
Copyri,h, () IF e R .. I T,me Prognmm,ng
kroto . Japan. 1981

SPECIFICATION OF A SPECIFICATION LANGUAGE

J. Ludewig

Brown 8o~"' Research Center. CH . '40' Baden. Switzerland

Abstract. ESPRESO is a recently developed specification systC0 for process
control soft ... are . It consirits of a specification language and !I soft re
system ... bich serves as a tool to check , manage, and evaluate specifications.
The langu.ge ... as precisely defined by an Extended Attribute Crammar Ind by
a mapping into a programming language. The definition turned out to be most
valuable not only for the implementation of the tool but also for the
i~rove0ent of the language i t self. As a by-product of tbis work, a better
understanding of the n3ture of • specification laoguage was achieved.

Keywords. Specification Language, Systea Specification, Language Definition,
Software Tools.

INTRODUCTION

Based on experiences with PSL/PSA (Teichroew,
Hershey. 1977), concepts for a specification
language dedic.ted to process control soft­
ware were developed. Tbis l.nguage was cal led
peSL (Ludewia, 1980). It can be processed
by the so called Ceneralized Analyzer (CA),
an exteDded, table driven version of PSA.
Thus, we did not bave to develop a ne ... tool
for peSt, but, on the otber band, we had
to meet the requirements given by tbe GA.

Some of the disadvantages of PCSL/GA impor­
t.nt for us were tbe following:

The CA is very l'rge (about 55 000 lines
of code, mlinly FORTRAN IV). Though it is
well constructed, sucb a proaram is diffi­
cult to install and alaintain, and.
mainframe-computer is necessary.

The GA is intended t o proceSS variations
of PSt, rather than an arbitrary new
specification language. E.g., the language
definer can neither define • recursive
syntax nor a handling of texts different
from tbat i n PSL. Thus, any language for
tbe CA will uoevitably relIIain syntactically
similar to PSt.

Thou&h tbere is still a reasonable freedom
for the language definer, hI! is not able
to enforce the correct use of bis lanauage,
because the GA cannot check any conditions
but t.he simplest. Therefore, additional
tools are necessary to perform those cbecks.

The t.ables which describe the actual lan­
guage are aenerated from a formal defini~
tion. Tbis, however, does neither cover

63

tbose properties that cannot be influenced
by the laoguage definer, nor are they de­
fined elsewhere. Thus, there is in fact no
compl ete formal definition of tbe languaae.

(Some of these
been i.-proved
them.)

properties of the GA may have
since 1979 when ... e observed

As a consequence, a new system, which is no
longer dependent from any existing software,
was developed, based on the improved concepts
from PCSL.

THE ESPRESO~SYSTEH

ESPRESO is a German acronym standing for
"development of the apecificat ion of process
control software". It was designed to provide
an aid in the process of foemalization. Its
components are a formal languaae (ESPRESO-S)
and a tool (ESPRESO~W) to check , store, .ccu~

mulate, modify, and evaluate specifications.
Both are built upon a basic set of concepts,
which can be summarized as follows:

All information, whether formal or not,
should be documented as early as possible.

The user
izing the

should be supported in
specification.

formal~

The USer should be hindered from stating
dl!tails t oo early.

The clerical work to be done by the user
should be minimized.

There should be one cenlral specification
which can be easily accessed and updated
by eVerybody .

" J. Lude\li&

Tools are necessary for detecting erron
as early as possible.

Languages for specificalioD should resem­
ble otber good languages, like PASCAL,
e.g. To ulisfy the needs of non-profes­
sional readers, various represent.tions
of the languagc may be defined (including
gnphics), but. there has to be a sound
basis. Praglllatic extension Qlay ruin tbe
concepts .

The language should provide constructs
which are simple, wcll knowD, easy to use,
and translatable into well structured
prograDls.

SiDce tbese reqUirements are p,uLially con­
tradict.ory, I compromise bas to be looked for .

As a result, ESPRESO-S is a block-orhnted,
Don-procedural specification I.Oiulge. stres­
sing tbe static hierarchy of systems and sub­
systems ("modules"). Within 1II0dules, active
and passive components are described, which
represent executable progrlms and data. Much
emphasis is on the data flow, which implies
coordination of competing processes. Thus,
no explicit synchronization is necessary.

To give SOlIe idea of the language, an example
is shown below.

module data-collection:
text purpose @ system for recelvlng,

filtering and storing dati from
a technical process @;

cDGIprises
buffer raw-values:
produce restr icted-to reader;
consume restricted-to filter
end raw-values

.Dd
---module reader:

comprises
procedure get-values:
start.ed-by read-trigger

where @ every 5 sec @;
produces raw-values;
reads periph-input
-where @ all sensors have to be
-- scanned within 100 IIIsec @

.Dd
endt:;ader

end-aita-collection;

buffer raw-values :
CiP'iCIty 10;
of-type value-record
end .

This sillall exalilple exhibi t s but a few impor­
tant feltures of [SPRESO-S: The user lIIay
exploit the re cursive syntax to describe his
system in a most natural way; he is allowed

to refereoce objects which are not yet de­
fined; he can repeat or extend definitions;
he lIIay use informll texts which cln he managed
by the tool ESPRESO-W, though they cannot be
evaluated like the formalized informltion.

THE NEED FOR A WELL DEFINED
SPECIFICATION LANGUAGE

Nobody can expect the user to deliver a com­
plete and formal specification as the very
first st.ep of his work. So, if he is requ ired
to write down all bis information as early
as possible . the language must comprise of
constructs for infonaal and imprecise infor­
mation, which the tool must be able to handle.
SOUle people conclude from this situation that
there is no need for a precise definition of
the specification language .

Experience proves that the opposite is true.
The llnguage for specification must be well
defined. even more so becluse the specifi­
cltion itself tends to be incorrect (with
respect to the intended meloing), incomplete,
inconsistent, and vague . Natural language or
an unclear specification language will blur
those deficiencies.

A second reason is that the semantics of a
non-openltional langu~ge can not even be
discovered by testing, aa is frequently
done in the use of ill defined progrillcing
languages. If a specification language is not
clearly defined, it will be ambiguous forever.

The definition must cover three aspects of
the language:

Sooe specifications will be accepted by
the tool, while others won't. The rules
which distinguish between those two groups
are called syntax. In tbe past, "syntax"
was often used in tbe sense of "context
free syntax" . It should be noticed that
context-sensitive elements like the con­
sistent usage of names are included here.

Vheo a specification is processed by t.he
tool, mucb redundant or meaningless infor­
mation is discarded . E.g., if an object
is specified twice, only one definition is
stored, comprising of the union of both
definitions . The user should know eltlctly
",hat his input melOS to the content of the
abstract specification stored by the tool .
Tben he will also know if two specifications
are equivalent or not. Tbis inform~tion is
called semantics here .

Finally, and most importaotly for the user,
every construct of ESPRESO-S has some me~n­
iog which. eventually, lIIust be reflected
by the ultimate iJDple..entation. This is
called .eanin!, simply because t.he term
"selllantics" is already occupied. Semantics
and meaning are only defined for specifi­
cations which are synt.actically correct.

In the following
three aspectl is

paragraphs,
discussed.

each of those

Specification of a Specification Language 65

DEFINITION OF THE SYNTAX

After ALGOL 60 was defined by a set of
production rules (Haur, 1963), BNT became
widely used and accepted even by non-special­
iats, because it is easy to write, read aod
understand. The representation was sometimes
mOdified, e.g . for PASCAL (Jensen, Wirth,
1974), or exteoded (SeepUller, 1974) , but
the principle remained unchanged.

BNT is limited to context free languages;
therefore, many rules had to be defined
i nformally (e.g . that every variable must be
declared). Kaoy attempts were made to extend
the capabilities of formal grammars in order
to i nclude such information (Karcotty and
co-workers, 1976). One of the new, more
powerful type of grammars were the Attribute
Grnmars by Knuth (1968). A particularly
concil;e notation of them wa s called "Extended
Attribute Grammar" (EAG) (Watt, Hadsen,
1977; Watt, 1979). This schema was applied
for the definitioo of ESPRESO-S. Below, a
short introduction is given to the principles
of EAGs, as they are used for ESPRESO-S.

An tAG can be directly obtained from a BNT­
gr.~ar by adding certain information .bout
the context. Since the context is usually
arbitrarily complex, meta-rules containing
meta-Variables .re used ins tead of actual
rules; the latter can be generated from the
for.er by substituting actual values for
meta-variables, consistently throughout a
meta-rule. Let a simple example serve as an
explanation:

A section is a fundamental construct of
ESPRESO-S for defining objects. For the sake
of readability, the name of tbe object has
to be repeated at the end of most sections.
The context-free grammar in BKY is:

<section> .. = <object-sort> <object-name>
colon <section-body>.

<section-body> :: = <statement> <section-body>
! end -symbol <object-name>.

In this simplified example, the production
rule s for <object -sort>, <object -name>, and
<statement> are missing, but obviously the
rul es cannot enforce that the two occurrences
of the object - name are to be consistent. That
can be achieved by the use of attributes.

<section t NAKE> .. = <object-sort>
<object-name t NAKE>

colon <sec tion-body + NAME>.

<section-body. NAKEI > .. =
<statement> <section - body + NAMEI >

I end- s ymbol <object-name f NAME2>
<test NAMEI = HAME2> .

<tes t TRUE> .. =

If NAKE, NAMEI and NAKE2 a r e substituted
consisteotly, the na~ing of sections i8
necessarily consistent, because the grammar
does not provide a production rule for
<test FALSE>. In a similar (however, often
more comp lex) manner all context-sensitive
properties of ESPRESO-S are defined.

In the example, the attributes are ~rked by
a vertical arrow, pointing eithe r up or down.
The direction is given only to improve reada­
bility; so called inherited attributes (down)
are fully defined by the context, while the
synthesized attributes (up) are at least
influenced from the productions of the syn­
tactical variable under discussion. NAKEI,
for ins tance, is defined by the name io the
sectionheader; there it is a synthesized
attribute. The section body, on the other
hand, uses NAKEI as an inherited attribute.

Here, only one attribute was introduced; real
productions will contain sever.l, typically
from two up to four or five. In £AGs, the
attributes of one particular meta-variable
are distinguished simply by their pOSition,
rather than by a name, just like parameters
of procedures in most programmina languages
are.

For a typical syntactical variable, there is
an inherited attribute whose value is a set,
which contains most of the relevant infor­
mation about the actual context at the very
point of analysis. In tbe definition of a
programmina languaae, e_g ., that attribute
would at any particular point of tbe program
hold all valid (declared) names and their
related types. If the subtree of that syntac­
tical variable may contribute to the context
of other variables, a second set is defined
for a synthesized attribute . The aenenl
const ruction is:

< variable-name + INHER-CONTEXT v ...
f ... ,. (INHER-CONTEXT PHI NEW-INFO) >.

The last parameter is tbe new context, which
consists of the inherited context plus the
information derived from the subtree of
"variable-name". PHI is an operato r, espe­
cially defined for this grammar . If two sets
are "added" by PHI, t he result is undefined
if tbey are inconsistent (e .g. "X is a pro­
cedure" PHI "X is a data"). An undefined
result means an error -message during con­
version. Otherwise, the infor\'llations are
superimposed, and only the cons i s tent, non
redundant subset of the result is kept.
Thus , the context attribute can never be come
redundant or contradictory.

In the gralllll'lar of ESPRESO-S, PHI is formally
defined by set- operations.

DEFINITION or TIlE SEMANTICS

The context-attribute has to contain all
information relevant for checking at any point
during analysi s. Since mos t of the semantics

" J. Ludewig

is relevant in this sense, it palscs through
the context attribute. In the gramm.r of
ESPRESO-S, two steps were taken to hive tbe
whole sea.nticI a('cumulated within onc
attribute: Firstly, DO information is ever
discarded , Le. the set is oever reduced on
input . Secondly. sOlie information is added
to the attribute though it i s never used for
any cbeck.

Thus, the syntax-definition of ESPR[SO-S
provides an excellent description of the
"abstract specification" which bas to be built
up in the so called tSPRESO-file (. rairly
cowplex data structure) when a specification
is entered. The effect of adding information
to a specification which is already stored
fits very well ioto this concept because
ESPRESO-W rcacts exactly as though the
concatenated specifications would bave been
fed into an empty ESPRESO-file.

The semantics of ESPRESO-S is evaluated in the
so called conversion, which is the initiali­
sation or extension of the stored specifica­
tion by processing ESPRESO-S-input. The
reverse operation is accordingly c.llled decon­
version; parts of the specification, as
selected by the user, are retransformed into
ESPRESO-S, and deleted in tbe .lbstract speci­
fication. The deconversion could be defined
in a similar way as the conversion; another
special opeutioQ like PHI is necessary to
describe the e[[ect of r~ving information
from tbe ESPRESO-file.

When a report is generated by ESPRESO-W,
a subset of the infonution kept in the
ESPRESO-file is selected and printed in some
convenient syntax. Obviously, this process
could also be defined f0I"ll1811y. Again, the
specific.ltion of the report would exhibit a
cle.lr distinction between content and form,
which is very desirable for designing reports .

THE It1PLEHENTATION OF ESPRESO-W

Theoretically, the prograll for conversion
could haVe been automatically gene- rated from
the £AG. EVen though we misht have had acceSs
to such a generating system, we did not
consider its Use, because ESPRESO-W was
required to run on a minicOIIIputer, and even to
perform reasonably. Nevertheless, the formal
defini- tion was very useful for
implementation (Eckert, Ludewis, 1981) . No
questions ever arose due to ambisuities, and
ilDplementation was easily separated as a task
for a master-thesis. The structure o(the
grammar was used as a guide for structuring
the programs; while the few most basic
cons tructs are handled by special code, the
l.lrge number of similar statements is treated
by a table driven system. As the syntax is
recursive, the programs for conversion and
deconversion are recursiVe .s well.

HAPPING OF ESPR£SO-S
INTO A PROGRAHI1ING LANGUAGE

Though the grammar defines precisely the
mapping from a uler's specification to the
abstract specification stored within
ESPR£SO-W, it does not say anything about the
meaning of that specification to the user.
This problem W&S attacked separately, not
within the graQllat. This definition is only
semi-formal, and no complete algorithms are
giveD.

Definins the meaning of a non-operational
language turned out to be very hard. The b&sic
appro&ch was to map ESPRESO-S onto another
machine, the oper&tions of wbich are well
defined. A virtual aachine w&s cbosen, whicb
was called E·PASCAL ("E" stands for ESPRESO) .
[-PASCAL differs from standard-PASCAL by lome
eaten- sions which are very useful or even
necelsary to implement prosraliS specified in
ESPR£SO-S . A more powerful language like ADA
could have been used wiLhouL eXLenslons, but
such a mapping would not have Ihown which
particular requirementl on the impleDentation
l&Dguage and the run time system are imposed
by tbe specification lansu.se .

Host units of the specification like
variables, buffer., etc. can be transformed
into complete declarations, which tbe
prograQller need not access any more . But,
obviously, a specification written in a
language tbat does not allow for a complete
software-description cannot be mapped ooto a
program ready for cOlllpilation. Therefore,
those procedures and blocks whicb &re
specified to perform some so called actions
(e.g . reading) mUSl be finished by the
prosrulDer. For every such UQit, a "hole",
Le . an empty frame, h aenerated, permitting
only those procedures and operations to be
accessed which are specified. Inside the
holes, tbe progra~r may declare and define
whatever he wantl, but the interface is fixed.

Let UI assume that the specificatioD containl
the following definition:

procedure check-input:
consumes measured-value

where @ between 0.0 and 30.0 @.
reads upper-limit, lower-limit;
prodUces checked-value
~ cbeck·input.

This procedure is mapped onto E·PASCAL as
follows:

procedure check-input;
interface

consumes measured-value
(* as sertion: between 0.0 and 30.0 *);

reads upper-lillli t, lower-lillli t;
produces checked-v&lue

interfend;
be8~2

the hole to be fi lied *)
end (* cbeck·input *).

Specification of a Specification Language 67

The interface-declaration provides all
access-paths to the environment ~bich are
available (or the code to be added in the
hole.

In general, a medium may be accessed by more
than one process at tbe same time. Therefore,
a full definition of actions must also cover
the mechanisms applied for coordination. In
tbe description of ESPRESO-S, monitor-like
sequences of operations are defined for all
actions. These monitors are based on the INC
and DEC operations as defined by EWICS TC 8
(La live d'Epinay, 1979).

THE FEEDBACK FROM A FORMAL
DEfINITION

Some people ~bo attacb little value to formal
definitionG regard it to be notbing but a
supplement to the language. But if the
definition is developed just as the language
evolves, it will be much more. If t.he laoguage
is oat as sUDple as it should be, the formal
definition ~on't be either. If the s~otics
are puffy, it ~ill be very difficult to find
an appropriate set of attributes.

On the other hand, if the language is required
to have certain formal properties, a fo~l
definition can be used to prove them.
ESPRESO-S ~as kept as simple as pOSSible, in
order to ease the implementation of t.he tool.
~o major contributions to simplicity ... ere
Dlade by chOOSing a simple gracam.ar : The
context-free syntax is of type LL(I), i.e. the
syntax-tree of any correct specification can
be constructed ... ithout any look-ahead or
backsetting. In the context-sensitive syntax,
all attributes can be evaluated within one
pass frail left to right (Soehlllann, 1976). Both
properties could be eas ily checked by tbe
formal defini.tion (Eckert, 1980) . (Tbe
LL(I)-property is not obvious, because there
are some left-recursive productions io the
gra~r, which can be removed by some simple
transformations.)

Last but not least, the investigations about
the mapping to a programlliog language provided
much deeper insight into ... hat is really
expressed in a speCification language of this
type.

HAliAGEHENT OF A LARGE GRAHHAR

All the sdv~ntaaes of a formal gra~ar may be
useless ... hen it is full of errors. Therefore,
some care must be taken to make sure tbat the
errors can be controlled in some way. Our
experience confirmed the statellent by Harcotty
and co-workers (1976) that a text-!lanaaement­
system is necessary. The grammar of ESPRESO-S
~aa stored on computer for about One year, and
agaio and again output on an inkjet-printer,
... bicb provides a large set of special
characters includiog arrows. It should be
noted that tbe availability of such tools
may be crucial for the success.

CONCLUSION:
GEHERA1ITY AND PRECISENESS
IN PROGRAM SPECIFICATIONS

The gramear of ESPRESO-S and its mapping to a
programming language show that s specification
language can be formally defined, snd tbat
such a definition is desirable. It is feasible
in spite of the fact that the ultimate code
cannot be generated from the specification.
Tbe trick here is to allo~ for "holes" or
"white litsins" in the speCification, which do
not bother the analyst . When the specification
i. mapped onto code, the limit of the hole is
well defined ~hile its contents sre oat.

For some applications, the holes provided by
ESPRESO-S !lay still be too Darro.... For
instance, tbe analyst migbt like to state that
there ~ill be so~ communication between two
modules ... ithout saying anything about, let's
say, the direction. In such a csse, it ... ould
be useful to provide additional terms wbich
are more general. Such terms can be defined to
be the union of other ones. Then, tbey are
still as precise as the old Ones.

Thus, a clear distinction is made between
fuzziness and generality: The terms of ESPRE­
SO-S have a geoeral meaning, and additional
levels of aenerality could he added. But the
language is still precise, and any implemen­
tation can clearly be said to be correct or
incorrect, ~itb respect to the specification.

