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Abstract 

I~ is well known that singularities are present in solutions of ellip­
tic. boundary value problems in domains with conical boundary 
po!nts. The solution consists o( singular terms, which appear in a. 
ne1ghb.ourhood of a conical point, and a. more regular term. The 
coeffic1ents of the singular terms, the so-called stress intensity 
factors, are especially of interest for applications. We describe a 
~ethod, how some of them may be calculated, if the right hand 
s1de~ are from standard Sobolev spaces. In some cases the co­
efficients are unstable and a stabilization procedure is necessary 
We h~ndl~ as examples boundary value problems for the Laplac~ 
equation m two and three dimensional domains. 

I. THE ASYMPTOTIC EXPANSION 

Let~ be an ope? subset o~ IR", whose n-1 dimensional boundar 
an IS smooth With exception of one conical po'lnt 0 Hr 'd y 

))' f b d · vve cons1 er 
an e 1p IC oun ary value problem with constant coefficients 

A(D.,)u(x) = L ao D:u(x) = /(x) inn 
lol=~m 

(I) 

Bj(D.,)u(x) = E bj,o D;u(x) = 9i(x) 0~ anjo j =·1-
lol=mj ' , ..• ,m. 

The right hand sides are from the S b I k 

h o o ev spaces W '"(!l) d 
t e trace spaces WA:Hm-m;-~."(B!l) If an 
ditions are also considered . . n£ = 2, the boundary con-

on pieces o the bound I h' case we assume, that the funct' . . ary. n t 1s 

ditions. Since the right hand IO~ds g1(x) sbatlsfy compability con-
51 es can e s rtt d . 

polynomials and functions from cert . . h p I e mto Taylor 
we get e.g. the following a.symptot' am Wei~ ted Sobolev spaces, 
u from W2·"'(!l) : IC expansion of a weak solution 

(2) 

where 
M, 

v, = ~)lnr)i~;(l,~), 
i=O 

(3) 

Mou i 

Ua., = L Ca.,,, L(ln r)iei-j(o.,,!!,!), 
•=0 i=O 

(4) 

I= ( -~ + m, -; + k +2m) , and wE WA:Hm,"(!l) for p f: 2 . 

We denote by ( r, ~) t~e spherical coordinates, s = s( n, p) is 
an iut.rw·r. M, > 0 IS the multiplicity of the "eigenvalue" 1 

of a generalized eigenvalue problem, which we get from (l)in· 
traducing (r,~) and using the Mellin transform with respect to 
r. M, = 0 means, that I is not an eigenva.lue. In the second 
term the complex numbers Ov are eigenvalues of the multiplicity 
Ma~ and M~ = Ma~ - 1 . 

- v 
The first term of (2) comes from the polynomial parts of the 
right hand sides [I], the second term is known from the theory in 
weighted Sobolev spaces [I], [2] . 

II. THE PLANE CASE 

Due to the compatibility conditions we restrict to the problem 

Au =0 inn (5) 

Q 

B~q}u = g(q} on r u-r f)" . 1 
I I q I q = ~ £, ) = t • • • ! m. 

q=l 

Assume that the domain n coincides in a. neighbourhood of a 
corner point f 9 n f 9+1 = 0 9 = 0 with the infinite cone K ::: 
{(r,w), 0 < r < oo,wt = 0 < W < Wo = w;} with the sides f±.. 
Introducing polar coordinates we write the differential operators 
as 

A(Dz) = r-~mL(rDr,w,Dw) 

Bj-(D,.) = r-"'r Mf(r, Dr,w, Dw)lr±. 

We say, the complex number o is an eigenvalue of the operator 

.A(A) = { L().., w, D..,), Mj-(>., w, D..,)} if there is a nontrivial so­

lution e0( ..\, w) of 
.A(A)e(..\,w) = Q , 

We now split the right hand sides of (5) : 
± ±. _ 1:+2m-•-l ± ±. I -±. ±. 

9j (r,w0 ) - E G1.;(0,w0 )r + gi (r,w0 ), 
1=0 . 

±. + • a'g±. ±. where G1)0,wo) = i1 T.f-(O,w0 ), 

s = 0 for 2 < p and s = 1 for 1 < p < 2. 
The functions v1 in the expansion (2) are solutions of 

Ar1v = 0 in K 
HJ:-,.1v =a± {0 w±.)r1-m~ on f±.. 

J 1-m;-,j ' 0 

They can be calculated "easily", starting from the general solution 
of the ordinary differential equation L(..\,w,D..,)e(/,w) = 0 and 
using the ansa.tz (3). 

Thus we get for the Dirichlet problem for the Laplace equation 

{ 

Gr(O, 0) (cos lw + 1 ~i:o1".!.o""' sin lw] for lw0 =/:- 11'11' 

v, = G,(O, 0) [cos lw +~~::<:!(In r sin/w +wcos lw)] 

for lw0 = 11'11' 

(6) 
· It is evident that one coefficient in the first row of v1 is unbounded 
~unstable), if Wo is from a neighbourhood of vr. This behavior 
mfluences also the coefficients Ca of u0 (in our example is o = 
V'lr II ., II 

~;;'• uo. = Ca., sin Ovw). Following an idea. of V.G.Ma.z'ya (3) we 
get a. stable asymptotics, organizing the sums of (2) as follows 
(here :or our example): In a. neighbourhood of a critical angle ov,• 
we wnte 
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1 (1-coslwo) . ~ . r G,(o, 0) . 
1 

SID lw + r .... c,.~ sm a.,w 
sm Wo 

[ 

I · l ~ · ] = GI(O, 0)(1 -cos lwo) r sm w ~ ~wo sm a,w 
sm Wo 

""' [ + G1(0, 0)(1 -cos lWo)] . 
+r"'• Caw • l sm a,w 

SID Wo 
(7) 

The new coefficients c, = G,(O, 0)(1 -cos lWo) and c',.. = c,.. + 
a,(o,o)p-cool....,) are bounded if w0 is from a neighbourhood of.!:!!. 

aJn•""i ' I 
and the 11rst term of (7) converges for wo -+ T to the term of the 
second row of (6). 
A general stabilization procedure is given in (3] and [4]. 

III. THE THREE DIMENSIONAL CASE 

We consider the problem 

Au::;; o inn 
Bju = 9i on 8010, 

where the domain n coincides in a neighbourhood of 0 with a 
circle cone/(= {(r,rp,t?) = (r,!:!l): 0 < r < oo, 0 ~ t{J < 2ll', 

0 < {) < {)0 }. Analogously to the plane case we define A( .X) and 
consider a decomposition of gj: 

If there is for a given "o an index h0 with I,;P,-h•(cost'Jo) = 0 
(see Figure), then lis an eigenvalue and terms with In r as in (3) 
occur. 
The asymptotic expansion is unstable in this case and we can 
apply a stabilization procedure analogously to the. plane case. 
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A:+2m-m;-•-1 Sf;,\--T"-7.---'~--.:--'-::--:--~-.:::~~:t-

g;( r, rp, t1o) = L r1G;,t(O, .,,t?o) + gj(r, .,,t?o), 
1=0 

where 

and 

{ 

0 for p > 3 
-'= 1 for ~<p<3 

2 for 1 <p < ~ 

G· (O t'J ) _ a'gj(o,.,,11o) 1 J·' , rp, o - ar' 11 
It is meaningful to assume that 9i(r,.,,110) = gj(r,rp+2ll', 110) and 
to consider a. Fourier expansion of Gj,l: 

00 

G;,(O, rp, do) = L A{(l, 11o) cos ht{J + B~(l, 11o) sin ht{J 
/!>={) 

The functions v1 of (2), which satisfy the equations 

_L(l,w,D..,)v, = 0 . in .. /( 

M;(l,w, D.,)v, ::;; Gj,l-m;(O, 't't t?o) 

can be calculated, writing VI as Fourier series with respect to rp. 
Thus we get for the Neumann problem for the Laplace equation 
(the index j is cancelled) 

~ (-A,.(l- 1, 1?0 ) -h 
t11 = ~ .!..p,-"( .a) P, (cost1)cosh't' 

/I=O a.! 1 COS vo 

8,.(1- 1, t?0 ) ,. ) 
.!..p,-"( .• ) P1- (cost1)sinh't' , 
fN I COSvo 

if :,P,-11 (cost1o) =F 0 for an h. p,-"(cos{}) are Legendre functions 
of the first kind. 

0( 

' ~t-~~----~~~---'~~~~~~ 

-h•O , • ••• hc2. 
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