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The Hegularity of Boundary Value Problems for the Lamé&é Equations
in a Polygonal Domain

1. Introduction

In the linear theory of elastiecity, where the usual relations
are satisfied, the displacements u(x) = (ul(x),uz(g))T of a
twodimensional body Q with the boundary 3 are given by the
following systewm:

pau(x) + (A+u)grad div u(x) = —£(x)

for x = (xl,xz)T € qQ, (1.1}

u(x) = g(x)
for xCMe< Aq, (1.2)

6{u(x))n(x) + R(x)u(x) = £(x)
for x € O\I, (1.3)

where  f(x) = (fl(ﬁ},fz(g))T iz Lhe vecltor of the volunse

forces, L(x) = (tl(g),tztg))T is the vector of Lhe surface
forces, L snd p are the Lamé’s constants, which are

indupundﬁﬁb of 2 (for simplicity), #(x) ==(n1(§),n2(g))T is
the unit  vertor of the outward normal to XN\ at the point
X, 6{u(x)) = (Gij(‘g(zg))

compoacnt o

¢ W B iz the stress tensor wilh:  the
1, J-—l, &

-')ui(g;.) Duj(;i)
2 i P4 oy ¥ i WG
65 5(u0x)) = v (5 A7) 4 My uGoT g,
ore G s snoben Lhe K ke ) (x) = . ® ;
'tvhr re U5 ¢ oo Lhe Kroneoker sywbol, B(x) Sle(}_) ) i,k=1,2
14 a malbrixz with uonncgabive elemeonts which describes

some . kind  of  elaybic resivstaoce to the movement of x and

alx) = (¢ (x).gﬂ(éj}T- are: Lhe preceribed displacemenls on T
= 1= a2 :



1 is a polygonal domain with the boundary &Q =U . U F;,
jedy Jied, d

where ['. are the sides or pieces of the sides of the polydon

J
Xt such that P=U anNrf=u r

jeay v §cdy I
(see Fig. 1 where J1 = {1,2}, J2==-{3,4,5}).
Besides +that plane problems are of their own interest, their

study is also very important if £ is a threedimensional domain
with edges, e.g., if & is a polyhedral domain (see [8]).

Fig. 1

P. Grisvard [1] already studied the behavior of a solution u
of (1.1),(1.2),(1.3) in a neighborhood of a corner point or of a
point, where the boundary conditions change. He formulated his
results without proofs in form of expansions near these “bai”
boundary polnls. In this paper we prove Lhe regularily resulls
using the theory of V.A. Kondrat’ev [41,[3] and of V.G. Maz’ja
and B.A. Plawcnevskid {81,[0]. Morcover we caleulabe nuwerically
the deneralized eigenvalues of a parameter problem, which deter—
mine the regularity properties of the solution.

In particular we are interested in the investigation of the
regularity of the weak solution of problem (1.1),(1.2),(1.3). In
order to introduce the definition of a weak solution we restrict
ourselves to the cese that g(x) =0 on I'. We consider the
classical Sobolev space
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WhZ@) = qus un = ¢ 2 f 10Yuiax 3 2¢
Ixl€l 'Q
where ¥ = (¥7,¥9) 15 a multiindex of the lendth I¥| = ¥y + ¥g,
5%l

Tl “'2
Bxl sz

YiBO are integers and D¥ = denotes the derivative in

the distribution sense. Let be

V.= closure of {v € C*(MxC”(D), ¥lp = 0}
| (1.4)
in Wl 2a) x wl'2(q).

He introduce a symmetric bilinear form on V<V for the system
(1.1) considering Lhe scalar product of (1.1) and of an
erbitrary element v € V in LE()xL%(AQ) and integrating by
parts:

Su. — du; JIv. Av.
1 i i ;
a{u,v) = 2z { 05—4-+ 5——)(5——-+-§—J}+q1vg divv]dx (1.5)
- In i,§51.2 ¢ 9%; © Bxyli8xy T BX;

Definition 1: The vector function u € V \is a weak solution of
the problem (1.1),(1.2),(1.3) if

awy) = (By) = jﬂ jo1, g T1 BV (W +Jamr' joT, 5 4180 G
- I, By (0ulx)vi(x)ds for all vy ¢ V, (1.6)

O\l i,k=1,2

provided fi,'ti and Rik ‘are such functions that H ig  from

the dual space of V.

It is well known [12] that an unigquely determined weak solubtion
4 €V exists, if the bilinear form a(u,v) is bounded on VxV
and if it is V-coercive. These assumptions are satisfied if
mes® > 0. If meslC =0 then we consider instead of v Lhe
factor space V/N, where N consists of all possible rigid
moveuwents of the body Q,

0= ssen((3). (9. (37))

In this case there exists an wuniquely determined solulion
u€ V/N if the solvability condition



In(i_x)d§ +-Ian[(§ 1)-(29 v)lds = O is satisfied for all v € N,

The regularity problem is now: How smooth is the weak solution
ue€ev of (1.8), if f, t and R are sufficiently smooth ?

We will give an answer in the following.

2! A special problem in an infinite cone

The analysis of the existence, uniqueness and regularity of the
boundary value problem (1.1),(1.2),(1.3) is well developed, if
the domain 0 is sufficiently smooth. Results in this direction
are related to the work of many authors, in particular, to the
publications of A.G. Fichera [2], A.I. Koselev [5], O.A. Lady-
zenskaja and N.N. Ural’tseva [{7]. The investigation of the
regularity is a local problem. If Q is a polygonal domain, a
regulari}y principle works in the interior of the domain and

on aa\;J1U(0j), where U(Oj) is a neighborhood of a corner

point or of a point Oj, vhere the boundary condition changes.
Let us say that these points {Oj}jzl;...,J are singular points
of oQ.

Thus we have only to investigate the behavior of the solution
of (1.1),(1.2),(1.3) near the singular pointsand to transfer the
results to weak solutions. To this aim we choose one of the

points O = Ojoc {Oj}jzl,...,J with_the'inte;ior angle o, and

we multipiy the solution u, with a cut-off function
n(ix}) = n(r), where O < w(r) € 1,

: 1 for O<r€g,
n(r) = ( (2.1)
0 for rz2% ,

and wm(r) € C°(0,w). The number © 1is so small that no other
singular point on 8Q 1lies in the circle {x: Ix} € 36}. We
denocte w = nu ='(nu1,nu2}T. Let K be the infinite plane cone
with the vertex O, the angle W, and the sides r+ and ¥
(see Fig. 1). Then we have

.in K, (2.2)

paw(x) + (Atp)grad div w(x) = F(x,u(x))
) ) on ¥t u ¥, (2.3)

or



w(x) = G(x,u(x)) on ¥%,

1=
ls:

(2.4)
6(w(x)In(x)= T(x,u(x)) - R(x)w(x) on ¥ ,

B(w(x))n(x) = T(x,u(x)) - R(X)w(xX) on ¥ uw ¥ . (2.5)

right hand sides F, G and T are given by £, g and £
by terms depending on the unknown functions Uq and Uns;

i 3u 3°u

- Oy 1 o 1 1

Fqi = plnouytu on + 23'1'_:-:1 3, 83, Bx,) T AR (nm
& b 1, .-1

<
3“Un 32 aul 32 AU,
-+ 3«—%*— - Uy 4 2w A= 4 -33337— + ."“-%Qh
[ x.ll XZ 13x D qsl t .&1 2 ;'\.1 :\.2 lj.\.z [ "\.1
ok
Al
+ S o )
&
. .'.f + C( u '327 aui. o7 )
I | i§xj5xi'3xk Ixy 7

We aow forget for some thoorctical considerationsz the spocial
type of the right hand sides of (2.23,(2.3),(2.4) and (2.5) and
conzider for arbitrary given right hand zides  the following
special problewm in the infinite conce K

uaw(x) + (A+p)grad div #(x) = F(x) in K (2.8)
3 -
w(x) = G(x) on ¥ u ¥, (2.7)
or
L+
w(x) = G(x)  on ¥y,
" j (2.8)
f..r(.\'\ \.})'H.{_J;:‘ - T(.;) ot f—,
or
“logf ooy Wy e : =+ = -
‘J(‘f_"\.-_‘_u }‘H(;‘;) - _t‘\-_) ol w ¥ L‘--D}
He now lntreoduce the polar canocdinabes Wy T LLwbw, He = 4 Llsn,
i = = & . -
set v = o and use Lhe Cumplcs Fouoilor Liansfoilm
1 ’+"u -—i'-"l' 9
FlEiiz) = on Jﬁ e ElTy A, (2.10)
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These transforms (Jjoining todether we have the Mellin transform)
yield rg; = —%% —» iz = a. The transformed boundary. value
problems (2.6),(2.7),(2.8) and (2.9) have the following form:
2 2
ula?h +h])+(A+u) {h,[(§ ~o)cos2w+g-] + hj(l-a)sinZe
+ hi(d - leos2w) + n (“2 ysin2
12 ZCOSW 22"03!’!!9
+ hy(a~1)cos2o + hy(- 3sin2e)} = K, (a,0), (2.11)
2 2
uw(alhythy) + (A+u){hy[(~ § +a)cos2o + § 1 + hj(e—1)sin2e
2 ;
+'hyl3 + Jcos2e) + hy(§ -a)sinZe + hj(a-1)cos2e - hj %sinZw}

= Kz(q,m) for 0O ¢ w < ®,

h(o,®) = L¥(a,0) ("-" for @=0 and "+" for w=w,), (2.12)
h(UJW) = _1,1.+(st): hi + Olhz = - &Lz(a,m)’
k(uh1+hé) + 2uhy = —Lg(a.m). (2.13)

bi + aby = 1L7(a,0), Alahg+hy) + 2ubj = ~Ly(o,e),

ahy (Atu)cose 8inw  + ahz{(k+u5$in2w0~p) * hi(*(k+p)sin2wd~u)
+ hj(L+u)cosw sinw = L{<a,m}, (2.14)
ahl(p—(k+p)coszwo) +.ah2(-(p+k}coswosinwo)

% hi(k+u)sinmocosmo + hé(—(k¥p)coszéonu) = Lz(a,w),

vhere h = h(e,0) = F(¥) with ¥ = W(t,0) =

£

(x),

K(a,0) = &r’f) with £ = B(T,0) = F(x)

L¥ (o) = F(x1*) with 2* = M (t,0) = TH(x) in (2.13)
or (2.14),

L

L*(a,w) = F(6%) with 6% = 8% (t,0) = G¥(x) in (2.12) or

(2.13),
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T*(x) = T(x)| ., G¥(x) = G(x)}| .,
x| . |

3h(a,®) h(a,w)
and h’ = —— h" =-——5;2——— s B denotes the side of K

with @ = W, ¥  denotes the side of K with' w = 0.

3. The regularity theory in weighted Sobolev _spaces

In section 2 the following questions occur: In which spaces is
the complex Fourier transform (or the Mellin transform) well
defined ? What can we say about the inverse transforms ? Which
properties of the transformed problems (2.11), (2.12), (2.13),
(2.14) determine such properties as solvability and regularity
of the problems (2.6), (2.7), (2.8), (2.9) 7

The introduction of weighted Sobolev spaces is wuseful for
answering these questions (see [3, 4, 8, 9]).

Let be
v Pk, 8) (3.1)

the closure of the set CR(K) = { v ¢ C*(K), supp v bounded,
supp vnan M=¢g} for M= {0} with respect to the norm

llv;Vk’p(K,B)“ - ( z I IDYV(_}E)Iprp(B_k*'T' )d_is )1/1’ (3.2)
Ivigk ‘K
and let be
vE-1/P.P(t gy op VETL/PP((" gy (3.3)

the spaces of traces, defined as the factor spaces

Vk’p(K{B)/Vk’p(K,ﬁ,r*). where Vk‘p(K.B,V*) is the closure of
C“t(K) with respect to the norm (3.2).
¥

The space VEK'P(Q,p) is defined snalogously to ﬁkapcx,n).
Furthermore we use the notation X x X = xz for a space X.

We denote by A(Dx) the matrix-differential operator of the
system (2.6), that means
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52 32 a2
(A gt g \Ovigese
N Bxl ax2 142
A(D,) = | 32 32 32 (3.4)
(A4 Yo (A+2u)=—, + s
Sxy 3%, axg  ax5

and by B(D ) the boundary operators of (2.7) or (2.8} or
(2.9); e.d. for (2.9) we have on ¥& and ¥
(Fubkdny gil T iRy %§2 *g§2“1 * “gilnz

3+ _
BYD,) = |
3 +A,a E3:.—:+(2+3.)'?"
iJ*sznl 5x1n2 ”Exl 1 B 5x2n2

We consider the operator

™D, = (A(D,),BE(D,)}: (VI*EP(k,8)1% — (v P(K,B)1%

. (3.5)

w [VI¥2m =1/ B F 5312 o (y142-0T-1/R R~ 542,
here 1 <p<w 120, @ and m  are the orders of the
orresponding boundary operators on f+ or ¥ . Furthermore we

rite for the systewm (2.11) shortly
Ao, Db, @) = Ko, o)
nd for the boundary conditions (2.12), (2.13) or (2.14)
B* (o, D )h(a,0) = L¥(e,0) for @ =0 and o = o,.
?e consider lhe corresponding operator

®(,D,) = {A(a, D), F¥(a, D)} : (W2 2(1)32

. {(3.6)
2 2 e - -
—3>» [L%(I)]“ x €=« x €=, where I = (O,QO}.
The inverse Fourier transform is given by
ml‘l & o
) = er?te(£) (=) dz, (3.7)
m I w"‘lj
where h = Im 2 = -Re «.

It is well defined for solutions of the boundary value problem
O(ce, D (e, 0) = {g(a,w)tgt(u,w}} provided no "eigenvalue" of
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a{a,Dm} is situated on the line Re = -h = -#-2/p+2+1 (see [6]
for one equation or [8] for a system). Let ug give the defini-
tion of an eidenvalue of a(a,Dw):

Definition 2: The complex number o = o, is an eigenvalue of

O(x, D) if there exists a nontrivial solution
go(uo,m) € [Wz’z(l}}z of a(m,Dw)_l‘.‘_f(x.x,m}lu:d z 0Q; Qo(ezo,m} iz an
0

eigenvector function of G(a,Dw} with respéct to o .. The

0
vector function gl(do,w) is an associale vector function to
«, and g° if
o’ “w o 1 -
—3 20 %) ¢ Aoy, D )e e, 0) = 0. (3.8)

The following solvability and regularity theoreus are formuilated
in [8].

Theorenm 1 (Solvability): The operator (3.5) is an isoworphism if
and only if no eigenvalue of G(a,Dw) lies on the line
Re o« = -B-2/p+2+1.

Theorem 2 (Regularity): Assume,th?t the right hﬁnd side of (2.6}
F(x) from [VIP(K,8)12 o (VI 'P (K,87)1%, the right hand side

of (2.7) or (2.8) G(x) from  {VI*ZU/BPx 5442
(vl 42-1/p"s P’ (4% 5312 and the right hand side of (2.8) or
(2.9) T(x) from [VIFL1L/PP(x gy92 | (gl +1-1/R% 0% (55492

If no eigenvalues of G(u,Dm) lic on the 1lines
Re m = ~-h = -8-2/p+11+2 and Re o = -h’ = -°-2/p’+1’+2 and if
the cigenvalues PP are situated in the strip

~-h ¢ Re « < -h’, then the solution of (2.6), (2.7), (2.8), (2.98)
w C [Vl*z'p(K;B)]z allows the following expansion:

I.©
N v hHw .
wew) =3 2 Z Cp il (r,0) + v(r,e), (3.9)
.V_—_ = - Ll
where v(r,wy ¢ (vE '8Pk, 00)1%, I, = dim N(®u,, D))
= i upun{gﬁ(uv,w),...,gg (uv,w)} is Lhe number of the lincar—
£

ly independent cigenvector functions to s



1 if .an associate vector function exists

S o
“6v = for o and e (o,,®)
{ 0] else, g v ’

Ceky 2re constants and

, k
w{S)(rw) = £ 2 (log )% % (ay,0) (3.10)
s= .

are the so-called "singular" vector functions.

Remarks to the proof of Theorem 2: The structure of the singular
vector functions can be explained by the fcllowing consideration
({4, 61): The inverse Fourier transform of the rlght hand sides
of (2.11), (2.12), (2.13), (2.14) or shortly of (3.6) can be

written as
2 [T o170 (o, ) K0, L2, 0)] da
-w+ih o -

f€>
f"\
1

. ~-M+ih” .
A= tim { [ &1 (a, D ) (K(a,0), LE (@,0)] da

]

Moo -M+ih
M+ih?® . -
+ ] el%tq 1(u.DQ){§(a.w),L;(a.w)3 dz
-M+ih’
M+ih .
+ 0 el (a, D) (K(e,0), L (a,0) ] da}
M+ih’

+ o= 2ni 15 Res (6707 (a0, D)) [K(o,0), L (2,0) o, -

The first and third integrals tend to O for M+w; the second
integral yields v(r,e) and the calculation of the residuae
yields the singular terms. 5

WHe now go back to the problem (1.1), (1.2). (1.3). The followi.ngd
lemma can be proved analogously to that which is formulated_ in
(6] for one equation:

Lemma 1: Let u be a solution of (1.1), (1.2), (1.3) for the
right hand sides £, g and t. Assume w = nu ¢ [V 2 P(g, g)12,

wt € [VOPK,8)1% n (V1P (K, 8712, ng € (VI 1/PP(y gy42
(vl’+2-1/P%,p% (yx 54412, ng € (vIHI-1/Pp(y2 gy42
(vl *1-1/p7, 07 (% s 492 1¢

n
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0O€h-h"<1 {8.11)
or
h~-~h” >1 and R(x) is the O-matrix, (3.12)

then the right hand sides of (2.2), (2.3), (2.4), (2.5) satisfy
the  suppositions of Theorem 2, provided no eigenvalue of
0’~,Qm) lies on the lines Re o« = ~h and Re a = -h’.

e <t as corollary from Lemma 1

Theorem 3: Let u be a solution of the boundary value problen
(1.1), (1.2), (1.3) for which the suppositions of Lemma 1 are
satisfied. Then the expansion (3.9) near the singular point 0
holds:

E. B

Zu(r,w) § z? g? (6)(r,w) + nv(r,w) (3.13)
N uLr,w = C u . r,w + Vir,w), =
oo v=1 6=1 k=0 OK¥ "k

where nv € [V1*2:P(k, )12

4. The regularity of the weak solutions

Let wus consider the weak solution u € V defined by (1.6).
Again let be O a singular point of 3 and mn the correspon—
ding cut—~off function defined by (2.1). We can use the resulls
of section 3, if we can show that wu € V n (V1'% P(K,0)1% for
appropriate right hand sides f, g, t and for some 1, p and 8.

Lemma 2: Let be f ¢ [L2(Q,14€)1%, g=0 and t=0 on 00
for a small real number £ > O. Thed it holds for a weak
solution u € V of (1.6) that nu € [VZ’2(K,1+e)]%.

Proof: We follow the ideas of V.A. Kondrat’ev [3]. We consider a
sequence of dowmains Q. k=12,... , where O =Qa R,

Ry = {5:.8/2k&1€|5j£8f2k}. For the real number © =26 we
consider a cut—off function % defined as in (2.1). We have

gﬂk = Ko < K. The usual regularity theorecums yicld for (¥l = 2:

[ [ iouPaxcct [ [ infaxs [ f 41 %4x],  (4.1)
" R o WY Oy~ 1V 4 q
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whsre !D‘glz = lDfuifz + tD‘uzlz. Ne multiply f4.1) by
(—§ﬁ)2(1+6) and estimate (4.1)

2
[ [ 2 pfuiZax c e [ [ 2034 g%k
R e T3]
(4.2)
+ I I r2("1+e)|2|2dz)‘
Q-1 4y
Summing with respect to k we get
I I r2(1+e)lD¥B|2dE < C( I I r2(1+£}lilzd§
Ky ' Ko
(4.3)
+ I I r2("1+e)lg!2d§}.
K
o
Let us consider the term
[ [ P21y 2ax = [ [r2C14€) 1qu) Zax, (4.4)
Ko ' K,

He write (4.4) in polar coordinates &and use the Hardy
inequality:

jwaf(t)|2t5'“zdt < (2/1e’-11)2 ["|r'(t)|2tﬁ'dt
Q 0

for ¢’ > 1 and f(«) =0,

We have for H(r,w) = u(x)
, I o )] ou _ B
I I : o 2+2€+1fﬂg|2drdw € I 9[ r 2+25+11ng12drdm
K O 0
o

L1 oo
< j O(2/2¢ )2 j 28} 2 351%r drde
0 o ar

<cf [ r%u? + r2(igrad u 12
Qnsuppn

+ |grad uzlzdz

< hu; w2122
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We now consider the cut-off function n for & =6/2. Then for
¥} = 2 it holds '

K lT’|$a

o Ko
. 22 2
and therefore wnu € [VE (K, 1+¢)]°. w

Remark: Lemma 2 works too 1if ng € [V2—1/2,2{¥t’1+€)]2 and
nt € (V20 2(4% 146)72,

The following thcorecm follows immediately from Lemma 2.

Theorem 4: Let - . % be a weak solution of (1.8). Let be

e >0 such a small real number Lhat no cigenvalues of G(u,Dw}
lie on the line Re x = —-e. Furthermore we assume that no eiden-
values of G(u,Dw)'lie on the line Re a = 1. We assuwe for the
right hand sides of (1.1), (1.2), (1.3) that =f ¢ [L%(K)1%,
wg € (VET/2.2(4% 0412, and vt e [VI/22(4%,0)1%. Let R(x) be
the O-matrix. Then u allows the expansion (3.13) with
w ¢ (W2 2)3?

Remarks to the proof: - Theorem 3 yields that ny € [Vz’Z(K,O)]2
and this means that nv € [Wz'ztn)]z. The condition "“R(x) is
the O-matrix"” is unnecessary if the line Re o« = 0 is free of
eigenvalues of ®(=,D ). In this case we have wu ¢ [V&%(K, 1))?
ani O € h-h’ € 1, .

9. The calculation of the singular functions

(6)

Our goal is to caleulate the functions . My p(r,m) in the expan-
sion (3.13). Formula (3,10} shows thalbt we need the knowledge of
the eigenvalues o, oud of the corresponding cigenvector func-
tions and associate vector functions of ﬂ(u,nb). We take the
following actions: e derive the gencral solution of the system
(2. 11) with K (u,w) -~ Kq(u w) = 0. The fundamental system cone
sisty of Lour lxneutly Lndtptudtnh quuLlUUu,;.UUnSUunnLIy, we
determine the four arbitrary constants in the general solution
in gsuch away that nontrivial solutions exist which zatisfy the
howogeneous Lboundary conditions (2.12), (2.13) or (2.14). '

This lcads to the calculation of the zcros of some detoerminatod.
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Let wus start: Every vector function w = (wl,wz)T which is
solution of the system (2.6) with F(x) =0 satisfies the
biharmonic equation in the following manner: bzwl = 0Q, A2w2 = 0
in K. Therefore we can use the inves{igations for the biharmo-
nic operator [61. Thus we get for the solution h of the homo-
geneous system (2.11):

for a+* 0

h{x,w) = cl(q)(30$§m ) +,Cé{a)(51““w)

5 inow COSoH
(5.1)
5 cos{a—2)w sin{(o-2}w
+ Cyla) (2 TRTa 28 uAsinaw) + Cat) (205(aT8 o acosue)
'_ 2(a+3
where A = e o
for o = 0O

Beo.w) = €3] + Co(9) + ¢5(2C0520%) + (S8t inen)s 52

where € =-%{§5 (5.3)

5.1 The Dirichlel conditions

We consider the Dirichlet Loﬁdition hia,w) =0 for w =0 and
w =W, There are nontrivial solutlons (5.1) or (5.2} if the
fullowlng determinates vanish:

for o+ 0

¥ Q s 0
9] 1 0 1+A
D(r) = . -
COGu, | Sinow Los(u—Z)wO &1n(u—2)mo
— wp e _—tc 1y e -Per ey f vyl
Slnww Cpuuw Gin(w “)wo Aqlnuwo cog(u—z)wO!ALquo
. 2 g . =
= dsin®en | - A%sin®e = 0. {5.4)
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Consequently, the eigenvalues of u(a,Dm) are the zeros of the
equation :

' % _
sinzam = 2 G sinzm , where G = el €559 < O (compare [1]),
° " (g-2)2 o 0
for @ = 0O
0 1 1 0
-1 0 0 1
B(oy = .
20w0+51n2w0 cos2wo p | 0
-cosZwo —2Cwo+sin2wo O 1
- _ _ 22 _
= 2 20052w0 4C SO 0.
Consequently, sinzwo = szg and this equation is only satisfied
if w, = 0. Therefore o =0 is no eigenvalue of G(a,Dw).

Figure 2 and 3 show the distribution of the eigenvalues of
a(a,bw) for the materials lead (G »~ -10) and concrete
(G~ ~-1.58) for 0 € Re o € 3, The dotted lines indicate real
eigenvalues, the -full lines indicate the real parts of the

complex eigenvalues ay, = Re'uv + ilm o, and
%, = Re o, - ilm &y e The corresponding eigenvector functions

g?(uv,w),....g?(av,m) are described in the following lemma.

Lemma 3: If o, is a zero of (5.4) for the angdle W, @ * 3,

w, * 2m, then I, =1 and g?(av,w) = Cglo, ¥ (o, 0)
+ Colo Yy e, ,w} 1is an eigenvector function, where
43 v’ L4\ "y )
-COSa W + cos(av-Z)w y31(av,w)

Talo,,0) = e , = T
(I-AV)31navm - 81n(av-2)w ysz(av,m)
-(1+Av)sinavm + singav+2)w y41(av,w)

Yalo,, 0} = = ' 2 (5.6)

4’ ('COSGVQ + cos(av—Z)w y42(av,m)

03(“v) = -cosa,w, + cos(uv—Z)wq,

04(qv) = "(I”AV)Si““v”b + sin(av-2)mo and (5.7)
- 2(A+3

& = Hiar

If o, =5 or o, = 2n then o, = a,(x} = v or o, =a,(2n) = v/2,

v =1,2,... . In this case we have I, =2 and
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ef (o, 0) = ¥alo,,0), e7(a,.0) = y4la,, ) (5.8)
are two linearly independent eigenvector functions.

Procf: We calculate a nontrivial solution 'g?(av,w} of
e, D Yhlo,,w) = Q, where h(a,w) is given by (5.1).

(B (w,,D )hla,,@) 50 (w=0) implies that Cy(a,) = —Ca(a,,)

e ¥ = o + I
and Co(e,} = -C,(1+A,). The condition (B (uv,Dw)g(uv,w} =0
(o = w,) leads to the system of equations for 'g(“v)

M(ux,, 0 )Cla,) = O (5.9)

where

Y31{apwg)  Ygylog.p)
Mo, 05} =
Ygglosw,)  Yaola,,00)

and Lla,) = (Cq{a,), 04(uv))T. Since the determinate of
M(“v’wo) is equal to .D(av)in(5.4) and therefore vanishes, we
can choose CS(av) and c4(°v)- as in (5.7). Thus we get for
ef(o, @), given by (5.6), (consider o instead of «,) that

B*(a, D)2 (a,0) = M(a,0 )Cla) = [Déa’] =0 for & =a, (5.10)

If W, = ® or w, = 2n, then the rank of the matrix belonding
to the determinate of (5.4) is equal to two and consequently wve
have [, =4 - 2 = 2. We can choose Cg(a,) = 1, Cyla,) =0 and

Cale,) = 0, Cyla,) = 1 and get (5.8). "

We now have to investigate, whether associate functions occur.

M.A. Najmark [10] has proved some results about the connection
between the multiplicity of the =zeros of Dia) and the
existence of associate functions for boundary value problems for
ordinary differential equations. These results are also valid
for our boundary value problem {3.5Y), namely for
O, D Mh(u,w) =0Q. Let m(w,} be the multiplicity of the zero

o of D(x) (formula (5.4)).
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Lemma 4: It holds that I, <6§1(86v+1? = m(e,).

Corollary: There are only associate functions for the eigenvalue
Xy iz m(“v) = 2 and Iv =1. If Wy, =N or o, = 2n. then no
associate functions exist.

Lemma 5 describes, when m(“v) = 2 and how the corresponding
associate functions are to calculate.

Lemma 5: If
sinw_\2
- ol” - (G2 _ __ 2
oW, = tanmvwo and ( oy ) = (-G— COuvao) » (5.11)
sinuvwo * 0, cosa, & 0, then m(“v) = 2. The associate
functions to the eigenvalue o are

v

el{av’w) Eu_el(u’@”a—a

where gj(a,,w) is given by (5.6) with o instead of .

Proof: The equations (5.11) are valid if and only if D(uv) =0

and |a=u = 0 for the angle @, The associate functions
- =

-31(“v’m) are solutions of the boundary value problem

§ (o, D)
Aoy, D ey (a,,w) 4'33—————— el(av,w) =0,

that means for o = o,

1 dA(Q,D ) o .
Ao, D ) ej (o, 0) +~aa—~—~— gi{o,0) =0 for O'<w <w, (5.13)

and

B*(a,D, )el(u w) +0=0 "+" for w=o

(%4
(5.14)
"-" for w =0,
Since Ao, D )ej(o,@) = O for all o« from a neighborhood of
o, We get Lhers
dA(a, D) °(a,w)

(A(a, D, Yel(a, w}] = e, 0) + A=, D )
EE 1 da =1 do
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Therefore the equation (5.13) is salisfied  for

de?
1 21(uaw) . .
ejfo,@) = I — at the point o = @, especially.

Now we consider tLhe equation (5.14). Wes have again
B'(u.’Dm)g'i’(u,w) = 0 for all o frowm a necighbourhood of a, and
consequently

dB™(a, D) _ def (=, )
d= 21(0!.0)) + B (0, D ) Vgz"— = 0O for o = a.

Furthermore (5.10) implies

d " o _ dB+(a,Dw) o
G [B'(eD e (o0 | oy = gr—" £5(e00) [
QEE(U:W}

F B+(“’Dm)35—_""_ Iu=a

4

v

QFL

CICHORTCHH | py

d ., T
B (D0 iy

|cx=otv= 9. -

= () ot
Remarks: (i) The eigenvalues o, with wm(e,) =2 and Iv = 1
are those points in Fig. 2 and 3, where the full curve-piecew of
the complex elgenvalues sltart or end. In Fig. 4 there is demon-
strated how these eigenvalues (we have Re o = a, in this case)
depend on different materials, -1 2 G > —w, and on Lhe angle
@, that means o, = o (G,w ). The nusbering and the marked
direction of the curves describe this conncction,
(ii) The associate functions, which arise if m(e,) = 2. and
Iv'z i, are oot uniquely determincd. The mulbiplication by
tonstants and the addition of an eigenvector—function (5.6) lead
to other associate functions. In the following we will see thatl

this fact does not play a role.
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Let us summarize the results:

Theorem 5: The singular functions (3.10) of the weak solution
u € V of the Dirichlet problem have the following form:

(1) If wo-¢-n, w, * 2n  and [ “v(G’mo}'+ 0 is & siwmple
zero of D(a) (formula (5.4)), then only the singular
function

(1)(r R X e (e, 0) (5.15)

arises, where ef(av,w) is given by (5.0).

(i1) 1If W, * 7, w + 2nx and o, = ay (G, o, ):# 0 is a double
zero of _D(a), bhen the alngular functloub

_éil(r,w)-= r el(uv,w} and

w{BD(r,0) = r Y(el(a,,0) + (log r)ef(u,,v) (5.16)

-——.

occur, where g?(uv,w) is given Ly (5.6) and g%(uv,w)
by(5.12).

(iii) If w, =7, than av(G,:u) = uv(n) =, W= 1,25.:0 and

no “proper” singular funcitions exist.

(iv) 1If w_ = 2n Lthen u.y(G,ZJT) = -1‘,(21:) & e, wE 1.2 0s

O
and
g_ol)(r w) = W/Z U('-x )'W'Jl

(5.17)
ut Sl m) = g 8 9 (s 0)

—u v

R " o
are the singular functions. Here gf(av,w) and gé(uv,w)
are given by (5.8).

Proof: We have only to look for W, = In this case formula

n
(5.8) yields the eigenvector functions gg(mv.w), i = 1,2. Since

géli(r,m) = rg?(uv,w) are smooth vector functions, we can say
F ]
no "proper” singular functions occur. -
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5.2 The mixed boundary conditions

The solutions h(e,»), g&iven by formula (5.1), have td satisfy

the boundary conditions (2.12) and (2.13), namely
he,0}) = 0 for e = e, eand
hi +‘ah2 =0 and l(ah1+hé);+ Zuhé =0 for o = 0.

If o % (0, then there are nontrivial solutions if

cosow sinamo cbs(u-Z}mo sin(u—z)mo
B} = -sinmmo COSe | »sin(a~2)wo-Asinuwo cos(a-Z)wo+ACOSawo
0 2o 0 cA+2a~2
—29q 0 (A4+2p)(2-aA) -2pa 0
; 2
. 2.:.2 _ A+2 30 16p (A +3 =
= 16ua’sine ) - 16g-§m“;—%— + sinfo l80{Atd) = 0. (5.18)

The eigenvalues o, of ﬂ(a,DQ) are the zeros af the equation

B .0 g <
B —2“sin®e (A+u)}® + (A+du)
sin“ww - = (KT Y(X3a5)

For o =0 the solution (5.2) yields

‘1 0 ZQwU + sinZwo OUSZwo

O 1 -cosZwo *“Cwo -+ sinzwo
B(o) = -

0 0 2C + 2 0

0 0 0 2(1-C)(A+2u)

4(1-C2y (L+20) + O.
Therefore « = 0 i3 no cigenvalue of (o, D).

Fig. 5 and 6 show the distribution of the eigenvalues of
A, D} fur G =-10 and G'» ~-1.5 fox 0 € Re w € 3. Aduin
the dotted lipes  iundicale real cigenvalucs, the full  lines

indicate Lhe real parbs of thi complex cidenvalues o,
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Lemuwa 6: If ny = “v(G’wD} is a zero of (5.18) then Iv = 1
and  gf(u,,w) = Calu,)¥g(a,,0) + Cyulo, )y (u,, @) is an eigenvec-
itor function -where
~2(A+2)
(( e,

0 ’ - -
(—m&m; = 1}(-‘.31“.!_‘,0}0) - 51n{av-—2)wo

- 1) co'.savwo + cus(av—-Z)mo )
>

yylag,e) = (

(s - 1) sinee, + sin(a~2)e,
Fqlo,,w) = -2Vk’n ), (5.19)
(;iTI%ﬁ%-- 1) cosa o + cus(av-Z}wo
L 2(h42 . e
Cqla,) = <T£7375i - 1) cosawy + cosla,~2)o,, -
. .20)

2

C4(uv) = ((k+“ > - 1) sinuvw_ + sin{av~2)mo.

2

Proof: The rank of the malrix belonging to the determinate
(5.18) 1is cqual to three. Consequently Iv =4 -3 =1. The
ideas of the proof are the same ones as of the proof of Lemma 3.
We consider h(w,,®), given by (5.1), and determine the constants
ci(“v)’ i=1,...,4, in such a way that Bi(av,Dm}h(av,w) = 0.
The condition B"(av,Dm) implies that

- ~2(A+2 - . =2
Cyla,) = Ca‘“v’(rxéaTaﬁl'“ 1) and Cyla,) = Cylay) (rraghar - 1)
This leads to (5.19).

The condition B'h(w,,0) = 0 yields Cg(w,) and C4la,) as in
(5.20) and it holds that

B*(«, D, )ef(x,0) = (D(u),0)T =0 for o =a, . (5.21)
We now look for the associate functions.

Lemma 7:
(i) 1f m(av) = 2, then associate functions exist.

(ii} The cquations

2 Siteen CoSo W, = sinza W - G-l 2
v w o o v'o —

(§)
.. 2 -
s € P
n]ﬂ.tl w!} _ alrlfj_l’woco.auvwo G_z G e )\."" 5 22)
e 2w (622 g = {ia) (5.
W' v o

0 :
are sufficient and necessary for m(av) = 2.
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{iii) Associate functions to the eigenvalues of G(uv,Q») are

el(a,.0) = 4 & (0,0 [ =, (5.23)

vhere g?(a,w) is given by (5.19) with « iustead of e

Proof: The assertion (i) follows immediately frow Lemua 4.' The

equations {5.22) . are satisfied if and only o 5
D(av) = D'(“v}'z 0O, where D(x) 1is given by (5.18). The proof
of assertion (iii) is analogous to that of Lemma 5. -

Remark: The eigenvalues o, with w(a,) =2 are again those
peints  in Fig. 5 and 6, where the full curve-—pieces of the
complex eigenvalues meet the doblted curves of Lhe real

eigenvalues.

Summarizing our results we gel the following theorem.

Theorem 6: The .singu}ar functions (3.10) of the weak solution
ucyv of the mixed boundary value problem have Lhe following
form:

(1) 1If ., ':u.‘,(G.--.wD} is a simple zcro of D(w) (formula

(5.18)), . then only the singular functions

oy
.u,g,}f,(r,w} =r Yeilu,,0) (5.24)

arise, wvhere gg(uﬂ,w) ig given by (5.19).

(11) If a, = uv(G,wo) is a double zero of D(w), then the

singular funclions

1 _ e '
Eg,i(r,w) =1 g?(uﬂ,w) and
: - | ,
.‘.:li}.‘),(r,b)) = ‘(f_-'-'iftxv,m) -+ (_lug r)f.'i(]_(""-‘ﬂw)) (525)

oeeur,  whure E?(uﬂ,w) iv given by (5.19) and 'gi(uv,m)
by (5.23).

5.3 The Neumann condibions

In 1hiz cauce we consider-the boundary conditions (2.11)  for
Lt(u,(u) =0, If w*+ 0, +thon Lhuere are woatrivial solubions

o, ) (sec (5.1)) under Lhe conditions thal



2

D(a) = 1o ;(a)l = 32u%a%(a?sine, - sinfaw, ) = O.. (5.286)

Here there are

ay4{a} = 0, aqy(a) = Zopsinow,

aggla) = 2, agola) = ~2oncosaw ),

8y3(a) = 0, agala) = 2u [asin(a-2)o, + Fi-sinew ],
314(01} = oA % 22 - 2, a34(a) = -2u [acos(a-Z)wo % %%;l—coswo],
azl(a) = ~2oi, ayq(a) = 2oy COSOW ),

agg(a} = 0, ay0(a) = Zoapsinew,,

&24(0) = 0:

)COSqu],

>‘]_l:\1
+
3

aqa(a) = 2u [acos(a-Z}wo + [2 +

]sinumol, and

iF

agae) = 20 [usinu-2o, + [z +

For a = Q the solutions (5.2) yield that the corresponding
determinate D(O) = O for all w,. Since 'Iv-z 2, we get the
lincarly independent regular eigenvector functions

e2(0,0) = (LYT and &3(0.0) = (0.1YT. (5.27)

Fig. 7 shows the distribution of the eigenvalues of O, D)
for 0 € Rew € 3. It is taken from the paper [11]. Again the
dotted 1linecs indicate the real eigenvalues, the full lines
indicate the real parts of the complex eigenvalues.
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Lemma 8}

(1)

Assume that o, = o (w ) 1is a zero of D(«x), (5.26), and
a, =%+ 0, oty * 1, @, “=t= T, W 4+ 2u. Then we have Iv =1 and
el(“v’“) Cala,)ygla,, ) + Cylo, )y o, 0) (5.28)

is an eigenvector function, where

(f%é&%%il - 1) cosu W -+ co3(gv—2)w0

(TXTE%E- + 1) sino o —-sin(u —2)m
(-U.:_El;a_ —- 1) sino o & sin(o —2)m
14‘“’8”‘») - ( )'
Gr%%%{éil - 1) cosa o, + cos(ui—Z)wD
and
C3(uv} o u[(Z*uv)sinuvwo +'“vSin(“v"2)wo}’
_ (5.29)
C4(av) = av(cosavw0 - cos(uv—Z)mo).

(ii} The number o, = o (e, ) =1 is for all o, € (0,2n] an
eigenvalue of Gbx,Qm) and the corresponding eigeunvector
function is i
£11H @) = t—cosw) i

(iii) If wy,=® Oor e, = 2r, then uv(u) =, ol 2x1) = vw/2,
v = 1,2,...; -and I = 2. The eigenvector funatzons arc
for oy = 1 besides (5 30}
e3(1,0) = y3(1,0), (5.31)

for “v* 1, v =1,2,3,...,

ed(o,, 0} = ¥alo,,0), €5(a,,0) = Yalo,, o). (5.32)
1YV 4\ 27y 3V v
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Proof:

(i) We consider h(uv,w)? given by (5.1), and determine the
constants Cj(e,), i =1,2,...,4, in such a way that
B*(x,,D,)h = O. The condition B (e,,D,) implies that

- —2(A+2 - -2
Cyla,) = Ca‘ﬂv’[rxéﬁtsﬁl -1) end Cple) = Cqlon,)qpsigar -
Thus we get formula (5.28). The condition BY(w,,D )hle,,@) =0
yields the equations (5. 29) and it holds that

BY(a,D )el(a,b}} (D{a), 0} =0 for a= a,. (5.33)

(ii) Analogously to part (i) of the proof we get (5.28) with the
unknown coefficienta 03 = C (1) and C4 = 04(1). The boundary
condition B {1, m)e,(l w) = O yvields

G 9 () -

Choosing C3 =0 and C4 = - wriis=y we get (5.30).

(iii) For o =5n or o, = 2n the matrix in (5.34) is the
O-matrix. Therefore we can teke C,; = 1, C4 =0 or 03 = O,
C4 =1 in (5:28). B
Lemma 9:
(i) If o, += 1, Iv = 1, and m(uv)-z 2, then associate
functions exist. 2

. . - 2, sin W,

(ii) The equations L0, Lanavwo and cos wPo = -“7;2__'

o
&, + 1, are gufficient and necessary for m(u )y = 2.

(iii) Associate functions to these eigenvalues of G(u,D } are
o} tone) = g5 eStouw) |y (5.35)
'

wvhere ef(w,0) is given by (5.28) with o instead o.,.

For the proof couwpure Lemmwa 5 and Leuma 7,

Remark: The eigenvalues oy £ 1 with m(av) = 2 and Iv = 1
are those points in Fig. 7, where the full_Curve-pieces of the
real parts of the complex eigenvalues mect the dotted lines of

the real eigenvalues,

We formulate our resulte,
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Theorem 7: The singular functions of the weok solutions u € V/N
of the Neumann problem have the following form:

(i) If mo-* P ¥ 2n, and o, = “v(mo} is a simple zZero of
D(x) (formula (5.26)), then only the singular functions

(1) - Xy 0
_qo’,,(r,w) =r "gila,,w)

arise, where gg(uv,w} is given by (5.28).

(i1) 1If 'wo * 7, W, * 2w, and 'uv is a double =zero of Dlw),
then the singular functions

e,
_gé}%(r,w} =r “g?(uv,w) and

o, 3,
w{1(e0) = el lny0) + (Log D12Yla,00)

veeur, where E?(uv,w) is given by (5.28) aud q%(qv,w}
by (5.35).

{(i1i) If w, = 7, Lhen no "proper"” singular functlons exist.

(iv) If W,

t

2n, then iL follows from (5.32) that

f“fze

lé((),l.‘)’(rs‘») - _1(‘-‘?:‘9))

rv/2

gé?l(r.m} = E;(uv,w}.,

Remark: The singular functions -géii(r,w) = gg(o,m), 1= 1,2,
for ity ; 0O (zeo (5.27)) and _gu,v(r,w)'z e i, ~Ccosm)
&= (xz,-xl} | for uw, = 1 (sce (5.30)) arc a basis of the space
N (see (1.7))
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