
SEED - A DBMS FOR SOFTWARE ENGINEERING APPLICATIONS BASED ON THE
EN TI TY-RELATIONSHIP APPROACH

Martin Gllnz Jochen Ludewig $)

Brown Boveri Research Center
CH-S40S Baden, Switzerland

ABSTRACT

SEED is a database system which supports the data
engineering needs of a software engineering envi
ronment. It provides information structures that
are not incorporated in conventional database
systems, but are typical in the software engineer
ing process.
This paper describes two prinCipal features of
seeo: how to deal with vague and incomplete in
formatIon without giving up consistency checking,
and the management of database versions and vari
ants.
A prototype of SEeD Is used as the database for
an existing specification and design tool .

INTRODUCT ION

A software engineering environment uses informa
tion structures that are rather different from those
provided by conventional database systems . Build
ing a DBMS for software engineering applications
therefore requires the development of new, engi
neering oriented database concepts.

Existing work on semantic database modelling and
on engineering databases (for an overview, see
[12], [61 and the references cited there) provides
solutions to many points in the problem space.
However, we found no work addressing the full
scope of database requirements when developing
tools for software specification and design. On the
other hand, software engineering is a field large
enough to justify tailored solutions .

On this background, we designed SEED (which
stands for Software Engineering Environment Data
base System> . A prototype of SEED was implement
ed in a straightforward manner, deriving the im
plementation concepts from the model.

Our ultimate goal was not to invent a new database
model, but to provide a DBMS that substantially
eases the task of data engineering when building a
software engineering environment consisting of a
set of cooperating tools .

*)with ETH Zurich since January, 1986

CH2261 -6/86/0000/ 0654S01.00 . 1986 IEEE
654

CONCEPTS

Concepts for software design

The concept of SEED was strongly influenced by
our work on the specification system SPADES (9)
and its predecessor, ESPRESO. We therefore brief
ly outline our approach to software design.

We consider specification and design to be evolu
tionary, strongly intertwined processes. Their goal
is to model the target software system. Such a
model isasemiformal description of the and
relationships that the target system is of.

Development starts with Informal, incomplete, and
vague textual descriptions and evolves to a rather
formal representation by objects and relationships
of well defined sorts. Information is accepted inde
pendently of its forma1ity and completeness. But at
any stage, the collected information must be con
sistent (according to the semantics of a specii'fCa-"
tion grammar). Eventually, the result must be
sufficiently formal, complete, and precise to serve
as a basis for implementation.

The state of the development is saved after every
larger modification. Rollback to prior states or
tracing alternatives allow for exploring the design
space and for undoing errors.

Basic ideas of SEED

SEED is based on the entity-relationship approach
(2]. This approach is especially suited for software
development with semiformal models. However, the
entity-relationship model lacks some features that
are vitally needed in a DBMS for software engi
neering applications: object hierarchies , a sophis
ticated consistency concept, how to deal with vague
or incomplete information, and management of ver
sions and variants .

In SEED, these features are added to the entity
relationship model (7) . Figures 1 and 2 give a ge
neral idea of the basic concepts; Figure 1 shows
some objects and relationships that are handled by
SEED using the schema of figure 2. This schema
describes the data model of a primitive specification
system where actions, data, and data flow may be

represented.
diagrams (or

We use modified entity·relationship
graphic representation.

and 2:
be

Notice the difference between figures 1
Figure 1 gives an example of data that
stored in SEED . Figure 2 showsa)~~:!!!!!!
that defines what ki nds of data may :;

In this paper, we focus on two extensions that we
consider most important: (1) the problem of ad·
mitting vague and incomplete data without loosing
conSistency control and (2) management of versions
and variants.

by

Read (2)

from ,, __ --~

"Alarms are
represented in
an alarm display

matrix"

(1)

(3)
Selector

"Representation"

Keywords[OJ

"Alarmhandling"

Keywordsl1)

"Display" (4)

Figure 1: Sample object·relationship structure

Exr,anation of figure 1 :
(1 Is an Independent object with name 'Alarms'.
(2) is a relationship 'Read', relating objects
'AlarmHandler' and 'Alarms ' In roles 'by' and
'from' , respective ly. All objects below of 'Alarms'
are dependent objects (sub-objects) . The name of
a dependent object is composed of the name of its
parent and of its role in the context of the parent
object. T hus, (3) is the object 'Alarms . Text' con
sisting of objects 'Alarms. Text . Body' and 'Ala rms.
Text.Selector'. The latter has the value "Repre
sentation". Finally, (4) Is a dependent object with
name 'A larms.Text.Body . Keywords(l]' and with
value "Dis play".

Explanation of figure 2:
'Data' is a hierarchically structured object class
with class 'Data. Text' as a subclass, which again
has the subclasses 'Data. Text . Body' and 'Data.
Text.Selector'. The latter has objects of type
STRING as instances . 'Data . Text' has the cardina
illY 0 . . 16, specifying that any object of class
'Data' may have from zero up to 16 objects of
class 'Data . Text'. Classes 'Data' and 'Action' are
related by relationship classes) 'Read'
and 'Write' I i 1 .. * and 0 .. *. '1 .. *'
means that 'Data' must have at

relationship with an in
stance of 'Action'; there is no upper bound for the
number o(such relationships. The roles 'from' and
'by' of the 'Read'-association ex press that reading
is from instances of 'Data' 2:i. instances of 'Action'.
The association 'Contained' imposes a tree structure
on the objects that are instances of 'Action' by
means of the attribute ACYCLIC and the cardinality
0 . . 1 for the role 'in'.

in Contained

Data , .. *
1 .. *

0 •. * Action

0 .. * l70-~CC-Ccrj]O".~. '~,,","~~'"
0 .. 1

ACYCLIC

from
O •• 16

Text
Read

Contents

STRING

Figure 2 : A sample SEED schema

by 1 .. 1 1 •. 1 container

Description

STRING

n •. m

os,

Class

Sub-Class (dependent class)

Association

Cardinality (min to max,
* = unlimited)

MANAGING VAGUE AND INCOMPLETE INFORMATION

The normal approach to database consistency is to
require all data In the database to fully comply
with the structures and constraints given in the
schema. However, this approach prevents the
entry of incomplete and vague information into the
database.

We use the schema of fig. 2 for two examples:

(1) We cannot store the information that there is
a dataflow from 'AlarmHandler' to 'Alarms'
unless we precisely know whether it is a read
or a write, because there is no schema cate
gory which fits the vague information about
the existence of a dataflow.

(2) We cannot enter 'Alarms' as an object of class
'Data' without also entering a 'Read'- and a
'Write'-relationship of 'Alarms' with objects of
class 'Action', because the database would
become inconsistent otherwise. This is due to
the fact that the minimum cardinalities of the
'Read' and 'Write' associations require every
object of class 'Datal to have at least one
'Read'- and one 'Write'-relationshlp with ob
jects of class 'Action'.

Management of vague and Incomplete data there
fore requires extended schema strudures as well
as a modified consistency concept.

Vague data

Generalization is a well known principle for repre
sentIng meta-classifications ('is-a'-relationships)
(11). This principle can be used to define cate
gories In the schema that allow for dealing with
vague data in a well defined manner. We extend

NumberOrwrites
1. .1

ErrorHandling
O •. 1

OutputData to

, .. *

by
InpulOata '-____ -'1 .. *

Read

generalization from object ctasses also to associa
tions (relationship classes).

Wherever we want to allow for vague information,
we define a hierarchy of generalizations : General
Ized classes and associations provide categories to
enter vague data. When the knowledge about these
data becomes more precIse, they are moved down in
the generalization hierarchy to one of the special
izations.

Figure 3 s hows an example: The schema of fig. 2
is modified such that associations 'Write' and 'Read'
are generalized to 'Access'. Class 'Data' is special
ized (inverse of generalization) to 'OutputData' and
'InputData' . Classes 'Data' and 'Action' are ge
neralized to 'Thing'.

This allows storage of vague information like
"There is a thing with name 'Alarms"'. When we
know more about 'Alarms', e.g . that it Is a data
object which is accessed by action 'Sensor', we
may make the previously stored information more
precise by re-classlfylng 'Alarms' in class 'Data'
and introducing an 'Access'-relationshlp with
'Sensor'. In a next step, we might learn that
'Alarms' is an output. Again, we can make the
stored information more precise by specializing the
'Access'-relatlonship to a 'Write'-reJationship . Final
ly, we could arrive at a precise information like
"'Alarms' Is an output written twice by 'Sensor',
and writing is repeated in case of error".

In generalization hierarchies of associations, dif
ferent cardinalities may be used to express addi
tional semantics. For example, the cardinality 1 . . *
of 'Access by' means that every object of class
'Action' eventually must access at least one object
of class 'Data'. However, the cardinality 0 .. * of
'Read by' and 'Write by' allows either a write or a
read access to satisfy this condition.

(abort,
repeat)

generalization

Data

o· ·*r>-__ ~·o"'""=-l-,,".~ ____ ~c:o;n~t,ained on
.t r_b:'Y'-:--:l Action 0 .. 1

O .• 16

Text

Access container ACYCLIC ' .. ~. ~~~"~"F~~'~~ 1..1 1 .. 1

Revised

Thing
DATE

Figure 3: SEED schema with generalizations of classes and associations

.56

Incomplete data

We already mentioned that minimum cardinalities
restrict the treatment of incomplete information.
Howe e r , we do not want to omit minimum cardi
nalities as they pro ide information about the
desired final state of data that is being stored in
the database .

The problem is sol ed by partitioning the informa
tion that is pro ided by the schema into two cate
gories : consistency and completeness information.
Class and association membership, maximum cardi
nalities, ACYCLIC-conditions, and attached proce
dures are conSistency information. Minimum cardi
nalities and co ering conditions for generalizations
represent completeness information.

(Attached procedures may be attached to any SE ED
schema element. They are executed when an item
of the corresponding schema element Is updated.
Attached procedures are used to express complex
integrity constraints. A generalization is co erlng
if e ery data item must finally be specialized in a
specialized class (or association) of this generaliza
tion .)

M;mipulating vague and incomplete d~t;)

Manipulation of vague data requires an operation
for re-classlfying an existing data item within a
generalization hierarchy.

As we allow for incomplete data, we may ha e ob
jects with u ndefined sub-objects and not yet exist
ing relationships. The semantics of such objects in
database operations Is simple: When the database is
searched for data that meet certai n selection cri
teria , an undefined object matches nothing . Taking
joins or cartesian products Is not affected by un
defined items. This is due to the fact that entity
relationship based models define these operations
on existing relationships on ly.

Whene er an update operation is executed, SEED
checks all consistency rules, that are derivable
from the consistency information mentioned abo e,
and that apply to the data being updated . Thus
SEED permanently ensures database consistency.

Formal detection of incompleteness is pro ided by
operations which check the rules that are deri able
from the completeness conditions in the schema.

VERSIONS AND VARIANTS

Versions

T he SEED versIon concept allows certain states of
the database to b. preserved. It aims ot long term
preser ation, e.g. when a document has been
finished or a product is released, as well as at
short term logging, e.g. savIng the database state
before and after a session. However, SEED does
not keep a log of e ery database update.

651

Versions are created explicitly by taking a snap
shot of the database . Additionally, there is always
a current version representing the current state of
the database. Every update changes this state,
replacing the current version with a new one.
When a current ersion is to be saved, an explicit
version generation mu s t be performed prior to the
update.

Versions are identified by a decimal classification.
The classification tree reflects the version history.

Versions cannot be modified, except for deletion .
However , alternatives may be c reated by selecting
a historical version to become the current erslon
prior to the execution of a sequence of update
operations. Work then continues on the basis of
this version until it is sa ed with a ersion crea
tion command and the original current ersion is
selected again.

Retrieval of data from an old version is performed
in the same way as retrieval from the current ver
sion. The version of interest is selected prior to
the execution of retrie al operations (with the cur
rent version as a default). SEED defines additional
operations for h is tory retrie al and na igation, e.g.
'find all ersions of object 'AlarmHandler' , begin -
ning with erslon 2.0'.

contained
, .0

c

Read , .0

by

container

r-_/c
container

2.0
contained

AlarmHandler

c Current

Re ised

C

2.0

1.0

Description

"Generates alarms C
from process data,
triggers Operator

Alert"

'Handles alarms Z.O
derived from

rocessDat "

"Handles alarms" 1.0

Figure 401: Sample objects and relationships with
versions

When creating a version we do not save the com
plete database. We only store those objects and
relationships that have been changed after the
creation of the previous version. Items that have
been deleted in this interval must also be record
ed. This is made easy by marking items as deleted
instead of removing them physically .

Fig. 4 shows an example of objects with multiple
versions. The stored versions of an object are re
presented as a cluster of ovals. The version of a
hierarchically structured object is composed of the
versions of its sub-objects.

Read

Figure 4b:

Read

by

contained

container

container

contained

AlarmHandler

Revised Description

"Generates alarms
from process data,
triggers Operator

AlertU

Current version of data items of
figure 4.1

AlarmHandler

Revised Description

"Handles alarms"

Figure 4c: Version 1.0 of data items of figure 4a

6S8

In this example, we have information about three
versions: 1.0, 2.0, and Current. From this, we
can build views to particular versions. The view to
a version with number n consists of the objects
and relationships having the greatest version num
ber that is less than or equal to n (provided that
they are not marked as deleted). Figures 4b and
4c show the corresponding current version and
version 1.0, respectively.

When the schema is modified, the interpretation of
versions that were created before this modification
becomes a problem. Therefore, we must generate
schema versions, too.

Patterns and Variants

When entering information Into user
often wishes to express data
that are not reflected For
example, the schema may define a class of proce
dures that are to be specified. A subclass of this
class may contain the deadline for the completion of
every procedure specification. If a user wishes to
express that some procedures have a common dead
line and wants to maintain that deadline value con
sistently for these objects, he/she cannot do so.

in SEED, a pattern concept is provided for dealing
with those situations: Any data item that is enter
ed into the database can be marked as a pattern.
Patterns are invisible to any retrieval operation
and are not checked for consistency unless they
are Inherited by a 'normal' data Item. The se
mantics of patterns and inheritance is as follows:
all retrieval operations view patterns as If they
were inserted In the context of the inheritors.
However, instead of a real insertion we establish a
special inherits-relationship between a pattern and
any of its inheritors. Thus pattern information
cannot be updated in the j:ontext of the inheritors,.
but only in the pattern itself. Conversely, any up
date of a pattern automatically propagates to all
inheritors of that pattern.

Returning to the example introduced above, the
user may define a ' pattern procedure object with a
given deadline. Every ' real procedure object that
should share this deadline, inherits the pattern.
The deadline value will be maintained consistently,
as it is not changeable in the real objects, where
as a change in the pattern affects all Inheriting
objects In the same way.

There are several other applications for patterns,
e.g. for templates, user defined constraints, or
standardized data environments.

Patterns also serve as a basis for managing vari-
ants: We define a I to be some
sets of objects and have a part
of their information in common, differ in some
other parts. This means that every variant shares
a part of its objects and relationships with the
other members of the family (the so called common
part), but has also objects and relationships that
differ from the other members (the variant part).

Variants are different from alternatives: alter
natives are coexisting versions of the database,
whereas variants express that some information in
the database consis ts of a common part and some
varying parts.

An example of variants is a set of system configu
rations that share most of the software modules,
but differ in some hardware dependent modules .

Common and ariant parts of a variants family are
described by normal items. The connections be
tween the common part and the several variant
parts are established by pattern relationships with
every variant inheriting these patterns . Pattern
semantics now guarantee that all variant parts have
the same relationships to the common part. This
could not be assured with ordinary relationships.

In fig . 5, the common part is connected to pattern
objects POl and POZ by pattern relationships PRl
and PRZ, respectively. Both variants inherit these
patterns. Thus, they both have inherited relation
ships to the common part, i.e . they have it in
common .

,common part,
, '

PR2

A. .. / .".:>< .', v,,;ant{ Jj;j'S/· ~.> _~O. ------.,
I 'I ,

I 'I \

I
• • , , , ,

\ / \ I ,variant part A ./ ", variant part ~ ...
....... _- - --- _.. _- - --~ --"
•..... _.. Inherits-relationship

Figure S: Defining variants by means of patterns

DATA MANIPULATION IN SEED

SEED has been deSigned to support the data ma
nagement tasks of software development tools.
Hence, SEED has an operational interface that con
sists of a set of procedures. The SEED prototype
provides the procedures for data creation, update,
and simple retrieval by name . Retrieval with com
plex qUeries is not supported.

650

RELATED WORK

We should like to acknowledg e that SEED incor
porates many ideas from work on engineering data
bases , semantic data models, and extensions of the
entity-relationship model .

Smith and Smith (12] deal with a database approach
to speCification, focussing on formal specifications.
Bever and Lockemann [1] also propose an entity
relationship database for a software engineering
environment. They concentrate on the coding and
compilation phase, where information is fully forma
lized. Katz and Lehman (8] and Tichy (131 deal
with version and configuration management on the
level of files.

A semiformal approach to software development with
emphasis on the specification and design phase,
which SEED aims at, is not covered by this work.
The version concept of SEED works on the data
base, not on files.

The numerous extensions of the entity-relationship
model ([3), [41, [5], [10J) point out many solu
tions to particular problems and have been a valu
able source for the design of SEED. However, they
reveal no concise solution to the problems of soft
ware engineering data management, which is the
main goal of SEED.

DISCUSSION

Open problems

SEED Is currently a single user system only. The
problem of concurrency control and version ma
nagement In a multi-user environment have not yet
been solved. We only have some rough ideas con
cerning a two level approach: One central server
runs the complete database and several clients use
the server for retrieval operations, but take local
copies for making updates. Data that has been
copied to a client for update has a write lock in
the central database . When a client sends an up
dated copy back to the server, the server puts
the modified data Into the central database In a
Single transaction. Versions are kept both locally
and globally under control of the user and the
server, respectively.

In our version concept, we have not yet considered
history sensitive consistency rules, i.e. rules that
impose constraints for the transition from a given
version to Its successor.

State of work

A prototype of SEED is operational . It is currently
being Integrated into the specif!cation system
SPADES. Implementation concepts for versions and
variants have been developed, but the implement
ation is not yet done.

The practical use of SEED will give us Insight in
Its benefits and weaknesses. The experience gained

from there will guide the further development of
the concepts and the implementation of SEED.

The first experiences with SPADES using SEED
show that SPADES has become considerably slower,
but much more flexible in the sense that modifica
tions of the system and integration of new features
have become much easier.

ACKNOWLEDGEMENTS

We wish to thank Hansjorg Huser and Hans Matheis .
Hansjorg implemented the SEED prototype and help
ed to integrate SEED into SPADES. Hans did the
greatest part o(the SEED-SPADES integration. We
also thank Mark Garrett tor commenting on our
English.

REFERENCES

[1J Bever, M. and P.C . Lockemann (1984). Data
base support for software development. In :
Morgenbrod, H. and W. Sammer (ed.), Pro
grammierumgebungen und Compiler, Symposium
1/84 of the German Chapter of the ACM,
Munich . 46-72 .

(2] Chen, P . P . (1976). The entity-relationship
model - toward a unified view of data. ACM
Transact. Database Syst., 1. 9-36.

[3J Chen, P. P. (Ed.) (1980). Entity-relationship
approach to systems analysis and design.
North Holland. (Proceedings 1st Intern. ConL
on Entity-Relationship Approach.)

l4] Chen, P.P. (Ed.) (1981). Entity-relationsh ip
approach to information modeling and analysis.
ER Institute, Saugus, Ca. (Proceedings 2nd
Intern. Cont. on EnUty-Relationship Ap
proach.)

[5) Davis, C . G. , S. Jajodia, P.A. Ng, R.T. Yeh
(Ed.) (1983) . Entity-relationship approach to
software engineering . North Holland. (Pro
ceedings 3rd Intern . ConL on Entity-Relation
ship Approach .)

[6J Dittrich, K.R., A.M. Kotz, J . A. Muller,
P.C. lockemann (1984) . Datenbankkonzepte
fUr Ingenieuranwendungen: eine Ubersicht
uber den Stand der Entwicklung. 14. Jahres
tagung der GI, Braunschweig, W. -Germany.

(7] Gllnz, M., H. Huser, and J. Ludewig (1985) .
SEED - a database system for software engi
neering environments . Proc. GI ConL on
Database Systems for Office Automation, En
gineering, and Scientific Applications, Karls
ruhe, W. -Germany . (Informatik-Fachberichte
vol. 94, Springer verlag) 121-126 .

(8] Katz, R. H., T. J . lehman (1984). Database
support for versions and alternatives of large
design files. IEEE Transactions on Software
Engineering Vol. SE·10, No.2. 191-200.

660

(9) ludewig, J . , M. Gllnz, H. Huser, G. Matheis,
H. Matheis, M.F. Schmidt (1985). SPADES -
A speCification and design system and its
graphical interface. Proc . 8th Intern . ConL
on Software Engineering, London. 83-89.

(10) Parent, C. and S . Spaccapietra (1984). An
entity-relationship algebra. Proc. 1st Intern.
Conf . on Data Engineering. 500-507.

(11] Smith, J.M., and D.C .P. Smith (1971). Data
base abstractions: aggregatfon and generaliza
tion. ACM Transact. Database Syst., 2.
105-133.

(12] Smith, J. M., and D. C. P. Smith (1980). A
data base approach to software specification.
In W. E. Fairley and R. E. Riddle (Ed.),
Software Development Tools , Springer: Berlin
Heidelberg-New York. 176-200.

[131 Tichy, W. F. (1982). A data model for pro
gramming support environments and its ap
plications . In; Schneider, H.-J. and A. Was
serman (ed.)' Automated Tools for Information
Systems Design. North Holland. 31-48.

