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Abstract 

Here, we propose a so-called knowledge base management sys
tem based on the integration of database and artificial intelli
gence technology that provides adequate capabilities for the 
construction of advanced CAD systems. Our approach is evalu
ated in view of other systems and its suitability is demonstrat
ed by means of some examples from the area of architectural 
design. 1'hroughout the paper, we refine our view of advanced 
CAD and defme some inherent characteristics of better CAD. 

1. Introduction 

Currently, many research investigations work for more appro
priate design methodologies and more effective design tools. 
Their results, the so-called advanced computer-aided design 
systems are capable of providing an intelligent interface to the 
user: 

• dealing with incomplete design information 

Object specifications may be incompletely defined by the 
user. The system supplements them by exploiting domain 
knowledge. 

• exhibiting an active behavior 

The system is able to provide the design engineer with rele
vant solutions or hints to current design problems, complete 
object specifications, refined calculation and simulation 
results, and adequate diagnoses at all stages of the design 
process. 

• guaranteeing area-spanning integrity constraints 

At each operation, the system takes into account all design 
aspects as well as all kinds of dependencies and restrictions 
that are involved in the design process (manufacturing, pro
duction, company guidelines, time considerations etc.) in 
order to guarantee a consistent design. 

In this new environment, the design process is done iteratively 
as shown in figure 1. In contrast to conventional systems, we 
have no stand-alone tools converting the output data structures 
of previous design steps into internal data structures and vice
versa before they can accomplish their functions. Our 
approach divides the design process into design phases, which 
subsequently 

• supplement a previously incomplete design object specifica
tion, 

• add structure and geometry information, 
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• consider functional, physical, and technological con
straints, and 

• support improvements or refinements by means of feedback 
to each previous phase. 

Figure 1: Overall design process 

Since all design phases refer to the same design objects, all 
aspects of these objects have to be represented in a unique and 
non-redundant manner, allowing for a consistent and uni
form object handling. Obviously, the efficient and reliable 
management of such a product model (that includes all differ
ent aspects of design objects in one database schema) address
es the main functions of database management systems. On 
the other hand, artificial intelligence techniques (knowledge 
representation, reasoning, etc.) allow for both semantically 
enriched design object descriptions and for an active system 
behavior. Therefore, a practical approach to advanced CAD 
environments should Incorporate the advantages of both 
database (DB) and artificial intelligence (AI) techniques. 
However, such an approach should by no means be based on an 
extension or coupling of existing systems. The lack of compo
nent integration in existing architecture& is responsible in 
most cases for cumbersome handling and for quite ineffective 
performance (1]. For this reason, the approach that is described 
here is centered around a so-called knowledge base manage· 
ment system (KBMS) that integrates AI and DB techniques in 
an effective way. 

Using the KBMS KRISYS [2), that was developed at our univer
sity, and some examples from an architectural design applica
tion, we demonstrate the applicability of our approach. KRISYS 
<Knowledge Representation and Inference §Y§.tem) integrates 



concepts from the fields of AI and DB in order to provide the 
desirable support of knowledge modeling, manipulation, and 
management tasks. A mixed knowledge model offering a rich 
spectrum of constructs (e.g., object-centered representation, 
abstraction concepts, rules, demons) allows for an accurate 
representation of the application domain. The implementation 
of this knowledge model uses the enhanced DBS PRIMA to pro
vide features such as knowledge persistence, efficient sec
ondary storage management, fault tolerance, etc. After hav
ing introduced a sample design application, we show how the 
different modeling concepts offered by KRISYS could be conve
niently exploited to accomplish the main design goals of 
advanced CAD. Simultaneously, we make apparent that other 
presumably conceivable environments do not fulfil all 
requirements and that the optimal solution could be achieved 
only by an effective integration of both DB and AI techniques. 
Finally, we conclude with a more comprehensive definition of 
our notion of advanced CAD, whereby we also indicate the 
main topics we are going to investigate in the near future. 

2. A Short Overview of the Application 

As an example of an advanced CAD-system supported by 
KRISYS, we use an architectural design application currently 
being implemented. The task of this system is to design one
story houses for families based on requirements and needs 
specified by the user. During a first design-phase, it questions 
the user as to his requirements, which may be formulated on a 
high semantic level (e.g., "I need a room to work In, which 
should be located at the south side of the house."). Furthermore, 
the specification of such requirements may be incomplete In 
the sense that they might not be sufficient to directly achieve a 
final design stage. For this rea110n, the system utilizes Its 
knowledge (e.g. standard requirements, laws, etc.) to supple
ment the user-sketched blueprint, creating additional rooms 
and properties of rooms and constructing a functional de~~erip
tion of the house. In a second phase, our application uses this 
description to generate an architectural sketch. The user may 
accept the design sketch or reject it, causing the system to gen
erate alternative sketches. New requirements can also be 
added, or existing ones can be removed, leading to a (partial) 
repetition of the first design phase. Different design alterna
tives are kept and may be explained to the user until he accepts 
a certain sketch. The system also detects inconehitencies 
caused by incompatible requirements or violation of laws upon 
which the user is notified. 

3. Usinlf KRISYB to Model Advanced CAD-Systems 

One group offeatures provided by KBMS to support better CAD
systems is related to knowledge modeling aspects, i.e., the con
structs and mechanisms available for the description of the 
application world. What can be considered as one of the major 
goals of advanced CAD is the Improvement of the overall 
design process by Incorporating different design aspects (e.g. 
geometrical, functional, manufacturing) which are related to 
different processing or design phases but are all integrated 
into the same design object. The dependencies between these 
distinct representations have to be maintained and exploited 
by the system in order to achieve a 'manufacture-oriented' 
design. Therefore, significant parts of the semantics of the 
application world, which used to be buried in various programs 
responsible for different design phases, need to be represented 
explicitly in an integrated product model, where they are avail-
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able for all system components. All a consequence, knowledge 
modeling aspects can be considered a key issue in the support 
of advanced CAD [3]. 

3.1 Modellnlf Aspect. 

Object structure 

KOBRA <KRISYS Qllject-Centered B,epreeent.Ation), the 
knowledge model of KRISYS, provides an object-et~ntend rep
nsentation. That is, everything existing in the application 
domain is expressed as an object of the KOBRA model, the so
called schema, In which descriptive, operational, and organi
zational aspects of the real world are integrated. For this rea
son, an entity of the application world directly corresponds to 
an object of the knowledge base (KB). A schema, which is 
roughly analogous to a frame or unit in other representation 
systems, may contain attributes for the description of the real
world entity. The attributes may again be further described by 
011pects in order to characterize an object in more detail. In fig
ure 2, we give an example of a schema representing a certsin 
room of a house in our architectural application. Its properties 
are described by the attributes and attribute values: the size of 
the room is 16 square-meters, it is intended to be used for sleep
ing and 111 adjacent to two other rooms, namely 'room 2' and 
'room 3'. The orientation and position of the room are not yet 
specified or determined. Via the aspect 'unit' for the 'size'
attribute, 'square-meters' is fixed as unit for the size of the 
room. 

Figure 2: Sample schema description 

KB orpnlzatlon 

For structuring the KB, KOBRA supports the abstraction con
cepts of classification, generalization, a1111ociation, and aggre
gation [4,5,6,7]. These concepts are seen as special, predefmed 
relationships between objects, defining the overall organiza
tion of a KB. Figure 3 gives a partial overview of our architec
tural KB considering the classification and generalization 
relationships. In this hierarchy, the object 'room 1' is seen as 
an instance of the class 'parents-bedrooms', which is a sub
class of 'bedrooms', which is again a subclass of'rooms', etc. 

Figure 3: Generalization/classification hierarchy 



Another view of the KB is given in figure 4, where aggregation 
relationships involving 'room 1' are presented. 'Room 1' is a 
component of the 'parent-area' and again has parts like 'bed 1' 
or 'wardrobe 1', representing pieces of furniture for the room. 

The concept of association, which can be used to group heteroge
neous objects together, is demonstrated in figure 5. The user of 
our application is able to specify the furnishings that he 
already possesses and are to be moved into the new house. This 
can be very important for the design of the rooms into which the 
furniture has to be placed. Therefore, two set objects are intro
duced to distinguish the belongings of the user from the fur
nishings proposed by the application. 'Bed 1' is an element of 
the set 'user's-furnishings', while 'wardrobe 1' is an element 
of 'proposed-furnishings'. Both sets are subsets of 
'furnishings'. 

Agure 4: Aggregation 
hierarchy 

Figure 5: Association hierarchy 

The semantics of the abstraction concepts is guaranteed by the 
system via 80-called built-in reasoning facilities [4). E.g. inheri
tance, which is carried out according to the generaliza
tionlclaBBilication-relationshipll, i11 the reasoning as to the 
structure of an object. 'Room 1' in figure 3 inherits all proper
ties of 'parents-bedrooms', 'bedrooms', 'rooms', and 'design
objects'. The aggregation-relationships are the basi11 for rea
soning with so-called implied predicates. For example, the fact 
that 'room 1' has a size of 16 square-meters implies that the 
area in which it is contained must be at least 16 square-meters 
in size. This information is automatically deduced by 
KRISYS. The concept of association allows the definition of set 
properties. For the final costs involved with the new house, the 
prices of all furnishings proposed by the system have to be con
sidered. The set property 'total-price' of 'proposed-furnishings' 
is defined as the sum of all the prices of its elements. Upon 
changes, like the insertion of a new piece of furniture into the 
set, the new total price is automatically recalculated by 
KRISYS. The KB structure defined by the abstraction concepts 
is not restricted to hierarchies. It is alBO possible to specify sev
eral classes for one instance or multiple superclasses for a 
class. 

KRISYS supports an integrated view of the KB: first of all, there 
are no separate representations for classes, instances, sets, 
aggregates, etc. - all are represented as a schema. Also, the dif
ferent meanings of an entity are integrated into one schema. 
A partial view of our example KB is presented in figure 6. The 
schema 'bed 1' represents, for example, three different 'roles' at 
the same time: it is an instance of 'beds', an element of 'users
furnishings' as well as a component of'room 1'. 
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Figure 6: An integrated view of the KB 

Supportint an inteerated product model 

An object-centered representation can be directly utilized for 
the definition of an integrated product model. It allows a natu
ral description of the design object, integrating all aspects of 
the product into one KB-object. The abstraction concepts can be 
used as the basic mechanisms for describing the organization
al semantics of the application domain. Distinct aspects of the 
design object may be modeled using different abstraction con
cepts or distinct hierarchies of the same concept (e.g. one class 
hierarchy for representing geometrical, another for function
al, and a last one for manufacturing information about the 
object), which has the advantage that they are easily distin
guishable in the model. An integration of all aspects into one 
object is easily achieved by overlaying the corresponding hier
archies. An object may, for example, be an instance of several 
classes, each belonging to a different hierarchy. It may also be 
a component of another object or a member in a set object. The 
object-centered representation and the semantics of the 
abstraction concepts appear to be very beneficial for the support 
of the application. If, for example, a design object is deleted, 
because the design engineer regards it as useless, KRISYS 
automatically deletes all aspects of the object (i.e. the different 
views of the object) as well as all object components, updates set 
properties (if necessary), and performs other built-in reason
ing operations related to the semantics of the abstraction con
cepts. 

In our architectural design system, we have described aspects 
concerning the usage, adjacency, and geometry of objects with
in three distinct classes (see figure 7). The class 'usage
objects' describes all aspects related to the usage of a design
object (e.g. a room) or the activities associated with it. A 
kitchen may, in this case, be described by the activities 
'preparation of food' and - probably • 'eating'. Information 
about the adjacency of objects (e.g. when two rooms are connect 
via a common door) is captured by the class 'adjacency
objects', while all geometrical aspects, such as the size or the 
position of a room within the house, are covered by 
'geometrical objects'. The class 'design-objects' inherits all 
attributes of its superclasses and therefore integrates the differ
ent aspects related to the design object. Since the design objects, 
like areas, rooms and furnishings are also embedded in an 



aggregation and an association hierarchy, their role as com
plex objects, object components, or elements are also consid
ered. If the user has specified requirements about an area, 
(e.g. the children-area) and wants the whole area to be 
redesigned because he has changed his opinion, the architec
ture application only needs to delete the object 'children-area'. 
KRISYS automatically deletes all representations of the object 
and its subpartll (e.g. different rooms and furniture proposed 
by the system) and additionally updates the 'total-price' in the 
set 'proposed-furnishings'. The user is then free to enter new 
requirements for the house. 

Figure 7: Different aspects of the design objects 

Interrating behavlor into the application model 

So far, we have only considered how the KOBRA model can be 
used to describe properties and relationships of objects as well 
as the organizational structure of a KB. The behavior of objects 
or operations and actions in which they are involved may also 
be included into a schema deBCription as procedural attributes. 
For this reason, the KOBRA model distinguishes between slots, 
which are declarative attributes used to describe properties and 
relationships of an object, and methods denoting procedural 
attributes for modeling object behavior. 

Our application utilizes methods for several tasks. For exam
ple, the algorithms performing the actual geometric design, 
i.e. partitioning the house into geometric areas corresponding 
to the rooms (once their usage, functionality, and other require
ments are fixed) can be modeled as operations of 'geometry
objects'. The end-user of the system is of course not directly 
concerned with operations upon geometrical representations. 
His interaction with the application is usually settled at a high
er semantic level. E.g. the method 'add-neighbors', defined in 
'adjacency-objects', is performed when the uaer adds new 
requirements about the connections between rooms currently 
under design. Since these new requirements can invalidate 
previously stated geometric design decisions, the method 'add
neighbors' may, in turn, call methods defined in 'geometry
object' to cause a redesign of certain areas or of the whole 
house. 

Similarly, the advantages of behavioral object-orientation 
become apparent in systems using form features for solid mod
eling. The designer is not interested in the geometrical repre
sentation (e.g. BREP, CSG) of an object or the operations asso
ciated with it (intersection, union of objects, ... ), but thinks in 
terms of holes, slots, sockets, etc., and of operations like 
'drilling a hole'. Object properties and operations of both geo
metrical and feature-logical nature can be integrated into the 
product model, where changes of the form-feature represent&-
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tion via feature-operations are then directly transformed into 
operations of geometrical nature. 

To include additional information into the KB and make the 
integrated product model more powerful, one may also inte
grate knowledge about the environment, such as production 
and manufacturing information, into the KB, using the same 
modeling constructs for this task, as we have described in the 
above text. A machine for manufacturing a design object can 
be represented as a schema containing machine properties 
such as the tolerance guaranteed by it, and methods correspon
ding to machine operations. This information could be direct
ly utilized for production planning or generating NC-pro
grams. 

Maintalnlnt the semantic interzity 

Until now, we have described how KOBRA supports the repre
sentation of structural, behavioral, and organizational knowl
edge of an application domain. The introduced concepts may 
be directly utilized for an integrated product model describing 
various aspects of the design product and its environment. 
Nevertheless, a significant part of the application world 
semantics is embodied in restrictions of and dependencies 
between certain aspects of the world. These are usually 
described as integrity constraints applied to ensure that 
changes In the KB always result in a semantically correct 
state. These constraints may involve certain granules of 
knowledge, such as attributes (e.g., restricting the set of per
mitted values), objects (e.g., maintaining the Integrity 
between different views of the same object), or groups of objects 
(e.g., relationships between the design object and environmen
tal information like "Can the design object be manufactured 
with the available machines?"). 

KRISYS provides several mechanisms for explicitly describ
ing integrity constraints and integrating them into the appli
cation model. Firstly, the value class and the cardinality of 
slot values may be restricted with the use of two predefined 
aspects, 'cardinality' and 'possible-values', which may be 
defined individually for each attribute. Changes of the 
attribute value violating the given restrictions are automati
cally prohibited by KRISYS. Figure 8 gives an example using 
the class 'design-objects'. Every design-object is described by 
exactly one size, which is expressed through the value '[1 H of 
the cardinality aspect. A room also has to have at least one 
neighbor, otherwise it is not accessible. The maximum num
ber of neighbors Is, on the other hand, not limited since a corri
dor, for example, can have quite a lot of neighbor rooms. Using 
the 'possible-values' aspect, we can state, that the minimum 
size of a room is 2 square meters. This aspect can also be used 
to ensure a constraint similar to the referential integrity in 
database systems: in our architectural design application, we 
have represented the design objects, such as rooms or furni
ture, and the usage of the objects (e.g. sleeping, cooking) in se~ 
arate hierarchies. This Is necessary because a lot of informa
tion can be directly associated with usage or activities, while 
activities and rooms are not always related in a one to one cor
respondence. As an example, the activity 'eating' may be per
formed in the dining room and in the kitchen, which, in turn, 
is also related to the usage 'preparation of food'. In order to 
assure that the values of the usage-slot, which represents the 
relationship between a design-object and its usages, always 
reference an actual instance of the class 'activities', we assert 



Figure 8: Specifying constraints by using predellned aspects 

'(INSTANCE-OF activities)' as the value of the appropriate pos
sible-values aspect. 

More complex integrity constraints can be expressed using so
called demons, I.e. procedures attached to attributes, which are 
activated when the attributes are acce11sed. Distinct actions can 
be specified for different types of acces11 (get, put, add, ... ) mak
ing it possible to defme flexible reactions on different events. 
For example, our application has to check whether an activity 
specified for a specific room ill compatible with previously 
asserted usage. There are statutes that strictly determine 
incompatible usage. The architect ha11, for example, to consid
er that facilitie11 for both cooking and bathing must not be pro
vided in the same room. For this reason, we define a slot called 
'contradictory-activities', which contain!! all incompatible 
activities for every activity in the KB. A demon 18 then 
attached to the usage slot of every room (see figure 9), which is 
activated when a usage is added in order to check if one of the 
old usages is a 'contradictory activity' of the new one. Upon 
detecting an inconsistency, an error is reported, automatically 
eliminating the previous change of the KB. 

d\~:n-objects 

kitchens 

activities 

./ 
room5 

Figure 9: Using demons for checking Integrity constraints 

One way to guarantee the consistency of a KB is to reject any 
changes that would violate integrity constraints, as we have 
already demonstrated in the above text. Another approach, that 
may very often be taken, is to 'trigger' additional operations 
upon changes violating the integrity that transform the incon
sistent KB into a consistent one. This is also desirable within 
an integrated product model, where changes concerning one 
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representation of an object (e.g. the functional aspects) should 
automatically cause changes in the other representations (e.g. 
the geometry). In KOBRA, this approach may be realized 
either with demons to trigger the appropriate changes or with 
the concept of rules, which can be used to dynamically derive 
information and insert it into the KB. In KRISYS, rules are 
special kinds of schemas containing as attributes the condi
tions (I.e. 'ir-part) and the actions (i.e. 'then'-part) of the rule. 
Basic inference strategies (forward-chaining, backward
chaining) are also provided by the system. 

The architectural system utilizes rules extensively for keep
ing the KB consistent. As we have already mentioned, the user 
ill able to interact with the application at a very high semantic 
level. He may, for example, specify activities or usage for the 
house, but need not relate them to any rooms. This task is then 
automatically performed by the system. E.g. when the user 
specifies the activity 'working', the system activates rules 
associated with the 'working' object in the KB that either estab
lish a relationship between the activity and an already exist
ing room (e.g. the living-room), considering, for example, 
extra places for a work desk, or generate a new room (e.g. the 
office room) for the activity (see figure 1 0). 

aei\Vhles 

9 
toottH.c.).r-WC•rkill( .. .,r-rukl. . 

condition 
\.,. •no room for WOI1dng lfl present' 

a:~ 'the IMng-room Is too smatr 

'insert TofflcG room' as a new room• 
and •relate 'working' to •office room' • 

Figure 10: Using rules to keep the KB consistent 

Supportinr an active ll)'stem behavlor 

rorms 

~ 
office room 

In general, demons and rules are constructs to achieve an 
active system behavior. An intelligent CAD system should 
support and guide the user throughout all design phases, sug
gesting alternative product designs or possible solutions to his 
design requirements. A significant part of the knowledge of 
our architectural design system is represented as rules, which 
are responsible for the activities of the system. Since the 
requirements of the user may be incomplete, the design system 
uses, for example, rules to derive rooms and activities that are 
standard in every house (e.g. kitchen, bathroom, ... ) and are 
not specified by the user, as described above (see alBO figure 
10). The location of a room within a certain area (e.g. bath
room, bedroom are parts of the private-area) and the connec
tions between rooms (e.g. a kitchen is connected to the dining
room, but not to the bathroom) can also be inferred as well as 
the size of a room, which strongly depends on the activities and 
the number of people using the room. Standard si1.es of doors 
and windows as well as prices of material and equipment are 
considered in order to keep the fmancial restrictions given by 
the user at the beginning of his 11ession. 



All the information specified during the session or derived by 
the application is then used to construct an architectural sketch 
of the house. The user may accept this sketch or refuse it, which 
causes the design system to present alternative sketches. Upon 
additional requirements posed by the user, it has to repeat pre
vious design phases and probably revise decisions made earli
er. An explanation facility is also provided for making design 
decisions plausible to the user. 

The actual sketch or geometric design of the house is represent
ed in the KB aa a tree-like structure, where every node of the 
tree corresponds to a design decision. The derivation of design 
alternatives is performed in a non-redundant way by back
tracking in this tree and generating alternative decision 
nodes, thus utilizing previous design steps. Different design 
alternatives are kept in the KB until the user makes his deci
sion. The explanation of the sketch is also easily performed 
via the tree-like representation. After the design session is fin
ished, the resulting design is kept in the KB. A user may there
fore start a new session with the result of a previous one aa the 
basis for his new design. 

Extendlnr the lnterrated product model 

A last important issue ia related to the notions of extensibility. 
In KRISYS, there is no difference between information and the 
meta-information describing the application model - contrary 
to the DB-like view, which strictly separates the DB from the 
DB-schema. All information ia contained in the KB and may 
be modified. It is therefore easy to keep track of changes in the 
application environment because the application model may 
easily be extended or changed. Since a significant amount of 
the application semantics ia represented in the model, the appli
cation programa are to a large extent immune to these 
changes. Also, the modeling facilities provided by KOBRA, 
i.e. construct& and operations uaed for specifying the applica
tion model, are available to the application as well. An intelli
gent CAD system may therefore easily provide user operations 
for defining new object types and extending or browsing 
through catalogues since these operations are already support
ed by KRISYS. 

As a consequence of the notion of extensibility presented above, 
our architectural design application may be extended to 
include the design of many-story houses or other kinds of 
buildings (e.g. bungalows, villas) in a natural way. Alao oper
ations could be provided, that allow the end-user to define a 
new class of rooms with special properties (sound insulation), 
that he might require for his house. 

3.2 KOBRA Features Emphasized 

After presenting the modeling concept& provided by KRISYS, 
we would like to summarize the features of ita knowledge mod
el, thereby making a comparison with the concepts supported by 
other existing systems (DBS and XPS tools like ART [8], KEE 
[9,10], KNOWLEDGE CRAFT [11], and LOOPS [12]) aa well aa 
with the way these concepts may be applied. 

Interratlon of declarative, procedural, and structural 
knowledre 

In KRISYS, the effective support of modeling requirement& ia 
achieved by a mixed knowledge representation framework 
which ia not usually found in existing DBS or XPS tools. 
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Whereas these systems emphasize either a declarative, proce
dural, or structural view of the world, KOBRA remains neu
tral, equally focuaing on all of them. It integrates all different 
aspects of knowledge, consequently obtaining the powerful 
framework necessary to enable a natural and accurate model
ing of all aspect& ofthe application world. 

KRISYS allows for a representation of the whole descriptive 
characteristics of the application domain, i.e., object&, proper
ties, relationships, and constraint&. It otTers constructs to rep
resent operational characteriatica of the application world 
which are either used to model the behavior of the domain 
object& (methods) or to specify complex integrity constraints 
(rules and demons). The m011t important aspect of the opera
tional concept& provided by KRISYS ia their use to achieve an 
intelligent and active system behavior. Finally, KRISYS sup
porta the most significant abstraction concepts (classification, 
generalization, association, and aggregation), enriching con
siderably the semantics of itll knowledge model with their dif
ferent built-in reasoning facilities. 

Complete mpport of ab•traction concept& 

The support of all four abstraction concepts is a further aspect 
that differentiates KRISYS from the above mentioned systems. 
Whereas KOBRA puts special emphasis on a complete support 
of the abstraction concepts in order to uae their semantics aa the 
basis for drawing conclusions about the object& and for main
taining the integrity of the knowledge base, these systems 
neglect the existence of some of these concepts (generalization 
by DBS, association by DBS, KEE, and LOOPS, and aggrega
tion by all of them), forcing a substantial amount of real world 
semantics to be maintained in the application programa, there
by severely weakening the expressiveness and the semantic 
power of their knowledge or data model. Furthermore, since 
KOBRA incorporates all roles of a real world entity in one sin
gle schema, there ia no need to introduce two distinct represen
tations to support both association and generaliza
tion/classification (aa done by ART and KNOWLEDGE 
CRAFT> in the model. It is also not necessary to make a kind 
of "hodgepodge" with the semantics of the generaliza
tion/classification in order to be able to support the representa
tion of set properties (as done by KEE). Even proposed exten
sions of DBS technology (semantic data models [13,14], object
oriented data models [15], etc.) focus only on some of these con
cept& (mostly aggregation and/or generaliza
tion/classification) and neglect moat of the underlying rea
soning facilities. 

Dynamic built-in reasonlnl( 

Finally, KRISYS allows for changes on the abstraction rela
tionships at any time. The corresponding built-in reasoning 
ia, in such cases, automatically applied maintaining the KB 
in a semantically consistent state. In some systems (ART and 
LOOPS), inheritance, for example, ia not more than a means 
to save typing work. Changes in the structure of a class are 
either not allowed or not reflected in the existing instance& 
until a latter system recompilation, leading to severe inconaia
tenciea in the meantime. In KRISYS, when relevant informa
tion has been changed, inheritance as well aa the other built-in 
reasoning facilities are recalculated 110 that the system can 
guarantee the structural and semantic integrity of the knowl
edge base. 



Inte.,-atlon of meta-lnformatlon into the KB and exten
slblllty 

As a consequence of the previously discussed integrated and 
dynamic view of the abstraction concepts, KO BRA does not dif
ferentiate between data and meta-data. Such a differentiation 
(required by DBS) does not reflect the situation in the real 
world since changes affecting the application model may also 
occur. Thus, it is possible to insert an object into the KB and 
then dynamically establish or change abstraction relation
ships or directly introduce new information into its structure. 
This capability is particularly important in achieving the 
above mentioned extensibility of the application model. 

In summary, KRISYS supports constructs and mechanisms 
that allow for an integration of a much higher degree of appli
cation semantics into the model, thereby showing several 
advantages in comparison to other systems: 

• Structural object-orientation (i.e., the representation of com
plex objects) is supported by means of the abstraction concept 
of aggregation. 

• Behavioral object-orientation is achieved by the integration 
of procedural knowledge into the object description 
(methods). 

• Data-driven and demand-driven computation are provided 
by the concept of demons allowing for the specification of 
reactions to certain events. 

• Intensional knowledge may be represented by rules (also by 
demons) in order to dynamically derive new knowledge. 

• Organizational principles are provided in an Integrated 
fashion by abstraction concepts. The semantics of these con
cepts are incorporated into the system via built-in reasoning 
facilities, which guarantee the structural and application
independent semantic integrity of the KB. 

• Application-dependent semantic integrity is explicitly spec
ified and maintained via aspects, demons, and rules. 

4. Our KBMS Approach 

After having introduced the most important modeling concepts 
of KRISYS, with which the whole knowledge of an application 
world may be suitably represented, we now want to focus on per
formance-increasing measures in order to reach an efficient 
management of the KB. For this reason, it is necessary to 
develop an appropriate system architecture, a corresponding 
mapping concept, and an effective processing model. In the fol
lowing, we want to concentrate on each of these issues and their 
implementation concepts as applied In the KRISYS KBMS. 

4.1 Overview of the KRISYS Architecture 

As shown in figure 11, the system architecture of KRISYS is 
divided into three hierarchically ordered layers. They are 
responsible for a stepwise abstraction process and for the real
ization of the corresponding tasks within each layer. In the pre
vious section, we have described in detail the knowledge model 
KOBRA that is implemented by the engineering layer. The 
KOBRA implementation offers at its interface an object-ren
tered view of knowledge representation and manipulation to 
the knowledge engineer. To keep the end-user or application 
programs independent from this representation, the applica
tion layer realizes an external interface where the knowledge 
is viewed in a more abstract manner. This object-abstraction 
interface is achieved by the powerful query language KOALA 
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[16]. The goal of the lowest layer is to efficiently cope with stor
age of knowledge and its supply to the other layers. At this lev
el, most of the issues are related to traditional DB technology 
applied to large KB, possibly shared by multiple users: storage 
structures, access techniques, efficiency, integrity features, 
transaction support, etc. Therefore, this layer is realized by a 
non-standard database system (NDBS) which seems to be quite 
advantageous In a KBMS architecture for a number of reasons 
[17]. NDBS kernels are much more powerful than traditional 
DBS and are, for this reason, able to satisfy knowledge mainte
nance requirements. 

goal Interlaces 

object-abstrac,...tlo_n_...:....._.., 

I KOALA 

object-centeredr--------'--, 
adequate knowledge 

model 

efficiently coping with 
knowledge storage 

Figure 11: Overall system architecture of KRISYS 

4.2 The Implementation Layer 

layers 

Application 

Engineering 

Implementation 

KRISYS makes use of the PRIMA-NDBS [18], also developed at 
our university, to realize the implementation layer. It offers 
neutral, yet powerful mechanisms for managing the KB. PRI
MA is the .fRototype Implementation of the :MAD model, where
as the MAD model is an acronym that stands for .Molecule 
,Atom :Qata model [17]. This non-standard data model offers 
dynamic definition and handling of complex objects based on 
direct and symmetric management of network structures and 
recursiveness. These concepts enable the mapping of knowl
edge structures in an effective and straightforward way as we 
are going to illustrate in the following sections. 

Short notes on the MAD model 

The most primitive constructs of MAD are denoted atoms. 
They are, in analogy to tuples in the relational model, com
posed of attributes of various types, have their structure deter
mined by an atom type, and possess an identifier. Atoms repre
sent components of more complex objects, called molecules. 
Composition as well as the decomposition of molecules are per
formed dynamically, following the specification of a molecule 
type. A molecule type is defined as a graph having atom types 
as nodes and relationship types as edges. The specification of 
relationship types is made in attributes of the atom types by 
using a special attribute type called reference. In MAD, each 
relationship type is symmetrically modeled. That is, for each 
reference attribute, there exists in the pointed atom type a back
reference attribute, whose mutual referential consistency is 
automatically maintained by the system. MAD allows for a 
direct representation of all existing relationship types (i.e., 
1:1, 1:n, and n:m) achieved by a combination of attribute type 
reference with the attribute type set_of. In this sense, atoms 



together with their references build the molecules that may be 
dynamically defined. Molecules are views or snapshots, in 
which atoms are natural-joined on their references (foreign 
keys). Such views may, in turn, be used to construct other more 
complex molecules, which may even occur recursively. There
fore, the specification of molecule types can be dermed in such 
a way that they directly allow for an appropriate mapping of 
knowledge structures to data model structures as described 
below. From a more general point of view, the MAD model ill a 
direct implementation of the well-known entity-relationship 
model (cf. figure 12). 

Mappinr KOBRA object. into MAD 

In the previous chapter, we have 11een that KOBRA pre11enta all 
ita concepts for building a KB well integrated in ita central con
struct: the schema that renders an object-cantered representa
tion possible. From a structural point of view, one may observe 
that the schema (cf. figure 1) is composed of attribute!! which, in 
turn, consist of aspects, 11uggesting a MAD 11ehema that con
taint! three atom types (corresponding respectively to '11chema', 
'attribute', and 'a11pects') connected via the references 
has_attributes and ha11_aspects. The MAD schema diagram in 
figure 12 shows a graphical view of atom types (rectangles) 
and their interconnections (double arrows). 

a) MAD schema diagram 

CREATE ATOM TYPE 
( scllema_kl -

name 
Is subclass of 
has subclaases 
Is Instance of 
has lnstaneee 
Is subset ot 
has subsets 
Is etement of 
hu elements 
has-attributes 

KEYS_ ARE( name); 

CREATE ATOM TYPE 
( attrlbute_ld -

name 
value 
type 
kind 
Is attribute of 
has_ aspeciS 

KEYS_ARE(name); 

CREATE ATOM TYPE 
( aspect_ld -

name 
comment 
valuo set 
cardlnallty_mln 
cardlnallty _m !IX 
default 
ls_aspect_of 

KEYS_ARE(name); 

schema 
DENTFIER, 
CHAR VAR, 
SET_ OF(REF _ TO(scllema.has_subclasses)), 
SET_OF(REF _TO(scllema.ls_subcfass_ol)), 
SET_ OF(REF _ TO(scllema.has_lnstanoet)), 
SET_OF(REF _TO(tcllema.ls_lnstance_ol)), 
SET_ OF(REF _ TO)(schema.has_subsets)), 
SET_ OF(REF _ TO(scllema.ls_subset_ol)), 
SET_OF(REF _TO(scllema.has_elements)), 
SET _OF(REF _ TO(scllema.ls_element_ol)), 
SET_OF(REF _TO(attrtbute.ls_attrtbute_ol))) 

attribute 
IOENTFIER, 
CHAR_VAR, 
BYTE VAR, 
(memberslot,ownslot) 
(own,lnherlted) 
REF _ TO(schema.has_attrtbutes) 
REF _ TO(aspects.ls_aspect_ol)) 

aspects 
IOENTFIER, 
CHAR VAR, 
CHAR-VAR, 
BYTE-VAR, 
INTEGER, 
INTEGER, 
BYTE VAR, 
SET_ OF(REF _ TO(attrtbute.has_aspects))) 

b) atom_type definitions 

Figure 12: Generic KOBRA schema expressed In terms of the 
MAD model 
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This MAD schema define!! just one 'aspect11' occurrence for 
each 'attribute' because aspect specification!! have been grouped 
into the atom type 'aspects' and expressed a11 attributes thereof 
(note: at the data model level). Thus, aspect specifications are 
shared between several attributes preventing redundancy 
(especially in case of inherited attributes). Here, we explicitly 
exploit the capability of the MAD model to handle network 
structure!! in a direct and non-redundant manner. Such an 
adequate modeling ill hard to achieve u11ing data model11 that 

only allow for hierarchical structures (e.g. Nr model11 
[19,20]). The organizational axe11 of KOBRA, i.e. attribute!! 
with abstraction aemanticll, are not represented as ordinary 
'attributes' but a11 recursive MAD references between the atom 
type 'schema'. Since for each MAD reference, there always 
exists a back reference, each organizational axill ill represent
ed by a pair of MAD-attribute!! of type reference (shown as 
hatched double arrow11 in figure 12). In thi11 illu11tration, we 
have al11o listed the atom-type definitions that lead to the MAD 
schema introduced above. 

Transformation of KO BRA operations to MAD queries 

On one hand, KOBRA operations can be viewed as general 
function!! to work on the schema objects all a whole. On the oth
er hand, there are also operation!! to directly manipulate the 
schema objects' attribute!! or their aspects. To exemplify our 
tran11formation approach, we just present two KOBRA opera
tion!! together with the corresponding MAD 11tatementa. 

The rrrat operation, which expresses the function of reading a 
whole 11chema object, can be directly mapped to one MAD state
ment (figure 13). The data manipulation language defined for 
the MAD model 111 syntactically related to the well-known and 
easy to understand SQL language developed for relational 
database 11ystems. Therefore, it i11 easy to capture the seman
tics of MAD 11tatementa: projection (SELECT) and qualifica
tion (WHERE) clause are quite similar to SQL, whereas the 
FROM-clause of MAD provides the important capability to 
dynamically expres11 molecules just by writing the correspon
ding molecule 11tructure or molecule type; thu11, a dynamic 
complex object facility hall been introduced. 

~: Selection of the schema 'bedroom!!' 

SELECT 

FROM 

WHERE 

All 
schema-attrbute-aspects 

schema.name • 'bedrooms' 

,...,.,.,====.., 
. ~tifiroll 

Figure 13: Selection of a schema object expressed In terms of 
one MAD statement 

The second operation (figure 14), i.e. insertion of a new 
instance-attribute, is much more complex; for reasons of clari
ty, it has been carried out In 11everal steps (and for sake of sim
plicity, we omit the insertion of the attribute'!! a11pecta). Since 
the Insertion of an instance-11lot (in the example, num
ber_of_windowll) provoke11 ita inheritance, it ill necesaary to 
obtain the whole generalization hierarchy before inserting the 
attribute. This is accomplished by the first MAD statement of 
figure 14, which retrieves the whole generalization hierarchy 
beneath the schema object 'rooms'. Such a hierarchy is 11peci-



lied as a recursive molecule type starting with the root atom 
type 'schema' moving on fil'lltly to all subclasses (using the ref
erence type 'has_aubclasses' in a recuT'!live manner) and then 
to their instances (exploiting the reference type 
'has_instances'). Additionally, for all schema objects, their 
attributes are also retrieved (taking the reference type 
has_attributes). The molecule diagram of this generalization 
hierarchy is also depicted in figure 14 visualizing the evalua
tion process of the corresponding molecules as introduced 
before. 

~: Insertion of the instance-slot 'number_of_windows' to 
the schema named 'rooms' 

1. Retrieval of the whole subclass hierarchy 
with corresponding instance schemas 

SELECT ALL 
FROM generalization-hierarchy 

(schema-( .has anributes-anributes . 
. has lnstances-schema.has attrl>utes-anributes) 

(RECURSIVE:-schema.has subclasses-schema)) 
WHERE generalizatlon-hierarchy.scnema(root).name..'rooms' 

2. Modification within the KOBRA layer: 

- addhlon of the Instance-slot in the root schema, I.e. the 
schema named 'rooms' 
inheritance as Instance-slot to all 
subordinate classes 

- lnherhance as own-slot to all subordinate Instance 
schemas 

3. Update of the database: 

MODIFY generalization hierarchy 
FROM generalization:J!ierarchy 

has subclasses 
RECURSIVE 

anribiJIE!S I 
Figure 14: Insertion of an instanca-slot expressed In terms of 

the MAD language 

After this, the hierarchy is modified in the KOBRA layer to pro
cess the insertion and inheritance of the instance-slot, as 
exemplified in the second step. Following on, the complete 
schema hierarchy is then updated in the DB via a modify state
ment. This operation change11 the specified molecule in accor
dance to the given hierarchy by inserting atoms not yet stored 
(here, all inherited attributes) and modifying the correspon
ding connections (here, the references between the 'schema' 
objects and their new attributes). ln this example, it should 
have become clear that the recul'lliveness of the MAD model 
and its language could be extensively exploited to yield a direct 
and natural transformation of the KOBRA operations. Thus, 
recursiveness should be an integral part of the object-support
ing interface. 

180 

Processing model and efftclency considerations 

Before describing the dynamic behavior of the KRISYS sys
tem, it is necessary to get more detailed information concern
ing the implementation layer. lnternally, this layer i11 divid
ed into two subsystems (cf. figure 15): the PRIMA kernel and 
the working-memory system (WMS). 

engineering layer 

object-supporting 
interlace 

Figure 15: Components of the implementation layer 

The PRIMA kernel offel'll application-independent dats man
agement functions at its interface which is determined by the 
MAD model. From the kernel's point of view, the task of the 
WMS is the embedding of the data model into an environment 
that could be easily and efficiently accessed by the engineer
ing layer. In the PRIMA approach, a number of 11ystem design 
decisions were taken with 11pecial emphasis on efficient 
molecule processing which is enhanced by a variety of storage 
structures and other tuning mechanisms (e.g. molecule mate
rialization or molecule caching). All these performance 
enhancements are transparent at the kernel interface. An in
depth description of the design and implementation concepts of 
PRIMA can be found in [1]. 

From the point of view of the higher level11, there is another 
very important issue when working with large KB: to efficient
ly cope with long execution paths of KB accesses, and time con
suming requests to secondary storage. Thus, the tssk of the 
WMS is to firstly considerably reduce the path length and sec
ondly to minimize the number of kernel calls when accessing 
KB objects. For this reason, WMS realizes a kind of applica
tion buffer, which temporarily stores needed objects in a main
memory structure, called working memory, that offen almost 
direct access at costs comparable to a pointer-like access. Con
sequently, WMS 11upports a processing model aimed at a high 
locality of object references, thereby drastically reducing the 
path length when accessing the KB. To reach this end, WMS 
offers the concept of contexts being a collection of objects which 
are needed during a specific processing phase. This concept ill 
realized by the context manager, which fetches and discards 
such contexts as notified by specific control calls. These calls 
are then transformed into set-oriented kernel operations 
(complex queries) to extract the specified objects from the DB or 
to discard them from the working memory. Access requests to 



schema objects or parts thereof are dealt with by the working
memory manager, which generates and sends simple queries 
to the kernel if the requested objects are not found in the work
ing memory. The distribution component is only responsible 
for proper routing of the respective KO BRA calls. 

As indicated in figure 15, the KRISYS architecture fits nicely 
into the most realistic and prevailing architectural environ
ment for engineering/design applications, i.e. workstation 
environments. Here, workstation-oriented processing could 
be effectively enhanced by delegating WMS, engineering, 
and application layer together with the application to the work
station and the PRIMA kernel to the host system. This parti
tioning is further favored by the set-orientation of the kernel 
interface and the locality preservation of the WMS, both mini
mizing workstation-host communication. Additionally, the 
loose coupling greatly facilitates failure isolation. This is a 
very critical design objective since a large number of users 
may be affected by any kind of failure, and because interac
tive design transactions are typically very long. 

4.3 Summing up 

After reading the previous sections, one should conclude that 
KBMS, and especially KRISYS, incorporate techniques of both 
AI and DB. The engineering layer embodies expressive, accu
rate, and flexible knowledge representation and manipula
tion mechanisms of AI, which are necessary to enable a pre
cise and semantically rich modeling of the application world. 
The implementation layer supports DB mechanisms for a reli
able and efficient management of persistent data, which is 
essential for a consistent and practicable object processing. 
Further, the application layer realizes the system interface (its 
description, due to space limitations, was left out of this paper; 
for details see [16]). Since KRISYS did not result from an 
extension or a coupling of existing systems, but from an inte
gration of different technologies, it combines the advantages 
of both fields, which is fundamental for an effective support of 
advanced CAD. AI systems might allow for intelligent system 
behavior, but they Jack efficiency, reliability, multi-user sup
port, etc. DBS do fulfil management tasks but are, however, 
unable to provide the necessary modeling mechanisms. 

In KRISYS, the integration of both technologies has been 
achieved in a natural way, reflected in the stepwise abstrac
tion process realized at each layer. The implementation layer 
of KRISYS treats knowledge structures simply as a kind of net
work of complex objects which are consistently, reliably, and 
efficiently managed. At the engineering layer, these struc
tures obtain semantics, being then applied for knowledge mod
eling tasks. Thus, the application-independent structural 
object representation provided by the object-supporting inter
face guarantees that the semantics of knowledge structures is 
known only by the KOBRA model, remaining, for this reason, 
outside of the NDBS component. So, the NDBS is not overloaded 
by application specific aspecta, being, therefore, able to concen
trate on performance and on other relevant DB aspecta. On the 
other hand, the KOBRA model is not bounded by the semantics 
provided by the MAD model, being, as a consequence, able to 
come nearer to the application semantics by offering a rich 
and powerful spectrum of concepts for modeling. 
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5. Conclusions and Outlook 

In advanced CAD systems, the user, i.e. the designer, is not the 
only active unit within the overall design process (as is the 
case in conventional CAD systems. In such environments, the 
CAD system also exhibits an active behavior, therefore provid
ing a more intelligent interface to the user: guaranteeing a 
consistent design and offering appropriate design hints, rele
vant problem solutions, refined simulation results, and ade
quate diagnostic information at all stages of the design pro
cess. In some sense, there is a kind of 'partnership' between 
designer and system, where it is possible to switch between 
automated design guided by the system (e.g. in standard cas
es) and human design controlled by the user's decisions (e.g. 
in special cases). The main goal of advanced CAD is to 
improve the design process by incorporating not only geometri
cal but also technical and functional aspects as well as con
struction and manufacturing dependencies along each design 
step. This leads to a penetration of the design phases and to a 
manufacture-oriented design methodology. Recently, for 
example, the technical term feature modeling has arisen to 
express the shift from simple geometric modeling (where it is 
only dealt with geometry) to a modeling concept that addition
ally considers production and manufacturing aspects of the 
design object [21]. 

Due to KRISYS's rich spectrum of modeling concepts, the pro
cess of modeling and, therefore, also the design process turn 
out to be 

• more consistent - since a substantial amount of the applica
tion semantics has been incorporated into the model, 

• more flexible - since it is possible to repeat previous model
ing steps in order to make corrections or extensions on the 
knowledge base, and 

• easier - since KRISYS is also an active agent in the model
ing process, continuously making deductions on object 
structures, checking the semantic integrity, and inferring 
new information relevant to the application. 

On the other hand, the architecture and implementation 
design decisions made (e.g. context-driven working-memory 
system, NDBS usage) are a prerequisite for persistent, reli
able, and efficient management of the KB on secondary stor
age, additionally enhancing the prevailing workstation-ori
ented processing. Thus, we can conclude that this integration 
of DB and AI techniques fortify each other, aiming at a base 
system such as KRISYS that effectively supports advanced 
CAD. 

Though our approach looks like having removed some main 
obstacles on the way to better CAD, a lot of problems have not 
been taken into our consideration. There is a need for a tai
lored version concept (including version graphs, design alter
natives, and different configurations) structuring the overall 
design process. These structuring capabilities are embedded 
into a design-transaction concept to guarantee durability, con
sistency, and isolation (or sometimes just the contrary, i.e. 
group cooperation) of each design phase with respect to the 
whole design process. Here it should be mentioned that there 
are already some contributions to this problem area: e.g. in AI 
the concept of viewpoints [10] is known, and in DB, for exam
ple, long transactions [22, 23], synchronization, recovery, and 
failure masking in workstation-oriented engineering envi
ronments [24]; note that these concepts are applicable to our 
KBMS approach because of the separation of DBS kernel and 



WMS in the implementation layer'11 architecture. Although 
other extension11 are conceivable, it ill important to gain practi
cal experience with KRISYS in 11ome in-the-field applications. 
Therefore, we have worked out applications in the areas of 
diagnoses, planning, and design. The reault11 of these quite 
different and varied application11 will offer more insight into 
modeling and efficiency requirement11 of advanced CAD 11y11-
tem11. 
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