
SYSTEM DESCRIPTION METHODOLOGIES 
D. Teichroew and G. Davkt (Edil0rl) 
E[sevierScience Publishers B.V. (Norttl-Hol1andl 
e IFIP, 1985 

A NOTE ON ABSTRACTION IN SOFTWARE DESCRIPTIONS 

Jochen Ludewig 

Computer Science Group 
Brown Boveri Research Center 
CH-S40S Baden, Switzerland 

In the process of software development, abstraction is usual­
ly treated as a mere change of scale. Therefore, the only 
widely used principle for Changing the level of abstraction is 
a change in quantity, for instance by stepwise refinement. 
This paper is based on the observation that there are in fact 
more differences between descriptions at different levels. 
Two consequences are suggested: first, an extended Entity­
Relationship-Model, and second, a set of abstraction levels, 
each related to a specific "filter" through which the system 
is seen . 
The paper is prefaced by a remark on terminology and by 
some information en my background. 

A COMMENT ON TERMINOLOGY 

535 

Instead of an introduction, I would like to issue a comment on terminology. I 
think that some of the discussions of previous papers suffered from confusion 
about a few fundamental terms : language, tool, method. A scheme which I call 
the system triangle (figure 1) once helped me to make a clear distinction; maybe 
others find it useful too. 

I 
I 

.? A ~ 
er. \ ~ 
~ / \ ~ 
~ / Cl' 
~ , \ -:; ..J 'Concepts \ -J 

'.,I----~ 
// Tool (s) " 

Figure 1: The System Triangle 



536 J. Ludewig 

Every description system, for instance a specification system or a programming 
system, consists of four components: 

Its heal"t is a set of abstract concepts, the semantic kernel. At the level of 
code, such concepts are e.g. loops and 5ubprograms. 

For using and expressing the concepts, there is a Here, the lan-
guage is just a syntax for the semantics conveyed . Obvious-
ly, graphical representations like Nassi-Shneiderman-diagrams or Structure 
charts are languages just as good as conventional ones. For a certain set of 
concepts, several languages may exist. 

Writing a description (specification, code) requires some method, which again 
is related to the concepts. The strategy of stepwise refinement, e.g., is 
supported by the concept of subprograms. 

Tools are used to process descriptions, e.g. to check and store specifica­
tions, or to compile code. 

The message of this figure is that language(s), method, and tool(s) are closely 
coupled. Their abstract kernel is the set of underlying concepts. These four 
terms can (and should) be well distinguished . (As Lehman stated, "methodology" 
in the place of "method" is simply wrong). 

I believe that our inability to agree on a small, but sufficient set of concepts is 
at least one reason of current stagnation of research on software specification. 

BACKGROUND 

My personal background is six years of research in software specification 
systems, in particular for process control software. This work included 
experience with PSL/PSA, modification of PSL for process control [1], and 
design and implementation of a specification system named ESPRESO [2]. Most of 
this work was carried out at Nuclear Research Center, Karlsruhe, FRG. 

Currently, our software engineering project at Brown Soveri Research Center, 
Baden. Switzerland, is working on the design of a Software Engineering System 
for process control software development and maintenance. This work, which is 
still in an early phase, is based on the idea that such an environment should 
provide alJ components of figure 1, i.e. method, languages, and a set of tools. 
The tools should not require the user to get aquainted with many different inter­
faces both for human computer interaction and for the communication between 
different tools. Therefore, two components should be used by all other tools: a 
universal man machine interface, and a general data base for program develop­
ment. 

Another important part of my background are EWICS TC 11 (European Workshop 
on Industrial Computers, Technical Committee on Application Oriented Specifica­
tions) and the Working Group on Ada for Specification. Both activities are 
supported partially by the European Community. 



Abstraction in Software Descriptions 537 

GENERALITY IN SPECIFICATION 
Rf:LATIONSHIP MODEL 

LANGUAGES: AN EXTENDED ENTITY 

A few specification languages, like HOS, are fully defined, i.e . their definition 
covers both syntax and semantics. Most others, however, are missing such a 
definition, but are more popular, apparently because they are less difficult to 
use . 

Striving for specifications which are both clear and usable, we must try to dis­
cover the reasons for this dichotomy. Conclusions like "People just don't like 
formality" are not satisfactory, because programming (i.e. coding) languages 
actually are (or could be) fully defined without any disadvantage to the user. 
Therefore, it might be useful to look for other reasons. 

A key to the problem may be that a specification should represent our ideas 
about a system as they are, not a transformation of these ideas into some formal 
world which is fine for the computer, but not for the human writer and reader . 
Our ideas are vaguej hence, the specification must allow for vagueness. 

In programs, there is one special way to express vagueness: if a procedure call 
refers to a procedure which is not yet designed, this detail of the program re­
mains undefined . This is the basic idea of stepwise refinement; at first, only the 
most general part of the program is implemented, details are added as the imple­
mentation proceeds. In the following, this property of incomplete programs is 
called generality; a general description is incomplete, it may be refined in dif­
ferent ways. 

The generality offered by undefined procedures is , however, very limited; there 
is information which can be given only at the level of . full detail. If you know 
that two processes communicate via some data-object whose type is not yet defin­
ed, you cannot express that in a programming language, because you can neither 
express "communicate" nor "data-object". Note that this does not mean that the 
meaning of those two terms is undefined . "data-object" could e.g. be an object 
of one type from a given set of types . "communicate" could mean that either of 
the processes receives data from the other one. In real life problems, such situ­
ations occur again and again. 

Languages like PROLOG 13l allow for such statements. See the following descrip· 
tion : 

data object (X) :. integer (X). 
data:object (X) : - real (X). 
data object (X) :- boo lean (X). 
communicate (X, Y). writes (X, Z), reads (Y I Z). 
communicate (X, Y) :- writes (Y, Z), reads (X, Z). 

The predicates "data object" and "communicate" are true if and only if their 
arguments meet any of the alternative conditions behind the hyphen . 

Many approaches for system description are based on the Entity Relationship 
Model [4]. The basic principle, as used e.g. in PSL/PSA, is as follows: The 
s ystem is described by a bipartite graph. Everyone of its nodes belongs either 
to the set of entities (or Objects), or to the set of relationshi s (or links) . 80th 
objects and links are further classified by their types object-types, link-types). 

Every edge connects a link to an object. Edges are labelled; the number and 
labelling of the edges connected to a certain link are defined by its type. 
Objects are identified by a name; links are identified by their type and by the 
objects they are connected to. 



J. LudeNjg 

Let there be a link-type IIcontains ll
, and three object-types "modulell

, "data", 
and "procedure". Every link of type IIcontains ll is connected by two edges; the 
first one, labell~d "owner", goes to an object which must be of type "module", 
the other one, labelled IIproperty", goes to an object whose type may be either 
"data" or IIprocedure" (see figure 2). The objects are identified by their names 
ABC and XYZ, while the link is identified only by its type and by the ordered 
set of connected objects (owner = ABC, property = XYZ). 

I ABC I owner 0 property I XYZ I 
"module" "contains" "data" 

Figure 2: Two objects connected to a link 

The Entity Relationship Model could gain much of the flexibility of PRQLOG if 
the principle of generalization could be applied to object·types and link- types. 
The user would then be able to express his current view of the target system at 
various levels of generality. He might for instance introduce an object as being a 
data_object, thus postponing the decision about its type, or he could express 
the intent to have a communication link between two instances without choosing 
its direction. When the information is refined later on, the general information 
becomes obsolete, and is discarded. 

Consistency rules for the system description are much more concise if they may 
refer to generalized types. In the example given above, object-types IImodule", 
IIdata ll and IIprocedure" can be condensed in a type "mod·dat·proc". Then, the 
property-component of the contains-link has to be of this type. If the link refers 
to an undefined object, its type is set to "mod-dat-proc", until it is further de­
fined I either explicitely or implicitely. 

In the framework of our software engineering project, we are currently working 
on an adequate way to define types, generalization, and consistency rules. This 
definition is to be used by the data base generator . Consistency checking and 
control of generalized types can then be shifted to the data base management 
system, which should do it very efficiently. 

SOME COMMENTS ON THE PRINCIPLE OF ZOOMING 

Most of the work related to software description is based on the assumption that 
the descriptions at different levels of abstraction differ only by scale, much in 
the same way as photos differ which have been taken from a single position, but 
using a zoom lens. Good examples of this zooming principle can be found in 
papers on SAOT (see figure 3) . 

Thinking about the photographic analogy, one can see that no good photographer 
will deliberately work in such away, simply because a macro photo , a portrait, 
a landscape and all the other types of pictures differ not only in scale, but also 
in the viewpoint, filtering, lighting, and photographic material. The lesson we 
might learn from them is that we, too, need different concepts for desribing 
software at different levels of abstraction. 



Abstraction in Software Descriptions 539 

Figure 3: Zooming concept of SADT (from (5» 

Our idea of a large and complex system, say a manufacturing plant, is static . We 
usually think of it as a object which is in a stable state. If we know a bit more 
about it, we think of its purpose, Le. about its essential inputs and" outputs. 
This. again, is Cl static view; we say "This factory produces generators,lI even 
though the products may be finished only at intervals of several weeks. Note 
that we do not mention side effects Ii ke consumption of energy, production of 
sewage, etc. 

If we are r'nterested to learn more about the system, we decompose it into sub­
systems and look at those, one by one. (Obviously, there are many ways to 
decompose the system, but this problem is not addressed here.) The less complex 
the subsystems we deal with, the more we tend to regard them as dynamic ob­
jects, which perform some functions. Simple tools in the factory are described by 
their function: "This machine smooths the surfaces of turbine blades." At the 
lowest level, we relate the function to time instances: "After every cycle, this 
scraper removes the waste . " 

The same basic principles apply to descriptions of other systems in general and 
of software systems in particular. We are unable to deal with a complex function­
alitYi thus, it is either ignored (as in the case of the manufacturing plant), or 
it is greatly simplified. Time does not play any role in such descriptions. The 
functionality of le!s complex systems is more easily understood. Time (or se­
quence of execution) is introduced only at the lowest levels. 

It should be possible to define a set 0' such "viewsll, or IOlightings", which could 
guide us through the process of software development. Table 1 shows a very 
tentative set of such levels. Maybe that we need different constructs for de­
scribing the target system at various levels, or the very same language is used 
at all levels, but a clever tool filters from the full description just the informa­
tion related to the level at which we want to work . 



540 J. Ludewig 

At the 
Level of the description deals with 

SYSTEM a large, complex system 

UNITS subsystems, similar to a system 

TASKS units, including their basic purpose 

ACTIONS tasks, including the conditions 
under which they are performed 

CONTOURS the precise interface between actions 

CODE the implementation 

Table 1 : Very tentative set of abstraction levels 

This idea was first presented at EWICS TC 11, where it is currently being 
worked out (6). 

CONCLUSION 

Abstraction is an important principle in system description, but current tools 
and methods are based on a too limited understanding of abstraction. The two 
ideas presented above indicate possible extensions. They should not be taken 
as results, but as a starting point for further work and discussion. 

REFERENCES 

(1) Ludewig, J., Process control software specification in PCSL, 
in: Haase, V. (ed.), IFAC/IFIP workshop on real-time programming 
(Pergamon Press, Oxford etc., 1980) pp.103-108 . 

(2) Ludewig, J . , ESPRESO - A system for process control software specification. 
7th Conf. on operating systems, Visegrad, Hungary, January 1982; 
IEEE Transactions on Software Engineering, SE-9 (1983), July-issue. 

(3) Clocksin, W. F. and Mellish, C .5., Programming in PROLOG (Springer Verlag, 
Berlin, Heidelberg, New York, 1981). 

(4) Chen, P. P. -S., The Entity-Relationship Model - toward a unified view of 
data. ACM Transactions on Data Base Systems, 1 (1976), 1, 9-36. 

(5) Ross, D. T . , Structured analysis (SA): A language for communicating ideas, 
I EEE Transactions on Software Engineering, SE-3 (1977) 16-34. 

[6] Jones, J., Kramer, J., and Ludewig, J., Abstraction levels in system 
descriptions - an intuitive apprO<lch, Contribution to the status report of 
EWICS TC 11, to appear ca . November 1983. 


