
2

Integration of Coinposite
Objects into Relational
Query Processing: The
SQL/XNF Approach

Bernhard Mitschang
Hamid Pirahesh

36 Chapter 2. Integration of Composite Objects Into Relational Query Proc.

2.1
Introduction

Complex database applications, such as design applications, multi-media
and AI applications, and even enhanced business applications can benefit sig
nificantly from a database language that supports composite objects. The
data used by such applications are often shared with more traditional appli
cations, such as cost accounting, project management, etc. Hence, sharing of
the data among traditional applications and complex object applications is
important.

Our approach, called SQL Extended Normal Form (short SQL/XNF)
provides a general framework that supports novel processing models based on
composite objects. Especially, it enhances relational technology by a compos
ite object facility, which comprises not. only extraction of composite objects
from a shared database, but also adequate browsing and manipulation facil
ities provided by an appropriate application programming interface. FUrther
on, the language allows sharing of the database among normal form SQL ap
plications and complex object applications. SQL/XNF provides sub-object
sharing and recursion, all based on its powerful composite object constructor
concept, which is closed under the language operations. SQL/XNF DDL and
DML are a superset of SQL, and are downward compatible with SQL.

In this paper we concentrate on query processing issues for composite
objects. We discuss the main ideas underlying the integration of composite
object processing into a relational framework and contrast this to common
relational query processing. We also report on the realization of these concepts
in our implementation of SQL/XNF as an extension to the Starburst DBMS.

2.2
Motivation

Complex applications, such as design applications, multi-media and AI
applications, and even enhanced business applications ask for a database pro
cessing model that is different to the conventional ones. The idea is to have a
processing model that naturally supports in each state of application process
ing the actual processing context or 'working set.' Such a context defines
the amount of data needed to perform a specific application task. E.g., VLSI
design is done one step at a time using different tools: a synthesis tool is used
to transform logic description of a chip into chip structure data, which is then
used by the planning tool to design the floorplan that, in turn, is fed into

2.2. Motivation 37

· the chip assembly tool in order to get out the mask layout that is needed for
chip manufacturing. The process model adopted by each tool is characterized
by first reading its input data, then working in this context, and finally writ
ing its output data (that in most cases is then input data of the subsequent .
tool that takes over). Similar scenarios exist in mechanical CAD, geographic
applications (i.e., geographic information systems), and even in software en
gineering: each tool selects its input data (e.g., the surface geometry of an
airplane, the street maps for the downtown area of Berlin, the software mod
ule ' index manager' of DB2), i.e., context data of say lOMBytes, out of a
shared database in the TBytes range covering all the applications' CAD data.

Zooming into the data that defines a context for a tool, we recognize
that a context consists of components that are related to each other accord
ing to the applications' semantics. E.g., the (input) context for the chip
planning tool describes the structure of the 'cell under design' consisting of
components defining the sub-cells together with their area estimations, and
components giving the net data as well as the pin data that define the connec
tions between the sub-cells relating sub-cell components through pins on the
same net (Wiederhold 1986]. Similarly, geometric models [Mortenson 1985}
like CSG (constructive solid geometry), BREP (boundary representation),
or spline-based geometry representations are used in CAD applications, and
topology-based models [Guenther 1991] prevail geography applications in or
der to represent the context data. This analysis characterizes a context as
a so-called composite (or complex) object (shortly, CO) consisting of
several components (possibly from different types) with relationships in be
tween. In the following, we prefer the notion of composite object in order to
emphasize that a CO is composed of multiple interrelated components; still
it can show a complex inner structure that is transparent at the CO level. Of
course di~erent tools and applications may have different COs that may over
lap. Therefore COs are mostly 'views' (object views or structured views)
composed from a shared database.

The provision of a context requires from the application program the
specification of the context data (and data structures) and from the underlying
database management system (DBMS) efficient delivery of the component and
relationship data. This means for the DBMS to provide, on the one hand, an
adequate interface that allows. the application program to define its contexts
in form of declaratively (and not procedurally) specified composite objects.
On the other hand, the DBMS has to extract the CO, i.e., its components
and relationships, out of the shared database through efficient subsetting,

38 Chapter 2. Integration of Composite Objects Into Rela tional Query Proc.

i.e., qualification, and structuring. Once a context is extracted (and loaded),
the application program works with the context data, mostly navigating by
means of the relationships defined. When the context is properly defined there
is no object-faulting any more. This contrasts the processing model most
object-oriented systems apply, that is, after having specified some object as
'starting points' the applications navigate over the object network using the
relationships (pointers or references) installed. There, object-faulting is not
precluded as is in the context-based processing model described above.

Since relational technology is generally accepted and widely used in tra..:.
ditional as well as in engineering applications, a lot of data is already stored
in relational data bases and accessed through those applications. Even ._~ore
data is being transferred from fiat files and navigational DBMSs such as IMS
and DBTG-type systems to relational systems. The major goal and driving
force in doing this is sharing of data between multiple application types, i.e.,
among traditional applications and CO applications.

From a practical point of view there is a need to bridge the gap between a
relational store (i.e., data stored in relational DBMSs) and the CO abstraction
level mentioned before. ·The XNF approach provides solutions to this problem
offering a CO interface to relational data and handling CO at the application
interface. In order to do this, the XNF approach must comprise

• a sound language and data model that unifies composite objects and
relational concepts,

• an application programming interface that adequately supports naviga
tion and manipulation, and

• an efficient implementation approach . .

In this paper we concentrate on query processing issues for composite objects.
We discuss the main ideas underlying integration of composite object process
ing into a relational framework and contrast this to common relational query
processing. We also report on the realization of these concepts in our im
plementation of SQL/XNF as an extension to Starburst DBMS [Haas 1990).
The rest of the paper is organized as follows: Section 2.3 describes the XNF
approach to composite objects. Then, in Section 2.4, we repeat the main
steps and issues in relational query processing, and Section 2.5 talks about
processing of CO queries. Issues in query representation as well as rewrite
optimization are the main focus. Section 2.6 draws a line to related work and

2.3. SQL/XNF Approach to Complex Objects 39

gives an outlook to future work after having summarized the main achieve
ments of XNF and its realization in Starburst. For the course of the paper it
is assumed that the reader is familiar with SQL syntax and semantics [ISO
ANSI 1989].

2.3
SQL/XNF Approach to Complex Objects

In bridging the gap between relational data and CO abstraction, XNF
has to handle COs that are stored in relational DBMSs. This means, the
components and the relationships that are part of a CO definition must in
corporate the relational data or, speaking the other way around, components
and relationships have to be derived from the relational data, i.e., from the
tuples stored in flat tables. In the words of [Lee 1990], the COs have to be
instantiated form relations by evaluating view queries.

The major achievements of the XNF approach to be described in this
chapter are:

• sharing of components both within and between objects, thus permitting
an (component) object to play multiple roles in relationships to other
or the same objects,

• recursive COs, where an object may have subobjects that, in turn, may
have subobjects, arbitrarily deep, enabling, e.g., bill-of-material process
ing or management of organization hierarchies,

• CO views, allowing different COs to be defined over the same shared
data.

• retention of benefits from the relational model, like declarative queries
over COs, closure of the model w.r .t. its query language, and provision
of a consistent extension of the relational data model,

• CO abstraction, that is, data contained in existing relational DBMSs
can be presented to applications at an appropriate level of abstraction.

2.3.1 Basic Concepts, Syntax, and Semantics

Instead of the relational view concept (with its by default normalized
result relation), we would rather apply a more ER-likeconcept [Chen 1976)

40 Chapter 2. Integration of Composite Objects Into Relational Query Proc.

and have the components of the view kept separate and the relationships in
between made explicit in order to reach the desired CO representation. Even
modern systems like IBM's Repository Manager or the set ofBachmann's tools
[Bachman 1989] rely on an ER-based view to the applications' (composite)
data. This way of thinking is at the heart of the XNF approach and em
bodied in XNF's powerful CO constructor that constitutes an XNF query.
These queries define CO v:iews (i.e., structured views), which can be seen as
an extension to the SQL view concepts to:vards multi-table views that are or
ganized as collections of inter-related rows. In the context of XNF, these CO
views are known as XNF views that are defined through XNF queries. U n
less otherwise noted, both terms are treated interchangeable in the following
discussions. The basic building blocks for an XNF query are:

• XNF tables are nothing different than tables in the relational model.
These normal form (NF) tables have attributes and are populated-by
corresponding tuples that are derived from the underlying (relational)
database. In general table expressions are used to define these tables.
For graphical representation, tables are drawn as nodes in the form of
rectangles.

• XNF relationships are similar to the relationships known from the
ER approach but, analogously to XNF tables, derived from the base
data. A relationship is defined between its partner tables by means of a
predicate. In contrast to many ER models, we allow n-ary relationships
since we can relate more than two partner tables in a relationship. The
notion of roles (same as in ER models [Chen 1976]) is known, since part
ners can play certain roles w.r.t. a relationship. In addition there might
be attributes defined for the relationship. Relationships are populated
by so-called connections that represent the relations existing between
the corresponding partner tuples. Speaking in relational terms, we can
say that connections are tuples that show the foreign keys of the partner
tuples they reference and the relationship attributes if defined. Drawing
this analogy is very useful, because we can treat relationships very sim
ilar to tables. For this reason, the term table or component table refers
to both, unless otherwise noted. For graphical representation purposes,
relationships are drawn as small black diamonds connected to the nodes
that represent their partners.

The CO constructor is a proper extension to SQL by a compoundquery
statement that allows the specification of a collection of tables, populated

2.3. SQL/XNF Approach to Complex Objects 41

with the records one needs to see, and of the relationships among the resulting
records. An XNF query is identified by the keywords 0 UT 0 F and consists
of the following parts:

• definitions for the component tables, identified by the keyword SELECT,

• definitions for the relationships, identified by the keyword RELATE,
and

• specifications for the output, identified by the keyword TAKE.

Component and relationship definitions make out XNF's CO construc
tor. With this, an XNF query simply reads like this:

'OUT OF ... the CO (that is constructed by the CO constructor)
TAKE ... the parts projected (that define the resulting CO)'

As an introduction to XNF syntax and semantics, let us discuss the example
CO 'deps-k55' given by Figure 2.1. The upper part of Figure 2.1 shows on the
left the schema and on the right the instance level for CO 'deps-k55', whereas
the lower part of Figure 2.1 gives the corresponding query that defines this
compelx object.

As shown by this sample XNF query, the nodes, i.e. the component
tables, are derived through standard SQL queries. Syntactic shortcuts (see
definition of xemp, xproj, and xskills component table) are provided for sake
of brevity. In our example the base tables departments (DEPT), employees
(E1IP), projects (PROJ), and skills (SKILLS) are used for derivation. The
relationship tables that make up the edges show a different syntax, but basi
cally also apply SQL queries for their definition. In order to read the query in
a convenient way, we have given role names (VIA clause) to the parent part
ners of the relationships. Based upon the relationship predicates (given in the
WHERE clauses), the relationships (identified by the key word RELATE)
defined establish for any given department connections to the employees it
EMPLOYS, to the projects it HAS, and to the skills that either one of its
employees POSSESSES or one of its projects NEEDS, or both.

By means of the USING clause, a relationship may use data not only
from its partner tables but also from other tables. For example, the two re
lationships empproperty and projproperty define many-to-many relationships
that are derived from the mapping tables EMPSKILLS and PROJSKILLS.
The EMPSKILLS (PROJSKILLS) table holds information about skills pos
sessed (needed) by an employee (project). Mapping tables are the typical
way of modeling many-to-many relationships in relational DBMSs. Therefore,

42 Chapter 2. Integration of Composite Objects Into Relational Query Proc.

these tables are only important for the processing of the relationship and for
the establishment of the derived connections, but they are not needed in the
result of the XNF query, hence they do not appear at the CO abstraction
level.

FIGURE 2.1

Schema Graph Instance Graph

d1

;/~
., t2 p1 p2

/\IX ., X 13 ••

XNFQuary

CREATE VIEW deps-k55
AS
OUT OF xdept AS (SELECT ' FROM DEPT WHERE loc ='ARC'),

xemp AS EMP,

TAKE'

xproj AS PROJ,
xskills AS SKILLS,
employment AS (RELATE xdept VIA EMPLOYS, xemp

WHERE xdept.dno "'Kernp.edno),
ownership AS (RELATE xdept VIA HAS, xproj

WHERE xdept.dno "xproj.pdno),
empproperty AS (RELATE xemp VIA POSSESSES, xskills

USING EMPSKILLS es
WHERE xemp.eno • es.eseno AND

es.essno • xskills.sno),
projproperty AS (RELATE xproj VIA NEEDS, xskills

USING PROJSKILLS ps
WHERE xproj.pno • ps.pspno AND

ps.pssno • xskills.sno)

definition ot
component
tables

definition of
relationship
tables

Sample CO 'deps-k55'

Retrieval of such an XNF CO results in retrieval of the tuples defined by
the XNF tables and provision for the relationship information defined by the
XNF relationships. Of course not all the tuples of XNF tables are meaningful
for a specific CO. In the above example, obviously, only those tuples, for
which there is an existing connection, are meaningful components w.r.t. the
CO. That is, only those components that are reachable within the CO are

2.3. SQL/XNF Approach to Complex Objects 43

important for the CO. This concept, named reachability, restricts to only the
relevant components of a CO. Reachability says that each component of a
CO must be reachable from another component of the same CO through a
relationship instance that also has to exist in that CO. The so-called roots (or
root components, e.g. department tuples (xdept)) are reachable by definition,
since they define the anchors of the COs.

So far, an XNF CO specifies a heterogeneous set of records with dif
ferent record formats. If a component tuple is multiply used within a view
then it exists, of course, only once in the view, but it participates in multiple
connections (possibly from different relationships). Therefore the important
notion of object sharing is a fundamental part of the XNF CO concept.
Sharing of components can occur either because of (n:m) relationships (then
it is also called instance sharing) or because of overlapping relationship def
initions (then called schema sharing). Both types of sharing are naturally
incorporated into XNF and can coexist. Schema sharing can be made visible
by the so-called schema graph, which is built from the XNF tables used
as nodes and the XNF relationships being the edges (see Figure 2.1). The
graph visualizes the structural (as well as schema or type level) aspects of the
corresponding CO. It is a very simple but expressive presentation form that
is very useful when working with queries involving XNF views. Due to the
teachability feature, there is a notion of parent and child partners w.r.t. rela
tionships. This defines a direction to the relationships, which in turn makes
the whole schema graph a directed graph. The arrow that is used to draw the
edges gives the direction. Nodes having no incoming edge (i.e., these nodes
are no child partners in any relationship) are termed root nodes. If the schema
graph shows cycles, the XNF query specifies a recursive CO, otherwise it
defines a non-recursive CO. Those nodes having more than one incoming edge
are shared between their partners. This makes up schema sharing and it is
referred to as non-disjoint (shared) COs. At the instance level we can
view the nodes' tuples and the relationships' connections as being organized
in a so-called instance graph that is built in analogy to the corresponding
schema graph (see Figure 2.1).

XNF COs may be combined, projected, and restricted. Combination is
simply done by definition of a relationship between any node of one CO and
a node of another. Projection is defined by listing all the nodes and combin
ing relationships to be retained. The star '*' is used as a special syntactic
construct for projection of all the components with their attributes and all
the relationships defined. Restriction can be done through additional predi-

44 Chapter 2. Integration of Composite Objects Into Relational Query Proc.

cates on the node tables and the relationships. All retrieval and manipulation
operations of the XNF language work at the XNF level, taking into account
the given graph structure and the heterogeneous tuple set. Since the result of
an XNF query consists of a set of component tables and relationship tables,
an XNF query (or XNF view) can be used as input for a subsequent XNF
query or view definition. Because all operations stay in the framework de
fined by XNF queries (or XNF views), the model is closed under its language
operations.

2.3.2 API for XNF
Once an XNF query is processed and the CO consisting of components

and relationships has been extracted, the application programs want to work
with the CO through an adequate application programming interface (API)
that supports manipulation and navigation along the given relationships. At
the moment two kinds of AP!s are envisioned:

• The structure loader loads the data in the desired format into an
application-provided data space. This supports applications that, for
some reasons, have specific format requirements. Manipulation and
browsing of the CO is done by mechanisms provided in the applica
tion programming environment, e.g., in a C++ environment browsing
can be efficiently accomplished by pointer dereferencing.

• Alternatively, a cursor-based API allows for individual component
oriented access. Here, each root node has a cursor associated that can be
OPENed and FETCHed in order to produce successive instances of the
root node. In addition, direct as well as indirect child nodes will have
also cursors attached that are automatically (re-)OPENed with each
FETCH from its parent cursors. Using these (hierarchical) cursors, the
entire CO can be traversed.

Of course there are other kinds of API conceivable and currently under
investigation, but for the purpose of this paper the above given abstract view·
to a CO API is sufficient.

2.3.3 Implementation Strategy and Overview
As shown in Figure 2.2 SQL/XNF can be seen as a language proces

sor that creates COs and their constituting components and relationships by
derivation/instantiation from relational data. Likewise to sharing of the (NF)
database between traditional SQL applications and XNF applications, these

2.4. Relational Query Processing 45

two types of applications do also share their base 'relational engine' (that is
the DBMS software, e.g., an SQL DBMS). This kind of architecture allows
on the one hand the traditional SQL application to run unchanged in its
known environment. On the other hand, the XNF application can work at
the CO level through the XNF interface that is realized by the XNF language
processor. XNF queries are translated to (optimized) NF queries that are
executable by the underlying relational engine. This way, XNF's CO process
ing is integrated into the relational framework (not an on-top solution) , thus
benefiting from the wealth of available relational technology (e.g., representa
tion structures for queries, query rewrite and optimization, storage and access
structures etc.) .

2.4
Relational Query Processing

Before talking about query processing for (XNF) COs, we want to give
a better understanding of relational query processing. As our sample system,
we use the Starburst Extensible Database System that is best described in
[Haas 1990]. Most interesting are the relational language processor being
described next and the internal representation structure for queries that will
be presented thereafter.

2.4.1 Starburst's Language Processor CORONA
Processing of the data manipulation language is done by first, compila

tion of the query, and secondly, execution. Starburst consists of .two compo
nents that match these two stages: the query language processor CORONA
[Haas 1989], and the data man-ager CORE [Lindsay 1986]. CORONA com
piles queries (written in an extended SQL version) into calls to the underly
ing CORE services to fetch and modify data. Roughly speaking, CORE and
CORONA correspond to System R's [Astrahan 1976] RSS (Relational Storage
System) and RDS (Relational Data System).

As depicted in Figure 2.3, there are five distinguishable stages of query
processing in CORONA; each stage is represented by a corresponding system
component. An incoming SQL query is first broken into tokens and then
parsed into an internal query representation called Query Graph Model
(shortly QGM). Only valid queries are accepted, because semantic analysis
is also done in this first stage. During query rewrite, the QGM representation
of the query is transformed (rewritten by transformation rules) into an equiva-

46 Chapter 2. Integration of Composite Objects Into Relational Query Proc.

~~~~=~====== SQL/XNF interfac 

SOL interface r----''--"IIJ.Iitii&B reL>:i:::~::::ce 
(SOL-API) (internal) 

FIGURE 2.2 

SOL OBMS 
(relational engine) 

General Architecture of the SQL/XNF Language Processor 

lent one that (hopefully) leads to a better performing execution strategy when 
processed by the subsequent stage of plan optimization. Plan optimization 
chooses a possible execution strategy based on estimated execution costs, and 
writes the resulting Query Execution Plan (QEP) as the output of the compi
lation phase. This evaluation plan is then repackaged by the plan refinement 
stage for more efficient execution by the Query Evaluation System (QES). At 
runtime QES executes the QEP against the database. Thereby, each QES 
routine interprets one QEP operator, which takes one or more streams of 
tuples as input and produces one or more streams as output. 

2.4.2 Starburst's Query Graph Model 

The query graph model is an internal semantic network that describes 
the query during all stages of compilation. Since Starburst was designed to 
be an extensible database system also w.r.t. language extensions, the design 
of QGM had to be able to cope with these kind of extensions. Therefore 
orthogonality and flexibility were among the cornerstones of the QGM design. 

From a logical point of view QGM can be understood as a kind of entity-



2.4. Relational Query Processing 4 7 

SOL query 

Data Flow 
---+-

Parsing & Semantic Checking 

Control Flow 

9> 

Plan Optimization 

Query Refinement 

Compile-Time 
· R" u;;: 'iT.tie ·· · ·· · ·· · · · · · · ·· · ·· · · ·· · · · · · · ·· · · ·· · · · ··· · · ·· · · ···· · · · · · · · · · · · · · ···· ·· ··· · · ··· · · · ··· · · ····· · · · ··· · · · · ··· · · · · ·· · · 

l
_f--____ ___.,_ 

Query Evaluation System •·• ...::::==::::::.. 

FIGURE 2.3 
Stages of Query Processing 

relationship model that maintains attributes of query entities (e.g., base ta
bles, derived tables, columns predicates) and the relationships in between 
(e.g., columns belonging to tables, predicates defined over columns and con
stants, predicates restricting tables). Thus, QGM can be regarded as the 
'schema' for a main memory database that stores information about a query. 
For a complete description of QGM and of the query transformations it per
mits for rewriting, we refer to (Hasan 1988]. Here we want to introduce some 
basic concepts through a detailed discussion of the Star burst SQL query and 
its corresponding QGM structure given in Figure 2.4. 

QGM is based on the notion of table abstraction. That is, queries are 
represented as a series of high level operations (e.g., SELECT, GROUP BY, 
INSERT, UPDATE, DELETE, UNION, INTERSECTON) on either base ta
bles (i.e., physically stored ones) or derived tables. An operation consists of 



48 Chapter 2. Integration of Composite Objects Into Relational Query Proc. 

a head and a body: the head describes the output table and the body shows 
how this table has to be derived from other tables the body refers to. In our 
graphical notation we represent the operation by a box that consists of a big 
rectangle that is labeled with the operation's name and that also covers the 
operation's body, and small rectangles on the top that make up the opera
tion's head. Scanning a table produces a stream of tuples that has properties 
such as order, duplicates or no duplicates, cost etc., which are used by the 
optimization step. 

FIGURE 2.4 

SELECT q1.dno, q1.budget, asal, ssal 

FROM dept q1, 

FROM emp table e 

dt(asal, ssal) AS (SELCT AVG(sal), SUM(sal) } 

WHEREq1.dno = emp.dno) q2 

WHEREq1.budgat > q2.ssal 

0 

-6 result 

Select 

\ 
dt \ AVG SUM Group By 

\ 
\ 

\ 
\ 

\. 

q4 

Select 

·---q1.dno" q3.dno q3 

dept 

: Base Table: . . 
emp 

: Base Table: 

Sample Query and Corresponding QG M Structure 

The query from Figure 2.4 retrieves for each department (range vari
able ql over base table dept) the department number (dno) and depart
ment budget (budget) as well as the computed average salary (asal) and the 



2.4. Relational Query Processing 49 

sum of all salaries (ssal) of the employees working for this department, if 
the department budget is greater than the derived sum of salaries. This 
query uses the language concept of derived tables: the table dt is such a 
derived table that is computed by a table expression given by the inner SE
LECT ... FROM ... WHERE construct that, in turn, uses the correlation concept 
for associating employees to their valid departments. As shown by the range 
variable q2 being defined over table dt, derived tables and base tables are 
treated the same. These logical parts of the query are easily detectable in 
the corresponding QGM graph. The upper QGM box is labeled 'Select' and 
realizes a SELECT operation, which might perform selection, projection, and 
join. This box represents the outer SELECT ... FROM ... WHERE construct. 
The head of this box shows the result table (here the columns dno, budget, 
asal, and ssal) of the query. The body consists of two vertices (called set 
formers) ql and q2 that realize the two table references of the FROM clause. 
These set formers range over their associated tables, i.e., ql ranges over the 
base table dept and q2 over the derived table dt. This is drawn as edges 
(called range edges). The other edge that connects ql and q2 (called the 
qualifier edge and drawn as a dotted edge) gives the join predicate from the 
WHERE clause. The rest of this QGM graph is devoted to derive the table dt. 
The lowest box also labeled 'Select' ranges over the base table emp (indicated 
by the internally introduced set former q3) and retrieves the employees that 
work for the department specified by the qualifier edge that governs the cor
relation to ql, i.e., to the departments. The box labeled 'Group By' uses the 
set former q4 that ranges over the previously discussed table. The operation 
associated with this kind of box is grouping of tuples from the input table 
(referred to by set former q4) and application of aggregate functions (AVG 
and SUM) to each group. 

At an abstract level we can interpret the QGM graph being generated 
like this: For each tuple within the tuple stream that comes out of the 'Base 
Table' box, the result box has to do two tasks. First the derived table dt has 
to be generated w.r.t. the actual department. In order to do this, the 'Group 
By' box has to be evaluated, which needs the output stream from the low
est 'Select' box. This box, i.e., operator, is responsible for selection of those 
employees that relate to the actual department given by the correlation pred
icate. Secondly after table dt has been derived, the join and the qualification 
are performed in order to derive the result table for this query graph. 



50 Chapter 2. Integration of Composite Objects Into Relational Query Proc. 

2.5 
Composite Object Processing 

For a moment let us reconsider the things said before, and then let us 
put the pieces together: From Section 2.4 we have learned how to derive the 
result table from an (SQL) query, and the message from Section 2.3 was that 
COs are instantiated from the under lying relational database by derivation of 
the component node tables and the component relationship tables. So, CO 
processing in a relational framework simply means derivation of the CO's com
ponent tables; and in order to do this, we will use the techniques introduced 
in the previous section. 

FIGURE 2.5 

XNF Extsnsions 
D 

Data Flow -%ntro1Fiow 

Stages of XNF Query Processing 

SQlJXNF query 

2.5.1 Overview of XNF Language Processing 
The XNF language processor (cf. Section 2.3.3) is developed as an ex

tension to Star burst's CORONA. The distinguished stages of XNF query pro-



2.5. Composite Object Processing 51 

cessing are shown in Figure 2.5. Those features that are different to the ones 
used in the traditional Starburst CORONA (and shown in Figure 2.3) are 
shaded and all the common ones are shown unchanged. Figure 2.5 already 
exposes that the XNF language processor is truly an extension to CORONA's 
standard SQL processor. Basically we can distinguish three consecutive steps 
in XNF compilation. In order to emphasize more on the integration of CO 
processing into the relational framework, and for better understanding of the 
specific extensions we explain the corresponding components and their in
going and out-coming data structures. This discussion will clearly disclose 
that the extensions only affect the compilation part: parsing, semantic check
ing, and rewrite as well as the internal query representation (i.e., QGM) have 
to be adapted to XNF needs. 

l. XNF semantic routine processing 
The crucial extension to the language was the CO constructor. Since this 
extension affected the language grammar, both the language parser and 
the semantic checking had to be extended correspondingly. In the same 
way, as the old processor created during this phase the internal query 
representation, i.e., a normal form QGM graph, the XNF processor has 
to create the XNF QGM graph that has to incorporate the XNF query 
semantics. In order to do this, a new operator had to be installed for 
QGM. The purpose of this XNF operator is to reflect the semantics 
of the language's CO constructor. Therefore, this XNF operator had to 
be able to incorporate n> 1 incoming tables and to produce m> 1 output 
tables being the result node and edge tables of the CO constructed. 
For the rest of the paper we will call the QGM for the SQL queries NF 
QGM, and the one that contains the XNF operator the XNF QGM, and 
if the difference between both does not really matter, then we simply 
call it QGM. In addition to this, the top operator had to be adapted, 
too. The purpose of this operator is to deal with query parameters (like 
host variables and query constants) and to provide a basis for the API 
cursors; all QGM graphs have a single top operator. A description on 
how an XNF QGM graph for a sample query looks like will be given in 
the next section. 

2. XNF semantic rewrite 
In this step the translation from XNF QGM and XNF semantics to NF 
QGM and NF semantics has to be accomplished. Speaking in other 
words, this component has to get rid of the XNF operator and replace 



52 Chapter 2. Integration of Composite Objects Into Relational Query Proc. 

it by NF operators. In this step we exploit that the components, i.e., 
the building blocks, of COs are derived tables. 

3. Query rewrite and plan optimization 
Since the previous step already produced a clean NF QGM (that reflects 
the CO query semantics), the resulting compilation work can be done 
by the components from the SQL language processor. That is, the 
now NF QGM graph is taken and transformed by the query rewrite 
component to a semantically equivalent one that, in general, allows more 
efficient evaluation strategies to be chosen for the QEP when being 
processed by plan optimization and query refinement component. All 
these components are shared between the XNF language processor and 
the SQL language processor. 

From a software engineering point of view, we decided to have two query 
rewrite components: one for the XNF part and the already existing one for 
the traditional SQL part. Both components apply the same transformation 
techniques, i.e., rule-based rewriting, and both use the same rule representa
tion mechanism as well as the same rule engine (for more information on this 
see [Hasan 1988]). This decision entailed faster and easier implementation as 
well as a clear distinction of responsibilities: all rewrite transformations that 
must know about XNF context and semantics were packaged into the XNF 
semantic rewrite component, and all others were put into the (NF) rewrite 
component. In result we got less complex tasks to be performed by these 
components. 

2.5.2 Query Representation 
In the first stage of XNF query compilation the internal query represen

tation is built by means of the XNF semantic routines. As already mentioned, 
this XNF QGM uses the XNF operator in order to incorporate XNF query 
semantics. For the XNF query from Figure 2.1 we have shown the correspond
ing XNF QGM graph in Figure 2.6. Again, those parts that are exclusively 
XNF QGM are shaded, while the NF QGM parts are kept un-shaded. In the 
following we will explain how such a query graph is built from a given query. 

Since an XNF query consists of three building blocks, there are also 
three semantic routines associated that construct the final XNF QGM graph 
in three subsequent phases: 

(0) QGM initialization 
When it is recognized by the parser that there is an XNF query (i.e., 



2.5. Composite Object Processing 53 

';I @ ;;:}/ ',ii· ( J~i l \SelectFi t • :: y 
(lEMP hEMPPROJ ~ OEPT tJSKILLSf'-pROJSkiLLSh PROJ 
lBase~abl1 (BaseTablei lllaseTableHBilSeTablej[ Base Tabla·l jBase Tabl4 

predicate p1: {xdept.dno = xemp.edno) 

predicate p2: {xdept.dno = xproj.pdno) 

predicate p3: {xemp.eno = es.eseno AND es.essno = xskills.sno) 

predicate p4: (xproj.pno = ps.pspno AND ps.pssno = xskills.sno) 

FIGURE 2.6 
XNF QGM for the Example Query 

when reading the key word 'OUT OF'), then the initialization routine 
is invoked. This semantic routine initializes QGM by installation of the 
XNF operator, which is drawn as a box labeled 'XNF.' If the query 
is named, then this XNF box gets the query's name; in our example 
the name of the XNF view deps-k55. Similar to the other boxes, the 
XNF box also consists of head and body: the head describes the output 
tables that constitute the XNF CO, and the body shows how these 
tables are derived from other tables the body refers to. Furthermore, 
the initialization routine adds the top operator in form of a box labeled 
'Top.' 



54 Chapter 2. Integration of Composite Objects Into Relational Query Proc. 

(1) Derivation structures for XNF component tables 
The semantic routines within this phase fill out the body of the XNF 
box. Each table definition in the OUT OF clause invokes a semantic 
routine that defines parts of the final QGM. There is a routine for XNF 
tables and another one for XNF relationships: 

• An XNF table is defined as a derived table over some base tables. 
Therefore the corresponding semantic routine creates a 'Select' box 
that refers to the base tables it is derived from. Since these steps 
are in the context of SQL, the semantic routine represents this, 
using NF QGM constructs. For example, the XNF table xdept is 
represented by a 'Select' box (within the body of the XNF box) that 
refers to the base table dept represented by a 'Base Table' box and 
that, in this case, also has a qualifier restricting the departments 
to those with location 'ARC.' 

• An XNF relationship is also a derived table that is always based 
on a table expression. First, we represent the table expression by 
a 'Select' box, and then we derive from that the relationship ta
ble through a 'Select' box that refers to that table expression. A 
relationship's table expression at least has to relate its partner ta
bles through the relationship predicate. For example, the table 
expression for the XNF relationship employment relates the xdept· 
partner to the xemp partner by the relationship predicate, whose 
qualifier edges refer to the xdept and xemp boxes (i.e., tables). 
The 'Select' box labeled employment refers to the 'Select' box that 
represents that table expression, thus defining the derivation of the 

XNF relationship employment. The other XNF relationships are 
constructed the same way. In our example both the empproperty 
and the projproperty relationships refer in addition to their part
ner tables to another table that is used in the corresponding table 
expression. 

(2) Consideration of node and edge restrictions 
In Section 2.3 we have only mentioned that it is possible to restrict XNF 
tables and relationships. This is not exemplified, but the way this works 
out should be clear: these restrictions are simply added as a predicate 
(i.e., as a qualifier edge) to the 'Select' box that represents the subject 
for restriction. 



2.5. Composite Object Processing 55 

(3) Handling projection 
Each element in the TAKE clause is subject to projection. For each 
one, we create an 'output' box (labeled 'Select') that contains all the 
output columns and, in case of relationships, the role and the partner 
information. These output boxes are connected to the 'Top' box, and 
they refer to the boxes that represent the XNF tables and relationships. 
For sake of simplicity, we have omitted to draw all the 'output' boxes. 
But those boxes of the XNF body, which are referred to by 'output' 
boxes, are drawn with an arrow pointing from their head to the head of 
their XNF box. 

The above explanations revealed that the XNF constructor can be represented 
more or less by means of NF -QGM operators. This already shows that the 
XNF extensions fit into the rest of NF QG11, and that it vastly exploits the 
basic building blocks provided by NF QGM. Therefore, interpretation of any 
XNF QGM graph goes similar to the interpretation of an NF QGM graph 
(cf. Section 2.4.2): basically, we can view the (body of an) XNF operator 
as a block that comprises its components, which constitute the CO giving a 
notation for derivation/instantiation the components from the base data. 

For an XNF QGM graph no QEP can be created and with this there is 
also no query evaluation by QES, because neither plan optimization nor query 
refinement can deal with the XNF operator. In order to get into this track 
we have to transform an XNF QGM graph into a semantically equivalent NF 
QGM graph. This is done by the XNF semantic rewrite, as already mentioned 
before. This component first gets rid of the XNF operator, and ~econdly it 
has to install reachability, because when we interpret the body of an XNF 
operator with NF QGM semantics, we then recognize that reachability is 
not manifested. Both transformations are done via corresponding rules that 
are executed by the rule engine, which is shared with NF-based query rewrite. 
After this 'compilation' down to the level ofNF QGM, NF-based query rewrite 
takes over. In our design we clearly separated the rewrites that need to be 
done while XNF semantics is still given from those transformations that work 
on plain NF QGM. In order to cope with the (natural) complexity of XNF 
QGM, we also used some simplification rules that are also known to NF-based 
rewriting: removal of unused boxes, and box merge. The first one cuts a query 
graph down to only relevant and used boxes, whereas the latter one condenses 
the graph. For example, when we look again to Figure 2.6 we can see that 
there are lots of boxes that refer only to one single other box (e.g., the pair 
of boxes that is used for representation of XNF relationships): in most cases 



56 Chapter 2. Integration of Composite Objects Into Relational Query Proc. 

these pairs can be merged into one resulting box. 

2.6 
Conclusion, Outlook, and Related Work 

In this paper we revealed that, from a practical point of view, next gen
eration database systems are under duress for sharing data among traditional 
applications and CO applications. This means that there is a need to bridge 
the gap between a relational store (i.e., data stored in relational DBMSs) 
and the CO abstraction level. The XNF approach provides solutions to this 
problem 

• by offering a CO interface through a sound language and data model 
that unify CO and relational concepts, and 

• through provision of an API handling COs properly at the application 
interface. 

Since the efficiency of the system is crucial, and because relational data and 
relational applications are omnipresent, we decided to base the implementa
tion on the wealth of existing relational technology. That is, we integrated 
CO processing into the relational framework: XNF queries are translated to 
relational queries, optimized, and then executed by a relational engine. In 
order to do this, we basically had to introduce one single operator, the XNF 
operator, and its translation to the level of relational queries. The benefits of 
this approach are manifold and the most important ones are 

• exploitation of proved relational technology as well as acceptance of 

newly developed one, like parallelization in query processing [DeWitt 
1990, Graefe 1990, Lorie 1989, Pirahesh 1990], 

• DBMS software sharing (e.g., compiler, rule engine, QGM, relational 
engine, i.e., query runtime system), and 

• data sharing among relational abstractions and CO abstractions. 

In contrast to our integration approach stands the on-top approach fol
lowed by Wiederhold and described in [Barsalou 1989, Lee 1990]. There an 
object-oriented program is interfaced with databases through instantiation of 

objects from relational databases by evaluation of view queries. The system 
model applied has three elements: the object type model that defines the 



2.6. Conclusion, Outlook, and Related Work 57 

structure of the objects, the relational data model for storage of base data, 
and the view model that contains the relational query and defines a mapping 
between objects and relations. That view model is restricted only to an acyclic 
select-project-join query. Basically this approach is comparable to XNF but 
major differences are obvious. First, XNF has with its CO constructor a more 
powerful view concept (multi-table views), which, secondly, provides an ab
straction level that considerably reduces the final mapping (if needed at all) to 
the application's favorable processing format. With this, XNF does not bind 
itself to only object-oriented application interfaces as is done in [Lee 1990]. In 
contrast, XNF is open to different application environments; this is especially 
important since there are different object-oriented models that need this kind 
of CO support. Thirdly, DBMS software could be considerably shared (and 
not replicated at different processing levels) due to the integration of XNF 
processing and relational processing. Fourthly, viewed from the other side, 
we can use XNF as another (and what we think, better) kind of view model 
within the system model of [Lee 1990], thus profiting from the framework 
defined (i.e., the object type model, the corresponding compiler etc.). 

There are various other approaches to modeling and management of COs 
as extensions to the relational model. Lorie's [Lorie 1984] COs are defined 
by special columns (assigning an identifier to a row, containing the parent 
identifier, and referencing another row). Joins among parents and children 
are supported by system-maintained access paths (called maps) on a per-CO 
basis. Although this approach integrates CO processing into the relational 

l 

framework, its usages are limited because of the restrictions of the data model 
to more or less hierarchical COs that are statically defined in the database 
schema. As liberation from these restrictions and towards more degrees of flex
ibility, we canview the MAD model [Mitschang 1989] that supports network
like as well as recursive COs. This Molecule Atom Data model specifies its 
COs (called molecules) on a reference basis in the CO /molecule query and not 
in the schema. With this, more flexibility is achieved, because COs are now 
similar to views defined over the under lying database by means of a CO query. 
Compared to the XNF approach, the MAD approach is less flexible, because 
the molecule building references must exist in the database, and therefore also 
in the schema; remember that the relationships in XNF can be defined on an 
ad-hoc basis in the query by a predicate. Again, and in contrast to XNF, 
any membership in a MAD relationship must be explicitly specified by refer
encing the two partner tuples. Query processing in MAD [Haerder 1 992] is 
also based on a set of operators, which are different from the known relational 



58 Chapter 2. Integration of Composite Objects Into Relational Query Proc. 

ones due to the molecule semantics applied. Another approach that provides 
more flexibility as compared to Lorie's is the NF2 approach [Schek 1986]. 
By now it is implemented in several prototypes and extended in several ways 
[Dadam 1986, Linnemann 1988, Pistor 1986, Schek 1990]. This nested relation 
approach is targeted towards hierarchical COs by generally placing compo
nents with the parent component. In general, access to sub-components goes 
through the parent. Sharing of components between parents is done by list
ing of foreign keys (or logical references), which implies that access is done 
on a join basis as in relational systems. Flexibility is achieved through spe
cific operations that can flatten out or restructure the nestings given in the 
database schema. Because of these model specific operations, the implemen
tation reflects an extended relational engine. As in the other approaches, and 
in contrast to XNF, membership in a relationship is explicitly set. 

What we call the navigational approach is the way many object-oriented 
systems deal with COs. In most cases they directly represent the relationships 
between the components through pointers mostly defined and managed by 
methods. Of course this approach to CO is not as flexible as XNF's, since on 
the one side only those relationships that are predefined in the static schema 
can be navigated on, and on the other side membership in a relationship 
must be explicitly set. Other approaches to COs [Stonebraker 1991, Hud
son 1989] define their COs through object attributes that are evaluated in 
order to specify the object's sub-components. If query languages are con
sidered (e.g., RELOOP [Cluet 1989]), then these languages show similarities 
to languages like MQL (MQL is the molecule query language of the MAD 
model [Haerder 1992]) and XNF. Therefore, there is considerable confidence 
that query processing concepts for COs play an integral part in 00 query 
processing as well as in query processing for deductive database languages 
[Lanzelotte 1991a, 1991b, Cheiney 1992]. 

Acknowledgements 

The cooperation of the whole Starburst staff is greatly acknowledged. 
Special thanks are due to Bruce Lindsay, Peter Pistor, and Norbert Suedkamp, 
who all helped in our joint effort of getting the good stuff into XNF, while 
streamlining the syntax. G. Lohman improved the optimizer to handle our 
complex queries, and G. Wilson provided valuable implementation experiences 
on his work on an earlier prototype. 



Bibliography 59 

Bibliography 
(Astrahan 1976] Astrahan, M., et al. "System R: Relational Approach to Data 

Base Management Systems." AGM TODS, 1, 1, pp. 97-137. 

[Bachman 1989] Bachman, C. "A Personal Chronicle-Creating Better Infor
mation Systems, with Some Guiding Principles." IEEE Transactions on 
Knowledge and Data Engineering 1, pp. 17-32. 

[Barsalou 1989) Barsalou, T., Wiederhold, G. "Knowledge-Based Mapping of 
Relations into Objects." Computer Aided Design. 

(Cheiney 1992] Cheiney, J., Lanzelotte, R. "A Model for Optimizing Deduc
tive and Object-Oriented DB Requests." In Proc. of Data Engineering 
Conj, Phoenix. 

[Chen 1976) Chen, P.P. "The Entity Relationship Model: Toward a Unified 
View of Data." A CM TODS, 1, 1, pp. 9-36. 

(Cluet 1989] Cluet, S., Delobel, C., Lecluse, C., Richard, P. "RELOOP: 
An Algebra-Based Query Language for an Object-Oriented Database 
System." In First International Conference on Deductive and Object
Oriented Databases, Elsevier, Kyoto, Japan. 

(Dadam 1986] Dadam, P., Kuespert, K., et al. "A DBMS Prototype to Sup
port Extended NF2 Relations: An Integrated View on Flat f'ables and 
Hierarchies." In Proc. of the AGM SIGMOD Conj., Washington D.C., 
Mayu 1986, pp. 356-367. 

[DeWitt 1990] DeWitt, D.J., Ghandeharizadeh, S., Schneider, D.A., Bricker, 
A., Hsiao', H.-I., Rasmussen, R. "The Gamma Database Machine 
Project." Knowledge and Data Engineering, 2, 1. 

(Graefe 1990) Graefe, G. "Volcano, an Extensible and Parallel Query Evalu
ation System." Research Report University of Colorado at Boulder, CU
CS-481-90. 

(Guenther 1991) Guenther, 0., Schek, H.-J. (eds.) . "Advances in Spatial 
Databases." Proc. 2nd Symposium, SSD. 

[Haas 1989) Haas, 1., Freytag, J .C., Lohman, G., Pirahesh., H. "Extensible 
Query Processing in Starburst." In Proc. of the AGM SIGMOD Conf., 
Portland, pp. 377- 388. 



60 Chapter 2. Integration of Composite Objects Into Relational Query Proc. 

[Haas 1990] Haas, L., Chang, W., Lohman, G. et al. "Starburst Mid-Flight: 
As the Dust Clears." Special Issue on Database Prototype Systems, IEEE 
Transactions on Knowledge and Data Engineering, 2, 1, pp. 143-160. 

(Haerder 1992] Haerder, T., Mitschang, B., Schoening, H. "Query Processing 
for Complex Objects." Data and Knowledge Engineering, 7, pp. 181-200. 

[Hasan 1988] Hasan, W., Pirahesh, H. "Query Rewrite Optimization in Star
burst." IBM Almaden Research Center, Research Report RJ 6367. 

(Hudson 1989] Hudson, S.E., King, R., "CACTIS. A Self-Adaptive, Concur
rent Implementation of an Object-Oriented Database Management Sys
tem" A CM TODS, 14, 3, pp. 291-321. 

[ISO-ANSI 1989) ISO-ANSI "Working DraftDatabase Language SQL2 and 
SQL3". 

[Keller 1991] Keller, T., Graefe, G., Maier, D. "EfficientAssemblyofComplex 
Objects." In Proc. of the AGM SIGMOD Conf, Denver, pp. 148-157. 

[Lanzelotte 1991a] Lanzelotte, R., Cheiney, J. "Adapting Relational Op
timization Technology to Deductive and Object-oriented Declarative 
Database Languages." Workshop on Database Programming Languages, 
Greece. 

(199lb] Lanzelotte, R., Valduriez, P., Ziane, M., Cheiney, J. "Optimization 
of Nonrecursive Queries in OODB's." In Second Int. Conf on Deductive 
and Object-Oriented Databases, Munich. 

[Lee 1990] Lee, B.S., Wiederhold, G. "Outer Joins and Filters for Instantiat
ing Objects from Relational Databases through·Views." CIFE Technical 
Report, Stanford University. 

[Lindsay 1986] Lindsay, B., McPherson, J., Pirahesh, H. "A Data Manage
ment Extension Architecture." In Proc. of the AGM SIGMOD Conf, 
San Francisco, pp. 220-226. 

[Linnemann 1988) Linnemann, V., Kuspert, K. "Design and Implementation 
of an Extensible Database Management System Supporting User Defined 
Data Types and Functions." In Proc. of the 14th VLDB Conference, Los 
Angeles, CA. 



Bibliography 61 

[Lohman 1991) Lohman, G., Lindsay, B., Pirahesh, H., Schiefer, B. "Exten
sions to Starburst: Objects, Types, Functions, and Rules." Communica
tions of the AGM, 34, 10, pp. 94-109. 

[Lorie 1984) Lorie, R, Kim, W., et al. "Supporting Complex Objects in a 
Relational System for Engineering Databases." IBM Research Report, 
San Jose, CA. 

[Lorie 1989) Lorie, R., Daudenarde, J., Hallmark, G., Stamos, J., Young, 
H. "Adding Intra-Transaction Parallelism to an Existing DBMS: Early 
Experience." Data Engineering, 12, 1. 

[Mitschang 1989] Mitschang, B. "Extending the Relational Algebra to Cap
ture Complex Objects." In Proc. of 15th Int. VLDB Conj., Amsterdam, 
pp. 297-306. 

[Mortenson 1985] 1viortenson, M.E. "Geometric Modeling." John Wiley and 
Sons. 

[Pirahesh 1990] Pirahesh, H., Mohan, C., Cheng, J., Liu, TS, Selinger, P. 
"Parallelism in Relational Data Base Systems: Architectural Issues and 
Design Approaches." In P.toc. of the Int. Symposium on Databases in 
Parallel and Distributed Systems, Dublin. 

[Pistor 1986] Pistor, P., Andersen, F. "Designing a Generalized NF2 Data 
Model with an SQL-type Language Interface." In Proc. of 12t~ Int. Conf 
on VLDB, Kyoto. 

[Schek 1986) Schek, H.J., Scholl, M.H. "The Relational Model with Relation
Valued Attributes." Information Systems, 2, 2, pp. 137-147. 

[Schek 1990] Schek, H.-J., Paul, H.-B., Scholl, M.H., Weikum, G. "The DAS
DBS Project: Objectives, Experiences, and FUture Prospects." In IEEE 
Transactions on Knowledge and Data Engineering, 2, 1, pp. 25-43. 

[Stonebraker 1991) Stonebraker, M., Kemnitz, G. 'The POSTGRES Next
Generation Database Management System." In Special Issue on Database 
Prototype Systems, IEEE Transactions on Know ledge and Data Engi
neering, 2, 1, pp. 78-93. 

[Wiederhold 1986) Wiederhold, G., El Masri, R. "The Structural Model for 
Database Design." Entity-relationship Approach to System Analysis and 
Design, North-Holland, pp. 237-257. 



62 Chapter 2. Integration of Composite Objects Into Relational Query Proc. 

(Zdonik 1990] Zdonik, S. Maier, D. ed. Readings in Object-Oriented Database 
Systems, Morgan Kaufmann Publishers. 




