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Existing interfaces to nowadays database systems show to be increasingly unsu~able for the evolving wide SPQdrum 
of engineering applications (e.g. CAD/CAM, geographic information management, knowledge-based systems for plan
ning and design, etc.). This is further intensified due to the workstaton-oriented processing scheme prevailing in the 
engineering area. 

Starting · with an architectural approach tailored to this distributed processing concept, we propose the PRIMA-NOBS 
and.its most important interfaces, I.e. the data modal and the appf~eation/user interface offering effective support of 
engineerinQ information systems. 

1. Introduction 

Some of the main characteristics of engineering information systems comprise 

• handling the design process, 

• cooparation of different users and their design actlvhies, and 

• demands for generally available services in a local area network. 

In the enginooring application area workstatons are predominant. They are tailored to the applications' or the users' 
requirements exploiting novel techniques, e.g. graphical Interfaces and multi-window techniques. This workstation con
cept easily allows for an extensive local and efficient processing of the usets operations. All services requested are 
mainly restricted to data management, r~ery facilities, integrity control. as well as synchronization and autoriza
tion (i.e. organization of multi-user processing). These services coincide with the capabil~ies offered by database 
systems (OBS) which have to be installed on a host computer, in the context of this workstation-<>riented scenario. 

Howaver, the practical use of OBS in such a workstation-host environment raises some major problems. Firstly, con· 
ventional DBS and their interfaces offer only poor support for engineering applicatons. The reason for this lies in the 
Inadequacy of their data modeling constructs as well as In their inappropriate and inefficient operational Sllpport 
{8884, MiSS, HHLM87]. The performance deficiancy primarily stems from the fad that conventional DB processing 
is not locality preserving and that it does not take into account the distributed workstation·host processing. 

To solve these problems, we come up with an architedure for so~led non-standard database systems (NOBS), 
which Is tailored to the wori<station-host environment. Tha two most important interfaces of our NOBS approach are 
explained and their assistance towards effective support of engineering informations systems in highlighted. 
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2. Tha Architectural Approach 

Tha lserne! erchnectvre Is a promising candidate for an NOBS architecture which also has been exploited In other simi
lar projects [OA86,PSSW087). As a kay ldaa, the underlying NOBS architecture (fig. 1) is divided Into two parts: 

• the ~I offers neutral data management functions while 

• the !lpp!icalion layer (AL) provides application specific support. 

The advantages of this approach are on one hand the application orientation of the AL offering the so-called applica
tion model interface, I.e. the desired application objects and operations, on the other hand the kernel unites all neutral 
data representation and access facilities in an efficient manner. Thus, the kernel realizes a nautral data model (or data 
model Implementation) as a basis for the semantically enriched application-specific models within the AL 

An important criteria towards a moders suitability for a 'kernel data moder is the degree of 'object-orientation' offered 
by the data model. Underset by several detailed analyses [Ha88), the following requirements are most important: 

• direct definition of the desired objact granules (i.e. structured heterogeneous record sets) to work with, and 

• adequate objed proeassing supporting both vertical access to heterogeneous record sets (complex object) as well 
as horizontal access to sets of (complex) objects. 

These neutral concepts embody structural object orientations [Di86]. Supplementary to this, it is the task of the to AL 
provide application-specific support, le. behavioraJ object orientation [Di86). AL maps _a concrete application model 
(that is the application objects and their associated operations) onto the data model interface of the kernel Since appli
cation orientation is obtained by the AL, different types of application layers are designed for different application 
classes. Hence, the interface between kernel and AL seems appropriate to decompose the NOBS when distributed 
processing has to be supported In an engineering environment The AL together with the true engineering application 
is assigned to a workstation whereas the central server carrias the kemal and handles all kernel requests 
[HHMM87). 

This homogeneity between hardware and software architecture offers some Important advantages: 

• The set orientation together with the structural objed orientation of the kernel data model allows for requesting 
sets of complex objects, thus minimizing the communications overhead between workstation and host. 

• The locality of data references during major processing steps could be kept and exploited within the workstation 
site. 

• Distributed processing allows for mutual failure masking that yields to an increased application autonomy: a failure 
on the workstation should not bother the server and vice versa 

• Increasing the workstation capacity promises trua performance gains. 

This architectural approach provides an application-oriented modeling tool simultaneously rising to the performance 
demands of engineering applications. 

In the following chapters we give an overview of the PRIMA project. which Is a major endeavor towards an NOBS 
realization done at the University Kaiserslautern. Firstly, the kernel data model, here termed Moi9Cule Atom Data 
model (MAD) and its karnel implementation called PRIMA (Prototype Implementation of the MAO model) are intro
duced. Then we focus on the concepts inherent to the AL of our PRIMA-NOBS. More detailed information concerning 
the PRIMA project can be found In [Ha88]. Here, we only want to stress the major concapts of tha PRIMA-NOBS and 
how they frt together yielding to an NOBS that effectively supports engineering information systems. 
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Fig. 1: Architecture of NOBS-based engineering information systems 

3. The Molecule-Atom Data Model 

plotter 

In thi following, we present an introduction tO the MAO model and its molecule query language MOL providing struc
tural objed orientation (a detailed description of the MAD model resp. MOL can be found in (Mi88a]). MOL is embed
ded in a host programming language and can be directlyused in an application programming environment; additionally, 
interactive operation is supported. Similar to SOL [X3H286}. MOL is subdivided into three parts reflecting data defini
tion (DOL), load definition (lDL), and data manipulation (DML). Here, we focus on the latter, that is, on query (i.e. 
retrieval) and manipulation (i.e. insertion. de!Gtion, and modification) capabilities for complex object management. 

Underlying General Concepts 

The basic elements (building blocks) of the MAD model are called 2l2.!:!J1. They play a similar role to tup!es in the rela
tional model. Each atom is composed of attributes of various types, is uniquely identifiable, and belongs to its corre
sponding atom type. The attributes' data type can be chosan from a richer selection than in conventional data models. 

The type concept has been extended by RECORD. ARRAY, and the repeating-group types SET and UST to yield a 
powerful struduring capability at the attribute level. For identification and connection of atoms, we have introduced 
two special types. The IDENTIFIER type serves as asurrogate [Ml83], which allows for the identification of each 
atom. Based on this type, it is easy to define the REFERENCE type allowing for typed references (that is, logical point
ers) to other atoms of the same or of different type (similar to foreign/primary-key connections). This basic mechanism 
for connecting atoms is called the link conc2ot. Organized as repeating-group attributes, these links may be used to 
efficiently map n:m relationships and recursioos. A link is alwavs symmetric in that the referenced record must contain 
a 'back referenca' that can be used in eleactly the same way. 

l3ased cm the link concept, it is feasible to dynamically constructmolecules using atoms as elementary building blocks. 
Each moleculfi! belongs to its corresponding molecule type. The mglocule tv® is defined (in. the query language, not in 
the schema) by naming the atom types and link types. For the purpose of molecule construction, a direction is assigned 
to all link types specified. Each molecule tYpe determines both. the molecule structure and the corresponding molecule 
at grouping all the molecules with the same struCture. The molecule strudure is superimposed dynamically on th& 
atom .network consisting ()f sets .of atoms linked by references. Thl.Js, the concept of dynamic molecules is introd~d. 
yielding the r&(luired complex object notion of the MAD model. 
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Query and Manipulation Facilities 

The oparatlonal powar of the MAD model lies in adequati means fOf molecule processing provldid by MOL. Analo
gously to SOL, there are three basic languaglit constructs: 

• The FROM clause spectfi~s tha molecule type to work with. 

• The WHERE clause allows for the restriction of the corresponding molecule set 

• The projection dause (i.e. the SELECT dause in the case of retrieval statements) defines the final molecule struc
ture and is responsible for proper molecule projection. 

Compared to SOL, these constructs exhibit extended semantics and syntax according to the now more complex objects 
which have to be dealt with. They form the basis of all DML-statements offered. The result o1 each molecule operation 
is defin&d by a molecule type. lt can be shown [Mi88b} that the closure of the MAD model under its molecule opera
tions is guaranteed. This is a very important fact, which allows for the nesting of molecule queri-es {cf. query in 
example 1 ); each molecule-type specification (e.g. A-B-C in example 1) can be replaced by a molecule query. 

sample database: 
atom type network 

sample query: 

sample atom network 

SELECT A, 8, Cnew:-(SElECT C(* qualified projection ") 
FROMRESULT. 
WHEREC.att1 >Aatt1) 
FROMA~B-C{* molecufa-typ$ definition *) 
WHEREEXISTS B: (B.att1 > 5};(• molecule-settestriction *) 

expected result set: 

c c c 
Please nota th6different children.sets :of b2 in the first and the second molecule · 

Example 1: Sample database, query and corresponding result set 
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In the following, we wish to illustrate the descriptive and operational power of the MAD-DML in more detail, thereby 
refining the above introduced basic clauses, which are dapic1ed within example 1. Tha upper part of axarr.pla 1 shows a 
sample database consisting of some atom type specifications in combination with link type specifications and corre
sponding occummces. The sample query demonstrates important language features of MOL The result of this query 
applied to our database is shown in the lower part. 

The FROM clause of each given DML-statGmant determines the molecule typa to operate on. The molecule structure 
is explicitly specified (in our case A-8-C), and the corresponding molecule set is determined using a simplified, but in 
this case sufficient abstract model: Starting with the atoms of the 'root' atom type, all component atoms referenced via 
sp&eifioo link types are used for molecule construction. Referring to our example, the first atom a1 of the root atom 
type A is selected. Afterwards. all atoms of type 8 linked to a1 (i.e. b1, b2, b3) are accassed and then the referenced C 
atoms {c1, c2, c3, c4) are seleded. This procedure is repGated for all remaining A atoms. Once a molecule has been 
built, qualification and projection are applied. 

t A 
B B c 

a) hienuducal mol~ule 

types 

b) 

/~ 
"/ D 

network-like molecule 

type 

Example 2: Three generic types of molecule structures 
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c) r~ursive mol~ule 
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There are three generic molecule types distinguishable according to their structure (et: example 2): 

• Hierarchical molecule types (cl. example 2a) define a hierarchical graph. -Example _1 depicts such a sample molecule 
type having atom type A as the root and the atom types 8 and C as component types. 

• The molecule structure of network-like molecule types (cf. example 2b) rasembies a meshed graph. In this case, 
there are component types with f110re than one referencing link type: In graphic. terms, this . fact is . expressed bv 
nodes with more than one incoming edge. 

. . .. . 

• Recursive molecule types (cl. example 2c) use a hierarchical or network~like component molecule type combined 
with a recursion-defining link type expressed in a special RECURSIVE dause (e.g. C-A in e)(ample 2c).The resu~
ing molecule structure is the recursively continued molecule structure of its component molecule type: The deriva· 
tion of the corresponding recursive molecules has to be performed step by step in an iterative manner, going from 
one level (i.e. component molecule) to .the next subordinate l.ovel. using the recursion-defining referenoas: Here, 
the transitive closure has to be computed, which could be additionally cut oH by an optional restriction clause 
(UNTIL clause). . 

Although molecule types are generally defined as part of a query, .it is possible to predefine frequently used molecule 
types and to assign to them a name. ·· · 

The optional WHERE clause restricts the moiacule set (determined by the molecule type of the FROM clause) to those 
molecules satisfying the given qualification i::ondition. Since molecules normally comprise of a structured and hetero
geneous set of atoms, it is necessary to extend the qualification facilities of .the language. That is, the molecule struc
ture has to be included, yielding quantified qualification terms, Hence, testing for the -existence (EXISTS-quantifier) of 
atoms of a given component type or using the ALL-quantifier as an alternative quantification c:onstruC1 is allowed. The 
standard presetting used in MOL is the existential quantifier, so that th~ .use of quantifiers is optional. The query of 
example 1 depids an explicitly quantified qualification condition. 

The wall-known projection expressed by simply listing the components (atom types; attribute types) to be retrieved is 
also valid In MOL. The complementary ALL_ BUT construct allows the expression of those components, that are not to 
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be retrieved. To retrieve the whole result set unchanged ALL may be used. Furthermore, for more salectiva spec~ica· 
lion of the resulting molecules, MOL Introduces the so-called qualified projection {opposed to the above mentioned 
unqualified projection). Qualified projection Is expu~ssoo as a 'SELECT...FROM ... WHERE ' axprgssion within th9 pro
jection clause. This nesting allows for a supplementary n1strlctlon of the components of the result-set mo!QCuJes by 
evaluating the qualification condition of the WHERE clause within the qual~ied projection. The scope of this qualifica
tion comprises the whole molecule; therefore, we use the presetting RESULT for the corresponding FROM clausa. 
Referring to our example, only those C atoms are finally retrieved, which satisfy the qualification term stated. Exploit
Ing these two projection capabilities, we are able to retrieve only those components (sub-molecules) of the 
'surrounding' result-set molecules we are intorested in. Hence, the projection clause determines the final structure of 
all molecules in the result ~t. In the case of retrieval, the SELECT clause may be extended by an order specification. 
Furthermore, aggregation functions like SUM and AVG can be applied. For the conversion of a molecule set into a 
list. the special aggregation function' VALUE is offered; however, the molecule structure is restricted to one atom 
type consisting of one attribute type. 

Without discussing all concepts in detail, we wish here to summarize the above introduced and important concepts. The 
operational support of the MAD model (i.e. MQL) for adequate complex object management comprises of: 

• dynamic object definition by means of dynamic molocules expressed in the FROM clause by naming the atom types 
and their link types. 

• powerful molecule restrictions within the WHERE clause exploiting quantified qualification 

• molecul&-componGnt specification by means of an extended projection concept (qualified rasp. unqualified projec· 
lions) 

• set-orientation, expressiveness and simplicity of the language. 

Load Definition for ''Transparent" Performance Enhancements 

The main characteristics of the MAD model are set-<Jrientation, dynamic object definition, .and processing of heteroge· 
neous record sets. These concepts offer a broad spectrum for query optimization with a number of novel optimization 
aspects {e.g. pipelined or parallel derivation of all molecules within the result set [Sch088J). Effective processing sup· 
port could be accomplished by an appropriate set of storage structures. However, the MAD model i1setf makes no 
reference to such "physical" objects to preserve data independence. Therefore, we need a separate mechanism for 
the specification of the various storage structures supporting a given application. 

For this purpose, we have defined a load definition !anauaa!) used by the database administrator. The main con~pts 
for performance control are 

• several access methods for one or more attributes permitting multidimensional access 

• (vertical) partitioning of records to Improve clustering of frequently accessed attributes 

• sort o~ders to speed up sequential processing according to given sort criteria 

• •physical clusters• to provide physical contiguity for atoms belonging to frequently requested molecules, i.e. mate
rialization of molecules. 

4. PRIMA· a Prototype Implementation of the MAD Model 

So far, we have outlined the features of the MAD model and its transparent support by application-dependent turning 
mechanisms. In the following, we present an overview of the concepts and ideas used for its implemantation • a 
detailed description concerning our Implementation endeavor can be found In {HMS). 
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A multi-layer DBMS architecture [As76, HR85] _with well-defined internal interfaces ls a prerequisite to modularity, 
data independence and extensibility in the various layers. Our implementation modal for PRIMA illustrated in fig. 2 dis
tinguishes three different layers for mapping molecules visible at the MAD interface onto blocks stored on external 
devices. 

PRIMA 
kamel 

appfication model interlace 
.... 'objecr -oriented 

data model interface 
.,.. molecule-~t-orieoted 

storage s trvc:ture s 
.... atom-oriented 

page allocation strvctures 
.,.. page-set-oriented 

disc accesses 

, .......•... ________________________ _ . . 
f • 

: application : 
f f 
f f 

:············--······················:-- appr~eation objects 
! application layer ! 
f • . 

data system 

access system 

buffer manager 
storage system ·---------------· 

file manager 

t 
external devices 

-molecules 

atoms 

-- physical m<:ords 

segments, pages, 
page sets 

Fig. 2.: Architectural model of the PRIMA-NOBS and its application 

The main task of the data system is to perform the oomplex mapping of the molecule-set-oriented interface onto the 
atom~riented interface of the underlying accass system. This is done by translating and optimizing the user-submitted 
MOL statements into an executable form (in terms of access system calls), while preserving their original meaning. For 
example, execution of an MOL statement means that the data system fetches single atoms via aCCilss systems calls, 
creates one result molecule (at a time) and delivers the whole result set across the kernel interface. Apparently, the 
data system is therefore responsible for the dynamic construction of molecules by means of the access system inter
faca. For a detailed view to the PRIMA data system and its query processing of molecules we refer to [Sch088]. 

The access system (extensively described in [Si88a]) offers - comparable to the Research Storage System (ASS) of 
the System R prototype [As76} - an atom~riented interface which allows for retrieval and update of sir.gle atoms. To 
satisfy the retrieval requirements of the data system, it supports direct access to atoms as well as access to atom 
sets. Performing update opGrations, it is responsible for the automatic maintenance of referential integrity defined by 
reference attributes (system-enforced integrity}. Thus, an update operation on a reference attribute comprises implic
it update operations on other atoms to adju:>t the appropriate back-reference attributes. Effective processing of data 
system operations critically depends on the availability of powerful navigational capabilities. This indudes the notion 
of a •position• in a set of atoms, that is, a current position has to be maintained under traversal and modification opera
tions. For that purpose, scans are introduced as a concept to control a dynamically defined set of atoms, to hold a cur
rent position in such a set, and to successively deliver single atoms (NEXT/PRIOR) for further processing. 

All tuning mechanisms specified by an LDL statement - atom dusters as well as access paths, sort orders, and parti
tions -generate additional storage structures which materialize homogeneous or heterogeneous result sets. For exam
ple, a physical cluster serves to materialize molecules, whereas partitions collect the results of projections. The 
underlying Idea Is to make storage redundancy availabla to spead up molacula processing. To manage redundancy in 
tha access system, physical records are introduced as byte strings of variable length. They are storoc consecutively 
in the "oontainers· offered by the storage system. Storage redundancy may introduce substantial overhead when an 
atom is modified (and necessarily all ~s allocated physical records). To limit the amount of immediate overhead, 
deferred update is used, i.e., during an update operation only one physical record is modified whereas an others are 
modified later. The advantage of the redundancy becomes obvious when accessing an atom, since any physical 
record can be used. The one with minimum accass cost should be selected. This has to be supported by the storage 
system. 

The .storag9 system is responsible for the management of the database system buffer and for the mapping of ~s con
terns to external storage. 1t provides segments davided into pages of uniform size at its interface to the access sys-
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tem. To meet the most Important "~qulrement of the access system concerning containers of arb~rary length the star· 
a~e system offers at Its Interface paae seaueoC9s as additional obj9Cts or containers. A page S9qUeOCQ treats an 
arbitrary number of pages as a whole. 1t is supporh~d by a cluster m&ehanism of the underlying file manager enabling 
an optimal transfer of the whole page sequence, e.g. by chained VO. Moreover, tho storage syatom provides the con
cepts of ·pa~e set• and •page contest• supporting set-oriented p~sslng of pages to optimize VO txlhavior. More 
Information about the storage system can be found in [SI88b]. 

5. Structure of the Application Layer 

So far, we have described the static aspects of PRIMA, that Is, of mapping MAD construct' to blocks and files by 
referring to a multi-level hierarchical model. PRIMA Is considered a research V«i~hicle for a variety of DBMS applica· 
tions in possibly distributed engineering environments. Therefore, it is intendoo to run as a •generic• kernel in differ· 
ent kinds of either centralized or multi-processor environments leading from a "l<ernel-only• OBMS to a tool for build· 
lng multi-processor DBMS [HHM86J, and a base system for wori<station-host coupling [HHMM87). In the following, 
we want to concentrate on the latter theme that is the PRIMA-NOBS and its support for engineering information sys· 
tems in a wori<station-host environment. 

Interactive manipulation of complex engineering objocts requires the use of effective communication protocols 
between kernel and AL as well as a large share of local DBMS processing within the AL in order to guarantee satisfac
tory response times. On demand, complex objects have to bo efficiently extracted and transferred from the public DB 
(manag9d by the kernel on a server) to the workstation. Then, the AL takes care of th~se objects • usually for a long 
time; for temporary storage, it may use a privale DB on an Cl'Nn disk. To refine the problem, the following questions 
have to be considered in more detail: 

• How does the wori<station (and the application program) get its data? 

• How does the application program at the wori<station manipulate these data? 

• · How should the changes performed at the workstation be propagated back to the server? 

• How should the server database system reflect these changes? 

To answer these questions, wa introduce the so-called processing model of the AL and soma implementation concepts 
for local buffer management 

5.1 Processing MOdel or tne Application Layer 

The overall modal describing the DBMS activities in the workstation Is call9d the processing model of the AL Its prime 
purpos9 is to provide a framework for the exploitation of locality. ideally, it is desirable to make a mechanism available 
that anablas the application to reference an object diredly, for instance using the pointer concept of a programming 
lar~uage, 

With such a typical referencing behavior in mind, we propose a processing model aimed at high locality d object refer· 
ences. Extraction of data from the public DB is similar to the approach described in [LP83b]. A design transaction 
Issues a chockovt request if existing design data Is r9quiroo. Such a request is used to fetch a design objed from the 
public DB. More checkouts may follow when additional data is required by the application. All checked out data is p~ 
leded by the kemel against concurrent access. Tha design objects are temporarily stored In the workstation, they are 
organized in a special main memory structure called object buffer which offers fast operational access and a pointer· 
like reference mechanism. For recovery purposes and for saving particular design states, copies of the design 
objects may be preserved in the private DB. A design object is committed to the public DB by a chock in request. Since 
commit implies giving up the right of unilateral rollback, the ">eparation of checkin and end of design transaction is 
meaningless. Hence, we argue for the delay of all checkins to the end of the des~n transaction. 
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Summarizing the design transaction. we can identify the following characteristics: 

• isolation against concurrent design transactions {provided by the synchronization capabilities of the S9rvor 
DBMS); 

• design cooperation only via already check&d in (committed) data; 

• possibly n ch~ut requests {n~) in combination with no or only one checkin request; 

• in between there is local manipulation accompaniOO with the acctJmulation of design data changes. 

Fig. 3 depicts the schema of such a design transaction following the proposed procassing model. After th9 start of the 
design transaction it is allowed to checkout the design data ne&ded, using possibly several checkout requests. Th&n 
local manipulation is performed on the design objGCts allocated in the objQd buHer. 1t can be structured by issui119 one 
of the following requests 

• SAVE. saving the current design stage; 

• RESTORE. backing out to a prsviously saved dlilsign state; 

• SUSPEND, interrupting the manipulation activities (implies a SAVE); 

• RESUME, oontinuing an interrupted design transaction. 

Thus. SAVE and RESTORE providCil a user-controiiQCf recovery concept for the design process, i.e. saving a consis
tent design stage or wiping out the latest actions, whHe SUSPEND and RESUME support design interruption guaran
teeing subsequent processing without loss of information. 

: worksUtion 
: site 

: ... ~~r-··· · ······1~~-1~~-- - ··· · ·············· · ················· · ······················ · · ·· ·· T·' : ·····~·~=~·:~-~~·:,:,~~~·.······································ ·····················:· ,1 . .... 
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Fig. 3: Sequence of actions in the processing model 

In the following, we want to describe an adequate implementation concept for the above introdi.IC&d general processing 
model. Obviously we have to be aware of the following optimizatio'l criteria: · 

• minimal number of workstation-server communications 

• minimal volume of data transfer 

• distribution of the work to do among work.stations and server, avoiding duplicated woti(. 

They are suppo$ed to yield high degree of de autonomy and oplimized workstation·server cooparation. 



5.2 Implementation Issues of the Application Layer 

Ot1crlblng the lmpltm•ntatk>n aspect• of our proetulng modtl, we flrat Introduce the baalc aoftware archll~ure. 
The fundlonall•m of the NOBS kernel lnterfac., which la called Obj.ci-Supportlng Interface (providing the above, 
lntrodu~ structural object orientation), is determined by the MAD mod81 introduced in chapter 3. On top of this inter
face, we have designed a component, caHed Object Buffer Manager (OBM). The main task of the OBM is local han
dling and organization of all object-related information required by the application. Hence, tha OBM consists of tha 
preparation component and the object buffer. The preparation component is responsible for fetching and transferring 
of data from the NOBS kemel to the objact buffer and vice versa. The object butter is a large main memory buffer, 
tha! realizes the 'nt~arby application locality' and supports the representation or the molecules, which are supposed to 
carry all information that describes one design object. In order to support efficient main memory organization and 
direct molecule-oriented access, we require special algorithms for memory management and address cak:ulation. A 
further component of the OBM is the curi>or maintenance component which supports the processing by a structure
oriented cursor management. Supporting the prOC9ssing primitives, introduced in the previous section (SAVE, 
RESTORE, SUSPEND, RESUME), an additional component becomes necessary to daposiVreload molecules toArom 
the private DB. Hence, the OBM establishes a powerful data handling interface (called object supporting programming 
interface} at the workstation site. Together with the application dependent program m~ulas it forms the application lay
er. Here, behavioral object orientation is achieved by the abstract data types within this to~most conponent. Fig. 4 
shows the basic software architecture; in addition, it indicates their allocation to the associated hardware compo
nents. Furthermore, i1 illustrates that the interlace between workstation and s&Nar lies inside the OBM layer, that is, 
our design provides an agent of the OBM at the server site. 

application dependent programs (abstrad data types) 

I cursor administration ) 

6 6 
private 
database 

preparation interface 

& (load/ 

propagation unload) 

wori<station sit 9 object buffer 
component 

I __ 08M 

.-.----·---·- . ._._....._ _____ ---··-···-... ------·----~ .. ~----

SGrversite 
NOBS kamel 

Fig. 4: Interface architecture supporting adequate molecule processing 

A.'1er describing the architectural aspects, we now want to characterize the information necessary fOf workstation· 
server cooperation in our proc&ssing model. First, we have the ~ defined and later activated with the actual 
query parameters by a program module in the application layer. The power for query definition is given by the molecule 
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query language (MOL). Second, we have tM 2DSwor information including the quGry result data aggregatoo by the 
NOBS kernel. This information is struc1ured as a sgt of mol&eulas. Third, there is the modffteation ir.fQrma!ion which 
comprises all insertions, updates, and deletions made by th~ application layer. 1t is encodoo as an atom list enhanced 
by modification flags and specific information about tha modification environment. 1t s&ems to bG clear that the 
molecule set of the answer information ia uaoci<lted with the checkout operation, and the atom list of the modification 
Information corresponds to the checkin operation. Hence, we have a high level of abstraction to formulate the query 
and to represent the result, and we have a low level to propagate the modifications minimizing the amount of data to be 
transferad and finally chock&d in. 

The Ob }&et Buffer Data Structure 

In the following, we concentrate our discussion on the answer and modification information, becaus9 these carry the 
more interesting issues. Especially, the organization and the internal data s1ructures of the object buffer wili be intro
duced. The answer information consists of a molecule set Each mol&eula is composed of a struc1urad set of atoms. 
Each of them is represented by a list of attributes and is identif~ by a special attribute, called atom identifier. 
Molecule identification is done by its root atom. Fig. 5 shows the essential aspects of the data structures to r9presen1 
answer Information in the object buffer. · 

Since the data loaded into the object buffer are usuany kept on the workstation site for a long span of time, it will there
fore become n9Cessary to move the obj&cts from the main memory to the private DB existing on secondary storage 
(local for this workstation). Thus. we organize the object buffer using so-called main memory areas. The required 
relocation can be easily manag&d, if all logical references among molecules or atoms, included in the obj9Ct buffer, are 
substituted by some kind of. area relative addresses. The relocation can then be achieved without the need of recalcu· 
lation by simply moving whole areas. 

cursor 
information 

cursor 
table 

molecule set desaiptor 

•. 

area table 

area index ~--~ 
.~ base 

Fig. 5: Representation of a molecule set within the object buffer 

atom type table 

area 

I 

atom 
data ,____ 
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Fig. 5 llluatrataa the repreuntatlon of a moleculo sat w~hln the object buffer. BaaQd on the molecule 1111 dl!,crlptor, 
the ov11rall structur11 can be dlvid9d Into thrall parts: 

• The cursor table contains special access information, which are link9d with molocules within the COI'l-

sidered molecule sal 

• The area table and the set of areas obtain structures to support the control of memory which is allocated for atoms. 
The (main memory) area concept supplies not only relocatability, but also prevents the scattering of main memory by 
numerous small atoms. 

• Furthermore, the atom type table and atom table allow us to calculate atom addresses by using logical atom identi
fiers. The atom type table separates the atoms by their corresponding atom types and enables efficient type-orient
oo access. Each entry bears an Internal type key and the address of the atom table. This table is organized as a 
dynamic hash table, since the number of s1ored atoms can shrink or expand significantly. The atom table entries 
contain further administrative Information. The modification flag indicates the type of modification (insert, delete, 
update) and Is later used for propagating back to the central database. Additionally, there are also the fields area 
Index and araa offset. The area Index determines an antry of the area table, which finally leads to the area contain
Ing the required atom. The area base addrQSs incremented by the aru offset delivers the atoms main memory 
address. 

The relationships constituting the molecule structure are automatically represented through special reference 
attributes in the atoms that contain Identifiers of other atoms. 

The above sketched data s1ructura represents a single resu~ set of jus1 one query. FrofTI a logical point of view, it is a 
snapshot of a database partition. So it seems consequent that an atom is not represented in a redundant manner, if it 
bEl longs to more than one molecule within the same result set On the other hand, an atom is redundantly represented in 
different result sets. Such multiple OCCtJrrences are known to the programs using the object buffer and have to be 
controlled and managed by them. 

The modification information must be collected when downward propagation is initiated by an application program. All 
changed atoms can be accounted by searching all the atom tables formodification flags set. The collected information 
is organized as some kind of •defta• Information, that Is, it contains only the modified attributes and the accumulated 
changes. 

Enbeddlng tha ObJect Buffer Into Applacatlon Programs 

The ques1ion we would like to discuss now Is how data in the object buffer is manipulated by the ADrs of the applica· 
tion layer. The atom is tho smallest unit of data affected by any modification. We need a cursor concept to identify a 
single atom within the atom set defined by a molecule and within the molecule set given by query's resu~ sat. Such a flat 
cursor points to only one atom at a time. In prindple, it Is sufficient for reaching all atoms in the result set, because one 
can navigate via the refer~mca attributes in the atom data. Nevertheless, analysing characteristics of some engineer
Ing application prototy~ systems [HHLM87] has shown us that it is useful in many situations to have a more complex 
cursor, for example a hierarchical one. Ofton, there are some hierarchical subunits of processing within a molecule. In 
our implementation, such a hierarchical cursor is defined by a list of atom type names, which marks the paths for the 
cursor hierarchy, and by ldent~ication of the root atom. The concept of hierarchical cursor may be implemented by a 
hierarchy of dependent flat cursors. Navigation via one cursor automatically affects the subordinate cursors. The 
idea to support mora descriptive (as opposed to proe&dural) cursor oparations is worth more detailed consideration, 
but it lies beyond the scope of this discussion. 

The Mxt question Is how all those queries, result sets, molecules, cursors, and atoms are reflected in the programming 
langLJage which is used to write application-<iependent program modules. In principle, there are four different 
approaches for languago binding [lP83a]. 

For several reasons wo decided for the third approach designing a host-language embedding using a precompiler. The 
use of precompiler statements is sketched in Fig. 6. 1t depicts the scheme of an application program in a PASCAL-like 
programming language. We distinguish between the definition of guerv types and cvrsor tvpes, as well as the doclara· 
tlon of corresponding instances. The Al programmers can therefore generate multiple instances of th6 same typa. 
These are handled like host language variables. The query typa declaration is the place for MAD statement spocifica· 
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PROGRAM example; 
defln~lon of 'normar types and variables 

QUERY TYPEabc_query_type. 
'Select A,B,C 
FromA-8-C 
WhereA.attr1< $max' 
(max : Integer); 

CURSOR TYPEabc_cursor_type. 
B,C->abc_query_type ·-
mcp_cursor:abc_cursor_type; 

mcp_buffer:abc_query_type; -· 
BEGIN 

... 
EVAL ( abc_buffer •••. max_value •.. }; 

·-
ATIACH (abc_cursor, abc_buffer); 

-· 
DISPLAY (abc_cursor@ B@attr2); ·-END. 

Fig. 6: Scheme of an application program module 

tlon. Therefore, all functions of molecule preparation are included In the program by query types. The ouerv yariab!e 
corresponds to the object buffer lntroduc:OO above. Note that the instance of a query represents the data which is the 
parameter of MAD statement's activation. The linkage between variab~ and data is done via the built-in function 
§.Y.ill. Eval directs actual parameters to the kernel interface and triggers the evaluation and preparation activities. · 
Similar to the definition of query instances, the programmers can generate cursor variable:~ supporting the process
ing of object buffers (query variables). The binding of cursor variable and objed buffer is provided by the attach 
function. The bounded cursor can be moved in molecules around atoms. which are currently in the obj9Ct buffer, and 
Is also used to specify the required molectJie-orlented access (cf. F~g. 6). 

6. Conclusions 

Database management systems for non-standard appf.cations have emerged as one of the most impo,..ant directions 
of nowadays database research. Some of the major challenges in this area are constituted by adequate modelling and 
effective processing of complex application objects. 

As one step towards complex-object management we have designed the MAD model. MAD offers dynamic object defi
nition and obj9Ct handling based on direct and symmetric management of networ1t struaures and recursion. The gener· 
le mechanlsms can be used to map a wide variety of semantic and object-oriGnted modelling constructs in a straight for
ward manner including complex objects with shared subobjeds. 

Additionally the prototyp8 implementation of MAD (called PRIMA) which is based on the so-called NOBS kernel archi
tecture has been described. The kernel provides the MAD fun~onalism and contains a variety of tuning mechanisms 
and performance enhancements transparent at the data mod&! interface. PRIMA is assumed to be used in different 
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hardwarG Gnvlronments Including wo~station-bas&d mu~i-processor sys1ems. located on the workstation, there Is an 
add~lonal system layer, the so-called applcatlon layer (Al), which completes the NOBS offering application-oriGnted 
abstract data types, I.e. applk:ation-orientsd data structures and opGratlo~s. Thus, the NOBS is capable of an orien
tation towards a specific application. 

Furthermore, effectlva object processing within the AL Is provided by the concept of 'nearby application locality'. This 
is reallz&d In buffering tha complex objects, selocted by the kernel system, in a main memory resident object buffer on 
works1ation-site. 
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