
Copyrir~ CllFAC SId DeCS Wor4hop 
~ijin" China 1981 

ON THE SPECIFICATION OF DISTRIBUTED 
COMPUTER CONTROL SYSTEMS 

J. Ludewig and H. Sandmayr 

Brown BOWln Research Cenln, CH·,40, Baden. Switrer/and 

Abstract. The computer science group at the Brown Boveri Research Center, 
Baden, Switzerland, is aiming at a technique for all levels of process con
trol system development. Specification systems are a rather new, hut promis
iog field for improvement. The paper describes tbe current situation, and 
tbe tools which are now available, These existing tools, which are powerful, 
but limited in range, will be combined and extended to obtain an integrated 
environment for the development of process control systems. 

Keywords. Distributed systems, System specification, Levels of abstraction, 
Software Tools. 

INTRODUCTION SPECIFICATIONS 

After countless discussions about system (or 
software-) specifications, we still do not 
have a generally accepted definition of the 
tel'1l "specification". So, everybody who in
tends to talk on this topiC must first pro
vide his personal definition, in order to be 
as clear as possible. 

The Technical Committee on Application Orient
ed Specification of EWICS has agreed in the 
following definition (Kramer, 1981): 

is a description of an 
properties of interest. 

It usually implies that the description 
should try to be precise, testable and 
fOnlal. It is recommended that 'specifica
tion' be used with some attribute, e.g. 
requirement specification, 

The objects which are typical for us are 
what we call in German "Leittechniksysteme", 
Le. systems for industrial process control 
applications, as used for controlling elec
tric power distribution, gas pipelines and 
steel mills. "Process control system" will 
be used in this sense throughout this paper. 

The properties of interest are primarily the 
reqUirements, which either are supplied, or 
must be agreed, by the customer. Later on, 
the specification will also contain informa
tion about the design. Even in the beginning 
nobody can strictly distinguish desigo frolll 
requirements, because the systems are very 
complex, and the design will often limit the 
range of possible requirements. Therefore, 
we will use the tenl specification for all 
inforaation which is relevaot for the custo
mer, wbeo tbe system is being planned, 

oocs _~. liS 

The Importance of Sound Specifications 

Boebm (1976) bas shown that the early errors, 
Le. those which are cOlllllitted in an early 
stage of software development, are the ones 
which are most difficult to detect, 80 they 
are usually not detected before the system 
is being tested or even in operation. The 
importance of this observation is amplified 
by a second one: The total costs of a soft· 
ware error are the higher the later it is 
detected; Boehms results even suggest an 
exponenthl rise. There is no reason to be
lieve that these results are valid for soft
ware only. 

Therefore, almost every expenditure for find
ing errors nearly as soon as they are com
mitted, or avoiding them at all, will finally 
pay. Sound specifications, which are well 
understood both by tbe custo~er and by those 
who translate them into reality, are the 
lDost powerful means to achieve this goal, 
and all provisions for validation of design 
and implementation are based on the specifi
cations. 

Specification Languages 

Traditionally, natural languages, mixed with 
tables and graphics, were tbe only specifica
tion languages. Their adVantages are obvious: 
Everybody can write and read tbem (at least 
in his native language), no special trainiog 
is needed, and tools (like text editors) are 
readily available. 

Experience exhibited, bowever, several defi
ciencies of "natural specification languages": 



116 J. Ludewig and H. Sandmayr 

The syntax is very complex, and virtually 
undefined. Tools which can not only pro
cess character-strings but parse them, 
according to their grammar, are nol very 
advanced. 

The semantics are even more difficult to 
handle. Beside the ambiguities caused by 
the syntax, the meaning is often vague. 
Since no criteria can be found for logical 
completeness, the specifications cannot 
be checked to detect incompleteness. 

The uncertainty of the meaning causes !!Iaoy 
more probl ems: the communication between 
implementer and customer, the validation of 
the product, the preparation of manuals and 
educational material, they all depend from a 
correct understanding of the specifications. 

These difficulties can be overcome by using 
fo~al languages instead of natural ones. A 
formal specification language can be clear 
and precise, so the implementer cannot mis
understand it, and tools can be constructed 
to per£o~ various checks on the speCifica
tions . 

General specification languages, which re
semble general purpose programming languages. 
are, however, not likely to be accepted by a 
large fraction of possible users. They want 
to use their particular jargon, in a most na
tural vay. If they can fo~alize or abstract 
something, they prefer tables and graphiCS, 
which support their imagiDation much better 
than any written language does . Average users 
also do not fancy strictly formal specifica
tion languages, because they are not able to 
formalize all their ideas, which are necessa
rily fuzzy when the work starts, in one step. 

Thus, a specification language should be a 
compromise betveen formality and naturalness, 
in order to be both acceptable for tbe user, 
and advantageous witb respect to bis produc
tivity and to the quality of what be develops . 

Layers of Abstraction 

In the requirements specification it is stat
,d 

which inputs (as seen from the control 
system) are available, and where they can 
be accessed, 

which outputs must be produced, and where 
they must be delivered, 

how long the output lIIay be delayed with 
respect to some input, and 

which degree of reliability is necessary. 

These informations form the highest level of 
abstraction in the specification. They should 
be separated froll all others in order to 
preserve a clear distinction between genuine 
requirements and design decisions. 

Distribution of a process control system lIIay 
he suggested by two reasons: The process 
itself is distributed, or one computer is 
insufficient for achieving the required per
formance or reliability. Both kinds of infor
mation, the geographical distribution of the 
process and the figures for performance and 
reliability, must be addressed by the speci
fications . But, distribution itself is 
not an original requirement. 

There is no need to enforce any particular 
hardware configuration by the top level re
quirements. 

The user will not (or at least: should not) 
desire to have a certain number of computers. 
He needs certain functions to be performed 
within certain intervals, and be also sets 
limits for HTBF and HTTR. It is the designer 
who lIIay conclude that, let us say, three 
machines, linked togethe r in a certain way, 
will - probably - meet the requirements. The 
customer should neither anticipate nor be 
affected by the designer's decisions. 

This ideal separation of a specification 
level and a design level is prevented by 
mutual dependencies between them. Traditional 
design is based on the idea of one particular 
sequential computer. If several ones are 
usen instead, the situation is completely 
different, and the specifications cannot 
remain unchanged. That is why the choice of 
a hardware system is almost inevitably pre
scribed by traditional requirements specifi
cations. 

Our approach to this conflict is to bave the 
same layers of abstraction both in the con
ceptual description and in the hardware sy
steD (see Fig. 1). 

technical process 

location 

particular 
function 

process control system 

node, local network of 
nodes 

pool, consisting of 
interchangeable pro
cessors 

Figure 1. Hardware layers . 

The unit corresponding to a location where 
some computational power is provided is call
ed a node. For the different tasks to be 
performed there, one can assign one or more 
pools, which are the components of the node. 
The pools again are made of a varying number 
of processors, which are completely inter
changeable and invisible to the software, 
thus guaranteeing certain figures of perfor
mance and reliability. 

Though this model of abstraction, which was 
first presented by Lalive d'Epinay (1979), 
does not remove all difficulties, it is an 
important step towards a better separation 
of layers. The approach produces not only 



Specification 117 

mo re concise specifications but also better 
designs, because the particular hardware 
configuration can be fitted to the prograills 
and their computational complexity. 

The geographical lay-out of the process con
trol system can be done rather early in the 
design process . In the layered model, the 
designer does not need to state the size of 
the computer for a certain site at this time. 
He just assigns a node to it. 

Later on, as the design proceeds, functions 
are identified, and assigned to nodes. In 
this stage, a node lIIay be refined to a local 
network of node&:. Finally, the particular 
function is related to a certain pool within 
a node. Independent from the final distribu
tion, the duigoer may find that certain 
functions should be executed in parallel, or 
nen on different machines, while others 
should oot (e . g. for reasons of data integri
ty). Hany functions II a y be performed in 
parallel, but have not to. These properties 
should be stated for all functions, in order 
to help the designer identifying candidates 
for distributed processing . 

Finally, when tbe software has been designed, 
a certain number of processors is assigned 
to each of the pools within every node in 
order to meet the required perfonunce and 
reliability. Thus, what used to be a first 
order problelll has been reduced to a sifDple 
pUlllDeter. 

Treating distribution this WilY, there is no 
need for special specification systellls; or
dinary ones are sufficient, provided they 
allow for expressing the possibility of di 
stribution. 

Specification Tools and SpeCification Systems 

Scull, stable systems can be apecified in • 
purely manual way. But if the systell is large, 
or cbanging all tbe time, sOlie tool is ne
cessary. Sucb a tool will do some checking 
on the specifications, preserve them in a 
database, evaluate them, and prepare various 
reports wbich can be used for communication, 
reviewing, aod documentation . Finally, the 
tool will output his aCCUlllulated knowledge 
in a format whicb is IIIDst convenient for the 
implementer. 

It is the tool wbich can lIIake an otherwise 
unattractive specification language success
ful. Only a tool aUows for easy management 
of voluminous documentation. The tool may 
also enable the user to choose his favorite 
representations of information. And for many 
users, representations of a language (e.g. 
grapbics) are even more important than its 
concepts. 

The combination of a specification language 
and a set of tools which work on specifica
tions written in that. language is called a 

~~~~~~~f!~ Computer aided specifi-
~ only a very short histo-

ry. In ,the ISDOS- Project appeared on 
the scene, and its produc.t PSL/PSA (Teich
roew, Henhey, 1977) remained the only one 
in the market-place for several years. Only 
since about 1977, several competitors showed 
up t and the topic became popular everywhere 
in the world. Today, many systems are offer
ed, but the advances are still not too excit
ing, and in future days, those systems may 
be viewed like cars built in the 19th century 
are viewed today. 

ESPRESO 

ESPRESO is a system for computer aided speci
fication of process control software (Ludewig, 
1981). It was developed from 1977 at Nuclear 
Research Center, Karlsruhe, Federal Republic 
of Germany. Its fundamental feature&: are: 

a set of concepts dedicated to the model
ing of process control softvare. The em
phasis is on COlllllunication and coordina
tion between parallel processes. Hierar
chical decomposition is supported. Commu
nication betveen separate units ("modules") 
is restricted to patbs 'oIhich must be de
clared explicitely. 

a formal, PASCAL-like specification lan
guage. The language is defined by an Ex
tended Attribute Gra_ar {Watt, l1adsen, 
1977; Ludewig, 1981b), thus avoiding any 
8IIIbiguities. 

a set of tools to check, accumulate, man
age,' and evaluate specifications. The most 
important tools, which are all written in 
PASCAL, are operational, others are cur
rently being implemented at Karlsruhe. 

The first application of ESPRESO started 
late in 1980; a nuclear reactor protection 
system is being specified. 

ESPRESO was a first attempt to exploit expe
riences and ideas about software speCifica
tion by designing a new specification system. 
It was very successful in some respects: 
Tbe concepts seem to be useful, and the com
plete formal definition is a major improve
ment, compared to otber specification lan
guages. Originally, ESPRESO was also intended 
to cover not only the software but also the 
technical process, thus allowing for a com
plete description of the whole. This goal 
was not reached, because we did not find 
the typical process . Possible applica
tions seemed to be too different to fit into 
one single model. 



118 J. Ludewig and H. Sandmayr 

PROCESS CONTROL SYSTEMS 

Properties of the Process 

Processes like gas pipelines and steel mills, 
which are to be supervised by the process 
control systems, are obviously distributed 
systems. The distances between their compo
nents range from a couple of meters up to 
1000 km or more. They are made to be in ope
ration for very long periods, typically some 
decades, which is much longer than the life 
time of loday's computer systems. During 
that time, the process control system is 
subject to frequent cbanges, because the 
process must be adapted to new requirements 
and to improved tecbnologies. 

Though the process control system is but a 
comparatively small subsystem in te[1lls of 
money, it is of crucial importance for the 
operation of the whoLe. Even a breakdolln of 
some minutes may be intolerable. During nor
mal operation, a poor control system IRiIY 
prevent optimal performance, and deficiencies 
of the man machine interface can even cause 
serious risks. Therefore, one can hardly 
overestimate the importance of reliability 
and correctness with respect to the user's 
needs. 

Current Situation 

Dispat.ching systems manufactured by BBe can 
eit.her be broken down into hardllare and soft.
Ilare, or into components performing different 
tasks. From the former view, such a system 
consists of Indactic hardware systems (De~

meLmaie, 1979) and BEcas (Brown Boveri Energy 
Control ~stelll) (Blum, Mubeim, WeiSS, 1979). 
Larger systems additionally use computers 
like PDP 11 or VAX. 

From the latter view, SCADA (~upervisory 
~ontrol !nd ~ata ~cquisition), a data acqui
sition system, can be distinguished from the 
power application software (PAS), which con
tains programs for determination of current 
network topology, state estimation, and many 
other purposes (Reichert, 1979). A similar 
structure can be found in systems made by 
other manufacturers. 

The software, Ilhich is similar in many pro
jects, is fairly large; its development takes 
some 20 or more man-years. So, it would be 
very nice if it could be used several t.imes, 
tuned by some parameters which reflect the 
particular conditions of the project. . 

To date, some fraction of the software must 
be rewritten for many projects (in particular 
for large projects), because the requirements 
differ significantly, and system structure 
depends partially on these changing condi
tions. As mentioned above, the choice of 
computer configuration is a key decision, 
because not only the price but also the beha
viour is strongly influenced, and the analyst 

cannot agree on certain requirements without 
knolling the configuraiton. Many other deci
sions are mutually dependent in a similar 
way, and it takes not only a lot of experi 
ence but also some courage to submit an offer 
to the customer. 

Thus, a specification system for process 
cont.rol applicat.ions might have some advant
ages beyond the ones list.ed above: 

availability of old data for new projects, 

easy identification of differences between 
several similar projects, 

fast elaboration of offers, 

optimal structuring of systems in order 
t.o separate those parts which are most 
likely to be influenced frolll t.he require
ments particular to a project or from the 
hardware configuration, 

simple retrieval of reusable software 
components. 

Today, simple tools for t.ext. management are 
used; a real specification system Ilill great.
ly improve flexibility and abilities. 

CARltEN 

Tbe most powerful t.ool which is currently 
used for system development. at. BBC is called 
CARMEN, whicb stands for Computer Aided de
sign of Rl!al t.ime Monitoring and control of 
Energy dist.ribut.ion Networks (Schmid and 
co-workers, 1980). CARMEN supports the engi 
neering of process cont.rol syst.ems in the 
following areas: 

efficient collection of process control 
data from the customer network, including 
t.opology and dat.a of SWitches, transfor
mers, etc., 

configuration of t.he telecontrol hardware, 

generat.ion of documents for the teLecon
t.rol hardware layout and the connection 
t.o thl! process control object.s, 

generation of the process cont.rol database. 

CARt1E.N is fitted to the BECaS- system, which 
was mentioned above. It is built upon a rela
tional database named PRIMO (Koller, FrUhauf, 
1979). CARMEN has been used in several pro
ject.s since 1980; an improved version is 
currently being developed. 

for our considerations, CARHEN is an excel· 
lent example of what is needed: It is tai
lored t.o a particular applicat.ion area, in
puts and output.s arl! in the language of the 
people who must. supply and use it, and its 
concepts are sound and well defined. 



Specific.acion '" 
AN INTEGRATED SPECIFICATION SYSTEK 

For the future, a system like CARHEN, but 
applicable to a wider range of problellis and 
during the whol e life tillie of systellls, is 
needed. It should allow for all kinds of 
specifications, including the process, the 
process control systelD and, in particular, 
its software. It should be used not only 
during the developlllent but also when it is 
telted, corrected and mOdified. Such a systelll 
would in fact be 1D0r~ than just a specifica
tioo system; it lDight be called with a word 
whicb recently becallie very popular an envi
rOMent for system developlllent and lIIainte
nance ("ESDAH"). 

[SOAK consists of 

a project database, to keep as much as 
possihle information about the project in 
the cOlDputer. That includes requirements, 
design, software code, layout of prints, 
lIIanuals, and all other information whicb 
can be reasonably represented by strings 
and numbers ; 

a specification language, tailored to the 
applicatioo, with options for input in 
tables, possibly al so in graphical form; 

a language-controlled editor for prepara
tion of specifications; 

a tool for validation, which may include 
a simulation facility; 

a report and documentation generator; 

a man lIIachine interface, for simple inter
action with the tools. 

The project database is also used to maintain 
different versions of prograllls, as they exist 
during software development, or for different 
customers. 

Concepts for ESDAK 

Every language is based on a model (or set 
of lIIodels). In our field, we need at least 
two models, one for the process, which should 
e.g. comprise breakers and transformers in 
case of a power distribution network, and a 
second one for the control system; this can 
be the one which was used in ESPRESO, or 
something similar. Apparently , no single set 
of models is sufficient. 

As a system for an industrial environment, 
ESDAK must take tables and graphics as impor
tant patterns of information into considera
tion, or otherwise it will fail. Though this 
is not really a concept, it should be kept 
in mind, in order to avoid concepts too com
plicated for these representations. (In ge
oeral, man cannot understand concepts which 
cannot be displayed graphically.) 

The Data Base 

The heart of every specification tool or 
environment i s a data base management system, 
which releases the user from all k.ind of 
clerical work. Since environments will be 
available as parts of ADA system.s, we will 
try to use such an environment rather than 
implementing a new one. This approach will 
also ease the transition from specification 
language to program code. 

Editors 

Different from most compilers, which process 
the source code every time they are invok.ed, 
specification systems usually store the in
formation which is derived from parsing the 
input, thus allowing for piecewise accumula
tion of a specification, and immediate check
ing of the input against all former inputs. 
Therefore, a specification system needs a 
more sophisticated, language oriented editor, 
which accomplishs all the conversion between 
the internal and the externa l representa
tions. 

For tables and graphics, special editoring 
facilities are required. 

The Heta-System Approach 

Specificat ion, deSign, and implementation of 
ESDAH will take at l east 30 or 40 man-years. 
Such an effort cao only be justified if the 
environment is very likely to be accepted 
and used for a long period. To date, our 
knowledge aod experience in this field is 
still far from sufficient, so we cannot gua
raotee any single concept to be successful. 
We must try various models and representa
tions, aod Lmprove the solution by the feed
back we receive. 

A possible way out of the conflict between 
the need for a specification system aod our 
ioability to propose mature concepts is to 
UDplem.ent not ooe particular model or laogu
age, but a generator which can be used to 
produce a variety of systems with little 
effort. This generator will also allow for 
definition of "dialects", as used by the 
engineers in differeot environments. Such. 
generator was first used at ISDOS; their so 
called META-Generator can transform a formal 
language definition into a set of tables, 
which in turn control the Generalized Analy
zer. This toolset was used to define several 
laoguages other than PSL, e.g. peSL (LudeWig, 
1980). The range of defineable laoguages, 
however, is still rather restricted, and the 
reporting tools are not yet fully integrated. 
So , future developments will not be built 
upon the ISDOS system, but exploit the expe
riences from its use. 

First of all, a meta-concept must be chosen. 
Such a concept may be the object-relation
model. Knuth (Teichroew and co-workers, 1981) 
showed a different, homogenous model, based 



120 J. Ludewig and H. Sandmayr 

on so called "concepts" only. Then a lIIeta 
language cao be defined, and a processor for 
this language must be implemented. All other 
tools like data base systems and editors are 
table driven. 

CURRR£NT STATE 

The ESOAn, which vas outlined above, is cur
rently only a plan, whictl requires further 
investigation. Various models Ire heiDa eva
luated, for i ostance the modeling of process 
conlrol systems by extended finite Slate 
laachines (Vi tins. 1980). The ESPRESO-tools 
will be implemented at our research center. 
They can be used to evaluate the concepts, 
because they already incorporate sOllie of the 
ideas on table driven systems. All ideas 
will be thoroughly discussed with potential 
users, who will finally decide about success 
or failure. 

CONCLUSION 

It ~as shown that an environment for specifi
cation, desigo, and mailltenance of process 
control systems is both nl!:cl!:ssary and fu
sible. If considerations about geographical 
distribution, realiabilit.y and pl!:rfonaancl!: 
can be clearly separatl!:d from the functioaal 
requirements, a specification model for di
stributed systl!:ms is aot significanlty dif
fl!:rent from one which is mad l!: for ordinary 
process cont rol systl!:ms. As shown in thl!: 
paper, this decoupling can be achil!:ved by a 
clear distinction of abstract laYl!:rs, which 
is supported by a hierarchica l decomposition 
of both software and hardware. In order t.o 
get. a fle:lible set of tools , which caa be 
easily modified and adapted to new ideas, a 
generator will be realized rather than just 
one particular system. 

ACiCNOWLEDGEHENTS 

Most of the ideas presented in this papers 
emerged from the joint work. of the co.puter 
science group at Brown Boveri Resl!:arch Center. 
CARMEN and SECOS were developed at BBC . 

REfERENCES 

Blum, A., Huheim, J., Weiss, J., (1979). 
BBC software for dispatching syst.ems. 
Brown Boveri Review, 66, 164-168. 

Boehm, B.W. (1976). Software Engineering. 
IEEE Trans. Comp., C-25, 1126-1241 

Dl!:lIIDelmai r, K. (1979) . BBC Indactic 61 -
AD aut.omated system for power supply net
works. Brown Bover! ReView, 66, 161-16) . 

Koller, H., Frilhauf, K. (1979). PRIMO 
data base maoagl!:ment system. Brown Boveri 
Review, 66, 204-209. 

Kramer, J. (Ed.) (1981). Glossary of 
terms for EWICS TC 11 . Up-to-dat.e version, 
available from J. Kramer, Imperial College, 
London. 

Lalive d'Epinay. Th. (1979). Structure 
of ao i deal distribut.ed computer control 
system. In T.J. Harrisoo (Ed.), Distribut
ed Computer Control Systems, Pergamon 
Press . 

Ludewig, J., Streng, W. (1978). Kethods 
and tools for software speCification and 
design - a survey. EWICS TC 7, Paper No. 
149, Ziirich. 

Ludewig, J. (1980). PCSL - A prOcess 
control software specification language. 
KfK-Report No.2874, Kernforschungszentrum 
Karlsruhe, FRG. 

Ludewig, J. (1981a). Zur Erstellung der 
Spezifik.ation von Prozessrechner-Software. 
Doctoral dissertation, Technical Universi 
t.y Kunich . Reprinted as XfK-Report No. 
3060 , Kernforschungszentrum Karlsrube, 
FRG. (in Gerllliln) 

LudeWig, J . (I981b). Specification of a 
specificat.ion language. To appear in Hase
gawa (Ed.), Real Time Programming 1981. 
Pergamon Press . 

Reichert, K. (1979). Application Stlft-
ware for power system operation. Brown 
Boveri Review, 66 . 197-20) . 

Schmid, H.P., Litynski, 
Koller, H.U. (1980). 

A., Fransson, r., 
Unpubli sbed results . 

reichroew , D., Hershey, E.A. (1977). 
PSL/PSA: A cOllputer aided technique for 
st.ructured documentation and analysis of 
information processing systems. IEEE 
Trans. Software Eog ., ~, 41-48. 

Teichroew, D., Knuth, E., Rado, P., Kang, 
K.C. (1981). Concept refinement approacb 
(eRA) , a system specification technique. 
ISDOS-Project, University of Michigan, 
prel~inary draft. 

Vitins, M. (1980). Requirement.s 'peciii· 
cations for indust.rial reat-tilDe automa
tion systems. Brown Boveri Research Center, 
KLR 81-5 C. 

Watt. D.A., Kadsea, O.L. (1977). Extend-
ed Att.ribute Grammar for PASCAL. SIGPLAN 
Notice., 14, No.2, 60-74. 


