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Summary 

 

Oxygenases continue to be widely studied for selective biooxidation of organic compounds. 

Protein engineering has resulted in heme and flavin monooxygenases with widely altered 

substrate specificities, and attempts have been reported to scale up reactions catalyzed by 

these enzymes. Cofactor regeneration is still a key issue in these developments. Protein 

engineering contributed to understanding of structure vs. function in dioxygenases.  

 

Abbreviations 

CYP102A1 (P450 BM-3) cytochrome P450 monooxygenase from Bacillus megaterium 

CYP101   cytochrome P450 monooxygenase from Pseudomonas putida 

FAD    flavin adenine dinucleotide 

ee    enantiomeric exces 

BVMO   Baeyer-Villiger monooxygenase(s)    

CHMO   cyclohexanone monooxygenase 
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Sty AB  styrene monooxygenase (StyAB) from Pseudomonas sp. 

VLB120 

HbpA 2-hydroxybiphenyl-3-monooxygenase from Pseudomonas 

azelaica HBP1 

DDO 2,4-dinitrotoluene dioxygenase  from Burkholderia cepacia R34

     

Introduction 

Oxygenases are enzymes which introduce one or two atoms of molecular oxygen into an 

organic molecule. They are attractive for chemical synthesis and bioremediation as they react 

with a wide range of organic substances (Figure 1). Moreover, oxygenases may be enantio-, 

chemo- or regioselective and thus can produce optically pure compounds in reactions where 

chemical catalysts fail. Herein we focus on key papers on oxygenases, published over the past 

two years, which emphasize practical applications. A number of other reviews in this area 

have recently been published [1,2,*3]. 

Oxygenases are being exploited in various industrial processes [1]. Compared to other 

industrial enzymes such as hydrolases or isomerases, however, their practical applications are 

still limited. The major reasons are that most oxygenases are membrane-associated, often not 

very stable, displaying rather low activity. For their function, most oxygenases require 

reduction equivalents, which are usually supplied by NADPH or NADH. Besides, they need 

electron-transfer partners like e.g., flavin reductases and iron-sulfur proteins, which might be 

also membrane-associated.  

Some of these limitations can be overcome by using whole-cell systems. Here, however, 

physiological effects such as low expression rates, limited substrate uptake, toxicity of 

substrate or product, and product degradation must be taken into account.  

The mainstream of current studies is thus to either engineer isolated oxygenases for altered 

selectivity or enhanced stability, or to engineer the metabolism of whole cells towards 
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improved yield of the desired oxidation product or to combine both approaches. This applies 

to hydroxylation and epoxidation reactions, Baeyer-Villiger oxidation and dihydroxylation – 

biotransformation steps on which this review will be focused. 

 

Monooxygenases: cytochrome P450 monooxygenases 

Cytochrome P450 enzymes (CYPs) are heme-containing monooxygenases present in virtually 

all groups of living organisms. CYPs catalyze monooxygenation of hydrophobic compounds 

in the presence of NAD(P)H and are a potentially useful class of catalysts as they are able to 

introduce oxygen even at non-activated carbon-hydrogen bonds. As the repertoire of chemical 

reactions performed by CYPs is broad indeed, they have attracted considerable attention as 

potential biocatalysts. Eukaryotic CYPs are, however, membrane-associated and usually of 

low activity. These drawbacks have been addressed by many research groups [4]. Recent 

achievements in the co-expression of recombinant human CYPs with NADPH-dependent 

cytochrome P450 reductase in Escherichia coli [5,6], Yarrowia lipolytica [7] and Pichia 

pastoris [8] facilitates their preparative use for the synthesis of drug metabolites. For activity 

improvement, directed evolution has proven efficient again. For example, random 

mutagenesis of human CYP1A2 with subsequent screening using alkylresorufin as a model 

substrate allowed to construct and identify a mutant with a five-fold higher turnover number 

as compared to the native enzyme [9]. Plant CYPs may also offer potential for 

biotransformations. An excellent overview on this subject was published recently [10].  

From a technical point of view, bacterial CYPs are easier to handle as they are often soluble 

enzymes. In addition, they are far more active than mammalian and plant CYPs. For example, 

the oxidative turnover of arachidonic acid by P450 BM-3 (CYP102A1) from Bacillus 

megaterium reaches 280 s-1 [11]. The high activity of this monooxygenase is believed to be 

due to its organization as a fusion protein, consisting of a heme-containing monooxygenase 

domain and a diflavin reductase domain. 
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Recently, it was shown that CYP102A1 can be turned by protein design or directed evolution 

into an enzyme which oxidizes compounds of little or no structural similarity to fatty acids, its 

natural substrates [12,13, 14,**15,16]. Replacement of phenylalanine 87 by valine not only 

greatly increased its activity towards phenolic compounds like 2,6-dichlorophenol and 2-

(benzyloxy)phenol, but also improved its regioselectivity eventually leading to only one 

product [12]. A new triple mutant, obtained by a combination of directed evolution and 

protein design, exhibited 80-fold higher activity toward β-ionone (260 min-1) compared to the 

wild type enzyme, producing the flavorant (R)-4-hydroxy-β-ionone (40% ee) as the only 

product. Coupling efficiency between NADPH oxidation and product formation was also 

improved [13]. A grapefruit flavor sesquiterpene, (+)-nootkatone, was produced from (+)-

valencene using mutants of CYP102A1 and CYP101 from Pseudomonas putida, respectively 

[17]. Although CYP102A1 mutants were more active in this reaction, they produced many 

side products and also oxidized the desired end product, (+)-noonkatone. Mutants of CYP101 

had 4-fold lower reactions rates but were much more selective, forming >85% of (+)-trans-

noonkatol and (+)-nootkatone. 

Selective oxyfunctionalization of inert hydrocarbons is still a challenge for organic chemists. 

Arnold and co-workers combined several rounds of directed evolution with protein modeling 

and site-directed mutagenesis to alter the selectivity of CYP102A1 from hydroxylation of 

dodecane (C12) first to C8 (octane) and to C6 (hexane) and further on to C3 (propane) and C2 

(ethane) [**15,18,19]. With an optimized reductase domain, a mutant capable to oxidize 

ethane to ethanol was obtained, showing, however, very low activity (0.4 min-1) and poor 

coupling efficiency < 1%. Based on CYP101, another mutant capable of ethane hydroxylation 

was obtained [**20]. To this end, a step-by-step reduction of the enzyme’s substrate binding 

pocket was done by site-directed mutagenesis, resulting in increased activity towards lower 

alkanes. The best mutant contained nine mutations and oxidized ethane to ethanol at a rate of 

78 min-1, with 10.5% coupling efficiency.  
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In view of the preparative use of isolated CYP102A1 or mutants of this enzyme, several 

attempts were undertaken to scale reactions up. Thus, CYP102A1 was used for the 

preparation of 15(R),16(S)-epoxyoctadeca-9,12-dienoic acid (60% ee)  from linolenic acid  

(Figure 2) [21]. Under the chosen reaction conditions the enzyme was highly regioselective 

and showed a high turnover rate of app. 3100 min-1.  

The behavior of isolated CYP102A1 in a biphasic cyclohexane-water reaction system 

supported by cofactor recycling with an NADP+-dependent formate dehydrogenase has also 

been investigated [**22]. If stabilizing factors such as BSA and catalase were used, the 

enzyme stayed active longer than 100 h, producing cyclohexanol as the single product. 

Stability and productivity of the monooxygenase mutants in biphasic systems was 

surprisingly high, as revealed by total turnover numbers of up to 12850 in NADPH-dependent 

cyclohexane hydroxylation. Using site-directed mutagenesis, the reductase domain of 

CYP102A1 was engineered to accept NADH with a similar performance [**22]. The NADH-

dependent mutant demonstrated high coupling efficiency (up to 60%) and high stability under 

chosen reaction conditions.  Using this mutant for myristic acid hydroxylation, volumetric 

productivity reached 150 mg l-1 h-1.  

 

Non-heme monooxygenases 

Non-heme monooxygenases are flavin-containing enzymes. Like P450 monooxygenases they 

require for activity NAD(P)H. Protein engineering was used to modify enzyme activity, 

specificity and stability of non-heme monooxygenases. Thus, a new styrene monooxygenase 

(StyAB) from Pseudomonas sp. VLB120 catalyzed the specific (S)-epoxidation of a broad 

range of m- and p- as well as α- and β-substituted styrene derivatives [23]. The two 

component system, composed of an FAD-dependent monooxygenase (Sty A) and an NADH 

dependent reductase (Sty B), was expressed in E. coli, purified and used for cell-free 

epoxidation. NADH was regenerated in situ using formate and formate dehydrogenase [24]. 
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Alternatively, direct regeneration of FADH2 using an artificial redox system [Cp*Rh(bpy)-

(H20)]+2, which can be reduced in presence of formate, was also achieved [*25]. The 

efficiency of the chemoenzymatic system reached 30-70% of the enzymatic system. The 

correct amount of FAD minimizing production of the catalytically inactive oxidized rhodium 

complex, is crucial for high efficiency of the system. 

Chemoenzymatic epoxidation was then turned into electroenzymatic process using a cathode 

for primary electron supply, demonstrating that direct electrochemical regeneration of a 

flavin-dependent monooxygenase for catalysis is feasible [26]. An advantage of this system is 

a recyclability and robustness of [Cp*Rh(bpy)-(H20)]+2 that is able to regenerate not only 

flavin-based cofactors, but also NADH. However, efficiency of the electroenzymatic system 

is not sufficient for a technical process and has to be optimized. 

Another non-heme monooxygenase, 2-hydroxybiphenyl-3-monooxygenase (HbpA) from 

Pseudomonas azelaica HBP1, was engineered by directed evolution to accept a broad range 

of 2-substituted phenols [27]. The best mutant enzymes cloned into E. coli JM101 host cells 

were used for production of 3-tert-butylcatechol, a costly synthone for pharmaceuticals and 

dye developers. The product was removed in situ by AmberliteTM XAD-4, thus preventing 

degradation of the product. Volumetric productivity of the process reached 63 mg l-1 h-1. 

Baeyer-Villiger monooxygenases (BVMO) are an important group of enzymes among flavin-

dependent non-heme monooxygenases. The chemical conversion of ketones into esters or 

cyclic ketones into lactones was discovered more than a century ago and, due to the mild 

reaction conditions, is still an attractive process for the preparation of flavors, fragrances and 

chemical intermediates. As a consequence, Baeyer-Villiger monooxygenases are studied 

intensively [28-31].  

The best studied BVMO is cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. 

NCIB 9871 [32]. It is now commercially available and has been used for production of 

bicyclic lactones [33], sulfoxides [34], thiosulfinates [35] and cyclic sulfates [36]. CHMO 
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expressed in E. coli has also been used for dynamic kinetic resolution of racemic benzyl-

oxymethyl-cyclopentanone under in situ racemization catalyzed by a weakly basic anion 

exchanger (Figure 3) [37]. Yields in preparative scale reactions were up to 84% of almost 

enantiopure (R)-enantiomer (97% ee). 

A whole-cell biocatalyst based on CHMO from Acinetobacter calcoaceticus NCIMB 9871 

was used for oxidation of (-)-bicyclo[3.2.0]hept-2-ene-6-one [**29]. Resin-based in situ 

substrate feeding and product removal were essential to perform an asymmetric Baeyer-

Villiger oxidation on preparative scale. The process was further used to synthesize kilogram 

amounts of regioisomeric enantiopure lactones in a 50 L bioreactor [*30].  

Directed evolution has been successfully applied to extend the substrate spectrum and 

enantioselectivity of this monooxygenase [*38,39]. In oxidation of prochiral 4-

hydroxycyclohexanone, some CHMO mutants showed improved enantioselectivity, favoring 

the (R)-enantiomer (49-54% ee vs. 9% ee for the wild type enzyme). Other variants showed 

inverted preference for the (S)-enantiomer (79% ee) [*38]. This approach can be combined 

with an automated whole-cell process evaluation at the micro-scale, where substrate 

specificity, specific activity and selectivity of  recombinant BMVO have been optimized 

using 96-well deep microtiter plate [40].  

 

Dioxygenases 

Dioxygenases are a heterogeneous group of enzymes capable of introducing two oxygen 

atoms at a double bond. So-called Rieske dioxygenases are non-heme iron-containing 

NAD(P)H dependent enzymes important in the biosynthesis of secondary metabolites such as 

flavonoids and alkaloids and in performing a key step in the natural degradation of aromatic 

compounds [41-43]. Rieske dioxygenases are multi-component systems, consisting of an 

oxygenase component, an iron-sulfur flavoprotein reductase and iron-sulfur ferredoxin. A 
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number of publications describing the role of dioxygenases for bioremediation and 

biocatalysis have been published recently [44-47].  

The best studied dioxygenases are naphthalene and toluene dioxygenase, although the number 

of novel dioxygenases is increasing [48,49]. Recently, recombinant E. coli JM101 cells 

producing the chlorobenzene dioxygenase from Pseudomonas sp. strain P51, were used for 

the cis-dihydroxylation of various aromatic nitriles [*50]. The productivity of the process, 

limited by product toxicity was increased by 43% by using an external charcoal column for 

product removal. Biotransformations resulted in products with 42,9 – 97,1% ee.    

Site-directed mutagenesis have been used to expand the substrate range and to increase 

activity of the 2,4-dinitrotoluene dioxygenase (DDO) from Burkholderia cepacia R34 [51]. 

Several mutants with high activity towards substituted phenols for production of catechols 

and hydroquinones were obtained. DNA-shuffling combined with saturation mutagenesis 

allowed also to construct mutants of naphthalene dioxygenase from Ralstonia sp. strain U2 

which produced, for example, 3-amino-4-methyl-5-nitrocatechol and 2-amino-4,6-

dinitrobenzyl alcohol from 2-amino-4,6-dinitrotoluene, while the wild type dioxygenase has 

no detectable activity on this substrate [52].  

 

Conclusions 

At present, there is considerable effort to render isolated oxygenases useful for 

biotransformations. Protein engineering, enzyme stabilization and cofactor regeneration are 

key issues addressed in these studies. The use of engineered oxygenases in metabolically 

engineered whole cells has been less pronounced recently but might become fashionable 

again once the foundations for synthetic biology have become more advanced, e. g. by 

providing suitable host cells with engineered genomes. 
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Update 

Recent work has demonstrated that the bacterial cytochrome P450 fatty acid hydroxylase 

CYP102A1 can be engineered to produce the authentic human metabolites of propranolol in a 

reaction driven by hydrogen peroxide [*53]. An advantage of this system is its independence 

from NADPH and cofactor-recycling systems. 
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Legends to figures. 

 

Figure 1. Typical reactions, catalyzed by oxygenases: (a) Hydroxylation by monooxygenase; 

(b) Epoxidation by monoxygenase; (c) Baeyer-Villiger oxidation; (d) Dioxygenation 

by dioxygenase. 

 

Figure 2. Enantioselective epoxidation of linolenic acid by CYP102A1 [21]. 

 

Figure 3. Dynamic kinetic resolution of racemic benzyl-oxymethyl-cyclopentanone using 

CHMO [37]. 
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Figure 2. 
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