.72\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{2} \mathrm{a}}=7.2,{ }^{2} \mathrm{~J}_{2^{\prime} \mathrm{a}, 2^{2} \mathrm{~b}}=\right.$
 $\left.8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.80\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 5 \mathrm{a}}=6.0, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{a}}=9.5,{ }^{2} \mathrm{~J}_{5 \mathrm{a}, 5 \mathrm{~b}}=8.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}$ ), 3.92-3.97 ( $\mathrm{m}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$ ), $4.01\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2 \mathrm{~b}}=6.7\right.$, $\left.{ }^{2} J_{2^{\prime} a, 2^{\prime} \mathrm{b}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.07-4.10\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=16.1$ ( $\mathrm{q}, \mathrm{C}-1$ " $), 24.2,24.4,25.6,34.9,36.4\left[5 \mathrm{t}, \mathrm{C}\left(\underline{\left.\left(\mathrm{CH}_{2}\right)_{5}\right]}\right.\right.$,
 [s, $\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}$ ].

Experiment 21 (YB 205)
(3R, 1'S)- and (3S, 1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)-3-ethoxycarbonyImethyl-2-methylisoxazolidine (26a and 26b)


26 a/b
$2.00 \mathrm{~g}(9.47 \mathrm{mmol})$ of the isoxazoline 13 and $1.54 \mathrm{~g}(10.4 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ under nitrogen were added to 40 mL abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temp. and left with stirring overnight. The mixture was then concentrated in vacuo (room temp./10 mbar) to give a brownish solid of the isoxazolinium salt 14. Next, in a separate flask diisopropylamine (abs., dist.) ( $4.8 \mathrm{~mL}, 32$ mmol ) in dry THF ( 35 mL ) and n-butyllithium ( $1.6 \mathrm{M}, 20.8 \mathrm{~mL}, 32 \mathrm{mmol}$ ) under nitrogen were mixed at $0^{\circ} \mathrm{C}$ with stirring for 0.5 h . The solution was cooled to $-78^{\circ} \mathrm{C}$ and ethyl acetate (3.2 $\mathrm{mL}, 32 \mathrm{mmol}$ ) was added, which after 0.5 h was followed by addition of the crude isoxazolinium salt in 20 mL of THF. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.0 h , quenched with $\mathrm{HCl}(40 \mathrm{~mL}, 20 \%)$, then poured into water $(40 \mathrm{~mL})$ and partitioned against ether ( 5 x $40 \mathrm{~mL})$. The combined organic phases were washed with sat. NaCl solution $(40 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and then concentrated in vacuo to give 2.90 g of a yellowish oil (d.r. $68: 32$ from ${ }^{13} \mathrm{C}$ NMR), which was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 4:6). The two diastereomers were then separated by MPLC (column petroleum
ether/ethyl acetate $4: 1$ ) to yield 1.58 g ( $55 \%$ ) of ( $3 R, 1$ 'S)-isoxazolidine 26a and 0.77 g ( 27 $\%$ ) of ( $3 S, 1$ 'S)-isoxazolidine $\mathbf{2 6 b}$ as analytically and spectroscopically pure, colourless oils. The diastereomeric ratio after MPLC separation was 67:33, combined yield $82 \%$.

## a) Major diastereomer

(3R, 1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)- 3-ethoxycarbonylmethyl-2methylisoxazolidine (26a)

$$
[\alpha]_{D}^{20}=-21.2\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{5}$ | calc. | C 61.32 | H 8.68 | N 4.47 |
| :--- | :--- | :--- | :--- | :--- |
| $(301.4)$ | found | C 61.28 | H 8.73 | N 4.19 |

IR (KBr): $\tilde{v}=2920$ (vs), 2870 (s), 2840 (s), 1740 (vs, C=O), 1450 (w), 1440 (m), 1355 ( s$)$, 1320 (m), 1270 (m), 1290 (m), 1150 (s), 1090 (vs), 1055 (m), 1015 (vs), 920 (s), 890 (w), 830 (m), $715(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.27\left(\mathrm{t}, \mathrm{J}_{2^{\prime \prime}, 3^{\prime \prime}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.36-1.69\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 2.21$ (ddd, $\mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=$ 12.6, $J_{4 \mathrm{a}, 5 \mathrm{a}}=9.0, J_{4 \mathrm{a}, 5 \mathrm{~b}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$ ); $2.52\left(\mathrm{ddd}, J_{4 \mathrm{a}, 4 \mathrm{~b}}=\right.$ 12.6, $\left.J_{4 \mathrm{~b}, 5 \mathrm{a}}=6.8, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=9.1 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{b}}\right)$ and $2.53\left(\mathrm{~d}, J_{1 " \mathrm{a}, 1^{\prime \prime} \mathrm{b}}=14.3\right.$ $\mathrm{Hz}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}$; together 2 H ); $2.70\left(\mathrm{~d}, \mathrm{~J}_{1^{\prime \prime}, 1^{\prime \prime} \mathrm{b}}=14.3 \mathrm{~Hz}, 1^{\left.1 "-\mathrm{H}_{\mathrm{b}}\right) \text { and }}\right.$


26 a $2.70\left(\mathrm{~s}, \mathrm{NCH}_{3}\right.$; together 4 H$) ; 3.84\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{~b}, 5 \mathrm{a}}=6.8, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{a}}=9.0\right.$, $\left.J_{5 a, 5 \mathrm{~b}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 3.90\left(\mathrm{ddd}, J_{4 \mathrm{a}, 5 \mathrm{~b}}=5.2, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=9.1\right.$, $J_{5 a, 5 \mathrm{~b}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$ ), $3.96\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{\prime} \mathrm{a}}=7.9, J_{2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}}=15.7 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.03\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime} \mathrm{b}}=6.5 \mathrm{~Hz}, J_{2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}}=14.4,1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$, $4.14\left(\mathrm{q}, \mathrm{J}_{2^{\prime \prime}, 3^{\prime \prime}}=7.1,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.43\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{\prime} \mathrm{a}}=7.9 \mathrm{~Hz}\right.$, $\left.J_{1^{\prime}, 2^{2} b}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=14.1\left(\mathrm{q}, \mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right), 23.8,24.0,25.2,34.3,35.8[5 \mathrm{t}$, $\left.\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 36.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 36.3(\mathrm{t}, \mathrm{C}-4), 39.9\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 60.6\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 64.8(\mathrm{t}, \mathrm{C}-5)$, $65.0\left(\mathrm{t}, \mathrm{C}-2^{\prime}\right), 66.9(\mathrm{~s}, \mathrm{C}-3), 77.5\left(\mathrm{~d}, \mathrm{C}-1 \mathrm{l}^{\prime}\right), 109.9$ [s, $\left.\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 171.5\left(\mathrm{~s}, \underline{\mathrm{CO}} \mathrm{O}_{2} \mathrm{Et}\right)$.

## b) Minor diastereomer

(3S, 1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)- 3-ethoxycarbonylmethyl-2methylisoxazolidine (26b)
$[\alpha]_{D}^{20}=2.73\left(c=0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{5}$ | calc. | C 61.32 | H 8.68 | N 4.47 |
| :--- | :--- | :--- | :--- | :--- |
| $(301.39)$ | found | C 61.13 | H 8.64 | N 4.27 |

IR (KBr): $\tilde{v}=2920$ (vs), 2870 (s), 2840 (s), 1735 (vs, C=O), 1450 (w), 1440 (m), 1355 (s), 1320 (m), 1270 (m), 1290 (m), 1120 (s), 1090 (vs), 1055 (m), 1015 (vs), 920 (s), 890 (w), 830 (m), 715 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.27\left(\mathrm{t}, \mathrm{J}_{2^{\prime \prime}, 3^{\prime \prime}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)^{3}, 1.30-1.62\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 2.11$ (ddd, $\mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=$ $\left.12.7, J_{4 \mathrm{a}, 5 \mathrm{a}}=9.5, J_{4 \mathrm{a}, 5 \mathrm{~b}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.52\left(\mathrm{~d}, J_{1 " \mathrm{a}, 1{ }^{" \mathrm{~b}}}=\right.$ $\left.13.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 2.68\left(\mathrm{~d}, \mathrm{~J}_{1 \text { " } \mathrm{a},{ }^{1 \mathrm{~b}}}=13.9 \mathrm{~Hz}, 1^{\left.1 "-H_{b}\right) \text { and }}\right.$ $2.70\left(\mathrm{ddd}, J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.7, J_{4 \mathrm{~b}, 5 \mathrm{a}}=5.4, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=9.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{b}}\right)$ and


26 b 2.72 (s, $\mathrm{NCH}_{3}$; together 5 H ); 3.79 (ddd, $\mathrm{J}_{4 \mathrm{~b}, 5 \mathrm{a}}=5.4, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{a}}=$ $\left.9.4, J_{5 a, 5 b}=7.8 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}\right)$ and $3.79\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime} \mathrm{a}}=7.0, J_{2^{\prime} \mathrm{a}, 2^{2} \mathrm{~b}}=\right.$ $8.7 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}$; together 2 H ); 3.85 (ddd, $\mathrm{J}_{4 \mathrm{a}, 5 \mathrm{~b}}=6.3, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{~b}}=$ 9.0, $J_{5 a, 5 \mathrm{~b}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$ ), 4.01 (dd, $J_{1^{\prime}, 2^{\prime} \mathrm{b}}=6.9, J_{2^{\prime}, 2^{2} \mathrm{~b}}=$ $\left.8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.14\left(\mathrm{q}, \mathrm{J}_{2^{\prime \prime}, 3^{\prime \prime}}=7.2,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.21$ (dd, $\left.J_{1^{\prime}, 2^{\prime} a}=7.1, J_{1^{\prime}, 2^{2} b}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=14.5\left(\mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.1,24.4,25.5,34.6,36.3[5 \mathrm{t}$, $\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}$ ], $35.5(\mathrm{t}, \mathrm{C}-4), 36.0\left(\mathrm{t}, \underline{\mathrm{CH}}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 38.2\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 60.9\left(\mathrm{t}, \mathrm{O}_{\mathrm{C}}^{2} \mathrm{CH}_{3}\right), 65.4(\mathrm{t}, \mathrm{C}-5)$, $66.2(\mathrm{t}, \mathrm{C}-2 \mathrm{l}), 68.7$ (s, C-3), 78.0 (d, C-1'), 110.4 [s, $\left.\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 172.0\left(\mathrm{~s}, \underline{\mathrm{CO}} \mathrm{O}_{2} \mathrm{Et}\right)$.

### 11.4 Addition of $C$-Nucleophiles to Isoxazolines

Experiment 22 (YB 263)
3,3-Diphenylisoxazolidine (27).


27

In analogy to lit ${ }^{55 a, 136}$, to a solution of $500 \mathrm{mg}(3.40 \mathrm{mmol})$ of isoxazoline $\mathbf{2}$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40$ $\mathrm{mL}) 2.30$ ( $10.2 \mathrm{mmol}, 3 \mathrm{eq}$ ) of $\mathrm{ZnBr}_{2}$ was added under nitrogen at $-78^{\circ} \mathrm{C}$, followed by addition of $886 \mathrm{mg}(10.2 \mathrm{mmol}, 3 \mathrm{eq})$ of lithium bromide $(\mathrm{LiBr})$ and $5.37 \mathrm{~mL}(10.2 \mathrm{mmol}, 3 \mathrm{eq})$
of phenyllithium (PhLi) successively at the same temperature. The mixture was left with stirring overnight and the temperature was allowed to rise to room temp.. Then sat. $\mathrm{NaHCO}_{3}$ solution ( 30 mL ) was added; the mixture was partitioned against ether ( $3 \times 40 \mathrm{~mL}$ ), washed with brine ( 50 mL ), then dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo ( $10 \mathrm{mbar} / 20^{\circ} \mathrm{C}$ ) to give 900 mg of a yellowish oil. This was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate $7: 3$ ), concentrated again in vacuo, and then purified by MPLC (petroleum ether/ethyl acetate $85: 15$ ) to afford 455 mg of starting material 2 and $40 \mathrm{mg}(5 \%)$ of analytically and spectroscopically pure isoxazolidine 27 as a colourless solid (m.p. $90-92{ }^{\circ} \mathrm{C}$ ), Crystallization from petroleum ether gave colourless crystals, suitable for crystal structure determination (see Appendix 12.1.1).

| $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$ | calc. | C 79.98 | H 6.71 | N 6.22 |
| :--- | :--- | :--- | :--- | :--- |
| $(225.3)$ | found | C 79.74 | H 6.75 | N 5.96 |

IR (KBr): $\tilde{v}=2955(\mathrm{w}), 2888(\mathrm{w}), 1489(\mathrm{~m}), 1449(\mathrm{~m}, \mathrm{C}=\mathrm{N}), 1405(\mathrm{w}), 1267(\mathrm{w}), 1059(\mathrm{~m})$, 1032 (m), 748 (s), 693 (vs), 658 (s), 594 (s) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.91\left(\mathrm{t}, \mathrm{J}_{4,5}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}\right), 4.00\left(\mathrm{t}, \mathrm{J}_{4,5}\right.$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}), 7.19-7.51\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.


27
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=41.7$ (t, C-4), 69.5 (s, C-5), 72.5 (s, C-3), 126.2, 126.8, 128.0 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), $142.8\left(\mathrm{~s}, i-\mathrm{C}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ).

Experiment 23 (YB 158)

## 3-Benzyl-3-phenyl-isoxazolidine (28).



28

To a stirred solution of the isoxazoline $2(630 \mathrm{mg}, 4.28 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.60 \mathrm{~mL}, 12.8$ $\mathrm{mmol}, 3 \mathrm{eq}$ ) in abs. THF ( 30 mL ), BenzyIMgCI ( $12.83 \mathrm{~mL}, 12.83 \mathrm{mmol}, 3 \mathrm{eq}$ ) was added at $78{ }^{\circ} \mathrm{C}$ over 10 min . The mixture was left with stirring for 4 h and the reaction temperature was allowed to increase to room temp., then the mixture was quenched with sat. $\mathrm{NaHCO}_{3}$ solution ( 20 mL ) and extracted with ether ( $3 \times 40 \mathrm{~mL}$ ). The combined organic phase was washed with brine ( 20 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo ( $10 \mathrm{mbar}, 20^{\circ} \mathrm{C}$ ) to
give 1.7 g of crude product. Purification was perfomed by MPLC (petroleum ether/ethyl acetate $7: 3$ ) to afford 500 mg of the starting material $\mathbf{2}$ and $100 \mathrm{mg}(10 \%)$ of analytically and spectroscopically pure isoxazolidine 42 as a colourless solid (m. p. 79-80 ${ }^{\circ} \mathrm{C}$ ).

| $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}$ | calc. | C 80.30 | H 7.16 | N 5.85 |
| :--- | :--- | :--- | :--- | :--- |
| $(239.3)$ | found | C 80.20 | H 7.22 | N 5.49 |

IR (KBr): $\tilde{v}=3030$ (w), 2873 (w), 1704 (w), 1496 (w), 1274 (m), 1208 (w), 1015 (vs), 735 (s), 697 (vs) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=2.39\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.1, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{a}}\right.$ and $\mathrm{J}_{4 \mathrm{a}, 5 \mathrm{~b}}=$ 9.2 and $6.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$ ), 2.51 (ddd, $J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.1, J_{4 \mathrm{a}, 5 \mathrm{a}}$ and $J_{4 \mathrm{a}, 5 \mathrm{~b}}=8.7$ and $6.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}$ ), $3.01\left(\mathrm{~d}, J_{1^{\prime} \mathrm{a}, 1^{\prime \prime} \mathrm{b}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.13\left(\mathrm{~d}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=13.4\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.84-3.93\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 4.04-4.11(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 6.82-7.35$ (m, $10 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}$ ).
${ }^{13} \mathrm{C}$ NMR ( $125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=39.7(\mathrm{t}, \mathrm{C}-4), 46.1(\mathrm{t}, \mathrm{C}-1$ '), $70.5(\mathrm{t}, \mathrm{C}-5), 71.1(\mathrm{~s}, \mathrm{C}-3)$, $127.0,127.1,127.6,128.3,128.6,131.0\left(6 \mathrm{~d}, o-, m-, p-\mathrm{C}\right.$ of $2 \mathrm{C}_{6} \mathrm{H}_{5}$ ), 137.0, 141.5 (s, $i-\mathrm{C}$ of 2 $\mathrm{C}_{6} \mathrm{H}_{5}$ ).

Experiment 24 (YB 225)
3-Methyl-3-phenyl-isoxazolidine (29)


29

To a solution of 1.30 g ( 8.83 mmol ) of the isoxazoline $\mathbf{2}$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}) 2.8 \mathrm{~mL}$ (22 $\mathrm{mmol}, 2.5 \mathrm{eq}$ ) of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was added and kept with stirring for 10 min at $-78{ }^{\circ} \mathrm{C}$ under nitrogen. Then $14.7 \mathrm{~mL}(22.1 \mathrm{mmol}, 2.5 \mathrm{eq})$ of MeLi LiBr was added and the temperature was allowed to rise to room temp. within 4 h . The mixture was quenched with sat. $\mathrm{NaHCO}_{3}$ solution ( 30 mL ), partitioned against ether ( $3 \times 40 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo ( $10 \mathrm{mbar}, 2{ }^{\circ} \mathrm{C}$ ) to give 1.6 g of yellowish oil. This was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 6:4) and then purified by MPLC (petroleum ether/ethyl acetate 7:3) to afford, after evaporation of solvent, 1.19 g ( $83 \%$ ) of analytically and spectroscopically pure isoxazolidine 29 as colourless oil.

| $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}$ | calc. | C 73.59 | H 8.18 | N 8.56 |
| :--- | :--- | :--- | :--- | :--- |
| $(163.2)$ | found | C 73.39 | H8.03 | N 8.58 |

IR : $\tilde{v}=2971(\mathrm{~m}), 2876(\mathrm{~m}), 1495(\mathrm{w}), 1446(\mathrm{~m}), 1055(\mathrm{w}), 853(\mathrm{w}), 765(\mathrm{~m}), 702(\mathrm{~s}), 631$ (vs) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.51\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.34$ (ddd, $\mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.0$, $\left.J_{4 \mathrm{a}, 5 \mathrm{a}}=6.3, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{~b}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.53\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.0, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{a}}=8.9, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{~b}}\right.$ $=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}$ ), $3.90\left(\mathrm{ddd}, J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.7, \mathrm{~J}_{5 \mathrm{a}, 4 \mathrm{a}}=6.3, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{a}}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\right.$


29 $\mathrm{H}_{\mathrm{a}}$ ), $4.07\left(\mathrm{ddd}, \mathrm{J}_{5 \mathrm{a}, 5 \mathrm{~b}}=7.7, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{~b}}=8.8, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{~b}}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 7.24-7.49(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ ).
${ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=27.4$ ( $\mathrm{q}, \mathrm{C}-1$ '), $43.0(\mathrm{t}, \mathrm{C}-4), 66.9$ ( $\mathrm{s}, \mathrm{C}-3$ ), $70.5(\mathrm{t}, \mathrm{C}-5)$, 125.7, 127.0, 128.4 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 144.8 (s, $i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ).

Experiment 25 (YB 142)
3-Allyl-3-phenylisoxazolidine (30)


30

## Typical Procedure TP 2, Addition of Allylmagnesium Bromide to Isoxazolines

To a solution of the isoxazoline $2(500 \mathrm{mg}, 3.40 \mathrm{mmol})$ in abs. THF ( 30 mL ), $2.15 \mathrm{~mL}(20.5$ $\mathrm{mmol}, 5.0 \mathrm{eq}$ ) of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (Aldrich) was added with stirring at $-78{ }^{\circ} \mathrm{C}$ for 10 min . Then 20.5 $\mathrm{mL}(20.5 \mathrm{mmol}, 5.0 \mathrm{eq})$ of allylmagnesium bromide ( 1.0 M , Aldrich) was added within 5 min . The mixture was left with stirring 5 h (controlled by TLC) and the temperature was allowed to rise to $0{ }^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NaHCO}_{3}$ solution ( 30 mL ) and then partitioned against ether $(3 \times 40 \mathrm{~mL})$, washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and then concentrated in vacuo (room temp. $/ 10 \mathrm{mbar}$ ) to give 730 mg of the crude isoxazolidine $\mathbf{3 0}$ as a yellowish oil. This was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 6:4) and then purified by MPLC (petroleum ether/ethyl acetate 4:1) to afford after evaporation of solvent 420 mg ( $65 \%$ ) of analytically and spectroscopically pure isoxazolidine 30 as a colourless solid (m. p. 29-30 ${ }^{\circ} \mathrm{C}$ ). Crystallization from hexane produced colourless crystals of 30 (m.p. $30^{\circ} \mathrm{C}$, see Appendix 12.1.2).

| $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$ | calc. | C 76.16 | H 7.99 | N 7.40 |
| :--- | :--- | :--- | :--- | :--- |
| $(189.2)$ | found | C 75.95 | H 8.03 | N 7.24 |

 1052 (m), 997 (m), 915 (s), 860 (m), 762 (s), 634 (vs), 599 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.44-2.54(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.54-2.60(\mathrm{~m}, 2$
H, 1'-H) 2.89-2.93 (m, 1 H, 5-Ha), 4.04-4.06 (m, $1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$ ), 5.00-5.05 (m, 2
$\left.H, 3^{\prime}-H\right), 5.62$ ("dddd", J J ${ }_{1^{\prime}, 2^{\prime}}=7.1, J_{1^{\prime}, 2^{\prime}}=7.5, J_{2^{\prime}, 3^{\mathrm{E}}}=10.2, J_{2^{\prime}, 3 \mathrm{Z}}=14.7 \mathrm{~Hz}, 1$ H, 2'-H), 7.24-7.42 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ ).

${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=40.0(\mathrm{t}, \mathrm{C}-4), 44.5(\mathrm{t}, \mathrm{C}-1$ '), $69.7(\mathrm{~s}, \mathrm{C}-3), 70.5(\mathrm{t}, \mathrm{C}-5)$, 118.6 ( $\mathrm{t}, \mathrm{C}-3^{\prime}$ ), 126.3, 127.1, 128.3 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 133.4 ( $\mathrm{d}, \mathrm{C}-2^{\prime}$ ), 142.9 ( $\mathrm{s}, i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ).

Experiment 25a (YB 243)
Preparation of 3-Allyl-3-phenylisoxazolidine (30) using $\mathrm{ZnBr}_{2}$ as a Lewis acid

Scale: $\quad 1.00 \mathrm{~g}(6.80 \mathrm{mmol})$ isoxazoline 2 4.60 g ( $20.4 \mathrm{mmol}, 3 \mathrm{eq}$ ) $\mathrm{ZnBr}_{2}$ 20.4 mL ( $20.4 \mathrm{mmol}, 3 \mathrm{eq}$ ) allylmagnesium bromide ( 1.0 M in THF, Aldrich) 30 mL abs. THF

The reaction was performed according to TP 2, work-up was done after stirring for 3.5 h and the temperature was left to raise to room temperature, to afford 1.25 g of a yellowish oil, which was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 1:1) to give 1.08 g of crude 30. Purification by MPLC (petroleum ether/ethyl acetate $7: 3$ ) afforded, after evaporating the solvent, 980 mg ( $76 \%$ ) of analytically and spectroscopically pure isoxazolidines 30 as a colourless soild (m. p. 29-30 ${ }^{\circ} \mathrm{C}$ ).

Experiment 25b (YB 169)
Preparation of 3-Allyl-3-phenylisoxazolidine (30) using $\mathrm{ZnCl}_{2}$ as a Lewis acid

Scale: $\quad 1.00 \mathrm{~g}(6.80 \mathrm{mmol})$ isoxazoline 2 0.93 g ( $6.8 \mathrm{mmol}, 1 \mathrm{eq}$ ) $\mathrm{ZnCl}_{2}$
13.6 mL ( $13.6 \mathrm{mmol}, 2 \mathrm{eq}$ ) allylmagnesium bromide ( 1.0 M in THF, Aldrich) 30 mL abs. THF

The reaction was performed according to TP 2 using $\mathrm{ZnCl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$, work-up was done after stirring overnight and the temperature was left to raise to room temperature, to afford 980 mg of a yellowish oil, which was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate $1: 1$ ) to give 890 mg of crude 30. Purification by MPLC (petroleum ether/ethyl acetate $85: 15$ ) afforded, after evaporating the solvent, 760 mg ( $59 \%$ ) of pure isoxazolidines 30 as a colourless soild (m. p. 28-30 ${ }^{\circ} \mathrm{C}$ ).

## Experiment 26 (YB 269)

(3-Allyl-5-hydroxymethyl-3-phenylisoxazolidine (31a/b, cis and trans)


31

Scale: $\quad 790 \mathrm{mg}(4.49 \mathrm{mmol})$ isoxazoline 9
3.01 g ( $13.4 \mathrm{mmol}, 3 \mathrm{eq}$ ) $\mathrm{ZnBr}_{2}$
13.4 mL ( $13.4 \mathrm{mmol}, 3 \mathrm{eq}$ ) allylmagnesium bromide ( 1.0 M in THF, Aldrich) 40 mL abs. THF

The reaction was performed according to TP 2 with $\mathrm{ZnBr}_{2}$ instead of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, work-up was done after stirring overnight to afford 1.31 g of a yellowish oil (d.r. 86:14), which was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 6:4) to give 1.09 g of crude 31. Purification by MPLC (petroleum ether/ethyl acetate 7:3) afforded, after evaporating the solvent, 619 mg ( $63 \%$, d.r. $85: 15$ ) of analytically and spectroscopically pure cis/trans-isoxazolidines 31 as colourless oil.

| $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$ | calc. | C 71.21 | H 7.81 | N 6.39 |
| :--- | :--- | :--- | :--- | :--- |
| $(219.3)$ | found | C 71.36 | H 8.02 | N 6.06 |

IR: $\tilde{v}=3370(\mathrm{sb}), 2697(\mathrm{w}), 1735(\mathrm{~m}), 1639(\mathrm{w}), 1495(\mathrm{~m}), 1243(\mathrm{~m}), 1043(\mathrm{~s}), 999(\mathrm{~m}), 915$ (s), 849 (m), 812 (s), 762 (s), 700 (vs) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture 85:15) : $\delta=2.17\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.3\right.$, $\left.J_{4 \mathrm{a}, 5}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.54\left(\mathrm{dt}, J_{1^{\prime}, 2^{\prime}}=7.5, J_{1^{\prime}, 3^{\prime}}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$, $2.60\left(d d, J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.3, J_{4 \mathrm{~b}, 5}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 3.47\left(\mathrm{dd}, \mathrm{J}_{5,1 " \mathrm{a}}=5.7\right.$, $\left.J_{1^{\prime \prime}, 1^{\prime \prime} \mathrm{b}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 "-\mathrm{H}_{\mathrm{a}}\right), 3.65\left(\mathrm{dd}, J_{5,1 " \mathrm{a}}=3.1, J_{1^{\prime \prime}, 1^{\prime \prime} \mathrm{b}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, 1 "- $\mathrm{H}_{\mathrm{b}}$ ), 3.88 (ddt, $J_{4,5}=7.7, J_{5,1 " \mathrm{a}}=5.7, J_{5,1 " \mathrm{~b}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$ ), 4.95$5.03\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 5.56$ ('dddd", $J_{1^{\prime} \mathrm{a}, 2^{\prime}}=7.2, J_{1^{\prime}, 2^{\prime}}=7.4, J_{2^{\prime}, 3^{\prime} \mathrm{E}}=10.5$,


31 $\left.J_{2^{\prime}, 3^{\prime} \mathrm{Z}}=14.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.20-7.42\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

The signals of the minor diasteromer were completely overlapped by those of the major one.
${ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture 85:15) :
A) Major diastereomer 31a: $\delta=40.8(\mathrm{t}, \mathrm{C}-4), 44.5(\mathrm{t}, \mathrm{C}-1$ '), $63.7(\mathrm{t}, \mathrm{C}-6), 70.6(\mathrm{~s}, \mathrm{C}-3), 82.2$ ( $\mathrm{t}, \mathrm{C}-5$ ), 118.7 ( $\mathrm{t}, \mathrm{C}-3^{\prime}$ ), 126.4, 127.3, 128.3 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), $133.5\left(\mathrm{~d}, \mathrm{C}-2^{\prime}\right), 142.5$ (s, $i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ).
B) Minor diastereomer 31b: $\delta=63.5(\mathrm{t}, \mathrm{C}-6), 70.3(\mathrm{~s}, \mathrm{C}-3), 118.8(\mathrm{t}, \mathrm{C}-3$ '), 126.2, 127.0 ( $\mathbf{2}$ $\mathrm{d}, \mathrm{o}-, \boldsymbol{m}$-, $p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 133.1 (d, C-2'), 143.1 ( $\mathrm{s}, i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ).
The other signals coincided with those of the major diastereomer.

Experiment 27 (YB 236)
(3R, 1'S)- and (3S, 1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)-3methylisoxazolidine (32a and 32b)


To a solution of 360 mg ( 1.49 mmol ) of the isoxazoline 13 in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}) 0.57 \mathrm{~mL}$ $(4.5 \mathrm{mmol}, 3.0 \mathrm{eq})$ of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was added and the mixture was kept with stirring for 10 min at $-78{ }^{\circ} \mathrm{C}$ under nitrogen. To this mixture $3.0 \mathrm{~mL}(4.5 \mathrm{mmol}, 3.0 \mathrm{eq})$ of $\mathrm{MeLi} \mathrm{LiBr}(1.5 \mathrm{M}$ in ether, Aldrich) was added and then the temperature was allowed to rise to room temp. within 4 h . The mixture was then quenched with sat. $\mathrm{NaHCO}_{3}$ solution $(20 \mathrm{~mL})$, partitioned against ether ( $3 \times 40 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo ( $10 \mathrm{mbar}, 20^{\circ} \mathrm{C}$ ) to give 370 mg of yellowish oil (d.r. 68:32, taken from ${ }^{13} \mathrm{C}$ NMR spectrum of the crude product). This was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 1:1) and then purified by MPLC (petroleum ether/ethyl acetate $8: 2$ ) to afford, after evaporating the solvent, 224 mg ( $58 \%$ ) of analytically and spectroscopically pure isoxazolidine 32a as a colourless oil, and 106 mg ( $27 \%$ ) of analytically and spectroscopically pure isoxazolidine 32b, also as a colourless oil, in $85 \%$ total yield; d.r. after MPLC separation was 68:32.

## A) Major diastereomer

(3R, 1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)-3-methylisoxazolidine (32a) ${ }^{\text {a }}$

$$
[\alpha]_{D}^{20}=-8.90\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{3}$ | calc. | C 63.41 | H 9.31 | N 6.16 |
| :--- | :--- | :--- | :--- | :--- |
| $(227.3)$ | found | C 63.39 | H 9.37 | N 6.21 |

IR : $\tilde{v}=2932$ (s), 2860 (m), 1448 (m), 1365 (m), 1252 (m), 1144(s), 1098 (vs), 1038 (s), 847 (s), $650(\mathrm{~m}), 622(\mathrm{~s}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=1.24(\mathrm{~s}, 3 \mathrm{H}, 1$ "-H), 1.31-1.64 [m, 10 $\left.\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 1.88\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.2, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{a}}\right.$ and $J_{4 \mathrm{a}, 5 \mathrm{~b}}=5.4$ and $8.1 \mathrm{~Hz}, 1$ $\mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$ ), 2.31 (ddd, $J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.2, J_{4 \mathrm{~b}, 5 \mathrm{a}}$ and $J_{4 \mathrm{~b}, 5 \mathrm{~b}}=7.8$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.4-\mathrm{H}_{\mathrm{b}}\right), 3.81\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime} \mathrm{a}}=7.3, J_{2^{\prime}, 2^{\prime} \mathrm{b}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.87-3.95(\mathrm{~m}, 2$
 $\mathrm{H}, 5-\mathrm{H}), 4.04\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{2} \mathrm{~b}}=6.7, J_{2^{\prime}, 2^{2} \mathrm{~b}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.18\left(\mathrm{t}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=\right.$ $\left.7.0 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=22.5\left(\mathrm{q}, \mathrm{C}-1\right.$ "), 23.8, 24.0, 25.2, 34.6, $36.0\left[5 \mathrm{t}, \mathrm{C}\left(\underline{\left.\left.\mathrm{CH}_{2}\right)_{5}\right]}\right.\right.$, 38.5 (t, C-4), 64.7 ( $\mathrm{s}, \mathrm{C}-3$ ), 65.6 (t, C-5), 71.5 (t, C-2'), 79.1 (d, C-1'), 109.7 [s, $i-\mathrm{C}$ of $\left.\mathrm{C}\left(\underline{\mathrm{C}} \mathrm{H}_{2}\right)_{5}\right]$.

## B) Minor diastereomer

(3S, 1'S)-3-(1',2'-O-Cyclohexylidenedioxyethyl)-3-methylisoxazolidine (32b)

$$
[\alpha]_{D}^{20}=3.40\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{3}$ | calc. | C 63.41 | H 9.31 | N 6.16 |
| :--- | :--- | :--- | :--- | :--- |
| $(227.3)$ | found | C 63.30 | H 9.30 | N 6.11 |

IR : $\tilde{v}=2935$ (m), 2887 (m), 2857 (w), 1442 (m), 1366 (m), 1279 (m), 1165(m), 1096 (vs), 1032 (s), 851 (s) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=1.17\left(\mathrm{~s}, 3 \mathrm{H}, 1^{1 "-H}\right), 1.31-1.68[\mathrm{~m}, 10$ $\left.\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 1.84\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=11.9, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{a}}\right.$ and $\mathrm{J}_{4 \mathrm{a}, 5 \mathrm{~b}}=6.4$ and $8.6 \mathrm{~Hz}, 1$ $\mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$ ), 2.31 (ddd, $J_{4 \mathrm{a}, 4 \mathrm{~b}}=11.9, J_{4 \mathrm{~b}, 5 \mathrm{a}}$ and $J_{4 \mathrm{~b}, 5 \mathrm{~b}}=6.0$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.4-\mathrm{H}_{\mathrm{b}}\right), 3.74\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{\prime} \mathrm{a}}=5.6, J_{2^{\prime}, 2^{\prime} \mathrm{b}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.79-3.92(\mathrm{~m}, 1$
 $\left.\mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 3.98-4.05\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 4.09\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{2} \mathrm{~b}}=5.6, \mathrm{~J}_{2^{\prime} \mathrm{a}^{2} 2^{2}}=7.3 \mathrm{~Hz}\right.$, $\left.2^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$ and $4.13\left(\mathrm{t}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=5.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right.$; together 2 H$)$.
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=21.5\left(\mathrm{q}, \mathrm{C}-1{ }^{\prime \prime}\right), 23.7,24.0,25.2,34.3,36.0\left[5 \mathrm{t}, \mathrm{C}\left(\underline{\left.\left(\mathrm{CH}_{2}\right)_{5}\right]}\right.\right.$, 37.1 ( $\mathrm{t}, \mathrm{C}-4$ ), $66.0(\mathrm{~s}, \mathrm{C}-3), 66.2$ (t, C-5), 71.7 (t, C-2'), 76.9 ( $\mathrm{d}, \mathrm{C}-1$ '), 110.3 [s, $i-\mathrm{C}$ of $\left.\mathrm{C}\left(\underline{\mathrm{C}}_{2}\right)_{5}\right]$.

Experiment 28 (YB 270)
(3R, 1'S)- and (3S, 1'S)-3-Allyl-3-(1',2'-O-
Cyclohexylidenedioxyethyl)-5,5-dimethylisoxazolidine (33a and 33b)


33 a/b

Scale: $\quad 500 \mathrm{mg}(2.09 \mathrm{mmol})$ isoxazoline 22
1.41 g ( $6.27 \mathrm{mmol}, 3 \mathrm{eq}$ ) $\mathrm{ZnBr}_{2}$
6.27 mL ( $6.27 \mathrm{mmol}, 3 \mathrm{eq}$ ) allylmagnesium bromide 30 mL abs. THF

The reaction was performed according to TP 2 with $\mathrm{ZnBr}_{2}$ instead of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; work-up was done after stirring overnight to afford 680 mg of a yellowish oil (d.r. 88:12, from ${ }^{13} \mathrm{C}$ NMR spectrum of the crude product), which was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 1:1) to give 610 mg and then purified by MPLC (petroleum ether/ethyl acetate 9:1) to afford, after evaporation of the solvent, $495 \mathrm{mg}(73 \%)$ of analytically and spectroscopically pure isoxazolidine 33a as a colourless oil, and 78 mg ( 11 \%) of analytically and spectroscopically pure isoxazolidine 33b, also as a colourless oil, in 84 \% total yield (d.r. 87:13).

## A) Major diastereomer 33a

$$
[\alpha]_{D}^{20}=-42.6\left(c=0.540, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

[^13]| $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3}$ | calc. | C 68.29 | H 9.67 | N 4.98 |
| :--- | :--- | :--- | :--- | :--- |
| $(281.4)$ | found | C 68.32 | H 9.63 | N 4.92 |

IR : $\tilde{v}=3199$ (m), 2933 (s), 2862 (m), 1685 ( w$), 1448$ (m), 1433 ( w$), 1366$ (m), 1332 (w), 1162 (s), 1104 (vs), 1042 ( s$), 927$ (vs), 847 ( w ), 808 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28-1.68 \quad\left[\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right.$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ ], $1.71\left(\mathrm{~d}, \mathrm{~J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.06\left(\mathrm{ddt}, \mathrm{J}_{1 \mathrm{a}, 1 \text { " } \mathrm{b}}=14.1\right.$, $\left.J_{1^{\prime \prime}, 2^{\prime \prime}}=8.2, J_{1^{\prime \prime}, 3^{\prime \prime} \mathrm{E}}=J_{1_{1 " a, 3 " z}}=1.0 \mathrm{~Hz}, 1 "-\mathrm{H}_{\mathrm{a}}\right)$ and $2.13\left(\mathrm{~d}, J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.1\right.$
 $\left.J_{1^{\prime \prime},, 3^{\prime \prime} \mathrm{z}}=1.4 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 3.55-3.60\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.04\left(\mathrm{dd}, \mathrm{J}_{2^{\prime} \mathrm{b}, 2^{\prime} \mathrm{b}}=8.1\right.$,


33a $\left.J_{1^{\prime}, 2^{\prime} \mathrm{b}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.13\left(\mathrm{t}, \mathrm{J}_{1^{\prime}, 2^{\prime} \mathrm{b}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.04-5.13$ (m, $2 \mathrm{H}, 3$ "-H), 5.95 ("dddd", $J_{1^{\prime \prime}, 2^{\prime \prime}}=8.3, J_{1^{\prime \prime}, 2^{\prime \prime}}=6.3, J_{2^{2}, 3^{" E}}=10.3$, $\left.J_{2^{\prime \prime}, 3^{\prime 2}}=16.7,1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.1,24.3,25.5,34.8,36.4\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 26.7,27.5[2 \mathrm{q}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ ], 42.5 ( $\mathrm{t}, \mathrm{C}-1{ }^{\prime \prime}$ ), 46.6 (t, C-4), 66.6 (t, C-2'), 70.6 ( $\mathrm{s}, \mathrm{C}-3$ ), 74.9 (d, C-1'), 84.9 (s, C-5), 110.3 [s, $\left.\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 118.0(\mathrm{t}, \mathrm{C}-3 \mathrm{l})$, 134.6 (d, C-2").

## B) Minor diastereomer 33b

$[\alpha]_{D}^{20}=14.2\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3}$ | calc. | C 68.29 | H 9.67 | N 4.98 |
| :--- | :--- | :--- | :--- | :--- |
| $(281.4)$ | found | C 68.29 | H 9.72 | N 4.89 |

IR: $\tilde{v}=2933(\mathrm{~s}), 2861(\mathrm{~m}), 1685(\mathrm{w}), 1448(\mathrm{~m}), 1367(\mathrm{~m}), 1162$ (s), 1144 (s), 1100 (vs), 1040 ( s ), 927 (v), 847 (w), 788 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.26-1.68\left[\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right.$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ ], $1.91\left(\mathrm{~d}, \mathrm{~J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.11\left(\mathrm{~d}, \mathrm{~J}_{4 \mathrm{~b}, 4 \mathrm{a}}=12.6\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.22-2.33\left(\mathrm{~m}, 1 \mathrm{H}, 1{ }^{1}-\mathrm{H}_{\mathrm{a}}\right), 2.44$ (ddt, $\mathrm{J}_{1 \mathrm{n} \text { a, } 1 \mathrm{lb}}=14.2$, $J_{1^{\prime \prime}, 2^{\prime \prime}}=7.4, J_{1^{1 "}, 3^{3} \mathrm{E}}=J_{1^{\prime \prime}, 3^{\prime \prime 2}}=1.3 \mathrm{~Hz}, 1^{1 "-\mathrm{H}_{\mathrm{b}}}$ ), 3.83-3.89(m,1 H, 2'$\left.H_{a}\right), 4.01\left(d d, J_{2^{\prime}, 2^{\prime 2} b}=8.5, J_{1^{\prime} ; 2^{\prime} b}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.17\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{\prime} \mathrm{a}}=\right.$


33b $\left.7.8, J_{1^{\prime}, 2 \mathrm{~b}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.11-5.20(\mathrm{~m}, 2 \mathrm{H}, 3 "-\mathrm{H}), 5.85$ ("dddd", $\left.J_{1^{\prime \prime}, 2^{\prime \prime}}=10.5, J_{1^{"} b, 2^{\prime \prime}}=7.4, J_{2^{\prime \prime}, 3^{\prime \prime} \mathrm{E}}=14.9, J_{2^{\prime \prime}, 3^{\prime \prime}}=16.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR (250.1 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=24.2,24.4,25.6,35.1,36.5\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 26.7$ [2 q, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ ], 41.5 (t, C-1"), 48.0 (t, C-4), 65.6 (t, C-2'), 68.8 (s, C-3), 77.6 (d, C-1'), 84.9 ( $\mathrm{s}, \mathrm{C}-5$ ), 109.7 [s, $\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}$ ], $119.5(\mathrm{t}, \mathrm{C}-3 \mathrm{3})$, 133.8 (d, C-2").

Experiment 28a (YB 271)
Preparation of (3R, 1'S)- and (3S, 1'S)-3-Allyl-3-(1',2'-O-Cyclohexylidenedioxyethyl)-5,5dimethylisoxazolidine (33a and 33b) using $\mathrm{ZnCl}_{2}$ as a Lewis acid

```
Scale: }\quad500\textrm{mg}(2.09\textrm{mmol})\mathrm{ isoxazoline 22
```



```
    6.27 mL ( }6.27\textrm{mmol},3\textrm{eq}\mathrm{ ) allylmagnesium bromide
    30 mL abs. THF
```

The reaction was performed according to TP 2 with $\mathrm{ZnCl}_{2}$; work-up was done after stirring overnight to afford 630 mg of a yellowish oil (d.r. $87: 13$, from ${ }^{13} \mathrm{C}$ NMR spectrum of the crude product), which was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 1:1) to give 572 mg and then purified by MPLC (petroleum ether/ethyl acetate 9:1) to afford, after evaporation of the solvent, 460 mg ( $67 \%$ ) of analytically and spectroscopically pure isoxazolidine 33a as a colourless oil, and $63 \mathrm{mg}(9 \%)$ of analytically and spectroscopically pure isoxazolidine 33b, also as a colourless oil, in $76 \%$ total yield (d.r. 88:12).

## Experiment 28b (YB 144)

Preparation of (3R, 1'S)- and (3S, 1'S)-3-Allyl-3-(1',2'-O-Cyclohexylidenedioxyethyl)-5,5dimethylisoxazolidine (33a and 33b) using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as a Lewis acid

Scale: $\quad 275 \mathrm{mg}(1.15 \mathrm{mmol})$ isoxazoline 22
$0.36 \mathrm{ml}(3.5 \mathrm{mmol}, 3 \mathrm{eq}) \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$
3.5 mL ( $3.5 \mathrm{mmol}, 3 \mathrm{eq}$ ) allylmagnesium bromide

20 mL abs. THF

The reaction was performed according to TP 2 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; work-up was done after stirring for 4 h to afford 405 mg of a yellowish oil (d.r. $83: 17$, from ${ }^{13} \mathrm{C}$ NMR spectrum of the crude product), which was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 6:4) to give 370 mg and then purified by MPLC (petroleum ether/ethyl acetate 8:2) to
afford, after evaporation of the solvent, 209 mg ( $65 \%$ ) of pure isoxazolidine 33a as a colourless oil, and 40 mg (12 \%) of pure isoxazolidine 33b, also as a colourless oil, in 77 \% total yield (d.r. 84:16).

## Experiment 29 (YB 151)

(3S, 1'S)- and (3R, 1'S)-3-Allyl-3-(1',2'-O-Cyclohexylidenedioxyethyl) isoxazolidine (34a and 34b)


34 a/b
Scale: $\quad 1.00 \mathrm{~g}(4.73 \mathrm{mmol})$ isoxazoline 13
3.19 g ( $14.2 \mathrm{mmol}, 3 \mathrm{eq}$ ) $\mathrm{ZnBr}_{2}$
14.2 mL ( $14.2 \mathrm{mmol}, 3 \mathrm{eq}$ ) allylmagnesium bromide

50 mL abs. THF

The reaction was performed according to TP 2 with $\mathrm{ZnBr}_{2}$ instead of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; work-up was done after stirring the reaction mixture for 4 h to afford 1.59 g of a yellowish oil (d.r. 80:20; from ${ }^{13} \mathrm{C}$ NMR spectrum of the crude product), which was filtered through silica gel (column 2 $\mathrm{cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate $1: 1$ ) to give 1.37 g of crude isoxazolines 34a/b. This was purified by MPLC (petroleum ether/ethyl acetate 9:1) to afford, after evaporation of the solvent, 766 mg ( $64 \%$ ) of analytically and spectroscopically pure isoxazolidine $\mathbf{3 4 a}$ as a colourless oil, and 204 mg ( $17 \%$ ) of analytically and spectroscopically pure isoxazolidine 34b, a colourless oil likewise, in $81 \%$ total yield (d.r. 79:21).

## Major diastereomer

(3S, 1'S)-3-Allyl-3-(1',2'-O-Cyclohexylidenedioxyethyl) isoxazolidine (34a) ${ }^{\text {a }}$

$$
[\alpha]_{D}^{20}=-24.1\left(c=0.58, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}$ | calc. | C 66.37 | H 9.15 | N 5.53 |
| :--- | :--- | :--- | :--- | :--- |
| $(253.3)$ | found | C 66.53 | H 9.18 | N 5.43 |

IR: $\tilde{v}=2932$ (s), 2860 ( m ), 1638 ( w ), 1447 ( m$), 1365(\mathrm{~m}), 1332(\mathrm{w}), 1281(\mathrm{~m}), 1252(\mathrm{w})$, 1232 (w), 1162 (m), 1099 (vs), 1040 (s), 1001 (m), 926 (vs), 909 (s), 880 (m), 847 (w) cm ${ }^{-1}$.

[^14]${ }^{1} \mathrm{H}$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.39-1.64\left[\mathrm{~m}, 10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}\right], 1.86-$
 2.26 (ddd, $\left.J_{4 \mathrm{a}, 4 \mathrm{~b}}=11.7, J_{4 \mathrm{~b}, 5 \mathrm{a}}=8.9, J_{4 \mathrm{a}, 5 \mathrm{~b}}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.42$
 3.75-3.82 (m, 5- $\mathrm{H}_{\mathrm{a}}$; together 2 H ); 3.86-4.03 (m, $1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$ ), 4.07 (dd, $\left.J_{1^{\prime}, 2^{\prime} \mathrm{b}}=6.8, J_{2^{\prime}, 2^{\prime} \mathrm{a}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.16\left(\mathrm{t}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\right.$


34a
 $3^{\prime \prime}-\mathrm{H}_{\mathrm{E}}$; togther, 2 H ), 5.91 ("dddd", $J_{1^{\prime "}, 2^{\prime \prime}}=8.3, J_{1^{\prime \prime}, 2^{\prime \prime}}=6.3, J_{2^{\prime \prime}, 3^{\prime \prime}}=$ $\left.10.2, J_{2^{\prime \prime}, 3^{\prime \prime} Z}=16.8 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.1,24.3,25.5,34.8,36.5\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 35.2(\mathrm{t}, \mathrm{C}-4)$, 41.0 (t, C-1"), 66.4 (t, C-2'), 68.7 (s, C-3), 72.1 (t, C-5), 76.1 (d, C-1'), 110.4 [s, $\underline{C}\left(\mathrm{CH}_{2}\right)_{5}$ ], 118.9 (t, C-3"), 134.1 (d, C-2").

## Minor diastereomer

(3R, 1'S)-3-Allyl-3-(1',2'-O-Cyclohexylidenedioxyethyl) isoxazolidine (34b)
$[\alpha]_{D}^{20}=3.9\left(c=0.57, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}$ | calc. | C 66.37 | H 9.15 | N 5.53 |
| :--- | :--- | :--- | :--- | :--- |
| $(253.3)$ | found | C 66.04 | H 9.23 | N 5.22 |

IR : $\tilde{v}=2932(\mathrm{~s}), 2860(\mathrm{~m}), 1638(\mathrm{w}), 1447(\mathrm{~m}), 1365(\mathrm{~m}), 1332(\mathrm{w}), 1281(\mathrm{~m}), 1252(\mathrm{w})$, 1232 (w), 1162 (m), 1099 (vs), 1040 (s), 1001 (m), 926 (vs), 909 (s), 880 (m), 847 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.38-1.63\left[\mathrm{~m}, 10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}\right], 2.05$ (ddd, $J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.4, J_{4 \mathrm{a}, 5 \mathrm{~b}}$ and $J_{4 \mathrm{a}, 5 \mathrm{~b}}=7.9$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$ ), 2.27 (ddd, $J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.5, J_{4 \mathrm{~b}, 5 \mathrm{a}}$ and $J_{4 \mathrm{~b}, 5 \mathrm{~b}}=7.8$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}$ ), $2.38(\mathrm{~d}$, $\left.J_{1^{1 ", 2 "}}=7.3,2 \mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 3.81-3.87\left(\mathrm{~m}, 5-\mathrm{H}_{\mathrm{a}}\right)$ and $3.83\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{\prime a}}=7.4\right.$, $\left.J_{2^{\prime}, 2^{2} \mathrm{~b}}=8.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$ and $3.86-3.96\left(\mathrm{~m}, 5-\mathrm{H}_{\mathrm{b}}\right.$; together 3 H ); $4.03(\mathrm{dd}$,


34b $\left.J_{1^{\prime}, 2^{\prime} \mathrm{b}}=6.7, J_{2^{\prime}, 2^{\prime} \mathrm{b}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.22\left(\mathrm{t}, \mathrm{J}_{1^{1}, 2^{\prime}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$, 5.16 ("ddt", $J_{1^{\prime \prime}, 3^{\prime \prime} Z}=J_{1^{\prime \prime} b, 3^{\prime \prime} Z}=1.4, J_{2^{\prime \prime}, 3^{\prime \prime Z}}=16.8, J_{3^{\prime \prime} \mathrm{E}, 3^{\prime \prime Z}}=3.4 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{H}_{Z}$ ) and 5.19 ("ddt", $J_{1^{\prime \prime}, 3^{\prime \prime} E}=J_{1^{\prime \prime} \mathrm{b}, 3^{\prime \prime} \mathrm{E}}=1.0, J_{2^{\prime \prime}, 3^{\prime \prime} \mathrm{E}}=10.2, J_{3^{\prime \prime},, 3^{\prime \prime} \mathrm{Z}}=2.0 \mathrm{~Hz}$, 3 "- $\mathrm{H}_{\mathrm{E}}$; together 2 H ); 5.85 (ddt, $J_{1^{\prime \prime}, 2^{\prime \prime}}=J_{1^{\prime \prime} \mathrm{b}, 2^{\prime \prime}}=7.5, J_{2^{2}, 3^{\prime \prime} \mathrm{E}}=10.3, J_{2^{\prime \prime}, 3^{\prime \prime 2}}$ $\left.=16.9 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR (250.1 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=24.1,24.3,25.6,34.9,36.5\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 36.0(\mathrm{t}, \mathrm{C}-4)$, 40.8 (t, C-1"), 65.7 (t, C-2'), 67.3 (s, C-3), 72.2 (t, C-5), 78.8 (d, C-1'), $109.8\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right.$ ], 120.0 (t, C-3"), 133.1 (d, C-2").

Experiment 30 (YB 191)
( $3 R, 5 S, 1^{\prime} S$ )- and ( $3 S, 5 S, 1^{\prime}$ 'S)-3-Allyl-(1', $2^{\prime}-0-$
Cyclohexylidenedioxyethyl)-5-hydroxymethylisoxazolidine (35a and 35 b ).


35 a/b

Scale: $\quad 1.71 \mathrm{~g}(7.10 \mathrm{mmol})$ isoxazoline $\mathbf{1 5 / 1 6}$ (mixture 87:13) 2.90 g ( $21.3 \mathrm{mmol}, 3 \mathrm{eq}$ ) $\mathrm{ZnCl}_{2}$
21.3 mL ( $21.3 \mathrm{mmol}, 3 \mathrm{eq}$ ) allylmagnesium bromide 50 mL abs. THF

The reaction was performed according to TP 2 with $\mathrm{ZnCl}_{2}$ instead of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and at $0{ }^{\circ} \mathrm{C}$. Work-up was done after stirring for 12 h to afford 2.04 g of a yellowish oil (d.r. 85:15), this was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 1:9) to give 1.96 g of crude $\mathbf{3 5 a} / \mathrm{b}$ and then purified by MPLC (petroleum ether/ethyl acetate 6:4).

This afforded, after evaporation of the solvent, 1.30 g ( $65 \%$ ) of analytically and spectroscopically pure isoxazolidine 35a as a colourless solid (m. p. 92-93 ${ }^{\circ} \mathrm{C}$ ), and 260 mg ( $13 \%$ ) of analytically and spectroscopically pure isoxazolidine 35b, also as a colourless oil, in $78 \%$ total yield (d.r. 85:15). Crystallization of 35 a from hexan/chloroform gave colourless crystals (m. p. $92{ }^{\circ} \mathrm{C}$ ), suitable for crystal structure analysis, from which the relative and absolute configuration of $\mathbf{3 5 a}$ was derived (see appendix 12.1.3 for data).

## Major diastereomer

## (3R, 5S, 1'S)-3-Allyl-3-(1',2'-O-Cyclohexylidenedioxyethyl)-5-hydroxymethylisoxazo-

 lidine (35a)$[\alpha]_{D}^{20}=15.6\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{4}$ | calc. | C 63.58 | H 8.89 | N 4.94 |
| :--- | :--- | :--- | :--- | :--- |
| $(283.4)$ | found | C 63.57 | H 8.78 | N 4.89 |

IR : $\tilde{v}=3487$ (b, w), 3239 (w), 2933 (s), 2887 (m), 2846 (m), 1640 (w), 1485 (m), 1450 (m), 1433 (m), 1284 (m), 1163 (m), 1143 (vs), 1070 (s), 1055 (s), 969 (m), 935 (s), 914 (vs), 827 (s), 770 (w), 696 (s) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.39-1.64\left[\mathrm{~m}, 10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}\right]$, $2.05\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.7, \mathrm{~J}_{4 \mathrm{a}, 5}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.14\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{~b}, 4 \mathrm{a}}=\right.$ 12.7, $J_{4 \mathrm{~b}, 5}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}$ ), 2.34 ( $\mathrm{d}, \mathrm{J}_{1 \text { " }, 2^{\prime \prime}}=6.7,2 \mathrm{H}, 1^{"-H}$ ), 3.64 (dd, $J_{5,1 " \mathrm{a}}=6.4, J_{1 \text { "'a, } 1 \mathrm{wb}}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, 1{ }^{\left.1 "-\mathrm{H}_{\mathrm{a}}\right), 3.70(\mathrm{dd},}$ $\left.J_{5,1 " \mathrm{~b}}=3.1, J_{1^{\prime \prime \mathrm{a}}, 1 " \mathrm{l} \mathrm{b}}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime \prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 3.90\left(\mathrm{dd}, J_{1_{1}, 2^{\prime} \mathrm{a}}=7.3\right.$, $\left.J_{2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.03\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{\prime} \mathrm{b}}=6.7, J_{2^{\prime} \mathrm{b}, 2^{\prime} \mathrm{a}}=8.6 \mathrm{~Hz}, 1\right.$


35a H, 2'- $\mathrm{H}_{\mathrm{b}}$ ), 4.10-4.17 (m, $\left.1 \mathrm{H}, 5-\mathrm{H}\right), 4.20\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{\prime} \mathrm{a}}=7.3, \mathrm{~J}_{1^{\prime}, 2^{\prime} \mathrm{b}}=6.7\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.15-5.21(\mathrm{~m}, 2 \mathrm{H}, 3 \mathrm{H}-\mathrm{H}), 5.85\left(\mathrm{ddt}, J_{1^{\prime \prime} \mathrm{a}, 2^{\prime \prime}}=J_{1^{\prime \prime} \mathrm{b}, 2^{\prime \prime}}=\right.$ $\left.7.5, J_{2^{\prime \prime}, 3^{3} \mathrm{E}}=10.2, J_{2^{\prime \prime}, 3^{\prime 2}}=16.9 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.7,23.8,25.2,34.5,35.9\left[5 \mathrm{t}, \mathrm{C}\left(\underline{\mathrm{C}} \mathrm{H}_{2}\right)_{5}\right], 34.9(\mathrm{t}, \mathrm{C}-4)$, 40.0 (t, C-1"), 63.0 (t, C-1"'), 66.1 (t, C-2'), 67.7 (s, C-3), 78.1 (d, C-1'), 83.2 (d, C-5), 109.7 [s, $\left.\underline{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 119.9$ (t, C-3"), 132.6 (d, C-2").

## Minor diastereomer

(3S, 5S, 1'S)-3-Allyl-3-(1', 2'-O-Cyclohexylidenedioxyethyl)-5-hydroxymethylisoxazolidine (35b)
$[\alpha]_{D}^{20}=-48.3\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{4}$ | calc. | C 63.58 | H 8.89 | N 4.94 |
| :--- | :--- | :--- | :--- | :--- |
| $(283.4)$ | found | C 63.35 | H 8.89 | N 4.78 |

IR : $\tilde{v}=3378$ (b, m), 2932 (s), $2860(\mathrm{~m}), 1638(\mathrm{w}), 1448(\mathrm{~m}), 1366(\mathrm{~m}), 1282(\mathrm{~m}), 1162(\mathrm{~s})$, 1100 (vs), 1044 (s), 926 (s), 848 (w), 631 (vs) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.40-1.67\left[\mathrm{~m}, 10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}\right]$, $1.74\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.1, \mathrm{~J}_{4 \mathrm{a}, 5}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.10\left(\mathrm{ddt}, J_{1 \mathrm{ua}, 1 \mathrm{ln}}=\right.$
 $J_{4 \mathrm{~b}, 4 \mathrm{a}}=12.1, J_{4 \mathrm{~b}, 5}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}$ ), 2.44 (ddt, $J_{1 \mathrm{la}, 1{ }^{1 \mathrm{~b}}}=14.2$,



35b

$=8.3, \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}$; together 2 H ); $3.81\left(\mathrm{dd}, \mathrm{J}_{5,1 \mathrm{lw}}=2.8, \mathrm{~J}_{1 \text { " } " \mathrm{a}, 1 \mathrm{lw}}=12.3\right.$
$\left.\mathrm{Hz}, 1 \mathrm{H}, 1{ }^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right) ; 4.06\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2 \mathrm{~b}}=6.8, \mathrm{~J}_{2^{\prime}, 22^{\prime} \mathrm{b}}=8.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$ and
4.10 ("dddd", $J_{4 a, 5}=8.1, J_{4 b, 5}=8.2, J_{5,1 " \mathrm{la}}=5.5, J_{5,1 " \mathrm{l}}=2.7 \mathrm{~Hz}, 5-$
$\mathrm{H})$ and $4.13\left(\mathrm{t}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=6.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right.$; together 3 H ); 5.07-5.13 (m, 2
$H, 3 "-H), 5.92$ (dddd, $J_{1^{\prime \prime}, 2^{\prime \prime}}=8.3, J_{1^{\prime \prime} \mathrm{b}, 2^{\prime \prime}}=6.4, J_{2^{\prime \prime}, 3^{\prime \prime} \mathrm{E}}=10.2, J_{2^{\prime \prime}, 3^{\prime 2}}$ $\left.=16.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR (250.1 MHz, $\mathrm{CDCl}_{3}$ ) : $\delta=23.7,24.0,25.0,34.4,36.1\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 36.0(\mathrm{t}, \mathrm{C}-4)$, 40.8 (t, C-1"), 63.0 (t, C-1"'), 66.0 (t, C-2'), 69.4 (s, C-3), 75.6 (d, C-1'), 84.3 (d, C-5), 110.1 [s, $\left.\underline{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 118.5\left(\mathrm{t}, \mathrm{C}-3{ }^{\prime \prime}\right), 133.8\left(\mathrm{~d}, \mathrm{C}-2{ }^{\prime \prime}\right)$.

Experiment 30a (YB 189)
Preparation of ( $3 R, 5 S, 1$ 'S)- and ( $3 S, 5 S, 1$ 'S)-3-Allyl-(1', $2^{\prime}-0-$
Cyclohexylidenedioxyethyl)-5-hydroxymethylisoxazolidine (35a and 35b) using $\mathrm{ZnBr}_{2}$ as a Lewis acid
Scale: $\quad 600 \mathrm{mg}(2.49 \mathrm{mmol})$ isoxazoline 15/16 (mixture 80:20)
1.12 g ( $4.97 \mathrm{mmol}, 2 \mathrm{eq}$ ) $\mathrm{ZnBr}_{2}$
7.46 mL ( $7.46 \mathrm{mmol}, 3 \mathrm{eq}$ ) allylmagnesium bromide

30 mL abs. THF

The reaction was performed according to TP 2 with $\mathrm{ZnBr}_{2}$ as a Lewis acid at $0^{\circ} \mathrm{C}$. Work-up was done after stirring overnight to afford 705 mg of a yellowish oil (d.r. 76:24), this was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 1:9) to give 655 mg of crude $\mathbf{3 5 a} / \mathrm{b}$ and then purified by MPLC (petroleum ether/ethyl acetate $7: 3$ ).
This afforded, after evaporation of the solvent, $385 \mathrm{mg}(55 \%)$ of pure isoxazolidine 35 a as a colourless solid (m. p. $92-94{ }^{\circ} \mathrm{C}$ ), and $109 \mathrm{mg}(15 \%$ ) of pure isoxazolidine $\mathbf{3 5 b}$, as a colourless oil, in $70 \%$ total yield (d.r. 78:22).

Experiment 30b (YB 187)
Preparation of (3R, 5S, 1'S)- and (3S, 5S, 1'S)-3-Allyl-(1',2'-O-
Cyclohexylidenedioxyethyl)-5-hydroxymethylisoxazolidine (35a and 35b) using
$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as a Lewis acid

Scale: $\quad 850 \mathrm{mg}(3.52 \mathrm{mmol})$ isoxazoline 15/16 (mixture 80:20)
$1.11 \mathrm{~g}(10.6 \mathrm{mmol}, 3 \mathrm{eq}) \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$
10.6 mL ( $10.6 \mathrm{mmol}, 3 \mathrm{eq}$ ) allylmagnesium bromide 30 mL abs. THF

The reaction was performed according to TP 2 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as a Lewis acid at $-78{ }^{\circ} \mathrm{C}$. Work-up was done after stirring for 4 h to afford 1.13 g of a yellowish oil (d.r. 77:23), this was filtered through silica gel (column $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 1:9) to give 1.04 g of crude $\mathbf{3 5 a} / \mathrm{b}$ and then purified by MPLC (petroleum ether/ethyl acetate $7: 3$ ).

This afforded, after evaporation of the solvent, $470 \mathrm{mg}(47 \%)$ of pure isoxazolidine 35 a as a colourless solid (m. p. $92-93{ }^{\circ} \mathrm{C}$ ), and 155 mg ( 16 \%) of pure isoxazolidine $\mathbf{3 5 b}$, as a colourless oil, in 63 \% total yield (d.r. 75:25).

Experiment 31 (YB 188)
( $3 R, 5 R, 1^{\prime} \mathrm{S}$ )- and ( $3 S, 5 R, 1^{\prime} \mathrm{S}$ )-3-Allyl-(1', $2^{\prime}-0-$ Cyclohexylidenedioxyethyl)-5-hydroxymethylisoxazolidine (36a and 36b).


36 a/b

Scale: $\quad 465 \mathrm{mg}(1.93 \mathrm{mmol})$ Isoxazolines $\mathbf{1 5 / 1 6}$ (mixture 15:85) 526 mg ( $3.85 \mathrm{mmol}, 2 \mathrm{eq}$ ) $\mathrm{ZnCl}_{2}$ 5.8 mL ( $5.8 \mathrm{mmol}, 3 \mathrm{eq}$ ) AllylMgBr 30 mL abs. THF

The reaction was performed according to TP 2 with $\mathrm{ZnCl}_{2}$ instead of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and at $0{ }^{\circ} \mathrm{C}$, work-up was done after stirring overnight to afford 500 mg of a yellowish oil (d.r. 85:15, taken from ${ }^{13} \mathrm{C}$ NMR spectrum of the crude product), which was filtered through silica gel ( $2 \mathrm{~cm} \times 5$ cm , petroleum ether/ethyl acetate $1: 1$ ) to give 485 mg of crude product 36a/b. This was purified by MPLC (petroleum ether/ethyl acetate $7: 3$ ) to afford after evaporation of the solvent, 335 mg ( 61 \%) of analytically and spectroscopically pure isoxazolidine 36a as a colourless oil, and 103 mg ( $19 \%$ ) of analytically and spectroscopically pure isoxazolidine 36b, also as a colourless oil, in $80 \%$ total yield (d.r. 81:19).

## A) Major diastereomer (3R, 5R, 1'S)-3-Allyl-(1',2'-O-Cyclohexylidenedioxyethyl)-5hydroxymethylisoxazolidine 36a

$[\alpha]_{D}^{20}=-48.8\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{4}$ | calc. | C 63.58 | H 8.89 | N 4.94 |
| :--- | :--- | :--- | :--- | :--- |
| $(283.4)$ | found | C 63.64 | H 8.95 | N 4.79 |

${ }^{1} \mathrm{H}$ NMR $\left(250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.25-1.69\left[\mathrm{~m}, 10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}\right]$, $1.97\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.4, \mathrm{~J}_{4 \mathrm{a}, 5}=7.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{a}}\right)$, and $2.02\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{~b}, 4 \mathrm{a}}=\right.$ $12.4, J_{4 \mathrm{~b}, 5}=6.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{b}}$; together 2 H ), 2.11 (ddt, $J_{1 \mathrm{ka}, 1 \mathrm{lb}}=14.2$,




36a $3.61\left(\mathrm{~m}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right)$ and $3.60-3.65\left(\mathrm{~m}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right)$ and $3.67\left(\mathrm{dd}, \mathrm{J}_{1,2^{\prime} \mathrm{a}}=\right.$ $6.9, J_{2^{\prime}, 22^{\prime} b}=8.2, \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}$; together, 3 H ), 4.06 (dd, $J_{1^{\prime}, 2 \mathrm{~b} b}=6.8$, $\left.J_{2^{\prime}, 2^{\prime} \mathrm{b}}=8.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.17\left(\mathrm{t}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=6.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$ and $4.20-4.29$ (m, 5-H; together 2 H ), 5.06-5.17 (m, $2 \mathrm{H}, 3 \mathrm{3}-\mathrm{H}$ ), 5.92 (dddd, $J_{1 " \mathrm{a}, 2^{\prime \prime}}$ $\left.=8.2, J_{1^{\prime \prime} \mathrm{b}, 2^{\prime \prime}}=6.4, J_{2^{\prime \prime}, 3^{\prime \prime} \mathrm{E}}=10.4, J_{2^{\prime \prime}, 3^{\prime \prime} \mathrm{Z}}=16.8 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\mathrm{CDCl}_{3}$ ) : $\delta=23.8,23.9,25.1,34.3,35.8\left[5 \mathrm{t}, \mathrm{C}\left(\underline{\mathrm{C}} \mathrm{H}_{2}\right)_{5}\right], 35.5(\mathrm{t}, \mathrm{C}-4)$, 39.9 (t, C-1"), 63.1 (t, C-1"'), 66.0 (t, C-2'), 68.9 ( $\mathrm{s}, \mathrm{C}-3$ ), 75.7 (d, C-1'), 82.7 (d, C-5), 110.2 [s, $\left.\underline{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 118.9\left(\mathrm{t}, \mathrm{C}-3{ }^{\prime \prime}\right), 133.3$ (d, C-2").

## B) Minor diastereomer (3S, 5R, 1'S)-3-Allyl-(1',2'-O-Cyclohexylidenedioxyethyl)-5-

 hydroxymethylisoxazolidine 36b$[\alpha]_{D}^{20}=14.9\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{4}$ | calc. | C 63.58 | H 8.89 | N 4.94 |
| :--- | :--- | :--- | :--- | :--- |
| $(283.4)$ | Found | C 63.87 | H 8.98 | N 4.87 |

${ }^{1} \mathrm{H}$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.32-1.68\left[\mathrm{~m}, 10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}\right]$, $2.05\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.5, \mathrm{~J}_{4 \mathrm{a}, 5}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.14\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{~b}, 4 \mathrm{a}}=\right.$ $12.4, J_{4 \mathrm{~b}, 5}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}$ ), 2.34 ( $\mathrm{d}, \mathrm{J}_{1^{1 ", 2 "}}=6.6,2 \mathrm{H}, 1^{\prime \prime}-\mathrm{H}$ ),

 $\left.J_{2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.03\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime} \mathrm{b}}=6.7, J_{2^{\prime} \mathrm{b}, 2^{\prime} \mathrm{a}}=8.6 \mathrm{~Hz}, 1\right.$


36b $\left.\mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$, 4.10-4.21(m, $\left.1 \mathrm{H}, 5-\mathrm{H}\right), 4.19\left(\mathrm{dd}, J_{1_{1}^{\prime}, 2^{\prime} \mathrm{a}}=7.3, J_{1^{\prime}, 2^{\prime} b}=6.7\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.11-5.23\left(\mathrm{~m}, 2 \mathrm{H}, 3{ }^{\prime \prime}-\mathrm{H}\right), 5.85\left(\mathrm{ddt}, J_{1^{\prime \prime} \mathrm{a}, 2^{\prime \prime}}=J_{1^{\prime \prime} \mathrm{b}, 2^{\prime \prime}}=\right.$ $\left.7.3, J_{2^{\prime \prime}, 3^{\prime} E}=10.1, J_{2^{\prime \prime}, 3^{\prime 2}}=17.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$.

# ${ }^{13} \mathrm{C}$ NMR $\left(250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.1,24.3,25.5,35.0,36.2\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 37.1(\mathrm{t}, \mathrm{C}-4)$, 40.2 (t, C-1"), 63.4 (t, C-1"'), 65.5 (t, C-2'), 67.9 ( $\mathrm{s}, \mathrm{C}-3$ ), 76.9 (d, C-1'), 83.5 (d, C-5), 110.1 [s, $\left.\underline{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 120.1$ (t, C-3"), 132.9 (d, C-2"). 

Experiment 31a (YB 313)<br>Preparation of ((3RS,5RS)-3-Allyl-3-(S)-1,4-dioxa-spiro[4.5]dec-2-yl-isoxazolidin-5-yl)methanol (35 a/b) using $\mathrm{ZnBr}_{2}$ as Lewis acid

```
Scale: }\quad550\textrm{mg}(2.30\textrm{mmol})\mathrm{ Isoxazolines 16/15 (mixture 85:15)
    1.55 mg (4.90 mmol) ZnBr_
    9.2 mL (9.2 mmol) AllylMgBr
    30 mL abs. THF
```

The reaction was performed according to TP 2 with $\mathrm{ZnBr}_{2}$ at $0^{\circ} \mathrm{C}$, work-up was done after stirring overnight to afford 645 mg of a yellowish oil (d.r. 78:22, taken from ${ }^{13} \mathrm{C}$ NMR spectrum of the crude product), which was filtered through silica gel ( $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate $4: 6$ ) to give 605 mg of crude product 35a/b. This was purified by MPLC (petroleum ether/ethyl acetate $7: 3$ ) to afford after evaporation of the solvent, 395 mg ( $61 \%$ ) of analytically and spectroscopically pure isoxazolidine 35b (as the major diastereomer here) as a colourless oil, and 110 mg ( 17 \%) of analytically and spectroscopically pure isoxazolidine 35a (as the minor diastereomer here), also as a colourless oil, in $78 \%$ total yield (d.r. 78:22).

### 11.5 Catalytic Hydrogenation of Isoxazolidines

Experiment 32 (YB 293)
4-Methylamino-4-phenyltetrahydropyran-2-one (36).


37

In analogy to lit. ${ }^{73}$ A 100 mL -flask charged with the isoxazolidine 24 ( $500 \mathrm{mg}, 2.00 \mathrm{mmol}$ ) under nitrogen was treated with $70 \mathrm{~mL}(7.0 \mathrm{mmol}, 3.5 \mathrm{eq})$ of a 0.1 M THF solution of $\mathrm{Sml}_{2}$ (Aldrich) at room temp. The resulting blue solution was stirred for 0.5 h . A 1.0 M solution of $\mathrm{NH}_{3}$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added and the mixture was left with stirring for 20 min . Finally the
mixture was washed with the saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and extracted with ether ( $3 \times 40$ $\mathrm{mL})$. The combined organic phase was then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford 505 mg of a yellowish oil, which was chromatographed through silica gel (column 2 cm $x 15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5$ ) to give 293 mg of spectroscopically pure lactone 37 (71\%) as a colourless oil.

| $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ | calc. | C 70.22 | H 7.37 | N 6.28 |
| :--- | :--- | :--- | :--- | :--- |
| $(205.2)$ | found | C 68.59 | H 7.43 | N 6.34 |

HRMS (ES, $m / z$ ): calc. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ 205.1102, found 205.1102

IR (Film): $\tilde{v}=3391$ (m, b), 2925 ( w ), 1720 (vs, C=O), 1496 (w), 1412 (m), 1045 (m), 1001 (w), 763 (m), 701 (s) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.32\left(\mathrm{dt}, \mathrm{J}_{5 \mathrm{a}, 5 \mathrm{~b}}=13.0, J_{5 \mathrm{a}, 6}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.5-\mathrm{H}_{\mathrm{a}}\right), 2.49\left(\mathrm{dt}, J_{5 \mathrm{a}, 5 \mathrm{~b}}=13.4, J_{5 \mathrm{~b}, 6}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 2.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.04\left(\mathrm{~d}, \mathrm{~J}_{3 \mathrm{a}, 3 \mathrm{~b}}=14.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 3.32\left(\mathrm{~d}, \mathrm{~J}_{3 \mathrm{a}, 3 \mathrm{~b}}=14.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right), 3.70$ (dt, $J_{5,6 \mathrm{a}}=6.6, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}$ ), $3.77\left(\mathrm{dt}, J_{5,6 \mathrm{~b}}=6.6, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=10.8\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right), 7.31-7.41\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.


37
${ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.1\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 38.1(\mathrm{t}, \mathrm{C}-5), 50.2(\mathrm{t}, \mathrm{C}-3), 58.5(\mathrm{t}, \mathrm{C}-6)$, 61.5 ( $\mathrm{s}, \mathrm{C}-4$ ), 125.4, 127.8, 128.9 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 141.1 ( $\mathrm{s}, i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 167.6 (s, $\mathrm{C}=\mathrm{O}$ ).

## Experiment 33 (YB 75)

## 4-Methylamino-4-phenyltetrahydropyran-2-one (37)

500 mg ( 2.00 mmol ) of isoxazolidine 24 and 250 mg of $\mathrm{Pd}(\mathrm{OH})_{2}$ were added oo abs. ethanol ( 15 mL ). The mixture was stirred under hydrogen ( 1 bar ) for 24 h , then centrifuged to separate the catalyst by decantation, and concentrated in vacuo ( 10 mbar ) to afford 425 mg of the crude lactone product. This was chromatographed throught silica gel (column $3 \mathrm{~cm} x$ $15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1$ ) to give 60 mg of analytically and spectroscopically pure lactone 37 ( $15 \%$ ) as a colourless oil. The analytical data fully complied with the data given in Exp. 32.

Experiment 34 (YB 276)
4-Phenyl-5,6-dihydropyran-2-one (38)


38
To a solution of $\mathrm{HOAc} / \mathrm{MeOH}(20 \mathrm{~mL}, 4: 1) 450 \mathrm{mg}$ ( 1.80 mmol ) of the isoxazolidine 24 and 690 mg of activated $\mathrm{zinc}^{\text {a }}(10.56 \mathrm{mmol}, 5.85 \mathrm{eq})$ were added. The mixture was refluxed for 2 h , and then concentrated in vacuo ( $30{ }^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to afford 315 mg of crude lactone product. Filtration through silica gel (colomn, $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 4:6) gave 290 mg ( $92 \%$ ) of analytically and spectroscopically pure lactone 38 as a colourless solid ( $m . p=56-57^{\circ} \mathrm{C}$, lit.: $57^{\circ} \mathrm{C}$ ) ${ }^{137}$

| $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}$ | calc. | C 75.58 | H 5.79 |
| :--- | :--- | :--- | :--- |
| $(174.2)$ | Found | C 75.72 | H 5.90 |

IR (Film): $\tilde{v}=1723$ ( w ), 1695 (vs, C=O), 1610 (m), 1496 (m), 1462 (m), 1444 (m), 1341 (m), 1227 (s), 1215 (s), 1084 (s), 1049 (m), 886 (s), 766 (s) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=2.86$ ("ddd", $\mathrm{J}_{3,5 \mathrm{a}}=1.8, \mathrm{~J}_{5 \mathrm{a}, 5 \mathrm{~b}}=7.8, \mathrm{~J}_{5 \mathrm{a}, 6}$ $=6.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}$ ) and 2.89 ("ddd", $\mathrm{J}_{3,5 \mathrm{~b}}=1.4, J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.7, J_{5 \mathrm{~b}, 6}=6.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{b}}$; together 2 H ); 4.54 ("ddd", $J_{3,6}=0.5, J_{5 \mathrm{a}, 6}=6.0, J_{5 \mathrm{~b}, 6}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{H}$ ), 6.38 ("ddd", J J $3,5 \mathrm{a}=1.8, \mathrm{~J}_{3,5 \mathrm{~b}}=1.4, \mathrm{~J}_{3,6}=0.5, \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$ ), 7.43-7.57 (m, 5 $\mathrm{H}, \mathrm{C}_{6} \underline{H}_{5}$ ).


38
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=26.4(\mathrm{t}, \mathrm{C}-5), 66.0(\mathrm{t}, \mathrm{C}-6), 115.1(\mathrm{~d}, \mathrm{C}-3), 126.0,129.0$, 130.7 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 136.0 ( $\mathrm{s}, i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 155.3 ( $\mathrm{s}, \mathrm{C}-4$ ), 165.0 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ).

## Experiment 35 (YB 58)

Ethyl 5-hydroxy-3-phenylpentanoate (39)


39

To abs. ethanol ( 10 mL ) 250 mg ( 1.00 mmol ) of isoxazolidine 24 and 100 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ were added. The mixture was left with stirring for 4 h under hydrogen ( 1 bar ), then it was centrifuged to separate the catalyst, decanted, and concentrated in vacuo (roomtemp./10 mbar) to afford 200 mg of the crude ester 39. After purification by MPLC (petroleum ether/ethyl acetate $3: 7$ ) 77 mg ( $35 \%$ ) of 39 as a colourless slightly pure oil was obtained.

[^15]| $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$ | Cal. | C 70.24 | H 8.14 |
| :--- | :--- | :--- | :--- |
| $(222.28)$ | Fon. | C 69.53 | H 8.34 |

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.13\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.90(\mathrm{~m}, 2$ $\mathrm{H}, 4-\mathrm{H}), 2.64(\mathrm{t}, 2 \mathrm{H}, 2-\mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 4.04$ (m, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ ), 7.20-7.31 (m,5 H, $\mathrm{C}_{6} \underline{H}_{5}$ ).


39
${ }^{13} \mathrm{CNMR}^{\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~} \delta=14.1\left(\mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 38.7(\mathrm{~d}, \mathrm{C}-3), 39.0(\mathrm{t}, \mathrm{C}-4), 41.6(\mathrm{t}, \mathrm{C}-$ 2), $60.4\left(\mathrm{t}, \mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 60.6(\mathrm{t}, \mathrm{C}-5), 126.7,127.5,128.6\left(3 \mathrm{~d}, o-, m-, p-\mathrm{C}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 143.5(\mathrm{~s}, i-$ C of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 172.5 (s, $\mathrm{C}=\mathrm{O}$ ).

## Experiment 36 (YB 13)

Methyl 5-hydroxy-3-phenylpentanoate (40)


40

250 mg ( 1.00 mmol ) of isoxazolidine 24 and 200 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ were added to MeOH ( 15 mL ), and the mixture was left with stirring for 4 d under hydrogen ( 4 bar ). The reaction mixture was then centrifuged to separate the catalyst, decanted, and concentrated in vacuo (room temp. $/ 10 \mathrm{mbar}$ ) to afford 219 mg of the crude ester 39 , which after purification by MPLC (petroleum ether/ethyl acetate 1:1) gave 83 mg ( $40 \%$ ) of 40 as a colourless, analytically and spectroscopically pure oil.

HRMS (ES, $m / z$ ): calc. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ 208.1099, found 208.1099

| $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ | calc. | C 69.21 | H 7.74 |
| :--- | :--- | :--- | :--- |
| $(208.25)$ | found | C 69.53 | H 7.79 |

${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.86$ ("dddd", $\mathrm{J}_{3,4 \mathrm{a}}=5.4, \mathrm{~J}_{4 \mathrm{a}, 4 \mathrm{~b}}=13.8$, $\left.J_{4 \mathrm{a}, 5 \mathrm{a}}=6.0, J_{4 \mathrm{a}, 5 \mathrm{~b}}=5.9 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{a}}\right)$ and 1.93 ("dddd", $\mathrm{J}_{3,4 \mathrm{~b}}=5.4, J_{4 \mathrm{a}, 4 \mathrm{~b}}=$ $13.8, J_{4 b, 5 \mathrm{a}}=7.4, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{~b}}=6.7 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{b}}$ ); together 2 H ); $2.62\left(\mathrm{dd}, \mathrm{J}_{2 \mathrm{a}, 2 \mathrm{~b}}=\right.$


40 $15.5, J_{2 \mathrm{a}, 3}=7.6 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{a}}$ ) and $2.67\left(\mathrm{dd}, \mathrm{J}_{2 \mathrm{a}, 2 \mathrm{~b}}=15.5, \mathrm{~J}_{2 \mathrm{a}, 3}=7.4 \mathrm{~Hz}, 2-\right.$ $H_{b}$; together 2 H ); 3.29 ("ddt", $J_{2 \mathrm{a}, 3}=J_{2 \mathrm{~b}, 3}=7.5, J_{3,4}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$ ); $3.47\left(d d d, J_{4 \mathrm{a}, 5 \mathrm{a}}=6.2, J_{4 \mathrm{~b}, 5 \mathrm{a}}=7.4, J_{5 \mathrm{a}, 5 \mathrm{~b}}=10.8 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}\right)$ and 3.53 (ddd, $J_{4 \mathrm{a}, 5 \mathrm{~b}}=5.7, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{~b}}=6.6, \mathrm{~J}_{5 \mathrm{a}, 5 \mathrm{~b}}=10.8 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}$; together 2 H ); 3.59 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 7.19-7.31 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ ).
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=39.0(\mathrm{~d}, \mathrm{C}-3), 39.3(\mathrm{t}, \mathrm{C}-2), 41.8(\mathrm{t}, \mathrm{C}-4), 52.0\left(\mathrm{~s}, \mathrm{OCH}_{3}\right)$, 60.9 (t, C-5), 127.1, 127.8, 129.0 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 143.8 (s, $i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 173.3 (s, $\mathrm{C}=\mathrm{O}$ ).

Experiment 37 (YB 20)
(2S, 3S)-1,2-0-Cyclohexylidenedioxyethyl)-3-methyl-3-methylam-ino-1,2,5-pentanetriol (41) by catalytic hydrogenation of the isoxazoline 25a, cf. lit. ${ }^{1}$


In analogy to lit. ${ }^{1} 150 \mathrm{mg}$ of the isoxazolidine $\mathbf{2 5 a}$ and 80 mg of $\mathrm{Pd} / \mathrm{C}$ (10\%) were added to 5 mL methanol. The mixture was left with stirring overnight under hydrogen (1 bar) at room temp., then $\mathrm{Pd} / \mathrm{C}$ was filtered off through celite and the solution was concentrated in vacuo ( $30{ }^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 145 mg of the amino alcohol 41 as a colourless oil with slightly deviating elemental analysis ( $96 \%$, lit. $96 \%^{1}$ ). The analytical data complied well with the literature values. ${ }^{1}$

$$
[\alpha]_{D}^{20}=-14.7\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \quad \text { lit. : }[\alpha]_{D}^{20}=-14.9\left(c=0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1}
$$

| $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3}$ | calc. | C 64.16 | H 10.36 | N 5.76 |
| :--- | :--- | :--- | :--- | :--- |
| $(243.3)$ | found | C 63.29 | H 10.23 | N 5.53 |

IR (Film): $\tilde{v}=3400$ ( $\mathrm{m}, \mathrm{b}$; NH, OH), 2925 (vs), 2865 (vs), 2840 (m), 1440 (s), 1367 (s), 1333 (m), 1282 (s), 1252 (m), 1231 (m), 1164 (s), 1144 ( s$), 1105$ ( s$), 1071$ ( s$), 1042$ ( s$), 970$ (m), 938 (s), 909 (m), 848 (m), $830(\mathrm{~m}), 777(\mathrm{w}), 738(\mathrm{w}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (250.1 MHz, CDCl ${ }_{3}$ ) : $\delta=1.07(\mathrm{~s}, 3 \mathrm{H}, 1$ '- H$), 1.32-1.65[\mathrm{~m}$, $12 \mathrm{H}, 4-\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}$ ], 2.36 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$ ), 3.52 ( $\mathrm{sb}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{OH}$ ); $3.87\left(\mathrm{dd},{ }^{2} J_{1 \mathrm{a}, 1 \mathrm{~b}}=8.2, J_{1 \mathrm{a}, 2}=7.4 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{a}}\right)$ and $3.89\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 5 \mathrm{a}}\right.$ and $J_{5 \mathrm{a}, 4 \mathrm{~b}}=4.2,6.0,{ }^{2} J_{5 a, 5 \mathrm{~b}}=11.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}$; togethor, 2 H ), 4.03 (ddd,
 $J_{4 \mathrm{a}, 5 \mathrm{~b}}$ and $J_{4 \mathrm{~b}, 5 \mathrm{~b}}=3.7$ and $\left.8.6,{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}=11.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 4.13(\mathrm{dd}$,
$\left.{ }^{2} J_{1 \mathrm{a}, 1 \mathrm{~b}}=8.1, J_{1 \mathrm{~b}, 2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 4.37\left(\mathrm{dd}, J_{1 \mathrm{a}, 2}=7.5, J_{1 \mathrm{~b}, 2}=6.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, 2-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=18.5$ ( $\mathrm{q}, \mathrm{C}-1$ '), 23.9, 24.0, 25.3, 34.0, 34.2, $35.9[6 \mathrm{t}, \mathrm{C}-4$, $\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}$ ], $28.0\left(\mathrm{q}, \mathrm{NHCH}_{3}\right), 57.5(\mathrm{~s}, \mathrm{C}-3), 59.6$ (t, C-5), $64.8(\mathrm{t}, \mathrm{C}-1), 77.7(\mathrm{~d}, \mathrm{C}-2), 109.7$ [s, $\left.\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right]$.

Experiment 38 (YB 107)
(2S, 3R)-1,2-O-Cyclohexylidenedioxyethyl)-3-methyl-3-methylam-ino-1,2,5-pentanetriol (42) by catalytic hydrogenation of the isoxazoline 25b


In analogy to lit. ${ }^{1} 270 \mathrm{mg}$ of the isoxazolidine 25b and 100 mg of $\mathrm{Pd} / \mathrm{C}$ (10\%) were added to a solution of 10 mL methanol. The mixture was left under $\mathrm{H}_{2}$ (1 bar) at room temp. with stirring overnight, and then $\mathrm{Pd} / \mathrm{C}$ was filtered off on celite. The resulting solution was concentrated in vacuo (room temp. $/ 10 \mathrm{mbar}$ ) to give 250 mg of the aminoalcohol 42 as a colourless, analytically pure oil ( $92 \%$; lit. : $92 \%^{1}$ ). The analytical data fully complied with the literature values. ${ }^{1}$

$$
[\alpha]_{D}^{20}=-10.6\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad \text { lit. : }[\alpha]_{D}^{20}=-10.9\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1}
$$

| $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3}$ | calc. | C 64.16 | H 10.36 | N 5.76 |
| :--- | :--- | :--- | :--- | :--- |
| $(243.3)$ | found | C 64.13 | H 10.07 | N 5.21 |

IR (neat): $\tilde{v}=3319$ (sb), 2931 (vs), 2857 (s), 1448 (w), 1367 (w), 1333 (m), 1282 (w), 1163 (m), 1102 (vs), 1071 (m), 1042 (m) 937 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.10\left(\mathrm{~s}, 3 \mathrm{H}, 1{ }^{\prime}-\mathrm{H}\right)$, 1.39-1.69 [m, $\left.12 \mathrm{H}, 4-\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.71\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.2, \mathrm{~J}_{1 \mathrm{a}, 2}\right.$ $\left.=7.4 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{a}}\right)$ and 3.68-3.78 (m,5-H ; together, 2 H ), 3.82-3.91 $\left(\mathrm{m}, 5-\mathrm{H}_{\mathrm{b}}\right)$ and $3.97\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.2, J_{1 \mathrm{~b}, 2}=6.7 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{b}}\right.$; together, 2
 H), 4.21 (dd, $\left.J_{1 \mathrm{a}, 2}=7.6, J_{1 \mathrm{~b}, 2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=18.6\left(\mathrm{q}, \mathrm{C}-1\right.$ '), 23.8, 24.0, 25.2, $34.4,35.8\left[5 \mathrm{t}, \mathrm{C}\left(\underline{\left.\left(\mathrm{CH}_{2}\right)_{5}\right]}\right.\right.$, 28.1 ( $\mathrm{q}, \mathrm{NHCH}_{3}$ ), 34.4 ( $\mathrm{t}, \mathrm{C}-4$ ), 57.0 ( $\mathrm{s}, \mathrm{C}-3$ ), 59.5 ( $\mathrm{t}, \mathrm{C}-5$ ), 65.0 (t, C-1), 78.9 (d, C-2), 109.6 [s, $\left.\underline{C}\left(\mathrm{CH}_{2}\right)_{5}\right]$.

The assignment was confirmed by means of DEPT-, H,H-COSY, C,H-COSY spectra.

Experiment 39 (YB 315)
(2S, 3R)-1,2-O-Cyclohexylidenedioxyethyl)-3-methyl-3-methylam-ino-1,2,5-pentanetriol (42) by $\mathrm{LiAlH}_{4}$ reduction of the N -Bocprotected amino alcohol 62


In analogy to lit. ${ }^{138}$, under nitrogen a $\mathrm{LiAlH}_{4}$-THF solution ( $22.8 \mathrm{~mL}, 0.20 \mathrm{M}, 4.6 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$ was added drop by drop to a solution of $300 \mathrm{mg}(0.91 \mathrm{mmol})$ of the protected amino alcohol 63 in 50 mL abs. THF.
The mixture was refluxed for 1.5 h and then cooled to $0{ }^{\circ} \mathrm{C}$. The excess of $\mathrm{LiAlH}_{4}$ was quenched by adding 0.5 mL of water, 1 mL of NaOH ( $5 \%$ in water, $\mathrm{w} / \mathrm{w}$ ), and 1 mL of water successively. The precipitated $\mathrm{Al}(\mathrm{OH})_{3}$ was filtered off and washed three times with hot chloroform ( $3 \times 10 \mathrm{~mL}$ ).

The combined organic phases were dried over $\mathrm{MgSO}_{4}$ and the solvent was removed under vacuum ( $30^{\circ} \mathrm{C} / 20 \mathrm{mbar}$ ) to give 206 mg of analytically and spectroscopically pure, as a colourless amino alcohol 42 in $93 \%$ yield. The analytical data fully complied with those given in Exp. 38.

$$
[\alpha]_{D}^{20}=-11.1\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3}$ | calc. | C 64.16 | H 10.36 | N 5.76 |
| :--- | :--- | :--- | :--- | :--- |
| $(243.3)$ | found | C 64.24 | H 10.11 | N 5.22 |

## Experiment 40 (YB 67)

## 4,5-O-Cyclohexylidenedioxyethyl)-3-(1-hydroxyethyl)-

 pentanoate (43).

323 mg ( 1.03 mmol ) of the isoxazolidine 26a and 200 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ were added to abs. ethanol ( 10 mL ). The mixture was kept stirring under hydrogen ( 1 bar ) for 3 d , then centrifuged to separate the catalyst, and concentrated in vacuo ( $20^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to afford 224 mg of the crude ester 43 (d.r. 70:30). Purification by MPLC (petroleum ether/ethyl acetate 1:9) gave 50 mg of the analytically pure ester 43 as colourless oil in $17 \%$ yield.

$$
[\alpha]_{D}^{20}=-21.1\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{5}$ | calc. | C 62.91 | H 9.15 |
| :--- | :--- | :--- | :--- |
| $(286.35)$ | found | C 62.60 | H 8.92 |

IR (KBr) : $\tilde{v}=3539$ (b, m), 2935 (m), 2860 (w), 1724 (vs, C=O), 1449 (w), 1399 (w), 1283 (w), 1161 (m), 1084 (s), 1045 (m), 924 (m), 883 (w), 848 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.27\left(\mathrm{t}, \mathrm{J}_{1^{1}, 2^{\prime}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ ), 1.38-1.61 [m, $10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}$ ], $1.52(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.69$ $\left(\mathrm{m}, 1 \mathrm{H}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 2.26\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 2.33\left(\mathrm{dd}, \mathrm{J}_{3,2 \mathrm{a}}=8.3, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=\right.$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}$ ), $2.60\left(\mathrm{dd}, \mathrm{J}_{3,2 \mathrm{~b}}=4.0, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=16.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right.$ ); 3.60-3.67 (m, 2"- $\left.\mathrm{H}_{\mathrm{a}}, 5-\mathrm{H}_{\mathrm{a}}\right)$ and 3.68-3.75 (m, 5- $\mathrm{H}_{\mathrm{b}}$; together 3 H );
 4.04-4.11 (m, $\left.2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}\right)$ and $4.15\left(\mathrm{q}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$; together 4 H ).
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=14.2\left(\mathrm{q}, \mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right), 23.8,24.0,25.1,34.5,36.2[5 \mathrm{t}$, $\left(\underline{\mathrm{C}} \mathrm{H}_{2}\right)_{5}$ ], 34.7 ( $\left.\mathrm{t}, \mathrm{C}-1{ }^{\prime \prime}\right), 35.0\left(\mathrm{t}, \underline{\mathrm{CH}}_{2} \mathrm{OEt}\right), 35.2(\mathrm{~d}, \mathrm{C}-3), 59.9(\mathrm{t}, \mathrm{C}-2 "), 60.7\left(\mathrm{t}, \mathrm{O}_{2} \mathrm{CH}_{3}\right), 67.3$ (t, C-5), $78.0(\mathrm{~d}, \mathrm{C}-4), 109.6\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 173.8(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

Experiment 41 (YB 228)
3-Amino-3-phenylbutan-1-ol (44)


44

## Typical Procedure TP 3 for the Catalytic Reduction of Isoxazolidines to Amino alcohols.

$0.42 \mathrm{~g}(2.58 \mathrm{mmol})$ of the isoxazolidine 29 and 200 mg of $\mathrm{Pd} / \mathrm{C}$ (10\%) were added to 25 mL of MeOH . The mixture was left with stirring overnight under hydrogen ( 1 bar ) at room temp. Then Pd/C was filtered off through celite and concentrated in vacuo ( $30{ }^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to afford 424 mg of analytically and spectroscopically pure amino alcohol 44 in quantitative yield ("100 \%") as a colourless solid (m.p. $75-77^{\circ} \mathrm{C}$; lit. : $77-78{ }^{\circ} \mathrm{C}^{139}$ ). The analytical data complied fully with the values given in lit. ${ }^{139}$

| $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}$ | calc. | C 72.69 | H 9.15 | N 8.48 |
| :--- | :--- | :--- | :--- | :--- |
| $(165.2)$ | found | C 72.57 | H 9.17 | N 8.32 |

IR : $\tilde{v}=3346(\mathrm{~m}), 3290(\mathrm{~m}), 3049(\mathrm{~b}), 2920(\mathrm{w}), 2812(\mathrm{w}), 1594(\mathrm{~m}), 1494(\mathrm{~m}), 1440(\mathrm{~m})$, 1372 (m), 1167 (s), 1097 (s), 1079 (s), 1029 (vs), 765 (vs), 695 (vs) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.48\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.00\left(\mathrm{t}, \mathrm{J}_{1,2}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $2-\mathrm{H}), 3.41\left(\mathrm{t}, \mathrm{J}_{1,2}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}\right), 7.18-7.46\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

${ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=31.7$ ( $\mathrm{q}, \mathrm{C}-1$ '), 47.7 ( $\mathrm{t}, \mathrm{C}-2$ ), 56.4 (s, C-3), $60.7(\mathrm{t}, \mathrm{C}-1)$, 126.8, 128.0, 129.9 ( $3 \mathrm{~d}, o-, m-, p-C$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 149.8 (s, $i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ).

Experiment 42 (YB 231)
(2S, 3R)-3-Amino-1,2-O-(Cyclohexylidene)-3-methyl-1,2,5pentanetriol (45)


Scale: $\quad 270 \mathrm{mg}(1.19 \mathrm{mmol})$ Isoxazolidine 32a
100 mg of $\mathrm{Pd} / \mathrm{C}$ (10 \%)
20 mL abs. MeOH
The reaction was performed according to TP 3 to afford 272 mg of analytically and spectroscopically pure amino alcohol 45 in quantitative yield ("100 \%") as colourless oil.
$[\alpha]_{D}^{20}=-3.9(c=1.00, \mathrm{MeOH})$

| $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{3}$ | calc. | C 62.85 | H 10.11 | N 6.11 |
| :--- | :--- | :--- | :--- | :--- |
| $(229.3)$ | Found | C 62.96 | H 10.17 | N 5.88 |

IR: $\tilde{v}=3357$ (b; NH, OH), 2931 (vs), 2857 (s), 1594 (w), 1448 (m), 1366 (m), 1333 (w), 1281 (w), 1162 (vs), 1069 (s), 909 (s), 848 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=1.05(\mathrm{~s}, 3 \mathrm{H}, 1$ 1'- H$), 1.33-1.68[\mathrm{~m}$, $11 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}$ ], 1.71-1.76 (m, $\left.1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 3.71$ (ddd, $\mathrm{J}_{4 \mathrm{a}, 5 \mathrm{a}}$ and $J_{4 \mathrm{~b}, 5 \mathrm{a}}$ and ${ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}=10.9$ and 7.5 and $5.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}$ ), 3.75-3.81 (m, $\left.2 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.96\left(\mathrm{dd},{ }^{2} J_{1 \mathrm{a}, 1 \mathrm{~b}}=8.1, J_{1 \mathrm{~b}, 2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 4.00$
 ( $\mathrm{t}, \mathrm{J}_{1,2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=22.6$ ( $\mathrm{q}, \mathrm{C}-1$ '), $24.8,25.0,26.3,35.5,37.1\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right]$, $42.4(\mathrm{t}, \mathrm{C}-4), 53.6$ ( $\mathrm{s}, \mathrm{C}-3$ ), $59.2(\mathrm{t}, \mathrm{C}-5), 65.4(\mathrm{t}, \mathrm{C}-1), 82.7(\mathrm{~d}, \mathrm{C}-2), 110.1$ [ $\left.\mathrm{s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right]$.

Experiment 43 (YB 143)

## 3-Amino-3-phenyl-hexan-1-ol (46)



46

Scale: $\quad 235 \mathrm{mg}(1.24 \mathrm{mmol})$ Isoxazolidine $\mathbf{3 0}$ 110 mg of $\mathrm{Pd} / \mathrm{C}$ (10 \%) 20 mL abs. MeOH

The reaction was performed according to TP 3. Column chromatography was done on silica gel (column $2 \mathrm{~cm} \times 10 \mathrm{~cm}, \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 9: 1$ ) to afford 214 mg ( $90 \%$ ) of analytically and spectroscopically pure amino alcohol 46 as a colourless soild (m.p. $71-72^{\circ} \mathrm{C}$ ).

| $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}$ | calc. | C 74.57 | H 9.91 | N 7.25 |
| :--- | :--- | :--- | :--- | :--- |
| $(193.3)$ | found | C 74.15 | H 9.71 | N 7.09 |

IR : $\tilde{v}=3355(\mathrm{~m}), 3287(\mathrm{~m}), 3113(\mathrm{sb}), 3052(\mathrm{~m}), 2924(\mathrm{~m}), 2868(\mathrm{~s}), 1586(\mathrm{~s}), 1493(\mathrm{~m})$, 1444 (s), 1166 (s), 1051 (vs), 963 (vs), 947 (s), 832 (s), 768 (vs) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=0.85\left(\mathrm{t}, \mathrm{J}_{5,6}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}\right), 0.95(\mathrm{~m}, 1$ $\left.H, 5-H_{a}\right), 1.19\left(m, 1 H, 5-H_{b}\right), 1.69\left(d d d, J_{4 a, 4 b}=13.6, J_{4 a, 5 \mathrm{a}}=12.2, J_{4 a, 5 b}=4.5\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.85\left(\mathrm{ddd}, \mathrm{J}_{1 \mathrm{a}, 2 \mathrm{a}}=3.1, J_{1 \mathrm{~b}, 2 \mathrm{a}}=5.6, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right)$,
1.93 (ddd, $J_{4 \mathrm{a}, 4 \mathrm{~b}}=13.4, J_{4 \mathrm{~b}, 5 \mathrm{a}}=12.9, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}$ ), 2.01 (ddd,

$\left.J_{1 \mathrm{a}, 2 \mathrm{~b}}=9.1, J_{1 \mathrm{~b}, 2 \mathrm{~b}}=3.8, J_{2 \mathrm{a}, 2 \mathrm{~b}}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 2.96\left(\mathrm{sb}, 3 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{OH}\right)$,
3.43 (ddd, $\left.J_{1 \mathrm{a}, 1 \mathrm{~b}}=9.5, J_{1 \mathrm{a}, 2 \mathrm{a}}=3.1, J_{1 \mathrm{a}, 2 \mathrm{~b}}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.64\left(\mathrm{ddd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}\right.$ $\left.=9.5, J_{1 \mathrm{~b}, 2 \mathrm{a}}=5.6, J_{1 \mathrm{~b}, 2 \mathrm{~b}}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 7.22-7.36\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$
${ }^{13} \mathrm{C}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=14.4$ ( $\mathrm{q}, \mathrm{C}-6$ ), 16.4 (t, C-5), 43.4 (t, C-2), 46.8 (t, C-4), 59.5 (s, C-3), 60.1(t, C-1), 125.3, 126.4, 128.4 (3 d, o-, m-, $p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 145.5 (s, $i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ).

Experiment 44 (YB 166)
(2S, 3S)-3-Amino-1,2-O-(Cyclohexylidene)-3-propyl-1,2,5pentanetriol (47)


Scale: $\quad 270 \mathrm{mg}(1.07 \mathrm{mmol})$ Isoxazolidine 34a 100 mg of $\mathrm{Pd} / \mathrm{C}$ (10 \%) 15 mL abs. MeOH

The reaction was performed according to TP 3 to afford 230 mg ( $84 \%$ ) of analytically and spectroscopically pure aminoalcohol 47 as colourless oil.

$$
[\alpha]_{D}^{20}=5.3\left(c=0.49, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{3}$ | calc. | C 65.33 | H 10.57 | N 5.44 |
| :--- | :--- | :--- | :--- | :--- |
| $(257.4)$ | Found | C 65.02 | H 10.48 | N 5.16 |

IR: $\tilde{v}=3346,3292(2 \mathrm{~b}, \mathrm{~m}), 2931(\mathrm{~s}), 2862(\mathrm{~m}), 1591(\mathrm{w}), 1365(\mathrm{~m}), 1281(\mathrm{~m}), 1163(\mathrm{~m})$, 1101 (vs), 1069 (s), 1035 (vs), 936 (s), 848 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=0.96\left(\mathrm{t}, \mathrm{J}_{2^{\prime}, 3^{\prime}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, 1.26-1.66 [m, $\left.16 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, 4-\mathrm{H}, 1^{\prime}-\mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.2\left(\mathrm{sb}, 3 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{OH}\right)$, $3.68-3.76\left(\mathrm{~m}, 5-\mathrm{H}_{\mathrm{a}}\right)$ and $3.77\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=6.8, \mathrm{~J}_{1 \mathrm{a}, 2}=5.6 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{a}}\right.$; together, 2 H ), 3.82-3.95 ( $\mathrm{m}, 5-\mathrm{H}_{\mathrm{b}}$ ) and $3.96\left(" t ", J_{1 \mathrm{a}, 1 \mathrm{~b}}=6.7 \mathrm{~Hz}, \mathrm{~J}_{1 \mathrm{~b}, 2}\right.$
 $=6.6 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{b}}$ ) and 4.01 ("dd", $\mathrm{J}_{1 \mathrm{a}, 2}=6.2, \mathrm{~J}_{1 \mathrm{~b}, 2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$; together, 3 H )
${ }^{13} \mathrm{C}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=14.8$ ( $\mathrm{q}, \mathrm{C}-3^{\prime}$ ), 16.9 ( $\mathrm{t}, \mathrm{C}-2$ '), 23.9, 24.0, 25.2, 34.3, 34.5, 36.0, 38.3 [7 t, C( $\left.\mathrm{CH}_{2}\right)_{5}, \mathrm{C}-4, \mathrm{C}-1$ '], 56.1 ( $\mathrm{s}, \mathrm{C}-3$ ), 59.1 (t, C-5), 64.3 (t, C-1), 79.6 (d, C-2), 109.3 [s, $\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}$ ].

## Experiment 45 (YB 167)

## (2S, 3R)-3-Amino-1,2-O-(Cyclohexylidene)-3-propyl-1,2,5pentanetriol (48)



Scale: $\quad 150 \mathrm{mg}(0.59 \mathrm{mmol})$ Isoxazolidine 34b 50 mg of $\mathrm{Pd} / \mathrm{C}$ (10 \%) 10 mL abs. MeOH

The reaction was performed according to TP 3 to afford 136 mg ( $89 \%$ ) of analytically and spectroscopically pure aminoalcohol 48 as colourless oil.
$[\alpha]_{D}^{20}=-6.1\left(c=1.19, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{3}$ | calc. | C 65.33 | H 10.57 | N 5.44 |
| :--- | :--- | :--- | :--- | :--- |
| $(257.4)$ | Found | C 64.81 | H 10.56 | N 5.12 |

IR: $\tilde{v}=3359$ ( sb ), 2931 ( s$), 2861$ (m), 1589 ( w ), 1448 (m), 1365 (m), 1281 (w), 1231 (w), 1162 (m), 1100 (vs), 1068 (m), 1036 (s), 930 (vs), 908 (vs), 847 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.93\left(\mathrm{t}, \mathrm{J}_{2,33^{\prime}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, 1.26-1.66 [m, $\left.16 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, 4-\mathrm{H}, 1^{\prime}-\mathrm{H}, 2^{\prime}-\mathrm{H}\right], 3.2\left(\mathrm{sb}, 3 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{OH}\right)$, 3.68 ("t", $\left.J_{1 \mathrm{a}, 1 \mathrm{~b}}=7.9,1-\mathrm{H}_{\mathrm{a}}\right)$ and 3.68-3.77 (m,5- $\mathrm{H}_{\mathrm{a}}$; together, 2 H ), 3.84-3.94 ( $\mathrm{m}, 5-\mathrm{H}_{\mathrm{b}}$ ) and $3.94\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.0, J_{1 \mathrm{~b}, 2}=6.6 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{b}}\right.$;
 together, 2 H ), 4.04 (dd, $\left.\mathrm{J}_{1 \mathrm{a}, 2}=7.7, \mathrm{~J}_{1 \mathrm{~b}, 2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=14.8$ ( $\mathrm{q}, \mathrm{C}-3^{\prime}$ ), 16.9 ( $\mathrm{t}, \mathrm{C}-2$ '), 23.7, 23.9, 25.1, 34.6, 36.1, 37.0, $38.2\left[7 \mathrm{t},\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{C}-4, \mathrm{C}-1\right.$ '], $55.3(\mathrm{~s}, \mathrm{C}-3), 59.2(\mathrm{t}, \mathrm{C}-5), 63.6(\mathrm{t}, \mathrm{C}-1), 80.2(\mathrm{~d}, \mathrm{C}-2)$, 109.6 [s, $\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}$ ].

## Experiment 46 (YB 197)

## (2S, 3R, 5S)-3-Amino-1,2-O-(Cyclohexylidene)-3-propyl-

 1,2,5,6-hexanetetraol (49)

49

Scale: $\quad 190 \mathrm{mg}(0.67 \mathrm{mmol})$ Isoxazolidine 35a 60 mg of $\mathrm{Pd} / \mathrm{C}$ (10 \%) 15 mL abs. MeOH

The reaction was performed according to TP 3 to afford 185 mg ( $97 \%$ ) of analytically and spectroscopically pure aminoalcohol 49 as colourless oil.
$[\alpha]_{D}^{20}=-3.6\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{4}$ | calc. | C 62.69 | H 10.17 | N 4.87 |
| :--- | :--- | :--- | :--- | :--- |
| $(287.4)$ | found | C 62.14 | H 10.05 | N 4.45 |

IR: $\tilde{v}=3410$ ( sb, OH), 2931 (vs), 2862 (m), 1695 ( w ), 1580 ( w$), 1448$ (m), 1364 (w), 1251 (w), 1143 (w), 1098 (vs), 960 (s), 848 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=0.93\left(\mathrm{t}, \mathrm{J}_{2 ; 3^{\prime}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, 1.07-1.86 [m, $\left.16 \mathrm{H}, 2^{\prime}-\mathrm{H}, 4-\mathrm{H}, 1^{\prime}-\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 3.46\left(\mathrm{dd}, \mathrm{J}_{5,6 \mathrm{a}}=5.8\right.$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 3.58\left(\mathrm{dd}, J_{5,6 \mathrm{~b}}=3.6, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.1 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}$ ), 3.66 ("dd", $\mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}$ and $\left.\mathrm{J}_{1 \mathrm{a}, 2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right) ; 3.94(\mathrm{dd}$, $\left.J_{1 \mathrm{a}, 1 \mathrm{~b}}=8.2, J_{1 \mathrm{~b}, 2}=6.6 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{b}}\right)$ and $3.96-4.02(\mathrm{~m}, 5-\mathrm{H})$ and 4.01


49 (dd, $J_{1 \mathrm{a}, 2}=7.6, J_{1 \mathrm{~b}, 2}=6.6 \mathrm{~Hz}, 2-\mathrm{H}$; together 3 H ).
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=14.8$ ( $\mathrm{q}, \mathrm{C}-\mathrm{3}^{\prime}$ ), 17.1 ( $\left.\mathrm{t}, \mathrm{C}-\mathrm{C}^{\prime}\right), 23.7,23.9,25.1,34.5,36.1$, $36.8,37.9\left[7 \mathrm{t}, \mathrm{C}-4, \mathrm{C}-1{ }^{\prime}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 55.4$ (s, C-3), $63.4(\mathrm{t}, \mathrm{C}-6), 67.4$ (t, C-1), 68.6 (d, C-5), 80.1 (d, C-2), 109.7 [s, $\left.\underline{( }\left(\mathrm{CH}_{2}\right)_{5}\right]$.

Experiment 47 (YB 198)

## (2S, 3S, 5S)-3-Amino-1,2-O-(Cyclohexylidene)-3-propyl-

## 1,2,5,6-hexanetetraol (50)



Scale: $\quad 445 \mathrm{mg}(1.57 \mathrm{mmol})$ isoxazolidine 35b 150 mg of $\mathrm{Pd} / \mathrm{C}$ (10 \%) 25 mL abs. MeOH

The reaction was performed according to TP 3 to afford 443 mg (98 \%) of spectroscopically pure, analytically impure aminoalcohol 50 as colourless oil.
$[\alpha]_{D}^{20}=13.3(c=1.00, \mathrm{MeOH})$
$\mathrm{MS}(\mathrm{m} / \mathrm{z})$ : calc. $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{4} 287.4$, found 287.2 (molecular peak).

IR: $\tilde{v}=3280$ (sb, OH), 2931 (vs), 2860 (m), 1504 (w), 1448 (w), 1282 (w), 1144 (m), 1095 (vs), 1071 (s), 1034 (vs), 926 (s), 910 (m), 848 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.00\left(\mathrm{t}, \mathrm{J}_{2,3} \mathrm{~B}^{\prime}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, $1.12-2.08\left[\mathrm{~m}, 16 \mathrm{H}, 2^{\prime}-\mathrm{H}, 4-\mathrm{H}, 1^{\prime}-\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 3.55\left(\mathrm{dd}, \mathrm{J}_{5,6 \mathrm{a}}=6.2\right.$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 3.68\left(\mathrm{dd}, J_{5,6 \mathrm{~b}}=2.8, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.5 \mathrm{~Hz}, 1\right.$ $\left.\mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right), 4.03\left(\mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=9.0, J_{1 \mathrm{a}, 2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right) ; 4.14(\mathrm{dd}$,

$\left.J_{1 \mathrm{a}, 1 \mathrm{~b}}=9.2, J_{1 \mathrm{~b}, 2}=7.0 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{b}}\right)$ and 4.11-4.16 $(\mathrm{m}, 5-\mathrm{H}$; together 2
$H) ; 4.27\left(t, J_{1,2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=14.5$ ( $\mathrm{q}, \mathrm{C}-3$ '), 16.9 (t, C-2'), 23.7, 24.0, 25.1, 32.6, 34.1, 35.5, 35.6 [7 t, C-4, C-1', C( $\left.\mathrm{CH}_{2}\right)_{5}$ ], 60.2 ( $\mathrm{s}, \mathrm{C}-3$ ), 63.9 (t, C-6), 66.6 (t, C-1), 68.2 (d, C-5), 76.7 (d, C-2), 110.5 [s, $\left.\underline{( }\left(\mathrm{CH}_{2}\right)_{5}\right]$.

### 11.6 Hydrolysis of Isoxazolidines.

## Experiment 48 (YB 17)

2-methyl-3-phenyl-2-isoxazolidineacetic acid; hydrochloride (51).


300 mg ( 1.2 mmol ) of isoxazolidine 24 was added to $\mathrm{HCl}(40 \mathrm{~mL}, 20 \%$ ). The mixture was refluxed for 2.5 h , then the solvent was evaporated to give 305 mg ( $98 \%$ ) of analytically and spectroscopically pure isoxazolinium salt 51 as a colourless solid (m. p. $185{ }^{\circ} \mathrm{C}$ decom.). Crystallization from abs. ethanol gave 51 in the form of colourless crystals, suitable for crystal structure determination (see appendix 12.1.4).

| $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{Cl}$ | calc. | C 55.89 | H 6.26 | N 5.43 | Cl 13.76 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(257.7)$ | found | C 55.98 | H 6.35 | N 5.32 | Cl 14.00 |

IR (Film): $\tilde{v}=2950$ (m, b), 2360 (s, b), 1725 (vs), 1640 (w), 1480 (w), 1455 (m), 1445 (w), 1430 (w), 1415 (w), 1370 (w), 1340 (w), 1300 (m), 1260 (w), 1270 (m), 1260 (m), 1250 (m), 1100 (w), 1075 (w), 1040 (w), 1025 (w), 980 (w), 825 (m), $740(\mathrm{~m}), 690(\mathrm{~m}), 600(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ ): $\delta=2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$ ), $2.96(\mathrm{~m}, 1 \mathrm{H}, 4-$ $\left.\mathrm{H}_{\mathrm{a}}\right) ; 3.20\left(\mathrm{~d}, \mathrm{~J}_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=16.1 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$ and $3.23\left(\mathrm{~m}, 4-\mathrm{H}_{\mathrm{b}}\right.$; together 2 H$)$; $3.37\left(\mathrm{~d}, \mathrm{~J}_{1^{\prime},{ }^{\prime} \mathrm{l}^{\mathrm{b}}}=14.3 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.41\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 4.57(\mathrm{~m}, 1 \mathrm{H}$, 5- $\mathrm{H}_{\mathrm{b}}$ ), 7.36-7.49 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ ).

$51 \cdot \mathrm{HCl}$
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ ): $\delta=35.2(\mathrm{t}, \mathrm{C}-4), 39.4\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 40.1\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 70.3(\mathrm{t}, \mathrm{C}-$ 5), 77.2 (s, C-3), 126.2, 128.4, 129.9, 130.0, 130.9 ( $5 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 133.0 (s, $i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), $172.6\left(\mathrm{~s}, \underline{\mathrm{C}}_{2} \mathrm{H}\right)$.

Experiment 49 (YB 25)
(S)-3-((S)-1,2-Dihydroxyethyl)-2,3-dimethyl-2-isoxazolidine (52), cf. lit. ${ }^{1}$


52

According to lit. ${ }^{1}$ to $570 \mathrm{mg}(2.36 \mathrm{mmol})$ of isoxazolidine $\mathbf{2 5 a}, 20 \mathrm{~mL}$ of $\mathrm{HCl}(6.0 \mathrm{~N})$ was added. The reaction mixture was left with stirring for 24 h at room temp., then the solvent was concentrated in vacuo ( $60^{\circ} \mathrm{C} / 20 \mathrm{mbar}$ ) to give brownish oil. This was neutralized with sat. $\mathrm{NaHCO}_{3}$ solution ( 25 mL ), 5 gram of silica gel was added to mixture, and then concentrated in vacuo ( $60^{\circ} \mathrm{C} / 20 \mathrm{mbar}$ ), which purified by column chromatography ( $2 \mathrm{~cm} \times 15$ $\left.\mathrm{cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 85: 15\right)$ to afford 354 mg of 52 ( $93 \%$; lit. $96 \%^{1}$ ) as a colourless soild (m.p. $46-48{ }^{\circ} \mathrm{C}$. The analytical data complied fully with the literature values. ${ }^{1}$
$[\alpha]_{D}^{20}=-70.4\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. : $[\alpha]_{D}^{20}=-72.8\left(c=1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1}$

| $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{3}$ | calc. | C 52.16 | H 9.38 | N 8.69 |
| :--- | :--- | :--- | :--- | :--- |
| $(161.2)$ | found | C 52.04 | H 9.40 | N 8.27 |

IR (Film): $\tilde{v}=3367$ (s, b; OH), 2968 (s), 2884 (s), 1445 (m), 1404 (m), 1093 (s), 1069 (s), 1024 (vs), 942 (m), 882 (m) cm ${ }^{-1}$.
 $\left.12.5, J_{4 \mathrm{a}, 5 \mathrm{a}}=6.8, J_{4 \mathrm{a}, 5 \mathrm{~b}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.51\left(\mathrm{ddd},{ }^{2} J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.5, J_{4 \mathrm{~b}, 5 \mathrm{a}}=\right.$ $\left.9.3, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.54(\mathrm{sb}, 2 \mathrm{OH})$ and 3.54 (dd, $J_{1^{\prime}, 2^{\prime} a}=6.2, J_{1^{\prime}, 2 b}=4.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}$; together 3 H ); $3.62\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2^{2} a}=\right.$


52 $\left.6.3,{ }^{2} J_{2^{\prime}, 2^{\prime} \mathrm{b}}=11.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.75\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime} \mathrm{b}}=4.3,{ }^{2} J_{2^{\prime} \mathrm{a}, 2^{2} \mathrm{~b}}=11.4 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}$ ), 3.80 (ddd, $J_{4 \mathrm{a}, 5 \mathrm{a}}=6.7, J_{4 \mathrm{~b}, 5 \mathrm{a}}=9.4,{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}$ ), $4.00\left(\mathrm{ddd}, J_{4 \mathrm{a}, 5 \mathrm{~b}}=9.5, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{~b}}=5.1,{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.6$ ( $\mathrm{q}, \mathrm{C}-1$ "), 36.7 (t, C-4), 37.7 (q, $\mathrm{N}-\mathrm{CH}_{3}$ ), 63.7 (t, C-2'), 65.2 (t, C-5), 68.5 ( $\mathrm{s}, \mathrm{C}-3$ ), 73.5 (d, C-1').

Experiment 50 (YB 108)
(R)-3-((S)-1,2-Dihydroxyethyl)-2,3-dimethyl-2-isoxazolidine (52).


53

According to lit. ${ }^{1}$ to 750 mg ( 3.11 mmol ) of isoxazolidine $\mathbf{2 5 b} 30 \mathrm{~mL}$ of $\mathrm{HCl}(6 \mathrm{~N})$ was added and left with stirring for 48 h at room temp., then the solvent was concentrated in vacuo ( 20 $\mathrm{mbar} / 60^{\circ} \mathrm{C}$ ) to give a brownish oil. This was neutralized with sat. $\mathrm{NaHCO}_{3}$ solution ( 25 mL ), to this mixture 5 gram of silica gel was added, and then the mixture was concentrated in vacuo ( $60{ }^{\circ} \mathrm{C} / 20 \mathrm{mbar}$ ). Purification with column chromatography through silica gel ( 2 cm x $15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1$ ) afforded 490 mg of analytically pure diol 53 (99 \%) as a colourless oil.

$$
[\alpha]_{D}^{20}=39.9(c=1.00, \mathrm{MeOH})
$$

| $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{3}$ | calc. | C 52.16 | H 9.38 | N 8.69 |
| :--- | :--- | :--- | :--- | :--- |
| $(161.2)$ | Found | C 52.46 | H 9.10 | N 8.16 |

IR (Film): $\tilde{v}=3440$ (s, b; OH), 2959 ( s$), 2870$ ( s$), 2218$ (m), 1455 (m), 1431 (m), 1395 (m), 1161 (m), 1075 (s), 1035 (s), 1008 (s), 955 (m), 915 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=1.17$ (s, $3 \mathrm{H}, 1$ "-H), 2.04 (ddd, $\mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=$ $\left.12.4, J_{4 a, 5 \mathrm{a}}=6.3, J_{4 \mathrm{a}, 5 \mathrm{~b}}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.41$ (ddd, $J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.4, J_{4 \mathrm{~b}, 5 \mathrm{a}}$ $\left.=9.4, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.56\left(2,3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.41(\mathrm{sb}, 2 \mathrm{H}, 2$ OH ), 3.48 ( dd, $\left.J_{1^{\prime}, 2^{\prime} a}=3.5, J_{1^{\prime}, 2^{\prime b}}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.68\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, 2 a^{\prime}}=3.5\right.$,


53
$\left.J_{2^{\prime}, 2^{2} b}=11.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$ and $3.77\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime} \mathrm{b}}=5.5, J_{2^{\prime}, 2^{\prime \prime} \mathrm{b}}=11.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$; together 2 H ); 3.93 (ddd, $J_{4 \mathrm{a}, 5 \mathrm{a}}=6.3, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=9.5, J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ $H_{a}$ ), $4.09\left(d d d, J_{4 a, 5 b}=9.9, J_{4 b, 5 b}=5.6, J_{5 a, 5 b}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{b}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=16.0$ ( $\mathrm{q}, \mathrm{C}-1$ "), $39.2(\mathrm{t}, \mathrm{C}-4), 38.5\left(\mathrm{q}, \mathrm{N}-\mathrm{CH}_{3}\right), 65.0\left(\mathrm{t}, \mathrm{C}-2{ }^{\prime}\right)$, 66.0 (t, C-5), 69.7 (s, C-3), 77.4 (d, C-1').

Experiment 51 (YB 68)
(S)-3-((S)-1,2-Dihydroxyethyl)-2,3-dimethyl-2-isoxazolidine; hydrochloride (53).

$52 \cdot \mathrm{HCl}$
444 mg ( 1.84 mmol ) of the isoxazolidine 25a was added to 20 mL of $\mathrm{HCl}(6.0 \mathrm{~N})$. The mixture was kept with stirring for 24 h at room temp. Then the solvent was concentrated in vacuo (60 $\left.{ }^{\circ} \mathrm{C} / 20 \mathrm{mbar}\right)$ to give brownish oil, which purified by column chromatography $\left(\mathrm{SiO}_{2}, 2 \mathrm{~cm} \times 15\right.$ $\mathrm{cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 85: 15$ to $1: 1$ ) to yield $254 \mathrm{mg}(86 \%)$ spectroscopically pure diol $52 \cdot \mathbf{H C l}$ as a colourless soild (m. p. 118-120 ${ }^{\circ} \mathrm{C}$ ). Crystallization from ethanol/petroleum ether gave colourless crystals, suitable for crystal structure determination (m. p. $118{ }^{\circ} \mathrm{C}$, see appendix 12.1.5).
$[\alpha]_{D}^{20}=-60.8(c=1.00, \mathrm{MeOH})$

IR : $\tilde{v}=3380$ (s, b; OH), 2968 (s), 2893 (s), 1501 (w), 1489 (m), 1445 (m), 1404 (m), 1097 (s), 1061 (vs), 1024 (vs), 942 (m), 882 (m), 798 (w) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=1.36$ (s, $3 \mathrm{H}, 1$ "-H), 2.26 ("ddd", $\mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=$ 12.9, $J_{5 \mathrm{a}, 4 \mathrm{a}}$ and $J_{4 \mathrm{a}, 5 \mathrm{~b}}=5.1$ and $\left.8.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.79\left(\mathrm{ddd},{ }^{2} J_{4 \mathrm{a}, 4 \mathrm{~b}}=\right.$ 12.9, $J_{4 b, 5 \mathrm{a}}$ and $\mathrm{J}_{4 \mathrm{~b}, 5 \mathrm{~b}}=7.2$ and $\left.9.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.62\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime} \mathrm{a}}=5.6,{ }^{2} J_{2^{\prime}, 2^{2} \mathrm{~b}}=11.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.70-3.81\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\right.$

52. HCl $\left.H_{b}, 1^{\prime}-H\right), 4.11-4.21\left(m, 1 H, 5-H_{a}\right), 4.29-4.37\left(m, 1 H, 5-H_{b}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=16.5\left(\mathrm{t}, \mathrm{C}-1{ }^{\prime \prime}\right), 35.3(\mathrm{t}, \mathrm{C}-4), 37.1\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 64.2\left(\mathrm{t}, \mathrm{C}-\mathbf{2}^{\prime}\right)$, 69.6 (t, C-5), 72.3 (s, C-3), 75.4 (d, C-1').

Experiment 52 (YB 174)
(R)-3-((S)-1,2-Dihydroxyethyl)-2,3-dimethyl-2-isoxazolidine; hydrochloride $(53 \cdot \mathrm{HCl})$.

53. HCl

950 mg ( 3.94 mmol ) of the isoxazolidine $\mathbf{2 5 b}$ was added to 40 mL of $\mathrm{HCl}(6.0 \mathrm{~N})$. The reaction mixture was kept with stirring for 24 h at room temp., then the solvent was concentrated in vacuo ( $60{ }^{\circ} \mathrm{C} / 20 \mathrm{mbar}$ ) to give brownish oil, then purified by column
chromatography $\left(\mathrm{SiO}_{2}, 2 \mathrm{~cm} \times 15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 85: 15\right.$ to $1: 1$ ) to yield 695 mg (89 \%) spectroscopic pure diol $53 \cdot \mathrm{HCl}$ as a colourless oil.
$[\alpha]_{D}^{20}=34.3(c=1.00, \mathrm{MeOH})$

IR: $\tilde{v}=3324$ (vs, b), 2953 (w), 2534 (m), 1634 (m), 1449 (s), 1388 (m), 1227 (w), 1188 (w), 1094 (s), 1058 (vs), 1008 (m), 968 (w), 881 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=1.48\left(\mathrm{~s}, 3 \mathrm{H}, 1{ }^{1 "-\mathrm{H}), 2.46-2.53(\mathrm{~m}, 1 \mathrm{H}, 4-1 .}\right.$ $\mathrm{H}_{\mathrm{a}}$ ), 2.66-2.72 (m, $\left.1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 3.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.67\left(\mathrm{~d}, \mathrm{~J}_{1^{\prime}, 2^{\prime}}=4.5 \mathrm{~Hz}, 2\right.$ H, 2'-H), 3.96-4.02 (m, 1 H, 1'-H), 4.28-4.33 (m, 1 H, 5-Ha), 4.39.4.44 (m, 1 $\mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$ ).

53. HCl
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=15.7\left(\mathrm{t}, \mathrm{C}-1{ }^{\prime \prime}\right), 40.8(\mathrm{t}, \mathrm{C}-4), 40.9\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 64.5\left(\mathrm{t}, \mathrm{C}-2^{\prime}\right)$, 71.5 (t, C-5), 75.5 (d, C-1'), 78.3 (s, C-3).

Experiment 53 (YB 209, MI 22)
(5S,6S)-6-Hydroxymethyl-1-methyl-2,7-dioxa-1-azaspiro[4.4]nonan8 -one (55).


54

To 500 mg ( 1.60 mmol ) of isoxazolidine 26a, 15 mL of $\mathrm{HCl}(1.4 \mathrm{M}$ in MeOH$)$ was added and left with stirring for 48 h at room temp., then the solvent was concentrated in vacuo ( $10 \mathrm{mbar} /$ $30^{\circ} \mathrm{C}$ ) to give 400 mg of a yellowish oil, which was neutralized with sat. $\mathrm{NaHCO}_{3}$ solution ( 25 mL ), to this mixture 5 gram of silica gel was added, and then concentrated in vacuo ( 20 mbar/ $60^{\circ} \mathrm{C}$ ), then purified by column chromatography $\left(\mathrm{SiO}_{2}, 2 \mathrm{~cm} \times 20 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 9:1) to afford 205 mg of the isoxazolidinolactone 54 ( $69 \%$ ) as a colourless oil. Crystallization from ethanol/petroleum ether gave a colourless crystals (m.p. 101-103 ${ }^{\circ} \mathrm{C}$ ), suitable for crystal structure determination (m.p. $102{ }^{\circ} \mathrm{C}$, see appendix 12.1.6).
$[\alpha]_{D}^{20}=-68.1\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{4}$ | calc. | C 51.33 | H 6.99 | N 7.48 |
| :--- | :--- | :--- | :--- | :--- |
| $(187.2)$ | found | C 51.43 | H 7.00 | N 7.37 |

IR (KBr) : $\tilde{v}=3405(\mathrm{vs}), 2930(\mathrm{~m}), 2900(\mathrm{~m}), 2890(\mathrm{~m}), 2840(\mathrm{~m}), 1760(\mathrm{vs}), 1475(\mathrm{~m}), 1462$ (w), 1395 (w), 1370 (s), 1275 (w), 1345 (s), 1285 (s), 1230 (m), 1170 (vs), 1110 (m), 1090 (w), 1060 (m), 1035 (m), 1015 (vs), 990 (s), 910 (s), 880 (m), 850 (m), 810 (m), 775 (s) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.39\left(\mathrm{ddd}, \mathrm{J}_{3 \mathrm{a}, 4 \mathrm{a}}=7.7, \mathrm{~J}_{3 \mathrm{~b}, 4 \mathrm{a}}=10.2, \mathrm{~J}_{4 \mathrm{a}, 4 \mathrm{~b}}\right.$ $\left.=12.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.49\left(\mathrm{~d}, \mathrm{~J}_{9 \mathrm{a}, 9 \mathrm{~b}}=17.1 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right), 2.55\left(\right.$ "ddd", $\mathrm{J}_{3 \mathrm{a}, 4 \mathrm{~b}}$ $\left.=8.9, J_{3 \mathrm{~b}, 4 \mathrm{~b}}=4.3, \mathrm{~J}_{4 \mathrm{a}, 4 \mathrm{~b}}=12.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.04(\mathrm{~d}$, $\left.J_{9 a, 9 b}=17.1 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 3.83\left(\mathrm{dd}, \mathrm{J}_{6,1_{\mathrm{a}}}=4.9, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\right.$ $\left.H_{a}\right), 3.94\left(d d, J_{6,1 \mathrm{r}}=3.3, J_{1^{\prime},{ }^{\prime}{ }^{\prime} b}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.02\left(\mathrm{dt}, \mathrm{J}_{3 \mathrm{a}, 3 \mathrm{~b}}=8.8\right.$,


54 $\left.J_{3 \mathrm{a}, 4 \mathrm{a}}=J_{3 \mathrm{a}, 4 \mathrm{~b}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 4.19\left(\mathrm{dd}, J_{6,1^{\prime} \mathrm{a}}=4.9, J_{6,1^{\prime} \mathrm{b}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\right.$ H), 4.28 (ddd, $J_{3 \mathrm{a}, 3 \mathrm{~b}}=10.1, J_{3 \mathrm{~b}, 4 \mathrm{a}}=4.2, \mathrm{~J}_{3 \mathrm{~b}, 4 \mathrm{~b}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}$ ).
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=35.1(\mathrm{t}, \mathrm{C}-9), 38.2(\mathrm{t}, \mathrm{C}-4), 40.8\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 61.5(\mathrm{t}, \mathrm{C}-1$ '), 65.3 (t, C-3), 71.9 (s, C-5), 86.6 (d, C-6), 173.0 ( $\mathrm{s}, \underline{\mathrm{C}=0}$ ).

Experiment 54 (MI 26)
(5R,6S)-6-Hydroxymethyl-1-methyl-2,7-dioxa-1-azaspiro[4.4]nonan8 -one (55).


55
To 567 mg ( 1.80 mmol ) of isoxazolidine $\mathbf{2 6 b}, 40 \mathrm{~mL}$ of $\mathrm{HCl}(6 \mathrm{~N})$ was added and left stirring over 29 h at room temp., then the solvent was concentrated in vacuo ( $10 \mathrm{mbar} / 60^{\circ} \mathrm{C}$ ) to give a yellowish oil, which was neutralized with sat. $\mathrm{NaHCO}_{3}$ solution ( 25 mL ), and then concentrated in vacuo ( $20 \mathrm{mbar} / 60^{\circ} \mathrm{C}$ ) to give 290 mg of 37 , which purified through silica gel plates (Silica gel $60 \mathrm{~F}_{254} 20 \times 20$ thickness 0.25 mm ) to afford 85 mg of the isoxazolidinolactone 55 ( $25 \%$ ) as colourless crystals (m.p. 118-119 ${ }^{\circ} \mathrm{C}$ ).

$$
[\alpha]_{D}^{20}=12.4\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{4}$ | calc. | C 51.33 | H 6.99 | N 7.48 |
| :--- | :--- | :--- | :--- | :--- |
| $(187.2)$ | found | C 51.19 | H 6.98 | N 7.32 |

IR (KBr) : $\tilde{v}=3270(\mathrm{vs}), 2950(\mathrm{~m}), 2900(\mathrm{~m}), 2870(\mathrm{~m}), 2810(\mathrm{~m}), 1770(\mathrm{~s}), 1470(\mathrm{~m}), 1440$ (m), 1385 (m), 1340 (w), 1275 (w), 1240 (m), 1180 (vs), 1110 (m), 1095 (w), 1040 (m), 1025 (vs), 940 (w), $895(\mathrm{~m}), 835(\mathrm{~m}), 760(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.40\left(\mathrm{ddd}, J_{4 \mathrm{a}, 4 \mathrm{~b}}=13.0, J_{4 \mathrm{a}, 3 \mathrm{~b}}\right.$ and $J_{4 \mathrm{a}, 3 \mathrm{a}}$ $=9.5$ and $\left.6.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right) ; 2.58\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$ and $2.51-3.02\left(\mathrm{~m}, 9-\mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right.$; together 6 H ); $3.81\left(\mathrm{dd}, \mathrm{J}_{6,1 \mathrm{a} \mathrm{a}}=2.6, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$ ), 3.92 (ddd, $J_{3 \mathrm{a}, 3 \mathrm{~b}}=9.4, J_{3 \mathrm{~b}, 4 \mathrm{a}}$ and $J_{3 \mathrm{~b}, 4 \mathrm{~b}}=7.9$ and $6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}$ ); 3.96-4.08 $(\mathrm{m}, 6-\mathrm{H})$ and $4.03\left(\mathrm{dd}, \mathrm{J}_{6,1^{\prime} \mathrm{b}}=3.2, \mathrm{~J}_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.8 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right.$; together 2


55 H); 4.46 ( $\mathrm{m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}$ ).
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=33.9$ ( $\mathrm{t}, \mathrm{C}-9$ ), $36.5(\mathrm{t}, \mathrm{C}-4), 37.7\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 62.2\left(\mathrm{t}, \mathrm{C}-1{ }^{\prime}\right)$, 64.7 (t, C-3), 71.3 (s, C-5), 86.3 (d, C-6), 175.2 ( $\mathrm{s}, \underline{\mathrm{C}=0}$ ).

Experiment 55 (YB 216)

## (4RS,5S)-5-Hydroxymethyl-4-[2-(N-methylaminooxy)-ethyl]-dihydrofuran-2-one (56)

and
(4RS,5S)-4-(2-Hydroxyethyl)-5-hydroxymethyldihydrofuran-2-one (57)


57
$0.71 \mathrm{~g}(2.27 \mathrm{mmol})$ of isoxazolidine 26a was added to conc. $\mathrm{HCl}(20 \mathrm{~mL})$. The mixture was left with stirring for 36 h at room temp., and then concentrated in vacuo ( $60{ }^{\circ} \mathrm{C} / 15 \mathrm{mbar}$ ) to give 0.58 g which was neutralized with sat. $\mathrm{NaHCO}_{3}$ solution up to pH 9 , then concentrated again, and then filtered through silica gel $\left(\mathrm{SiO}_{2}, 2 \mathrm{~cm} \times 5 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)$ to yield 450 mg . To this crude product in 25 mL of MeOH 200 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ was added. The mixture was kept with stirring for 5 h under hydrogen ( 1 bar ) at room temp., then concentrated in vacuo ( $30^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give a yellowish oil, which was chromatographed ( $\mathrm{SiO}_{2}, 2 \mathrm{~cm} \times 15$ $\mathrm{cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1$ then 4:6) to afford 318 mg of the spectroscopically pure lactone 56 (74
\%, d.r. 63:37) as a colourless oil and 60 mg of the slightly pure lactone 57 (16\%, d.r. 65:35), also as a colourless oil.

## A) (4RS,5S)-5-Hydroxymethyl-4-[2-(N-methylaminooxy)-ethyll-dihydrofuran-2-one (56)

| $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{4}$ | calc. | C 50.25 | H 8.96 | N 7.32 |
| :--- | :--- | :--- | :--- | :--- |
| $(191.2)$ | found | C 48.70 | H 8.90 | N 6.91 |

IR: $\tilde{v}=3276$ ( $\mathrm{sb}, \mathrm{OH}$ ), 2930 (w), 1745 (vs, C=O), 1420 (w), 1358 (w), 1181 (m), 1029 (vs), $936(\mathrm{~m}), 799(\mathrm{w}) \mathrm{cm}^{-1}$.

MS (m/z): calc. $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{4}$ 191.2, found 191.2 (molecular peak).
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) : $\delta=1.47-1.55\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.70$ (ddt, $J_{1^{\prime} \mathrm{a}, 1^{\prime \prime} \mathrm{b}}=11.8, J_{4,1^{\prime \prime} \mathrm{b}}$ and $\left(J_{1^{\prime} \mathrm{b}, 2^{\prime} \mathrm{a}}=J_{1^{\prime}, 2^{2} \mathrm{~b}}\right)=4.7$ and $\left.7.0 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$, 2.11$2.18(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 2.22\left(\mathrm{dd}, \mathrm{J}_{3 \mathrm{a}, 3 \mathrm{~b}}=14.4, \mathrm{~J}_{3 \mathrm{a}, 4}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 2.38$ (dd, $J_{3 \mathrm{a}, 3 \mathrm{~b}}=14.5, \mathrm{~J}_{3 \mathrm{~b}, 4}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}$ ), $2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.48-$ 3.64 (m, 5 H, $1^{\prime \prime}-\mathrm{H}, 5-\mathrm{H}, \mathrm{H}-2$ ).


56

The peaks of the minor diasteromer were totally overlaped with the major one.

## 1) Major diastereomer 56:

${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) : $\delta=28.0\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 36.6$ (d, C-1'), 38.3 (d, C-4), 40.4 (t, C1'), 62.7 (t, C-2'), $66.8\left(\mathrm{t}, \mathrm{C}-1{ }^{\prime \prime}\right), 76.9$ (d, C-5), 177.7 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ).

## II) Minor diastereomer 56:

${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) : $\delta=28.0\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 36.8(\mathrm{~d}, \mathrm{C}-2 \mathrm{C}), 37.8(\mathrm{~d}, \mathrm{C}-3), 38.5(\mathrm{t}, \mathrm{C}-$ 2'), 62.5 ( $\mathrm{t}, \mathrm{C}-1$ '), 66.5 (t, C-5), 76.4 (d, C-4), 178.1 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ).

## B) (4RS,5S)-4-(2-Hydroxyethyl)-5-hydroxymethyldihydrofuran-2-one (57)

| $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}$ | calc. | C 52.49 | H 7.55 |
| :--- | :--- | :--- | :--- |
| $(160.2)$ | found | C 51.51 | H 7.56 |

IR: $\tilde{v}=3408$ (sb), 2930 (w), 1745 (vs, C=O), 1358 (w), 1181 (m), 1029 (vs), 936 (m), 799 (w) $\mathrm{cm}^{-1}$.

## 1) Major diastereomer 57:

${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) : $\delta=1.70\left(\mathrm{ddt}, \mathrm{J}_{4, \mathrm{l}^{\prime} \mathrm{a}}\right.$ and $J_{1^{\prime} \mathrm{a}, 2^{\prime}}=9.0$ and $\left.6.0, J_{1^{\prime}, 1^{\prime} b}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.79-1.90\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.43\left(\mathrm{dd}, \mathrm{J}_{3 \mathrm{a}, 3 \mathrm{~b}}\right.$ $\left.=17.6, J_{3 \mathrm{a}, 4}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 2.56-2.65(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 2.83\left(\mathrm{dd}, \mathrm{J}_{3 \mathrm{a}, 3 \mathrm{~b}}=\right.$ $17.6, \mathrm{~J}_{3 \mathrm{~b}, 4}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}$ ), 3.60-3.73 (m, $\left.3 \mathrm{H}, 2^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.88$ (dd, $\left.J_{5,1 " b}=2.8, J_{1 " a, 1 " b}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 "-\mathrm{H}_{\mathrm{b}}\right), 4.35$ ("ddd", $J_{4,5}$ and $J_{5,1 " a}=7.2$


57 and 4.6, $\left.J_{5,1 " \mathrm{l}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) : $\delta=35.0$ (d, C-4), 36.1 (t, C-3), 36.9 (t, C-1'), 60.8 (t, C-2'), 63.4 (t, C-1"), 87.9 (d, C-5), 179.4 (s, C=O).

## II) Minor diastereomer 57:

${ }^{1} \mathrm{H}$ NMR ( $\left.500.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=1.77-1.84\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.89-1.97$ (m, $\left.1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.55\left(\mathrm{dd}, \mathrm{J}_{3 \mathrm{a}, 3 \mathrm{~b}}=17.2, \mathrm{~J}_{3 \mathrm{a}, 4}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 2.61$ $\left(\mathrm{dd}, \mathrm{J}_{3 \mathrm{a}, 3 \mathrm{~b}}=17.1, \mathrm{~J}_{3 \mathrm{~b}, 4}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right), 2.84-2.92(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H})$, $3.60-3.73\left(\mathrm{~m}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.86\left(\mathrm{dd}, \mathrm{J}_{5,1{ }^{\prime \prime \prime}}=3.3, J_{1^{\prime \prime} \mathrm{a}, 1^{\prime \prime} \mathrm{b}}=12.5 \mathrm{~Hz}, 1\right.$ $\left.H, 1^{\prime \prime}-H_{b}\right), 4.64\left(\mathrm{dt}, \mathrm{J}_{4,5}=6.6, J_{5,1^{\prime \prime} \mathrm{a}}=J_{5,1^{\prime \prime} \mathrm{b}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right)$.


57
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CD ${ }_{3} \mathrm{OD}$ ) : $\delta=32.7\left(\mathrm{t}, \mathrm{C}-1\right.$ '), 35.6 (t, C-3), 36.5 (d, C-4), $61.5\left(\mathrm{t}, \mathrm{C}-2^{\prime}\right)$, 62.1 (t, C-1"), 84.5 (d, C-5), 180.0 (s, C=O).

### 11.7 Synthesis of Protected Amino Alcohols and Protected Polyols

Experiment 56 (YB 87)
(2S, 3S)-3-(N-Benzyloxycarbonyl-N-methylamino)-1,2-O-cyclohexylidene-3-methyl-1,2,5-pentanetriol (58)


490 mg ( 2.01 mmol ) of aminoalcohol 41 and $224 \mathrm{mg}\left(2.22 \mathrm{mmol}\right.$, in $3 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ ) of triethylamine were added to 15 mL of abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. To this mixture $376 \mathrm{mg}(2.22$
mmol , in $3 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ ) of benzylchloroformate was added. The reaction mixture was kept with stirring for 24 h , the temperature was allowed to rise to room temp. Then the mixture was quenched with water ( 50 mL ), partitioned against $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic phases were washed with sat. NaCl solution ( 40 mL ), then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo ( 10 mbar ) to give 750 mg of protected amino alcohol 58. This filtered through silica gel ( $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate $1: 9$ ) to give 550 mg as yellowish oil. This was purified by MPLC (petroleum ether/ethyl acetate $1: 1$ ) to yield 230 mg ( $32 \%$ ) of analytical pure alcohol 59 as colourless oil.
$[\alpha]_{D}^{20}=-6.20\left(c=0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{5}$ | calc. | C 66.81 | H 8.28 | N 3.71 |
| :--- | :--- | :--- | :--- | :--- |
| $(377.5)$ | found | C 66.34 | H 8.34 | N 3.64 |

IR : $\tilde{v}=3365(\mathrm{~m}, \mathrm{~b} ; \mathrm{OH}), 2931$ ( s$), 2855(\mathrm{~m}), 1745(\mathrm{w}), 1680(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1449(\mathrm{~m}), 1365(\mathrm{w})$, 1162 (m), 1099 (vs), 1070 (vs), 1038 (vs), 936 (s), 733 (m), 699 (s) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamer ratio 84:16) : $\delta=1.04(\mathrm{~s}, 3 \mathrm{H}$, $\left.1^{\prime}-\mathrm{H}\right)$ 1.32-1.68 [m, $\left.10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 1.79-1.84\left(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.91-$ $1.96\left(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.79\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.3, \mathrm{~J}_{1 \mathrm{a}, 2}\right.$ $\left.=7.5 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.96\left(\mathrm{dd},{ }^{2} J_{1 \mathrm{a}, 1 \mathrm{~b}}=8.3, J_{1 \mathrm{~b}, 2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right)$,
 4.07 ( $\mathrm{t}, \mathrm{J}_{1,2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$ ), 4.28-4.36(m,2 H,5-H), 5.17 (s, 2 $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.33-7.41\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$
${ }^{13} \mathrm{C}$ NMR ( $125.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamer ratio 84:16) : $\delta=19.9$ (q, C-1'), 23.9, 24.0, 25.2, 33.3, 34.3, 35.9 [ $6 \mathrm{t}, \mathrm{C}-4, \mathrm{C}\left(\underline{\mathrm{CH}}_{2}\right)_{5}$ ], $28.5\left(\mathrm{q}, \mathrm{NHCH}_{3}\right), 55.3(\mathrm{~s}, \mathrm{C}-3), 64.8,65.0(2 \mathrm{t}, \mathrm{C}-5, \mathrm{C}-1), 69.5$ ( $\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}$ ), 79.7 (d, C-2), 109.5 [s, $\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}$ ], 128.3, 128.5, 128.6 (3 d, o-, m-, $p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 135.3 (s, $i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 155.2 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ).

## Experiment 57 (YB 247)

(2S, $\quad 3 S$ )-3-(N-tert-butyloxycarbonyl-N-methylamino)-1,2-O-cyclohexylidene-3-methyl-1,2,5-pentanetriol (59)


To a solution of the aminoalcohol $41(260 \mathrm{mg}, 1.07 \mathrm{mmol})$ in 20 mL of abs. ethyl acetate, 606 mg ( $2.78 \mathrm{mmol}, 2.6 \mathrm{eq}$ ) of tert-butyloxycarbonyl ( $\mathrm{Boc}_{2} \mathrm{O}$, Fluka) was added at room temp.

The mixture was left with stirring for 3 d , and then concentrated in vacuo ( $30^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 560 mg of protected amino alcohol 59. Then was filtered through silica gel ( $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleumether/ethyl acetate $3: 7$ ) to give 510 mg of crude 59 . This was purified by MPLC (petroleum ether/ethyl acetate 1:1) to give 198 mg ( $75 \%$ ) of analytically pure protected amino alcohol 59 as colourless oil.
$[\alpha]_{D}^{20}=-5.00\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{5}$ | calc. | C 62.94 | H 9.68 | N 4.08 |
| :--- | :--- | :--- | :--- | :--- |
| $(343.4)$ | found | C 62.73 | H 9.71 | N 3.99 |

IR: $\tilde{v}=3454$ (sb, OH), 2934 (s), 2862 (w), 1688 (vs), 1447 (m), 1364 (vs), 1251 (m), 1156 (vs), 1098 (vs), 1037 (vs), 961 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.33\left(\mathrm{~s}, 1^{1}-\mathrm{H}\right)$ and $1.45\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and 1.35-1.68 $\left[\mathrm{m}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right]$; together 22 H$) ;$ 2.16-2.23 (m, $\left.2 \mathrm{H}, 4-\mathrm{H}\right)$, $2.50(\mathrm{sb}, 1 \mathrm{H}, \mathrm{OH}), 2.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.66-3.78(\mathrm{~m}, 5-\mathrm{H})$ and 3.74 $\left(\mathrm{dd},{ }^{2} J_{1 \mathrm{a}, 1 \mathrm{~b}}=8.3, J_{1 \mathrm{a}, 2}=6.9 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{a}}\right.$; together 3 H ); $3.98\left(\mathrm{dd},{ }^{2} J_{1 \mathrm{a}, 1 \mathrm{~b}}=\right.$
 $\left.8.4, J_{1 \mathrm{~b}, 2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 5.08\left(\mathrm{t}, \mathrm{J}_{1,2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right)$.

[^16]The assignment was confirmed by means of DEPT-, H,H-COSY, C,H-COSY spectra.

Experiment 58 (YB 97)
(2S, 3S)-3-(N-tert-butyloxycarbonyl-N-
methylamino)-1,2-O-cyclohexylidene-3-methyl-1,2,5-pentanetriol (59)

$59 \quad \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}$
$60 \quad \mathrm{R}^{1}=\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{R}^{2}=\mathrm{H}$
$61 \quad \mathrm{R}^{1}=\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{R}^{2}=\operatorname{COOC}\left(\mathrm{CH}_{3}\right)_{3}$

5-tert-Butyl (2S, 3S)-3-(N-methylamino)-1,2-O-cyclohexylidene-3-methyl-1,2,5pentanetriolcarbonate (60)

5-tert-Butyl (2S, 3S)-3-( N-tert-
butyloxycarbonyl- N -methylamino)-1,2-O-
cyclohexylidene-3-methyl-1,2,5-
pentanetriolcarbonate (61)

740 mg ( $3.39 \mathrm{mmol}, 1.5 \mathrm{eq}$ ) of tert-butyloxycarbonyl ( $\mathrm{Boc}_{2} \mathrm{O}$, Fluka) was added to 550 mg ( 2.26 mmol ) of the amino alcohol 41 in 20 mL MeOH at room temp. The reaction mixture was left with stirring for 3 d , and then concentrated in vacuo ( $30^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 1.21 g of yellowish oil. This was chromatographed through silica gel ( $3 \mathrm{~cm} \times 15 \mathrm{~cm}$, petroleum ether/ethyl acetate 6:4) to give 150 mg of slightly pure protected amino alcohol 61 (15\%) as a colourless oil, and 60 mg ( 8 ) of analytically and spectroscopically pure protected amino alcohol 59 and finally 320 mg ( $41 \%$ ) of analytically and spectroscopically pure protected aminoalocohol 60 successivly, also as a colourless oil.
A) (2S,3S)-3-(N-tert-butyloxycarbonyl-N-methylamino)-1,2-O-cyclohexylidene-3-methyl-

## 1,2,5-pentanetriol (59)

$[\alpha]_{D}^{20}=-5.0\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

The analytical analysis fully complied with those given in Exp. 57.
B) 5-tert-Butyl (2S,3S)-3-(N-methylamino)-1,2-O-cyclohexylidene-3-methyl-1,2,5pentanetriolcarbonate (60)
$[\alpha]_{D}^{20}=-4.0\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{5}$ | calc. | C 62.94 | H 9.68 | N 4.08 |
| :--- | :--- | :--- | :--- | :--- |
| $(343.4)$ | found | C 62.86 | H 9.78 | N 4.07 |

IR : $\tilde{v}=3419$ (b, OH), 3299 (b, w), 2975 (vs), 2936 (vs), 2861 (vs), 2781 (m), 1739 (vs, C=O), 1478 (s), 1450 (s), 1394 (m), 1368 (s), 1279 (vs), 1255 (s), 1163 (m), 1101 (m), 937 (m), 862 (m), $794(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.04\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 1.48$ (s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and 1.35-1.68 (m, C( $\left.\mathrm{CH}_{2}\right)_{5}$; together 19 H ); 1.79 (ddd, $J_{4 \mathrm{a}, 4 \mathrm{~b}}=14.2, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{a}}=6.8, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{~b}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ $H_{a}$ ), 1.92 ("ddd", $J_{4 \mathrm{a}, 4 \mathrm{~b}}=14.2, J_{4 \mathrm{~b}, 5 \mathrm{a}}=8.4, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=6.6 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH} \underline{H}_{3}\right), 3.79\left(\mathrm{dd},{ }^{2} J_{1 \mathrm{a}, 1 \mathrm{~b}}=8.2, J_{1 \mathrm{a}, 2}=\right.$ $\left.7.3 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.98\left(\mathrm{dd},{ }^{2} J_{1 \mathrm{a}, 1 \mathrm{~b}}=8.2, J_{1 \mathrm{~b}, 2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\right.$ $\mathrm{H}_{\mathrm{b}}$ ), $4.06\left(\mathrm{t}, \mathrm{J}_{1,2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 4.21$ (ddd, $J_{5 \mathrm{a}, 5 \mathrm{~b}}=9.0$, $\left.J_{5 \mathrm{a}, 4 \mathrm{a}}=6.6, J_{5 \mathrm{~b}, 4 \mathrm{~b}}=8.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}\right)$ and 4.18-4.24(m,5-H ; together 2 H ).
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=20.0\left(\mathrm{q}, \mathrm{C}-1{ }^{\prime}\right), 23.8,24.0,25.2,34.4,36.0\left[5 \mathrm{t}, \mathrm{C}\left(\underline{\left.\left(\mathrm{CH}_{2}\right)_{5}\right]}\right.\right.$ ], 27.8 [ $\left.\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.5\left(\mathrm{q}, \mathrm{NHCH}_{3}\right), 33.3(\mathrm{t}, \mathrm{C}-4), 55.4$ (s, C-3), $63.8(\mathrm{t}, \mathrm{C}-5), 64.9(\mathrm{t}, \mathrm{C}-1)$, 79.8 (d, C-2), 81.9 [s, $\left.\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right], 109.6$ [s, $\left.\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 153.6$ (s, C=O).

The assignment was confirmed by means of DEPT-, H,H-COSY, C,H-COSY spectra.
C) 5-tert-Butyl(2S, 3S)-3-(N-tert-butyloxycarbonyl-N-methylamino)-1,2-Ocyclohexylidene -3-methyl-1,2,5-pentanetriolcarbonate (61)
$[\alpha]_{D}^{20}=-11.5\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{5}$ | calc. | C 62.28 | H 9.32 | N 3.16 |
| :--- | :--- | :--- | :--- | :--- |
| $(343.4)$ | found | C 61.65 | H 9.46 | N 2.92 |

IR : $\tilde{v}=2975$ (m), 2934 (s), 2862 (m), 1738 (vs, OC=O), 1691 (NC=O), 1478 ( w ), 1450 (m), 1392 (m), 1366 (s), 1277 (vs), 1253 (vs), 1159 (vs), 1098 (vs), 1037 (m), 938 (m), 909 (w), $864(\mathrm{~m}), 628(\mathrm{~s}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.34$ ( $\mathrm{s}, 1{ }^{1}-\mathrm{H}$ ) and 1.45 , 1.45 ( $\left.2 \mathrm{~s}, \mathrm{NCOOC}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{OCOOC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and 1.33-1.68 (m, C( $\left.\mathrm{CH}_{2}\right)_{5}$; together 31 H ); 1.79 (ddd, $\mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=14.4, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{a}}$ $=8.0, J_{4 \mathrm{a}, 5 \mathrm{~b}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$ ), 1.92 ("ddd", $\mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=14.4$, $\left.J_{4 \mathrm{~b}, 5 \mathrm{a}}=6.7, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{~b}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.71\left(\mathrm{dd},{ }^{2} J_{1 \mathrm{a}, 1 \mathrm{~b}}=8.6, J_{1 \mathrm{a}, 2}=6.6 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.94\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{1 \mathrm{a}, 1 \mathrm{~b}}\right.$ $\left.=8.6, J_{1 \mathrm{~b}, 2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 4.13$ (ddd, $\mathrm{J}_{5 \mathrm{a}, 5 \mathrm{~b}}=11.6$, $\left.J_{5 \mathrm{a}, 4 \mathrm{a}}=8.0, J_{5 \mathrm{~b}, 4 \mathrm{~b}}=6.5 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}\right)$ and 4.11-4.17(m,5-H ; together 2 H$) ; 4.95\left(\mathrm{t}, \mathrm{J}_{1,2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right)$,


61

IR: $\tilde{v}=3351$ ( $\mathrm{m}, \mathrm{OH}$ ), 3299 ( m ), 2920 ( w ), 1707 (vs, C=O), 1595 (m), 1494 ( s$), 1439$ (m), 1429 (w), 1372 (m), 1172 (s), 1099 (s), 1028 (vs), 766 (vs) cm ${ }^{-1}$.
${ }^{2!1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.25\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.75(\mathrm{~s}, 3 \mathrm{H}$, 1'-H), 2.00 (sb, $2 \mathrm{H}, 2-\mathrm{H}$ ), 2.38 (sb, $1 \mathrm{H}, \mathrm{NH}$ ), 3.53 ( $\mathrm{sb}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}$ ), 3.65 (sb, $\left.1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right), 6.11$ (sb, $1 \mathrm{H}, \mathrm{OH}$ ), 7.19-7.37 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ ).


62
${ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.7$ (q, $\mathrm{C}-1$ '), $28.3\left[\mathrm{~s}, \mathrm{C}\left(\underline{\mathrm{C}}_{3}\right)_{3}\right], 45.3(\mathrm{t}, \mathrm{C}-2), 57.8(\mathrm{~s}, \mathrm{C}-1)$, $59.2(\mathrm{t}, \mathrm{C}-3), 79.1\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right], 125.1,126.3,128.2\left(3 \mathrm{~d}, o-, m-, p-\mathrm{C}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 146.2$ ( $\mathrm{s}, i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 154.7 (s, $\mathrm{C}=\mathrm{O}$ )

Experiment 60 (YB 237)
(2S, 3R)-3-(Amino-N-tert-butyloxycarbonyl)-1,2-O-cyclohexylidene-3-methyl-1,2,5-pentanetriol (63)


250 mg of the amino alcohol $45(1.09 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(380 \mathrm{mg}, 1.74 \mathrm{mmol}, 1.6 \mathrm{eq})$ were added to abs. $\mathrm{MeOH}(20 \mathrm{~mL})$. The mixture was left with stirring for 48 h at room temp., then concentrated in vacuo ( $30^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 450 mg of crude 63 as a yellowish oil. Filtration through silica gel ( $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 95:5 then 4:6) gave 350 mg . This was purified by MPLC (petroleum ether/ethyl acetate $7: 3$ ) to afford after evaporation of the solvent 270 mg ( $75 \%$ ) of analytically and spectroscopically pure protected amino alcohol 63 as a colourless oil.
$[\alpha]_{D}^{20}=-2.6\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{5}$ | calc. | C 61.98 | H 9.49 | N 4.25 |
| :--- | :--- | :--- | :--- | :--- |
| $(329.4)$ | found | C 61.96 | H 9.47 | N 4.16 |

IR: $\tilde{v}=3401$ (sb, OH), 2934 (s), 1712 (s, C=O), 1498 (s), 1449 (m), 1365 (vs), 1281 (m), 1251 (m), 1161 (vs), 1097 (vs), 1070 (vs), 1047 (vs), 937 (m), 848 (w), 780 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.34\left(\mathrm{~s}, 1^{\prime}-\mathrm{H}\right)$ and 1.42 (s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and 1.35-1.67 (m, C(CH2 $)_{5}$; together 22 H$)$; 1.80-1.87 ( $\mathrm{m}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$ ), 2.05-2.16 (m, $1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}$ ), 2.93 (sb, $1 \mathrm{H}, \mathrm{OH}$ ), 3.66$3.71\left(\mathrm{~m}, 5-\mathrm{H}_{\mathrm{a}}\right)$ and 3.73-3.79 $\left(\mathrm{m}, 5-\mathrm{H}_{\mathrm{b}}\right)$ and $3.86\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.4\right.$,
 $J_{1 \mathrm{a}, 2}=7.4,1-\mathrm{H}_{\mathrm{a}}$; together 3 H ); $4.00\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.4, \mathrm{~J}_{1 \mathrm{~b}, 2}=6.6\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 4.15\left(\mathrm{dd}, \mathrm{J}_{\mathrm{a}, 2}=7.4, J_{1 \mathrm{~b}, 2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=21.8\left(\mathrm{q}, \mathrm{C}-1\right.$ '), 23.7, 23.9, 25.0, 34.3, $35.9\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right]$, $28.4\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 40.7(\mathrm{t}, \mathrm{C}-4), 54.7(\mathrm{~s}, \mathrm{C}-3), 58.7(\mathrm{t}, \mathrm{C}-5)$, , $64.9(\mathrm{t}, \mathrm{C}-1), 79.3\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 80.7 (d, C-2), 110.2 [s, $\left.\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 155.5$ (s, C=O).

Experiment 61 (YB 147)
1-(Amino-N-tert-butyloxycarbonyl-2-hydroxyethyl)-1phenylbutane (64)


64


65

170 mg of the amino alcohol $46(0.880 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(384 \mathrm{mg}, 1.76 \mathrm{mmol}, 2.0 \mathrm{eq})$ were added to abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The mixture was left with stirring for 48 h at room temperature, then concentrated in vacuo ( 10 mbar ) to give 440 mg of crude products as a yellowish oil, which filtered through silica gel ( $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 95:5 then 1:1) to afford after evaporation of the solvent $190 \mathrm{mg}(74 \%)$ of analytically and spectroscopically pure protected amino alcohol 64 as a colourless oil, and 21 mg (8 \%) of protected amino alcohol 65, also as a colourless oil.

## A) 1-(Amino-N-tert-butyloxycarbonyl-2-hydroxyethyl)-1-phenylbutane (64)

| $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3}$ | calc. | C 69.59 | H 9.28 | N 4.77 |
| :--- | :--- | :--- | :--- | :--- |
| $(293.39)$ | found | C 69.24 | H 9.22 | N 4.65 |

IR: $\tilde{v}=3327$ ( $\mathrm{m}, \mathrm{OH}$ ), 3291 (m), 1709 (vs, C=O), 1601 ( s$), 1491$ ( s$), 1439$ (m), 1429 ( w$)$, 1381 (m), 1199 (w), 769 (m), 766 (s), 699 (vs), 639 (m), 580 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.88\left(\mathrm{t}, \mathrm{J}_{3,4}=7.3,3 \mathrm{H}, 4-\mathrm{H}\right)$, 1.12$1.46\left[\mathrm{~m}, 12 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}, 3-\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.81-1.85\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.05-$ 2.25 (m, $3 \mathrm{H}, \mathrm{NH}, 2-\mathrm{H}_{\mathrm{b}}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}$ ), 3.49-3.61 (m, $2 \mathrm{H}, 2^{\prime}-\mathrm{H}$ ), 5.52 (sb, 1 $\mathrm{H}, \mathrm{OH}), 7.18-7.31\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\left.\delta=14.7(\mathrm{q}, \mathrm{C}-4), 17.4(\mathrm{t}, \mathrm{C}-3), 28.7\left[\mathrm{q}, \mathrm{C}(\underline{\mathrm{CH}})_{3}\right)_{3}\right], 41.4,42.3(2$ $\mathrm{t}, \mathrm{C}-2, \mathrm{C}-1$ '), $59.5\left(\mathrm{t}, \mathrm{C}-2 \mathrm{C}^{\prime}\right), 60.8(\mathrm{~s}, \mathrm{C}-1), 79.5\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right], 125.8,126.8,128.5(3 \mathrm{~d}, o-, m-, p-$ C of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 145.3 (s, $i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 155.1 (s, $\mathrm{C}=\mathrm{O}$ ).

## B) tert-Butyl 3-amino-3-phenylhexane carbonate (65)

| $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3}$ | calc. | C 69.59 | H 9.28 | N 4.77 |
| :--- | :--- | :--- | :--- | :--- |
| $(293.39)$ | found | C 70.12 | H 8.75 | N 4.77 |

IR: $\tilde{v}=2963$ (s), 2932 ( m ), 2873 (m), 1716 (vs, C=O), 1692 (vs), 1494 ( w ), 1448 (m), 1391 (vs), 1252 (m), 1156 (vs), 1099 (vs), 1032 (w), 1014 (w), 889 (w), 761 (m), 701 (s), 662 (vs) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.02\left(\mathrm{t}, \mathrm{J}_{5,6}=7.3,3 \mathrm{H}, 6-\mathrm{H}\right), 1.29$ [s, $9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ ], 1.43-1.53 (m, $\left.2 \mathrm{H}, 5-\mathrm{H}\right), 2.14-2.23\left(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right)$, 2.28-2.38 (m, $1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}$ ), 2.48 (ddd, $\mathrm{J}_{2 \mathrm{a}, 2 \mathrm{~b}}=12.3, \mathrm{~J}_{1 \mathrm{a}, 2 \mathrm{a}}$ and $\mathrm{J}_{1 \mathrm{~b}, 2 \mathrm{a}}=6.3$ and $\left.7.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 2.67\left(\mathrm{dt}, J_{2 \mathrm{a}, 2 \mathrm{~b}}=12.3, J_{1 \mathrm{a}, 2 \mathrm{~b}}=J_{1 \mathrm{~b}, 2 \mathrm{~b}}=7.1 \mathrm{~Hz}, 1\right.$
 H, 2- $\mathrm{H}_{\mathrm{b}}$ ), 4.01-4.06 (m, $\left.2 \mathrm{H}, 1-\mathrm{H}\right), 7.22-7.41\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.8(\mathrm{q}, \mathrm{C}-6), 17.7(\mathrm{t}, \mathrm{C}-5), 28.5\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 40.1,45.1(2$ $\mathrm{t}, \mathrm{C}-2, \mathrm{C}-4), 66.5(\mathrm{t}, \mathrm{C}-1), 69.0(\mathrm{~s}, \mathrm{C}-3), 81.4\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right], 125.6,127.1,128.6$ (3 d, o-, m-, pC of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 147.1 ( $\mathrm{s}, i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 153.3 (s, $\mathrm{C}=\mathrm{O}$ ).

## Experiment 62 (YB 170)

(2S, 3S)-3-(Amino-N-tert-butyloxycarbonyl)-1,2-O-cyclohexylidene-3-propyl-1,2,5-pentanetriol (66)


To $560 \mathrm{mg}(2.22 \mathrm{mmol})$ of the isoxazolidine 34a in $\mathrm{MeOH}(30 \mathrm{~mL}), 200 \mathrm{mg}$ of $\mathrm{Pd} / \mathrm{C}$ ( $10 \%$ ) and 976 mg of $\mathrm{Boc}_{2} \mathrm{O}(4.44 \mathrm{mmol}, 2.0 \mathrm{eq})$ were added. The reaction mixture was left with
stirring under hydrogen ( 1 bar ) for 36 h . The $\mathrm{Pd} / \mathrm{C}$ was filtered off through celite and concentrated in vacuo ( $30^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 910 mg of crude product 66. This was purified through silica gel ( $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ether acetate 9:1 then 4:6) to afford 498 mg ( $63 \%$ ) of analytically and spectroscopically pure protected amino alcohol 66 as a colourless oil.

$$
[\alpha]_{D}^{20}=-11.1\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{5}$ | calc. | C 63.83 | H 9.87 | N 3.92 |
| :--- | :--- | :--- | :--- | :--- |
| $(357.5)$ | found | C 63.44 | H 9.77 | N 3.76 |

IR : $\tilde{v}=4319(\mathrm{~b}, \mathrm{OH}), 3357$ (b, m), 2933 ( s$), 2872(\mathrm{~m}), 1714$ (s, C=O), 1505 ( s$), 1448(\mathrm{~m})$, 1332 ( s , 1280 (m), 1245 (m), 1164 (vs), 1099 (vs), 1036 (vs), 937 (m), 928 (m), 830 (w), 779 (w), $701(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.92\left(\mathrm{t}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, 1.25-1.63 [m, 2'-H, 4- $\left.\mathrm{H}_{\mathrm{a}}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.42\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$; together 22 H); 1.73-1.88 (m, $\left.1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 1.96-2.04\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.15$ ( $\mathrm{sb}, 1 \mathrm{H}$, NH ), $3.70-3.80(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 3.85\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.3, \mathrm{~J}_{1 \mathrm{a}, 2}=7.9 \mathrm{~Hz}, 1\right.$
 $\left.\mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.98\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.4, \mathrm{~J}_{1 \mathrm{~b}, 2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 4.37\left(\mathrm{tt} \mathrm{t}, \mathrm{J}_{1,2}\right.$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.05(\mathrm{sb}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=14.9$ ( $\mathrm{q}, \mathrm{C}-3$ '), 17.0 (t, C-2'), 24.1, 24.3, 25.5, 34.7, 36.2 [5 $\left.\left.\mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 36.9(\mathrm{t}, \mathrm{C}-4), 37.3(\mathrm{C}-1)^{\prime}\right), 28.7$ [s, C( $\left.\left.\mathrm{CH}_{3}\right)_{3}\right], 58.2(\mathrm{~s}, \mathrm{C}-3), 59.0(\mathrm{t}, \mathrm{C}-5), 65.2(\mathrm{t}, \mathrm{C}-$ 1), 79.6 (d, C-2), 79.6 [s, $\left.\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 110.0\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 155.7$ ( $\left.\mathrm{s}, \mathrm{C}=\mathrm{O}\right)$.

## Experiment 63 (YB 172)

(2S, 3R)-3-(Amino-N-tert-butyloxycarbonyl)-1,2-O-cyclohexylidene-3-propyl-1,2,5-pentanetriol (67)


To 305 mg ( 1.21 mmol ) of the isoxazolidine 34b in $\mathrm{MeOH}(20 \mathrm{~mL}), 150 \mathrm{mg}$ of $\mathrm{Pd} / \mathrm{C}(10 \%)$ and 528 mg of $\mathrm{Boc}_{2} \mathrm{O}(2.42 \mathrm{mmol}, 2.0 \mathrm{eq})$ were added. The reaction mixture was left with stirring under hydrogen ( 1 bar ) for 36 h . The $\mathrm{Pd} / \mathrm{C}$ was filtered off through celite and concentrated in vacuo ( $30^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 360 mg of crude product 67 . This was purified
by column chromatography $\left(\mathrm{SiO}_{2}, 2 \mathrm{~cm} \times 5 \mathrm{~cm}\right.$ petroleum ether/ethyl acetate 9:1 then 4:6) to afford 303 mg ( $70 \%$ ) of analytically and spectroscopically pure protected amino alcohol 67 as colourless oil.

$$
[\alpha]_{D}^{20}=4.40\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{5}$ | calc. | C 63.83 | H 9.87 | N 3.92 |
| :--- | :--- | :--- | :--- | :--- |
| $(357.5)$ | found | C 63.64 | H 9.76 | N 3.85 |

IR : $\tilde{v}=4318(\mathrm{~b}, \mathrm{OH}), 3357(\mathrm{~b}, \mathrm{~m}), 2933$ ( s$), 2871(\mathrm{~m}), 1714$ ( $\mathrm{s}, \mathrm{C}=\mathrm{O}), 1504(\mathrm{~s}), 1449(\mathrm{~m})$, 1332 (s), 1280 (m), 1245 (m), 1161 (vs), 1095 (vs), 1036 (vs), 937 (m), 928 (m), 830 (w), 703 (m) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.92\left(\mathrm{t}, \mathrm{J}_{3,2^{\prime}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, 1.30-1.65 [m, 2'-H, 4- $\left.\mathrm{H}_{\mathrm{a}}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.42\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$; together 22 $\mathrm{H}] ; 1.85$ (ddd, $J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.6, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{a}}$ and $\mathrm{J}_{4 \mathrm{~b}, 5 \mathrm{~b}}=5.1$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ $H_{b}$ ), 2.15-2.24 (m, $\left.2 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.23(\mathrm{sb}, 1 \mathrm{H}, \mathrm{NH}), 3.66-3.83(\mathrm{~m}, 2 \mathrm{H}$, $5-\mathrm{H}), 3.92\left(\mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=8.5, J_{1 \mathrm{a}, 2}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 4.01\left(\mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=\right.$
 67 $\left.8.5, J_{1 \mathrm{~b}, 2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 4.28\left(\mathrm{dd}, \mathrm{J}_{2,1 \mathrm{a}}=7.1, \mathrm{~J}_{2,1 \mathrm{a}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, 2-H), 5.13 (sb, $1 \mathrm{H}, \mathrm{OH}$ ).
${ }^{13}{ }^{2} \mathrm{CNMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.1$ ( $\mathrm{q}, \mathrm{C}-3^{\prime}$ ), $17.5\left(\mathrm{t}, \mathrm{C}-2^{\prime}\right), 24.1,24.3,25.5,34.7,36.2$ [5 $\left.\mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 36.9(\mathrm{t}, \mathrm{C}-4), 38.6\left(\mathrm{C}-1{ }^{\prime}\right), 28.7\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 57.6(\mathrm{~s}, \mathrm{C}-3), 58.9(\mathrm{t}, \mathrm{C}-5), 65.2(\mathrm{t}, \mathrm{C}-$ 1), $79.5\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right], 80.2(\mathrm{~d}, \mathrm{C}-2), 110.2\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 155.6(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

## Experiment 64 (YB 285)

(2S, 3R, 5S)- 3-(Amino-N-tert-butyloxycarbonyl)-1,2-O-(Cyclohexylidene)-3-propyl-1,2,5,6-hexanetetraol (68)


68
$910 \mathrm{mg}(3.21 \mathrm{mmol})$ of the isoxazolidine $\mathbf{3 5 a}$ and 500 mg of $\mathrm{Pd} / \mathrm{C}(10 \%)$ and 1404 mg of $\mathrm{Boc}_{2} \mathrm{O}(6.43 \mathrm{mmol}, 2.0 \mathrm{eq})$ were added in $\mathrm{MeOH}(40 \mathrm{~mL})$. The reaction mixture was left with stirring under hydrogen ( 1 bar ) for 48 h . The $\mathrm{Pd} / \mathrm{C}$ was filtered off through celite and concentrated in vacuo ( $30^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 905 mg of crude product 68 . Filtration through silica gel ( $2 \mathrm{~cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate 9:1 then 4:6) and then purification by

MPLC (petroleum ether/ethyl acetate 1:1) afforded 905 mg ( $65 \%$ ) of analytically and spectroscopically slightly impure protected amino alcohol 68 as colourless oil.

$$
[\alpha]_{D}^{20}=-11.8\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{6}$ | calc. | C 61.99 | H 9.62 | N 3.61 |
| :--- | :--- | :--- | :--- | :--- |
| $(387.5)$ | Found | C 61.24 | H 9.27 | N 3.50 |

IR: $\tilde{v}=3410$ (sb, OH), 2933 ( s$), 2889$ (w), 1711 (s, C=O), 1450 (w), 1391 (s), 1282 (w), 1245 (vs), 1093 (vs), 1031 (vs), 937 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.91\left(\mathrm{t}, \mathrm{J}_{3,2}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\right.$ $\mathrm{H}), 1.23-1.36\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right)$ and $1.42\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and 1.38-1.72 [m, 4-H, C(Cㅏㅜ2) $)_{5}$ together 23 H$] ; 2.17-2.21\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$, $2.59(\mathrm{sb}, 1 \mathrm{H}, \mathrm{NH}), 3.48\left(\mathrm{dd}, \mathrm{J}_{5,6 \mathrm{a}}=7.6, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $6-\mathrm{H}_{\mathrm{a}}$ ), $3.56\left(\mathrm{dd}, \mathrm{J}_{5,6 \mathrm{~b}}=3.8, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right), 3.86-$


68
$3.90(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.92\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.7, \mathrm{~J}_{1 \mathrm{a}, 2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\right.$ $\left.\mathrm{H}_{\mathrm{a}}\right), 4.02\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.7, J_{1 \mathrm{~b}, 2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 4.35\left(\mathrm{t}, \mathrm{J}_{1,2}\right.$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=14.8$ ( $\mathrm{q}, \mathrm{C}-3^{\prime}$ ), $17.3\left(\mathrm{t}, \mathrm{C}-2^{\prime}\right), 23.7,23.9,25.0,34.3,35.8$ [ $5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}$ ], $39.2(\mathrm{t}, \mathrm{C}-4), 39.4\left(\mathrm{t}, \mathrm{C}-1{ }^{\prime}\right), 28.4$ [s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 57.0(\mathrm{~s}, \mathrm{C}-3), 64.8(\mathrm{t}, \mathrm{C}-6), 67.2$ (t, C-1), $67.8(\mathrm{~d}, \mathrm{C}-5), 79.4\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right], 79.9(\mathrm{~d}, \mathrm{C}-2), 110.2\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 155.3(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

The assignment was confirmed by means of DEPT-, H,H-COSY, C,H-COSY spectra.

Experiment 65 (YB 277)
(2S, 3S, 5S)- 3-(Amino-N-tert-butyloxycarbonyl)-1,2-O-(Cyclohexylidene)-3-propyl-1,2,5,6-hexanetetraol (69)


69

100 mg ( 0.350 mmol ) of the isoxazolidine $\mathbf{3 5 b}$ and 50 mg of $\mathrm{Pd} / \mathrm{C}(10 \%)$ and 144 mg of $\mathrm{Boc}_{2} \mathrm{O}(0.53 \mathrm{mmol}, 1.5 \mathrm{eq})$ were added in $\mathrm{MeOH}(20 \mathrm{~mL})$. The reaction mixture was left with stirring under hydrogen ( 1 bar ) for 48 h . $\mathrm{Pd} / \mathrm{C}$ was filtered off through celite and concentrated in vacuo ( $30^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 195 mg of crude product 69 . Filtration through silica gel ( 2 $\mathrm{cm} \times 5 \mathrm{~cm}$, petroleum ether/ethyl acetate $9: 1$ then $4: 6$ ) then purification by MPLC (petroleum
ether/ethyl acetate $1: 1$ ) afforded 105 mg ( $77 \%$ ) of analytically and spectroscopically pure protected amino alcohol 69 as a colourless oil.

$$
[\alpha]_{D}^{20}=7.8\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

| $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{6}$ | calc. | C 61.99 | H 9.62 | N 3.61 |
| :--- | :--- | :--- | :--- | :--- |
| $(387.5)$ | found | C 61.97 | H 9.54 | N 3.43 |

IR : $\tilde{v}=3413$ (sb, OH), 2933 (s), 2871 (w), 1716 (s), 1504 (w), 1449 (w), 1365 (m), 1242 (s), 1162 (vs), 1095 (vs), 1041 (vs), 936 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.92\left(\mathrm{t}, \mathrm{J}_{3^{\prime}, 2}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, 1.22-1.30 $\left(\mathrm{m}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$ and $1.43\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and 1.34-1.70 $\left[\mathrm{m}, 1^{\mathrm{\prime}-}\right.$ $\mathrm{H}_{\mathrm{a}}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}$; together 22 H$] ; 1.77\left(\mathrm{dd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{~b}}=15.3, \mathrm{~J}_{4 \mathrm{a}, 5}=\right.$ $\left.2.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.87\left(\mathrm{dd}, J_{4 \mathrm{a}, 4 \mathrm{~b}}=15.3, J_{4 \mathrm{~b}, 5}=8.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{b}}\right)$ and 1.82-1.89 (m, 1'- $\mathrm{H}_{\mathrm{b}}$; together 2 H ); $3.46\left(\mathrm{dd}, \mathrm{J}_{5,6 \mathrm{a}}=7.0, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}\right.$


69 $\left.=10.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 3.56\left(\mathrm{dd}, \mathrm{J}_{5,6 \mathrm{~b}}=3.8, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $6-H_{b}$ ), 3.92 ("dddd", $J_{4 \mathrm{a}, 5}=2.2, J_{4 \mathrm{~b}, 5}=9.0, J_{5,6 \mathrm{a}}=7.0, J_{5,6 \mathrm{~b}}=3.8$ $\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.85\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.7, \mathrm{~J}_{1 \mathrm{a}, 2}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right)$, $3.99\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.6, \mathrm{~J}_{1 \mathrm{~b}, 2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 4.26\left(\mathrm{t}, \mathrm{J}_{1,2}=7.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, 2-\mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=14.5$ ( $\mathrm{q}, \mathrm{C}-3$ '), 16.9 (t, C-2'), 23.7, 23.9, 25.1, 34.2, 35.8 [ $5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}$ ], $37.5(\mathrm{t}, \mathrm{C}-4), 42.0\left(\mathrm{t}, \mathrm{C}-1{ }^{\prime}\right), 28.3$ [s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 57.8(\mathrm{~s}, \mathrm{C}-3), 64.7(\mathrm{t}, \mathrm{C}-6), 67.4$ (t, C-1), $67.5(\mathrm{~d}, \mathrm{C}-5), 79.3(\mathrm{~d}, \mathrm{C}-2), 79.8\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right], 109.9\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 156.0(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

The assignment was confirmed by means of DEPT-, H,H-COSY, C,H-COSY spectra.

### 11.8 Synthesis of Amino Polyols

Experiment 66 (YB 80)
(2S,3S)-3-Methyl-3-methylaminopentane-1,2,5-triol (70), cf. lit. ${ }^{12}$


70

In analogy to lit. ${ }^{1} 235 \mathrm{mg}$ ( 1.45 mmol ) of the isoxazolidine 52 and 100 mg of $\mathrm{Pd} / \mathrm{C}(10 \%)$ were added in $\mathrm{MeOH}(15 \mathrm{~mL})$. The mixture was left with stirring overnight under hydrogen (1 bar) at room temp. Pd/C was filtered off through celite and concentrated in vacuo ( $30{ }^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 195 mg of amino polyol 70 as colourless oil ( $83 \%$; lit. $96 \%^{1}$ ). The analytical data complied with the literature values. ${ }^{1}$
$[\alpha]_{D}^{20}=14.3(c=1.00, \mathrm{MeOH}) \quad$ lit. $:[\alpha]_{D}^{20}=22.0(c=0.88, \mathrm{MeOH})^{1}$

IR: $\tilde{v}=3287$ (b, vs; OH), 2941 (s), 2879 (s), 2506 (w), 1651 (w), 1467 (m), 1381 (w), 1034 (s), $891(\mathrm{~s}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=1.09$ (s, $3 \mathrm{H}, 1^{\prime}-\mathrm{H}$ ), 1.62 (ddd, $\mathrm{J}_{4 \mathrm{a}, 4 \mathrm{a}}=$ $\left.14.5, J_{4 \mathrm{a}, 5 \mathrm{a}}=5.5, J_{4 \mathrm{a}, 5 \mathrm{~b}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.76\left(\mathrm{ddd}, J_{4 \mathrm{a}, 4 \mathrm{a}}=14.5, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{a}}=\right.$ $\left.6.7, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHCH}_{3}\right), 3.52\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.9\right.$, $\left.J_{1 \mathrm{a}, 2}=7.1 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.58-3.64(\mathrm{~m}, 2-\mathrm{H})$ and $3.65\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 5 \mathrm{a}}=5.5, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{a}}=\right.$


70 $\left.6.7, J_{5 \mathrm{a}, 5 \mathrm{~b}}=11.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}\right)$ and $3.69\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=8.9, J_{1 \mathrm{~b}, 2}=2.3 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{b}}\right)$ and 3.73 (ddd, $J_{4 a, 5 b}=6.2, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=7.9, J_{5 \mathrm{a}, 5 \mathrm{~b}}=11.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{b}}$; together 4 H ).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=21.8$ ( $\mathrm{q}, \mathrm{C}-1$ '), 28.1 ( $\mathrm{q}, \mathrm{NHCH}_{3}$ ), 38.9 (t, C-4), 60.0 ( $\mathrm{s}, \mathrm{C}-$ 3), $60.5(\mathrm{t}, \mathrm{C}-5), 65.8(\mathrm{t}, \mathrm{C}-1), 77.1(\mathrm{~d}, \mathrm{C}-2)$.

## Experiment 67 (YB 296)

(2S,3R)-3-Methyl-3-methylamino-pentane-1,2,5-triol (71)


71

In analogy to lit. ${ }^{1}$ to 80 mg ( 0.33 mmol ) of the aminoalcohol 425 mL of HCl (conc.) was added at room temp. and kept with stirring overnight. The solvent was removed in vacuo (40 $\left.{ }^{\circ} \mathrm{C} / 10 \mathrm{mbar}\right)$ to give 89 mg of brownish oil, which was chromatographed through silica gel
(column $2.5 \mathrm{~cm} \times 10 \mathrm{~cm}, \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 15: 85$ ) to give 51 mg of analytically impure but spectroscopically pure amino polyol 71 as a colourless oil ( $95 \%$ ).
$[\alpha]_{D}^{20}=4.20(c=1.00, \mathrm{MeOH})$

IR: $\tilde{v}=3292$ (b, vs; OH), 2939 ( s$), 2879$ (s), 1465 (m), 1380 ( w ), 1061 (m), 1053 (s), 1043 (m), 632 (vs) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=1.09$ (s, $\left.3 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 1.70$ (ddd, $\mathrm{J}_{4 \mathrm{a}, 4 \mathrm{a}}=$ $\left.14.3, J_{4 \mathrm{a}, 5 \mathrm{a}}=7.0, J_{4 \mathrm{a}, 5 \mathrm{~b}}=7.1 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{a}}\right)$ and $1.77\left(\mathrm{ddd}, \mathrm{J}_{4 \mathrm{a}, 4 \mathrm{a}}=14.3, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{a}}=\right.$ $7.7, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=6.6 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{b}}$; together, 2 H ), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHCH}_{3}\right), 3.58$ ("dd", $\left.J_{1 \mathrm{a}, 2}=8.1, J_{1 \mathrm{~b}, 2}=5.9 \mathrm{~Hz}, 2-\mathrm{H}\right)$ and 3.61 ("ddd", $\mathrm{J}_{4 \mathrm{a}, 5 \mathrm{a}}=7.0, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{a}}=7.6$,


71 $J_{5 \mathrm{a}, 5 \mathrm{~b}}=13.5 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}$; together, 2 H ), $3.70\left(\mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=9.0, J_{1 \mathrm{a}, 2}=5.9 \mathrm{~Hz}, 1-\right.$ $H_{a}$ ) and 3.71 ("dd", $J_{1 a, 1 b}=8.9, J_{1 \mathrm{~b}, 2}=8.0 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{b}}$ ) and 3.71 ("ddd", $J_{4 \mathrm{a}, 5 \mathrm{~b}}=$ $7.0, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=6.7, J_{5 \mathrm{a}, 5 \mathrm{~b}}=13.5 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{b}}$; together 3 H ).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=20.0$ ( $\mathrm{q}, \mathrm{C}-1$ '), 27.8 ( $\mathrm{q}, \mathrm{NHCH}_{3}$ ), 37.1 (t, C-4), 59.1 ( $\mathrm{s}, \mathrm{C}-$ 3), 59.3 ( $\mathrm{t}, \mathrm{C}-5$ ), 64.5 (t, C-1), 75.4 (d, C-2).

Experiment 68 (YB 134)
(2S,3S)-3-Methyl-3-methylaminopentane-1,2,5-triol; ( $70 \cdot \mathrm{HCl}$ )
hydrochloride

$70 \cdot \mathrm{HCl}$

To $780 \mathrm{mg}(3.21 \mathrm{mmol})$ of amino alcohol $41,30 \mathrm{~mL}$ of $\mathrm{HCl}(6.0 \mathrm{~N})$ was added at room temp. The reaction mixture was left with stirring for 24 h . The solvent was evaporated in vacuo ( 60 ${ }^{\circ} \mathrm{C} / 20 \mathrm{mbar}$ ) to give 640 mg of analytically and spectroscopically pure amino polyol $70 \cdot \mathrm{HCl}$ as a brownish oil in quantitative yield. Crystallization from $\mathrm{MeOH} /$ ethyl acetate gave amino triol $\mathbf{7 0 \cdot H C l}$ as light-brownish crystals, suitable for crystal structure determination (m.p. 103 ${ }^{\circ} \mathrm{C}$, see appendix 12.1 .7 ).
$[\alpha]_{D}^{20}=6.10(c=1.00, \mathrm{MeOH})$

| $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{Cl}$ | calc. | C 42.10 | H 9.09 | N 7.02 | Cl 17.78 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(199.67)$ | found | C 42.02 | H 9.02 | N 6.85 | Cl 17.88 |

IR (KBr): $\tilde{v}=3349$ (vs, b; NH, 30 OH ), 2960 ( sb ), 1580 (m), 1455 (s), 1408 (m), 1378 (m), 1112 (m), 1066 (s), 1016 (s), 879 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=1.36\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 1.87$ ("ddd", ${ }^{2} J_{4 \mathrm{a}, 4 \mathrm{~b}}$ $=15.0, J_{4 \mathrm{a}, 5 \mathrm{a}}$ and $J_{4 \mathrm{a}, 5 \mathrm{~b}}=11.2$ and $\left.5.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.04\left(\mathrm{ddd},{ }^{2} J_{4 \mathrm{a}, 4 \mathrm{~b}}=\right.$ $15.1, J_{4 \mathrm{~b}, 5 \mathrm{a}}$ and $J_{4 \mathrm{~b}, 5 \mathrm{~b}}=7.9$ and $\left.5.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$,

$70 \cdot \mathrm{HCl}$ $3.65-3.85(\mathrm{~m}, 5 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}, 5-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $125.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) : $\delta=19.2$ ( $\mathrm{q}, \mathrm{C}-1$ '), $27.9\left(\mathrm{q}, \mathrm{N}-\mathrm{CH}_{3}\right)$, $35.8(\mathrm{t}, \mathrm{C}-4), 58.9(\mathrm{t}, \mathrm{C}-$ 5), 64.3 (t, C-1), 65.5 (s, C-3), 74.3 (d, C-2).

## Experiment 69 (YB 173)

(2S,3R)-3-Methyl-3-methylaminopentane-1,2,5-triol; ( $71 \cdot \mathrm{HCl}$ )
hydrochloride

$71 \cdot \mathrm{HCl}$
 The mixture was left with stirring for 24 h . The solvent was evaporated in vacuo $\left(60^{\circ} \mathrm{C} / 20\right.$ mbar ) to give 1.11 g brownish oil, which was chromatographed through silica gel ( $2 \mathrm{~cm} \times 6$ $\mathrm{cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$ then $1: 1$ ) to give 1.07 g of amino triol $71 \cdot \mathrm{HCl}(97 \%)$ as a colourless oil.

IR: $\tilde{v}=3351$ (vs, b, 30 OH ), 2960 ( sb ), 1599 ( w ), 1580 (m), 1458 ( s$), 1409$ (m), 1377 (m), 1111 (s), 1069 (vs), 1017 (vs), 968 (w), 878 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=1.37\left(\mathrm{~s}, 3 \mathrm{H}, 1^{1}-\mathrm{H}\right), 1.93$ ("ddd", ${ }^{2} \mathrm{~J}_{4 \mathrm{a}, 4 \mathrm{~b}}$ $=15.2, J_{4 \mathrm{a}, 5 \mathrm{a}}$ and $J_{4 \mathrm{a}, 5 \mathrm{~b}}=7.3$ and $\left.5.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.99$ ("ddd", ${ }^{2} J_{4 \mathrm{a}, 4 \mathrm{~b}}=$ $15.2, J_{4 \mathrm{~b}, 5 \mathrm{a}}$ and $J_{4 \mathrm{~b}, 5 \mathrm{~b}}=11.5$ and $\left.5.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right)$, $2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.70\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=11.6, J_{1 \mathrm{a}, 2}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.75\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=11.6\right.$,


71•HCI $\left.J_{1 \mathrm{~b}, 2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.82\left(\mathrm{dd}, \mathrm{J}_{1 \mathrm{a}, 2}=5.7, J_{1 \mathrm{~b}, 2}=3.9 \mathrm{~Hz}, 2-\mathrm{H}\right)$ and 3.80-3.85 (m, 5-H; together 3 H ).
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) : $\delta=17.6$ ( $\mathrm{q}, \mathrm{C}-1$ '), $27.3\left(\mathrm{q}, \mathrm{N}-\mathrm{CH}_{3}\right), 34.6(\mathrm{t}, \mathrm{C}-4), 58.2(\mathrm{t}, \mathrm{C}-$ 5), 63.9 (t, C-1), 65.1 ( $\mathrm{s}, \mathrm{C}-3$ ), 72.7 (d, C-2).

### 11.9 Oxidation of isoxazoline-1,2-diols.

Experiment 70 (YB 101)
(S)-2,3-Dimethyl-isoxazolidine-3-carbaldehyde (72).


72
$280 \mathrm{mg}(1.74 \mathrm{mmol})$ of the diol 52 was dissolved in 10 mL of water/ethyl acetate ( $3: 1$ ). The pH adjusted to $8-9$ by addition of NaOH solution (ca. $3 \mathrm{~mL}, 1.0 \mathrm{~N}$ ), then $372 \mathrm{mg}(1.74 \mathrm{mmol}$, 1 eq ) of sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ was added. The mixture was left with stirring for 1.5 h at room temp. The organic phase was partitioned against ethyl acetate ( $4 \times 30 \mathrm{~mL}$ ). The organic solutes were dried $\left(\mathrm{MgSO}_{4}\right)$ to give after evaporation of the solvent $\left(20^{\circ} \mathrm{C} / 10 \mathrm{mbar}\right)$ 160 mg of aldehyde 72, which was filtered through silica gel ( $2 \mathrm{~cm} \times 6 \mathrm{~cm}$, petroleum ether/ethyl acetate $7: 3$ ) to yield 125 mg ( $56 \%$ ) of the aldehyde $\mathbf{7 2}$ as a volatile colourless oil.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.24(\mathrm{~s}, 3 \mathrm{H}, 1 \mathrm{H}-\mathrm{H}), 2.06$ (dddd, ${ }^{2} \mathrm{~J}_{4 \mathrm{a}, 4 \mathrm{~b}}=$ $\left.12.5, J_{4 \mathrm{a}, 5 \mathrm{a}}=6.4, J_{4 \mathrm{a}, 5 \mathrm{~b}}=9.7,{ }^{4} J_{4 \mathrm{a}, 1}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.68\left(\mathrm{ddd},{ }^{2} J_{4 \mathrm{a}, 4 \mathrm{~b}}=\right.$ $\left.12.5, J_{4 b, 5 \mathrm{a}}=9.3, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.93$ (ddd,

$\left.J_{4 \mathrm{a}, 5 \mathrm{a}}=6.4, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=9.4, J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 4.09\left(\mathrm{ddd}, J_{4 \mathrm{a}, 5 \mathrm{~b}}=9.7, J_{4 \mathrm{~b}, 5 \mathrm{~b}}\right.$ $\left.=5.2, J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 9.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=15.1$ ( $\mathrm{t}, \mathrm{C}-1$ '), 34.8 ( $\mathrm{t}, \mathrm{C}-4$ ), 37.9 ( $\mathrm{q}, \mathrm{NCH}_{3}$ ), 65.2 (t, C-5), 74.1 (s, C-3), 202.9 (s, C=O).

Experiment 71 (YB 109)
(R)-2,3-Dimethyl-isoxazolidine-3-carbaldehyde (73).


73

490 mg ( 3.04 mmol ) of the diol 53 was dissolved in 20 mL of $\mathrm{H}_{2} \mathrm{O} /$ ethyl acetate ( $3: 1$ ). The pH adjusted to $8-9$ by addition of NaOH solution (ca. $4 \mathrm{~mL}, 1.0 \mathrm{~N}$ ), then $650 \mathrm{mg}(3.04 \mathrm{mmol}, 1$ eq) of sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ was added. The reaction mixture was left with stirring for 1.5 h at room temp. The organic phase was extracted with ethyl acetate ( $4 \times 30 \mathrm{~mL}$ ) and dried $\left(\mathrm{MgSO}_{4}\right)$ to give after evaporation of the solvent ( $30{ }^{\circ} \mathrm{C} / 60 \mathrm{mbar}$ ) 390 mg of aldehyde 73. Filtration through silica gel ( $2 \mathrm{~cm} \times 6 \mathrm{~cm}$, petroleum ether/ethyl acetate $7: 3$ ) yielded 350 mg ( $89 \%$ ) of the aldehyde 76 as volatile colourless oil.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28\left(\mathrm{~s}, 3 \mathrm{H}, 1^{"}-\mathrm{H}\right), 2.09\left(\mathrm{ddd},{ }^{2} J_{4 \mathrm{a}, 4 \mathrm{~b}}=\right.$
$\left.12.5, J_{4 \mathrm{a}, 5 \mathrm{a}}=6.4, J_{4 \mathrm{a}, 5 \mathrm{~b}}=9.7,{ }^{4} J_{4 \mathrm{a}, 1^{\prime}}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$,
$2.71\left(\mathrm{ddd},{ }^{2} J_{4 \mathrm{a}, 4 \mathrm{~b}}=12.5, J_{4 \mathrm{~b}, 5 \mathrm{a}}=9.3, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 3.84(\mathrm{ddd}$,
$\left.J_{4 \mathrm{a}, 5 \mathrm{a}}=6.4, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=9.4, J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 4.09\left(\mathrm{ddd}, J_{4 \mathrm{a}, 5 \mathrm{~b}}=9.7\right.$,
$\left.J_{4 \mathrm{~b}, 5 \mathrm{~b}}=5.2, J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{H}_{\mathrm{b}}\right), 9.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$.


73
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=15.1\left(\mathrm{t}, \mathrm{C}-1\right.$ '), $34.8(\mathrm{t}, \mathrm{C}-4), 37.9\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 65.2(\mathrm{t}, \mathrm{C}-5)$, 74.2 (s, C-3), 202.9 (s, C=O).

### 11.10 Catalytic hydrogenation of isoxazolidinium salts.

Experiment 72 (YB 21)

## 4-Methylamino-4-phenyltetrahydropyran-2-one hydrochloride (74)


$74 \cdot \mathrm{HCl}$

To 500 mg ( 1.94 mmol ) of the isoxazolinium salt 51 in $\mathrm{MeOH}(20 \mathrm{~mL}) 250 \mathrm{mg}$ of $10 \% \mathrm{Pd} / \mathrm{C}$ was added. The mixture was left with stirring for 48 h under hydrogen ( 1 bar ). Then centrifuged to separate the catalyst, and concentrated in vacuo ( 10 mbar ) to afford 415 mg . To this 20 mL of $\mathrm{NaOH}(1.0 \mathrm{M})$ was added, and the organic solutes was partitioned against ethyl acetate $(3 \times 30 \mathrm{~mL})$, then was acidified with $\mathrm{HCl}(1.0 \mathrm{M})$ to give colourless solid which was collected by rextraction with water to give 200 mg . Recrystallization from ethanol/petroleum ether produced 70 mg of the lactone 74 (15 \%) as a colourless crystals, suitable for crystal structure determination (see appendix 12.1.8).

IR (Film): $\tilde{v}=2924$ (m), 2860 (m), 1708 (vs, C=O), 1615 (w), 1495 (w), 1448 (w), 1399 (w), 1261 (w), 1223 (s), 1087 (vs), 1049 (m), 724 (m), 605 (vs) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.92(\mathrm{~m}, 1 \mathrm{H}, 5-$ $\left.\mathrm{H}_{\mathrm{a}}\right), 3.09\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 3.64\left(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 4.01\left(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right), 4.26$ $\left(\mathrm{m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 4.80\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right), 7.75-7.85\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \underline{H}_{5}\right)$.

$74 \cdot \mathrm{HCl}$
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=27.3\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 31.7(\mathrm{t}, \mathrm{C}-5), 37.1(\mathrm{t}, \mathrm{C}-3), 61.1(\mathrm{~s}, \mathrm{C}-4)$, 66.6 (t, C-6), 127.1, 130.5, 131.1 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 132.9 ( $\mathrm{s}, i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 171.1 (s, $\mathrm{C}=\mathrm{O}$ ).

Experiment 73 (YB 261)
Methyl 5-(N-methylaminoxy)-3-phenylpentanoate (75).


75

To 410 mg ( 1.59 mmol ) of isoxazolidinium salt 51 in $\mathrm{MeOH}(30 \mathrm{~mL}) 110 \mathrm{mg}$ of $10 \% \mathrm{Pd} / \mathrm{C}$ were added. The mixture was left with stirring overnight under hydrogen (1 bar), then concentrated in vacuo (roomtemp. $/ 10 \mathrm{mbar}$ ), and filtered through silica gel $\left(\mathrm{SiO}_{2}, 2 \mathrm{~cm} \times 5\right.$ cm , petroleum ether/ethyl acetate $3: 7$ ) to afford 240 mg of the crude ester 75. Purification by MPLC (petroleum ether/ethyl acetate 7:3) afforded 140 mg of analytically pure ester 75 (37 $\%$ ) as colourless oil.

| $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$ | calc. | C 65.80 | H 8.07 | N 5.90 |
| :--- | :--- | :--- | :--- | :--- |
| $(237.3)$ | found | C 66.11 | H 8.11 | N 5.69 |

IR : $\tilde{v}=2950$ ( w ), 2866 ( w ), 1734 (vs, C=O), 1454 ( w ), 1435 (m), 1257 (m), 1196 (m), 1161 (s), 1050 (m), 761 (m), 701 (vs) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=1.80$ (dddd, $\mathrm{J}_{3,4 \mathrm{a}}=9.9, \mathrm{~J}_{4 \mathrm{a}, 4 \mathrm{~b}}=11.4$, $\left.J_{4 \mathrm{a}, 5 \mathrm{a}}=6.4, \mathrm{~J}_{4 \mathrm{a}, 5 \mathrm{~b}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.00\left(\mathrm{dddd}, \mathrm{J}_{3,4 \mathrm{~b}}=5.1, J_{4 \mathrm{a}, 4 \mathrm{~b}}=\right.$ $\left.11.4, J_{4 \mathrm{~b}, 5 \mathrm{a}}=7.7, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.61\left(\mathrm{dd}, \mathrm{J}_{2 \mathrm{a}, 2 \mathrm{~b}}=15.4, J_{2 \mathrm{a}, 3}\right.$ $\left.=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 2.66\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$ and $2.67\left(\mathrm{dd}, \mathrm{J}_{2 \mathrm{a}, 2 \mathrm{~b}}=15.4, \mathrm{~J}_{2 \mathrm{~b}, 3}=\right.$


75 $7.4 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{a}}$; together 4 H ); 3.26 ("dddd", $\mathrm{J}_{2 \mathrm{~b}, 3}=7.6, \mathrm{~J}_{3,4 \mathrm{a}}=9.9, \mathrm{~J}_{3,4 \mathrm{~b}}=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$ ), 3.49 (ddd, $\mathrm{J}_{4 \mathrm{a}, 5 \mathrm{a}}=6.3, \mathrm{~J}_{4 \mathrm{~b}, 5 \mathrm{a}}=7.7, J_{5 \mathrm{a}, 5 \mathrm{~b}}=10.2 \mathrm{~Hz}, 5-$ $H_{a}$ ) and $3.54\left(d d d, J_{4 a, 5 b}=5.1, J_{4 \mathrm{~b}, 5 \mathrm{~b}}=7.0, J_{5 \mathrm{a}, 5 \mathrm{~b}}=10.2 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{b}}\right)$ and 3.58 (s, $\mathrm{CO}_{2} \mathrm{CH}_{3}$; together 5 H ); 7.19-7.30 (m, $5 \mathrm{H}, \mathrm{C}_{6} \underline{H}_{\underline{5}}$ ).
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=34.8(\mathrm{t}, \mathrm{C}-4)$, 38.8 and $39.1\left(2 \mathrm{~s}, \mathrm{NCH}_{3}\right.$ and $\left.\mathrm{CO}_{2} \underline{\mathrm{CH}}_{3}\right), 41.4$ (t, C-2), 51.4 (d, C-3), 70.8 (t, C-5), 126.5, 127.4, 128.4 (3 d, o-, m-, p-C of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 143.3 ( $\mathrm{s}, i-$ C of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 172.6 (s, C=O).

The assignment was confirmed by means of DEPT-, H,H-COSY, C,H-COSY spectra.

### 11.11 Synthesis of protected branched $\beta$-amino acids

Experiment 74 (YB 239)
3-tert-Butyloxycarbonylamino-3-phenyl-butanoic acid (76)


76

In analogy to lit. ${ }^{140}$ to a solution of protected amino alcohol $\mathbf{6 2}(500 \mathrm{mg}, 1.88 \mathrm{mmol})$ in 28 mL of $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ 1:1:1.5 at room temp. $1.66 \mathrm{~g}(7.73 \mathrm{mmol}, 4.1 \mathrm{eq})$ of sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ was added, followed by addition of $30 \mathrm{mg}(6 \% \mathrm{~mol})$ of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, then the mixture was left with stirring for 1 h . Finally, 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and then partitioned against $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$, the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo ( 10 mbar ). This was filtered off through two layers of silica gel and celite (silica gel was added to the column first) ( $2 \mathrm{~cm} \times 8 \mathrm{~cm}$, petroleum ether/ethyl acetate 3:7), then concentrated to give 550 mg of a colourless solid. This was chromatographed $\left(\mathrm{SiO}_{2}\right.$, column $3 \mathrm{~cm} \times 12 \mathrm{~cm}$, petroleum ether/ethyl acetate 4:6). After evaporation of the solvents in vacuo ( $10^{-1} \mathrm{mbar}$ ) 440 mg ( $84 \%$ ) was obtained of analytically and spectroscopically pure protected amino acid 76 as a colourless soild (m.p. $85-86^{\circ} \mathrm{C}$ ).

| $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}$ | Calc. | C 64.50 | H 7.58 | N 5.01 |
| :--- | :--- | :--- | :--- | :--- |
| $(279.3)$ | found | C 64.39 | H 7.56 | N 4.93 |

IR : $\tilde{v}=3333$ (sb), 2967 (w), 1704 (vs, C=O), 1647 (vs, C=O), 1445 (w), 1394 (vs), 1367 (vs), 1163 (vs), 1106 (m), 1079 (m), 1064 (m), 1030 (w), 917 (m), 775 (m), 761 (s), 696 (vs) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.23\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.73(\mathrm{~s}, 3 \mathrm{H}$, $1^{\prime}-\mathrm{H}$ ), $2.83\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=13.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 3.24\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=13.3 \mathrm{~Hz}, 1\right.$ $\left.\mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 7.19-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 10.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.


76
${ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=27.9\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.5(\mathrm{q}, \mathrm{C}-1 \mathrm{l}), 44.3(\mathrm{t}, \mathrm{C}-2), 56.4(\mathrm{~s}, \mathrm{C}-$ 3), $81.6\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right.$ ], 124.5, 126.6, 128.3 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 147.2 (s, $i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 157.3 (s, C=O of Boc), 175.5 (s, C=O).

Experiment 75 (YB 251)
(3S, 4S)-3-(tert-Butyloxycarbonylmethylamino)-4,5-cyclohexylidenedioxy-pentanoic acid (77).


In analogy to lit. ${ }^{140}$ to a solution of protected aminoalcohol $59(130 \mathrm{mg}, 0.38 \mathrm{mmol})$ in 28 mL of $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ 1:1:1.5 at room temp. $332 \mathrm{mg}(1.55 \mathrm{mmol}, 4.1 \mathrm{eq})$ of sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ was added, followed by addition of $6 \mathrm{mg}(6 \% \mathrm{~mol})$ of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, then the mixture was left with stirring for 2 h . Finally, 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, partitioned against $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 40 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo ( 10 mbar ) This was filtered off through two layers of silica gel and celite (silica gel was added to the column first) ( $2 \mathrm{~cm} \times 8 \mathrm{~cm}$, petroleum ether/ethyl acetate 3:7), then concentrated again to give 118 mg of colourless oil. This oil was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, column $3 \mathrm{~cm} \times 12 \mathrm{~cm}$, petroleum ether/ethyl acetate 4:6). After evaporation of the solvent in vacuo ( $10^{-1} \mathrm{mbar}$ ) 102 mg ( $76 \%$ ) of analytically pure protected amino acid 77 was obtained as a colourless oil.
$[\alpha]_{D}^{20}=-14.3\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{6}$ | calc. | C 60.48 | H 8.74 | N 3.92 |
| :--- | :--- | :--- | :--- | :--- |
| $(357.4)$ | found | C 60.31 | H 8.83 | N 3.66 |

IR : $\tilde{v}=3140$ (sb, OH), 2934 (m), 2860 ( w ), 1732 ( $\mathrm{m}, \mathrm{C}=\mathrm{O}$ ) 1688 ( $\mathrm{vs}, \mathrm{C}=\mathrm{O}$ ), 1449 ( w ), 1365 (vs), 1252 (m), 1146 (vs), 1094 (vs), 1043 (m), 926 (s) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.43$ (s, $\left.1^{\prime}-\mathrm{H}\right)$ and 1.45 (s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and 1.35-1.67 $\left[\mathrm{m}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right.$; together 22 H$] ; 2.61\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}\right.$ $\left.=15.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.64\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=15.2\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 3.74\left(\mathrm{dd}, \mathrm{J}_{4,5 \mathrm{a}}=6.1,{ }^{2} \mathrm{~J}_{5 \mathrm{a}, 5 \mathrm{~b}}=8.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}\right), 3.96$
 $\left(d d, J_{4,5 b}=7.2,{ }^{2} J_{5 a, 5 b}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{b}\right), 5.08\left(\mathrm{t}, \mathrm{J}_{4,5}=6.5 \mathrm{~Hz}, 1\right.$ H, 4-H).
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=18.6\left(\mathrm{q}, \mathrm{C}-1{ }^{\prime}\right), 23.8,24.0,25.2,34.0,35.7\left[5 \mathrm{t}, \mathrm{C}\left(\underline{\mathrm{CH}_{2}}\right)_{5}\right]$, $28.4\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 33.2\left(\mathrm{q}, \mathrm{NHCH}_{3}\right), 41.1(\mathrm{t}, \mathrm{C}-2), 60.5(\mathrm{~s}, \mathrm{C}-3), 64.8(\mathrm{t}, \mathrm{C}-5), 77.9(\mathrm{~d}, \mathrm{C}-4)$, 80.3 [s, $\left.\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right], 110.4\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 155.8(\mathrm{~s}, \mathrm{C}=\mathrm{O}$ of Boc$), 176.7(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

Experiment 76 (YB 288)
(3R, 4S)-3-(tert-Butyloxycarbonylamino)-4,5-cyclohexylidenedioxy-pentanoic acid (78).


To a solution of protected amino alcohol 63 ( $795 \mathrm{mg}, 2.41 \mathrm{mmol}$ ) in 56 mL of $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ 1:1:1.5 at room temp. $2.12 \mathrm{~g}(9.89 \mathrm{mmol}, 4.1 \mathrm{eq})$ of sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ was added, followed by addition of $37 \mathrm{mg}(6 \% \mathrm{~mol})$ of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, then the mixture was left with stirring for 2 h . Finally, 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and then partitioned against $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo ( 10 mbar ), This was filtered off through two layers of silica gel and celite (silica gel was added to the column first) $(2 \mathrm{~cm} \times 8 \mathrm{~cm}$, petroleum ether/ethyl acetate $3: 7$ ). The solvent was evaporated to give 790 mg of yellowish oil. This oil was purified by MPLC (petroleum ether/ethyl acetate 65:35). After evaporation of the solvents in vacuo ( $10^{-1} \mathrm{mbar}$ ) 738 mg ( 89 $\%$ ) of analytical pure protected amino acid 78 was obtained as a colourless oil.
$[\alpha]_{D}^{20}=-7.20\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{6}$ | calc. | C 59.46 | H 8.51 | N 4.08 |
| :--- | :--- | :--- | :--- | :--- |
| $(343.4)$ | found | C 59.21 | H 8.74 | N 3.73 |

IR: $\tilde{v}=2934(\mathrm{~m}), 1709$ (vs, $2 \mathrm{C}=0$ ), 1503 (m), 1448 (m), 1366 (s), 1235 (m), 1161 (vs), 1096 (vs), 1071 (s), 927 (m), 848 (w), 776 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.26-1.65\left[\mathrm{~m}, 22 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right.$, $\left.1^{\prime}-\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.72\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=14.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 2.86(\mathrm{~d}$, $\left.J_{2 \mathrm{a}, 2 \mathrm{~b}}=14.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 3.86\left(\mathrm{dd}, J_{4,5 \mathrm{a}}=6.6, J_{5 \mathrm{a}, 5 \mathrm{~b}}=8.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}$ ), $4.01\left(\mathrm{dd}, \mathrm{J}_{4,5 \mathrm{~b}}=6.8, \mathrm{~J}_{5 \mathrm{a}, 5 \mathrm{~b}}=8.6, \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 4.37$
 (t, J J $4,5=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ ), 5.21 (sb, $1 \mathrm{H}, \mathrm{OH}$ ).
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=21.0\left(\mathrm{q}, \mathrm{C}-1\right.$ '), 23.6, 23.9, 25.1, 34.0, $35.9\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right]$, 28.4 [q, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 40.5(\mathrm{t}, \mathrm{C}-2), 54.8(\mathrm{~s}, \mathrm{C}-3), 64.5(\mathrm{t}, \mathrm{C}-5), 79.4(\mathrm{~d}, \mathrm{C}-4), 79.7$ [s, $\left.\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 110.3 [s, $\underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}$ ], 155.5 (s, $\mathrm{C}=\mathrm{O}$ of Boc$), 176.2$ (s, $\mathrm{C}=\mathrm{O}$ ).

Experiment 77 (YB 190)
(4S, 5S)-4-(Amino-N-tert-butyloxycarbonyl)-5-hydroxymethyl-4-propyltetrahydrofuran-2-one (79)


79

To a solution of protected amino alcohol 66 ( $450 \mathrm{mg}, 1.26 \mathrm{mmol}$ ) in 35 mL of $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ 1:1:1.5 at room temperature $1.10 \mathrm{~g}(5.17 \mathrm{mmol}, 4.1 \mathrm{eq})$ of sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ was added, followed by addition of $20 \mathrm{mg}(6 \% \mathrm{~mol})$ of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, then the mixture was left with stirring for 2 h . Finally, 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and then partitioned against $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo ( 10 mbar ) to give 565 mg of crude amino acid 79 as a yellowish oil. This was filtered off through two layers of silica gel and celite (silica gel was added to the column first) ( $2 \mathrm{~cm} \times 8 \mathrm{~cm}$, petroleum ether/ethyl acetate 4:6), then concentrated in vacuo and 0.5 mL of $\mathrm{CF}_{3} \mathrm{COOH}$ was added to oil and dissolved in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and kept stirring at room temp. for 1 h .

The solvent was evaporated, then filtered off through silica gel ( $2 \mathrm{~cm} \times 6 \mathrm{~cm}$, petroleum ether/ethyl acetate 1:1), then concentrated and purified by MPLC (petroleum ether/ethyl acetate $7: 3$ ). After evaporation of the solvents in vacuo ( $10^{-1} \mathrm{mbar}$ ) $445 \mathrm{mg}(89 \%)$ of analytically pure protected amino acid 79 was obtained as a colourless solid (m.p. 115-116 ${ }^{\circ} \mathrm{C}$ ). Crystallization from hexan/chloroform gave 79 as colourless crystals, suitable for crystal structure determination (m.p. $115^{\circ} \mathrm{C}$, see appendix 12.1 .9 ).
$[\alpha]_{D}^{20}=-28.9\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{5}$ | calc. | C 57.13 | H 8.48 | N 5.13 |
| :--- | :--- | :--- | :--- | :--- |
| $(273.31)$ | found | C 57.01 | H 8.40 | N 5.07 |

IR: $\tilde{v}=3300$ (sb, OH), 2952 (w), 2931 (w), 2894 (w), 1780 (m), 1754 (s, C=O), 1672 (vs, C=O), 1523 (vs), 1412 (w), 1365 (m), 1281 (s), 1253 (m), 1159 (vs), 1131 (w), 1084 (vs), 1028 (s), 936 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=0.99\left(\mathrm{t}, \mathrm{J}_{3^{\prime}, 2^{2}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 1.22-$ $1.46\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right)$ and $1.42\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$; together 11 H$] ; 1.70-1.76\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\right.$ $\mathrm{H}_{\mathrm{a}}$ ), 2.11-2.29 (m, $\left.1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.57\left(\mathrm{~d}, \mathrm{~J}_{3 \mathrm{a}, 3 \mathrm{~b}}=17.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 2.80(\mathrm{~d}$, $\left.J_{3 \mathrm{a}, 3 \mathrm{~b}}=17.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right), 3.47(\mathrm{sb}, 1 \mathrm{H}, \mathrm{NH}), 3.85$ ("d", J $\mathrm{J}_{1 " \mathrm{a}, 1 " \mathrm{~b}}=12.2$ $\mathrm{Hz}, 1 \mathrm{H}, 1{ }^{\prime \prime}-\mathrm{H}_{\mathrm{a}}$ ), $3.95\left(\mathrm{dd}, \mathrm{J}_{5,1 " \mathrm{~b}}=3.2, J_{1 \mathrm{la}, 1 " \mathrm{~b}}=12.8, \mathrm{~Hz}, 1 \mathrm{H}, 1{ }^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 4.85$ (sb, $1 \mathrm{H}, 5-\mathrm{H}), 5.08$ (sb, $1 \mathrm{H}, \mathrm{OH}$ ).


79
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=14.2\left(\mathrm{q}, \mathrm{C}-3^{\prime}\right), 17.9\left(\mathrm{t}, \mathrm{C}-2\right.$ ), $28.4\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 33.7(\mathrm{t}, \mathrm{C}-$ 3), 41.4 (t, C-1'), 60.7 (t, C-1"), 61.7 (s, C-4), 80.1 [s, $\left.\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 86.6$ (d, C-5), 154.7 (s, C=O of Boc ), 176.1 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ).

Experiment 78 (YB 287)
(3R, 4S)-3-(tert-Butyloxycarbonylamino)-4,5-cyclohexylidenedioxy-3-propylpentanoic acid (80).


80

To a solution of protected amino alcohol $68(600 \mathrm{mg}, 1.55 \mathrm{mmol})$ in 56 mL of $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}$ 1:1:1.5 at room temperature $1.36 \mathrm{~g}(6.35 \mathrm{mmol}, 4.1 \mathrm{eq})$ of sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ was added, followed by addition of $24 \mathrm{mg}(6 \% \mathrm{~mol})$ of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, then the mixture was left with stirring for 2 h . Finally, 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and then partitioned against $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, the combined organic solutes were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo ( 10 mbar ) to give 573 mg of crude amino acid $\mathbf{8 0}$ as a yellowish oil. This was chromatographed through silica gel ( $3 \mathrm{~cm} \times 10 \mathrm{~cm}$, petroleum ether/ethyl acetate 7:3). After evaporation of the solvents in vacuo ( $10^{-1} \mathrm{mbar}$ ) $465 \mathrm{mg}(81 \%)$ of spectroscopically pure protected amino acid $\mathbf{8 0}$ was obtained as a volatile colourless oil.
$[\alpha]_{D}^{20}=-6.90\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

IR: $\tilde{v}=3416$ (b, w), 2933 (s), 2866 (m), 1713 (vs, 2 C=O), 1504 (s), 1449 (m), 1392 (m), 1366 (s), 1279 (m), 1248 (m), 1160 (vs), 1095 (vs), 1035 (m), 927 (s), 848 (w), 776 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=0.92\left(\mathrm{t}, \mathrm{J}_{3,22^{\prime}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, 1.23-1.74 [m, 2'-H, $\left.\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right]$ and $1.42\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$; together $22 \mathrm{H}] ; 1.97-2.08\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.58\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=14.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right)$,


80
$2.90\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=14.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 3.92\left(\mathrm{dd}, \mathrm{J}_{4,5 \mathrm{a}}=6.7, \mathrm{~J}_{5 \mathrm{a}, 5 \mathrm{~b}}=8.8\right.$
$\left.\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 4.01\left(\mathrm{dd}, \mathrm{J}_{4,5 \mathrm{~b}}=6.7, \mathrm{~J}_{5 \mathrm{a}, 5 \mathrm{~b}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 4.46$
("t", J J,5 $=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ ).
${ }^{13}{ }^{1} \mathrm{CNMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.2$ (q, C-3'), 17.0 (t, C-2'), 21.1, 23.7, 25.2, 34.0, 35.8, [5 $\left.\mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 38.0(\mathrm{t}, \mathrm{C}-2), 38.6\left(\mathrm{t}, \mathrm{C}-1{ }^{\prime}\right), 28.4\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 57.6(\mathrm{~s}, \mathrm{C}-3), 64.8(\mathrm{t}, \mathrm{C}-5), 79.2(\mathrm{~d}$, $\mathrm{C}-4), 79.6\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right], 109.9\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 155.5(\mathrm{~s}, \mathrm{C}=\mathrm{O}$ of Boc$), 176.8(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

## Experiment 79 (YB 248)

(3S, 4S)-3-(tert-Butyloxycarbonylamino)-4,5-cyclohexylidenedioxy-3-propylpentanoic (81).


81

To a solution of protected amino alcohol 69 ( $290 \mathrm{mg}, 0.750 \mathrm{mmol}$ ) in 28 mL of $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}$ 1:1:1.5 at room temperature $656 \mathrm{mg}(3.07 \mathrm{mmol}, 4.1 \mathrm{eq})$ of sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ was added, followed by addition of $12 \mathrm{mg}(6 \% \mathrm{~mol})$ of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, then the mixture was left with stirring for 90 min. Finally, 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and the mixture was partitioned against $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, the combined organic solutes were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo ( 10 mbar ) to give 260 mg of crude amino acid 81 as a yellowish oil. This was chromatographed on silica gel ( $2 \mathrm{~cm} \times 10 \mathrm{~cm}$, petroleum ether/ethyl acetate 6:4). After evaporation of the solvents in vacuo ( $10^{-1} \mathrm{mbar}$ ) 190 mg ( $68 \%$ ) of slightly pure protected amino acid $\mathbf{8 1}$ was obtained as a colourless oil.
$[\alpha]_{D}^{20}=6.4\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

| $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{6}$ | calc. | C 61.43 | H 8.95 | N 3.77 |
| :--- | :--- | :--- | :--- | :--- |
| $(271.5)$ | found | C 60.49 | H 8.80 | N 3.67 |

IR : $\tilde{v}=3358$ (b, w; OH), 2933 (s), 2868 (m), 1709 (vs, 2 C=O), 1504 (m), 1449 (w), 1392 (w), 1366 (s), 1280 (s), 1248 (s), 1161 (vs), 1095 (vs), 1035 (m), 928 (s), 848 (w), 778 (w), 739 (w) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=0.92\left(\mathrm{t}, \mathrm{J}_{3,2^{\prime}}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\right.$ H), 1.25-1.79 [m, 2'-H, $\left.\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, 1^{\prime}-\mathrm{H}\right]$ and $1.42\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$; together 23 H$] ; 2.72\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=14.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 2.88(\mathrm{~d}$, $\left.J_{2 \mathrm{a}, 2 \mathrm{~b}}=14.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 3.82\left(\mathrm{dd}, \mathrm{J}_{4,5 \mathrm{a}}=7.5, \mathrm{~J}_{5 \mathrm{a}, 5 \mathrm{~b}}=8.5 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 4.00\left(\mathrm{dd}, \mathrm{J}_{4,5 \mathrm{~b}}=6.6, \mathrm{~J}_{5 \mathrm{a}, 5 \mathrm{~b}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 4.39$


81 $\left(d d, J_{4,5 \mathrm{a}}=7.5, J_{4,5 b}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) : $\delta=14.4$ ( $\mathrm{q}, \mathrm{C}-3$ '), $16.8\left(\mathrm{t}, \mathrm{C}-\mathrm{L}^{\prime}\right), 23.7,23.9,25.1,34.2,35.6$ $\left[5 \mathrm{t}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 38.0,38.5\left[2 \mathrm{t}, \mathrm{C}-2, \mathrm{C}-1\right.$ '], $28.3\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 57.5(\mathrm{~s}, \mathrm{C}-3), 64.8(\mathrm{t}, \mathrm{C}-5), 78.9(\mathrm{~d}$, $\mathrm{C}-4), 80.0\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right], 110.0\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{5}\right], 155.8$ (s, C=O of Boc), 175.3 (s, C=O).

### 11.12 Synthesis of Branched $\beta$-Amino Acids

Experiment 80 (YB 306)

## 3-Amino-3-phenyl-butyric acid (82)



82

To a solution of 40 mg ( 0.14 mmol ) of protected amino acid 76 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}) 2 \mathrm{~mL}$ of $\mathrm{CF}_{3} \mathrm{COOH}$ were added. The mixture was kept with stirring overnight at room temp., then concentrated in vacuo ( $40^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 45 mg of a yellowish oil. This was purified with Dowex 50WX8 ( $\mathrm{H}^{+}$-Form, 200-400 mesh) to afford 22 mg ( $86 \%$ yield) of amino acid 82 as a colourless solid (m. p. $223-224^{\circ} \mathrm{C}$; lit. : $225^{\circ} \mathrm{C}^{141}$ ).

IR: $\tilde{v}=2858\left(\mathrm{~b}, \mathrm{~m} ; \mathrm{OH}, \mathrm{NH}_{2}\right), 1983$ ( w ), 1671 (s, C=O), 1561 ( s$), 1448$ (vs), 1384 (vs), 1319 (w), 1197 (s), 1129 (vs), 908 (w), 834 (m), 764 (s), 720 (m), 695 (vs) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): $\delta=1.68\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.73\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=\right.$ $\left.16.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 2.83\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 7.32-7.47(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ ).


82
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CD ${ }_{3} \mathrm{OD}$ ): $\delta=27.2$ ( $\mathrm{q}, \mathrm{C}-1$ '), 46.3 (t, C-2), 58.1 (s, C-3), 125.7, 129.2, 130.1 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 143.1 (s, $i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 177.3 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ).

Experiment 81 (YB 182)

## 3-Amino-3-phenyl-hexanoic acid (83)



83

To a solution of protected amino alcohol $64(670 \mathrm{mg}, 2.28 \mathrm{mmol})$ in 35 mL of $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ 1:1:1.5 at room temp. $2.00 \mathrm{~g}(9.36 \mathrm{mmol}, 4.1 \mathrm{eq})$ of sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ was added, followed by addition of $36 \mathrm{mg}(6 \% \mathrm{~mol})$ of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, then the mixture was left with stirring for 2 h .30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and the organic solutes were partitioned against $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo (10 mbar). This was filtered off through two layers of silica gel and celite (silica gel was added to the column first) ( $2 \mathrm{~cm} \times 8 \mathrm{~cm}$, petroleum ether/ethyl acetate $3: 7$ ), then concentrated again to give 700 mg of crude colourless oil.

To this oil 3 mL of $\mathrm{CF}_{3} \mathrm{COOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added. The mixture was stirred for 3 h at room temp. to give after concentration in vacuo ( $30^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) 800 mg of oily product. This was purified by ion exchange column to yield 337 mg of analytically and spectroscopically pure amino acid 83 ( $75 \%$ ) in the form of a colourless solid (m. p. 221-222 ${ }^{\circ} \mathrm{C}$ ).

| $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$ | calc. | C 69.54 | H 8.27 | N 6.76 |
| :--- | :--- | :--- | :--- | :--- |
| $(207.26)$ | found | C 69.11 | H 8.26 | N 6.69 |

IR : $\tilde{v}=2959$ (sb, OH, NH2), 2873 (sb), 1568 (sb, C=O), 1468 (s), 1385 (vs), 1201 ( w ), 768 (m), 742 (w), 697 (vs), $639(\mathrm{~m}), 577(\mathrm{~m}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{DMSO}-d^{6}$ ): $\delta=0.86\left(\mathrm{t}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right.$ ), 1.04$1.14\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 1.93-2.04\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.81\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=16.5 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{a}}\right)$ and $2.90\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=16.5 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{b}}\right.$; together 2 H$) ; 7.44-7.57\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.


83
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d ${ }^{6}$ ) : $\delta=13.8$ ( $\mathrm{q}, \mathrm{C}-\mathrm{B}^{\prime}$ ), 16.4 (t, C-2'), 41.7, 43.0 ( $2 \mathrm{t}, \mathrm{C}-2, \mathrm{C}-\mathrm{1}^{\prime}$ ), 59.9 ( $\mathrm{s}, \mathrm{C}-3$ ), 125.0, 128.2, 129.1 ( $3 \mathrm{~d}, o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 139.6 ( $\mathrm{s}, i-\mathrm{C}$ of $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 175.6 ( s , $\mathrm{C}=\mathrm{O}$ ).

Experiment 82 (YB 289)
(3R,4S)-3-Amino-4,5-dihydroxy-3-methylpentanoic acid (84)


84

To a solution of 620 mg ( 1.81 mmol ) of protected amino acid 78 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}) 5 \mathrm{~mL}$ of $\mathrm{CF}_{3} \mathrm{COOH}$ was added. The reaction mixture was kept with stirring overnight at room temp. Then concentrated in vacuo ( $40^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 390 mg of a yellowish oil. This was purified by ion exchange column to afford 245 mg ( $94 \%$ yield) of analytically and spectroscopically pure amino acid 84 as a colourless solid (m.p. $185-186^{\circ} \mathrm{C}$ ).
$[\alpha]_{D}^{20}=-14.1(c=0.950, \mathrm{MeOH})$

| $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{4}$ | calc. | C 44.16 | H 8.03 | N 8.58 |
| :--- | :--- | :--- | :--- | :--- |
| $(163.2)$ | found | C 44.13 | H 7.98 | N 8.42 |

IR : $\tilde{v}=3456(\mathrm{w}, \mathrm{OH}), 3253(\mathrm{mb}, \mathrm{OH}), 2980(\mathrm{wb}), 1617(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1562(\mathrm{w}), 1532(\mathrm{~s}), 1407$ (vs), 1314 (w), 1205 (m), 1073 (w), 1044 (m), 918 (w), 644 (m) cm ${ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ ): $\delta=1.30\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{~b}, 1^{\prime}}=0.8 \mathrm{~Hz}, 3 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.21$ (d, $J_{2 a, 2 b}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}$ ), $2.53\left(\mathrm{dd}, \mathrm{J}_{2 \mathrm{a}, 2 \mathrm{~b}}=16.2, J_{2 \mathrm{~b}, 1^{\prime}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.2-\mathrm{H}_{\mathrm{b}}\right), 3.57\left(\mathrm{dd}, \mathrm{J}_{4,5 \mathrm{a}}=6.6, J_{5 \mathrm{a}, 5 \mathrm{~b}}=11.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 3.61\left(\mathrm{dd}, \mathrm{J}_{4,5 \mathrm{a}}=\right.$ $6.6, J_{4,5 \mathrm{~b}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ ), 3.68 (dd, $J_{4,5 \mathrm{~b}}=2.8, J_{5 a, 5 \mathrm{~b}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-$


84 $H_{b}$ ).
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=20.0(\mathrm{q}, \mathrm{C}-1$ '), $39.1(\mathrm{t}, \mathrm{C}-2), 57.3(\mathrm{~s}, \mathrm{C}-3), 61.4(\mathrm{t}, \mathrm{C}-5), 74.0$ (d, C-4), 177.8 (s, C=O).

Experiment 83 (YB 290)
(3R, 1'S)-3-Amino-3-[(S)-1,2-dihydroxyethyl)]-hexanoic acid (85)


85

To a solution of $430 \mathrm{mg}(1.16 \mathrm{mmol})$ of protected amino acid $\mathbf{8 0}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL}) 4 \mathrm{~mL}$ of $\mathrm{CF}_{3} \mathrm{COOH}$ was added, and kept with stirring overnight at room temp., and then concentrated in vacuo ( 10 mbar ) to give 235 mg of a yellowish oil. This was purified by ion exchange
column to afford 180 mg ( $90 \%$ yield) of analytically and spectroscopically pure amino acid 85 as a colourless solid (m. p. 170-171 ${ }^{\circ} \mathrm{C}$ ).

$$
[\alpha]_{D}^{20}=22.7(c=1.00, \mathrm{MeOH})
$$

| $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{4}$ | calc. | C 50.25 | H 8.96 | N 7.33 |
| :--- | :--- | :--- | :--- | :--- |
| $(191.2)$ | found | C 50.12 | H 8.89 | N 7.03 |

IR : $\tilde{v}=3109$ (sb, OH), 2961 (m), 2873 (m), 1565 (sb, C=O), 1455 (s), 1386 (vs), 1183 (m), 1081 ( s , 1041 ( s$), 922(\mathrm{w}), 883(\mathrm{w}), 737(\mathrm{w}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ ): $\delta=0.83\left(\mathrm{t}, \mathrm{J}_{2^{\prime}, 3^{\prime}}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, 1.21$1.32\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 1.54$ (dddd, $J_{2 \mathrm{~b}, 1^{\prime} \mathrm{a}}=0.8, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=14.3, J_{1^{\prime}, 2^{\prime} \mathrm{a}}$ and $J_{1^{\prime}, 2^{\prime} b}=11.4$ and $\left.6.6 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.69\left(\mathrm{ddd}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=14.3, J_{1^{\prime} \mathrm{b}, 2^{\prime} \mathrm{a}}\right.$ and $J_{1^{\prime}, 2^{\prime} \mathrm{b}}=11.5$ and $\left.6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.42\left(\mathrm{~d}, \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right)$,


85 $2.54\left(\mathrm{dd}, \mathrm{J}_{2 \mathrm{aa}, 2 \mathrm{~b}}=16.4, J_{2 \mathrm{~b}, 1^{\prime}}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 3.62\left(\mathrm{dd}, \mathrm{J}_{4,5 \mathrm{a}}=6.9\right.$, $\left.J_{5 a, 5 b}=12.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 3.71\left(\mathrm{dd}, \mathrm{J}_{4,5 \mathrm{a}}=7.1, \mathrm{~J}_{4,5 \mathrm{~b}}=3.1 \mathrm{~Hz}, 4-\mathrm{H}\right)$ and $3.71\left(\mathrm{dd}, \mathrm{J}_{4,5 \mathrm{~b}}=2.9, \mathrm{~J}_{5 \mathrm{a}, 5 \mathrm{~b}}=12.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{b}}\right.$; together 2 H$)$.
${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ ): $\delta=13.7$ ( $\mathrm{q}, \mathrm{C}-\mathrm{B}^{\prime}$ ), $16.2\left(\mathrm{t}, \mathrm{C}-\mathrm{z}^{\prime}\right), 34.7\left(\mathrm{t}, \mathrm{C}-1{ }^{\prime}\right), 39.2(\mathrm{t}, \mathrm{C}-2), 59.9$ (s, C-3), 61.5 (t, C-5), 72.2 (d, C-4), 178.1 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ).

## Experiment 84 (YB 199)

(4S, 5S)-4-Amino-5-hydroxymethyl-4-propyldihydrofuran-2-one (86)


86
$155 \mathrm{mg}(0.57 \mathrm{mmol})$ of protected amino acid 79 was dissolved in $15 \mathrm{~mL} \mathrm{HCl}(6.0 \mathrm{~N}$ in MeOH ). The mixture was kept with stirring overnight at room temp. The solvent was evaporated in vacuo ( $50^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ ) to give 100 mg of a colourless oil. This was purified by ion exchange column to afford $69 \mathrm{mg}(71 \%)$ of analytically impure, but spectroscopically pure amino acid 86.
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=0.99\left(\mathrm{t}, \mathrm{J}_{2,3^{\prime}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 1.29-$ $1.76\left(\mathrm{~m}, 4 \mathrm{H}, 2^{\prime}-\mathrm{H}, 1^{\prime}-\mathrm{H}\right) 2.28\left(\mathrm{~d}, \mathrm{~J}_{3 \mathrm{a}, 3 \mathrm{~b}}=17.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 2.70\left(\mathrm{~d}, \mathrm{~J}_{3 \mathrm{a}, 3 \mathrm{~b}}\right.$
 3.80 (dd, $J_{5,1 " \mathrm{~b}}=3.1, J_{1 \text { "a, } 1 \mathrm{ln} \mathrm{b}}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, 1$ "-Hb), 4.19 ("t", J. $\mathrm{J}_{5,1 "}=3.4$ $\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.


86
${ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=15.5$ ( $\mathrm{q}, \mathrm{C}-3^{\prime}$ ), $19.0(\mathrm{t}, \mathrm{C}-2$ '), 39.8 and 44.2 ( $2 \mathrm{t}, \mathrm{C}-3$ and $\mathrm{C}-$ 1'), 60.8 (t, C-1"), 62.0 (s, C-4), 91.8 (d, C-5), 179.4 (s, C=O).

### 12.1 Crystal Structure Data

### 12.1.1 3,3-Diphenyl-isoxazolidine (27).

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$
Triclinic, P-1
$a=6.1257$ (3) $\AA$
$b=8.7113(5) \AA$
$c=24.0652(9) \AA$
$\alpha=98.502(4)^{\circ}$
$\beta=93.050(5)^{\circ}$
$\gamma=107.668(5)^{\circ}$
$V=1203.59(10) \AA^{3}$

$Z=4, R(F)=0.0692$
27
$R_{w}\left(F^{2}\right)=0.1855$
Crystal size: $0.25 \times 0.25 \times 0.10 \mathrm{~mm}$
Calculated density : $1.243 \mathrm{~g} / \mathrm{cm}^{3}$
Theta range for data collection: 7.63-67.98 degree
Unigue reflections: 3808
Observed reflections: 2268


Stereoview of the structure with displacement parameters:


Elemente cells : (a) view to bc plane, (b) view to ac plane, (c) view to ab plane:
(a)

(b)

|  |  |
| :---: | :---: |

(c)


Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

| $\mathrm{O}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$ | 1.444(4) |
| :---: | :---: |
| $\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | 1.452(5) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$ | 1.485(3) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | 1.519(4) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$ | 1.529(4) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | 1.533(4) |
| $\mathrm{N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$ | 1.01(5) |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | 1.514(5) |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 1)$ | 0.9700 |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 2)$ | 0.9700 |
| $\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 1)$ | 0.9700 |
| $\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 2)$ | 0.9700 |
| C(4A)-C(5A) | 1.378(4) |
| C(4A)-C(9A) | 1.382(4) |
| C(5A)-C(6A) | 1.379(5) |
| $\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A})$ | 0.9300 |
| C(6A)-C(7A) | 1.366(5) |
| $\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A})$ | 0.9300 |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$ | 1.360(6) |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A})$ | 0.9300 |
| C(8A)-C(9A) | 1.382(5) |
| $\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A})$ | 0.9300 |
| $\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$ | 0.9300 |
| C(10A)-C(11A) | 1.392(4) |
| C(10A)-C(15A) | 1.395(4) |
| C(11A)-C(12A) | 1.388(4) |
| $\mathrm{C}(11 \mathrm{~A}) \mathrm{H}(11 \mathrm{~A})$ | 0.9300 |
| C(12A)-C(13A) | 1.365(5) |
| $\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$ | 0.9300 |
| C(13A)-C(14A) | 1.373(5) |
| $\mathrm{C}(13 \mathrm{~A}) \mathrm{H}(13 \mathrm{~A})$ | 0.9300 |
| C(14A)-C(15A) | 1.388(5) |
| $\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~A})$ | 0.9300 |
| $\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~A})$ | 0.9300 |
| O(1B)-C(3B) | 1.428(4) |
| $\mathrm{O}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$ | 1.451(4) |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$ | 1.488(3) |
| C(1B)-C(10B) | 1.516(4) |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$ | 1.529(4) |
| $C(1 B)-C(2 B)$ | 1.533(4) |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$ | 0.95(5) |
| $C(2 B)-C(3 B)$ | 1.512(4) |
| $\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B} 1)$ | 0.9700 |
| $\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B} 2)$ | 0.9700 |
| $\mathrm{C}(3 \mathrm{~B})-\mathrm{H}(3 \mathrm{~B} 1)$ | 0.9700 |
| $\mathrm{C}(3 \mathrm{~B})-\mathrm{H}(3 \mathrm{~B} 2)$ | 0.9700 |
| C(4B)-C(5B) | 1.379(4) |
| C(4B)-C(9B) | 1.394(4) |
| C(5B)-C(6B) | 1.398(5) |
| $\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B})$ | 0.9300 |
| C(6B)-C(7B) | 1.362(5) |
| $\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B})$ | 0.9300 |
| $\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$ | 1.371(6) |
| $\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B})$ | 0.9300 |
| C(8B)-C(9B) | 1.372(5) |
| $\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B})$ | 0.9300 |
| $\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B})$ | 0.9300 |


| C(10B)-C(15B) | 1.383(4) |
| :---: | :---: |
| C(10B)-C(11B) | 1.391(4) |
| C(11B)-C(12B) | 1.385(5) |
| $\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{~B})$ | 0.9300 |
| C(12B)-C(13B) | 1.370(5) |
| $\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{~B})$ | 0.9300 |
| C(13B)-C(14B) | 1.352(5) |
| $\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{~B})$ | 0.9300 |
| C(14B)-C(15B) | 1.389(5) |
| $\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{~B})$ | 0.9300 |
| $\mathrm{C}(15 \mathrm{~B})-\mathrm{H}(15 \mathrm{~B})$ | 0.9300 |
| $\mathrm{N}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | 108.9(2) |
| $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | 108.4(2) |
| $N(1 A)-C(1 A)-C(10 A)$ | 109.7(2) |
| C(4A)-C(1A)-C(10A) | 109.0(2) |
| $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | 101.6(2) |
| $C(4 A)-C(1 A)-C(2 A)$ | 115.9(2) |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | 111.9(2) |
| $\mathrm{O}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | 104.2(2) |
| $\mathrm{O}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$ | 109(3) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$ | 109(2) |
| C(3A)-C(2A)-C(1A) | 102.5(3) |
| $\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 1)$ | 111.3 |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 1)$ | 111.3 |
| $\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 2)$ | 111.3 |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 2)$ | 111.3 |
| $\mathrm{H}(2 \mathrm{~A} 1)-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 2)$ | 109.2 |
| $\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | 106.0(3) |
| $\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 1)$ | 110.5 |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 1)$ | 110.5 |
| $\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 2)$ | 110.5 |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 2)$ | 110.5 |
| $\mathrm{H}(3 \mathrm{~A} 1)-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 2)$ | 108.7 |
| C(5A)-C(4A)-C(9A) | 117.5(3) |
| $\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | 120.9(3) |
| C(9A)-C(4A)-C(1A) | 121.6(3) |
| C(4A)-C(5A)-C(6A) | 121.6(3) |
| $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A})$ | 119.2 |
| $\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A})$ | 119.2 |
| C(7A)-C(6A)-C(5A) | 120.0(4) |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A})$ | 120.0 |
| $\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A})$ | 120.0 |
| C(8A)-C(7A)-C(6A) | 119.5(4) |
| $\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A})$ | 120.3 |
| $\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A})$ | 120.3 |
| C(7A)-C(8A)-C(9A) | 120.7(4) |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A})$ | 119.7 |
| C(9A)-C(8A)-H(8A) | 119.7 |
| C(4A)-C(9A)-C(8A) | 120.8(3) |
| $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$ | 119.6 |
| $\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$ | 119.6 |
| C(11A)-C(10A)-C(15A) | 118.0(3) |
| C(11A)-C(10A)-C(1A) | 120.4(3) |
| C(15A)-C(10A)-C(1A) | 121.5(3) |
| C(12A)-C(11A)-C(10A) | 120.9(3) |
| $\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~A})$ | 119.6 |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~A})$ | 119.6 |
| C(13A)-C(12A)-C(11A) | 120.5(3) |
| $\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$ | 119.8 |

$C(11 A)-C(12 A)-H(12 A)$
$C(12 A)-C(13 A)-C(14 A)$
$C(12 A)-C(13 A)-H(13 A)$
$C(14 A)-C(13 A)-H(13 A)$
$C(13 A)-C(14 A)-C(15 A)$
$C(13 A)-C(14 A)-H(14 A)$
$C(15 A)-C(14 A)-H(14 A)$
$C(14 A)-C(15 A)-C(10 A)$
$C(14 A)-C(15 A)-H(15 A)$
$C(10 A)-C(15 A)-H(15 A)$
$C(3 B)-O(1 B)-N(1 B)$
$N(1 B)-C(1 B)-C(10 B)$
$N(1 B)-C(1 B)-C(4 B)$
$C(10 B)-C(1 B)-C(4 B)$
$N(1 B)-C(1 B)-C(2 B)$
$C(10 B)-C(1 B)-C(2 B)$
$C(4 B)-C(1 B)-C(2 B)$
$O(1 B)-N(1 B)-C(1 B)$
$O(1 B)-N(1 B)-H(1 B)$
$C(1 B)-N(1 B)-H(1 B)$
$C(3 B)-C(2 B)-C(1 B)$
$C(3 B)-C(2 B)-H(2 B 1)$
$C(1 B)-C(2 B)-H(2 B 1)$
$C(3 B)-C(2 B)-H(2 B 2)$
$C(1 B)-C(2 B)-H(2 B 2)$
$H(2 B 1)-C(2 B)-H(2 B 2)$
$O(1 B)-C(3 B)-C(2 B)$
$O(1 B)-C(3 B)-H(3 B 1)$
$C(2 B)-C(3 B)-H(3 B 1)$
$O(1 B)-C(3 B)-H(3 B 2)$
$C(2 B)-C(3 B)-H(3 B 2)$
$H(3 B 1)-C(3 B)-H(3 B 2)$
$C(5 B)-C(4 B)-C(9 B)$
$C(5 B)-C(4 B)-C(1 B)$
$C(9 B)-C(4 B)-C(1 B)$
$C(4 B)-C(5 B)-C(6 B)$
$C(4 B)-C(5 B)-H(5 B)$
$C(6 B)-C(5 B)-H(5 B)$
$C(7 B)-C(6 B)-C(5 B)$
$C(7 B)-C(6 B)-H(6 B)$
$C(5 B)-C(6 B)-H(6 B)$
$C(6 B)-C(7 B)-C(8 B)$
$C(6 B)-C(7 B)-H(7 B)$
$C(8 B)-C(7 B)-H(7 B)$
$C(9 B)-C(8 B)-C(7 B)$
$C(9 B)-C(8 B)-H(8 B)$
$C(7 B)-C(8 B)-H(8 B)$
$C(8 B)-C(9 B)-C(4 B)$
$C(8 B)-C(9 B)-H(9 B)$
$C(4 B)-C(9 B)-H(9 B)$
$C(15 B)-C(10 B)-C(11 B)$
$C(15 B)-C(10 B)-C(1 B)$
$C(11 B)-C(10 B)-C(1 B)$
$C(12 B)-C(11 B)-C(10 B)$
$C(12 B)-C(11 B)-H(11 B)$
$C(10 B)-C(11 B)-H(11 B)$
$C(13 B)-C(12 B)-C(11 B)$
$C(13 B)-C(12 B)-H(12 B)$
$C(11 B)-C(12 B)-H(12 B)$
$C(14 B)-C(13 B)-C(12 B)$
119.8
119.5(3)
120.2
120.2
120.9(3)
119.6
119.6
120.2(3)
119.9
119.9
109.5(2)
107.2(2)
109.7(2)
110.6(2)
102.0(2)
116.1(2)
110.8(2)
104.7(2)

104(3)
101(2)
101.9(2)
111.4
111.4
111.4
111.4
109.3
106.7(3)
110.4
110.4
110.4
110.4
108.6
117.7(3)
122.8(3)
119.6(2)
120.5(3)
119.7
119.7
120.5(3)
119.7
119.7
119.6(3)
120.2
120.2
120.3(3)
119.9
119.9
121.4(3)
119.3
119.3
118.2(3)
121.9(3)
119.9(2)
120.6(3)
119.7
119.7
120.0(3)
120.0
120.0
120.1(3)

| $C(14 B)-C(13 B)-H(13 B)$ | 119.9 |
| :--- | ---: |
| $C(12 B)-C(13 B)-H(13 B)$ | 119.9 |
| $C(13 B)-C(14 B)-C(15 B)$ | $120.7(3)$ |
| $C(13 B)-C(14 B)-H(14 B)$ | 119.6 |
| $C(15 B)-C(14 B)-H(14 B)$ | 119.6 |
| $C(10 B)-C(15 B)-C(14 B)$ | $120.3(3)$ |
| $C(10 B)-C(15 B)-H(15 B)$ | 119.8 |
| $C(14 B)-C(15 B)-H(15 B)$ | 119.8 |

Torsionangles[ ${ }^{\circ}$ ].

| $\mathrm{C}(3 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | -27.8(3) |
| :---: | :---: |
| $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$ | 162.7(2) |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$ | -78.5(3) |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$ | 40.1(3) |
| $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | -37.3(3) |
| $C(4 A)-C(1 A)-C(2 A)-C(3 A)$ | -154.6(3) |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | 79.7(3) |
| $\mathrm{N}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | 3.4(4) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$ | 21.3(3) |
| $N(1 A)-C(1 A)-C(4 A)-C(5 A)$ | 37.6(4) |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | -81.7(3) |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | 151.0(3) |
| $N(1 A)-C(1 A)-C(4 A)-C(9 A)$ | -144.1(3) |
| C(10A)-C(1A)-C(4A)-C(9A) | 96.6(3) |
| C(2A)-C(1A)-C(4A)-C(9A) | -30.7(4) |
| $\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | -1.3(5) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | 177.0(3) |
| C(4A)-C(5A)-C(6A)-C(7A) | 0.7(6) |
| C(5A)-C(6A)-C(7A)-C(8A) | -0.4(6) |
| C(6A)-C(7A)-C(8A)-C(9A) | 0.7(6) |
| C(5A)-C(4A)-C(9A)-C(8A) | 1.6(5) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$ | -176.7(3) |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | -1.4(6) |
| N(1A)-C(1A)-C(10A)-C(11A) | 161.0(3) |
| $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$ | -80.5(3) |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$ | 48.9(4) |
| $N(1 A)-C(1 A)-C(10 A)-C(15 A)$ | -22.1(4) |
| $C(4 A)-C(1 A)-C(10 A)-C(15 A)$ | 96.4(3) |
| C(2A)-C(1A)-C(10A)-C(15A) | -134.2(3) |
| $\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$ | 0.8(5) |
| C(1A)-C(10A)-C(11A)-C(12A) | 177.9(3) |
| C(10A)-C(11A)-C(12A)-C(13A) | -0.2(5) |
| C(11A)-C(12A)-C(13A)-C(14A) | -0.4(5) |
| C(12A)-C(13A)-C(14A)-C(15A) | 0.3(6) |
| C(13A)-C(14A)-C(15A)-C(10A) | 0.4(6) |
| C(11A)-C(10A)-C(15A)-C(14A) | -1.0(5) |
| C(1A)-C(10A)-C(15A)-C(14A) | -177.9(3) |
| $\mathrm{C}(3 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$ | -21.4(3) |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$ | 158.7(2) |
| $\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$ | -81.1(3) |
| $\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$ | 36.3(3) |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$ | -37.4(3) |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$ | -153.5(2) |
| $\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$ | 79.4(3) |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$ | -3.1(3) |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$ | 25.3(3) |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$ | -6.0(4) |
| $C(10 B)-C(1 B)-C(4 B)-C(5 B)$ | 112.0(3) |


| $\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$ | -117.9(3) | $C(4 B)-C(1 B)-C(10 B)-C(15 B)$ | 106.0(3) |
| :---: | :---: | :---: | :---: |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$ | 173.9(3) | C(2B)-C(1B)-C(10B)-C(15B) | -21.3(4) |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$ | -68.0(3) | $N(1 B)-C(1 B)-C(10 B)-C(11 B)$ | 45.3(3) |
| $\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$ | 62.1(3) | $C(4 B)-C(1 B)-C(10 B)-C(11 B)$ | -74.3(3) |
| $\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$ | 0.3(5) | $\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$ | 158.5(3) |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$ | -179.8(3) | $\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$ | 1.8(5) |
| $\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$ | -0.5(6) | $C(1 B)-C(10 B)-C(11 B)-C(12 B)$ | -178.0(3) |
| $\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$ | 0.5(6) | C(10B)-C(11B)-C(12B)-C(13B) | -0.4(5) |
| $\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$ | -0.3(6) | C(11B)-C(12B)-C(13B)-C(14B) | -1.3(6) |
| $\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$ | 0.2(6) | C(12B)-C(13B)-C(14B)-C(15B) | 1.5(6) |
| $\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$ | -0.2(5) | C(11B)-C(10B)-C(15B)-C(14B) | -1.6(5) |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$ | 179.9(3) | $C(1 B)-C(10 B)-C(15 B)-C(14 B)$ | 178.2(3) |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$ | -134.5(3) | $\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$ | 0.0(5) |

### 12.1.2 3-Allyl-3-phenyl-isoxazolidine (30).

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$
monoclinic, P2(1)/c
$a=9.1243(6) \AA$
$b=19.8216(12) \AA$
$c=6.3163(4) \AA$
$\alpha=90^{\circ}$
$\beta=107.662(5)^{\circ}$
$\gamma=90^{\circ}$
$V=1088.51(12) \AA^{3}$
$\mathrm{Z}=4, R(F)=0.0827$
$R_{w}\left(F^{2}\right)=0.2255$
Crystal size: $0.75 \times 0.20 \times 0.15 \mathrm{~mm}$
Calculated density : $1.155 \mathrm{~g} / \mathrm{cm}^{3}$
Theta range for data collection: 4.46-67.99 degree
Unigue reflections: 1923
Observed reflections: 1322
No. of contributed reflections to refinement: 1923
No. of refined parameters: 188

Stereoview of the structure with displacement parameters:


Elemente cells : (a) view to bc plane, (b) view to ac plane, (c) view to ab plane:
(a)

(b)

(c)

|  |  |
| :---: | :---: |


| Bond lengths $\left[\AA\right.$ ] and angles [ $\left.{ }^{\circ}\right]$. |  |
| :---: | :---: |
| $\mathrm{C}(1)-\mathrm{N}(1)$ | 1.478(3) |
| $\mathrm{C}(1)-\mathrm{C}(7)$ | 1.519(3) |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.543(4) |
| $\mathrm{C}(1)-\mathrm{C}(4)$ | 1.543(3) |
| $\mathrm{O}(1)-\mathrm{C}(3)$ | 1.423(4) |
| $\mathrm{O}(1)-\mathrm{N}(1)$ | 1.451(3) |
| $\mathrm{N}(1)-\mathrm{H}(1)$ | 0.99(4) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.518(5) |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 1.02(3) |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 1.04(5) |
| $\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$ | 1.02(4) |
| $\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 1.14(5) |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.496(4) |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 1.10 (3) |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 1.04(4) |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | 1.308(5) |
| $\mathrm{C}(5)-\mathrm{H}(5)$ | 0.99(4) |
| C(6)-H(6A) | 1.01(6) |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 1.05(5) |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.377(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(12)$ | 1.395(4) |
| C(8)-C(9) | $1.401(4)$ |
| $\mathrm{C}(8)-\mathrm{H}(8)$ | 1.01(4) |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | 1.381(5) |
| $\mathrm{C}(9)-\mathrm{H}(9)$ | 1.01(5) |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | 1.365(5) |
| $\mathrm{C}(10)-\mathrm{H}(10)$ | 1.08(4) |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | 1.386(4) |
| $\mathrm{C}(11)-\mathrm{H}(11)$ | 0.99(4) |
| $\mathrm{C}(12)-\mathrm{H}(12)$ | 1.06(3) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(7)$ | 108.87(18) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 103.7(2) |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$ | 115.5(2) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(4)$ | 106.1(2) |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(4)$ | 111.0(2) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$ | 111.0(2) |
| $\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{N}(1)$ | 106.6(2) |
| $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)$ | 103.27(18) |
| $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{H}(1)$ | 102(2) |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1)$ | 107(2) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ | 103.2(2) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 111.4(19) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 117(2) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 111(3) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 107(3) |
| $\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 107(3) |
| $\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$ | 107.2(2) |
| $\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$ | 107(3) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$ | 116(3) |
| $\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 108(2) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 106(2) |
| $\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 113(3) |
| C(5)-C(4)-C(1) | 114.0(2) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 105.2(16) |
| $\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 111.8(16) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 109.7(19) |


| $\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | $106.2(19)$ |
| :--- | ---: |
| $\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | $110(2)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$ | $126.0(4)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$ | $121(3)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$ | $113(2)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$ | $130(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | $117(3)$ |
| $\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | $112(4)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$ | $118.4(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(1)$ | $122.6(2)$ |
| $\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(1)$ | $118.9(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $120.3(3)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$ | $126(2)$ |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$ | $114(2)$ |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$ | $120.2(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$ | $130(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$ | $119.9(3)$ |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$ | $122(2)$ |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$ | $119(2)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$ | $120.0(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $118(2)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$ | $121(2)$ |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$ | $121.1(3)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$ | $119.5(17)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$ | $119.4(17)$ |
| $\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12)$ |  |

Torsion angles [ ${ }^{\circ}$ ].

| $\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)$ | 40.2(3) |
| :---: | :---: |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{O}(1)$ | -160.6(2) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{O}(1)$ | -37.1(3) |
| $\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{O}(1)$ | 79.9(2) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 21.2(3) |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 140.3(3) |
| $\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | -92.3(3) |
| $\mathrm{N}(1)-\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$ | -26.3(4) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$ | 2.6(4) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(5)$ | -178.4(2) |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(5)$ | 63.5(3) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(5)$ | -66.4(3) |
| $\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | 124.4(4) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | 137.9(3) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | 21.8(3) |
| $\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | -105.7(3) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)$ | -43.7(3) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)$ | -159.8(3) |
| $\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)$ | 72.7(3) |
| $\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | 0.5(4) |
| $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | 178.9(3) |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | 0.4 (5) |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | -0.8(6) |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | 0.4(5) |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$ | 0.5(5) |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$ | -0.9(4) |
| $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$ | -179.4(2) |

### 12.1.3 ((3R,5S)-3-Allyl-3-(S)-1,4-dioxa-spiro[4.5]dec-2-yl-isoxazolidin-5-yl)-methanol

 (35a).$\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{4}$ orthorhombic, P2(1)2(1)2(1)
$a=7.0599(3) \AA$
$b=8.5951(5) \AA$
$c=24.9282(13) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=90^{\circ}$
$V=1512.66(13) \AA^{3}$
$\mathrm{Z}=4, R(F)=0.0493$
$R_{w}\left(F^{2}\right)=0.1313$
Crystal size: $1.2 \times 0.3 \times 0.15 \mathrm{~mm}$


Calculated density: $1.244 \mathrm{~g} / \mathrm{cm}^{3}$
Theta range for data collection: 3.55-67.99 degree
Unigue reflections: 2428
Observed reflections: 2092
No. of contributed reflections to refinement: 2428
No. of refined parameters: 202

Stereoview of the structure with displacement parameters:


Elemente cells : (a) view to bc plane, (b) view to ac plane, (c) view to ab plane:
(a)

(b)

(c)


Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

| $\mathrm{O}(1)-\mathrm{N}(1)$ | 1.442(3) |
| :---: | :---: |
| $\mathrm{O}(1)-\mathrm{C}(3)$ | 1.444(3) |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | 1.498(3) |
| $\mathrm{N}(1)-\mathrm{H}(1)$ | 0.91(3) |
| $\mathrm{C}(1)-\mathrm{C}(8)$ | 1.522(4) |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.537(4) |
| $\mathrm{C}(1)-\mathrm{C}(5)$ | 1.544(4) |
| $\mathrm{O}(2)-\mathrm{C}(4)$ | 1.411(4) |
| $\mathrm{O}(2)-\mathrm{H}(2)$ | 0.98(7) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.517(4) |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 0.9700 |
| $\mathrm{O}(3)-\mathrm{C}(9)$ | 1.422(4) |
| $\mathrm{O}(3)-\mathrm{C}(10)$ | 1.430(3) |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.510(4) |
| $\mathrm{C}(3)-\mathrm{H}(3)$ | 0.9800 |
| $\mathrm{O}(4)-\mathrm{C}(8)$ | 1.430(3) |
| $\mathrm{O}(4)-\mathrm{C}(10)$ | 1.432(3) |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | 1.486(4) |
| $\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | 1.310(5) |
| $\mathrm{C}(6)-\mathrm{H}(6)$ | 1.02(5) |
| $\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$ | 0.95(5) |
| $\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$ | 1.04(5) |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.530(4) |
| $\mathrm{C}(8)-\mathrm{H}(8)$ | 0.9800 |
| $\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(10)-\mathrm{C}(15)$ | 1.499(5) |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | 1.518(4) |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | 1.523(5) |
| $\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(12)-\mathrm{C}(13)$ | 1.523(7) |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(13)-\mathrm{C}(14)$ | 1.522(6) |
| $\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(14)-\mathrm{C}(15)$ | 1.521(5) |
| $\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$ | 0.9700 |


| $\mathrm{N}(1)-\mathrm{O}(1)-\mathrm{C}(3)$ | $105.86(18)$ |
| :--- | ---: |
| $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)$ | $105.55(19)$ |
| $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{H}(1)$ | $106.6(18)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1)$ | $109.8(17)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(8)$ | $106.4(2)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $104.7(2)$ |
| $\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$ | $110.6(2)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)$ | $107.9(2)$ |
| $\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(5)$ | $111.6(2)$ |


| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$ | $115.0(2)$ |
| :--- | ---: |
| $\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{H}(2)$ | $111(5)$ |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ | $104.7(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 110.8 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 110.8 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 110.8 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 110.8 |
| $\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 108.9 |
| $\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(10)$ | $106.6(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$ | $108.5(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$ | $103.7(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ | $116.7(3)$ |


| $\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{H}(3)$ | 109.2 |
| :--- | ---: |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$ | 109.2 |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$ | 109.2 |
| $\mathrm{C}(8)-\mathrm{O}(4)-\mathrm{C}(10)$ | $109.6(2)$ |
| $\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$ | $114.2(3)$ |
| $\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 108.7 |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 108.7 |
| $\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 108.7 |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 108.7 |
| $\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 107.6 |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(1)$ | $114.8(2)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 108.6 |
| $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 108.6 |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 108.6 |
| $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 108.6 |
| $\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 107.6 |
| $\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(5)$ |  |

125.2(4)

116(3)
119(3)
118(3)
121(3)
119(4)
109.9(2)
104.1(2)
115.8(2)
109.0
109.0
109.0
104.1(2)
110.9
110.9
110.9
110.9
108.9
104.6(2)
108.9(3)
109.6(3)
110.9(3)
110.4(2)
112.1(2)
111.1(3)
109.4
109.4
109.4
109.4
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$
Torsion angles [ ${ }^{\circ}$ ].

| $\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)$ | $-37.7(3)$ |
| :--- | ---: |
| $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(8)$ | $-97.3(2)$ |
| $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $19.8(3)$ |
| $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)$ | $142.8(2)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $3.9(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $118.1(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-114.4(3)$ |
| $\mathrm{N}(1)-\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$ | $164.3(2)$ |

108.0
111.1(3)
109.4
109.4
109.4
109.4
108.0
110.6(3)
109.5
109.5
109.5
109.5
108.1
110.7(4)
109.5
109.5
109.5
109.5
108.1
111.9(3)
109.2
109.2
109.2
109.2
107.9

Tor

| $\mathrm{N}(1)-\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$ | $39.7(3)$ |
| :--- | ---: |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$ | $-26.0(3)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $-145.2(3)$ |
| $\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$ | $-71.1(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$ | $45.4(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ | $-73.3(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ | $170.1(2)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ | $43.1(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | $-114.1(4)$ |
| $\mathrm{C}(10)-\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{C}(1)$ | $-126.8(2)$ |
| $\mathrm{C}(10)-\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{C}(9)$ | $-2.2(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{O}(4)$ | $-58.2(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{O}(4)$ | $-171.3(2)$ |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{O}(4)$ | $59.3(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$ | $-175.7(2)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$ | $71.2(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$ | $-58.2(3)$ |
| $\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(8)$ | $31.6(3)$ |
| $\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(3)$ | $-17.8(3)$ |
| $\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(3)$ | $102.8(3)$ |
| $\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{O}(4)$ | $-33.3(3)$ |
| $\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(15)$ | $-150.4(2)$ |
| $\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(11)$ | $85.7(3)$ |
| $\mathrm{C}(8)-\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{O}(3)$ | $21.4(3)$ |
| $\mathrm{C}(8)-\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(15)$ | $138.1(3)$ |
| $\mathrm{C}(8)-\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(11)$ | $-97.9(3)$ |
| $\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $67.9(4)$ |
| $\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $-176.6(3)$ |
| $\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $-54.1(4)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | $55.1(5)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$ | $-56.6(5)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ | $56.2(5)$ |
| $\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$ | $-68.7(3)$ |
| $\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$ | $177.4(3)$ |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$ | $54.5(4)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$ | $-55.4(4)$ |
|  |  |

### 12.1.4 3-Carboxymethyl-2-methyl-3-phenyl-isoxazolidin-2-ium; chloride (51).

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClNO}_{3}$ orthorhombic, P2(1)2(1)2(1)
$a=8.1632(5) \AA$
$b=12.4642(6) \AA$
$c=12.4641(6) \AA$

$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=90^{\circ}$
$V=1268.19(12) \AA^{3}$
$Z=4, R(F)=0.0537$
$R_{w}\left(F^{2}\right)=0.1324$
Crystal size: $0.2 \times 0.12 \times 0.10 \mathrm{~mm}$
Calculated density : $1.350 \mathrm{~g} / \mathrm{cm}^{3}$
Theta range for data collection: 5.02-62.40 degree
Unigue reflections: 1826


Observed reflections: 1473
No. of contributed reflections to refinement: 1826
No. of refined parameters: 159

Stereoview of the structure with displacement parameters:


Elemente cells: (a) view to bc plane, (b) view to ac plane, (c) view to ab plane:
(a)

(b)

(c)


Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

|  |  |
| :--- | ---: |
| $\mathrm{N}(1)-\mathrm{O}(3)$ | $1.434(5)$ |
| $\mathrm{N}(1)-\mathrm{C}(6)$ | $1.489(6)$ |
| $\mathrm{N}(1)-\mathrm{C}(3)$ | $1.527(5)$ |
| $\mathrm{N}(1)-\mathrm{H}(1)$ | 0.9100 |
| $\mathrm{O}(1)-\mathrm{C}(1)$ | $1.218(6)$ |
| $\mathrm{C}(1)-\mathrm{O}(2)$ | $1.316(6)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.483(7)$ |
| $\mathrm{O}(2)-\mathrm{H}(2)$ | $0.87(8)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.540(7)$ |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(3)-\mathrm{C}(7)$ | $1.524(6)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.541(7)$ |
| $\mathrm{O}(3)-\mathrm{C}(5)$ | $1.454(7)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.535(8)$ |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 0.9600 |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.382(7)$ |
| $\mathrm{C}(7)-\mathrm{C}(12)$ | $1.393(7)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.393(8)$ |
| $\mathrm{C}(8)-\mathrm{H}(8)$ | 0.9300 |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.380(10)$ |
| $\mathrm{C}(9)-\mathrm{H}(9)$ | 0.9300 |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | $1.369(10)$ |
| $\mathrm{C}(10)-\mathrm{H}(10)$ | 0.9300 |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | $1.391(9)$ |
| $\mathrm{C}(11)-\mathrm{H}(11)$ | 0.9300 |
| $\mathrm{C}(12)-\mathrm{H}(12)$ | 0.9300 |
|  |  |


| $\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{C}(6)$ | $109.9(4)$ |
| :--- | ---: |
| $\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{C}(3)$ | $104.4(3)$ |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(3)$ | $116.7(4)$ |
| $\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{H}(1)$ | 108.5 |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{H}(1)$ | 108.5 |
| $\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{H}(1)$ | 108.5 |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$ | $121.8(5)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $124.0(5)$ |
| $\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$ | $114.2(5)$ |
| $\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{H}(2)$ | $110(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $112.8(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 109.0 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 109.0 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 109.0 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 109.0 |
| $\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | $110.5(3)$ |
| $\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{N}(1)$ | $110.7(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{C}(2)$ | $106.2(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$ | $116.1(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{C}(4)$ | $100.0(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$ | $112.4(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $107.5(4)$ |
| $\mathrm{N}(1)-\mathrm{O}(3)-\mathrm{C}(5)$ |  |


| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | $103.3(4)$ |
| :--- | ---: |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 111.1 |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 111.1 |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 111.1 |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 111.1 |
| $\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 109.1 |
| $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(4)$ | $106.8(4)$ |
| $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 110.4 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 110.4 |
| $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 110.4 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 110.4 |
| $\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 108.6 |
| $\mathrm{~N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$ | 109.5 |
| $\mathrm{~N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 109.5 |
| $\mathrm{~N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(6 \mathrm{~B})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$ | $118.9(5)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(3)$ | $120.2(4)$ |
| $\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(3)$ | $120.9(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $121.0(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$ | 119.5 |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$ | 119.5 |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$ | $119.1(6)$ |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$ | 120.4 |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$ | 120.4 |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$ | $120.7(6)$ |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$ | 119.6 |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$ | 119.6 |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $120.2(6)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$ | 119.9 |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$ | 119.9 |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$ | $120.0(6)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$ | 120.0 |
| $\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12)$ |  |
|  |  |

Torsion angles [ ${ }^{\circ}$ ].

| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $60.1(8)$ |
| :--- | ---: |
| $\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-120.7(5)$ |
| $\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(7)$ | $-165.5(4)$ |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(7)$ | $-44.0(6)$ |
| $\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$ | $74.3(4)$ |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$ | $-164.2(4)$ |
| $\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$ | $-42.6(4)$ |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$ | $78.8(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)$ | $58.5(6)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$ | $178.5(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $-73.2(5)$ |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{O}(3)-\mathrm{C}(5)$ | $-91.1(4)$ |
| $\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{O}(3)-\mathrm{C}(5)$ | $34.8(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $153.0(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $34.2(5)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $-78.1(5)$ |
| $\mathrm{N}(1)-\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(4)$ | $-12.0(5)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(3)$ | $-15.1(5)$ |
| $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(8)$ | $-54.2(6)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(8)$ | $63.1(5)$ |


| $C(4)-C(3)-C(7)-C(8)$ | $-167.1(4)$ | $C(7)-C(8)-C(9)-C(10)$ | $0.5(9)$ |
| :--- | ---: | :--- | ---: |
| $N(1)-C(3)-C(7)-C(12)$ | $127.6(5)$ | $C(8)-C(9)-C(10)-C(11)$ | $0.5(10)$ |
| $C(2)-C(3)-C(7)-C(12)$ | $-115.0(5)$ | $C(9)-C(10)-C(11)-C(12)$ | $-0.3(10)$ |
| $C(4)-C(3)-C(7)-C(12)$ | $14.8(6)$ | $C(10)-C(11)-C(12)-C(7)$ | $-0.9(9)$ |
| $C(12)-C(7)-C(8)-C(9)$ | $-1.7(8)$ | $C(8)-C(7)-C(12)-C(11)$ | $1.9(8)$ |
| $C(3)-C(7)-C(8)-C(9)$ | $-179.8(5)$ | $C(3)-C(7)-C(12)-C(11)$ | $-180.0(5)$ |

12.1.5 (S)-3-((S)-1,2-Dihydroxy-ethyl)-2,3-dimethylisoxazolidin-2-ium; chloride ( $52 \cdot \mathrm{HCl}$ ).
$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{CINO}_{3}$ orthorhombic,
P2(1)2(1)2(1)
$a=8.1100(10) \AA$
$b=9.846(2) \AA$
$c=12.1560(10) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=90^{\circ}$
$\mathrm{V}=970.7(2) \AA^{3}$
$Z=4, R(F)=0.0374$
$R_{W}\left(F^{2}\right)=0.0940$
Crystal size: $0.5 \times 0.4 \times 0.4 \mathrm{~mm}$
Calculated density: $1.353 \mathrm{~g} / \mathrm{cm}^{3}$
Theta range for data collection: 6.56 to 54.98 degree
Unigue reflections: 632
Observed reflections: 1010
No. of contributed reflections to refinement: 632
No. of refined parameters: 112

Stereoview of the structure with displacement parameters:


Elemente cells : (a) view to bc plane, (b) view to ac plane, (c) view to ab plane:
(a)

(b)

(c)


Bond lengths $\left[\AA\right.$ ] and angles $\left[{ }^{\circ}\right]$.

| $\mathrm{C}(1)-\mathrm{N}(1)$ | 1.524(6) |
| :---: | :---: |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.526(8) |
| $\mathrm{C}(1)-\mathrm{C}(5)$ | 1.528(6) |
| $\mathrm{C}(1)-\mathrm{C}(7)$ | 1.530(7) |
| $\mathrm{N}(1)-\mathrm{O}(2)$ | 1.420(5) |
| $\mathrm{N}(1)-\mathrm{C}(4)$ | 1.477(7) |
| $\mathrm{N}(1)-\mathrm{H}(1)$ | 0.9100 |
| $\mathrm{O}(2)-\mathrm{C}(3)$ | 1.452(9) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.527(8) |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 0.9700 |
| $\mathrm{O}(3)-\mathrm{C}(5)$ | 1.423(6) |
| $\mathrm{O}(3)-\mathrm{H}(3)$ | 1.02(8) |
| $\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 0.9700 |
| $\mathrm{O}(4)-\mathrm{C}(6)$ | 1.416(6) |
| $\mathrm{O}(4)-\mathrm{H}(4)$ | 0.92(10) |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$ | 0.9600 |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | 1.497(7) |
| $\mathrm{C}(5)-\mathrm{H}(5)$ | 0.9800 |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$ | 0.9600 |
| $N(1)-C(1)-C(2)$ | 98.0(4) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)$ | 108.7(4) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$ | 116.2(5) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(7)$ | 110.3(4) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$ | 112.3(5) |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(7)$ | 110.6(4) |
| $\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{C}(4)$ | 107.6(4) |
| $\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{C}(1)$ | 105.5(4) |
| $\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)$ | 118.4(4) |
| $\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{H}(1)$ | 108.3 |
| $\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{H}(1)$ | 108.3 |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1)$ | 108.3 |
| $\mathrm{N}(1)-\mathrm{O}(2)-\mathrm{C}(3)$ | 106.3(4) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 104.0(5) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 111.0 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 111.0 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 111.0 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 111.0 |
| $\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 109.0 |
| $\mathrm{C}(5)-\mathrm{O}(3)-\mathrm{H}(3)$ | 114(4) |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$ | 106.4(5) |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$ | 110.5 |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$ | 110.5 |


| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 110.5 |
| :--- | ---: |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 110.5 |
| $\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 108.6 |
| $\mathrm{C}(6)-\mathrm{O}(4)-\mathrm{H}(4)$ | $104(6)$ |
| $\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 109.5 |
| $\mathrm{~N}(1)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 109.5 |
| $\mathrm{~N}(1)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(4 \mathrm{~B})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$ | 109.5 |
| $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)$ | $112.4(4)$ |
| $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(1)$ | $107.3(4)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(1)$ | $111.34)$ |
| $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{H}(5)$ | 108.6 |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$ | 108.6 |
| $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{H}(5)$ | 108.6 |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)$ | $113.2(5)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$ | 108.9 |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$ | 108.9 |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 108.9 |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 108.9 |
| $\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 107.7 |
| $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$ | 109.5 |

Torsion angles [ ${ }^{\circ}$ ].

| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{O}(2)$ | $44.7(5)$ |
| :--- | ---: |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{O}(2)$ | $165.9(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{O}(2)$ | $-72.7(5)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$ | $165.0(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$ | $-73.8(6)$ |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$ | $47.7(6)$ |
| $\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{O}(2)-\mathrm{C}(3)$ | $-163.3(5)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{O}(2)-\mathrm{C}(3)$ | $-36.1(5)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-35.8(6)$ |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-151.2(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $80.0(6)$ |
| $\mathrm{N}(1)-\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$ | $11.6(7)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$ | $16.7(8)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{O}(3)$ | $-43.6(6)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{O}(3)$ | $65.7(6)$ |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{O}(3)$ | $-164.8(6)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ | $-166.9(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ | $-57.6(6)$ |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ | $71.9(6)$ |
| $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(4)$ | $76.3(6)$ |
| $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(4)$ | $-163.4(5)$ |

### 12.1.6 (1S,6S)-6-Hydroxymethyl-1-methyl-2,7-dioxa-1-azaspiro[4.4]nonan-8-one (54).

$\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{4}$
Orthorhombic,
P2(1)2(1)2(1)
$a=8.8739(5) \AA$
$b=9.5664(5) \AA$
$c=10.7489(6) \AA$
$\alpha=90^{\circ}$


54
$\beta=90^{\circ}$
$\gamma=90^{\circ}$
$\mathrm{V}=912.49(9) \AA^{3}$
$Z=4, R(F)=0.0515$
$R_{w}\left(F^{2}\right)=0.1428$
Crystal size: $0.4 \times 0.4 \times 0.2 \mathrm{~mm}$
Calculated density: $1.363 \mathrm{~g} / \mathrm{cm}^{3}$
Theta range for data collection: 6.19-67.98 degree Unigue reflections: 1389
Observed reflections: 1304
No. of contributed reflections to refinement: 1389
No. of refined parameters: 123

Stereoview of the structure with displacement parameters:


Elemente cells : (a) view to bc plane, (b) view to ac plane, (c) view to ab plane:
(a)

(b)

(c)


| Bond lengths [ $\AA$ ] and angles [ ${ }^{\circ}$ ]. |  | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 110.9 |
| :---: | :---: | :---: | :---: |
|  |  | $\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 108.9 |
|  |  | $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{O}(2)$ | 120.9(3) |
| $\mathrm{N}(1)-\mathrm{O}(1)$ | 1.454(3) | $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(4)$ | 128.6(3) |
| $\mathrm{N}(1)-\mathrm{C}(8)$ | 1.480(4) | $\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$ | 110.5(3) |
| N(1)-C(3) | 1.481(3) | $\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$ | 108.8(2) |
| $\mathrm{O}(1)-\mathrm{C}(1)$ | 1.453(4) | $\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(3)$ | 104.4(2) |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.514(5) | $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(3)$ | 118.4(2) |
| $\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$ | 0.9700 | $\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{H}(6)$ | 108.3 |
| $\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$ | 0.9700 | $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$ | 108.3 |
| C(2)-C(3) | 1.527(4) | $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{H}(6)$ | 108.3 |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 0.9700 | $\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{C}(6)$ | 110.2(2) |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 0.9700 | $\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$ | 109.6 |
| $\mathrm{O}(2)-\mathrm{C}(5)$ | 1.339(4) | $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$ | 109.6 |
| $\mathrm{O}(2)-\mathrm{C}(6)$ | 1.458(3) | $\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$ | 109.6 |
| $\mathrm{O}(3)-\mathrm{C}(5)$ | 1.208(4) | $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$ | 109.6 |
| C(3)-C(4) | 1.518(4) | $\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$ | 108.1 |
| $\mathrm{C}(3)-\mathrm{C}(6)$ | 1.549(4) | $\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$ | 109.5 |
| $\mathrm{O}(4)-\mathrm{C}(7)$ | 1.419(4) | $\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$ | 109.5 |
| $\mathrm{O}(4)-\mathrm{H}(4)$ | 0.96(5) | $\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.495(4) | $\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 0.9700 | $\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 0.9700 | $\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | 1.513(4) |  |  |
| $\mathrm{C}(6)-\mathrm{H}(6)$ | 0.9800 |  |  |
| $\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$ | 0.9700 | Torsion angles [ ${ }^{\circ}$ ]. |  |
| $\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$ | 0.9700 |  |  |
| $\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$ | 0.9600 |  |  |
| $\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$ | 0.9600 | $\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{O}(1)-\mathrm{C}(1)$ | 84.1(3) |
| $\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$ | 0.9600 | $\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{O}(1)-\mathrm{C}(1)$ | -37.2(3) |
|  |  | $\mathrm{N}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 18.1(4) |
| $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(8)$ | 107.6(2) | $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 8.1(4) |
| $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(3)$ | 101.4(2) | $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$ | 169.2(2) |
| $\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(3)$ | 115.2(2) | $\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$ | 53.4(3) |
| $\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{N}(1)$ | 107.9(2) | $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$ | 41.5(3) |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 106.4(3) | $\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$ | -74.3(3) |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$ | 110.4 | $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(6)$ | -80.8(2) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$ | 110.4 | $\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(6)$ | 163.3(3) |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$ | 110.4 | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$ | -30.7(3) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$ | 110.4 | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | -155.4(3) |
| $\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$ | 108.6 | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$ | 84.9(3) |
| $C(1)-C(2)-C(3)$ | 102.7(2) | $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | 86.0(3) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 111.2 | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | -153.5(2) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 111.2 | $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | -26.5(3) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 111.2 | $\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{O}(3)$ | -176.5(3) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 111.2 | $\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$ | 3.6(3) |
| $\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 109.1 | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(3)$ | -164.2(3) |
| $\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)$ | 110.5(2) | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$ | 15.6(3) |
| $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$ | 112.4(2) | $\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$ | 106.4(2) |
| $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$ | 104.1(2) | $\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(3)$ | -20.9(3) |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ | 117.1(2) | $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{O}(2)$ | -88.7(3) |
| $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(6)$ | 105.7(2) | $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{O}(2)$ | 28.8(3) |
| C(4)-C(3)-C(6) | 101.5(2) | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{O}(2)$ | 156.7(2) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$ | 115.7(2) | $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ | 150.2(2) |
| $\mathrm{C}(7)-\mathrm{O}(4)-\mathrm{H}(4)$ | 106(3) | $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ | -92.3(3) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | 104.3(2) | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ | 35.6(4) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 110.9 | $\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(4)$ | -66.2(3) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 110.9 | $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(4)$ | 52.6(3) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 110.9 |  |  |

### 12.1.7 [(1S,2S)-2,3-Dihydroxy-1-(2-hydroxyethyl)-1-methylpropyl]-methylammonium; chloride $(70 \cdot \mathrm{HCl})$.

$\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{ClNO}_{3}$
monoclinic, P2(1)
$a=7.3469(4) \AA$
$b=7.6564(5) \AA$
$c=8.9565(4) \AA$
$\alpha=90^{\circ}$
$\beta=92.792(5)^{\circ}$
$\gamma=90^{\circ}$
$V=503.21(5) A^{3}$
$Z=2, R(F)=0.0379$
$R_{w}\left(F^{2}\right)=0.0997$
Crystal size: $0.4 \times 0.35 \times 0.2 \mathrm{~mm}$
Calculated density: $1.318 \mathrm{~g} / \mathrm{cm}^{3}$
Theta range for data collection: 4.94-67.91 degree Unigue reflections: 1077
Observed reflections: 1037
No. of contributed reflections to refinement: 1077
No. of refined parameters: 122

Stereoview of the structure with displacement parameters:


Elemente cells : (a) view to bc plane, (b) view to ac plane, (c) view to ab plane:
(a)

(b)

(c)


| Bond lengths $[\AA \AA]$ and angles $\left[{ }^{\circ}\right]$. |  |
| :---: | :---: |
| N(1)-C(7) | 1.492(4) |
| $\mathrm{N}(1)-\mathrm{C}(3)$ | 1.521(4) |
| $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$ | 0.9000 |
| $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$ | 0.9000 |
| $\mathrm{O}(1)-\mathrm{C}(1)$ | 1.413(6) |
| $\mathrm{O}(1)-\mathrm{H}(1)$ | 0.92(7) |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.510(5) |
| $\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$ | 0.9700 |
| $\mathrm{C}(1)-\mathrm{H}(1 \mathrm{D})$ | 0.9700 |
| $\mathrm{C}(2)-\mathrm{O}(2)$ | 1.426(5) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.538(5) |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 0.9800 |
| $\mathrm{O}(2)-\mathrm{H}(2)$ | 0.74(5) |
| $\mathrm{C}(3)-\mathrm{C}(6)$ | 1.520(5) |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.532(4) |
| $\mathrm{O}(3)-\mathrm{C}(5)$ | 1.419(6) |
| $\mathrm{O}(3)-\mathrm{H}(3)$ | 0.86(8) |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.511(6) |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 0.9600 |
| $\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$ | 0.9600 |
| $\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(3)$ | 118.8(3) |
| $\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$ | 107.6 |
| $\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$ | 107.6 |
| $\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$ | 107.6 |
| $\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$ | 107.6 |
| $\mathrm{H}(1 \mathrm{~A})-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$ | 107.0 |
| $\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{H}(1)$ | 114(4) |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 111.1(4) |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$ | 109.4 |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$ | 109.4 |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{D})$ | 109.4 |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{D})$ | 109.4 |
| $\mathrm{H}(1 \mathrm{C})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{D})$ | 108.0 |
| $\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$ | 110.2(3) |
| $\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$ | 107.5(3) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 114.5(3) |
| $\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 108.2 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 108.2 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 108.2 |
| $\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{H}(2)$ | 104(4) |


| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{N}(1)$ | 108.3(3) |
| :---: | :---: |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)$ | 113.2(3) |
| $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$ | 106.3(3) |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(2)$ | 111.2(3) |
| $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$ | 107.3(3) |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ | 110.2(3) |
| $\mathrm{C}(5)-\mathrm{O}(3)-\mathrm{H}(3)$ | 103(5) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | 119.3(3) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 107.5 |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$ | 107.5 |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 107.5 |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 107.5 |
| $\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$ | 107.0 |
| $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(4)$ | 113.0(4) |
| $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 109.0 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 109.0 |
| $\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 109.0 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 109.0 |
| $\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 107.8 |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(6 \mathrm{~B})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 109.5 |
| $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$ | 109.5 |
| $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$ | 109.5 |
| $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$ | 109.5 |
| Torsion angles [ ${ }^{\circ}$ ] |  |

67.0(5)
-171.7(4)
69.8(4)
-168.3(3)
-50.3(4)
-172.7(3)
64.6(4)
-54.4(4)
-177.2(3)
60.9(4)
-61.8(4)
59.2(5)
-59.5(4)
-175.5(3)
-82.8(4)

### 12.1.8 Methyl-(2-oxo-4-phenyl-tetrahydro-pyran-4-yl)-ammonium; chloride ( $74 \cdot \mathrm{HCl}$ ).

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClNO}_{2}$
Orthorhombic, Pbca
$a=9.9256(6) \AA$
$b=11.0569(6) \AA$
$c=22.383(2) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=90^{\circ}$

$V=2456.4(3) \AA^{3}$
$Z=8, R(F)=0.0530$
$R_{w}\left(F^{2}\right)=0.1436$
Crystal size: $0.5 \times 0.3 \times 0.07 \mathrm{~mm}$
Calculated density: $1.307 \mathrm{~g} / \mathrm{cm}^{3}$
Theta range for data collection: 3.95-67.95 degree Unigue reflections: 2019
Observed reflections: 1509
No. of contributed reflections to refinement: 2019
No. of refined parameters: 146

Stereoview of the structure with displacement parameters:


Elemente cells : (a) view to bc plane, (b) view to ac plane, (c) view to ab plane:
(a)

(b)

(c)


Bond lengths $\left[\AA\right.$ ] and angles [ ${ }^{\circ}$ ].

| $\mathrm{O}(1)-\mathrm{C}(4)$ | 1.200(4) |
| :---: | :---: |
| $\mathrm{C}(1)-\mathrm{N}(1)$ | 1.518(3) |
| $\mathrm{C}(1)-\mathrm{C}(5)$ | 1.522(4) |
| $\mathrm{C}(1)-\mathrm{C}(7)$ | 1.524(3) |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.527(3) |
| $\mathrm{N}(1)-\mathrm{C}(6)$ | 1.490(3) |
| $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$ | 0.9000 |
| $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$ | 0.9000 |
| $\mathrm{O}(2)-\mathrm{C}(4)$ | 1.340(4) |
| $\mathrm{O}(2)-\mathrm{C}(3)$ | 1.450(4) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.501(4) |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 0.9700 |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.509(4) |
| $\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 0.9700 |
| $\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B}$ | 0.9700 |
| C(6)-H(6A) | 0.9600 |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 0.9600 |
| $\mathrm{C}(7)-\mathrm{C}(12)$ | 1.390(4) |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.400(4)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.382(4) |
| $\mathrm{C}(8)-\mathrm{H}(8)$ | 0.9300 |
| C(9)-C(10) | 1.380(5) |
| $\mathrm{C}(9)-\mathrm{H}(9)$ | 0.9300 |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | 1.365(5) |
| $\mathrm{C}(10)-\mathrm{H}(10)$ | 0.9300 |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | 1.393(4) |
| $\mathrm{C}(11)-\mathrm{H}(11)$ | 0.9300 |
| $\mathrm{C}(12)-\mathrm{H}(12)$ | 0.9300 |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)$ | 107.6(2) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(7)$ | 110.00(19) |
| $\mathrm{C}(5)-\mathrm{C}(1) \mathrm{C}(7)$ | 114.6(2) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 105.84(18) |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$ | 106.2(2) |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$ | 112.1(2) |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(1)$ | 116.63(19) |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$ | 108.1 |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$ | 108.1 |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$ | 108.1 |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$ | 108.1 |
| $\mathrm{H}(1 \mathrm{~A})-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$ | 107.3 |
| $\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(3)$ | 122.5(2) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ | 109.9(2) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 109.7 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 109.7 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 109.7 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 109.7 |
| $\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$ | 108.2 |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$ | 113.5(2) |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$ | 108.9 |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$ | 108.9 |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 108.9 |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 108.9 |


| $\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$ | 107.7 |
| :---: | :---: |
| $\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{O}(2)$ | 118.5(3) |
| $\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$ | 122.0(3) |
| $\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | 119.4(3) |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$ | 115.2(2) |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 108.5 |
| $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$ | 108.5 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 108.5 |
| $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 108.5 |
| $\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$ | 107.5 |
| $\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$ | 109.5 |
| $\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 109.5 |
| $\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(6 \mathrm{~B})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$ | 118.0(3) |
| $\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(1)$ | 121.7(3) |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(1)$ | 120.1(2) |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$ | 120.7(3) |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$ | 119.6 |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$ | 119.6 |
| C(10)-C(9)-C(8) | 120.2(3) |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$ | 119.9 |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$ | 119.9 |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$ | 120.1(3) |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$ | 120.0 |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$ | 120.0 |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | 120.3(3) |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$ | 119.9 |
| $\mathrm{C}(12) \mathrm{C}(11)-\mathrm{H}(11)$ | 119.9 |
| $\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$ | 120.7(3) |
| $\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12)$ | 119.7 |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$ | 119.7 |

Torsion angles [ ${ }^{\circ}$ ].

| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(6)$ | 69.4(3) |
| :---: | :---: |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(6)$ | -56.1(3) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(6)$ | -177.4(2) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | -176.4(2) |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | -62.23) |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 63.6(3) |
| $\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$ | -27.0(4) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$ | 52.5(3) |
| $\mathrm{C}(3)-\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{O}(1)$ | -172.2(3) |
| $\mathrm{C}(3)-\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | 12.6(4) |
| $\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$ | 160.3(3) |
| $\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$ | -24.7(4) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | 161.4(2) |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | -75.9(3) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | 48.4(3) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)$ | 121.9(3) |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)$ | 0.4(3) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)$ | -120.7(3) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | -62.1(3) |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | 176.5(2) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | 55.4(3) |
| $\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | -0.4(4) |


| $C(1)-C(7)-C(8)-C(9)$ | $-176.5(2)$ | $C(1)-C(7)-C(12)-C(11)$ | $176.0(3)$ |
| :--- | ---: | :--- | ---: |
| $C(7)-C(8)-C(9)-C(10)$ | $1.7(4)$ | $C(10)-C(11)-C(12)-C(7)$ | $-0.8(5)$ |
| $C(8)-C(9)-C(10)-C(11)$ | $-2.5(5)$ |  |  |
| $C(9)-C(10)-C(11)-C(12)$ | $2.1(5)$ |  |  |
| $C(8)-C(7)-C(12)-C(11)$ | $-0.1(4)$ |  |  |

### 12.1.9 ((2S,3S)-2-Hydroxymethyl-5-0xo-3-propyl-tetrahydro-furan-3-yl)-carbamic acid tert-butyl ester (79).

$\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{5}$
Orthorhombic,
P2(1)2(1)2(1)
$a=11.198(2) \AA$
$b=16.442(4) \AA$
$c=17.551(4) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$



Stereoview of the structure with displacement parameters:


Elemente cells : (a) view to bc plane, (b) view to ac plane, (c) view to ab plane:
(a)

(b)

(c)


Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

| $N(1 A)-C(9 A)$ | 1.357(6) |
| :---: | :---: |
| $N(1 A)-C(1 A)$ | 1.481(5) |
| $\mathrm{N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$ | 0.97(4) |
| $\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | 1.333(6) |
| $\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | 1.467(6) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | 1.517(7) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | 1.542(6) |
| $C(1 A)-C(2 A)$ | 1.544(6) |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | 1.519(7) |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A})$ | 0.9800 |
| $\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | 1.214(6) |
| $\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | 1.430(7) |
| $\mathrm{O}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A})$ | 0.95(7) |
| $\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | 1.484(7) |
| $\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$ | 1.210(5) |
| $\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~A} 1)$ | 0.9700 |
| $\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~A} 2)$ | 0.9700 |
| O(5A)-C(9A) | 1.334(5) |
| $\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$ | 1.470(6) |
| $\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 1)$ | 0.9700 |
| $\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$ | 0.9700 |
| C(6A)-C(7A) | 1.529(8) |
| $\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 1)$ | 0.9700 |
| $\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 2)$ | 0.9700 |
| C(7A)-C(8A) | 1.487(8) |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A} 1)$ | 1.544(10) |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 1)$ | 0.9700 |
| C(7A)-H(7A2) | 0.9700 |
| $\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 1)$ | 0.9600 |
| $\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$ | 0.9600 |
| $\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 3)$ | 0.9600 |
| $\mathrm{C}(8 \mathrm{~A} 1)-\mathrm{H}(8 \mathrm{~A} 4)$ | 0.9600 |
| $\mathrm{C}(8 \mathrm{~A} 1)-\mathrm{H}(8 \mathrm{~A} 5)$ | 0.9600 |
| $\mathrm{C}(8 \mathrm{~A} 1)-\mathrm{H}(8 \mathrm{~A} 6)$ | 0.9600 |
| C(10A)-C(11A) | 1.481(11) |
| C(10A)-C(13A) | 1.505(10) |
| C(10A)-C(12A) | 1.530(9) |
| $\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$ | 0.9600 |
| $\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(12 \mathrm{~A}) \mathrm{H}(12 \mathrm{C})$ | 0.9600 |
| $\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{C})$ | 0.9600 |
| N(1B)-C(9B) | 1.345(6) |
| $N(1 B)-C(1 B)$ | 1.465(6) |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$ | 0.93(4) |
| O(1B)-C(3B) | 1.323(8) |
| $\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$ | $1.455(6)$ |
| $C(1 B)-C(2 B)$ | 1.535(7) |
| C(1B)-C(4B) | 1.538(7) |
| $C(1 B)-C(6 B)$ | 1.539(7) |
| C(2B)-C(5B) | 1.500(7) |
| $\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B})$ | 0.9800 |
| $\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$ | 1.210(7) |


| O(3B)-C(5B) | $1.418(7)$ |
| :--- | ---: |
| O(3B)-H(3B) | $0.81(5)$ |
| C(3B)-C(4B) | $1.496(10)$ |
| O(4B)-C(9B) | $1.214(5)$ |
| C(4B)-H(4B1) | 0.9700 |
| C(4B)-H(4B2) | 0.9700 |
| O(5B)-C(9B) | $1.333(5)$ |
| O(5B)-C(10B) | $1.484(6)$ |
| C(5B)-H(5B1) | 0.9700 |
| C(5B)-H(5B2) | 0.9700 |
| C(6B)-C(7B) | $1.515(9)$ |
| C(6B)-H(6B1) | 0.9700 |
| C(6B)-H(6B2) | 0.9700 |
| C(7B)-C(8B) | $1.487(11)$ |
| C(7B)-H(7B1) | 0.9700 |
| C(7B)-H(7B2) | 0.9700 |
| C(8B)-H(8B1) | 0.9600 |
| C(8B)-H(8B2) | 0.9600 |
| C(8B)-H(8B3) | 0.9600 |
| C(10B)-C(13B) | $1.494(8)$ |
| C(10B)-C(12B) | $1.508(7)$ |
| C(10B)-C(11B) | $1.510(9)$ |
| C(11B)-H(11D) | 0.9600 |
| C(11B)-H(11E) | 0.9600 |
| C(11B)-H(11F) | 0.9600 |
| C(12B)-H(12D) | 0.9600 |
| C(12B)-H(12E) | 0.9600 |
| C(12B)-H(12F) | 0.9600 |
| C(13B)-H(13D) | 0.9600 |
| C(13B)-H(13E) | 0.9600 |
| C(13B)-H(13F) | 0.9600 |

122.7(4) 118(2) 115(2) 109.9(4)
111.9(4)
106.1(4)
115.3(4)
107.6(4)
114.7(4)
100.2(4)
108.1(4)
105.5(4)
117.5(4)
108.5
108.5
108.5

108(4)
121.0(6)
127.9(6)
111.2(5)
104.2(4)
110.9
110.9
110.9
110.9
108.9
121.4(4)
112.2(4)

| $\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 1)$ | 109.2 |
| :---: | :---: |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 1)$ | 109.2 |
| $\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$ | 109.2 |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$ | 109.2 |
| $\mathrm{H}(5 \mathrm{~A} 1)-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$ | 107.9 |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | 114.2(5) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 1)$ | 108.7 |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 1)$ | 108.7 |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 2)$ | 108.7 |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 2)$ | 108.7 |
| H(6A1)-C(6A)-H(6A2) | 107.6 |
| C(8A)-C(7A)-C(6A) | 112.8(8) |
| $\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A} 1)$ | 93.7(11) |
| $\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A} 1)$ | 118.6(10) |
| $\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 1)$ | 109.0 |
| $\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 1)$ | 109.0 |
| $\mathrm{C}(8 \mathrm{~A} 1)-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 1)$ | 15.5 |
| $\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 2)$ | 109.0 |
| $\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 2)$ | 109.0 |
| $\mathrm{C}(8 \mathrm{~A} 1)-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 2)$ | 112.7 |
| $\mathrm{H}(7 \mathrm{~A} 1)-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 2)$ | 107.8 |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 1)$ | 109.5 |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$ | 109.5 |
| $\mathrm{H}(8 \mathrm{~A} 1)-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$ | 109.5 |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 3)$ | 109.5 |
| H(8A1)-C(8A)-H(8A3) | 109.5 |
| $\mathrm{H}(8 \mathrm{~A} 2)-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 3)$ | 109.5 |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A} 1)-\mathrm{H}(8 \mathrm{~A} 4)$ | 109.5 |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A} 1)-\mathrm{H}(8 \mathrm{~A} 5)$ | 109.5 |
| H(8A4)-C(8A1)-H(8A5) | 109.5 |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A} 1)-\mathrm{H}(8 \mathrm{~A} 6)$ | 109.5 |
| $\mathrm{H}(8 \mathrm{~A} 4)-\mathrm{C}(8 \mathrm{~A} 1)-\mathrm{H}(8 \mathrm{~A} 6)$ | 109.5 |
| $\mathrm{H}(8 \mathrm{~A} 5)-\mathrm{C}(8 \mathrm{~A} 1)-\mathrm{H}(8 \mathrm{~A} 6)$ | 109.5 |
| $\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})$ | 126.4(4) |
| $\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$ | 124.8(4) |
| $\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$ | 108.8(4) |
| $\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$ | 110.0(7) |
| $\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$ | 109.2(6) |
| $\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$ | 113.8(7) |
| $\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$ | 101.5(5) |
| $\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$ | 110.9(7) |
| C(13A)-C(10A)-C(12A) | 110.8(7) |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{C})$ | 109.5 |

109.2
109.2
09.2
107.9
114.2(5)
108.7
108.7
108.7
108.7
107.6
112.8(8)
93.7(11)
118.6(10)
109.0
109.0
15.5
109.0
109.0
107.8
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
126.4(4
108.8(4)
110.0(7)
109.2(6)
101.5(5)
110.9(7)
.8(7)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5

| C(9B)-N(1B)-C(1B) | 123.9(4) |
| :---: | :---: |
| $\mathrm{C}(9 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$ | 121(3) |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$ | 115(3) |
| $\mathrm{C}(3 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$ | 110.7(5) |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$ | 107.7(4) |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$ | 106.8(4) |
| C(2B)-C(1B)-C(4B) | 100.7(5) |
| N(1B)-C(1B)-C(6B) | 112.3(5) |
| C(2B)-C(1B)-C(6B) | 114.6(4) |
| $\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$ | 114.0(5) |
| $\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$ | 108.2(5) |
| $\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$ | 105.1(4) |
| C(5B)-C(2B)-C(1B) | 117.9(5) |
| $\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B})$ | 108.4 |
| $\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B})$ | 108.4 |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B})$ | 108.4 |
| $\mathrm{C}(5 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})-\mathrm{H}(3 \mathrm{~B})$ | 105(4) |
| $\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$ | 121.5(9) |
| $\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$ | 127.8(8) |
| $\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$ | 110.7(6) |
| C(3B)-C(4B)-C(1B) | 103.7(5) |
| $\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{~B} 1)$ | 111.0 |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{~B} 1)$ | 111.0 |
| $\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{~B} 2)$ | 111.0 |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{~B} 2)$ | 111.0 |
| H(4B1)-C(4B)-H(4B2) | 109.0 |
| C(9B)-O(5B)-C(10B) | 121.3(4) |
| $\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$ | 110.7(5) |
| $\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 1)$ | 109.5 |
| $\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 1)$ | 109.5 |
| $\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 2)$ | 109.5 |
| $\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 2)$ | 109.5 |
| H(5B1)-C(5B)-H(5B2) | 108.1 |
| C(7B)-C(6B)-C(1B) | 112.5(5) |
| $\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 1)$ | 109.1 |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 1)$ | 109.1 |
| $\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 2)$ | 109.1 |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 2)$ | 109.1 |
| H(6B1)-C(6B)-H(6B2) | 107.8 |
| $\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$ | 112.1(8) |
| $\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 1)$ | 109.2 |
| $\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 1)$ | 109.2 |
| $\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 2)$ | 109.2 |
| $\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 2)$ | 109.2 |
| H(7B1)-C(7B)-H(7B2) | 107.9 |
| $\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 1)$ | 109.5 |
| $\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 2)$ | 109.5 |
| H(8B1)-C(8B)-H(8B2) | 109.5 |
| $\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 3)$ | 109.5 |
| H(8B1)-C(8B)-H(8B3) | 109.5 |
| H(8B2)-C(8B)-H(8B3) | 109.5 |
| $\mathrm{O}(4 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{O}(5 \mathrm{~B})$ | 126.2(5) |
| $\mathrm{O}(4 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$ | 124.8(5) |
| $\mathrm{O}(5 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$ | 109.1(4) |
| $\mathrm{O}(5 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$ | 110.2(5) |
| O(5B)-C(10B)-C(12B) | 102.1(5) |
| C(13B)-C(10B)-C(12B) | 110.9(5) |
| O(5B)-C(10B)-C(11B) | 108.1(5) |
| C(13B)-C(10B)-C(11B) | 113.9(6) |
| C(12B)-C(10B)-C(11B) | 110.9(6) |


| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{D})$ | 109.5 |
| :--- | :--- |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{E})$ | 109.5 |
| $\mathrm{H}(11 \mathrm{D})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{E})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{~F})$ | 109.5 |
| $\mathrm{H}(11 \mathrm{D})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{~F})$ | 109.5 |
| $\mathrm{H}(11 \mathrm{E})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{~F})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{E})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{D})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{E})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 F)$ | 109.5 |
| $\mathrm{H}(12 \mathrm{D})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 F)$ | 109.5 |
| $\mathrm{H}(12 \mathrm{E})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 F)$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(13 B)-\mathrm{H}(13 \mathrm{D})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(13 B)-\mathrm{H}(13 \mathrm{E})$ | 109.5 |
| $\mathrm{H}(13 \mathrm{D})-\mathrm{C}(13 B)-\mathrm{H}(13 \mathrm{E})$ | 109.5 |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(13 B)-\mathrm{H}(13 F)$ | 109.5 |
| $\mathrm{H}(13 \mathrm{D})-\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 F)$ | 109.5 |
| $\mathrm{H}(13 \mathrm{~F})-\mathrm{C}(13 B)-\mathrm{H}(13 F)$ | 109.5 |

Torsion angles [ ${ }^{\circ}$ ].

|  |  |
| :--- | ---: |
| $C(9 A)-N(1 A)-C(1 A)-C(6 A)$ | $-61.3(6)$ |
| $C(9 A)-N(1 A)-C(1 A)-C(4 A)$ | $172.2(5)$ |
| $C(9 A)-N(1 A)-C(1 A)-C(2 A)$ | $65.6(6)$ |
| $C(3 A)-O(1 A)-C(2 A)-C(5 A)$ | $-107.0(4)$ |
| $C(3 A)-O(1 A)-C(2 A)-C(1 A)$ | $19.5(5)$ |
| $N(1 A)-C(1 A)-C(2 A)-O(1 A)$ | $82.1(4)$ |
| $C(6 A)-C(1 A)-C(2 A)-O(1 A)$ | $-152.7(4)$ |
| $C(4 A)-C(1 A)-C(2 A)-O(1 A)$ | $-28.6(4)$ |
| $N(1 A)-C(1 A)-C(2 A)-C(5 A)$ | $-157.4(4)$ |
| $C(6 A)-C(1 A)-C(2 A)-C(5 A)$ | $-32.1(6)$ |
| $C(4 A)-C(1 A)-C(2 A)-C(5 A)$ | $91.9(5)$ |
| $C(2 A)-O(1 A)-C(3 A)-O(2 A)$ | $179.3(5)$ |
| $C(2 A)-O(1 A)-C(3 A)-C(4 A)$ | $-0.8(5)$ |
| $O(2 A)-C(3 A)-C(4 A)-C(1 A)$ | $161.7(5)$ |
| $O(1 A)-C(3 A)-C(4 A)-C(1 A)$ | $-18.2(5)$ |
| $N(1 A)-C(1 A)-C(4 A)-C(3 A)$ | $-84.2(4)$ |
| $C(6 A)-C(1 A)-C(4 A)-C(3 A)$ | $151.4(4)$ |
| $C(2 A)-C(1 A)-C(4 A)-C(3 A)$ | $27.7(4)$ |
| $O(1 A)-C(2 A)-C(5 A)-O(3 A)$ | $60.2(6)$ |
| $C(1 A)-C(2 A)-C(5 A)-O(3 A)$ | $-59.0(7)$ |


| A) | 6) |
| :---: | :---: |
| $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | 68.1(6) |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | -176.3(5) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$ | 177.8(7) |
| $C(1 A)-C(6 A)-C(7 A)-C(8 A 1)$ | -74.3(13) |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{O}(4 \mathrm{~A})$ | 0.3(9) |
| $\mathrm{C}(10 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$ | 178.6(6) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{O}(4 \mathrm{~A})$ | -10.1(8) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})$ | 171.6(4) |
| $\mathrm{C}(9 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$ | 60.7(8) |
| $\mathrm{C}(9 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$ | -64.8(8) |
| $\mathrm{C}(9 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$ | 178.1(6) |
| $\mathrm{C}(9 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$ | 66.2(7) |
| $\mathrm{C}(9 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$ | 173.6(5) |
| $\mathrm{C}(9 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$ | -60.9(7) |
| $\mathrm{C}(3 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$ | -105.6(5) |
| $\mathrm{C}(3 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$ | 21.2(5) |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$ | 82.4(5) |
| $\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$ | -29.2(5) |
| $\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$ | -151.9(4) |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$ | -157.0(5) |
| $\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$ | 91.4(5) |
| $\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$ | -31.4(7) |
| $\mathrm{C}(2 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})$ | 178.5(5) |
| $\mathrm{C}(2 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$ | -2.9(6) |
| $\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$ | 162.0(6) |
| $\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$ | -16.4(6) |
| $\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$ | -85.2(5) |
| $\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$ | 27.1(5) |
| $C(6 B)-C(1 B)-C(4 B)-C(3 B)$ | 150.3(5) |
| $\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$ | 66.1(6) |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$ | -52.8(7) |
| $N(1 B)-C(1 B)-C(6 B)-C(7 B)$ | -55.2(7) |
| $\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$ | -178.5(6) |
| $\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$ | 66.3(7) |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$ | -179.3(8) |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{O}(5 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{O}(4 \mathrm{~B})$ | 6.2(9) |
| $\mathrm{C}(10 \mathrm{~B})-\mathrm{O}(5 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$ | -174.9(5) |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{O}(4 \mathrm{~B})$ | -1.3(9) |
| $\mathrm{C}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{O}(5 \mathrm{~B})$ | 179.8(5) |
| $\mathrm{C}(9 \mathrm{~B})-\mathrm{O}(5 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$ | -64.1(7) |
| $\mathrm{C}(9 \mathrm{~B})-\mathrm{O}(5 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$ | 178.1(5) |
| $\mathrm{C}(9 \mathrm{~B})-\mathrm{O}(5 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$ | 61.0(7) |

### 12.2 Crystal Structure Data and Selected NMR Specta

12.2.1 GC diagram of the racemic mixture of the isoxazoline 9


| Peak Number (\#) | $\underset{(\min )}{\operatorname{Ret}}$ | $\begin{gathered} \text { Area } \\ \left(.1^{*} u V^{*} \mathrm{sec}\right) \end{gathered}$ | $\underset{(\%)}{\text { Area } \%}$ | Peak Type | Width at (sec) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.453 | 41760 | 4.849 | Fused | 1.1 |
| 2 | 1.587 | 42753 | 4.965 | Fused | 1.3 |
| 3 | 2.093 | 12472 | 1.448 | Resolved | 1.7 |
| 4 | 24.960 | 8308 | 0.965 | Resolved | 3.6 |
| 5 | 36.227 | 377100 | 43.789 | Fused | 4.1 |
| 6 | 36.473 | 378784 | 43.984 | Fused | 4.1 |
|  |  | ¢ $\overline{61717} \overline{6}$ |  |  |  |

12.2.2 GC diagram of the isoxazoline mixture 9, with e.r. 98:2


| Peak Number (\#) | $\underset{(\min )}{\operatorname{Ret}}$ | $\begin{gathered} \text { Area } \\ \left(.1^{*} u V^{*} \sec \right) \end{gathered}$ | $\begin{gathered} \text { Area } \% \\ (\%) \end{gathered}$ | Peak Type | Width at (sec) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.720 | 6519 | 1.105 | Resolved | 1.0 |
| 2 | 1.447 | 78516 | 13.308 | Rused | 1.1 |
| 3 | 1.580 | 132690 | 22.490 | Fused | 1.3 |
| 4 | 2.067 | 29916 | 5.071 | Resolved | 1.6 |
| 5 | 24.887 | 5303 | 0.899 | Resolved | 3.9 |
| 6 | 36.138 | 6479 | 1.098 | Manual integ. | 4.1 |
| 7 | 36.367 | 330562 | 56.029 | Manual integ. | 4.1 |
|  |  | 5 $\overline{8} 9 \overline{9} \overline{8} 5$ |  |  |  |

## 13 <br> References

1) Henneböhle, M. Dissertation, Universität Stuttgart, 2002.
2) LeRoy, P.-Y. Dissertation, Universität Stuttgart, 1997.
3) Blatt, A. H.; Gross, N. J. Am. Chem. Soc. 1955, 77, 5424-5425.
4) Dauzonne, D.; Demerseman, P.; Royer, R.; J. Heterocycl. Chem. 1982,19, 693-694.
5) Jacquier, R.; Bull. Soc. Chim. 1974, 1651-1655.
6) Isager, P.; Thomsen, I.; Torssell, K. B. G.; Acta Chem. Scand. 1990, 44, 806-813.
7) Kwiatkowski, S. J. Chem. Soc. Chem. Commun. 1987, 19, 1496-1498.
8) Shatzmiller, S.; Shalom, E.; Lidor, R.; Tartkovski, E.; Liebigs Ann. Chem. 1983, 6, 906-912.
9) Fray, M. J.; Thomas, E. J.; Tetrahedron 1984, 40(4), 673-680.
10) Henneböhle, M.; Le Roy P.-Y.; Hein, M.; Ehrler, R.; Jäger, V. Z. Naturforsch. 2004, 59b, 451-467.
11) Cerri, A.; De Micheli, C.; Gandolfi, R. Synthesis 1974, 710-712.
12) Jäger, V.; Buß, V. Liebigs. Ann. Chem. 1980, 101-121.
13) Uno, H.; Terakawa, T.; Suzuki, H. Chem. Lett. 1989, 6, 1079-1082.
14) Ojima, I.; Lin, S.N.; Wang, T. Curr. Med. Chem. 1999, 6, 927.
15) Bates, R.B.; Brusoe, K.G. Burns, J.J.; Caldera, S.; Cui, W.; Gangwar S.; Gramme, M.R.; McClure, K.J.; Rouen, G.P.; Shadow, H.; Stessman, C.C.; Taylor, S.R.; Vu, V.H.; Yarick, G.V. Zhang, J.X.; Pettit, G.R.; Bontems, R. J. Am. Chem. Soc. 1997, 119, 2111.
16) (R)-dopa in mushrooms; see: von Nussbaum, F.; Spiteller, P.; Ruth, M. Steglich, W.; Wanner, G.; Gamblin, B.; Stievano, L.; Wagner, F.E. Angew. Chem. Int. Ed., 1998, 37, 3292.
17) (a) Seebach, D.; Gademann, K.; Ernst, M.; Hoyer, D. Angew. Chem. Int. Ed. 1999, 38, 1223.
(b) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
18) (a) Juaristi, E.; Quintana, D.; Escalante, J. Aldrichim.Acta 1994, 27, 3.
(b) Cole, D. C. Tetrahedron 1994, 50, 9517.
(c) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1996, 23, 117.
(d) Juaristi, E., Enantioselective Synthesis of $\alpha$-Amino Acids; Wiley: New York, 1997.
(e) Juaristi, E.; López-Ruiz, H. Curr. Med. Chem. 1999, 6, 983-1004.
19) Takashiro, E.; Hayakawa, L.; Nitta, T.; Kasuya, A.; Miyamoto, S.; Ozawa, Y.; Yagi, R.; Yamamoto, I., Shibayama, T.; Nakagawa, A.; Yabe, Y. Bioorg. \& Med. Chem. 1999, 7, 2063-2072.
20) Tymiak, A. A.; McCormick, T. J.; Unger, S. E. J. Org. Chem. 1989, 54, 1149-1157.
a) Eggen, M.; Nair, S. K.; Georg, G. I. Org. Lett. 2001, 12, 1813-1815. , b) White, J. D.; Hong, J.; Robarge, L. A. J. Org. Chem. 1999, 64, 6206.
a) Jäger, V.; Grund, H. Liebigs Ann. Chem. 1980, 80-100.
b) Jäger, V.; Buß, V.; Schwab, W. Liebigs Ann. Chem. 1980, 122-139.
21) For reviews on the synthetic versatility of the nitrile oxide cycloaddition, see (a) Desmoni, G.; Tacconi, G.; Baro, A.; Pollini, G. P. Natural Product Synthesis Through Pericyclic Reaction ; ACS Monograph: Washington, U. S. A., 1983; pp 91-108. (b) Kozikowski , A. P. Acc. Chem. Res. 1984, 17, 410. (c) Curran, D. P. In Advances in Cycloaddition; Curran, D. P. Ed.; JAI Press Inc.: London, U. K., 198 8; vol 1, pp 129189.

Jäger, V.; Colinas P. A. Nitrile Oxides : Synthetic applications of 1,3-dipolar cycloaddition chemistry towards heterocyclic and natural products. Edited by A. Padwa and W. H. Person. Chapter 6, 2002, p. 363-365.
Chiarino, D.; Napoletano, M.; and Sala. A. Synth. Commun. 1998, 18, 1171.
Hallig, K.; Torssel, K. B. G; Hazell, R. G. Acta. Chem. Scand. 1991, 45, 736.
Tsuge, O.; Kanemasa, S; Suga, H. Chem. Lett. 1986, 183. Jäger, V. and co-workers, observations over $\sim 29$ years.
Grünanger, P.; Vita-Finzi P. in: Isoxazoles, in: the Chemistry of Heterocyclic Compounds, Vol. 49, Pt. 1, Taylor, E. C.; Weissberger, A., Wiley, Toronto, 1991, S. 417-647.
30) Jäger, V. Synthesen mit Isoxazolinen - Neue Wege zum Aufbau funktionalisierter Kohlenstoffgerüste, Habilitationsschrift, Gießen, 1979.
31) Quilico, A.; Weissberger, A. The Chemistry of Heterocyclyc Compounds, Five- and Six-membered Compounds with Nitrogen and Oxygen, Interscience Publishers, New York, 1962, S. 1-151.
32) Kozikowski, A. P.; Chen, Y.-Y.; Wang, B. C.; Xu, Z.-B. Tetrahedron 1984, 40, 23452358.
33)
34) Olivé, J. L.; Jacquier, R.; Pétrus, C.; Pétrus, F. Bull. Soc. Chim. Fr. 1974, 16511655.
36) Bast, K.; Christl, M.; Huisgen, R.; Mack, W.; Sustmann, R. Chem. Ber. 1973, 106, 3258-3290.
37)
42) Schmid, C. R.; Bryant, J. D.; Dowlatzedah, M.; Philips, J. L.; Prather, D. E.; Schantz, R. D.; Sear, N. L., Vianco, C. S. J. Org. Chem. 1991, 56 (12), 4056-4058.
a) Rathke, M. W. J. Am. Chem. Soc., 1970, 3222-3223.
b) Courtois, G., Miginiac, L. J. Organomet. Chem., 1993, 452, 5-12.
c) Pini, D.; Mastantuono, A.; Salvadori, P. Tetrahedron asymmetry, 1994, 5,18751876.
52) Castro, J. F.; Vila, M. M.; Jenkins, P.R.; Sharma, M.L.; Tustin, G.; Fawcett, J.; Russell, D.R. Synlett 1999, 6, 798-800.
53) Huang, K. S-L.; Lee E. H.; Olmstead M. M.; Kurth, M. J. J. Org. Chem. 2000, 65, 499-503.
54) Sustmann, R.; Huisgen, R.; Huber, H. Chem. Ber. 1967, 100, 1802-1813.
55) Uno, H.; Terakawa, T.; Suzuki, H. Bull. Chem. Soc. Jpn. 1993, 66, 2730-2737
56) Mukaiyama, T.; Hoshino, T. J Amer Chem Soc. 1960, 82, 5339-5342
57)
58) Hjeds, H.; Honore,T. Acta Chem. Scand. Ser. B 1978, 32, 187-192.
59) Honore,T. Eur. J. Med. Chem. Chim. Ther. 1978, 13, 429-434.
60) Iida, H.; Kasahara, K.; Kibayashi, C.; J. Am. Chem. Soc. 1986, 108(15), 46474648.
61) Kasahara, K.; lida, H.; Kibayashi, C. J. Org. Chem. 1989, 54(9), 2225-2233.
62) Krol, W. J.; Mao, S.; Steele, D. L.; Townsend, C. A. J. Org. Chem. 1991, 56(18), 728-731.
63) Baldwin, J. E.; Adlington, R. M.; Crouch, N. P.; Drake, D. J.; Fujishima, Y. J. Chem. Soc. Chem. Commun. 1994, 9, 1133-1134.
64) Wityak, J.; Gould, S. J.; Hein, S. J.; Keszler, D. A. J. Org. Chem. 1987, 52(11), 2179-2183.
65) Tanaka, K.; Sugimoto, Y.; Okafuji, Y.; Tachikawa, M.; Mitsuhashi, K.; J. Heterocycl. Chem. 1989, 26, 381-385.
66) Socha, D.; Jurczak, M.; Chmielewski, M. Tetrahedron Lett. 1995, 36, 135-138.
67) Kametani, T.; Chu, S.-D.; Honda, T. Heterocycles 1987, 25, 241-244.
68) Vasella, A.; Voeffray, R. J. Chem. Soc. Chem. Commun. 1981, 3, 97-98.
69) Kudoh, T.; Ishikawa, T.; Shimizu, Y.; Saito, S.; Org. Lett. 2003, 5, 3875-3878.
70) Socha, D.; Jurczak, M.; Chmielewski, M.; Tetrahedron Lett. 1995, 36, 135-138.
71) a) Chiacchio, U.; Rescifina, A.; Iannazzo, D.; Romeo, G. J. Org. Chem. 1999, 64, 28-36.
b) Chiacchio, U.; Piperino, A.; Rescifina, A.; Romeo, G.; Uccella, N. Tetrahedron 1998, 54, 5695-5708.

Molander, G. A. Org. React. 1994, 46, 211-367.
73) Revuelta, J.; Cicchi, S.; Brandi, A. Tetrahedron Lett. 2004, 45, 8375-8377.

Sharma, A.; lyer, P.; Gamre, S.; Chattopadhyay, S. Synthesis 2004, 7, 1037-1040.
Xu, Y.; Qian, L.; Prestwich, G. D.; Org. Lett. 2003, 5, 2267-2270.
Kim, Y. J.; Ichikawa, M.; Ichikawa, Y. J. Org. Chem. 2000, 65(8), 2599-2602.
Bergmeier, S. C.; Stanchina, D. M. J. Org. Chem. 1999, 64, 2852-2859.
Haudrechy, A.; Picoul, W.; Langlois, Y. Tetrahedron Asymmetry 1997, 8, 139-148.
79) Macomber, R. S. A Complete Introduction to Modern NMR Spectroscopy, WileyInterscience, 1998.
80) Pellicciari, R.; Natalini, B.; Marinozzi, M.; Synth. Commun. 1988, 18, 1715-1722.
81) Kirschbaum, B.; Stahl, U.; Jäger, V. Bull. Soc. Chim. Belg. 1994, 103, 425-432.
82) Kocieński, P. J. Protecting groups 1994, Foundation of organic chemistry series (Thieme), p. 192.
83) Noe, C. R.; Knollmueller, M.; Schoedl, C.; Berger, M. L. Sci. Pharm. 1996, 64, 577590.
84) Hudlicky, T.; Rinner, U.; Gonzalez, D.; Akgun, H.; Schilling, S.; Siengalewicz, P.; Martinot, T. A.; Pettit, G. R. J. Org. Chem. 2002, 67, 8726-8743.
85) Xiang, Y.; Gong, Y.; Zhao, K. Tetrahedron Lett. 1996, 37, 4877-4880.
86) Zimmermann, P. J.; Lee, J-Y.; Hlobilova, I.; Endermann, R.; Häbich, D.; Jäger, V. Eur. J. Org. Chem. 2005, 2450-3460.
87) Saita, M. G.; Chiacchio, U.; Iannazzo, D.; Corsaro, A.; Merino, P.; Piperno, A.; Previtera, T.; Rescifina, A.; Romeo, G.; Romeo, R.; Nucleosides Nucleotides 2003, 22, 739-742.
88) Juaristi, E.; Gutiérrez-Gutiérrez, V. M.; Rayers-Rangel, G.; Muñoz-Muñoz, R. J. Braz. Chem. Soc., 2001, 12(5), 652-660.
89) Morin, R. B.; Gorman, M.; Eds., Chemistry and Biology of $\beta$-Lactam Antibiotics, Academic, New York, 1982.
90) For review see: Lukacs, G.; Ohno, M.; Eds. Recent Progress in the Chemical Synthesis of Antibiotics and Related Natural Products, Springer, Berlin, 1990.
91) For review see: Cherry, P.C.; Newall, C. E. Chemistry and Biology and $\beta$-Lactam Antibiotics, Morin, R. B.; Gorman, M.; Eds., Academic, New York, 1982, Vol. 2, p. 361.
92) Georg, G. I, Med. Chem. Lett. 1993, 3, 2135-2486.
93) Burnett, D.; Caplen, M. A.; Davis, H. R.; Burrier, R. E.; Clader, J. W. J. Med. Chem. 1994, 37, 1733.
94) (a) Guérnard, D.; Guéritte-Voegelein F.; Potier, P. Acc. Chem Res. 1993, 26, 160. (b) Potier, P., Chem. So.c. Rev., 1992, 21, 113.
95) Fuller, A. A.; Chen, B.; Minter, A. R.; Mapp, A. K. J. Amer. Chem. Soc. 2005, 127, 5376-5383.
96) Liu, M.; Sibi, M.P. Tetrahedron 2002, 58, 7991-8035.
97) a) Cole, D. C. Tetrahedron 1994, 50, 9517-9582.
b) Sewald, N. Angew. Chem., Int. Ed. 2003, 42, 5794-5795.
98) Abele, S.; Seebach, D. Eur. J. Org. Chem. 2000, 1-15.
99) Fülöp, F. Chem. Rev. 2001, 101, 2181-2204.
100) Leplae, P.R.; Umezawa, N.; Lee, H. S.; Gellman, S.H. J. Org. Chem. 2001, 66, 5629-5632.
101) Martinek, T.A.; Tóth, G.k.; Vass, E.; Hollósi, M.; Fülöp, F.; Angew. Chem., int. Ed. 2002, 41, 1718.
102) Appella, D.H.; Christianson, L. A.; Klein, D. A.; Powell, D.R., Huang, X. L., Barchi, J. J.; Gellman, S. H. Nature 1997, 387, 381-384.
103) Kimmerlin, T.; Namoto, K.; Seebach, D. Helv. Chim. Aca 2003, 86, 2104-2109.
104) Gademann, K.; Ernst, M.; Hoyer, D.; Seebach, D. Angew. Chem., Int. Ed. 1999, 38, 1223-1226.
105) Kritzer, J. A.; Lear, J. D.; Hodsdon, M. E., Schepartz, A. J. Amer. Chem. Soc. 2004, 126, 9468-9496.
106) See for example: Enders, D.; Wahl, H.; Bettray, W. Angew. Chem., Int. Ed. 1995, 34, 455.
107) Brackenridge, I.; Davies, S. G.; Fenwick, D. T.; Ichihara, O.; Polywka, M.E.C. Tetrahedron 1999, 55, 533 and references therein.
108) Dumas, F.; Mezrhab, B.; d'Angelo, J. J. Org. Chem. 1996, 61, 2293.
109) Davis, F.W.; Zhou, P.; Chen, B.-C. Chem. Soc. Rev.1998, 27, 13 and reference therein.
110) a) Seebach, D.; Boog, A.; Schweizer, W.E. Eur. J. Org. Chem. 1999, 335.
b) Hintermann T.; Seebach, D. Synlett 1997, 337.
c) Seebach. D.; Estermann, H. Tetrahedron Lett. 1987, 28, 3103.
111) Juaristi, E.; Quintana, B.; Lamatsch, B.; Seebach, D. J. Org. Chem. 1991, 56, 2553.
112) Chu, K. S.; Negrete, G. R.; Konopelski, J. P.; Lakner, F. J.; Woo, N. -T.; Olmstead, M. M. J. Amer. Chem. Soc. 1992, 114, 1800-1812.
113) Coleman, D. J. chem. Soc. 1951, 2294-2295.
114) El Marini, A.; Roumestant M. L.; Viallefont, P.; Razafindranboa, D.; Bonato, M.; Follet, M. Synthesis 1992, 1104-1108.
115) Peypoux, F.; Guinand, M.; Michel, G.; Delcambe, L.; Das, B. C.; Vareune, P.; Lederer, E. Tetrahedron Lett. 1995, 36, 381.
116) Arndt, F.; Ernst, B.; Partale, W. Ber. Dtsch. Chem. Ges. 1927, 60, 1364.
117) Balenović, K.; Cerar, D.; Fuks, Z. J. Chem. Soc. 1952, 3316.
118) Podlech, J.; Seebach, D. Liebigs Ann. 1995, 1217.
119) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
120) Hua, D. H.; Miao, S. W.; Chen, J. S.; Iguchi, S. J. Org. Chem. 1991, 56, 4-6
121) Flügge, J. Grundlagen der Polarimetrie, de Gruyter-Verlag, Berlin, 1970, 16.
122) Sheldrick, G., Program SHELXS-86 und SHELXL-93, Institut für Anorganische Chemie der Universität Göttingen, 1986, 1993.
123) Stewart, J. M.; Dickinson, P. A.; Ammon, H. L.; Flach, H.; Heck, H., Programm XRAY-76, Tech. Rep. TR-446, University of Maryland, Computer Center, College Park MD, 1976.
Johnson, C. K., Programm ORTEP II, Tech. Rep. ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1971.
Hildenbrand, T., Programm FRIEDA, Universität Stuttgart, unpublished.
Jork, H.; Funk, W.; Fischer, W.; Wimmer, H. Dünnschicht-Chromatographie, Reagenzien und Nachweismethoden, Bd. 1a, VCH, Weinheim, 1989.
127) Helmchen, G.; Glatz, B. Ein apparativ einfaches System und Säulen höchster Trenn-leistung zur präparativen Mitteldruckchromatographie, Anhang zur Habilitationsschrift, Stuttgart, 1978.
128) Chiang, Y. H. J. Org. Chem. 1971, 36, 2146-2155.
129) Matsuo, K.; Sunago, M.; Okutani, N.; Takagi, T.; Nakamoto, H.; Kobayashi, M. Chem. Pharm. Bull. 1995, 43(10),1643-1646.
130) Carl, T., Diplomarbeit, Universität Stuttgart, 1999.
131) Schwab, W. Dissertation, Universität Gießen, 1981.
132) Kai, H.; Matsumoto, H.; Hattori, N.; Takase, A.; Fujiwara, T.; Sugimoto, H. Bioorg. Med. Chem. Lett. 2001, 11, 1997-2000.
133) Kanemasa, S.; Onimura, K. Tetrahedron, 1992, 48, 8642-8658.
134) Confalone, P. N.; Lollar, E. D.; Pizzolato, G.; Uskokovic, M. R. J. Am. Chem. Soc. 1978, 100, 6291-6292.
135) Hein, M. Dissertation, Universität Stuttgart 1996.
136) Minter, A. R.; Fuller, A. A.; Mapp, A. K. J. Am. Chem. Soc. 2003, 125, 6846-6847.
137) Stewart, J. M.; Woolley, D. W. Biochemistry (Moscow, Russian Federation) Rockefeller Inst., New York, NY, 1964, 3, 1998-2004.
138) Dorn, I. T.; Neumaier, K. R.; Tampé, R. J. Amer. Chem. Soc. 1998, 120, 2753-2763.
139) Portnyagin, Y. M. J. Org. Chem. USSR (EN) 1974, 10, 96-98.
140) Carlsen, P.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936-3638.
141) Posner, T. Justus Liebigs Ann. Chem. 1912, 389, 111.

## 14 Acknowledgements

I would like to thank Prof. Dr. Volker Jäger for giving me the possibility to perform this work, and for his continuous support and endless suggestions.

The completion of my Ph.D would not have been possible without the active support and encouragement of my family, particularly my parents. I am grateful especially for their patience during my absence at family outings.

I would like to express my gratitude to Frau Kraschewski for her continuous help and patience on me, and Herr Dipl. -Ing. (FH) Griesser for his help and advices.

Also all employees of the analytical and spectroscopy department, especially Dr. W. Frey (Xray).

I will not forget to thank all colleagues in our research group, the current ones and the past members. Also Mukhtar Imerhasan, for his work shared in this dissertation.

And many others,

## 15 Curriculum Vitae

## Personal Information

Name:
Date and place of birth:
Nationality:
Confession:
Marital status:

## Schools

1982-1991

1992-1994
August 1995

Bathich, Yaser
21.11.1976 in AI Bab-Aleppo, Syria

Syrian
Muslim
single

Elementary and Preparatory School / Zerqa
Secondary School / Zerqa
General Secondary School Examination Certificate

## Academic Qualifications

Oct. 1995 - June 1999
Oct. 1999 - June 2001

Since Jan. 2002
B.Sc. Chemistry: Al al-Bayt University / Almafraq-Jordan
M.Sc. Chemistry: Al al-Bayt University / Almafraq-Jordan

Title of the M.Sc. Thesis: "Synthesis and Properties of Some New 3-(Substituted)Thieno[2,3-e]-1,4,2-Dithiazine-1,1Dioxides". This work was done under supervision of Prof. Dr. Rajab Abu El-Halawa, Al al-Bayt University, Jordan.

Conferral of a doctorate under supervision of Prof. Dr. V. Jäger at Institut für Organische Chemie, Universität Stuttgart, Germany.

## Employments

Mar. 2002 - Mar. 2003

Apr. 2003 - Sep. 2003

Oct. 2003 - Nov. 2003
since Nov. 2003

Wissenschaftliche Hilfskraft am Institut für Organische Chemie der Universität Stuttgart
Wissenschaftlicher Angestellter (BAT Ila) am Institut für Organische Chemie der Universität Stuttgart
Wissenschaftliche Hilfskraft am Institut für Organische Chemie der Universität Stuttgart
Wissenschaftlicher Angestellter (BAT Ila) am Institut für Organische Chemie der Universität Stuttgart

16 Formula Tables of Structures Prepared


1


5



10


14


17


22


2


3


7


11


15


20


24


4


8


12


16


21


25a




44


48


45


49

$52 \cdot \mathrm{HCl}$


55



46


50


52


56




47


52


54


57


58


59


62



60


61


63


64


65


66


67


68


69



70
$70 \cdot \mathrm{HCl}$


71

$71 \cdot \mathrm{HCl}$


72


73

$74 \cdot \mathrm{HCl}$


75


79


86




78


87



80


88



81


82


86


[^0]:    [a] Die Bestimmung der Diastereomerenverhältnisse basiert auf den Intensitäten getrennter Signalpaare in den ${ }^{13} \mathrm{C}$-NMR-Spektren der Rohprodukte. ${ }^{[0]}$ Ausbeute berechnet über 2 Schritte ausgehend vom entsprechenden Isoxazolin; a : Hauptdiastereomer, b: Nebendiastereomer.

[^1]:    ${ }^{\mathrm{a}}$ The determinations of the diastereomeric ratios (d.r.) here are based on the intensities of the separated signals pairs in ${ }^{13} \mathrm{C}$ NMR spectra of the crude product $\mathbf{1 5 , 1 6}$.

[^2]:    ${ }^{[\mathrm{a}]}$ Signals were not identified, average of multiplet given. ${ }^{[b]}$ Identification of ${ }^{5} J_{4,1^{\prime \prime}}$ not possible.

[^3]:    ${ }^{[a]} o-, m-, p-\mathrm{C}$ of $\mathrm{C}_{5} \mathrm{H}_{5}$ were not assigned.

[^4]:    ${ }^{[a]}$ Measured value of mixture of isoxazolines $\mathbf{1 6 / 1 5}$ (85:15), see Exp. 14.
    ${ }^{[b]}$ Measured value of mixture of isoxazolines 15/16 (87:13), see Exp. 13a.

[^5]:    ${ }^{\text {a] }}$ Signals are not identified, average of multiplet are given.

[^6]:    ${ }^{[a]} \mathrm{CDCl}_{3}$ used as a solvent. ${ }^{[b]}$ Not identified due to overlap by $\mathrm{C}\left(\mathrm{CH}_{5}\right)_{2}$ carbon signals.

[^7]:    [a] It was not possible to have a correct elemental analysis, since the substance decomposes gradually.

[^8]:    ${ }^{[\sqrt{2}]}$ it was not possible to have a correct elemental analysis.

[^9]:    [a] The cyclohexylidene ring was cleaved by addition of 0.5 ml TFA to the crude product, which led to the lactone 79.
    ${ }^{[b]}$ Volatile substance, it was not possible to have correct elemental analysis.

[^10]:    [a] In this case, oxidation was performed for the protected amino alcohol 64 followed by deprotection with TFA in one step, to yield the 3 -amino-3-phenylhexanoic acid 83.

[^11]:    1
    2
    3

    4
    

    9
    

    2
    

    

    30
    

    31 a/b
    

    33 a/b
    
    

    | $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ | - | - | - | $65 \%$ |
    | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{ZnBr}_{2}$ | - | - | - | $76 \%$ |
    | $\mathrm{ZnCl}_{2}$ | - | - | - | $59 \%$ |

    $$
    \mathrm{ZnBr}_{2} \quad 85: 15 \quad-\quad-\quad 63 \%
    $$

    5
    6
    7
    

    22

[^12]:    ${ }^{\bar{a}}$ The determinations of the diastereomeric ratios (d.r.) here are based on the intensities of the separated signals pairs in ${ }^{13} \mathrm{C}$ NMR spectra of the crude product $\mathbf{1 5 / 1 6}$.

[^13]:    ${ }^{\text {a }}$ Assignment of configuration done by treatment of 64 with $\mathrm{LiAlH}_{4}$ to afford 41, see Exp. 39.

[^14]:    ${ }^{\text {a }}$ Assignments done by assignment of configuration at $\mathrm{C}-3$ of 79 by crystal structure determination. see Exp. 77.

[^15]:    ${ }^{2}$ Pretreated with HCl and throughly washed with water and ether prior to use.

[^16]:    ${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=19.0\left(\mathrm{q}, \mathrm{C}-1\right.$ '), 23.8, 24.0, 25.2, 34.2, $35.7\left[5 \mathrm{t}, \mathrm{C}\left(\underline{\mathrm{C}} \mathrm{CH}_{2}\right)_{5}\right]$, 28.5 [q, C( $\left.\left.\mathrm{CH}_{3}\right)_{3}\right], 32.6\left(\mathrm{q}, \mathrm{NHCH}_{3}\right), 40.2(\mathrm{t}, \mathrm{C}-4), 59.2(\mathrm{t}, \mathrm{C}-5), 61.5(\mathrm{~s}, \mathrm{C}-3), 65.4(\mathrm{t}, \mathrm{C}-1)$, 78.5 (d, C-2), 80.1 [s, $\left.\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 110.1$ [s, $\left.\underline{C}\left(\mathrm{CH}_{2}\right)_{5}\right], 155.8(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

