Copyright © IFAC Real Time Programming
Kyoto, Japan, 1981

SPECIFICATION

OF A SPECIFICATION

LANGUAGE

J. Ludewig

Brown Boveri Research Center, CH - 5405 Baden, Switzerland

Abstract.

control software. It consists of a

ESPRESO is a recently developed specification system for process
specification language and a software

system which serves as a tool to check, manage, and evaluate specifications.
The language was precisely defined by an Extended Attribute Grammar and by

a mapping into a programming language.

valuable not only for the
improvement of the language itself.

As a by-product of this work,

The definition turned out to be most
implementation

of the tool but also for the

a better

understanding of the nature of a specification language was achieved.

Keywords. Specification Language, System Specification, Language Definition,

Software Tools.

INTRODUCTION

Based on experiences with PSL/PSA (Teichroew,
Hershey, 1977), concepts for a specification

language dedicated to process control soft-

ware were developed. This language was called
PCSL (Ludewig, 1980). It can be processed

by the so called Generalized Analyzer (GA),

an extended, table driven version of PSA.

Thus, we did not have to develop a new tool

for PCSL, but, on the other hand, we had

to meet the requirements given by the GA.

Some of the disadvantages of PCSL/GA impor-
tant for us were the following:

- The GA is very large (about 55 000 liges
of code, mainly FORTRAN IV). Though it is
well constructed, such a program is diffi-
cult to install and maintain, and a
mainframe-computer is necessary.

= The GA is intended to process variations

of PSL, rather than an arbitrary new
specification language. E.g., the language
definer can neither define a recursive
syntax nor a handling of texts different
from that in PSL. Thus, any language for
the GA will unevitably remain syntactically
similar to PSL.

= Though there is still a reasonable freedom
for the language definer, he is not able
to enforce the correct use of his language,
because the GA cannot check any conditions
but the simplest. Therefore, additional
tools are necessary to perform those checks.

- The tables which describe the actual lan-
guage are generated from a formal defini-
tion. This, however, does neither cover

those properties that cannot be influenced
by the language definer, nor are they de-
fined elsewhere. Thus, there is in fact no
complete formal definition of the language.

(Some of these properties of the GA may have
been improved since 1979 when we observed
them.)

As a consequence, a new system, which is no

longer dependent from any existing software,

was developed, based on the improved concepts
from PCSL.

THE ESPRESO-SYSTEM

ESPRESO is a German acronym standing for

"development of the specification of process

control software". It was designed to provide
an aid in the process of formalization. Its

components are a formal language (ESPRESO-S)

and a tool (ESPRESO-W) to check, store, accu-
mulate, modify, and evaluate specifications.

Both are built upon a basic set of concepts,

which can be summarized as follows:

- All information, whether formal or not,
should be documented as early as possible.

- The user should be supported in formal-
izing the specification.

- The user should be hindered from stating
details too early.

- The clerical work to be done by the user
should be minimized.

- There should be one central specification
which can be easily accessed and updated
by everybody.

64 J. Ludewig

- Tools are necessary for detecting errors
as early as possible.

- Languages for specification should resem-
ble other good languages, like PASCAL,
e.g. To satisfy the needs of non-profes-
sional readers, various representations
of the language may be defined (including
graphics), but there has to be a sound
basis. Pragmatic extension may ruin the
concepts.

- The language should provide constructs
which are simple, well known, easy to use,
and translatable into well structured
programs.

Since these requirements are partially con-

tradictory, a compromise has to be looked for.

As a result, ESPRESO-S is a block-oriented,

non-procedural specification language, stres-
sing the static hierarchy of systems and sub-
systems ("modules"). Within modules, active

and passive components are described, which

represent executable programs and data. Much

emphasis is on the data flow, which implies

coordination of competing processes. Thus,

no explicit synchronization is necessary.

To give some idea of the language, an example
is shown below.

module data-collection:

text purpose @ system for receiving,
filtering and storing data from
a technical process @;

comprises

buffer raw-values:

produce restricted-to reader;
consume restricted-to filter
end raw-values

and
module reader:
comprises
procedure get-values:
started-by read-trigger
where @ every 5 sec @;
roduces raw-values;
reads periph-input
where @ all sensors have to be

scanned within 100 msec @

end
end reader

end data-collection;

buffer raw-values:
capacity 10;

of-type value-record
end.

This small example exhibits but a few impor-
tant features of ESPRESO-S: The user may
exploit the recursive syntax to describe his
system in a most natural way; he is allowed

to reference objects which are not yet de-
fined; he can repeat or extend definitions;
he may use informal texts which can be managed
by the tool ESPRESO-W, though they cannot be
evaluated like the formalized information.

THE NEED FOR A WELL DEFINED
SPECIFICATION LANGUAGE

Nobody can expect the user to deliver a com-
plete and formal specification as the very
first step of his work. So, if he is required
to write down all his information as early
as possible, the language must comprise of
constructs for informal and imprecise infor-
mation, which the tool must be able to handle.
Some people conclude from this situation that
there is no need for a precise definition of
the specification language.

Experience proves that the opposite is true.

The language for specification must be well

defined, even more so because the specifi-

cation itself tends to be incorrect (with
respect to the intended meaning), incomplete,
inconsistent, and vague. Natural language or

an unclear specification language will blur

those deficiencies.

A second reason is that the semantics of a
non-operational language can not even be
discovered by testing, as is frequently
done in the use of ill defined programming
languages. If a specification language is not
clearly defined, it will be ambiguous forever.

The definition must cover three aspects of
the language:

~ Some specifications will be accepted by
the tool, while others won't. The rules
which distinguish between those two groups
are called syntax. In the past, "syntax"
was often used in the sense of '"context
free syntax". It should be noticed that
context-sensitive elements like the con-
sistent usage of names are included here.

- When a specification is processed by the
tool, much redundant or meaningless infor-
mation is discarded. E.g., if an object
is specified twice, only one definition is
stored, comprising of the union of both
definitions. The user should know exactly
what his input means to the content of the
abstract specification stored by the tool.
Then he will also know if two specifications
are equivalent or not. This information is
called semantics here.

- Finally, and most importantly for the user,
every construct of ESPRESO-S has some mean-
ing which, eventually, must be reflected
by the ultimate implementation. This is
called meaning, simply because the term
"semantics" is already occupied. Semantics
and meaning are only defined for specifi-
cations which are syntactically correct.

In the following paragraphs, each of those
three aspects is discussed.

Specification of a Specification Language 65

DEFINITION OF THE SYNTAX

After ALGOL 60 was defined by a set of

production rules (Naur, 1963), BNF became

widely used and accepted even by non-special-
ists, because it is easy to write, read and

understand. The representation was sometimes

modified, e.g. for PASCAL (Jensen, Wirth,

1974), or extended (Seegmilller, 1974), but

the principle remained unchanged.

BNF is limited to context free languages;
therefore, many rules had to be defined
informally (e.g. that every variable must be
declared). Many attempts were made to extend
the capabilities of formal grammars in order
to include such information (Marcotty and
co-workers, 1976). One of the new, more
powerful type of grammars were the Attribute
Grammars by Kouth (1968). A particularly

concise notation of them was called "Extended

Attribute Grammar" (EAG) (Watt, Madsen,

1977; Watt, 1979). This schema was applied

for the definition of ESPRESO-S. Below, a

short introduction is given to the principles
of EAGs, as they are used for ESPRESO-S.

An EAG can be directly obtained from a BNF-
grammar by adding certain information about
the context. Since the context is usually
arbitrarily complex, meta-rules containing
meta-variables are used instead of actual
rules; the latter can be generated from the
former by substituting actual wvalues for
meta-variables, consistently throughout a
meta-rule. Let a simple example serve as an
explanation:

A section is a fundamental construct of
ESPRESO-S for defining objects. For the sake
of readability, the name of the object has
to be repeated at the end of most sections.
The context-free grammar in BNF is:

<section> ::= <object-sort> <object-name>
colon <section-body>.

<section-body> ::= <statement> <section-body>
| end-symbol <object-name>.

In this simplified example, the production
rules for <object-sort>, <object-name>, and
<statement> are missing, but obviously the
rules cannot enforce that the two occurrences
of the object-name are to be consistent. That
can be achieved by the use of attributes.

<section * NAME> ::= <object-sort>
<object-name T NAME>

colon <section-body ¥ NAME>.

<section-body ¥ NAME1> ::=
<statement> <section-body v NAME1>
| end-symbol <object-name * NAME2>
<test NAME1 = NAME2>.

<test TRUE> ::= .

Are . C*

If NAME, NAME1 and NAME2 are substituted
consistently, the naming of sections is
necessarily consistent, because the grammar
does not provide a production rule for
<test FALSE>. In a similar (however, often
more complex) manner all context-sensitive
properties of ESPRESO-S are defined.

In the example, the attributes are marked by

a vertical arrow, pointing either up or down.
The direction is given only to improve reada-
bility; so called inherited attributes (down)
are fully defined by the context, while the

synthesized attributes (up) are at least

influenced from the productions of the syn-

tactical variable under discussion. NAME],

for instance, is defined by the name in the

sectionheader; there it is a synthesized

attribute. The section body, on the other

hand, uses NAME1l as an inherited attribute,

Here, only one attribute was introduced; real
productions will contain several, typically

from two up to four or five. In EAGs, the

attributes of one particular meta-variable

are distinguished simply by their position,

rather than by a name, just like parameters

of procedures in most programming languages

are.

For a typical syntactical variable, there is
an inherited attribute whose value is a set,
which contains most of the relevant infor-
mation about the actual context at the very
point of analysis. In the definition of a
programming language, e.g., that attribute
would at any particular point of the program
hold all valid (declared) names and their
related types. If the subtree of that syntac-
tical variable may contribute to the context
of other variables, a second set is defined
for a synthesized attribute. The general
construction is:

< variable-name ¥ INHER-CONTEXT v ...
4 ... » (INHER-CONTEXT PHI NEW-INFO) >.

The last parameter is the new context, which
consists of the inherited context plus the
information derived from the subtree of
"variable-pame'". PHI is an operator, espe-
cially defined for this grammar. If two sets
are "added" by PHI, the result is undefined
if they are inconsistent (e.g. "X is a pro-
cedure"” PHI "X is a data"). An undefined
result means an error-message during con-
version. Otherwise, the informations are
superimposed, and only the consistent, non
redundant subset of the result is kept.
Thus, the context attribute can never become
redundant or contradictory.

In the grammar of ESPRESO-S5, PHI is formally
defined by set-operations.

DEFINITION OF THE SEMANTICS

The context-attribute has to contain all
information relevant for checking at any point
during analysis. Since most of the semantics

66 J. Ludewig

is relevant in this sense, it passes through HAPPING OF ESPRESO-S
the context attribute. In the grammar of INTO A PROGRAMMING LANGUAGE
ESPRESO-S, two steps were taken to have the
whole semantics accumulated within one Though the grammar defines precisely the
attribute: Firstly, npo information is ever mapping from a user's specification to the
discarded, i.e. the set is never reduced on abstract specification stored within
input. Secondly, some information is added ESPRESO-W, it does not say anything about the
to the attribute though it is never used for meaning of that specification to the user.
any check. This problem was attacked separately, not
within the grammar. This definition is only
Thus, the syntax-definition of ESPRESO-S semi-formal, and no complete algorithms are
provides an excellent description of the given.
"abstract specification" which has to be built
up in the so called ESPRESO-file (a fairly Defining the meaning of a non-operational
complex data structure) when a specification language turned out to be very hard. The basic
is entered. The effect of adding information approach was to map ESPRESO-S onto another
to a specification which is already stored machine, the operations of which are well
fits very well into this concept because defined. A virtual machine was chosen, which
ESPRESO-W reacts exactly as though the was called E-PASCAL ("E" stands for ESPRESO).
concatenated specifications would have been E-PASCAL differs from standard-PASCAL by some
fed into an empty ESPRESO-file. exten- sions which are very useful or even

necessary to implement programs specified in
ESPRESO-S. A more powerful language like ADA

The semantics of ESPRESO-S is evaluated in the could have been used without extensions, but
so called conversion, which is the ipnitiali- such a mapping would not have shown which
sation or extension of the stored specifica- particular requirements on the implementation
tion by processing ESPRESO-S-input. The language and the run time system are imposed
reverse operation is accordingly called decon- by the specification language.
version; parts of the specification, as
selected by the user, are retransformed into Most units of the specification like
ESPRESO-S, and deleted in the abstract speci- variables, buffers, etc. can be transformed
fication. The deconversion could be defined into complete declarations, which the
in a similar way as the conversion; another programmer need not access any more. But,
special operation like PHI is necessary to obviously, a specification written in a
describe the effect of removing information language that does not allow for a complete
from the ESPRESO-file. software-description cannot be mapped onto a
program ready for compilation. Therefore,
When a report 1is generated by ESPRESO-W, those procedures and blocks which are
a subset of the information kept in the specified to perform some so called actions
ESPRESO-file is selected and printed in some (e.g. reading) must be finished by the
convenient syntax. Obviously, this process programmer. For every such unit, a "hole",
could also be defined formally. Again, the i.e. an empty frame, is generated, permitting
specification of the report would exhibit a only those procedures and operations to be
clear distinction between content and form, accessed which are specified. Inside the

which is very desirable for designing reports. holes, the programmer may declare and define
whatever he wants, but the interface is fixed.

Let us assume that the specification contains
THE IMPLEMENTATION OF ESPRESO-W the following definition:

Theoretically, the program for conversion
could have been automatically gene- rated from procedure check-input:

the EAG. Even though we might have had access consumes measured-value

to such a generating system, we did not where @ between 0.0 and 30.0 @;

consider its wuse, because ESPRESO-W was reads upper-limit, lower-limit;

required to run on a minicomputer, and even to produces checked-value

perform reasonably. Nevertheless, the formal end check-input.

defini- tion was very useful for

implementation (Eckert, Ludewig, 1981). No This procedure is mapped onto E-PASCAL as
questions ever arose due to ambiguities, and follows:

implementation was easily separated as a task

for a master-thesis. The structure of the procedure check-input;

grammar was used as a guide for structuring interface

the programs; while the few most basic consumes measured-value

constructs are handled by special code, the (* assertion: between 0.0 and 30.0 *);
large number of similar statements is treated reads upper-limit, lower-limit;

by a table driven system. As the syntax is produces checked-value

recursive, the programs for conversion and interfend;

deconversion are recursive as well. begin

the hole to be filled *)
end (* check-input %),

Specification of a Specification Language 67

The interface-declaration provides all
access-paths to the environment which are
available for the code to be added in the
hole.

In general, a medium may be accessed by more
than one process at the same time. Therefore,
a full definition of actions must also cover
the mechanisms applied for coordimation. In
the description of ESPRESO-S, monitor-like
sequences of operations are defined for all
actions. These monitors are based on the INC
and DEC operations as defined by EWICS TC 8
(Lalive d'Epinay, 1979).

THE FEEDBACK FROM A FORMAL
DEFINITION

Some people who attach little value to formal
definitions regard it to be nothing but a
supplement to the language. But if the
definition is developed just as the language
evolves, it will be much more. If the language
is mot as simple as it should be, the formal
definition won't be either. If the semantics
are puffy, it will be very difficult to find
an appropriate set of attributes.

On the other hand, if the language is required
to have certain formal properties, a formal
definition can be used to prove them.
ESPRESO-S was kept as simple as possible, in
order to ease the implementation of the tool.
Two major contributions to simplicity were
made by choosing a simple grammar: The
context-free syntax is of type LL(1), i.e. the
syntax-tree of any correct specification can
be constructed without any look-ahead or
backsetting. In the context-sensitive syntax,
all attributes can be evaluated within one
pass from left to right (Bochmann, 1976). Both
properties could be easily checked by the
formal definition (Eckert, 1980). (The
LL(1)-property is not obvious, because there
are some left-recursive productions in the
grammar, which can be removed by some simple
transformations.)

Last but not least, the investigations about
the mapping to a programming language provided
much deeper insight into what is really
expressed in a specification language of this

type.

MANAGEMENT OF A LARGE GRAMMAR

All the advantages of a formal grammar may be
useless when it is full of errors. Therefore,
some care must be taken to make sure that the
errors can be controlled in some way. Our
experience confirmed the statement by Marcotty
and co-workers (1976) that a text-management-
system is necessary. The grammar of ESPRESO-S
was stored on computer for about one year, and
again and again output on an inkjet-printer,
which provides a 1large set of special
characters including arrows. It should be
noted that the availability of such tools
may be crucial for the success.

CONCLUSION:
GENERALITY AND PRECISENESS
IN PROGRAH SPECIFICATIONS

The grammar of ESPRESO-S and its mapping to a
programming language show that a specification
language can be formally defined, and that
such a definition is desirable. It is feasible
in spite of the fact that the ultimate code
cannot be generated from the specification.
The trick here is to allow for "holes" or
"white stains" in the specification, which do
not bother the analyst. When the specification
is mapped onto code, the limit of the hole is
well defined while its contents are not.

For some applications, the holes provided by
ESPRESO-S may still be too narrow. For
instance, the analyst might like to state that
there will be some communication between two
modules without saying anything about, let's
say, the direction. In such a case, it would
be useful to provide additional terms which
are more general. Such terms can be defined to
be the union of other ones. Then, they are
still as precise as the old ones.

Thus, a clear distinction is made between
fuzziness and generality: The terms of ESPRE-
S0-S have a general meaning, and additional
levels of generality could be added. But the
language is still precise, and any implemen-
tation can clearly be said to be correct or
incorrect, with respect to the specification.

68 J. Ludewig

ACKNOWLEDGEMENTS

ESPRESO was developed at Nuclear Research
Center, Karlsruhe, and supported by Prof. Dr.
R. Baumann at Munich Technical University.

Many ideas were taken from other systems,
in particular from PSL/PSA (Teichroew and
Hershey, 1977), SREM (Alford, 1977) and
MASCOT (Jackson, Harte, 1976).

The current work gains
conditions in our group
Research Center, in particular
discussions with Michael Vitins.

by the excellent
at Brown Boveri
from the

REFERENCES

Alford, M. (1977): A requirements engineering
methodology for real time processing
requirements. IEEE Trans. Software Eng.,
SE-3, 60-69.

Bochmann, G.V. (1976): Semantic evaluation
from left to right. Commun. ACM, 19,
55-62.

Eckert, K., J. Ludewig (1981): ESPRESO-W,
ein Werkzeug fllr die Spezifikation von
Prozessrechner-Software. In G. Goos (Ed.),
Werkzeuge der Programmiertechnik.
Springer-Verlag, Berlin, Heidelberg,

New York, pp. 101-112. (in German)

Jackson, K., H.F. Harte (1976): The achieve-
ment of well structured software in real-
time applications. Proc. of the IFAC/IFIP
Workshop on Real-Time Programming,
Rocquencourt, June 1976, pp.229-238.

Jensen, K., N. Wirth (1974): PASCAL: user
manual and report. Lecture Notes in
Computer Science, Vol.18, Springer-
Verlag, Berlin, Heidelberg, New York.

Knuth, D.E. (1968): Semantics of context-
free languages. Math. Syst. Theory, 2, 2,
127-145 (see also 5, 1, 95-96, for
corrections; same author and title, 1971).

Lalive d'Epinay (Ed.) (1979): TC 8 up to date
report. European Workshop on Industrial
Computer Systems (EWICS), Technical Com-
mittee on Real-Time Operating Systems,
paper no. I1-1-8.

Ludewig, J. (1980): Process control software
specification in PCSL. in V. Haase (Ed.):
IFAC/IFIP Workshop on Real-Time
Programming, Graz, April 1980, Pergamon
Press, pp. 103-108.

Ludewig, J. (1981): Zur Erstellung der
Spezifikation von Prozessrechner-Software.
Doctoral dissertation, Technical Univer-
sity Mlnchen. Reprinted as KfK-Report
No. 3060, Kernforschungszentrum Karlsruhe,
FRG. (in German)

Marcotty, M., H.F. Ledgard, G.V. Bochmann
(1976): A sampler of formal definitions.
Computing Surveys, 8, 191-276.

Naur, P. (Ed.) (1963): Revised report on the
algorithmic language ALGOL 60. Numerische
Mathematik, &4, 420-453.

Seegmliller, G. (1974): Einfllhrung in die
Systemprogrammierung. Bibliographisches
Institut AG, Zlrich, Reihe Informatik/11.
(in German)

Teichroew, D., E.A. Hershey III (1977):
PSL/PSA: A computer aided technique for
structured documentation and analysis of
information processing systems. IEEE
Trans. Software Eng., SE-3, 41-48.

Watt, D.A., O0.L. Madsen (1977): Extended
attribute grammars. Report no.10, Univer-
sity of Glasgow, Computing Department.

Watt, D.A. (1979): An extended attribute
grammar for PASCAL. SIGPLAN-Notices, 14,
No.2, 60-74.

