
PRIMA-
A Database System Supporting Dynamically Defined Composite

Objects

Michael Gesmann, Andreas Grasnickel, Theo Harder, Christoph Hi.ibel,
Wolfgang Kafer, Bernhard Mitschang, Harald Schoning

Sonderforschungsbereich 124, University Kaiserslautern, P.O. Box 3049
W-67 50 Kaiserslautern, Germany

{gesmann, grasnick, haerder, huebel, kaefer, mitsch, schoenin}@informatik.uni-kl.de

PRIMA [1] is a non-standard database system developed at the
University Kaiserslautern. Its major purpose is the support of engi­
neering design applications, such as VLSI design and software en­
gineering. The applications require tailored application-dependent
interfaces which, however, all share basic notions like that of a
composite object. Hence, the approach of PRIMA is to offer an ap­
plication-independent complex-object interface (the molecule­
atom data model, shortly called MAD model [3]) and to provide
means to easily augment this interface by application-dependent
functionality. In the following, we will concentrate on the MAD
model and its implementation.

The MAD model allows for the dynamic definition of complex
object types (called molecule types) at query time. These molecule
types together with the database induce sets of molecules which can
be retrieved and manipulated by the MAD model's query language
MQL. Molecules are built from atoms, which are stored in the da­
tabase. Atoms are interconnected by bidirectional links, thus form­
ing an undirected network of atoms. The molecule type defmition
specifies a template which is applied to this network, forming di­
rected subgraphs (molecules) thereof. Each molecule is a coherent
directed graph with exactly one root (root atom type). Molecules
may have a hierarchical, a network-like, or a recursive structure [5].
They may be disjoint or not-disjoint. This molecule definition facil­
ity is a basic building block to formulate composite object queries
which, in turn, define molecule types that can be used in other que­
ries (closure of the data model [4]).

The MQL query is structured in accordance to the SQL lan­
guage. The molecule type definition is done in the FROM clause. A
graph-defining notation is used, consisting of"-" which means fol­
low a link between the building blocks on both sides of the "-" in
left-to-right direction, and parentheses and commas to express
branches and intersections. The building blocks may consist of
atom types, predefined molecule types, or MQL queries. For exam­
ple, the molecule type definition A-(B,C) means: for each atom of
type A, follow all links leading to atoms of type B or type C. The
result is a set of directed graphs, one for each atom of type A exist­
ing in the database. Each graph contains one atom of type A, and all
atoms of types B and C which are connected to this A atom in the

5

database. The molecule set defined in this way may be restricted by
a condition in the WHERE clause. A projection may be specified in
the SELECT clause.

The implementation of PRIMA is designed to exploit coarse­
grain parallelism [2]. For this purpose, PRIMA consists of a static
set of multi-tasking processes, each possibly residing on another
processor. Processes use shared memory for communication when­
ever possible, otherwise they employ a message passing mecha­
nism. Obviously, this concept leaves a lot of freedom in con figuring
the system. One has to decide, how many processes for each func­
tionality shall be used, and how they shall be distributed over the
available processors.

In the video, we illustrate some main features of the MQL re­
trieval facilities. Furthermore, we sketch the implementation of the
MAD model. Finally, we present an analysis tool which allows for
monitoring the behavior of our distributed system. This tool is used
to evaluate configuration decisions and as well as to demonstrate
the dynamics of the overall system.

References

[1] Harder, T., Meyer-Wegener, K., Mitschang, B., Sikeler, A.:

PRIMA - A DBMS Prototype Supporting Engineering Appli­
cations, in: Proc. 13th VLDB, Brighton, 1987, pp. 433-442.

[2] Harder, T., SchOning, H., Sikeler, A.: Parallelism in Processing
Queries on Complex Objects, in: Proc. Int. Symp. on Databas­
es in Parallel and Distributed Computing, Austin, TX, 1988,
pp. 131-143.

[3] Mitschang, B.: Towards a Unified View of Design Data and
Knowledge Representation, in: Proc. 2nd Int. Conf. on Expert
Database Systems (EDS), 1988, pp. 33-50.

[4] Mitschang, B.: Extending the Relational Algebra to Capture
Complex Objects, in: Proc. 15th VLDB, Amsterdam, 1989,
pp. 297-305.

[5] Schoning, H.: Integrating Complex Objects and Recursion, in:

Proc. 1st Int. Conf. on Deductive and Object-Oriented data­
base Systems (DOOD), Kyoto, 1989, pp. 535-554.

