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1 Introduction 

It is well known that singularities are present in solutions of boundary value problems for the Lame 
equations in conical domains. It follows from the general theory [5, 9] that the solutions consist of 
singular terms of the form r" (In r)9 F(a, ¢, 9) (r is the distance to the vertex of the cone, ¢ and 9 
are the spherical angles) and a more regular term. 

Rotationally symmetric solutions of the Lame equations under zero boundary displacements or 
stress free boundary conditions are investigated in [1, 2], where the values of a and q have been 
computed. Here we are concerned with the more general case, namely that the volume and surface 
forces of our problems are non rotationally symmetric. That means that the solutions depend not 
only on r and 9, but on the polar angle ¢ too. Using a monotonicity principle of V.A.KoZLOV , 
V.a.MAZ'JA and C.SCHWAB [6] one can get regularity results for polyhedral domains too. 

2 Formulation of the problem 

Let n be a three-dimensional bounded domain with an only circular conical point on its boundary 
(see Fig.l). Assume that the displacement field u(x) of this isotropic elastic body satisfies the linear 
system of equations 

Lu = L(Dx)u(x) 
= Jl6u(x) + (.\ + Jl)V(V . u(x)) = -(x) for x E n (1 ) 

and the boundary conditions 

LI u = LI(Dx) u(x) = gl(x) for x E an (2) 

or 
L2 U = Ll(Dx) u(x) = S(u(x)) . n(x) = gl(X) for x E an (3) 

where.\ and Jl are the Lame constants, (x) is the vector of the volume forces, gl (x) is a prescribed 
displacement (Dirichlet conditions), gl(X) is a traction (Neumann conditions). S(u(x)) denotes 
the stress tensor, with Cartesian components 

( au' au.) 
S;;(u(x)) = Jl ax; + ax: + c;J.\V· u(x) (4) 
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Figure 1: A body with a rotationally symmetric conical vertex 

where u. is the ,'n component of u(x) and 8., is the Kronecker symbol. n(x) is the unit vector 
of the outward normal to an in the point x. 

In general. one can consider right hand sides C E (W;(n)]' and g. E (W:+3
-.-

I /'(an)]'; i = 
1.2; k = 0, 1, ... ; 1 ::; p < 00, but we can restrict to boundary forces g. = 0 subtracting from u a 
displacement field v with L. v = g. on an . 

In order to investigate the behavior of u near the conical point 0 we can use the regularity results 
of V .A.KoNDRATJEV, V.G.MAZ'JA and B.A.PLAMENEVSKIJ in the weighted Sobolev spaces 

V,k(n.3) = f u E W:(f1) :\1 u \1= (L J ,...00 1+11-") IDOU1dX) ~ < 00) (5) 1 lol~" 0 

Thus it is proved in a paper of V.G.MAZ'JA and B.A.PLAMENEVSKIJ [8] (theorem 2.1) that 
every element-C from [w:(n)], can be written as a sum 

C=co+P (6) 

where Co is from [Y,k(f1, OW and p is a polynomial vector of degree::; k-I provided p > 3, of degree 
::; k - 2 provided 3/2 < p < 3 and of degree ::; k - 3 provided 1 < p < 3/2. 

This deComposition yields an expansion of u near the conical point 0 in two kinds of singular 
term.; one is coming from Co and one from the polynomial vector p (see [4 , 5]). Thus we get for a 
weak solution u from [wJ(nw of the equations 

Lu - -C in n 
Liu = 0 on an i = lor2 (7) 

that 

u - '1 C, r O
• (F,(<b, 9,0.) + In r H.(</>,6, 0.) + .. . ) + 

-l/l<Ro t < -3/p+l+k 

182 



",.p. (G.( t/J, 8, Pi) + In r J.( t/J, 8, 13.) + ... ) + w (8) 

where 13. is an integer, w is from [W;+2(!l)]3 , " = ,,(r) is a cut·off function near 0 and a. are 
eigenvalues of a parameter depending boundary value problem. Here !R denotes the real and 9 the 
imaginary part. In the following we consider only the first type of singularities, that means we 
assume that r in eq.(7) is from [v"k(!l,O)]3. These singular terms are determined by the nontrivial 
solutions of the following "model" problem in the infinite cone K (see Fig.I). 

Lu = 0 

Liu = 0 

In K 
on 8K i = lor2 

3 Solutions of the Lame equations in an infinite cone 

(9) 

When studying problems over bodies with circular conical points (such as that shown in Fig.l) it 
is natural to use spherical coordinates (r, 8, t/J) with origin at the apex o. In these coordinates the 
local orthonormal basis vectors are 

er - (sin 8 cos t/J, sin 8 sin t/J, cos 8)T 

e, = (cos 8 cos t/J, cos 8 sin t/J, - sin II)T 
e. = (- sin t/J, cos t/J, O)T 

Then any vector u can be written as u = urer + u,e, + u.e. or shortly 

( 

ur(r,II,t/J) ) 
u = u(r, II, t/J) = u,(r, II, t/J) 

u.(r, II, t/J) 

(10) 

(11) 

Now we have to look for solutions of Lu = 0 of the shape r'" F(t/J,II,a) (see section 2). Since 
the domain K is rotationally symmetric we are only interested in solutions with F( t/J, II, a) = F( t/J + 
2x-,II,a). Therefore we consider the expansion of u in a Fourier series 

u = r"'F 

= r"'{Ao(II,a) + Al(II,a) cost/J + A2(II,a)cos 2t/J 
+Bl (II, a) sin t/J + B2(II, a) sin 2t/J + ... } 

(I~) 

In order to construct the unknown coefficients Ai(II,a) and Bi(II,a) we use the Papkovich • 
Neuber representation of the displacement fields through harmonic functions. It holds that 

u = (3 - 4v) B· e, - er · 8B/811 + r-18B./811 
(

B. er ) ( rer . 8B/8r + 8B./8r ) 

B . e; sin-1 II er . 8B/8t/J + (r sin 1I)-18B./8t/J 
(13) 

where B = (BIo B2 , B3 ), b.Bi = 0 in K, i = 1...4 and v = A/2(J. + p) is the Poisson ratio. The 
general form of the harmonic functions B .. which yield displacement fields of the type eq.(12), is 
known [3J, namely 

00 

Bl = r"'Lp.;k(cosll)(Cklcosk,p+Cusink,p) 
k=O 
00 

B2 - r'" L p.;k(COS II)(Cu cos k,p + Ck. sin k,p) 
k=O 

183 



co 

B3 - r"L:P;'(cos6)(Cucosk~+CKsink~) 
l:O 

co 

B. = r.,+l L: P;;l(COS6)(Cu COS k~ + Cusin k~) 
boO 

(14) 

Here p;k = P;'( cos 6) are the &Ssociated Legendre functions of first kind [7) with the special 
notation P., = J>2(cos6). 

Inserting eq.(14) into eq.(I3) and using recurrence formulae for the Legendre functions [7) we get 
for i = 0 

(

3-4V-a)p.,COS6 ) 
Ao(6,a) - cIO(a) ;(3-4v)p.,sin6+(p.,)'sin6cos6 + 

(

a + I)p.,+l ) 
"lo(a) ;(P.,+d'sin6 + 

c3O(a) ( ~ ) 
(1 - V)P;l 

(15) 

and for i > 0 

(16) 

(

3 - 4v - a)p;i cos6 ) 
Bi(6,a) = dh(a) -(3-4v)p;i sinIJ+(p;i)'sinIJcos6 + 

iP;' cos IJ / sin 6 

(

a + l)P;+l ) 
d3i(a) -(P;;l)' sin 6 + 

-iP;+1/sin6 

(

3 - 4v - a)p;'+l sin6 ) 
d",(a) (3 - 4V)P;'+1 cos 6 + (P;;+l), sin2 6 

-(4 - 4v - i)P;'+l 
(17) 

Here we have denoted (P;;), = (P;i (cos IJ»' = dP;i (cos 6) / d cos 6. We remark that in the rota
tionally symmetric case [1, 2), where u. = 0, U r = ur (r,6) and u, = u,(r,6) only Ao(6, a) with 
<:3O(a) = 0 occurs. 

4 Dirichlet conditions 

In section 3 we have constructed the solution eq.(12) of the Lame equation system in an infinite 
cone K. Now we have to determine the complex eigenvalues a in such a way, that the Dirichlet 
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conditions u = 0 on oK are satisfied. That means, we demand u(r, 110 , 4» = 0 and therefore we have 
to calculate those eigenvalues a, (i = 0,1, . .. ), for which Ao(Oo,ao) = 0 or A;(1I0, a,) = B,(lIo, a,) = 
O(i = I , ... ). 

Let us begin with the case i = 0 : 
Ao(II, a) consists of three linearly independent solutions (see eq.(15)) . A nontrivial solution Uo = 
r"'· Ao(II,ao) with uo(lIo,ao) = 0 exists, if the determinate Do(a,lIo) of the corresponding linear 
system of equations for the unknowns c,o( a) (i = 1,2,3) vanishes for a = ao. 

Using the recurrence formulae for the Legendre functions we get from Do the following transcen
dental equation 

(3 - 411 - a) Po cosllo Po+! 0 

Pa (-3+ 411 Po+! cosllo 0 
+(4 - 411 + a) COS1Oo) -Pa 

=0 (IS) 
-(a + I) P",+! cosllo 

0 0 P", cos 110 
-Pa +! 

The real parts of the zeros ao = 00(110, A, p), where 00 i 0 and i I, are shown in fig.2 for II = 0.3 
and 0 < 110 < 1r. Real oo's are drawn as solid lines, while the real part of complex oo's is given by 
dashed ones. The "eigenfunctions" Fo(II, (0) = Ao(II,ao) (see eq.(S) and eq.(12)) can be calculated 
inserting the nontrivial solutions c,o(oo)(i = 1,2,3) in eq.(15) . Comparing with the rotationally 
symmetric case ([2J fig.2) we find in fig.2 new solutions coming from the factor Pa cos 110 - Pa+! . 
Now we consider the case i > 0 : 
Since A.(O, a) and B,(II, a) consist of three linearly independent solutions as in the case i = 0, we 
get a linear system of equations for the unknowns c,J(o) and d,ia) in eqs.(16, 17). The zeros 0, 
of the corresponding determinates D.(a, lIo) for A.(Oo,a) = 0 or B;(1I0, a) = 0 coincide. Now the 
following transcendental equation for 0 may he derived from D. 

(3 - 411 - a) P;' cos 110 

P;' (-3 + 411+ 
(4 - 411 + a) cos1llo)
(a + 1 + i) P;;I cos 110 

(o+l-i)P;'
(0 + 1) P;;I cosllo 

=0 

(a+ I)P;;I-
(a + 1 - i) P;' cosOo 

(19) 
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Figure 2: Dependence of the eigenvalues 00 on 00 for Dirichlet conditions at " = 0.3 ( --
~o = 0, - - - - ~o '" 0 ) 

For the numerical calculation of the Legendre functions we used the Mehler - Dirichlet represen
tation and the Hermite quadrature approximation 
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Pa(cosO) = v'21' cos(o+!)t dt 
7r 0 ';cost-cosO 

I"¥J 
"" 2,.12" G(x ) 

n' ~ ) 

G(x) = 
,=1 

v'i cos(o + !)t 

./sin!±! , sin!=! y ,t=1 , 

(20) 
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Figure 3: Dependence of the eigenvalues 01 on IJo for Dirichlet conditions at /I = 0.3 ( --
~O' = O. - - - - ~o '" 0 ) 

where :r;) = cos((2j - l)lr/2n) and t = O:r;2 . Numerical tests showed. that with n = 100 (i.e. 
50 integration points) the relative accuracy of ~po is about 10-4 and of ~po about 10-8 in the 
interesting region for o . 

The recurrence formulae 

P;;'(cosO) = [coSOp;;·+1 - p;;~tl] /(0 - i + l)sinO 

P;;~I(COSIJ) = [p;;.+t _ cosOP;;;tl] /(0 + i + l)sinIJ 

(21 ) 

(22) 

for a - I + I '" 0 or a + i + 1 '" 0 are sufficient stable for i = 1.2. To calculate the zeros 0.(00 ) of 
the above given nonlinear equations we used a downhill simplex method [10]. which searches for all 
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Figure 4: Dependence of the eigenvalues a] on 80 for Dirichlet conditions at /I = 0.3 ( --
~a = 0, - - - - ~a i 0 ) 

zeros in a rectangle in the a-plane. The figures 3 and 4 show the distribution of the real parts of 
the eigenvalues a, (i = 1,2) for /I = 0.3 and 0 < 80 < "". 

Now we illustrate by an example, how the expansion eq.(8) looks like. Let ( be from [L](n)J3. 
Then only those singular vector functions re>, F;(¢,8,a,l occur in eq.(8), for which -1/2 < ~a, < 
1/2, whilst the singular vector functions H" G; and J, do not occur. 

Let us denote by 110 those angles with a,(IIO) = 1/2, i = 0,1 . The numerical calculation yields 
8~ ~ 124.22° and og ~ 143.66° for /I = 0.3 . 
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Lemma 1 : Let u be a weak solution from [W2(0)P of thO! Dirichlet problem 

Lu = -f In 0 
u=O on 00 

(23) 
(24) 

where 0 C fi:3 is a bounded domain with only one circular conical point 0 on the boundary, 
f E [L2(0)]3 and II = 0.3 . Then the following expansions near the conical point 0 hold: 
For 0 < 00 < O~ we have u = W E [W?(O)t 
For O~ < 00 < og we have u = r al (cIAI(O, ad cos 4> + <=2BI(O, at) sin 4» + w. 
For og < 00 < 7r we have u = ral (dIA1(O, al) cos 4> + d2B1(O, ad sin 4» + rO'CoAo(O, ao) + w. 

The eigenvalues ao = ao(Oo,lI) and al = al(OO, II) are given by the lowest lines of fig.(2) and 
fig.(3), respectively. 

5 Stress boundary conditions 

We start again from the general solutions eq.(12) of the Lame equation system L u = 0 in the 
infinite cone and determine the complex numbers a in such a way, that S(u) = 0 on oK. Since 
n = e" the normal stresses are S(u)· n = (S."S",S.,)T. After some calculations we get a linear 
system of equations for the unknowns c;,(a) and di,(a) (i = 0,1, ... jj = 1,2, ... ) in eqs.(15, 16, 
17). Nontrivial solutions exist, if the corresponding determinates vanish. We get for the calculation 
of the zeros a, (i = 0,1, ... ) of the determinates the following transcendental equations 

N,(a,Oo) - det(N) = 0 (25) 

Nu - P;'( -a(1 - 211) + (a2 - 2 + 211) cos2(10) + 
P;;I(a + i + 1)(2 - 211 - a) cos 00 

N12 = (a-l)iP;'/2 

NI3 = P;;I a cos 00 + P;' (-a + i/2) 

N21 = p;i cos 00 (2a + 2 - 211 + a 2 _ i2 + 
cos2 00 (-3a - 3 + 211 - a2» + 
P;;I «a + i + 1)( -3 + 211) sin2 00 + 1» 

N22 = i( P;' cos 00 (-a - 2) + (a + , + 1 )P;;t> 

N23 - P;' cosOo(i + 1) + P;;I (-asin200 - i-I) 

N31 = i(p;i « ~I + 211)(a + 3 - 211) cos2 (0 ) + 
P;;I cos Oo( -a - 1 - ,» 

N32 = P;' (a + 1 + i2 - sin2 00 (a + l)(a + 2)/2) -

P;;I (a + 1 + i) cos 00 

N33 = P;;I cos 00 (i + 1) + P;' « -i - 1) + sin2 00 (1 + a/2» 

Figures 5, 6 and 7 show the distribution of the eigenvalues a, for , = 0,1,2, II = 0.3 and 
0<00<7r. 

Comparing with the results for rotationally symmetric solutions [1] and [2] (fig.3) we have new 
lines for i = 0 coming from the new factor Pa+! cos 110 + Pa (-1 + sin2110( a + 2)/2) in the nonrota· 
tionally symmetric case. 
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o o· 8. 90· 180· 

Figure 5: Dependence of the eigenvalues "'0 on 80 for Neumann conditions at " = 0.3 ( -
~'" = 0, - - - - ~'" ~ 0 ) 

Analogously to the Dirichlet problem in section 4 we consider now a solution u E [W;(OW of 
Lu = -f in 0 and S(u)· n = 0 on ao for" = 0.3 and f E [L2(0)]3. Since only the eigenvalues in 
the strip -1/2 < ~"" < 1/2 are of interest in the asymptotic expansion eq.(8), we get the following 
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Figure 6: Dependence of the eigenvalues 0\ on flo for Neumann conditions at v = 0.3 ( --
90 = 0, - - - - 90 # 0 ) 

Lemma 2 : Let u be a solution from [W~(O)p of the Neumann problem 

Lu = -f in 0 
S(u)·n = 0 on 80 (26) 

where 0 is a bounded domain in Jl:1 with circular conical points on the boundary, f E [L2(0)jl and 
v = 0.3. Then u is from [W?(O)p. 
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Figure 7: Dependence of the eigem-a.lues 02 on 00 for Neumann conditions at " = 0.3 ( --
>}o = 0, - - - - >}o " 0 ) 

6 Conclusions 

In this paper we have considered hounded domains with a circular conical point and calculated 
the corresponding singular terms. For polyhedral domains the situation is much more compli
cated. However we can estimate the "eigenvalues" 01 for the polyhedral corner singularities hy 
the "eigenvalues" of axial symmetric conical corners in some cases, using a result of V.A.KoZLOV , 
V.G.MAZ'JA and C.SCHWAB. The corollary I of theorem 3.2 in [6] states for Dirichlet conditions: 
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Let be K, = (0,00) X 11; (i = 1,2) cones in R:', where 11; C S2 and K, can have edges. 
Then the "eigenvalues" 0, dt!pend monotonically on 11 in the interval (-1/2,A.,(I1», i.e. if 0, E (-1/2,A.,(n» and 111 < 11, then 01(11,) ~ 01(111). Here., = pl(). + p) and A.,(11) ~ I is 
a rea.! number. 
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