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Abstract 

Mattos, N.M., K. Meyer-Wegener and B. Mitschang, Grand tour of concepts for object-orientation from a 
database point of view, Data & Knowledge Engineering 9 (1992/93) 321-352. 

Over the last few years, object-orientation has gained more and more importance within several disciplines of 
computer science (e.g. programming languages, knowledge engineering, and database systems). Numerous 
papers have defined one or another of its underlying concepts (sometimes in quite different ways), and some 
systems have been developed following those heterogeneous definitions. Nevertheless, papers investigating 
the dependencies and degrees of freedom of these concepts are rarely found. For this reason, the goal of this 
paper is not to add yet another definition of object-oriented concepts, but to identify existing relationships 
among these basic concepts that allow one to cover and classify various conceivable combinations of these 
conceptual building blocks. Dependencies, orthogonalities, and relations among concepts like object identity, 
encapsulation, classification, generalization, inheritance, etc. are revealed, showing numerous ways to 
compose different shades of object-orientation. This leads to alternatives encountered when constructing 
object-oriented systems, which are illustrated by classifying some well-known systems and prototypes from 
different areas. However, it is not our purpose to analyze the relative importance of these concepts. Instead, 
we investigate the concepts from a neutral point of view, presenting (but not evaluating) several degrees of 
object-orientation. 
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1. Introduction 

Since the beginning of computer science, there has been a continuing effort to cope with 
the ever-increasing complexity of software. A software system constitutes a model of the real 
world and contains specific information needed in an application [1, 7]. Hence, the process of 
software development can be viewed as the process of building an accurate model of the 
real-world situation at hand [10]. A lot of research activities, mainly in the fields of 
programming languages, software engineering, artificial intelligence and database manage- 
ment, have been focussing on the development of models that naturally and directly reflect 
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the user's conception of the real world in discourse [38]. Such a model will ease the task of 
the modeler as well as the user-system interaction, accelerating the process of software 
development as a whole. 

One of the many research directions that have emerged in the last years with the purpose 
of achieving this goal circles around the concept of object-orientation. In fact, an opalescent 
variety of systems that claim to be 'object-oriented' have been developed. Today, it is 
commonly agreed to justify a system as being object-oriented just by saying that it has 
encapsulation, inheritance, object-identity, and so on. But what does it mean? Is this 
'definition' precise enough? For example, inheritance in POSTGRES [50] is not the same as 
in Smalltalk [24] and both differ from KEE [23, 26]! The reason for these different notions is 
that the concept of inheritance is not self-contained; rather it depends on the notions of 
classification and generalization. Since Smalltalk only allows tree-like generalization hier- 
archies, there is no need to cope with multiple inheritance. With POSTGRES it is just the 
opposite: network-like generalization hierarchies raise multiple inheritance. Both systems 
provide only for strict inheritance of attributes instead of default inheritance as addressed in 
KEE. Thus, there are several dependencies among the concepts (e.g. generalization and 
inheritance) as well as several degrees of freedom within such concepts (e.g. strict versus 
default inheritance) that are responsible for various shades of a concrete concept as well as 
for different system's overall functionality and behavior. For this reason, when talking about 
the concepts required to accept a system as being object-oriented, it is not sufficient to claim 
for a group of system characteristics (as discussed by [5, 52]). It is above all necessary to 
investigate the dependencies and degrees of freedom of these concepts in order to be able to 
provide a sound basis for a definition of not one but several degrees or notions of 
object-orientation. 

The claim if this paper is to move one step further towards this goal by identifying existing 
relationships among these basic concepts. Thus, existing dependencies and orthogonalities 
will emerge, showing conceivable combinations of these conceptual building blocks that 
compose different shades of object-orientation. However, we shall not determine a precise 
borderline of object-oriented systems, since we believe such a borderline can be quite 
different from application area to application area. Instead, we show different degrees of 
object-orientation from a neutral point of view. Thus, we neglect a discussion about the 
specific importance of or the comparison between object-oriented concepts. This should be 
carried out by the reader with the characteristics and requirements of a specific application in 
mind. 

Although the literature on object-oriented concepts is qttite rich, the idea to identify 
existing relationships among object-oriented concepts has not been the primary issue in the 
existing publications. Some approaches (e.g. [5, 52, 44]) explain and list the concepts side by 
side, whereas other ones [53] broadly examine the origins and paradigms of object-oriented 
programming and explore some language design alternatives. In some sense, the focus of 
[53], for example, can be compared to our approach, however with the main difference that 
its interest is in the field of programming languages, whereas we primarily concentrate on the 
areas of software engineering, artificial intelligence, and database management. 

In this paper, we organize a grand tour of object-oriented concepts in the form of a road 
map that covers several 'regions' resembling the conceptual building blocks investigated. The 
'crossroads' within each region form a classification tree that visualizes alternatives and 
dependencies among the concepts. Moving along the roads, one finally reaches some 'stops' 
representing combinations of concepts that can be found in existing systems. The feasibility 
of this approach is demonstrated by classifying existing systems and proposals from different 
computer science disciplines all along the way. 

In the first region, we define the basic concepts we have to deal with: objects and their 
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different kinds of properties. In addition to the usual descriptive properties (i.e. attributes), 
we also have to deal with operational and organizational properties to cover the modeling 
concepts underlying object-orientation. Operational properties are also called methods. They 
are in detail discussed in Section 3 as we move to another region. Continuing our trip, we 
reach the subsequent region, i.e. Section 4, that contains the organizational properties. 
Here, we provide a fine-grained view to the well-known abstraction concepts of classifica- 
tion, generalization, association, and aggregation. In Section 5, we give a conclusion and a 
discussion of some intermediate stops not visited on this trip. 

Throughout the paper, we assume that the reader is familiar with the concepts normally 
addressed in object-oriented systems. He/she should have some basic understanding of e.g. 
issues like object-identity, encapsulation, overloading, late binding, classes, and inheritance 
as discussed for example in [6, 44]. 

2. Objects and their properties 

From the user's point of view, a universe of discourse is comprehended in terms of entities 
[17]. To constitute an entity, something must be 
• identifiable (have identity), 
• relevant (of interest), 
• describable, i.e. have characteristics. 

The prime characteristics of entities refer to their state (or value). As part of their 
characteristics, entities may also have some meaningful relationships with other entities for 
organizational purposes. Furthermore, activities (i.e. operations on entities) occur over time, 
resulting in changes to the entities' states and to their interrelationships. Both the entity 
states and the activities are subject to constraints which more precisely define the characteris- 
tics, thereby distinguishing 'reality' from other possible worlds [15]. Assume for example the 
constraint 'always increasing' defined on the characteristic 'salary' of employee entities that 
expresses that an employee's salary does never decrease. Another example is the constraint 
'employees older than 60 years or working for more than 25 years for the company will not 
be fired'; instead the only activity allowed is 'retiring'. 

This state-oriented view of the world is depicted in Fig. 1 that shows the conceptual 
primitives, i.e. entities, having descriptive, operational, and organizational characteristics as 
mentioned above. By means of the modeling process, each entity relevant to the current 
universe of discourse is represented by a corresponding object in the model. Thus, when 
talking in terms in the mini-world model, we use the notion of object being the symbolic 
representation of a real world entity. Of course, each object in the model should have 
properties expressing the characteristics of the corresponding entities in the universe of 
discourse. For this reason, it is necessary to distinguish three kinds of object properties [40]: 
• Declarative properties are used for descriptive purposes. Sometimes they are called slots, 

variables, or simply attributes. 
• Procedural properties are applied for operational purposes. They reflect activities of the 

real world and are attached to objects to manipulate or access the object's attributes. 
Here, we name them methods. 

• Structural properties are employed for organizational purposes. They represent relation- 
ships among entities, e.g. abstractions like classification, generalization, association, and 
aggregation. 
Concerning the modeling process, it is evident that a one-to-one correspondence between 

the entities in the universe of discourse and the objects of the model should exist. This 
prevents, for example, that information about a single entity (e.g. a person) will be spread 



324 N.M. Mattos et al. 

entity characte#stics 

Fig. 1. State-oriented view of modeling. 

over several objects in the model, resulting in a number of obstacles concerning integrated 
and efficient management.  

A detailed discussion of all procedural and structural properties will be found in the next 
and its subsequent region (i.e. Sections 3 and 4), whereas the declarative properties are 
within the scope of the region covered in this Section. 

2.1. Object specification 

After  these more general remarks, we are now ready to start our grand tour on 
object-oriented concepts. The first region to be visited presents the essential object specifica- 
tions and is outlined by the road map shown in Fig. 2. We use a tree-like classification 
scheme to express the building rules of a specific concept. Normally, it is possible to combine 
several different criteria in various ways to reach different shades (for possible destinations) 
of the concept at hand. Each criterion is assigned to a level of the tree listed to its left side, 
whereas the nodes (or crossroads) represent the different choices (called features) belonging 
to the criterion. 

All conceivable combinations of two criteria on subsequent levels of the tree are 
represented by edges (corresponding to possible paths) connecting the appropriate choices. 
There are two combination rules: alternative paths (i.e. bifurcations in the road) are drawn 
as normal edges, whereas dependencies are drawn as arrows to a tinted criterion node 
representing the dependent choice (actually, no choice). In the context of our road map, the 
criteria can be seen as intermediate crossroads on the way to final destination, i.e. a specific 
system layout. Thus, the tree defines different ways to that stage, i.e. the various shades of 
the current concept. This is illustrated by naming some well-known systems that can be 
found at the destination points. 

Please note that we have no intension to classify all systems like that, instead we simply 
want to illustrate what certain shades of concepts mean. That implies that we will name a 
varying number of sample systems from tree to tree. Sometimes it is not possible to classify a 
system uniquely because it has different versions or because there is a lack of detailed 
information needed to reach at a clear decision. Furthermore, it is not always necessary, and 
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Fig. 2. Concept terrain for objects. 

sometimes very hard, to find a sample system for each classification path. If it is obvious that 
a specific path is not meaningful, we have labeled the corresponding destination with a 
question mark. 

Referring to Fig. 2, we can combine four quite important criteria to define various shades 
of basic object specifications. First of all, we have to decide where to go considering the 
criterion 'declarative properties'. For completeness, we distinguish the two alternatives 
shown; although the case that objects cannot have attributes seems to be somewhat strange; 
we are not aware of any system implementing this choice. Therefore, we have labeled this 
destination with a question mark. 

The other choice moves us to the conceivable crossroad where objects possess some 
attributes. At  this crossroad of our road map, the alternative is whether an object has an 
identifier or not, i.e. whether object identity is supported or not [28]; with this, we mean that 
the object identifier is valid as long as the object exists and that it is neither updatable nor 
reusable. Apart  from the CODASYL approach (and its database key concept; [45]) 
conventional data models [18] and straightforward extensions (e.g. NF z [19, 47]) do not 
adhere to the latter category. 

Moving further on, we have to deal with the criterion 'procedural properties' that 
introduces the alternative of having methods attached to objects or not. It is important to say 
that by methods we mean user-defined procedures (i.e. programs but not generic operations 
of a query language (cf. Section 4.5)) that provide access to the attributes of an object, i.e. to 
all information within an object. This is the case if, for example, attribute domains can be 
abstract data types. If methods are not permitted, there is only one way to move further, i.e. 
to a destination where the criteria of object encapsulation cannot be supported: encapsula- 
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tion is not possible because without methods, attributes must be accessed directly. (Note that 
encapsulation is guaranteed if access to an object's attribute is done only via methods 
applicable to that object). Also, if the object concept does support methods, but not object 
identification, it is not possible to implement encapsulation since there would be no way to 
address an object. Again, we have drawn the corresponding dependency edge as a path in 
the road map. An example of this category is AIM [34], a data model supporting 
user-defined data types. 

Instead of supporting methods, all (conventional) data models are equipped with powerful 
query and manipulation languages. This is also true for some data models with object 
identification, e.g. the well-known CODASYL approach and the emerging non-standard 
data models that support a complex-object concept (XRM [35], MAD [42, 43] etc.). 

In the literature, most systems that provide attributes, object identification, and methods 
are basically termed object-oriented. The encapsulation criterion separates mostly the 
so-called object-oriented programming languages/environments (e.g. Smalltalk, C ++ [51], 
Eiffel [41]) and some object-oriented databases (OODBS; e.g. ORION [29], GemStone 
[37], Iris [22, 36], 02  [20], ONTOS [46]) from the so-called expert system tools (e.g. KEE) 
and some knowledge base management systems (KBMS; e.g. KRISYS [39]). 

Nevertheless, there can be several degrees of encapsulation leading to 'hybrid' encapsula- 
tion approaches or encapsulation on demand. In the 02 system, attributes are private 
(encapsulated) by default, but can be made readable and/or updatable. Methods are public 
by default, but can be made private, which means that they can only be executed by other 
methods of the same object. Hence, encapsulation concerns both attributes and methods, 
but in a different way. Also, encapsulation can be total or partial. In the case of methods, 
systems either have only public methods or allow to declare some of them private; total 
encapsulation does not make sense. Attributes are either all hidden or can be made visible 
selectively; the case of all attributes being accessible is considered to be 'no encapsulation' 
and has thus been handled in the tree of Fig. 2 already. We do not distinguish whether 
attributes are hidden by default and can be made visible (through an 'export' or 'public' 
declaration, as in Eiffel, ONTOS and C + +, respectively), or whether they are accessible by 
default and can be hidden (AIM [34]); the result will be the same. If we have visible 
attributes, we can further distinguish the types of access allowed: read only or update. While 
a C ++ public attribute cannot be write-protected, Eiffel exported attributes cannot be made 
available for change. Only 02 offers both alternatives. 

2.2. Attributes: declarative properties 

After having worked out the various routes along the intermediate crossings defined by the 
above mentioned criteria in the first region, i.e. a course-grained specification of conceivable 
object concepts, it is now worthwhile to draw attention to the three object properties more 
distinctively. 

Figure 3 depicts the road map for attribute specification being a particularization of the 
feature 'attributes' of Fig. 2. For explanatory purposes, we have decided to use separate 
classification trees to represent these road maps instead of attaching them as subtrees to one 
single tree. This would have resulted in an extremely blown up and badly arranged tree 
where it is almost impossible to explain anything. 

A fine-grained view to attributes is inclined to the existence of aspects. In fact, aspects are 
assumed as facilities to specify some constraints on declarative properties such as possible 
values, default, cardinality, etc. As a special case, they are only used to specify an attribute's 
type as it is the case in systems with typed attributes (e.g. the relational data model, C ++, 
ONTOS, POSTGRES, and GemStone). Here, we do not distinguish whether a type 
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specification is optional, as is the case in GemStone, or whether it is mandatory as for 
example in the relational data model or in C ÷÷. A more general range of use additionally 
allows for explicitly defined integrity constraints via specific aspects, for example, for 
cardinality restrictions, default values, user-defined specifications, etc. as done in systems 
like KRISYS, KEE, ORION, and MAD for example. Astonishingly, systems like Smalltalk 
have neither typing nor any other kind of aspect description. Therefore, they have no ability 
to explicitly define any constraints that could be used for system-enforced integrity. Instead, 
everything has to be embodied in the code of methods. With this, Smalltalk stands alone 
facing approaches that support any kind of typing or attribute description. 

Here, we have restricted the use of aspects with respect to declarative properties. Of 
course, it is conceivable to enlarge the applicability of aspects also to express constraints on 
procedural properties (i.e. methods). For example, KRISYS allows such specifications. 
There, demon aspects (in the sense of procedural attachment) might be used for constraint 
specification on both descriptional as well as procedural properties. With this it is possible to 
specify a so-called before demon that is evaluated before method invocation and an after 
demon for evaluation after the method is performed, thus checking specific constraints 
before and/or after method execution. Eiffel uses pre- and post conditions for this purpose. 
For procedural properties, we can also perceive type specifications by means of the so-called 
signature concept that combines the name of the method, its parameters and their types/ 
classes as well as the method's result type/class into the method's signature. 

3. Methods: Procedural properties 

The initial purpose of defining methods was to protect (or to encapsulate) the declarative 
properties of objects from being read and manipulated in an arbitrary way. A second reason 
was to provide more abstract and problem-oriented ways of working with objects, e.g. 
having a function called 'hire_employee' instead of inserting tuples and updating attribute 
values in a lengthy and error-prone process. 

To stress the desired degree of data independence and the gap between the user and the 
object, the notion of 'sending a message' has been chosen as the only means by which a user 
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can access an object. A message has to be sent to an object to inquire about its state or to 
change its state. The object may or may not accept the message and return a value as a 
response. A message consists of a receptor, a selector, and a varying number of arguments. 
The receptor specifies the object to which the message is addressed. The selector tells the 
receptor what the user wants, i.e. it acts as a function name or operation code. The 
arguments are function parameters or operands as usual. If the receptor accepts the message 
for processing, it analyses the selector to determine the method to be executed. This is called 
binding, and we will return to it later on. 

Modifying object states only by methods seems reasonable because it guarantees con- 
sistent state transitions supposing that the methods work correctly. Reporting object states 
through messages, however, seems awkward and cumbersome, but nevertheless has its 
advantages: The object hides the number of internal attributes as well as their storage 
representation. It may even compute values from a number of other attributes. Thus, the 
internal object structure can be changed (at least to some extent) without any user being 
affected. This is much like the view concept in conventional databases. If exported attributes 
are read-only, their access and the invocation of a parameter-less state-reporting method can 
be made indistinguishable for the user, supposed an appropriate syntax is used (e.g. 
'person.age' not only as an attribute access, but as a method invocation, too; this is the case 
in Eiffel). 

Hardly any system carries object autonomy that far. In fact, some systems do not even 
support encapsulation, so that the user can access the declarative properties (the attributes) 
directly. To do so, generic operations can be used, i.e. a query language or data manipula- 
tion language (DML). We discuss query and manipulation languages in a separate section 
(Section 4.5), there taking also into account the concepts for structuring purposes to be 
introduced in the meantime. Still such a system can have methods. Their purpose then is to 
simplify access to an object (instead of making it possible at all) as well as to integrate 
application-oriented operations into the object description. They are sometimes called 
'stored procedures'. For instance, in POSTGRES they are used to locate components of the 
object under investigation from various other relations. 

Although the purpose of a method is to report or change the state of one object, it can 
usually send messages to any other object, too. This is a very powerful mechanism, but it can 
be misused in the sense that state changes propagate through the network of objects in an 
uncontrollable manner (see [32] for some issues to avoid this by means of good programming 
rules). From the user's point of view, this may look like an immense number of side effects. 

Of prime importance are the issues of binding and overloading [6]. Their dependency on 
message sending and method execution is depicted in Fig. 4. As mentioned before, binding 
describes the process of locating the procedure code of an object method given a receptor 
and a selector. Assuming that there is a user program containing a 'send message' operation 
to some object in some syntax, the binding can either be done at compile time ('early 
binding') or at run-time ('late binding'). 

The first criterion to be considered here is that of method modification: If methods can be 
changed at any time during system opera t ion-  including deletion and inser t ion-  the only 
choice is late binding. So, there is no way to restrict overloading and message specifications 
to achieve binding at compile time. Hence, we have used only one dependency edge to 
represent this in Fig. 4, although various combinations of overloading and message specifica- 
tions are also possible here. This is the case of KRISYS, KEE,  ORION,  and POSTGRES. 
(Please note that an 'early' binding with an invalidation mechanism is just another form of 
late binding). 

If methods are not modified at run-time (that is to say, are not modified after compilation 
of the user program), the next crossroad is that of method invocation. If the syntax of the 
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send-message statement in the user program allows for variables or even expressions used in 
place of the selector, again, the only choice is late binding. However, if the selector must be 
specified as a constant, other choices show up due to the next crossroad of overloading. 
Overloading means that methods in different objects can be invoked using the same name 
(the same selector). It requires the existence of different implementations of a same method. 
If overloading is not allowed, selectors are unique. Therefore, the dependent choice is that 
of early binding. Note that in this case the way the receptor is specified is irrelevant for the 
decision on binding, since the selector alone suffices to identify the receptor. 

In case of overloading, the object identification cannot be derived from the selector, but 
must be taken from the receptor specification in the send-message statement. Again, it can 
either be a constant or an expression. Here, early binding is possible only if the receptor is 
known at compile time, i.e. it is specified as a constant. In the other case, where the receptor 
specification is done by variables or even expressions, the remaining choice is that of late 
binding. 

We have tried to introduce the concepts of late binding and overloading without referring 
to classification and generalization, since they are discussed in subsequent chapters. How- 
ever, one can imagine that early binding becomes even more difficult in cases where methods 
are not stored with the objects themselves but with their classes, or superclasses of their 



330 N . M .  Mattos  et al. 

classes in a class hierarchy. This will be discussed in a more general setting in the next 
section. 

4. Object abstractions: Structural properties 

Also very important features associated with object-orientation are the so-called abstrac- 
tions. They permit the suppression of specific details of particular objects, emphasizing those 
pertinent to the problem or view of information at hand. They enrich the semantics of the 
underlying model since they directly reflect the constructs people apply in the process of 
describing the real world [38]. 

Abstractions are in general expressed as relationships between objects, having as their 
purpose the organization of these objects in some desired form. There are several kinds of 
abstraction relationships: instance-of, subclass-of, element-of, subset-of, part-element-of, 
and subcomponent-of. Depending on the kind of relationship existing between objects of the 
model, the objects, like the real world entities, can play different roles (i.e. class, instance, 
set, element, aggregate, component) characterized by very different semantics. However, 
the organization of these objects by means of grouping them together according to the 
specific semantics of an underlying abstraction concept is the inherent property of all 
abstraction concepts: 
• grouping of components in the aggregation, 
• grouping of elements in the (set) association, and 
• grouping of instances in the classification. 
Consequently, an object may be found in different abstraction-specific groupings. 

4.1. Classes 

Classification is one of the most important and the best understood form of abstraction. It 
provides means for introducing generic information into the model by allowing one to refer 
to a class as a representative or prototype of several other objects (i.e. the instances), which 
have the same properties and constraints. 

Actually, our notion of a class encompasses three different concept, ~ that are often not 
distinguished properly. The first one is a structural definition for a group of objects, that is 
the names and types of their attributes and their methods. This is to avoid repeated 
definition and to enforce certain integrity constraints ('a human must have an age' - even if it 
is 'unknown'). The second one refers to the production of new objects, or instances of that 
class (i.e. the object factory). The concept can be provided either by the class itself as is the 
case~ in some programming languages (e.g. Smalltalk) or by the run-time system (e.g. C ÷÷, 
Eiffel). In either case the class definition serves as a template. The last notion covers the 
group of objects, that is the instances of a class. As we said before, this is inherent to each 
abstraction concept and therefore also part of the meaning of 'class'. Further on, the notion 
of such a 'homogeneous' set is very important in performing search. 

Our class definition differs from some others, which view a class only as means for 
grouping some objects of one type defined by a type system [5]. That is, they treat the 
structural definition of a group of objects as part of the semantics of types and only the 
meaning of grouping (building up collections of objects) as part of the semantics of classes. 
The reason for this separate meaning of types and classes comes from the need for a 
representation of various collections of objects having the same structure, i.e. type (for 
example, 'green cars', 'red cars', 'expensive cars', 'cars from California', 'cars from 
Europe'). However, it is not necessary to make such a distinction because there are other 
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(better) ways to express these collections. One way is the definition of subclasses with more 
restrictive constraints (narrowing the value range of attributes, cf. Section 4.1.2) and another 
way is using the association concept (cf. Section 4.2). For this reason, our notion of class 
includes the above meaning of types and the notion of grouping the instances as already 
mentioned at the beginning of this section. 

Missing here is a notion of 'interface' of a class (or of all its instances), which is necessary 
when encapsulation is considered. In our opinion, this is the right notion of the 'type' 
concept (thus resembling the use of this term in programming languages). A type restricts 
the way certain objects can be used. If access to an object is through methods only, the type 
comprises just those methods, their selectors, parameter types (classes), and return type 
(class). Hence, two different classes that offer the same set of methods with different internal 
(hidden) attributes and different method implementations can still be of the same type and 
consequently behave in the same way (from an external point of view). 

Even if encapsulation is less strict in that the attributes are visible, method implementation 
can still be hidden. Then, the type must include the attribute types as well. However, classes 
can still be different internally (method implementation) and have the same type. 

4.1.1 Handling classes in a model 
There are basically two different ways to treat classes in a data model. First, classes can be 

viewed as a kind of meta-information defining the structures of objects of the model. In this 
sense, they are, in general, incorporated in the DB-schema or in the type system of the 
programming language so that they are not treated as regular objects of the model. This is 
the way conventional data models view classes. The other viewpoint eliminates the differ- 
ence made by conventional DBS between classes incorporated in the DB-schema and 
instances incorporated in the DB. In this case, classes and instances are treated as regular 
objects of the model so that definitions of static structures as meta-information are not 
completely separated from the objects themselves (i.e. in a database catalogue or in 
compiler code). Consequently, classes and instances are treated in the same way although 
they can have very different semantics in particular contexts. For the user, it is, therefore, 
possible to apply operations to manipulate classes as he/she does to instances. Additionally, 
since classes are treated as regular objects of the model, they may have their own attributes, 
methods, and related integrity constraints. Thus, this shift of viewpoint covers the role of 
classes as the 'object factory' (supported, for example, by Smalltalk) because 'create an 
instance' is usually one of their methods. It is important to note, however, that if classes are 
treated as regular objects, they are instances of another class as well. Usually, this 'super' 
class is denoted object or global. Since global is again an object, it is also an instance of 
another object, which is, in this case, itself. Such a well-known paradox can only be 'solved' 
by making some exception in the model as for example 'global is not an instance of any other 
object'. 

The road map concerning classification is presented in Fig. 5. The first criterion to be 
considered here is the existence of classes (in either one of the above mentioned ways) in the 
model. If classification is not supported, no typing concept at object level is provided by the 
system. This is the case of LISP [54] and the ACTOR language [3, 4, 33]. However, even if 
classes can be defined in the model, a typing concept at object level is not mandatory. This 
depends on whether the existence of an object is necessarily bound to its role as an instance 
of a particular class or not. That is, whether the system allows for the definition of objects by 
their own without any association to a particular class. This is only possible if any object may 
contain the specification of attributes, methods, or integrity constraints, i.e. the system 
allows for a kind of 'self-describing objects'. This is the case of some expert system modeling 
tools as well as the KBMS KRISYS. If properties may be defined only in classes, an object 
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Fig. 5. Object  classes and their relationship to instances. 

can only exist if it has a class associated with it, otherwise it would be an 'empty' object. 
Systems following this approach (Smalltalk, GemStone, relational DBS, POSTGRES, 
ORION, ONTOS etc.) allow only for class-described objects. For this reason, instances 
cannot change or extend the structure imposed by their classes since there is no facility to 
manage definitions in the instances. Therefore, the insertion of an object is conditioned to 
the specification of its class. That is, the object relationship to classes is, in this case, always 
mandatory. 

In the case of class-described objects, all attributes as well as integrity constraints defined 
by a class must be pertinent and applicable to all its instances. In other words, objects always 
have exactly the structure specified by their classes. Therefore, systems following the road 
that leads to 1 :n relationships between classes and instances are adequate only for 
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supporting applications with a strong homogeneity within an object type. This final destina- 
tion corresponds to the approach mostly followed by DB systems. On the other hand, if one 
takes the road leading to n :m relationships, heterogeneities within an object type may be 
handled by specifying additional classes and relating instances to several different classes. 
What we mean here is that an object can be made an instance of any number of classes 
(using e.g. the 'Addlnstance' database command of Iris), irrespective of relationships among 
the classes. In particular, if an object can only be an instance of two classes at the same time 
under the condition that they are connected by the subclass relationships (see next section), 
we would still consider this to be of the '1 : n' type. For this reason, most systems attempting 
to support such applications provide ways to incorporate attribute and constraints definitions 
directly into the object description leading to the self-describing objects crossroad. These 
systems sometimes also address the problem of modeling instances that differ from the 
structure imposed by their classes. By providing self-describing objects, they can allow 
attributes that are passed on to instances to be modified in order to reflect a special, desired 
structure or behavior in a particular instance. While most DB systems do not support such a 
concept of exceptional instances, the 02 system as well as most expert system tools (e.g. 
KEE, KRISYS) allow instances to redefine the structure and the behavior of their classes. 

In the case of being self-describing, objects may exist on their own. Here, it is not logically 
impossible to combine the above mentioned semantics of mandatory classes with the 
authorization of instances to change or extend the specification received from their classes. 
However, this does not seem to make sense since all the facilities for self-describing objects 
are there anyway, and nothing can be gained from forcing objects to be an instance of some 
class. Optional relation with classes can be allowed at no extra cost. 

When the relationship between objects and classes is optional, classes are only defined 
when several objects have the same structure. Here, classes are employed to abbreviate the 
descriptions introduced into the model in order to avoid error-prone redundancy. Starting 
from this crossroad, there are two basic ways to view the description associated with a class 
[38]. The first one, which is the way most expert systems tools view classes, is that classes 
simply characterize prototypical instances. As a consequence, attributes and constraints 
specified by a class may be contradicted by instances of it. At a first glance, this prototype 
role of classes seems to be very appropriate since it allows for a direct representation of 
exceptions. However, it contradicts the semantics of the abstraction concept of classification, 
hindering the definition of operations valid for all instances. Systems following this approach 
(e.g. KEE) do not provide means for introducing generic information through classes 
impeding a more efficient implementation. As a consequence, the abstraction usually gained 
by classification cannot be appropriately employed for query processing and optimization. 

The second way, which represents the approach followed by 02 and KRISYS, views the 
description associated with a class as necessary conditions (i.e. attributes and constraints) 
that each instance must satisfy. Thus, instances of a class may have some additional 
attributes and constraints or even restrict the constraints received from their classes but are 
not allowed to contradict those defined by the class. 

Here, changes of methods have to be considered apart: 
• If one views the behavior of instances as part of the object specification determined by 

classes, all instances must act in the same way. Consequently, modifications of methods 
must be prohibited (for some exceptions, see Section 4.1.2.1). 

• However, if one considers classes as only responsible for the specification of the interface 
of methods (i.e. one explicitly distinguishes between interface and behavior), changes on 
methods do not conflict with this semantics of classification, and may, for this reason, be 
allowed. 
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4.1.2 Class hierarchies and inheritance 
Sometimes, it is important to have a form of referring to several different classes, or even 

to all their instances, abstracting the details of each one. Generalization provides this way by 
allowing more general classes, or superclasses, to be defined in order to capture the 
commonalities existing between these different classes, or subclasses. Since generalization 
may be applied recursively to specify other more general superclasses, it provides the means 
for organizing classes in a class hierarchy. 

The most important feature associated with such hierarchies is the concept of inheritance. 
Since properties kept by superclasses are generally also valid for their subclasses, there is no 
need to repeat the description stored in the superclass for each of its subclasses. These 
properties are just inherited by each subclass. There are several different aspects involved 
with inheritance, as illustrated in the road map shown in Fig. 6. 

4.1.2.1 Default vs. strict inheritance The starting point of this part of our tour is, 
consequently, the existence of generalization hierarchies, otherwise it makes no sense to talk 
about inheritance. From this starting point, the first criterion to be considered is the kind of 
inheritance supported by the model, which in turn, determines the semantics of class 
descriptions. If inheritance is done by default (default inheritance), inherited properties and 
associated constraints can be modified. That is, they are passed on only if they are not 
overridden or redefined in a subclass. In this case, superclasses are treated as 'prototypes' or 
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Fig. 6. Class hierarchies. 
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'blueprints' of their subclasses so that exceptions as well as refinements of specified 
descriptions can be directly handled in the model. For example, even if there is a property in 
the description of the class person which says that all persons have an age in the interval 
{0.. .  100} and teenagers is a subclass of persons, teenagers are defined to have an age in a 
more restricted interval, and thus the inherited property should be redefined in the subclass. 
If inheritance is strict (strict inheritance), i.e. all inherited properties and constraints must 
exist and must not be overridden or redefined in a subclass, superclasses are viewed as 
templates of or regulations for their subclasses. In this case, the representation of exceptions 
as well as refinements cannot be supported, since subclasses must have all the unchanged 
properties and constraints of their superclasses and may have new properties and/or new 
constraints in addition to them. For this reason, it would not be possible to assert that 
teenagers are persons having their age in the interval {10 . . .  19}. On the other hand, the 
support of strict inheritance simplifies the implementation of an object-oriented system. 
Strict inheritance guarantees that properties specified in a superclass are found in every 
instance of its subclasses and with exactly the same semantics (i.e. integrity constraints). 
Therefore, there is no difficulty in defining operations specific for an object type. 

It might be important to point out here that different types of information can be passed 
on by means of a generalization hierarchy defining conceivable 'heritages' that an object may 
receive. The simplest of such heritages comprises just the attributes and is also known as 
type inheritance. If, in addition to an attribute, also its value in inherited, then it is the case 
of value inheritance. Further on, it is also conceivable that the attribute and only the 
associated constraints are inherited or that the attribute, its constraints, and its value are 
passed on via the hierarchy. Of course the kind of inheritance (strict or default) and the 
heritage (type, value, constraints) are independent from each other allowing for different 
combinations of the two categories. For example, the combination of type inheritance with 
strict inheritance or the combination of value inheritance with default inheritance are 
somehow obvious. Others are conceivable, too: the combination of type with default 
inheritance allows for homogeneous generalization hierarchies where specialization is still 
permitted. 

Also important to mention is that systems do not necessarily have to support a single kind 
of inheritance for all different types of information passed on. Actually, they impose distinct 
inheritance semantics to each type of information. So, Smalltalk, for example, supports a 
strict inheritance of attributes but a default inheritance of methods. In KRISYS and KEE, 
on the other hand, the inheritance of attribute names in strict, whereas their aspects are 
inherited by default. 

In many systems (e.g. most DBS, Smalltalk, and KRISYS), methods are inherited by 
default, although these systems do not provide mechanisms to 'specialize' the implementa- 
tion of such inherited methods in the subclasses. In this case, to support some degree of 
specialization, such systems allow inherited methods to be overridden in the subclasses, 
causing overloading. However, in other systems (e.g. ONTOS and in many expert system 
tools as for instance KEE), where mechanisms to 'specialize' methods are supported, 
methods are not necessarily overridden, but have their code extended or modified. In 
general, such mechanisms allow one to take the inherited code (usually called 
'wrapperbody') by a subclass and extend it with before and after code pieces (called before 
and after wrappers), so that the method maintains its behavior from the point of view of the 
superclass, although it was 'specialized'. Let us assume, for example, a class persons and a 
method 'have-birthday' which increases the age attribute. Suppose that employee is a 
subclass of person with an extra attribute salary. One could then specialize the 'have- 
birthday' method to raise the salary of an employee every two years, that is, whenever 
his/her age turns out to be an odd number, and the method would still behave the same on 
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all persons'  attributes. Thus, such a kind of specialization still maintains the semantics of 
classification (see Section 4.1.1) and generalization. 

In the case of default inheritance, it is important to differentiate between changes that are 
in agreement  with the semantics of the generalization concept from those that may contradict 
such semantics (as done for the classification concept).  Generalization requires that all 
propert ies (i.e. attributes and methods) as well as integrity constraints specified by superclas- 
ses must be valid for their subclasses and (as a complementary concept to classification) to all 
instances of these subclasses [38]. Consequently,  the support of a generalization concept 
restricts allowed modifications to the addition of new attributes, methods, or aspects or to 
the specialization of methods or the restriction of constraints, requiring that everything else 
must be kept constant. (A popular way of restricting constraints is to modify 'possible values' 
to a subclass of the inherited entry.) This means that K EE does not support the concept of 
generalization (see Fig. 6). Since it allows for changes that contradict the semantics of this 
concept,  inheritance can be only used to save typing work. (Note that the above introduced 
comments  on the different views of methods as well as on the problems resulting from the 
support  of any kind of changes in the instances of a class are also valid and relevant here.) 

When inheritance is strict or when the applied default inheritance guarantees the semantic 
of the generalization concept, then every instance of a class is also an instance of all 
superclasses of that class. In these cases, several implicit (or virtual) relationships between 
instances and classes are implied by the system. They are called this way because they are 
not explicitly defined by a user. For example, if John is defined to be an instance of 
teenagers,  the system implicitly generates a relationship between John and persons, since 
teenagers is a subclass of persons. No explicit relationship between John and persons has to 
be explicitly specified by the user. Thus, when a relationship between an instance and a class 
is defined by a user, not only one, but possibly several relationships are set by the system. 
Although this may imply n : m  relationships between classes and instances, we did not 
consider implicit relationships in our discussion on Section 4.1.1. 

When talking about the kind of relationship between classes and instances in Section 4.1.1, 
only relationships explicitly defined by the user were considered. Transporting the semantics 
discussed in that section to the context of generalization would mean that the kind of 
relationship between instances and classes is n : m only if instances can have relationships to 
more than one class, which are not in a (possibly indirect) subclass relationship to each 
other.  Since a system will never imply such relationships, n : m  relationships between classes 
and instances can only occur if the user is allowed to explicitly define more than one class for 
a (or several) particular instances. (Remember ,  however, that the classes of such instances 
should not be in a subclass relationship to each other.) While most DBS do not allow 
instances to have more than one class, most expert system tools provide mechanisms to 
attach and detach instances to and from any class at any time. 

Another  important  observation is the relation existing between overloading and the kind 
of inheritance supported by the system. If information is passed on by default (and only in 
this case), overloading occurs every time changes caused by overriding or specializing 
inherited methods are introduced in the class hierarchy. One could then conclude that 
default inheritance is the indispensable requisite for the occurrence of overloading since 
strict inheritance does not allow any kind of changes at all. However ,  this is not true! 
Actually, overriding and specializations are the most common ways of producing over- 
loading within a class hierarchy, but not the only ones. Even when inheritance is strict and, 
consequently,  redefinitions are prohibited, overloading may occur if the user specifies two or 
more methods with the same name in distinct objects. In this case, different methods would 
be invoked by means of the same selector but different receptors, i.e. sending the message to 
one or the other  object (see Section 3). 
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4.1.2.2. Single vs. multiple inheritance Proceeding our tour on generalization, the next 
crossroad corresponds to the two forms of class hierarchies. Actually, the form of a hierarchy 
determines the amount of heritage received by an object. For example, systems providing 
tree-like hierarchies allow only for single-inheritance, i.e. objects receiving information from 
one single superclass (e.g. Smalltalk and Gemstone). On the other hand, network-like 
hierarchies may also support multiple-inheritance, i.e. objects receiving information from 
several classes (e.g. POSTGRES, ORION, 02, ONTOS, KRISYS, KEE). 

Multiple-inheritance reflects the conceptualization of the universe of discourse more 
directly. In general, real world objects present different characteristics corresponding to the 
several distinct roles they play in the application. For example, trams have properties that 
describe their characteristics as a vehicle running on railways and properties defining their 
role as a vehicle for public transportation. However, the price one pays for this flexibility is 
reflected on the more complicated implementation of multiple-inheritance as well as on the 
mechanisms necessary for handling conflicts. 

There are basically two kinds of conflicts that may occur during the inheritance of 
information: name conflicts and precedence conflicts. Name conflicts, as illustrated in Fig. 
7(a), occur when two attributes, methods, or aspects with the same name have been defined 
for distinct classes of a hierarchy and are inherited by a common class. Such conflict occurs 
because systems, in general, do not allow for the existence of duplicates of attribute or 
method names of a same object or of duplicates of aspect names of a same attribute or 
method. Precedence conflicts can only occur in environments inheriting information by 
default. They occur when an attribute, method, or aspect has been once defined, however 
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Fig. 7. Multiple-inheritance conflicts. 
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modified in some place down in the class hierarchy (see Fig. 7(b)). Note that such conflict 
would not take place if the property had not been modified. In this case, any well 
implemented system would recognize that it deals with the same property (i.e. originating 
from one single same class) however being inherited on two different ways. The problem 
with precedence conflicts is to identify which of both inherited information is 'more 
specialized' (i.e. has precedence over the other) since it is the one that has to be taken. Such 
identification is not always trivial because the specification that is closer to the object in 
which the conflict is occurring is not necessarily the preceding one (observe, for example, the 
case illustrated in Fig. 7(b). 

Summarizing, we can conclude that inheritance conflicts may occur only in network-like 
class hierarchies. Name conflicts require, additionally, the occurrence of overloading of any 
kind, whereas precedence conflict may happen only when overloading has been generated by 
means of modifications on information inherited by default. 

4.2. Sets 

Frequently, it is necessary to group objects together not because they have the same 
properties (classification) but because it is important to describe properties of the group of 
objects as a whole. To model such situations, one has to use the abstraction concept of 
association. According to it, another kind of object, called set, is introduced to represent 
these kinds of properties. Therefore, in the association concept, the details of the element 
objects are suppressed and the properties of the group are emphasized in the set object [38]. 
This concept has its origin in set theory, so that it does not allow for the existence of 
duplicate elements. Consequently, it is different from the concept of bags [5]. 

The starting point of our tour on association is, therefore, the existence of sets in the 
model (Fig. 8). If they are not supported, no set-orientation at object level can be provided 
by the system. This seems to be the case of most programming languages. However, sets are 
not the only prerequisite for set-orientation. It is also necessary that the system exploits their 
existence in the query, manipulation, or definition languages provided. This is, for example, 
lacking in some expert system tools [16, C185, 13] which incorporate some of the semantics of 
sets in classes but do not provide the user with set-oriented operations that manipulate 
collections of objects. 

4.2.1 Handling sets in a model 
If sets are supported, one has to decide whether or not set descriptions may contain the 

specification of a kind of condition which has to be valid for each element of the set. This 
specification, denoted membership stipulation [38], is a kind of attachment criterion for the 
elements, i.e. an object is an element of a set only if it satisfies the set's membership 
stipulation. 

Membership stipulation, just as inheritance, is another kind of built-in reasoning facility 
provided by the abstraction concepts [38] and therefore treated as another important 
crossroad of our road map. It may be used by the system either to make deductions (i.e. 
element qualifications) or as the basis for controlling system-inherent integrity constraints. 
For example, a model supporting membership stipulations could determine whether a 
change in an element object may be allowed in order to not violate the semantics of its 
relationship to a set. In case of violation, the system could either reject such a change 
(membership stipulation treated as integrity constraint) or accept it. In the latter case, the 
violated relationship would be dissolved and new ones, now satisfied by the 'new' object, 
would be created by the system (membership stipulation treated as means for qualifying 
elements). 
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Actually, the kind of reaction performed by the system is not governed by the membership 
stipulation, but by the way elements are attached to particular sets. When elements are 
explicitly connected to sets by the user, for example by means of an insert operation, the 
system has to utilize the membership stipulation as an integrity constraint that rules the 
semantics of the sets. So, the insertion of objects not satisfying the stipulation has to be 
rejected in order to keep the integrity of the model. If the attachment of elements is not 
defined by the user, the only way to find out which objects are valid elements of a set is to 
use the membership stipulation as qualification criterion of the set. In this case, objects not 
satisfying the stipulation criterion are simply not qualified. 

It is important to observe that the above definition of sets and of the two distinct ways of 
attaching elements build a sound basis for the definition of different kinds of collections to be 
supported in a model. They represent therefore important crossroads in the map of Fig. 8. 
For example, views in the relational model can be treated as sets with a membership 
stipulation used for element qualification (i.e. representing the view definition). Relations, 
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on the other  side, can be treated as sets without membership stipulations, whose elements 
have to be explicitly attached by the user (by an insert operation). 

Proceeding our tour on association, the next crossroad corresponds to the decision 
whether  association exists as an independent concept or only bound to another  abstraction 
concept. Systems allowing only for sets bound to other abstraction concepts (mostly classes) 
cannot support  the definition of sets of heterogeneous objects. If sets can be heterogeneous 
and are attached to classes (i.e. are typed),  then the problem arises that for a same set two 
different (minimal) classes can be deduced depending on the actual construction of this set 
and on the existence of class hierarchies. Thus, by binding association to classification, object 
qualifications are invariably restricted to selections over an object type (i.e. class). This is, 
for example,  the case of the relational model considering either views or relations. However ,  
such dependencies are not mandatory. Imagine, for example, a query to qualify all objects 
( independent  of their type) having a particular value in a specific attribute or in any 
attribute, corresponding to something like 

S E L E C T  * 

F R OM * 

W H E R E  attribute = value 

SELECT * 

FROM * 

W H E R E  * = value 

In this case, the resulting set would not be defined by any class so that association would be 
an independent  concept. The specification of se t /e lement  relationship would not be based on 
the structure (or type) of the elements so that sets of heterogeneous objects would result. 

4.2.2 Set properties 
In the next step of our tour,  one has to define the way sets should be represented in the 

data model  (Fig. 9). Basically, there are two different ways to do this. First, sets can be 
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treated as any other regular object of the model in an explicit manner. In this case, they are 
treated just like instances, classes, and elements although they are additionally characterized 
by a very distinct semantic. The other way, which corresponds to the view of conventional 
data model, considers sets as the extension of a collection. In this sense, they exist only as 
some definition in the DB-schema and are not incorporated in the DB as real objects. They 
are only implicitly represented as a group of objects which either are instances of a base 
relation or have been qualified by a view or query. 

When sets are explicitly represented, they may have their own attributes, methods, and 
aspects. Such set specific characteristics are denoted set properties and can be used to 
describe properties of the group of elements of a whole. At this point, another important 
observation, which has been considered at the next crossroad of Fig. 9, refers to the kind of 
set properties allowed by the model: only system-defined (like number of elements, most 
recently inserted element) or also user-defined. These properties express characteristics of 
the set as a whole, but they are determined based on properties of the elements, for 
example: average, maximum, and minimum of values. Thus, while changes in the classes 
imply downward changes in the model (provoked by inheritance), changes in the elements 
causes upward modifications in the set properties. For this reason, systems allowing for 
user-defined set properties must supply the user with means to specify how changes in the 
elements should be propagated to the sets. 

4.2.3 Set hierarchies 
Analogous to classification/generalization, one can imagine to have ways to refer to 

several different sets, or even to all their elements, abstracting the details of each one. Set 
association provides these ways by permitting the specification of more general sets, or 
supersets, in order to capture set properties defined over a wider spectrum of elements. 
Thereby, subset-of-relationships are generated, organizing the objects into an association 
hierarchy. 

Similar to the assertion made for a generalization hierarchy that every instance of a class is 
also an instance of the class' superclasses, elements of a set are here also elements of the 
set's supersets. In the same way, when supporting association, one has to decide which form 
of set hierarchies should be supported. Actually, the form of a hierarchy determines the 
degree of disjunction existing between sets and, consequently, the homogeneity of member- 
ship stipulations and set properties. Tree-like hierarchies allow only for completely disjoint 
sets whereas network-like hierarchies permit the definition of several sets over the same 
elements for the representation of, for example, different groups of set properties. 

However, independent of the form of set hierarchies, a set object can be a subset of 
another only if it presents a more restricted membership stipulation, otherwise it cannot be 
guaranteed that its elements are also elements of its supersets. This provides means for 
embodying a refined notion of integrity constraints into the model. This also enables the 
system to derive subset-relations from the membership stipulation defined for two given sets. 
Thereby, the calculation of the set properties for the subset will be consequently restricted to 
the corresponding subgroup of elements of the superset, determining different (probably, 
more specific) values for these properties. Finally, this allows the construction of hierarchies 
of collections of a particular type by defining various sets with different (more general or 
more specialized) membership stipulations, but all referring only to the instances of this 
type. 

There are only very few systems allowing for an object organization on association 
hierarchies. KRISYS and KEE are examples of them. 
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4.3. Aggregates 

Frequently, it is necessary to treat objects not as atomic entities, as classification, 
generalization, and association do, but as a composition of other objects. This conforms the 
abstraction concept of aggregation, according to which a collection of objects is viewed as a 
single higher-level object. 

The above definition should make clear that aggregation, like the other abstraction 
concepts, involves two types of objects. The simple objects are here called parts or 
components. They express atomic ones, i.e. those objects which cannot be further decom- 
posed. Together, they build the lowest-level composite objects or simplest aggregates. These 
can, in turn, be used to build more complex higher-level composites so that an aggregation 
or part-of hierarchy is formed. 

In general, data models (above all those supporting the semantics of complex objects [43, 
47, 50, 35]) allow for the specification of references between objects. Such references, 
however, do not capture any special semantics, serving only as flexible means for the 
representation of any kind of relationships between the objects. Aggregation relationships 
(or part-of relations), on the other hand, have a very specific meaning. They represent the 
idea that an object 'consist-of' other objects, thereby expressing that an object cannot 
'consistently' exist without its parts. Note that this requirement makes the aggregation 
concept quite different from the others, since classes may exist without their instances, and 
empty sets may occur in the association. Therefore, it is necessary to observe the importance 
of modeling aggregates by means of special-purpose relationships. This permits the incorpo- 
ration of the semantics underlying the notion of aggregates in the system, allowing for 
operations that directly make use of such semantics, for example, to 
• determine the components of an object, 
• find aggregates of which an object is a part, 
• create an aggregate together with all its components in one single operation, or 
• remove all parts of an aggregate when it is deleted. 
So, the first step of our tour on aggregation is the support of such a notion of aggregates, 
which is not provided by Smalltalk, GemStone, ONTOS, and C ++ (Fig. 10). 

4.3.1 Dependent vs. independent components 
When supporting aggregation, two types of part-of relationships must be distinguished: 

dependent or independent [27]. On the basis of this refined semantics, the existence of parts 
will directly depend on the existence of its aggregates or not. In the case of a dependent 
relation, for example, the deletion of an aggregate will recursively remove all its parts, 
freeing the application from the search and subsequent deletion of all parts of the removed 
object. However, dependent relations do not allow for later reuse of objects in another 
aggregate, what is certainly desirable in some application environments. The concept of 
dependent vs. independent components is orthogonal to all other aspects discussed w.r.t. 
aggregation and is, for this reason, not presented in Fig. 10. 

Like association, aggregation is not dependent on the structure of the objects. Just on the 
contrary, it provides means for the definition of highly-structured objects, allowing a user at 
a particular moment to view such structured object as a single unit (i.e. together with its 
parts) and at another time to view only parts of it as independent or dependent objects. By 
the aggregation, objects are, therefore, treated in one context as objects of their own and in 
another as components of other objects. 

4.3.2 Aggregation hierarchies 
If the concept of aggregation is available, then it is obvious to exploit it more than once, 
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i.e. resulting in aggregation hierarchies. Therefore, a restriction to only one level of 
aggregation is not overly meaningful. Hence, we have marked this crossroad with a question 
mark and we do not know any system that belongs to this category. When observing 
components within an aggregation hierarchy, one can differentiate between exclusive compo- 
nents (i.e. those being part of only one composite object) or shared components (i.e. those 
being part of several aggregates) [27]. Actually, the kind of components supported by the 
model determines the form of allowed aggregation hierarchies (see Fig. 10). Tree-like 
hierarchies provide only for exclusive components, whereas network-like ones also for 
aggregates with common/shared parts. This is reflected in Fig. 10 by dependency paths 
between the respective crossroads. 

In the case of shared components, the support of object identity turns out to be quite 
important. Note that if object identity is not supported, aggregation has to be represented by 
means of attributes (of type set, list, table, etc.) which contain the components of the 
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aggregate. Hence, shared components can only be expressed by repeating the same 
components in different objects, resulting in redundancy in the representation that must be 
controlled by the system. 

Another important criteria to be considered here and therefore used to define crossroads 
is the support of recursion. This is certainly the necessary concept for representing 
aggregates that at the type level are recursively defined, e.g. the parts of automobiles consist 
of other automobile parts. 

Finally, the support of reasoning facilities on aggregation hierarchies should be consid- 
ered. In other words, whether the system allows for the specification of predicates based on 
common properties of components and aggregates by means of which it may either control 
the semantic integrity or make conclusions about aggregates and/or components [38, 48]. 
For example, by expressing that the value of a particular property is upward implied (e.g. 
weight, completion time), the system may control whether it increases going upward over the 
aggregation hierarchy, thereby either rejecting changes that violate such predicate or 
triggering further changes to keep the truth of the predicate. 

4.4. Integrated view of object abstractions 

4.4. I Handling different object roles 
Until now, we have isolated the discussion about each abstraction concept from the others. 

Naturally, in the real world, such isolation occurs seldom. Objects may obviously be 
instances of classes, elements of sets, and components of aggregations at the same time. 
Hence, objects may have up to six types of relationships to other objects (instance-of, 
subclass-of, element-of, subset-of, part-element-of, subcomponent-of) corresponding to the 
different roles they can play in each abstraction hierarchy. Consequently, the semantic 
meaning of the objects can be very different from context to context in which they are found. 
There are objects expressing instances in one context and elements in another, and even 
objects representing classes, sets, and components in different contexts. Thus, the semantic 
meaning (i.e. the role) of an object can only be determined in regard to a particular context 
(i.e. together with the corresponding abstraction relationship). As a consequence, object 
descriptions may embody both classification/generalization and association as well as 
aggregation properties. 

The criterion to be analyzed here is therefore related with the number of different 
descriptions which may be integrated into one single object, i.e. how may different kinds of 
roles an object is allowed to play (Fig. 11 ). Systems allowing for objects with just one role 
necessarily make a strict distinction between 'regular' objects representing data (e.g. 
instances) and 'meta' objects describing other objects (e.g. classes). 

Relational DBS, for example, define the role of an object regarding whether it is part of 
the DB or of the DB schema. (Here, we are considering the contents of the DB schema as 
objects, too). In other words, relational DBS do not allow for an integration of several 
abstraction roles into one single object of the model: objects are either instances (when part 
of the DB) or classes (when part of the DB schema). Consequently, the representation of 
real world entities having several abstraction roles have to be spread out among several 
objects of the model, and the system has no way to recognize the tight connection existing 
among them. (For example, between the tuple with primary key 'refrigerator' in the relation 
'products of company X' and the relation 'refrigerator' in which every refrigerator produced 
by company X is stored.) Additionally, since objects may play one single role and there is a 
clear distinction between classes and instances, no ways to allow for changes on the kinds of 
roles of an object during its life time can be provided. 
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In contrast to relational DBS, systems allowing for objects with different roles provide a 
more integrated view of abstraction concepts. The more integrated such view is, the more 
information about a real world entity may be concentrated into one object of the model. 
This has an additional advantage. By considering all abstraction concepts together, descrip- 
tions of one concept can use the specification of the others, enabling much richer and more 
precise descriptions of world entities. In this way, objects can be concisely described without 
losing the necessary flexibility, and some classical errors provoked by the introduction of 
redundancy can be avoided by reducing the amount of repetition in the descriptions. 

Nevertheless, not all systems providing objects with several kinds of roles allow for a free 
combination of such roles. In order to reflect this feature, we have introduced a criteria to 
measure the degree of role combinations. In general, systems prohibit the combination of 
class and instance roles at the same time. In ORION, for example, instances may be either 
components of other objects or aggregates but not classes. On the other hand, SmaUtalk, 
GemStone, and ONTOS for example, present an exception by permitting classes to be 
instances of so-called meta-classes. That is, it still makes a distinction between classes and 
instances but enables a combination of class and instance roles (at least) on the class level. 

Another important observation introduced as a criteria in Fig. 11 considers the kind of 
changes allowed on the roles of the objects. The feature static means that an object must 
keep the role that is given at its creation unchangeable. Since ORION allows for the 
definition of aggregates dynamically, it supports dynamic changes of object roles. (Note 
however that in ORION this is restricted to the role of aggregates and parts and not to 
instances and classes.) 
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The final and most flexible approach is to enable a free combination of abstraction roles. 
Systems supporting this do not differentiate between data and meta-data, thereby treating all 
objects in the same way although it exactly knows the semantic meaning of each one in every 
particular context of an abstraction concept. For this reason, it is therefore possible to apply 
operations to classes just as they are applied to instances, so that any kind of dynamic 
changes are allowed. (Note that systems providing such an issue can be used as a kind of 
modeling tool as is the case of KEE and KRISYS). 

4.4.2 Handling the object structure 
Concentrating several roles into just one object has, however, some further implications. 

For example, objects playing the role of a set and a class at the same time will also pass on 
the set properties to its instances. This is, clearly, not desirable. To avoid this problem, it is 
important to differentiate set and class properties (those defined for the instances) in order 
to restrict inheritance to class properties. This is achieved in some systems by including a 
property type (instance or own) associated with each property. In this way, instance 
properties are those concerned with classification/generalization and own properties those 
with the association. Instance properties are therefore inherited since they describe charac- 
teristics of the instances of a class, while own properties are not inherited since they describe 
characteristics of the set objects themselves. 

In the case that an object plays the role of a class in one context and of an instance in 
another, it is also important to avoid inheritance of instance properties. Clearly, properties 
which are inherited by the object in the second context because it is an instance should not 
be further inherited in the first context where it is a class since they describe characteristics of 
the object related only to its existence as an instance. Because of this, such systems 
generalize the meaning of the own-properties by not restricting them to the association 
concept. Therefore, own properties express properties of any object itself, e.g. an instance 
or a set. (In Smalltalk, such own and instance properties are denoted respectively class and 
instance variables.) 

By combining aggregation with the other concepts, it is also important to distinguish the 
aggregation properties from the other properties of the objects since values of aggregation 
properties are to be interpreted as other objects of the model. As a consequence, some 
systems introduce in the description of each object property (in addition to the type own or 
instance) an indication as to whether a property describes an aggregation relationship or not. 
KRISYS, for example, indicates part-of properties as non-terminal ones since their values 
correspond to other objects of the model, whereas the other ones (generalization/classifica- 
tion and association properties) are denoted as terminal properties. (Similar differentiation is 
also made by ORION). 

4.4.3 Handling specifications 
In addition to explicit specification concepts it is conceivable to apply also implicit 

specification that is based on e.g. rules or triggers. In a first stage we can think of those 
implicit specification concepts being applied at the attribute level. Instead of explicitly setting 
the attribute value, we might give a 'derivation' (or 'derivation rule') that, if performed, 
produces the actual attribute value. For example, support for derived attributes is a main 
feature of the CACTIS system [25], where any attribute can have attribute evaluation rules 
associated that describe how the attribute value can be derived, and that are (re-)evaluated 
when the object is referenced. POSTGRES embeds either a QUEL query, a single 
procedure or even a trigger/rule, and KRISYS offers a generic demon concept for that 
purpose. Further implicit specification concepts have already been mentioned before. One 
example is the transitivity of class instances that is implicitly expressed by the transitivity rule 
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telling that the instances of a class are also instances of the class' superclass as well as 
instances of its super-superclasses and so on; the same implicit transitivity applies for 
association and aggregation abstractions. In Section 4.1.2.1 we have termed the relationships 
resulting from that transitivity implicit or virtual relationships. Another example also 
mentioned before are membership stipulations that can be used to automatically insert 
elements (or sets) into their sets implicitly setting the corresponding association relationships 
(cf. Section 4.2.1). 

Automatic classification of instances into their corresponding classes as well as automatic 
subsumption of classes into the class hierarchy are examples of implicit specification, where 
the system knows the 'insertion rules' to be applied. These concepts mainly stem from the 
area of modeling tools and are mostly applied by systems based on KL-ONE [14] as e.g. 
KRYPTON [9]. In addition to these implicit specification concepts we can also perceive 
explicit ones. For example an explicit classification rule telling that a person with age less 
than 20 has to be classified as a teenager, i.e. inserted as an instance of the teenagers class. 
Another kind of explicit classification rule might be exemplified by the rule telling that all 
(direct as well as indirect) instances of class trucks that have a loading capacity of more than 
10 tons are as well elements of the set called 'potentially military vehicles'. 

This last example is very close to what views are used to, i.e. intentional classes based on 
view definitions. In fact, there are OODBMSs, like the COCOON system [49], where a view 
concept is used to implicitly define a class that is then automatically inserted into the class 
hierarchy. As other declarative approaches we can view the Frame-logic [31] that integrates 
objects, predicates, and rules as well as the rule-based approach towards a deductive 
object-oriented database language reported in [2]. 

4.5. Query languages 

Originally, object-oriented systems have been designed without any ad hoc query facility. 
Designers considered it to be irrelevant, because a rich set of methods should be available to 
retrieve and access objects. This is particularly justified, if classes, sets and aggregates are 
themselves managed as objects with their own set of methods, e.g. a select method available 
on each class (ORION [27], OPAL/GemStone [37]). However, not everything can be easily 
assigned to a class; consider the equivalent of the famous relational join operation. In [21] it 
is shown why associate retrieval is difficult to support through methods only and advantages 
of an embedded query and manipulation language are demonstrated. Additionally, as 
pointed out in [8], a query language should be easy to use and need not be computationally 
complete; it will be used to retrieve data without having to write a program. For example. 
ONTOS provides its Object-SQL as a report generation tool as well as an ad hoc query 
language. If classes, sets, and aggregates are represented as objects themselves, their 
methods can provide the power of a query language, otherwise the facilities of a query 
language must be provided by the run-time system. 

An interesting question is whether query formulation should be allowed to break 
encapsulation. While this is the case in 02 ,  it is not in ORION. The argument given in [8] 
does not give proper attention to state-reporting methods, so we would consider the decision 
still a matter of taste. 

5. Conclusion 

This paper should be viewed as a first attempt to sort the large variety of concepts related 
to object-orientation in the database field. The goal was not to add yet other definitions of 
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object-oriented concepts, but to identify existing relationships among these basic concepts 
that allow one to cover and classify various conceivable combinations of these conceptual 
building blocks. Thus, the main contribution is the revealing of dependencies and degrees of 
freedom among the concepts, in contrast to many other papers that only list them side by 
side. This makes visible numerous ways to compose different shades of object-orientation 
leading to alternatives encountered when constructing object-oriented systems. We are 
certainly aware of the fact that some classification trees could have been refined and 
discussed in more detail. But we hope to have reached a state of expertise that makes the 
reader sensitive for the existence of these alternatives and encourage him or her to question 
the meaning of ubiquitous phrases. 

Throughout the paper, we have revealed a lot of concepts that are related to each other. 
Sometimes even concepts from different areas show some dependencies. For example, the 
concepts of late binding, overloading, overriding, kind of inheritance, and message concept 
define one of those 'dependency' groups: one important usage of generalization hierarchies is 
modeling of subclasses through specialization of the superclasses' attributes and methods. Of 
course, this is possible only if default inheritance and overriding are valid. Furthermore, 
overriding provokes overloading, which in turn implies late binding assuming that changes 
occur before runtime and also assuming that messages have variable selectors or receptors. 
Note that in this case the language to specify messages might influence these dependencies: if 
there are only constants allowed to specify selector and receptor, then it is the case for early 
binding. On the other side, strict inheritance implies no overriding, and overloading is 
reduced to only name conflicts, leaving early or late binding up to the language used to 
specify messages. Another group of concepts worth mentioning consists of the concepts set, 
class, or type. This group is different because it comprises concepts that should be treated 
independent, i.e. orthogonal, from an abstraction point of view, thus defining degrees of 
freedom. This is true despite the apparent dependency of set elements normally being 
instances of (not necessarily) the same class. For example, when the elements of a set are 
defined to be the instances of the root of a generalization hierarchy, then the instances of the 
corresponding subclasses are automatically elements, too. Since these instances belong to 
different classes normally showing different class structures, the set defined is truly heteroge- 
neous. Automatic projection of those instances to the class structure of the root is not a set 
property, instead it belongs to the semantics of classification and generalization. In general, 
we have argued for an orthogonal integration of the abstraction concepts allowing for a joint 
usage and mutual exploitation of the abstraction concept properties. In Fig. 11, we have 
classified some existing systems and prototypes according to their ability to integrate the 
abstraction concepts. There, it is evident that the systems that do fully integrate the concepts 
in an orthogonal way are mostly modeling tools, e.g. KEE and KRISYS. The other side of 
the spectrum where the concepts are kept separate, i.e. not integrated, is taken by mostly 
database systems, which historically emphasize data management and not modeling. 

In classifying some well-known systems and prototypes from different areas (mainly from 
programming languages, knowledge engineering, and database systems), we have illustrated 
the effectiveness of this approach. From a high-level view, our expectations were fulfilled 
because most systems presented expected properties. For example, those with programming 
language background are traditionally strong in procedural support (i.e. distinctive method 
properties, cf. Fig. 4) and encapsulation (Fig. 2). They are not as good in application 
modeling as the knowledge engineering systems. For that end, knowledge engineering 
systems provide, beyond procedural and declarative properties, many concepts and features 
(i.e. structural properties) that allow for precise and flexible modeling (cf. Section 4, Fig. 
11 ). On the other side, systems with database background were targeted towards plain but 
sufficient modeling in order to provide efficient data management. This becomes especially 
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obvious in Fig. I1 where these systems do not allow for integration of their few (and 
sometimes restricted, cf. Section 4) abstraction concepts which prohibits the mutual exploita- 
tion of these abstraction properties resulting in weak modeling capabilities. 

However, our classification has also revealed some surprises during our investigation of 
specific systems. For example, KEE, being a well-known and heavily used modeling system, 
allows for quite some modeling flexibility because it supports integration of its abstraction 
concepts combined with many ways of changing the structures defined (Fig. 5 and Fig. 6). 
But, a detailed investigation of KEE clearly reveals that there are still important things 
missing in order to have full modeling flexibility. For example, in KEE there is no support 
for aggregation and only a restricted kind of association (cf. Section 4). This is even more 
surprising because some systems coming from the database area (e.g. the complex object 
data models) do already support aggregation directly and association through their view 
concept. Another surprise was Smalltalk. As already mentioned above, Smalltalk is quite 
strong in procedural properties due to its origin from the programming language area. But 
on the other side, since these kinds of systems are known for their support of (software) 
reusability, it is very surprising that Smalltalk does not support default inheritance (Fig. 6) 
and overriding. In addition to this, Smalltalk has no type support since there is no aspect 
description (Fig. 3). The absence of some important abstraction concepts (aggregation and 
association) and some restrictions in classification (Fig. 5) and generalization (Fig. 6) causes 
only a limited modeling capability. 

All in all, we do not want to judge any system ment ioned-  this is up to the reader, who 
may use our classification trees to make this judgement. It is neither our purpose to analyze 
the relative importance of these concepts, because this is application dependent. We believe 
that what is required by one application area not necessarily has to be supported for another 
one. In addition, not necessarily the most 'powerful' system (in terms of concepts) is the 
best. In contrast, more concepts result, in general, in more complex implementations, worse 
performance, difficulties in understanding, inappropriate usage, etc. 

Therefore, we have investigated the concepts from a neutral point of view, presenting (but 
not evaluating) several degrees of object-orientation. Classifying an application into our 
classification trees reveals the characteristics of a desired system, which in turn defines the 
prerequisites for its implementation, representation, and optimization issues. Implications 
and consequences of the chosen issues are beyond the scope of the paper and therefore left 
for future research. 
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