
Composite-Object Views in Relational DBMS:
An lmplementation Perspective

(Extended Abstract1)

H. Pirahesh, B. Mitschang2, N. Südkamp3, B. Lindsay
IBM Almaden Research Center

San Jose, CA 95120, USA
e·mail:{pirahesh, bruce}@almaden.ibm.com

Abstract. We present a novel approach for supporting Composite Objects (CO) as an abstraction
over the relational data. This approach brings the advanced CO model to existing relational data­
bases and applications, without requiring an expensive migration to othcr DBMSs which support
CO. The concept of views in relational DBMSs (RDBMS) gives the basis for providing the CO ab­
straction. This model is strictly an extension to the relational model, and it is fully upward compat­
ible with it. We present an overview of the data model. We put emphasis in this paper on showing
how we have made the extensions to the architecture and implementation of an RDBMS (Starburst)
to support this model. We show that such a major extension to the data model is in fact quite attrac­
tive both in terms of implementation cost and query performance. We introduce a CO cache for ef­
ficient navigation through components of a CO. Our work on CO enables existing RDBMSs to in­
corporate efficient CO facilities at a low cost and at a high degree of application reusability and da­
tabase sharability.

1 Motivation
It is widely agreed now that complex applications, such as design applications, multi -media
and Al applications, and even advanced business applications can benefit significantly
from database interfaces that support composite (or complex) objects (shortly, CO). A gener­
ally accepted characterization defines a CO consisting of several components (possibly
from different types) with relationships in between [2,3,17,11]. Interestingly, object orient­
ed DBMSs (OODBMSs) have adopted a very similar model [1,21,9,13]. This is particular­
ly true for OODBMSs used in practice. Especially 00 prograrruning environments have
made advances in handling of COs. Such environments facilitate the growth of complex
applications. As a result, there is considerable pressure on RDBMSs for better support of
COs. Torespond to this demand, several systems today are bridging 00 environments with
relational. An example of such a system is the Persistence DBMS [12], which builds a layer
on top of RDBMSs, providing better support for COs. Thesesystems essentially extract
data from a relational database and load it into 00 environments.
fu summary, relational systemstobe viable must be able to understand COs (a language
extension issue), and must be able to handle them weil (optimization issue). Given the
prevalence of SQL as a database interface language both for application and database in­
teroperability, we have proposed an extension to SQL to handle COs. In our approach,
called SQL Extended Nonnal Form (for short XNF) and introduced in [18], we derive COs
from relational data. That paper covers the language part giving details on syntax and se­
mantics. One major achievement isthat such a powerful extensionwas made with full up­
ward compatibility with SQL, hence opening up a path for the current DBMSs in research

1. The EDBT committee decided to present the full version of the paper in Information Systems, special issue: 'extended
database technology', Spring 1994.
2. University ofKaiserslautem, DepL of Computer Science, P.O.Box 3049, 67653 Kaiserslautern, Federal Republic of
Gennany, e-mail: rnitsch@informatik.uni-kl.de
3. IBM Heidelberg Seienlifte Center, Vangerowstr. 18,69115 Heidelberg, Federal Republic ofGennany,
e-mail: suedkamp@dhdibml.bitnet

24

and industry to move forward toward handling of COs. In this paper, we attack the imple­
mentation issues, showing how to evolve a relational DBMS to handle this prob lern. Again,
we show a growth path for RDBMSs. As mentioned before, good optimization is essential.
Given the extensive optimization techniques implemented in RDBMSs, we have paid at­
tention to reusing these capabilities. From a practical viewpoint, this is very attractive since
the optimization component is not cheap.

2 XNF Language Overview: Basic Concepts, Syntax, and Semantics
XNF's notion of CO is based on the view paradigm. Instead of a single normalized table,
as in standard relational systems an XNF query derives an ER-like structure [4,21,11,13]
from an underlying relational database. Those CO views (also called object views [16,22]
or structured views) are defined using a powerful CO constructor and consist of component
tables and explicit relationships between components.
An XNF query is identified by the keywords OUT OF and consists of the following parts:
• definitions for the component tables, in generat identified by the keyword SELECf,
• definitions for the relationships, identified by the keyword RELATE, and
• speci:fications for the output, identified by the keyword TAKE.
Table and relationship defmitions are mainly expressed using existing SQL language con­
structs. They make out XNF's CO constructor which can be seen as a proper extension to
SQL by a compound query Statement. With this, an XNF query simply reads like this:
'OUT OF ... the CO (that is constructed by the CO constructor
TAKE .. . the parts projected (that define the resulting CO)'

As an introduction to XNF syntax and semantics, let us discuss the example CO abstraction
called dep_ARC given in Fig.l. The upper part ofFig.1 shows on the left the schema and
on the right the instance level showing the COs derived, whereas the lower part of Fig .1
gives the corresponding CO query that defines this abstraction.

Schema Graph (loc = 'ARC') lnstance Graphs

d1 d2

/t \
e1 e2 e3 p1 p2 p3

XNF Query CREATE VIEW dep_ARC
AS

OUT OF xdept AS (SELECT • FROM DEPT WHERE loc = 'ARC' • definition of XNF
xemp AS EMP, component tables
xproj AS PROJ,
employment AS RELATE xdept VIA EMPLOYS, xemp

WHERE xdept.dno = xemp.edno), definition of XNF
ownership AS RELA TE xdept VIA HAS, xproj relationship tables

WHERE xdept.dno = xproj.pdno), .
TAKE* r projection of all XNF component and relationship tables •1

Figure 1: Sampie CO 'dep_ARC'

This XNF query retrieves the departments located at 'ARC', and to each one the corre­
sponding employees as weil as the projccts are connected. As shown by this sample XNF
query, the nodes, i.e. the component tables, are derived through Standard SQL queries. Syn­
tactic short-cuts (see definition of xemp and xproj component tables) are provided for sake

25

of brevity. In our example the base tables deparunents (DEP1), employces (EMP) and
projects (PROJ) of the underlying relational database are used for derivation. The relation­
ship tablesthat make up the edges of the query's schema graph show a different syntax, but
basically also adopt SQL query facilities. The RELATE clause gives the parent table first
and then the child table, and the WHERE clause holds the (standard SQL join) predicate that
specifies the criteria for relating the partner tuples via connections. In order to read the re­
lationship-defining query expressions in a convenient way. we have given role names (VIA
clause) to the parent partners of the relationships. Based upon their predicates, the relation­
ships establish for any given department connections to the employees itEMPLOYS and to
the projects it HAS.
Retrieval of such an XNF CO results in retrieval of all the tuples of the component tables
and provision for the relationship information, i.e. connections defined by the XNF rela­
tionships. So far, an XNF CO specifies a heterogeneaus set of records with different record
formats. If a component tuple is used multiple times within a view, then it exists, of course,
only once in the view, but it participates in multiple Connections (possibly from different
relationships). Therefore the important notion of object sharing (illustrated by the instance
graphs in Fig.l showing the employees e2 and e3 as shared objects) isafundamental part
of the XNF CO concept. An XNF query may also specify a recursive CO being identified
by a cycle in the query's schema graph. This cycle basically defines a 'derivation rule' that
iterates along the cycle 's relationships to collect the tuples until a fixed point is reached and
no more tuples qualify.
XNF COs may be combined, projected, and restricted. Combination is done by simply de­
fining a relationship between any node of one CO and any node of another one. Projection
is defmed by listing all the nodes and relationships tobe retained. The star '*' is used as a
special syntactic construct for projection of all the components with their attributes and all
the relationships defined. Restrietion can be done throügh additional predicates on the node
tables and the relationships. Thcre is also a set of COupdate operators, enhancing the in­
terface to handle insert, read, update, and delete operations. In addition, the interface sup­
ports connect and disconnect operations on relationships.
All retrieval and manipulation operations of the XNF language work at the XNF level, tak­
ing into account the given graph structure and the heterogeneaus tuple set. Since the result
of an XNF query consists of a set of component tables and relationships, an XNF query (or
XNF view) can be used as input for a subsequent XNF query or view definition. This is
also true for all other XNF Operations. Therefore the model is closed under its language Op­
erations. More inforrnation on the XNF language, the multi-lingual API, and (update) se­
mantics can be found in [18].

3 Composite Object Processing
Since both the XNF language as weil as the XNF API are built on SQL ideas, we decided
to develop the XNF system as an extension to an existing RDBMS rather than building a
new DBMS. Hence we advocate for an integrated DBMS, which handles both the tabular
as weil as the CO data. In doing so, we are able to reuse important system features that have
taken years to build and are vital for e.g. system robustness, failure tolerance, and system
performance. Especially, since the specification of XNF views mostly reuses the relational
query language (SQL in our case), almost all of the optimization techniques developed in
the contex.t of RDBMSs remain applicable. From a technical viewpoint (and also froman
economic one) we choseStarburst DBMS [10] as the starting point. Starburst was particu­
larly attractive due to its extensibility features as we will see shortly.

26

3.1 Query Processing Architecture
The query processing architecture of Starburst incorporates the query language processor
CORONA [10] and the data marwger CORE [14]. CORONA compiles queries (written in
extended SQL) into calls to the underlying CORE services to fetch and modify data. As
depicted in Fig. 2, there are five distinct stages of query processing in CORONA; each
stage is represented by a corresponding system component. For the momcnt. we consider
only the unshaded parts of Fig.2; the shaded areas mark XNF extensionsandwill be dis­
cussed in the next subsection.
An incoming SQL query is first broken into tokens and then parsed into an internal query
representation called query graph model (shortly QGM). Only valid queries are accepted, be­
cause semantic analysis is also done in this first stage. During query rewrite. the QGM rep­
resentation of the query is transformed Crewritten by transformation rules) into an equiva­
lent one that (hopefully) Ieads to a better performing execution strategy when processed by
the subsequent stage of plan optimization. Plan optimization chooses a possible execution
strategy based on estimated execution costs. and writes the resulting query execution plan
(QEP) as the output of the compilation phase. This evaluationplan is then repackaged dur­
ing the plan refinement stage for more efficient execution by the query evaluation system
(QES). At runtime QES executes the QEP against the database.

XNF Extensions

Eill]
Data Flow ___....
~o/Fiow

Cl)

E
I=
~
'ö.
E
0
(.)

Cl)

E
~
c
:J
a:

SOUXNF query

Query Evaluation System

Storage,

Transaction, Recovery

Figure 2: Stages of Starburst Query Processing

3.2 CO Processing Steps
The distinguished stages of XNF's CO query processing are shown in Fig.2. Those features
that aredifferent to the ones used in the traditional Starburstare shaded. Fig.2 already ex­
poses that the XNF language processor is truly an extension to the SQL processor. XNF
queries are translated to a form very close to standard SQL, allowing reuse of the extensive
optimization and evaluation machinery of the RDBMS with little change. This translation
is performed at compile time, and is optimized, eliminating any runtime overhead.

27

3.3 XNF Semantic Checking
The crucial extension to the relational case was the CO constructor. Since this extension
affected the langnage grammar, both the langnage parser and the semantic checking had to
be extended correspondingly. In the same way as the Standard SQL processor created dur­
ing this phase the intemal query representation, i.e., anormal form QGM graph (for short
NF QGM), the XNF processor had to create the so-called XNF QGM graph that has to in­
corporate the XNF query semantics. In order to do this, a new operator had to be installed
for QG M. The purpose of this XNF operator is to reflect the semanti es of the langnage 's CO
constructor. Therefore, the XNF operator had tobe able to incorporate n>=l incoming ta­
bles and to produce m>= 1 output tables being the resulting node tables and relationship ta­
bles of the CO constructed. In addition to this, regular output processing had tobe modified
to allow generation of a heterogeneaus set of tuples in the answer set (generation of tuples
belanging to different nodes and relationships). This is done by the so-called 'top' operator,
which deals with the interface between the query processor and the application program.
Each QGM graph has a singletop operator.
In the first stage of XNF query compilation the intemal query representation is built by
means of the XNF semantic routines. As already mentioned, XNF QGM uses the XNF op­
erator in order to incorporate XNF query semantics.
Since an XNF query consists of three building blocks, there are also three semantic routines
that tagether construct the final XNF query graph:
(0) QGM initialization
(1) Derivation of XNF component tables
(2) Consideration of component restrictions and XNF predicates
(3) Handling projection.
3.3.1 XNF Semantic Rewrite
In this step the translation from XNF QGM (and XNF semantics) to NF QGM (and NF se­
mantics) has tobe accomplished, thereby transfonning an XNF query graph into a seman­
tically equivalent NF query graph. Speaking in other words, this component has to replace
the XNF operator and the XNF predicates by corresponding NF operators organized in an
NF QGM graph. In this step we exploit that the components (i.e., the building blocks) of
COs are tables, whose derivation is already specified via NF query graphs within an XNF
operator (see Sect. 4.1). XNF semantic rewrite proceeds in two major steps:
(1) Removal of the XNF operator box
(2) Consideration ofXNF predicates, e.g. reachability.
Finally, there is only one NF QGM graph constructed for such a multi-table XNF query,
i.e. common Subexpressions are immediately installed such as the derivation of a compo­
nent is also used for the derivation of its child(ren) component(s), and both are used for the
relationship derivation. Comparing this multi-table derivation as applied by XNF with the
single component derivation in SQL clearly shows the impact of XNF's inherent treatment
of common Subexpressions and that the XNF rewrite approach is optimal w .r .t. processing
common subexpression. A fonnal proof of this is beyond the scope of this paper.

3.3.2 Rewrite and Plan Optimization
Since the previous step already produced a clean NF QGM (that reflects the CO query se­
mantics), the remairring compilation work can be done by the components of the original
SQL language processor. That is, the NF QGM graph built by XNF semantic rewrite is
transformed by the NF query rewrite component to a semantically equivalent one that~ in
general, allows more efficient evaluation strategies to be chosen for the QEP when being
processed by the plan optimization and query refinement components. For example, exis-

28

tential subqueries can be converted into joins. Remember, all these components are shared
between the XNF language processor and the SQL language processor. A detailed descrip­
tion of these components can be found in [10,19].

4 Data Extraction, XNF Cache, and API
In addition to standard SQL cursor support, we allow the retrieval of all tuples contributing
to the result of an XNF query and the materialization of the complete COs. The XNF pro­
cessing model has been designed for a workstation/server environment, where the database
server can deliver complete COs on request.
In Fig.3 we show the overall structure of our prototype implementation. An application
sends a data request, i.e. an XNF query to the DBMS. Query translation and optimization
tak:es place as described in the previous Section (these compile-time activities are marked
by the shaded area in Fig.3). At runtime the generated query plan is executed and the com­
plete result is delivered by the database system, converted into an internal main-mcmory
representation and made accessible to the application program via the cursor interface. For
long transactions, XNF allows the cache to be stored on disk and retrieved later, thereby
protecting the cache from client machine's failure.

Application browsing

XNF
Query

Werkspace

LOAD_WS
~~===r------=======---h

111 ~ DBMS

Figure 3: XNF Cache, Data Extraction, and API

The workspace is constructed from the output tuples of the XNF query by converting Con­
nections into pointers which allow traversing the structure in any direction. In addition we
generate pointers to allow browsing all elements of a component and all elements of a node
which are connected to a given component by a specified relationship. These pointers pro­
vide primitive access support for the cursors to be defined upon the component tables.
In our prototype we have implemented a subset of XNF API and the XNF cache manager.
Wehave used this prototype to measure the performance of XNF. One significant result is
that the performance of XNF cache is quite comparable with fast OODBMSs reported in
Cattell's benchmark [81. Using the traversal operation from that benchmark, we could ac­
cess in apre-loaded XNF cache more than 100,000 tuples per second whith matches the
requirements for CAD applications.

5 Conclusions
The novel approach of supporting COs as an abstraction over relational data is quite attrac­
tive. This approach brings the advanced CO model to existing relational databases and ap­
plications, without requiring an expensive migration to other DBMSs which support COs.
The salient features of the approach are:

29

• a data model and query language that unifies CO and relational constructs by means of
CO views,

• an elegant implementation approach that guarantees efficient data extraction, and
• amulti-lingual API with efficient navigation and manipulation facilities, and a seamless

C++ interface to the cached data.
XNF defmes an evolution path from RDBMSs to Composite Object DBMSs. It is interest­
ing that we needed to make very little changes in order to make RDBMSs capable of effi­
ciently handling COs. This is a tremendous advantage, and is very significant in practice.
Therefore we called XNF an enabling technology. It enables RD BMSs to be extended to deal
with CO and CO processing pattems. The technology is inexpensive because it heavily re­
uses already existing query processing components (with only comparatively small chang­
es), and other system components as for example transaction, recovery, and storage man­
agement are totally kept unchanged. Although XNF technology largely builds upon basic
relational technology, further extensions (e.g. parallelism and clustering facilities) intro­
duced to the relational part of the system become automatically available to XNF.
XNF technology has been successfully integrated into and is now operational in the Star­
burst extensible database system developed at IBM Almaden Research Center. Although
the extensibility feature provided by Starburst helped a Iot in integrating the XNF technol­
ogy, there is at least conceptually no problern in getting it also into other (non-extensible)
DBMS. This is due to the fact that XNF clearly extends SQL, and XNF technology rewrites
a CO query into a semantically equivalent NF query. Therefore, only the rewrite compo­
nent as weil as the language extensions have to be incorporated into the query processing
component of a DBMS. Extensibility just simplifies that attempt.
Another major conclusion drawn from the discussion so far, should perceive XNF as a high
performance approach - as an enabling technology - that provides a path for incorporating
relational data into any CO application similar to the Persistence DBMS [12] already men­
tioned. For exarnple, we can use an XNF DBMS (e.g., the Starburst DBMS presented here)
to provide server services to an object-oriented prograrnming system running on the appli­
cation site. This idea was realized in the prototype system called 'Object/SQL Gateway'
[15] that provides object-oriented access to data residing in a relational DBMS. This gate­
way connects the objcct-oriented DBMS ObjectStore [13] to the Starburst relational
DBMS exploiting XNF technology. It is a first step in providing an integrated access to
both types of DBMS using a uniform object-oriented interface. Here, XNF's multi-query
optimization helps in considerably reducing the cost of data extraction from relational re­
pository into an object cache. Another important issue is improving XNF query processing
with special emphasis on CO duster facilities, as weil as on parallelism technology
[6,7,20]. Further, in trying to assess XNF technology, there is already considerable confi­
dence that the query processing concepts for COs presented (especially the multi-query
framework as weil as its inherent exploitation of common subexpressions) plays an integral
part also in query processing for object·oriented languages as weil as for deductive data­
base languages [5].

Acknowledgmen ts
The cooperation of the whole Starburst staff is gratefully acknow ledged. Special thanks are d ue to
Peter Pistor, who helped in our joint effort of getting the good stuff into XNF, whilst streamlining
the syntax and semantics. Guy Lohman improved the optimizer to handle our complex queries, and
George Wilson provided valuable implementation experiences in his work on an earlier prototype.
We would like to acknowledge V. Srinivasan and T. Lee of DBTI for their work on XNF cache
manager and C++ application interface. We would also like to thank J. Thomas for his commcnts
on an earlier version of this paper.

30

References

1. Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., Zdonik, S.: The Ob­
ject-Oriented Database System Manifeste, in: Proc. of the 1st Int. Conf. on Deductive
and Object-oriented Databases, Kyoto-Japan, Dec. 1989, pp. 40-57

2. Albano, A., Ghelli, G ., Orsini, R.: A Relationship Mechanism for a Strongl y Typed Ob­
ject-Oriented Database Programming Language, in: Proc. 17th VLDB Conf., Barcelo­
na, 199l,pp.565-575

3. Batory, D.S., Buchmann, A.P.: Molecular Objects, AbstractData Types, andDataMod­
els, in: Proc. 10th VLDB Conf., Singapore, 1984, pp. 172-184

4. Chen, PP: The Entity Relationship Model: Toward a Unified View of Data, in: ACM
Trans. on Database Syst., VoLl, No.l, 1976, pp. 9-36

5. Cheiney, J., Lanzelotte, R.: A Model for Optimizing Deductive and Object-Oriented DB
Requests, in: Proc. of Data Engineering Conf., Phoenix, February, 1992

6. DeWitt, D., Gray, J.: Parallel Database Systems: The Future of High Performance Da­
tabase Systems, in: CACM, Vol. 35, No. 6, 1992, pp. 85-98

7. Graefe, G .: Volcano, an Extensible and Parallel Query Evaluation System, Research Re­
port University of Colorade at Boulder, CU-CS-481-90, 1990

8. Gray, J. (ed.): The Benchmark Handbock for Database and Transaction Processing Sys­
tems, Morgan Kaufman Publ. Inc. (1991)

9. Guzenda, L, Wade: ANS OOD B TG Workshop position paper, Objectivity, Inc., in Proc
ofthe First OODB Standardization Workshop, May 22, 1990

10.Haas, L., Freytag, J.C., Lohman, G., Pirahesh. H.: Extensible Query Processing in Star­
burst, in: Proc. of the ACM SIGMOD Conf., Portland, 1989, pp. 377-388

11.Kim, W.: Introduction to Object-Oriented Databases, MIT Press, (1991)
12.Keller, A., Jensen R., Agrawal, S.: Persistence Software: Bridging Object-Oriented Pro­

gramming and Relational Database, in: ACM SIGMOD Conf., 1993, pp. 523-528
13.Lamb, C., Landis, G., Orenstein, J., Weinreb, D.: The Objectstore Database System, in:

Communications of the ACM, Vol. 34, No. 10, 1991, pp. 50-63
14.Lindsay, B., McPherson, J., Pirahesh, H.: A Data Management Extension Architecture,

in: Proc. of the ACM SIGMOD Conf., San Francisco, 1987, pp. 220-226
15.Lee, T., Srinivasan, V., Cheng, J., Pirahesh, H.: Object/SQL Gateway, presented at

OOPSLA workshop, 1993
16.Lee, B.S., Wiederhold, G.: Outer Joins and Filters for Instantiating Objects from Rela­

tional Databases through Views CIFE Teclmical Report, Stanford Univ., May 1990
17.Mitschang, B.: Extending the Relational Algebra to Capture Camplex Objects, in: Proc.

15th VLDB Conf., Amsterdam, 1989, pp. 297-305
18.Mitschang, B., Pirahesh, H., Pistor, P., Lindsay, B., Südkamp, N.: SQL/XNF- Process­

ing Composite Objects as Abstractions over Relational Data, in: Proc. of Ninth Int.
Conf. on Data Engineering, April 1993, Vienna, pp. 272-282

19.Pirahesh, H., Hellerstein, J., Hasan, W.: Extensible/Rule Based Query Rewrite Optimi­
zation in Starburst, in: Proc. of the ACM SIGMOD Conf, San Diego, 1992, pp.39-48

20.Pirahesh, H., Mohan, C., Cheng, J., Liu, TS, Selinger, P.: Parallelism in Relational Data
Base Systems: Architectural Issues and Design Approaches, in: Proc. of. the Int. Sym­
posium on Databases in Paralleland Distributed Systems, Dublin, 1990

2l.Zdonik, S., Maier, D: Fundamentals of Object Griented Databases. Readings in Object­
Oriented Database Systems, ISBN 1-55860-000-0, ISSN 1046-1698, Morgan Kauf­
mann Publishers, Inc., (1990)

22.Zdonik, S.: Incremental Database Systems, in: Proc. of the ACM SIGMOD Conf.,
Washin2ton. 1993, pp. 408-417

