
On Structuring Primitives and Communication
Primitives for Design Environments

Norbert Ritter, Bemhard Mitschang, Michael Gesmann, Ardreas Grasnicket. Theo Htlrder, Clarence Huff,
Christoph Hubel, Wolfgang K/lfer, Harald Sch~ning, Bemd Sutter

Department of Computer Science
University Kaiserslautem

P.O.Box 3049
6750 Kaiserslautem. Germany

e-mail:{ritter. mitsch, ••.• sutter}@informatik.uni-kJ.de

1. Introduction & Motivation
The evolution of CAD systems [HNST90) can be described In several stages which reflect an Increasing
effort for system Integration. lt starts from a file-and-translator approach evolving to a data-integrated tool
environment, and finally reaching the stage of a data-integrated design environment for CAD (sometimes
also called CAD Framework). In the following we wiU detail some aspects of these stages.

The first step toward CAD Frameworks Is (:haracterized by a set of design tools which either communicate
through data/file translation or use a common lntennedlate fonnat (EDIF, STEP) to simpfify data ex
change. Each tool has to handle everything on its own, I.e. data management and data access, version con
trol, communication. and all cases of failure handfing. For the CAD system user. I.e. the designer. there Is
no system support w.r.t. design management. design methodology, etc.; he has to keep all these design
specific Issues and strategies In his mind.

While the CAD tools themselves are essential to the design process, the management of deSign data and
Its presentation to the tools In a useful and efficient form has become a major Issue. With the success of
database management systems (DBMS) In commercial and business environments one tried to employ
these systems also for design data management. Quite soon, however,lt became clear that data definition
and data manipulation capabifities of conventional DBMSs are not po~erful enough to satisfy the require
ments set by engineering design data (Si80, HA69}. This deficiency triggered considerable re~arch leading
to the development of advanced OBMSs fCACM91), which cover the ~eling and management Issues ei
ther by extensions to the relational model or by some kind of object orientation.

Employing a OBMS leads to a data-integrated tool environment. where the responslblJity for data or even
version management Is taken away from the tools and shifted to the Integrated data ·repository. Usu·
ally the design/version data is extracted from the database (Checkout operation) and loaded Into main mem
ory close to the tool application. After the tool completes Its work on this data set, the changes are propa
gated back to the database (Checkin operation). Thus, tool data management Is considerably simpUfied,
while the designer's task stays unchanged: still. it Is on him to keep track of an design-specific Issues and
to control the progress of design.

lt Is the next generation of CAD environments, the so-caned data-integrated design environments. which
concentrate on sirf1)fifying also the work of the designer, I.e. providing services that offer support for de
sign management. design methodology, etc. Hence, work can be shifted from the designer to the system.
For example,lt Is now possible to specify a 'recipe• that models a certain design methodology. In order to
do this, adequate structuring primitives and communication primitives that help In organizing communica-

1

tion, cooperation, and managing the design process have to be developed and provided by the design en
vironment. Of course, there are other important services, e.g. tool integration and user mode ling that can
simpfify the CAD system admnistrators's task.

The major issue of our work is the conceptuaUzation of the different kinds of activities having to be carried
out during the overall design process w.r.t. their different requirements. We have to distinguish between at
least two kinds of activities reflecting specific levels of design decisions. At a higher level the administrative
part of design work has to be. supported, focusing on the description and placing of design orders and the
synthesis of partial results. A lower level has to support the organization and execution of complex objects
processing, I.e. tool executions. In the course of this paper we will concretize adequate concepts for mod
e ling those· activities by examining their properties such as their notion of consistency, their Interactions,
their internal structures as well as the failure handUng mechanisms Including conflict resolution.

Sections 2 and 3lntroduce structuring primitives and comm.mlcation primitives that abstract from concrete
design tools, thus providing generic facifities. We will analyze their properties and usages as a basis for
mode ling and managing the design process. In Section 4 some aspects of transaCtion processing and fail·
ure handling in our data-integrated design environment will be sketched. The last section will give a conclu·
si on and an outlook to further work.

2. Structuring Primitives
Obviously, the primitives to be supported by a data-integrated design environment are derived from the
comprehension of the design process being characterized by goal orientation. hierarchical refinement. steP
wise improvement as well as team orientation and cooperation. The concepts discussed In this section re
flect the first three of these characteristics while the last two are the Intension for providing communication
primtives which will be discussed In the next section.

Design Activities

The overall goal ol the design process Is to come up with a design object (DO) meeting aU requirements
specified. In general, DOs are composed of several subordinate design objects, thus spanning a DO hler·
archy, which provides a natural basis for further structuring of the design process. According to the decom
position of the DOs, the design process Is partitioned Into a hierarchy of design activities (DA). The task
of a DA is the derivation of a DO obeying the design specification given by a set of required features
[Ka91J.

Fig. 1 depicts a simplified DA hierarchy wiih the responsibilities (shown as arrows) of the Included DAs for
parts of the related DO hierarchy. The operation lniLDesignallows for the Initiation of a design process by
the creation of the top-level OA (DA1ln our example). lt requires a schematic description of the according
DO (here 001) and the design specification describing the goal of the overall design process Initiated. In
the sirrplest case a feature In the design specification can force the value of an elementary object's property
to belong to a certain range of the underlying domain. A more complicated feature can express the need
that the object under design has to pass a test tool successfully. In adcfrtion to DO description and design
specification a designer (or a group of designers) has to be assigned to the DA, who has to control re spec·
tively to carry out the work. Due to sirrplicity of our explanations In this paper we will consider the DAs as
the active units of th~ design process abstractirig from designers work. During its efforts to reach the design
goal a DA may delegate parts of Its own design order. This has to be done by creating a sub-DA. The op
eration Create_Sub_DA requires a schematic description of the DO and a design tpecification as Input pa
rameters, too. The sub-DAs' specification constitutes a subgoal of the super-DA's design goal and the DO
of the sub-DA has to be a part of the super-DA's DO. The execution of the Create_Sub_DA operation Im
plicitly establishes an occurrence of the relationship type which we call delegation. The delegation Is an

2

multi-level relationship type spanning the DA hierarchy. In our example (Fig. 1) DA1 has created the sub
OAs OA2 and OA3 with the order to design the parts 002 and 003 of the aggregate 001. In the same way,
OA2 has delegated parts of its work. We see, that the super-DAs in our example splitted their design order
completely and delegated the sub orders to their sub-OAs. Their own work remains the control of the design
work in the subordinate part of the DA hierarchy and the integration of the results de~vered by the sub-DAs.
The facilities for controlfing their sub-OAs' work will be explained in section 3.

DA-Hierarchy Extended DO-Hierarchy

0 OA

delegation relationship

Fig. 1: Sample Structuring of the Design Process

Design Operations

0 -
0

elementary object
structural relationship
complex object

Mostly, design tools are used to accorfl)ish the design task attached to a DA. In order to abstract from a
specific design tool, we can the action performed design operation (DOP). DOPs are used to achieve step
wise i"l>rovement of (pre&rrinary) results, which are represented as design object versions (DOV). A
OOP reads several DOVs and writes a newly created one. In this way a derivation graph arises organizing
the OOVs created within the scope of the OA (KS92]. For example, DA4 In Rg. 1 manages a derivation
graph organizing the versions of 004. Based on the number of fulfilled features (w.r.t. the design specifica
tion of the OA) a OOV can be assigned a certain level of design 'quality'. We distinguish them as non-qual
ified, partly-qualified and fully-qua6fied DOVs. The quality state can be detennined by the Evaluate opera
tion. This operation also allows for the recognition of the final stage of the DA which is reached with the der
ivation of at least one fully-qualified DOV. DOVs are managed by our integrated data repository using
checkin/checkout operations. The DOVs organized in the derivation graph of a super-OA are a synthesis of
oovs deUvered by sub-DAs and the results of not delegated parts of the design work of the super-OA. Note.
that further work on a DOV constituting a synthesis of fully-quaBfied sub-DA DOVs may be necessary, be·
cause in most cases the assembly of the fully~aDfied DOVs of the sub-DAs does not automaticany con
stitute a fully qualified DOV of the super-OA.

Fig. 2 depids a sample series of DOP executions within a OA. This DA execution plan may Include sequen
tial as well as parallel tracks as shown by the arrangement of OOP executions in the picture. The plan is
determined either a priori by appropriate definition facilities or In an ad-hoc manner by a designer, who in
teracts with the OA. Fig. 2 shows a paraUel execution of DOP1 and DOP.2, followed by DOP3 execution,
and finished by the determination (Evaluate operation) of the quafity state of the DOV derived by DOP3.

3

-~ DOP
1

-..,______ DOP3 __.. Evaluate
~ DOP2~

Fig. 2: Sample DOP executions within a DA

The mentioned concepts of DAs, delegation relationships and DOPs allow for structuring the design pro
cess. How to exploit the inherent integrity constraints of special relationship types between DAs to enforce
a controlled communication and cooperation is the topic of the following section.

3. Communication Primitives
From an abstract point of view, design proceeds in a cooperative manner reflecting the conviction that a
particular goal can be achieved better and in shorter time when the DAs of a DA hierarchy work together
(may be in parallel). Communication between DAs might be even necessary. because the initial specifica
tions given to DAs are in most cases neither fixed nor complete enough such that their resu Its (i .e. the DO Vs
created) automatically fit together constituting a solution for the higher goal given by the design specification
of the super-DA. Communication and cooperation among DAs result in interdependencies that can be mod
eled by specific relationship types showing up as additional edges in the DA hierarchy graph (cf. Fig. 3). In
the following, we introduce these relationship types sketching their semantics and inherent integrity con
straints by which the observance of special convnunication protocols can be forced.

Delegation

- Cooperation

......... Usage
Fag. 3: Communication and Cooperation Relationships attached to a OA Hierarchy

The delegation relationship is fundamental for modeling cooperative design processes as shown in the pre
vious section. We take up this relationship type again because it constitutes not only a way of ordering but

also a way of communication between a super-OA and a created sutrDA. Both are DAs with the character
istics describr.Jd above. Remember, a DA may create an arbitrary number of sub-DAs (operation
Create_Sub_DA), as long as 1t is appropriate to reach Its own design goal. When creating a sub-DA, the
super-DA has to fonnulate the goal specification for the sub-DA, whose successful termination is the pre
condition for the temination of the super-DA. The super-OA keeps all the rights of the creator, I.e. it is able
to terminate a sub-OA or to modify its specification (operations Terrrinate_Sub_DA and
Modify_Sub_DA_SpecifiCStion). Such reformulations are typical in. design applications. The sub-OA, on the
other side, Is only allowed to concretize Its own specification by adcition of new features or by further re
striction of existing features. As soon as a sub-DA co~letes its work by reaching one or more fully-quaftfied
DOVs, it has to send a message to the super-DA showing up a final state w.r.t the actual specification (op
eration Sub-_DA_Ready_ To_Commi~ . The sub-DA may not terminate without the agreement of the super
DA for the following reasons. 1t may be possible that the super-DA wants to modify the sub-DA's spedfica
tlon in such a way that 1t would be appropriate for the sub-DA to keep the prevailing results (derivation graph)
as a basis for deriving new OOVs on the way to reach the new goal. H the modification of the sub-DA's spec-

4

lfication Is not the Intention of the super-DA the sub-DA has to be terminated. In this case, the fully-qualified
DO Vs devolve to the scope of the super-OA. A further operation is Sub_DA_Impossibfe_Specificationwhich
informs a super-DA that the executing sub-DA will not be able to fulfill the requirements of its spedfication
and forces a reaction of the super-DA, e.g. termination of the sub-DA or modification of Its c2esrgn speCifi
cation.

Modifications of a DA specification can also be the result of (cooperative) negotiations between DAs. This
leads us to the second relevant relationship type which we call cooperation. We only allow cooperative re
lations. between the sub-DAs of the same super-DA, because (see above) the sub-DAs contribute to the
accomplishment of only their super-DA's design g~al. The operation Create_Cooperation_Relationship
connects two DAs via cooperation relationship. Using this operation a DA may establish communication with
a DA of the same super-DA. The subject o.f this cooperation are the sub-DAs' speCifications which may be
changed due to negotiation. During this negotiation process one side may propose further refinements of
the design specification and the other side may agree to or disagree with these proposals (operations Pro
pose, Agree/Disagree). Recall, that cooperation Is sometimes necessary for sub-DAs (of the same super
DA), because in many cases their initial specifications are not constrained in such a way that their results
constitute a solution for the super-DA. If two cooperating sub-DAs are not able to reach an agreement, the
super-DA has to be fnformed (operation Sub_DAs_Specification_Conflic~ and has to resolve this conflict.
A detailed discussion of this cooperation model is described in [HKS92).

Besides the cooperation via design specification, the coordinated exchange of prenminary results of DAs Is
necessary. We model this data exchange by the relationship type usage. A requesting·DA may ask a sup
porting DA which must not be a predecessor In the DA hierarchy for a DOV with a certain feature set satis
fied (operation Require). This set of features de~nes the quality needed for the DOV In order to fit into the
design of the requesting DA. Precondition for requiring a OOV Is that the requesting DA knows about the
design specification of the supporting DA and the possibility that the requested Information may help the
requesting DA to reach its goal. From the view of the supporting DA the de6vered DOV rrust not be a fully
qualified one. DAs which are not connected by a usage relationship may not exchange data. A DOV be·
comes only visible along usage relationships if it was propagated by the according DA (operation Propa
gate). All propagated DOVs have a certain quality state determined by the operation Evaluate. This allows
a DA control over which of Its DO Vs become visible to other DAs.

The usage relationship type leads us to the task of the cooperation manager as an important component
In the architecture of a design environment, which Is responsible for the correct realization of the design
methodology. lt Is on 1t to manage usage relationships and to lnfonn requesting DAs whenever DOVs with
the required quality state or even a higher quanty state are propagated by supporting DAs. Furthermore, it
has to manage the DA hierarchy and to enforce the coiTllTlJnication protocols and tne Integrity constraims
according to the relationships set

4. Failure Handling
lt should be noted here, that our approach In contrast to other Investigations concerning communication and
cooperation primitives, does not agree with the original concept of transactions. The original concept l~lies
that transactions are atorric. can be processed quickly and alter a small amount of data (ACID-paradigm,
Atonicity, Conslstency;rsolation, Durabinty). At the DA·hierarchy level, the ACID concept I~ not adequate
In the design environment. Atomicity and Isolation are In some sense contrary to the requirements of design
applications, e.g. long duration of processing and teamwork (i.e. communication and cooperation). Design
Activities may be recovered using the powerful operations of the version manager (KS92]. This allows users
the capabWty to have some control in the recovery process in the case of a system crash. Not only traditional

5

failure classes but also appflcation dependent errors (I.e. a OOP execution did not lead to the expected qual
"ity state) may be adjusted by choosing arbitrary nodes (DOVs) In the derivation graph for starting point of
new derivations. DOPs are able to be Isolated and have three states: not started, active and complete. The
Internal structure of DOPs are saved using checkpoints which safeguards against a system crash.

5. Conclusion and Outlook
By means of the concepts mentioned In this paper, we are able to express certain design methodologies.
While DAs, the delegation relationships and DOPs mainly serve for the structuring of the design process In
the form of a task hierarchy, the relationship types cooperation and usage define ways for controlled com
munication between designers (I.e. among DAs). Though DAs may become dependent from each other,
they can be performed In parallel. Within a DA, there are facifities available to expliciUy control the organi
zation and processing of COPs, I.e. tool executions.

Now we are able to summarize the characteristics of the different design a~ivities as mentioned in the mo
tivation of this paper. OOPs are atomic, proceed Isolated and the OOVs created are stored persistently in
the integrated data repository. COPs have an internal structure given by adequate save/restore mecha
nisms. In contrast to the COPs DAs are neither atomic nor isolated, because a controlled cooperation and
communication Is supported. A DA may be internally structured by a DOP execution plan. The OOVs cre
ated In the scope of a OA are connected via derivation relationships documenting the flow of design. Fur
thermore, application speCific quafity states can be assigned to OOVs. This is the basis for adequate data
exchange between OAs. The explicit way of handUng design specifications constitutes a new notion of con
sistency In the area of database systems for advanced applications.

Due to space Unitations we could not give a detailed description of the architecture of our data-Integrated
design environment and a vafidation of the described concepts by showing application examples. Up to
now, we have investigated the areas of software engineering and vlsi design. The topics of our Mure work
are the facilities for definition and evaluation of design specifications and the definition of DOP execution
plans.

6. Literature
CACM91 CatteD, R (ed.): Next Generation Database Systems, in: Special Section of Communications of the ACM, Vol

34, No.10, 1991.

EDIF EDIF, Electronic Design Interchange Format Version 200, Electronics Industries Association, Washington,
August 1987.

E192 Elmagarmid, A. (ed.): Transaction Models for Advanced Database Applications, Morgan Kaufmann, San Ma
teo, Calif •• 1992.

Ha89 Harder, T.: Non-Standard DBMS for Support of Emerging Applications- Requirement Analysis and Architec
tural Concepts, (Eds: Shriver, B.O.), Proc. of the 22nd Hawaii lnt. Cont. on System Sciences (HICSS-22),
Kailua-Kona; Hawall, Volume 11, Jan. 1989, pp. 549-548.

HKS92 Hubel. C., t<Mer, W., Sutter, B.: Controlling Cooperation Through Design-Object Specification ·a Database
oriented Approach, in: Proc. of the European Desig~ Automation Conference, Brussel, Belgium, March 1992.

HNST90 Harrison, 0., Newton, R •• Spickelmier, R, Bames, T.: Electronic CAD Framework, In: Proceedings of the
IEEE. Vol 78, No. 2.1990, pp. 393-417. .

Kf£91 Kafer, W.: A Framework for Version-based Cooperation Control, Proc. of the 2nd Symposium on Database
Systems for Advanced Applications (OASFAA), Tokyo, Japan, April1991.

KS92 tGfer, W .. SchOning, H.: Mapping a Version Model to a Complex Object Data Model, Proc. of the 8th lnt. Cont.
on Data Engineering, Tempe, Arizona. 1992.

Si SO Sidle, T.W.: Weakness of Commercial Database Management Systems in Engineering Applications, Proc. of
the 17th Design Automation Conf., Minneapolis, 1980, pp. 57·61.

STEP STEP Prefiminary Design, ISO TC184/SC4M'G1 N208, Mai 1988.

6

