Untersuchung zur Wirtschaftlichkeit von Thermionikbrennelementen in Hochtemperaturreaktoren

von

H. Bonka, K.-H. Sammeck, A. Voss, M. Will, R. Zöller

INVESTIGATION ON THE ECONOMY OF THERMIONIC FUEL ELEMENTS IN HIGH-TEMPERATURE REACTORS

by

H. Bonka*, K.-H. Sammeck*, A. Voss, M. Will, R. Zöller**

ABSTRACT

Nuclear reactors for space research purposes should be equipped with incore fuel elements. In that connection the question was studied if incore fuel elements might also be applied for economic electricity generation, because they lead to increase the efficiency rate of the total power plant.

The computation of a high-temperature reactor of 600 MW(e) showed that for the wanted thermal neutron spectrum at which radiation damage of fuel elements can be kept possibly low, the parasitic absorption in the structure materials tungsten and niobium will be too high. In order to achieve reactor criticality, a high fission inventory is required. Also, the fabrication cost of thermionic fuel elements will considerably increase the fuel cycle cost. Even under the assumption of a fuel element price of 10 DM per element which actually never can be realized, the fuel cycle cost would then amount to still 2.7 DPfg/kWh with a load factor of 0.8.

translated by A. Conrad-Wienands

Lehrstuhl für Reaktortechnik der RWTH Aachen

** Zentrales Forschungslabor der BBC AG Heidelberg

von

UNTERSUCHUNG ZUR WIRTSCHAFTLICHKEIT

VON THERMIONIKBRENNELEMENTEN

IN HOCHTEMPERATURREAKTOREN

H. Bonka*, K.-H. Sammeck*, A. Voss, M. Will, R. Zöller**

KURZFASSUNG

Im Zusammenhang mit der Entwicklung von Kernreaktoren für Raumfahrzwecke, die mit Incore-Brennelementenausgerüstet werden sollen, ist in dieser Arbeit die Frage untersucht worden, ob sich diese Elemente nicht auch zur wirtschaftlichen Stromerzeugung einsetzen lassen, da sie den Wirkungsgrad der Gesamtanlage erhöhen.

Bei der Durchrechnung eines Hochtemperaturreaktors für 600 MW(e) zeigt sich, daß das zu fordernde thermische Neutronenspektrum, bei dem die Strahlenschädigungen der Elemente möglichst klein gehalten werden können, eine zu große parasitäre Absorption in den Strukturmaterialien Wolfram und Niob zur Folge hat. Um den Reaktor kritisch zu bekommen, ist ein zu hoher Spaltstoffeinsatz notwendig. Die Fabrikationskosten der Thermionikbrennelemente erhöhen die Brennstoffzykluskosten ebenfalls in großem Maße. Selbst bei einem nicht zu realisierenden Brennelementepreis von 10 DM pro Element betragen die Brennstoffzykluskosten bei einem Lastfaktor von 0,8 noch ca. 2,7 DPfg/kWh.

- Lehrstuhl f
 ür Reaktortechnik der RWTH Aachen
- ** Zentrales Forschungslabor der BBC AG Heidelberg

INHALTSVERZEICHNIS

۱.	EINLEITUNG	1
2.	BETRACHTETER 600 MW(e) HOCHTEMPERATURREAKTOR MIT THERMIONIKBRENNELEMENTEN 2.1 Wirkungsweise der Thermionikelemente 2.2 Kernaufbau 2.3 Thermische Leistung und Wirkungsgrad 2.4 Auslegungsdaten	1 1 2 6
3.	RECHENVERFAHREN FÜR DIE NUKLEAREN UNTERSUCHUNGEN 3.1 Beschreibung der verwandten Rechenprogramme 3.2 Wirkungsquerschnitte für Niob und Wolfram	7 7 10
4.	 RECHENERGEBNISSE 4.1 keff und Neutronenspektrum 4.2 Einfluß des H/D-Verhältnisses auf keff 4.3 Makroskopischer Flußverlauf, Leistungsverteilung und Langzeitverhalten 4.4 Abschätzung der maximalen Brennstofftemperatur 4.5 Standzeitbegrenzung der Thermionikelemente durch schnelle Neutronen 	25 25 29 33 35
5.	 BRENNSTOFFZYKLUSKOSTEN 5.1 Daten zur Brennstoffzykluskostenberechnung 5.2 Abhängigkeit der mittleren Jahresbrennstoff- zykluskosten vom Moderationsverhältnis 5.3 Die Brennstoffzykluskosten in der Einbrennphase 5.4 Einfluß des Brennelement-Fabrikationspreises auf die Brennstoffzykluskosten 	35 35 37 39 40
6.	LITERATURVERZEICHNIS	43

Seite

VERZEICHNIS DER ABBILDUNGEN

			Seite
Abb.	2.1	Aufbau des Thermionikbrennelementes	2
Abb.	2.2	Gesamtwirkungsgrad der Anlage η in Ab- hängigkeit von dem Thermionikwirkungsgrad	5
Abb.	3.1	Berechnungsverfahren (Programmzyklus MAFIA V.S.O.P.)	8
Abb.	3.2	Absorptionswirkungsquerschnitt von Nb-93 T = 900 °K $\sigma_{\alpha}(0,0253 \text{ eV}) = 1,15 \text{ b}$	12
Abb.	3.3	Absorptionswirkungsquerschnitt von W-182 T = 900 °K $\sigma_{\alpha}(0,0253 \text{ eV}) = 20,7 \text{ b}$	13
Abb.	3.4	Absorptionswirkungsquerschnitt von W-183 T = 900 °K $\sigma_{\alpha}(0,0253 \text{ eV}) = 10,2 \text{ b}$	14
Abb.	3.5	Absorptionswirkungsquerschnitt von W-184 T = 900 °K $\sigma_{\alpha}(0,0253 \text{ eV}) = 1,8 \text{ b}$	15
Abb.	3.6	Absorptionswirkungsquerschnitt von W-186 T = 900 °K $\sigma_{\alpha}(0,0253 \text{ eV}) = 38,0 \text{ b}$	16
Abb.	3.7	96 Gruppen Punktwirkungsquerschnitte für Nb-93	17
Abb.	3.8	Streuwirkungsquerschnitt von Nb-93 bis 2 eV	18
Abb.	3.9	68 Gruppenwirkungsquerschnitte für Nb-93	19
Abb.	3.10	96 Gruppen Punktwirkungsquerschnitte für W nat	21
Abb.	3.11	Absorptionswirkungsquerschnitt von Wolfram in natürlicher Zusammensetzung bis 2 eV	22
Abb.	3.12	Streuwirkungsquerschnitt von Wolfram bis 2 eV	23
Abb.	3.11	68 Gruppenwirkungsquerschnitte für W nat	24
Abb.	4.1	Vergleich des Spektrums beim Thermionik-Reaktor mit dem eines 600 MW(e) THTR	26
Abb.	4.2	k _{eff} in Abhängigkeit vom Moderationsverhältnis	27
Abb.	4.3	k _{eff} in Abhängigkeit vom H/D-Verhältnis	28
Abb.	4.4	Radialer Neutronenflußverlauf im frischen Kern und Gleichgewichtskern	30

			Seite
Abb.	4.5	Radiale Leistungsverteilung im frischen Kern und Gleichgewichtskern	31
Abb.	4.6	Spaltstoffgehalt in den ersten sechs Abbrand- zyklen für ein Moderationsverhältnis von 145	32
Abb.	5.1	Mittlere Brennstoffzykluskosten in Abhängig- keit vom Moderationsverhältnis bei 10 DM Brennelement-Fabrikationspreis	38
Abb.	5.2	Brennstoffzykluskosten in den ersten sechs Einbrennzyklen BZK und die mittleren Brennstoff- zykluskosten BZK	39
Abb.	5.4	Einfluß des Brennelement-Fabrikationspreises auf die mittleren Brennstoffzykluskosten	41

VERZEICHNIS DER TABELLEN

Tab.	5.1	Daten für die Brennstoffzykluskostenrechnung	37
Tab.	5.2	Umrechnung der Brennelement-Fabrikationskost von DM/Element auf DM/kg-SM	en 37
Tab.	5.3	Aufteilung der Brennstoffzykluskosten	40

1. Einleitung

Der weiteren Steigerung des Wirkungsgrades bei Kernkraftwerken mit Hochtemperaturreaktoren und turboelektrischer Energieumwandlung sind aus materialtechnischen Gründen am turboelektrischen Teil Grenzen gesetzt. Durch Vorschalten von thermionischen Wandlern vor dem turboelektrischen Teil läßt er sich aber durch direkte Energieumwandlung steigern. In der vorliegenden Arbeit soll untersucht werden, ob sich thermionische Wandler, die speziell für Raumfahrtzwecke entwickelt wurden, wirtschaftlich in Kernkraftwerken mit Hochtemperaturreaktoren einsetzen lassen.

2. Betrachteter 600 MW el Hochtemperaturreaktor mit Thermionikbrennelementen

2.1 Wirkungsweise der Thermionikelemente

Bei der thermionischen Wandlung werden Elektronen durch die Erhitzung eines Metalls erzeugt. Infolge des glühelektrischen Effektes treten aus der Oberfläche des Emitters Elektronen aus. Die freien Elektronen verbleiben in der Nähe der Metalloberfläche als Elektronengas und erzeugen erst dann einen Nettostrom, wenn man in die Nähe des Emitters, d. h. in einigen zehnteln Millimeter Abstand eine zweite Oberfläche, den Kollektor bringt. Die beim idealen Wandler zu gewinnende elektrische Energie ist dann gleich der Differenz der Austrittspotentiale für Elektronen der beiden Metallflächen. Für nennenswerte Leistungsausbeuten sind Emittertemperaturen von mehr als 1000° C notwendig.

In den betrachteten Hochtemperaturreaktor sollen zylindrische Incore-Thermionikelemente, siehe Abb. 2.1, eingesetzt werden. Der Spalt zwischen Emitter und Kollektor ist mit Cäsiumgas gefüllt, um die Austrittspotentiale zu senken und das Element

Maßstab: 2:1

Abb: 2.1. Aufbau des Thermionikbrennelementes

gegen Volumenänderungen unempfindlich zu machen. Die verwendeten Materialien sind aus Abb. 2.1 ersichtlich.

2.2 Kernaufbau

Der Kern soll aus Graphitblöcken aufgebaut werden, in die axiale Kühlkanäle eingebohrt sind. In den Kühlkanälen befinden sich die Thermionikstäbe. Ein Stab besteht aus einer Vielzahl von elektrisch in Reihe geschalteten Thermionikelementen. Mehrere oder auch alle Stäbe können dann in Parallelschaltung zusammengefaßt werden. Zwischen Brennstab und Graphit befindet sich ein konzentrischer Spalt, durch den das Kühlmedium, in diesem Fall Helium, strömt.

Die Länge eines solchen Stabes und damit die Zahl der hintereinander zu schaltenden Zellen hängt vom gewählten Verhältnis Höhe zu Durchmesser des Kernes ab. In Kapitel 4.2 wird gezeigt, daß die Neutronenökonomie des Thermionikreaktors in weiten Grenzen unabhängig vom H/D-Verhältnis ist.

2.3 Thermische Leistung und Wirkungsgrad

Im stationären Betriebszustand wird aufgrund von Kernspaltungen pro Thermionikbrennelement die Energie

q _{Sp}	⁼ ^q Sp, B ⁺ ^q Sp, M	(2.1)
q _{Sp} , в	= im Brennstoff pro Thermionikelement freigesetzte Wärmeenergie	
q _{Sp, M}	= im Moderator pro Thermionikelement freigesetzte Wärmeenergie	

frei. Die im Brennstoff freigesetzte Wärmeenergie ist gleich

der direkt erzeugten elektrischen Energie q_E und der als Wärmeenergie abgegebenen Energie

$$q_{Sp, B} = q_E + q_W \qquad (2.2)$$

Für das vorliegende Thermoelement beträgt im Mittel $q_E = 0,148 \text{ kW}$ und $q_W = 1,402 \text{ kW}$. Mit der pro Spaltung im Brennstoff freigesetzten Energie von 183,5 MeV und der im Moderator freigesetzten Energie von 15,5 MeV ist dann $q_{Sp, B} = 1,55 \text{ kW}$ und $q_{Sp, M} = 0,13 \text{ kW}$. Als Wärmeenergie sind hiernach im Mittel pro Thermionikelement durch den Heliumgasstrom $q_{ab} = 1,532 \text{ kW}$ abzuführen.

Die thermische Leistung des Reaktors ergibt sich aus der geforderten elektrischen Leistung

Nel, K = konventionell, turboelektrisch erzeugte elektrische Leistung

und

$$\eta_{el, K} = \eta_{K} \cdot z \cdot q_{ab}$$
(2.4)

N
el. T = z · q_E (2.5)

zu

$$\frac{N_{th}}{m_{E}} = \frac{N_{el}}{N_{el}} = \frac{q_{Sp}}{q_{E} + \eta_{K} \cdot q_{ab}} = 1330 \text{ MW.}(2.6)$$

Hierzu sind nach N_{th} und $q_{Sp} = \frac{7.9 \cdot 10^5}{7.9 \cdot 10^5}$ Thermionikbrennelemente notwendig. N_{el, K} beträgt bei $\mathcal{O}_{K} = 40\%$ 483 MW und ^Nel, T = 117 MW. Die Teilwirkungsgrade bezogen auf die thermische Gesamtleistung sind dann $2_{\rm K}^{\rm th}$ = 36,4% und $7_{\rm T}^{\rm th}$ = 8,8%.

Interessant ist, daß sich die Einzelwirkungsgrade \mathcal{L}_K und \mathcal{L}_T , wenn man alles auf die thermische Gesamtleistung bezieht, nicht addieren. Eine Leistungsbilanz liefert, wenn man zum Überblick die im Moderator freigesetzte Energie vernachlässigt:

$$Q_{ges} = Q_T + Q_K (1 - Q_T).$$
 (2.7)

Graphisch ist das in Abb. 2.2 dargestellt.

Abb. 2.2: Gesamtwirkungsgrad der Anlage Zges in Abhängigkeit von dem Thermionikwirkungsgrad

Aus ihr läßt sich für die Bewertung der Thermionikelemente in Leistungsreaktoren zweierlei entnehmen:

- Will man zu einer wesentlichen Erhöhung des Gesamtwirkungsgrades kommen, so muß man den Thermionikwirkungsgrad η, der bei ca. 95 liegt, erheblich erhöhen.
- Je höher der Wirkungsgrad des turboelektrischen Teils
 C_K ist, umso geringer ist die Steigerung des Gesamtwirkungsgrades durch den thermionischen Teil.

2.4 Auslegungsdaten

Mit der im vorherigen Kapitel berechneten thermischen Leistung sind die Auslegungsdaten, die bei den Rechnungen unverändert blieben:

Elektrische Leistung	^V el	=	600	:1W
Thermische Leistung	N _{th}	=	1330	MW
Gesamtwirkungsgrad	Zges	=	45,2	10
Wirkungsgrad des turboelek-				
trischen Teils	2к	2	40	76
Gasaustrittstemperatur	т _А	Ŧ	800°	С
Anzahl der Thermionikelemente	z	=	7,9 ·	10 ⁵
Eingesetzte Materialien pro				
Thermionikelement				
Molybdän			44 g	
Wolfram			8 g	

- 6 -

Niob	60,6	9
Aluminiumoxyd	3,2	9

Nach den ersten Rechnungen für k_{eff} in Abhängigkeit vom Moderationsverhältnis, siehe auch Kapitel 4.1, wurde festgelegt:

Kernvolumen	۷ _c		205	m ³
Volumen der Einheitszelle	V z	=	259	cm ³
Graphitvolumen in der				
Einheitszelle	۷ _c	=	148,5	cm ³
Gitterteilung				
(Hexagonalstruktur)	+	=	6,55	cm
Reflektordicke	а	=	100	cm

3. Rechenverfahren für die nuklearen Untersuchungen

3.1 Beschreibung der verwandten Rechenprogramme

Zur nuklearen Auslegung des Reaktors sowie der Berechnung der Brennstoffzykluskosten wurde der Programmzyklus MAFIA-V.S.O.P. [3,4] verwandt. In diesem Programmzyklus sind mehrere bewährte Rechenprogramme mehr oder weniger stark gekoppelt. Einige Programme laufen dabei völlig selbständig. Die dann auf Platten abgespeicherten Ergebnisse werdem von den Programmen, die diese Ergebnisse benötigen, gelesen. Die verwandten Rechenprogramme und das Fließschema sind in Abb. 3.1 dargestellt.

Die Spektrumsberechnung erfolgt aufgeteilt in dem Energiebereich 0,414 eV $\leq E \leq 10^7$ eV, dem Abbremsbereich und dem

<u>Abb. 3.1:</u> Berechnungsverfahren (Programmzyklus MAFIA V.S.O.P.) Energiebereich 5 \cdot 10⁻⁴ eV \leq E \leq 2.05 eV. dem thermischen Energiebereich. Im Abbremsbereich wird der Neutronenflußverlauf in 68 Energiegruppen nach der P, - oder B, -Näherung für homogene Medien mit Hilfe des Programms GAM - I [5] durchgeführt. Um die starke Flußabsenkung in der Brennstoffzone innerhalb der Resonanzen von U-238 und Th-232 zu erfassen, erfolgt die Berechnung der Gruppenwirkungsquerschnitte für U-238 und Th-232 mit Hilfe des Programms ZUT und TUZ [6] nach der integralen Transportgleichung bei Annahme isotroper Streuung und eines räumlich konstanten Flußverlaufs in der Brennstoff- und Moderatorzone. Eine Korrektur der Resonanzentkommwahrscheinlichkeit für unendlich ausgedehnte Moderatoren zur Erfassung des Einflusses der Nachbarstäbe mit Hilfe des Dancoff-Faktors wurde nicht vorgenommen. Die vorliegenden Ergebnisse würden sich nur unwesentlich ändern.

Im thermischen Energiebereich wurde der Neutronenflußverlauf nach der integralen Transportgleichung bei Annahme isotroper Streuung und eines isotropen Neutronenflusses mit Hilfe des Programms THERMOS [7] für unendlich lange Zylinder berechnet. Die als Zylinder angepaßte Zelle wurde in 20 konzentrische Ringe aufgeteilt. Die Spektrumsberechnung erfolgte hier in 30 Energiegruppen. Die Auswahl von 30 Punktwerten aus der vorhandenen 96 Gruppen Punktlibrary erfolgte so, daß damit auch an Stellen mit größeren Wirkungsquerschnittsveränderungen der Neutronenflußverlauf ausreichend genau berechnet wird [8,9].

Mit Hilfe des berechneten energie- und raumabhängigen Neutronenflußverlaufs erfolgt die Berechnung der Gruppenwirkungsquerschnitte für die Diffusionsrechnung. Im vorliegenden Fall wurden 4 Gruppen mit den Gruppengrenzen 10^7 eV, 5,24 · 10^4 eV, 29 eV, 1,86 eV und 5 · 10^{-4} eV gewählt.

Mit diesen Gruppenwirkungsquerschnitten kann nun der Fluß-

- 9 -

verlauf im frischen Reaktor zweidimensional sowie k_{eff} mit Hilfe des Programms EXTERMINATOR-II [10] berechnet werden.

Eindimensional läßt sich der Flußverlauf mit Hilfe des Programmes FEVER [11] berechnen. Durch eine sogenannte Buckling-Schaukel kann man den Neutronenfluß in der zweiten Richtung sehr gut erfassen. Das Programm FEVER erlaubt eine Kontrollgiftanpassung sowie die Berechnung des Abbrandes. Durch entsprechendes Neubeladen und Umbeladen mit und ohne Wiederaufarbeitung kann das Reaktorverhalten bis zum Gleichgewichtskern hin verfolgt werden.

Zur Berechnung der Brennstoffzykluskosten steht das Programm PREWO [12] zur Verfügung. Mit ihm sind die Brennstoffzykluskosten für jeden Beladezyklus berechenbar. Ist der Gleichgewichtskern erreicht, so sind auch die Jahres-Brennstoffzykluskosten unter Berücksichtigung der Lebensdauer des Reaktors berechenbar.

3.2 Wirkungsquerschnitte für Niob und Wolfram

Bei den in Abb. 3.1 angegebenen Libraries waren für alle Materialien Wirkungsquerschnitte bis auf die für Niob und Wolfram vorhanden. Diese wurden erstellt und auf die Libraries gebracht.

Die Berechnung des Wirkungsquerschnittsverlaufs im Bereich der aufgelösten Resonanzen und im thermischen Energiebereich erfolgte mit Hilfe des Programms GENEX [13] nach der Mehrniveauformel unter Berücksichtigung der Dopplerverbreiterung der Wirkungsquerschnitte. Wegen fehlender Mehrniveauresonanzparameter wurden die im BNL-325 [14] angegebenen verwandt. Da in der Regel die berechneten Absorptionswirkungsquerschnitte bei einer Neutronenenergie von 0,0253 eV von den gemessenen in [14] abweichen, wurde für die Berücksichtigung des Einflusses nicht erfaßter Resonanzen ein entsprechender 1/v-Anteil aufaddiert. Die Wirkungsquerschnitte wurden für eine Kollektortemperatur von 900° K berechnet.

Oberhalb der aufgelösten Resonanzen wurde der Absorptionswirkungsquerschnittsverlauf der ENDF/B-Library [15] entnommen.

Die Abb. 3.2 zeigt den so ermittelten Wirkungsquerschnittsverlauf für Niob-93. Niob in natürlicher Zusammensetzung besteht nur aus Nb-93. Zum Vergleich ist unterhalb 30 eV noch der nach den in ENDF/B angegebenen Resonanzparametern berechnete Wirkungsquerschnittsverlauf dargestellt. Die Abweichungen liegen an dem unterschiedlichen Wirkungsquerschnitt bei einer Energie von 0,0253 eV.

Wolfram in natürlicher Zusammensetzung besteht aus den Isotopen W-180, W-182, W-183, W-184 und W-186. Die prozentualen Anteile sind in der gleichen Reihenfolge: 0,135%, 26,41%, 14,40%, 30,64% und 28,41%. Wegen des geringen Anteils von W-180 und nicht vollständig vorhandener Daten wurde der Anteil von W-180 bei der Ermittlung des mittleren Wirkungsquerschnitts für Wolfram in natürlicher Zusammensetzung dem W-183 zugeschlagen. Die Abbildungen 3.3, 3.4, 3.5 und 3.6 zeigen den ermittelten Verlauf des Absorptionswirkungsquerschnittes. Wo in der Literatur Meßdaten vorhanden waren, wurden sie in die gleichen Abbildungen eingezeichnet (die gemessenen Daten sind den BNL-325 entnommen).

Die Abb. 3.7 zeigt die berechneten 96 Gruppen Absorptions-Punktwirkungsquerschnitte für Nb-93 für die thermische Library. In Abb. 3.8 ist der berechnete Streuwirkungsquerschnittsverlauf für den thermischen Energiebereich dargestellt. Die Abb. 3.9 enthält die 68 Absorptions-Gruppenwirkungsquerschnitte für die GAM-Library, die bei Annahme eines 1/E Verlaufs des Neutronenflusses gewonnen wurden.

von W-182

Absorptionswirkungsquerschnitt

Abb. 3.3:

 $\sigma_{d}(0,0253 \text{ eV}) = 20,7 \text{ b}$

T= 900 ° K

Abb. 3.5 :AbsorptionswirkungsquerschnittVonW-184T = 900°K0,0253 eV) = 1,8 b

-	1	7	-

	E	ба		E	ба		E	бa
Gr.	[eV]	[b]	Gr.	[eV]	[6]	Gr.	[eV]	[b]
1	0,001	4,8259	35	0,29	0,3397	69	0,930	0,1897
2	0,002	4,0827	36	0,30	0,3340	70	0,950	0,1877
3	0,004	2,8922	37	0,31	0,3286	71	0,970	0,1857
4	0,005	2,5868	38	0,32	0,3233	72	0,980	0,1848
5	0,007	2,1863	39	0,33	0,3185	73	0,990	0,1839
6	0,008	2,0451	40	0,34	0,3137	74	1,00	0,1829
7	0,010	1,8292	41	0,35	0,3092	75	1,025	0,1807
8	0,015	1,4935	42	0,36	0,3049	76	1,050	0,1785
9	0,020	1,2934	43	0,38	0,2968	77	1,060	0,1777
10	0,0253	1,1501	44	0,414	0,2843	78	1,070	0,1769
11	0,03	1,0561	45	0,42	0,2822	79	1,080	0,1761
12	0,04	0,9146	46	0,43	0,2789	80	1,090	0,1753
13	0,05	0,8181	47	0,45	0,2727	81	1,11	0,1736
14	0,06	0,7468	48	0,46	0,2674	82	1,125	0,1725
15	0,065	0,7175	49	0,47	0,2668	83	1,13	0,1721
16	0,07	0,6914	50	0,475	0,2655	84	1,15	0,1706
17	0,075	0,6794	51	0,48	0,2641	85	1,20	0,1671
18	0,08	0,6467	52	0,49	0,2614	86	1,25	0,1636
19	0,085	0,6274	53	0,50	0,2587	87	1,30	0,1605
20	0,09	0,6097	54	0,532	0,2508	88	1,35	0,1575
21	0,095	0,5934	55	0,55	0,2467	89	1,44	0,1525
22	0,1	0,5784	56	0,575	0,2413	90	1,50	0,1494
23	0,12	0,5281	57	0,59	0,2382	91	1,60	0,1447
24	0,14	0,4889	58	0,60	0,2362	92	1,70	0,1404
25	0,16	0,4573	59	0,625	0,2314	93	1,78	0,1372
26	0,18	0,4312	60	0,650	0,2269	94	1,86	0,1342
27	0,20	0,4091	61	0,683	0,2213	95	1,90	0,1328
28	0,22	0,3900	62	0,700	0,2187	96	2,00	0,1294
29	0,23	0,3814	63	0,750	0,2112			
30	0,24	0,3734	64	0,800	0,2045			
31	0,25	0,3659	65	0,85	0,1984			
32	0,26	0,3588	66	0,876	0,1955			
33	0,27	0,3521	67	0,890	0,1939			
34	0,28	0,3457	68	0,910	0,1918			

Abb. 3.7: 96 Gruppen Punktwirkungsquerschnitte für Nb-93

Abb. 3.8: Streuwirkungsquerschnitt von Niob-93 bis 2 eV

Gr.	E [eV]	ба [b]	Gr.	E [eV]	6°a [b]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	$1 10^{7}$ $7,79 10^{6}$ $6,07 10^{6}$ $4,72 10^{6}$ $3,63 10^{6}$ $2,87 10^{6}$ $2,23 10^{6}$ $1,74 10^{6}$ $1,35 10^{6}$ $1,05 10^{6}$ $3,21 10^{5}$ $6,39 10$ $4,98 10^{5}$ $3,02 10^{5}$ $3,02 10^{5}$ $3,02 10^{5}$ $3,02 10^{5}$ $1,43 10^{5}$ $1,43 10^{5}$ $1,43 10^{5}$ $1,43 10^{5}$ $1,43 10^{5}$ $1,43 10^{5}$ $1,43 10^{5}$ $1,43 10^{5}$ $1,43 10^{5}$ $1,43 10^{5}$ $1,43 10^{5}$ $1,43 10^{5}$ $1,43 10^{4}$ $4,09 10^{4}$ $3,18 10^{4}$ $1,93 10^{4}$ $1,93 10^{4}$ $1,93 10^{4}$ $1,50 10^{4}$ $1,93 10^{4}$ $1,93 10^{4}$ $1,93 10^{4}$ $1,93 10^{4}$ $1,93 10^{5}$ $3,10 10^{3}$ $5,53 10^{3}$ $4,31 10^{3}$	0,0010 0,0014 0,0027 0,0030 0,0045 0,0067 0,0096 0,0149 0,0271 0,0421 0,0536 0,0559 0,0493 0,0490 0,0559 0,0493 0,0490 0,0552 0,0634 0,0784 0,0784 0,0784 0,0784 0,0784 0,0784 0,0784 0,0784 0,1127 0,1208 0,1239 0,1431 0,1722 0,2099 0,2499 0,2499 0,2996 0,3524 0,3986 0,4424 0,5253 0,7985	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65	2040 1590 1230 961 748 583 454 354 275 215 167 130 101 78,9 61,4 47,9 37,3 29,0 22,6 17,6 13,7 10,68 8,32 6,48 5,04 3,93 3,06 2,38 1,86 1,44 1,125 0,876	0,6010 0,9071 1,7308 0,9741 0,8319 0,1922 1,1625 0,6769 0,0183 0,6267 0,0242 0,8425 0,0248 0,0236 0,0259 0,0289 0,0289 0,0325 0,0366 0,0413 0,0467 0,0529 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,077 0,0767 0,0869 0,0984 0,1114 0,1225 0,1431 0,1621 0,1837 0,2082
33 34	$3,36 \cdot 10^{3}$ 2,61 · 10 ³ 2,04 · 10 ³	0,3574 0,4953	67 68	0,683 0,532 0,414	0,2359 0,2673

<u>Abb. 3.9</u> : 68 Gruppenwirkungsquerschnitte für Nb 93

Unter Berücksichtigung der oben angegebenen Gewichtsanteile sind in Abb. 3.10 die 96 Gruppen Absorptions-Punktwirkungsquerschnitte für Wolfram in natürlicher Zusammensetzung zusammengefaßt. Die Abb. 3.11 zeigt die gute Übereinstimmung mit den Meßdaten. Der Verlauf des Streuwirkungsquerschnittes im thermischen Energiebereich ist in Abb. 3.12 dargestellt. Abb. 3.13 enthält die Absorptions-Gruppenwirkungsquerschnitte für Wolfram in natürlicher Zusammensetzung für die GAM-Library.

Gr.	E [eV]	ба [b]	Gr.	E [eV]	6ª [>]	Gr.	E [eV]	ба [b]
	0.001	0.0 5000	7.	0.28	5 6132	67	0.000	
	0,001	88,5000	54	0,20	5 5202	67	0,890	3,5549
2	0,002	63,0000	35	0,29	5 13202	68	0,91	3,3051
2	0,004	44,0000	36	0,50	5 3/920	59	0,93	3,2765
4	0,005	38,0000	57	0,51	5 2602	70	0,95	3,2487
5	0,007	35,0000	38	0,52	5,2005	/1	0,97	3,2223
6	0,008	33,0000	39	0,35	5,1924	72	0,98	3,2209
7	0,01	29,0662	40	0,54	5,11/1	73	0,99	3,1968
8	0,015	24,1508	41	0,35	5,0604	74	1,00	3,1843
9	0,02	20,5708	42	0,36	4,9841	75	1,025	3,1543
10	0,0253	18,4046	43	0,38	4,8596	76	1,05	3,1254
11	0,03	16,8088	44	0,414	4,6697	77	1,06	3,1142
12	0,04	14,5630	45	0,42	4,6385	78	1,07	3,1032
13	0,05	13,0401	46	0,43	4,5882	79	1,08	3,0926
14	0,06	11,9132	47	0,45	4,4932	80	1,09	3,0819
15	0,065	11,4600	48	0,46	4,4479	81	1,11	3,0614
16	0,07	11,0380	49	0,47	4,4043	82	1,12	3,0463
17	0,075	10,6746	50	0,475	4,3832	83	1,13	3,0413
18	0,08	10,3332	51	0,48	4,3622	84	1,15	3,0221
19	0,085	10,0335	52	0,49	4,3212	85	1,20	2,9769
20	0,09	9,7498	53	0,50	4,2817	86	1,25	2,9354
21	0,095	9,4972	54	0,532	4,1632	87	1,3	2,8973
22	0,10	9,2568	55	0,55	4,1013	88	1,35	2,8599
23	0,12	8,4635	56	0,575	4,0206	89	1,44	2,8067
24	0,14	7,8482	57	0,59	3,9745	90	1,50	2,7745
25	0,16	7,3530	58	0.6	3,9449	91	1,60	2,7284
26	0,18	6,9436	59	0.625	3.8755	92	1,70	2.6913
27	0.20	6,5980	60	0.65	3,8083	93	1,78	2,6679
28	0.22	6.3012	61	0.683	3.7272	94	1,86	2,6497
29	0.23	6.1677	62	0.7	3.6876	95	1,90	2,6426
30	0.24	6,0428	63	0.75	3,5804	96	2,00	2,6305
31	0.25	5,9258	64	0.80	3,4844			
32	0.26	5,8149	65	0.85	3,3979			
33	0.27	5,7115	66	0.876	3 3564			

Abb. 3.10: 96 Gruppen Punktwirkungsquerschnitte für W_{nat}

Abb. 3.11:

Absorptionswirkungsquerschnitt von Wolfram in natürlicher Zusammensetzung bis 2 eV

Abb. 3.12: Streuwirkungsquerschitt von Wolfram bis 2 eV

Gr.	[eV]	ба [b]	Gr.	[ev]	ба [b]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	$ \begin{array}{c} 1 & \cdot & 10^{7} \\ 7,76 & \cdot & 10^{6} \\ 6,07 & \cdot & 10^{6} \\ 4,72 & \cdot & 10^{6} \\ 3,68 & \cdot & 10^{6} \\ 2,87 & \cdot & 10^{6} \\ 1,74 & \cdot & 10^{6} \\ 1,74 & \cdot & 10^{6} \\ 1,35 & \cdot & 10^{6} \\ 1,35 & \cdot & 10^{6} \\ 1,05 & \cdot & 10^{6} \\ 1,05 & \cdot & 10^{6} \\ 1,05 & \cdot & 10^{5} \\ 3,88 & \cdot & 10^{5} \\ 1,83 & \cdot & 10^{5} \\ 1,43 & \cdot & 10^{4} \\ 5,25 & \cdot & 10^{4} \\ 4,09 & \cdot & 10^{4} \\ 3,18 & \cdot & 10^{4} \\ 1,93 & \cdot & 10 \\ 1,50 & \cdot & 10^{4} \\ 1,17 & \cdot & 10^{4} \\ 9,12 & \cdot & 10^{3} \\ 7,10 & \cdot & 10^{3} \\ 5,53 & \cdot & 10^{3} \\ \end{array} $	0,0010 0,0104 0,0140 0,0191 0,0251 0,0348 0,0435 0,0676 0,0924 0,1036 0,1036 0,1036 0,1038 0,1038 0,1038 0,1137 0,1249 0,1309 0,1542 0,1379 0,1542 0,1038 0,0251 0,0147 0,0147 0,0147 0,0112 0,0113 0,0128 0,0171	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	2040 1590 1230 961 749 583 454 354 275 215 167 130 101 78,9 61,4 47,9 37,3 29,0 22,6 17,6 13,7 10,68 8,32 6,48 5,04 3,93 3,06 2,38 1,86 1,44 1,125	0,0437 0,2107 0,4274 0,5135 0,8598 0,4618 0,8763 2,5096 3,4688 5,3875 3,2085 6,9776 0,4861 0,6833 6,0788 37,9278 1,2782 51,6021 303,6654 13,9748 3,0747 2,6207 21,8811 2,7122 17,2358 8,4170 2,8974 2,6430 2,7182 2,9190 3,1957
32 33 34	$4,31 \cdot 10^{3}$ $3,36 \cdot 10^{3}$ $2,61 \cdot 10^{3}$	0,0243 0,0396 0,1007	66 67 68	0,876 0,683 0,532	3,5369 3,9410 4,4113

Abb. 3.13: 68 Gruppenwirkungsquerschnitte für W

•

4. Rechenergebnisse

4.1 k_{eff} und Neutronenspektrum

Bei einer ersten, eindimensionalen Rechnung zeigte sich, daß der Reaktor nur bei kleinen Moderationsverhältnissen

 $\left(\frac{N_{c}}{N_{25}} < 200\right)$ kritisch wird. Der Grund hierfür liegt in der Abnahme der parasitären Absorption der Konvertermaterialien Niob, Wolfram und Molybdän; eine Folge der Spektrumsverschiebung zu höheren Energien bei fallendem Moderationsverhältnis. Ein Vergleich mit dem Spektrum eines THTR-Reaktors in Abb. 4.1 zeigt, daß es sich beim vorliegenden thermionischen Typ gewissermaßen um einen epithermischen Reaktor handelt.

Die Abhängigkeit der Multiplikationskonstante k_{eff} vom Moderationsverhältnis wurde sowohl mit als auch ohne eingesetzten Brutstoff ermittelt. Das Ergebnis dieser Rechnung zeigt Abb. 4.2. Mit zunehmendem Moderationsverhältnis weichen die beiden Kurven immer mehr voneinander ab; der Grund liegt in der zunehmenden Absorption im Brutstoff. Das technisch kleinstmögliche Moderationsverhältnis ergibt sich aus dem Brennstabvolumen zu M = 75.

4.2 Einfluß des H/D-Verhältnisses auf keff

Die Bestimmung des günstigsten H/D-Verhältnisses eines Reaktors läuft auf eine Optimierung zahlreicher unterschiedlicher Parameter hinaus, bei denen u. a. neutronenökonomische, thermodynamische und konstruktive Gesichtspunkte eine Rolle spielen. Im folgenden soll jedoch nur ein Teilaspekt, der Einfluß dieses Verhältnisses auf k_{eff} untersucht werden.

Abb. 4.2: keff in Abhängigkeit vom Moderationsverhältnis

Für einen zylindrischen, reflektorlosen und homogenen Reaktor errechnet sich nach der Eingruppendiffusionstheorie das optimale H/D-Verhältnis zu 0,91. Obwohl das Ergebnis mit sehr einfachen Rechenmethoden gewonnen ist, stimmt es erstaunlich gut mit exakteren Optimierungsrechnungen für bereits gebaute Reaktoren überein [16].

Im vorliegenden Fall wurde das H/D-Verhältnis im Bereich 0,1 = H/D = 10 systematisch verändert. Die Rechnungen erfolgten mit dem Programm EXTERMINATOR-II. Spektralrechnungen wurden sowohl für den Brennstoff- als auch Reflektorbereich durchgeführt. Die Ergebnisse zeigt Abb. 4.3.

Abb. 4.3: keff in Abhängigkeit vom H/D-Verhältnis

Zum Vergleich ist in Abb. 4.3 noch k_{eff} für den Druckwasserreaktor des Kernkraftwerkes STADE eingezeichnet.

Man sieht also, daß k_{eff} nahezu unabhängig vom H/D-Verhältnis ist. Der Kurvenverlauf läßt sich wie folgt erklären:

Bei kleiner bzw. größer werdendem H/D-Verhältnis nimmt die Leckage, vor allem der schnellen Neutronen in axialer (radialer) Richtung aufgrund des wachsenden Verhältnisses von Oberfläche zu Volumen zu; damit nimmt auch das Reflektorvolumen zu, das bei H/D =1 sein Minimum hat. Die Folge davon ist eine vermehrte Hereinstreuung von epithermischen und thermischen Neutronen aus dem Reflektor in das Core und damit ein Anstieg der effektiven Multiplikationskonstante.

4.3 <u>Makroskopischer Flußverlauf, Leistungsverteilung und</u> Langzeitverhalten

Das Langzeitverhalten ist, wie in Abschnitt 3.1 angeführt, mit dem Programm FEVER untersucht worden. Für ein Dreizonencore, bei dem schrittweise die äußeren Elemente nach innen umgeladen werden, und außen frische Elemente nachgeladen werden, ergeben sich die in Abb. 4.4 und Abb. 4.5 dargestellten Fluß- und Leistungsverteilungen. Gleichgewichtsphase und frisches Core sind deutlich voneinander zu unterscheiden.

In Anbetracht der Strahlenempfindlichkeit der für die Thermionikelemente verwendeten Isolierkörper aus Aluminiumoxyd, siehe auch Abschnitt 4.4, erschien eine Beschränkung der Betriebszeit im ersten Einbrennzyklus notwendig. Der zeitliche Verlauf des U-233 und des U-235 Gehaltes im Reaktor für eine Betriebsweise, bei der spätestens nach einer Betriebszeit von 360 Tagen umgeladen wird, zeigt Abb. 4.6

Die durch den Brutstoff ThO₂ erzeugte Menge U-233 fällt gegenüber dem Primärspaltstoffgehalt an U-235 kaum ins Gewicht. Ferner geht aus Abb. 4.6 hervor, daß die Mengendifferenzen der Spaltstoffe ab dem vierten Zyklus sehr klein sind, so daß der sechste Abbrandzyklus als Gleichgewichtscore aufgefaßt werden kann. Wegen des geringen Anteils von U-233 am Spaltstoffinventar erfolgt die Energiefreisetzung praktisch nur durch U-235. Die einzelnen Anteile sind:

- 29 -

Abb. 4.4: Radialer Neutronenflußverlauf im frischen Kern u. Gleichgewichtskern

-32-

lsotop) p	Anteil [%]	
U	-	235	99	
U	-	233	0,5	
Pu	-	239	0,09	

Der Rest stammt aus Schnellspaltungen der anderen Schwermetallnuklide.

4.4 Abschätzung der maximalen Brennstofftemperatur

Die Wärmequelldichte im Brennstoff eines Reaktors ist nicht konstant, sondern ort- und zeitabhängig. Die in Serie geschalteten Thermionikelemente reagieren besonders empfindlich auf axiale Differenzen der Wärmequelldichte; diese senken den Wirkungsgrad und die elektrische Leistung. Der Leistungsabfall erreicht bei einem Verhältnis von 0,7 zwischen kleinster und größter Wärmequelldichte der in Serie geschalteten Elemente Größenordnungen bis zu 64\$ je nach maximaler Emittertemperatur [19].

Bei der gewählten Kernstruktur sind etwa 80 Elemente in Reihe geschaltet. Die daraus resultierenden Unterschiede in der Wärmequelldichte lassen einen Einsatz der Thermionikzelle wenig sinnvoll erscheinen, da sie unter diesen Bedingungen weit vom optimalen Betriebspunkt entfernt arbeiten müßte. Zur Abflachung der axialen Wärmequellverteilung bieten sich folgende Maßnahmen an:

- Übergang zu kleineren H/D-Verhältnissen. Dies ist aus neutronenphysikalischer Sicht nicht nachteilig, wie sich in Kapitel 4.2 zeigte.
- Verdünnung des Moderators oder Spaltstoffes zur Kernmitte hin.

 Längenänderung der Thermionikzelle, wodurch, wie in [19] festgestellt wurde, der Temperaturunterschied zwischen den einzelnen Emittern beeinflußt werden kann.

Die technisch-wirtschaftliche Verwirklichung dieser Maßnahmen erscheint jedoch der heutigen Kenntnis nach zweifelhaft.

Die radiale Temperaturdifferenz im Brennstoff einer Zelle errechnet sich überschlägig nach folgender Beziehung

$$\Theta_{Br} = \frac{\mathcal{E}_{Br} \cdot r_{Br}^2}{4 \cdot \lambda_{Br}}$$
(4.1)

 \mathcal{L}_{g_r} = Wärmequelldichte im Brennstoff [W/cm³] λ_{g_r} = Wärmeleitfähigkeit des Brennstoffes [W/cm grd] γ_{g_r} = Brennstoffradius [cm]

Für die in der Einbrennphase auftretenden Maximalwerte für e_{a} von etwa $450 \left[\frac{W}{cm^3}\right]$ errechnet man so eine Temperaturdifferenz von 2000 grd. Für den Betrieb einer Zelle im Optimum liegen die Emittertemperaturen selbst schon bei ungefähr 1800° K. Damit würden Maximaltemperaturen im Brennstoff von 3800° K erreicht. Solche Temperaturen liegen aber weit oberhalb des Schmelzpunktes von Urandioxyd, dem eingesetzten Brennstoff. Eine Abflachung der Wärmequelldichteverteilung kann hier allein keine Abhilfe schaffen. Sie müßte begleitet werden von weiteren Maßnahmen zur Temperatursenkung, wie

 Erhöhung der Wärmeleitfähigkeit des Brennstoffes, z. B. Verwendung von UO₂ - Mo - Cermets.

2. Verwendung eines anderen Brennstoffes, z. B. UC, dessen

- 34 -

Wärmeleitfähigkeit etwa eine Zehnerpotenz größer ist als die von UO₂.

3. Einsatz eines anders gestalteten Thermionikelementes mit größerer wärmeübertragender Fläche zwischen dem schlecht leitenden Brennstoff und dem Emitter, wie es z. B. im Incore-Thermionik-Reaktor [20] verwendet wird.

4.5 <u>Standzeitbegrenzung der Thermionikelemente durch</u> schnelle Neutronen

Das gefährdete Teil, hinsichtlich der Dosis schneller Neutronen, ist der aus Al_2O_3 hergestellte Isolierkörper. Angaben über das Bestrahlungsverhalten von Al_2O_3 sind in [17, 18] zu finden. Danach ist im günstigsten Fall die mechanische Unversehrtheit bis 1,1 \cdot 10²¹ nvt bei einer Temperatur von 475° C gewährleistet. Eine höhere Temperatur führte jedoch zu Schäden; sinnvoll scheint daher eine Begrenzung der Schnellneutronendosis (>1 MeV) auf 10²¹.

Aus den Rechnungen erhält man für diese Dosis eine Standzeit von ungefähr 50 Tagen. Diese sind sowohl technisch als auch wirtschaftlich nicht vertretbar. Eventuell ist hier jedoch durch Verwendung eines anderen Isoliermaterials Abhilfe zu schaffen.

5. Brennstoffzykluskosten

5.1 Daten zur Brennstoffzykluskostenberechnung

Im Mittelpunkt dieser Rechnungen steht der Einfluß des Moderationsverhältnisses und der Brennelementfabrikationskosten auf die Brennstoffzykluskosten, kurz BZK. Es wird dabei auch der Einfluß der Einbrennphase auf die Kosten untersucht. Die Berechnung erfolgt mit dem Programm PREWO [12] mit konstanten Kosten für die Aufarbeitung, den Brutstoff und den Spaltstoff.

Die Fabrikationskosten der Brennelemente müssen im Kostenprogramm PREWO bezogen auf den Schwermetalleinsatz angegeben werden. Bei dem untersuchten Konzept wurde das freie Brennstoffvolumen mit dem Brutstoff ThO₂ aufgefüllt, somit blieb die eingesetzte Schwermetallmenge für alle Moderationsverhältnisse nahezu konstant. Der Fabrikationspreis der Brennelemente war also unabhängig vom Moderationsverhältnis. Der Brennelement-Fabrikationspreis wurde von 100M/Element bis 1750 DM/Element variiert.

Die nachstehende Tabelle 5.1 zeigt die konstanten Daten für die BZK-Rechnung:

Lastfaktor	0,8
Fälligkeit der Einnahmen nach Entladung	210 d
Fälligkeit der Ausgaben vor Beladung	60 d
U-233-Preis	48000 DM/kg
U-235-Preis	48000 DM/kg
Th0 ₂ -Preis	50 DM/kg
Aufarbeitungskosten	170 DM/kg
Brennelement-Fabrikationskosten	(s. Tabelle 5.2)
Zinsfuß für Brennstoff	7 %/a
Zinsfuß für Brennelemente	7 %/a
Lebensdauer des Kraftwerkes	17 a
Verringerungsfaktor bei Aufarbeitung	0,99
Annuität für Brennelemente	10,24 \$/a

Steuersatz für Spaltstoff 0 Mehrbedarfsfaktor für Brennelemente 1 Zahl der jährlichen Raten der Stromerlöse 1

Tab. 5.1: Daten für die Brennstoffzykluskostenrechnung

Die folgende Tabelle 5.2 enthält die Umrechnung der Brennelement-Fabrikationskosten von DM/Element in DM/kg-Schwermetall, wie es zur Berechnung der BZK benötigt wird.

DM/Element	DM/kg-SM	
10	145,98	
100	1459,85	
500	7299,27	
1000	14598,5	
1500	21897,8	
1750	25547,4	

Tab. 5.2: Umrechnung der Brennelement-Fabrikationskosten von DM/Element auf DM/kg-SM

5.2 <u>Abhängigkeit der mittleren Jahresbrennstoffzykluskosten</u> vom Moderationsverhältnis

Abb. 5.1 zeigt die mittleren BZK in Abhängigkeit vom Moderationsverhältnis für einen Brennelementfabrikationspreis von 10 DM pro Element.

<u>Abb. 5.1:</u> Mittlere Brennstoffzykluskosten in Abhängigkeit vom Moderationsverhältnis bei 10 DM Brennelement-Fabrikationspreis

Die Abnahme der BZK mit fallendem Moderationsverhältnis läßt sich zum einen durch die Abnahme der parasitären Absorption bei härter werdendem Spektrum, zum anderen durch den verschwindenden Einfluß der erbrüteten Spaltstoffmengen auf die gesamten Spaltreaktionen erklären.

5.3 Die Brennstoffzykluskosten in der Einbrennphase

Verständlich ist, daß die BZK von der Betriebsweise in dieser Phase abhängen. Sie haben ihr Minimum dann, wenn beim Einbrennen bis auf k_{eff} = 1 abgebrannt wird. Wegen der hohen Strahlenbelastung erscheint dieses Vorgehen jedoch nicht sinnvoll.

In Abb. 5.2 sind die BZK und der jeweilige Abbrand in den ersten sechs Einjahrzyklen für eine Betriebsweise, bei der spätestens nach 360 Tagen umgeladen wird, dargestellt. Die mittleren BZK sind unter der Annahme konstanter BZK vom 6. Zyklus an berechnet worden. Durch den hohen Schwermetalleinsatz ist der erreichte Abbrand gering.

<u>Abb. 5.2:</u> Brennstoffzykluskosten in den ersten sechs Einbrennzyklen BZK und die mittleren Brennstoffzykluskosten BZK

Die Tabelle 5.3 zeigt die Aufteilung der Brennstoffzykluskosten in Brennstoff- und Brutstoffverbrauchskosten sowie Fabrikations- und Wiederaufarbeitungskosten für zwei Brennelement-Fabrikationspreise.

Kostenart	10 DM/Element	1750 DM/Element
Brennstoffverbrauchsk.	2,615 Dpf/KWh	2,615 Dpf/KWh
Brutstoffverbrauchsk.	0,011 "	0,011 "
Fabrikations- und Wiederaufarbeitungsk.	0,111 "	12,57 "
BZK	2,737	15,2

Tab. 5.3: Aufteilung der Brennstoffzykluskosten

5.4 <u>Einfluß des Brennelement-Fabrikationspreises auf die</u> Brennstoffzykluskosten

Die in Abb. 5.2 dargestellten BZK gelten für einen Herstellungspreis von 10 DM je Element. Dieser Preis ist aber schon wegen der Materialkosten in Höhe von ca. 200 DM nicht realisierbar. Der kostendeckende Preis für ein Element liegt heute bei ca. 1750 DM. Bei größeren Stückzahlen wird sich allerdings eine Kostendegression erzielen lassen.

Abb. 5.4 zeigt den Einfluß des Herstellungspreises auf die mittleren BZK. Sie steigen mit dem Preis linear an und betragen für den heutigen Elementpreis von ca. 1750 DM 15,2 Dpf/KWh bei Brutstoffeinsatz und 20,2 Dpf/KWh ohne Brutstoffeinsatz. Man sieht, daß der Einsatz von Brutstoff keinen entscheidenden Einfluß auf die BZK hat.

Abb. 5.4: Einfluß des Brennelement-Fabrikationspreises auf die mittleren Brennstoffzykluskosten

Aus dem Vergleich dieser BZK mit denen schon gebauter oder geplanter Reaktoren ersieht man, daß das hier untersuchte Reaktorkonzept in keiner Weise wirtschaftlich ist. Selbst für den nicht zu realisierenden Fabrikationspreis von 10 DM pro Element liegen die ermittelten BZK noch rund 400% über denen heutiger Leistungsreaktoren, so daß trotz der besseren Ausnutzung der Primärenergie die Stromerzeugungskosten wirtschaftlich nicht vertretbar sind.

Die vorliegende Arbeit entstand aus einer Zusammenarbeit zwischen dem Institut für Reaktorentwicklung der Kernforschungsanlage Jülich, dem Lehrstuhl für Reaktortechnik der Rhein.-Westf. Technischen Hochschule Aachen und dem Zentralen Forschungslabor der Brown, Boveri & Cie A.G. in Heidelberg.

Herrn Prof. Dr. Schulten sei für die Aufgabenstellung gedankt und Herrn Dr. F. Gross von der BBC, Heidelberg für die Anregung zu dieser Untersuchung.

Die Rechnungen wurden auf der IBM 360/75 des Zentralinstituts für Mathematik der KFA Jülich durchgeführt.

LITERATURVERZEICHNIS

- J. Euler: Neue Wege zur Stromerzeugung. Techn. Phys. Sammlg. Bd. 1.
- W. Haug und E. Wolf: Optimierung thermischer Reaktoren mit konvektiv gekühlten thermionischen Wandlern. TH Stuttgart KE Bericht Nr. 5-5/5-6, 1964.
- [3] U. Hansen: MAFIA - V.S.O.P. Version 69-6; Benutzeranleitung und Eingabebeschreibung. Interner Bericht des Instituts für Reaktorentwicklung der KFA Jülich GmbH, IRE-69-6, Juni 1969.
- [4] E. Teuchert: MAFIA - V.S.O.P. Version 69-9. Abbrandabhängige Selfshielding-Faktoren. Interner Bericht des Instituts für Reaktorentwicklung der KFA Jülich GmbH, IRE-69-11, September 1969.
- [5] G.D. Joanou und J.S. Dudek: GAM-I, a Consistent P₁ Multigroup Code for the Calculation of Fast Neutron Spectra and Multigroup Constants. GA-1850, June 1961.
- [6] L.W. Nordheim und G.F. Kunciv: A Program of research and calculations of resonance absorption. GA-2527, August 1961.
- [7] H. Honeck: THERMOS, a thermalization transport theory code for reactor lattice calculations. BNL 5826, 1961.
- [8] H. Bonka: Probleme bei der ERstellung einer Kurzlibrary aus einer 96-Gruppen-Library für Spektralrechnungen innerhalb 10⁻³ eV < E < 2 eV und Erstellung einer optimalen 30-Gruppen-Punktlibrary. Interner Bericht des Instituts für Reaktorentwicklung der KFA Jülich GmbH, IRE-70-7, April 1970.

- [9] H. Bonka: Entwicklung eines Spektralprogramms für kugelförmige Brennelemente sowie Untersuchungen über die Größe und Beeinflußbarkeit des Moderatorkoeffizienten bei Hochtemperaturreaktoren. JÜL-746-RG, April 1971.
- [10] T.B. Fowler u.a.: EXTERMINATOR-II, a FORTRAN-IV Code for solving multigroup neutron diffusion equations in two dimensions. USAEC-Report, ORNL 4078.
- [11] F. Todt u.a.: FEVER, a one-dimensional few-group depletion program for reactor analysis. GA-2749, Nov. 1962.
- [12] J. Darvas: Berechnung von Brennstoffzykluskosten bei diskontinuierlicher Beschickung. Interner Bericht des Instituts für Reaktorentwicklung der KFA Jülich GmbH, IRE-69-7, Juni 1969.
- [13] R.J. Brissenden und C. Durston: A user's guide to GENEX, SDR, and related computer codes. AEEW-R 622, 1968.
- [14] Neutron cross sections. BNL-325.
- [15] ENDF/B. BNL national neutron cross section center.
- [16] V. Lugenheim: Einfluß des H/D-Verhältnisses auf die effektive Multiplikationskonstante. Studienarbeit am Lehrstuhl für Reaktortechnik der RWTH Aachen, 1969/70.
- [17] R.S. Hickman und D.G. Walker: The effect of neutron irradiation on aluminium oxide. Journal of Nuclear Materials 18, 1969, S. 197-205.
- [18] R.S. Wilks: Neutron-induced damage in BeO, Al₂O₃, and MyO - a review. Journal of Nuclear Materials 26, 1968, S. 137-173.
- [19] E. Wolf und N. Haug: Optimierung der Zellabmessungen im Brennelement eines Incore-Thermionikreaktors. Atomkernenergie, 1970, S. 213 - 218.
- [20] F. Groß u.a.: Der Incore-Thermionik-Reaktor (ITR). Kerntechnik, 1969, S. 381 - 389.