
Rapid Quality Assurance with Requirements Smells

Henning Femmera,⇤, Daniel Méndez Fernándeza, Stefan Wagnerb, Sebastian
Edera

aSoftware & Systems Engineering, Technische Universität München, Germany
bInstitute of Software Technology, University of Stuttgart, Germany

Abstract

Context: Bad requirements quality can cause expensive consequences during
the software development lifecycle, especially if iterations are long and feedback
comes late. Objectives: We aim at a light-weight static requirements
analysis approach that allows for rapid checks immediately when requirements
are written down. Method: We transfer the concept of code smells to
Requirements Engineering as Requirements Smells. To evaluate the benefits
and limitations, we define Requirements Smells, realize our concepts for a
smell detection in a prototype called Smella and apply Smella in a series
of cases provided by three industrial and a university context. Results:
The automatic detection yields an average precision of 59% at an average
recall of 82% with high variation. The evaluation in practical environments
indicates benefits such as an increase of the awareness of quality defects.
Yet, some smells were not clearly distinguishable. Conclusion: Lightweight
smell detection can uncover many practically relevant requirements defects
in a reasonably precise way. Although some smells need to be defined more
clearly, smell detection provides a helpful means to support quality assurance
in Requirements Engineering, for instance, as a supplement to reviews.

Keywords: Requirements Engineering, Quality Assurance, Automatic Defect
Detection, Requirements Smells

⇤Corresponding author
Email addresses: femmer@in.tum.de (Henning Femmer), mendezfe@in.tum.de

(Daniel Méndez Fernández), Stefan.Wagner@informatik.uni-stuttgart.de (Stefan
Wagner), eders@in.tum.de (Sebastian Eder)

Preprint submitted to Elsevier February 19, 2016

Accepted for publication in the Journal of Systems and Software

1. Introduction

Defects in requirements, such as ambiguities or incomplete requirements,
can lead to time and cost overruns in a project [56]. Some of the issues require
specific domain knowledge to be uncovered. For example, it is very difficult to
decide whether a requirements artifact is complete without domain knowledge.
Other issues, however, can be detected more easily: If a requirement states
that a sensor should work with sufficient accuracy without detailing what
sufficient means in that context, the requirement is vague and consequently
not testable. The same holds for other pitfalls such as loopholes: Phrasing
that a certain property of the software under development should be fulfilled
as far as possible leaves room for subjective (mis-)interpretation and, thus, can
have severe consequences during the acceptance phase of a product [24, 33].

To detect such quality defects, quality assurance processes often rely
on reviews. Reviews of requirements artifacts, however, need to involve all
relevant stakeholders [65], who must manually read and understand each
requirements artifact. Moreover, they are difficult to perform. They require a
high domain knowledge and expertise from the reviewers [65] and the quality
of their outcome depends on the quality of the reviewer [75]. On top of all
this, reviewers could be distracted by superficial quality defects such as the
aforementioned vague formulations or loopholes. We therefore argue that
reviews are time-consuming and costly.

Therefore, quality assurance processes would benefit from faster feedback
cycles in requirements engineering (RE), which support requirements engineers
and project participants in immediately discovering certain types of pitfalls
in requirements artifacts. Such feedback cycles could enable a lightweight
quality assurance, e.g., as a complement to reviews.

Since requirements in industry are nearly exclusively written in natural
language [58] and natural language has no formal semantics, quality defects in
requirements artifacts are hard to detect automatically. To face this challenge
of fast feedback and the imperfect knowledge of a requirement’s semantics,
we created an approach that is based on what we call Requirements (Bad)
Smells. These are concrete symptoms for a requirement artifact’s quality
defect for which we enable rapid feedback through automatic smell detection.

In this paper, we contribute an analysis of whether and to what extent
Requirements Smell analysis can support quality assurance in RE. To this
end, we

2

1. define the notion of Requirements Smells and integrate the Requirements
Smells1 concept into an analysis approach to complement (constructive
and analytical) quality assurance in RE,

2. present a prototypical realization of our smell detection approach, which
we call Smella, and

3. conduct an empirical investigation of our approach to better understand
the usefulness of a Requirements Smell analysis in quality assurance.

Our empirical evaluation involves three industrial contexts: The companies
Daimler AG as a representative for the automotive sector, Wacker Chemie
AG as a representative for the chemical sector, and TechDivison GmbH as an
agile-specialized company. We complement the industrial contexts with an
academic one, where we apply Smella to 51 requirements artifacts created
by students. With our evaluations, we aim at discovering the accuracy of
our smell analysis taking both a technical and a practical perspective that
determines the context-specific relevance of the detected smells. We further
analyze which requirements quality defects can be detected with smells, and we
conclude with a discussion of how smell detection could help in the (industrial)
quality assurance (QA) process.

Previously published material
This article extends our previously published workshop paper [24] in the

following aspects: We provide a richer discussion on the notion of Require-
ments Smell and give a precise definition. We introduce our (extended)
tool-supported realization of our smell analysis approach and outline its in-
tegration into the QA process. We extend our first two case studies with
another industrial one as well as with an investigation in an academic context
to expand our initial empirical investigations by

1. investigating the accuracy of our smell detection including precision,
recall, and relevance from a practical perspective,

2. analyzing which quality defects can be detected with smells and
3. gathering practitioner’s feedback on how they would integrate smell

detection in their QA process considering both formal and agile process
environments.

1In context of our studies, we use the ISO/IEC/IEEE 29148:2011 standard [33] (in the
following: ISO 29148) as basis for defining requirements quality. The standard supplies a
list of so-called Requirements Language Criteria, such as loopholes or ambiguous adverbs,
which we use to define eight smells (see also the smell definition in Sect. 3.2).

3

Outline
The remainder of this paper is structured as follows. In Sect. 2, we

describe previous work in the area. In Sect. 3, we define the concept of
Requirements Smells and describe how we derived a set of Requirements
Smells from ISO 29148. We introduce the tool realization in Sect. 4 and
discuss the integration of smell detection in context of quality assurance in
Sect. 5. In Sect. 6, we report on the empirical study that we set up to evaluate
our approach, before concluding our paper in Sect. 7.

2. Related work

In the following, we discuss work relating to the concept of natural language
processing and smells in general, followed by quality assurance in RE, before
critically discussing currently open research gaps.

2.1. The notion of smells in software engineering
The concept of code smells was, to the best of our knowledge, first proposed

by Fowler and Beck [27] to answer the question at which point the quality
of code is so low that it must be refactored. According to Fowler and Beck,
the answer cannot be objectively measured, but we can look for certain
concrete, visible symptoms, such as duplicated code [27] as an indicator for
bad maintainability [35]. This concept of smells, as well as the list that Fowler
and Beck proposed, led to a large field of research. Zhang et al. [76] provide
an in-depth analysis of the state of the art in code smells. The metaphor of
smells as concrete symptoms has since then been transferred to quality of
other artifacts including (unit) test smells [72] and smells for system tests in
natural language [31]. Ciemniewska et al. [12], further characterize different
defects of use cases through the term use case smell. In our work, we extend
the notion of smells to the broader context of requirements engineering and
introduce a concrete definition for the term Requirements Smell.

2.2. Quality assurance of software requirements
The concept of Requirements Smells is located in the context of RE quality

assurance (QA), which is performed either manually or automatically.

4

Manual QA. Various authors have worked on QA for software requirements
by applying manual techniques. Some put their focus on the classification
of quality into characteristics [15], others develop comprehensive checklists
[2, 6, 50, 39, 38]. Regarding QA, some develop constructive QA approaches,
such as creating new RE languages, e.g. [17], to prevent issues up front, others
develop approaches to make analytic QA, such as reviews, more effective [69].
In a recent empirical study on analytical QA, Parachuri et al. [60] manually
investigate the presence of defects in use cases. To sum it up, these works on
manual QA provide analytical and constructive methods, as well as (varying)
lists for defects. They strengthen our confidence that today’s requirements
artifacts are vulnerable to quality defects.

Automatic QA. Various publications discuss the automatic detection of qual-
ity violations in RE. We summarize existing approaches and tools, their
publications, and empirical evaluations in Table 2. We also created an in-
depth analysis of in total 27 related publications evaluating which quality
defects or smells the approaches opt for in their described detection. In the
following, we will first explain two related areas (automatic QA for redundancy
and for controlled languages), before discussing automatic QA for ambiguity
in general. For ambiguity, we first describe those approaches that conducted
empirical evaluations of precision or recall of quality defects related, but not
identical to, the ones of ISO 29148. Afterwards, we focus on publications that
mention the same criteria as in the ISO 29148 (see Table 1 for this list and
their respective empirical evaluations) and discuss the chosen approaches and
results. We publish the complete list of each quality defect that is detected
by each of the 27 papers, as well as the precision and recall (where provided),
online as supplementary material [25].

Automatic QA for redundancy. One specific area of QA is avoiding redundancy
and cloning. Whereas Juergens et al. [34] use ConQAT to search for syntactic
identity resulting from a copy-and-paste reuse, Falessi et al. [21] aim at
detecting similar content, therefore using methods from information retrieval
(such as Latent Semantic Analysis [52]). Rago et al. [62] extend this work
specifically for use cases. Their tool, ReqAlign, classifies each step with a
semantic abstraction of the step. These publications analyze the performance
of their approaches, and depending on the artifact and methods achieve
precision and recall close to 1 (see Table 2).

5

Automatic QA for controlled languages. Another specific area is the appli-
cation of controlled language and the QA of controlled language. RETA [4]
specifically analyzes requirements that are written via certain requirements
patterns (such as with the EARS template [54]). Their goal is to detect both
conformance to the template but also some of the ambiguities as defined by
Berry et al [7]. The authors report on a case study where they look at the
template conformance in depth, indicating that template conformance can
be classified with various NLP suites to a high accuracy (Precision > 0.85,
Recall > 0.9), both with and without glossaries. However, the performance
of ambiguity detection (such as the detection of pronouns) is not further
discussed in the publication. Similarly, AQUSA [51] analyzes requirements
written in user story format (c.f. [14] for a detailed introduction into user
stories), and detects various defects, such as missing rationales, where they
achieve a precision of 0.63-1. Circe [1, 29] is a further tool that assumes that
requirements are written in such requirements patterns and detects violations
of context- and domain-specific quality characteristics by building logical
models. The authors report on six exemplary findings, which were detected
in a NASA case study. However, despite their value to automatic QA, such
approaches require very specific requirements structure.

Automatic QA for ambiguity in general. The remaining approaches listed in
Table 2 aim at detecting ambiguities in unconstraint natural language. Since
the quality defects detected by the approaches by Ciemniewska et al. [12],
Kof [45], HeRA by Knauss et al. [41, 42], Kiyavitskaya et al. [40], RESI by
Körner et al. [46, 47, 48], and Alpino by DeBruijn et al. [16] are not the
ones discussed in ISO 29148 and since we could not find an evaluation of
precision and recall of these approaches, we omit discussing these approaches
in-depth here. An analysis of what these approaches focus on in detail as
well as their evaluation can be found in short in Table 2 and in full length in
our supplementary material online [25]. In the following, we first report on
those publications that focus on criteria different from ISO 29148, but which
report precision or recall. Afterwards, we describe publications that aim at
detecting quality violations of ISO 29148 (see Table 1).

First, Chantree et al. [11] target the specific grammatical issue of coordi-
nation ambiguity (detecting problems of ambiguous references between parts
of a sentence), mostly through statistical methods, such as occurrence and
co-occurrence of words. In a case study, they report on a precision of their
approach mostly between 54% and 75%. even though they do not explicitly

6

differentiate between the detected ambiguities and the concept of pronouns.
Second, Gleich et al. [30] base their approach on the ambiguity handbook,
as defined by Berry et al. [7], as well as company-specific guidelines. They
compare their dictionary- and POS-based approach against a gold standard
which they created by letting people highlight ambiguities in requirements
sentences. The gold standard deviates substantially, however, from what is
considered high quality in their guidelines. Therefore, they create an addi-
tional gold standard, mostly based on the guideline rules. Consequently, their
precision2 varies between 34% for the pure experts opinion, to 97% for a
more guideline-based gold standard. Third, Krisch and Houdek [49], focus on
the detection of passive voice and so-called weak words. They present their
dictionary- and POS-based approach to practitioners and find many false
positives, similar to our RQ 3. In average, a precision of 12% is reported for
the weak words detection. These approaches focus on very related, but not
identical quality violations or smells.

Automatic QA for ISO 29148 criteria. Lastly, we specifically focus on those
approaches that report to detect the criteria from the ISO 29148 standard.
Table 1 provides an overview of these works and their respective evaluations.

The ARM tool [74] defines quality in terms of the (now superseeded)
IEEE 830 standard [32] and proposes generic metrics, instead of giving
feedback directly to requirements engineers. The metrics are calculated
through counting how often a set of pre-defined terms (per metric) occurs in
a document, including a metric of what we call Loopholes. Even though they
report on a case study with 46 specifications from NASA, only a quantitative
overview is reported3. The QuARS tool [19, 18] is based on the author’s
experience. Bucchiarone et al. [10] describe the use of QuARS in a case
study with Siemens and show some exemplary findings. SyTwo [22] adopts
the quality model of QuARS and applies it to use cases. Loopholes and
Subjectivity are part of the QuARS quality model. Also RQA is built on
a different, proprietary quality model, as described by Génova et al. [28],
which includes negative terms as well as pronouns as quality defects. These

2Gleich et al. calculate their metrics based on the combination of all ambiguities;
unfortunately, they do not differentiate, e.g. by the type of ambiguity. Also, to our
knowledge, the gold standard does not differentiate between the types. This prevents a
direct comparison to their work.

3See also our RQ 1 in Sect. 6.

7

works also built upon extending natural language with NLP annotations,
such as POS tags and searching through dictionaries for certain problematic
phrases. However, we could not find a detailed empirical investigation of
these tools, e.g. with regards to precision and recall. SREE is an approach by
Tjong and Berry [70], which aims at detection of ambiguities with a recall of
100%. Therefore, they completely avoid all NLP approaches (since they come
with imprecision), and build large dictionaries of words. The tool includes
detection of loopholes, as well as pronouns; however, they report only on an
aggregated precision for all the different types of ambiguities (66-68%) from
two case studies. In our previous paper [24], we searched for violations of
ISO 29148, yet we provided only a quantitative analysis, as well as qualitative
examples. As mentioned before, RETA also issues warnings for pronouns,
however, the evaluation in their paper [4] focusses on template conformance.

Table 1: Related work on criteria of ISO-29148 standard, detailed supplementary material
can be found online [25]

ARM QuARS RQA SREE Smella RETA
[74] [19] [18] [22] [10] [28] [70] [24] [4]

Ambiguous Adv. & Adj. E/Q
Comparatives E/Q
Loopholes (or Options) Q E/Q E/Q E E Q*/P* E/Q
Negative Terms O E/Q
Non-Verifiable Terms E/Q
Pronouns O Q*/P* E/Q O
Subjectivity E/Q E/Q E E E/Q
Superlatives E/Q

Legend: O=No empirical analysis, E=Examples from Case, Q=Quantification, P=Precision
analyzed, R=Recall analyzed, *=Aggregated over multiple smells

2.3. Discussion
Previous work has led to many valuable contributions to our field. To

explore open research gaps, we now critically reflect on previous contributions
from an evaluation, a quality definition and a technical perspective.

First, one gap in existing automatic QA approaches is the lack of empirical
evidence, especially under realistic conditions. Only few of the introduced
contributions were evaluated using industrial requirements artifacts. Those
who do apply their approach on such artifacts focus on quantitative summaries
explaining which finding was detected and how often it was detected. Some
authors also give examples of findings, but only few works analyze this aspect

8

Ta
bl

e
2:

R
el

at
ed

ap
pr

oa
ch

es
an

d
to

ol
s,

an
d

th
ei

r
ev

al
ua

ti
on

,d
et

ai
le

d
su

pp
le

m
en

ta
ry

m
at

er
ia

lc
an

be
fo

un
d

on
lin

e
[2

5]

To
ol

/A
pp

ro
ac

h
P

ur
po

se
(u

nl
es

s
am

bi
gu

ity
de

t.)
P

ub
lic

at
io

ns
E

va
lu

at
io

n
P

re
ci

sio
n

R
ec

al
l

C
on

Q
AT

R
ed

un
da

nc
y

[3
4]

E
/Q

/P
0.

27
-1

–
(F

al
es

si)
R

ed
un

da
nc

y
[2

1]
Q

/P
/R

up
to

96
up

to
96

R
eq

A
lig

n
R

ed
un

da
nc

y
[6

2]
Q

/P
/R

0.
63

0.
86

R
E

TA
St

ru
ct

ur
ed

La
ng

ua
ge

R
ul

es
[4

]
E

/Q
/P

/R
0.

85
-0

.9
4

0.
91

-1
A

Q
U

SA
U

se
r

St
or

y
R

ul
es

[5
1]

E
/Q

/P
0.

63
-1

–
C

IR
C

E
St

ru
ct

ur
ed

La
ng

ua
ge

R
ul

es
[2

9]
[1

]
E

–
–

(C
ie

m
ni

ew
sk

a)
[1

2]
E

–
–

(K
of

)
[4

4]
E

/Q
–

–
(K

iy
av

its
ka

ya
)

[4
0]

E
/Q

–
–

R
E

SI
[4

6]
[4

7]
[4

8]
E

/Q
–

–
H

eR
A

[4
1]

[4
2]

E
–

–
A

lp
in

o
[1

6]
E

/Q
–

–

(C
ha

nt
re

e)
[1

1]
E

/P
/R

0.
6-

1
0.

02
-0

.5
8

G
le

ic
h

[3
0]

E
/Q

*/
P

*/
R

*
0.

34
-0

.9
7

0.
53

-0
.8

6
(K

ris
ch

)
[4

9]
E

/Q
/P

0.
12

–

A
R

M
R

E
A

rt
ifa

ct
M

et
ric

s
[7

4]
Q

–
–

Q
uA

R
S

/
Sy

Tw
o

[1
9]

[1
8]

[2
2]

[1
0]

E
/Q

–
–

R
Q

A
[2

8]
O

–
–

SR
E

E
[7

0]
Q

*/
P

*
0.

66
-0

.6
8*

–
Sm

el
la

[2
4]

E
/Q

–
–

Le
ge

nd
:

O
=

N
o

em
pi

ri
ca

la
na

ly
si

s,
E

=
E

xa
m

pl
es

fr
om

C
as

e,
Q

=
Q

ua
nt

ifi
ca

ti
on

,P
=

P
re

ci
si

on
an

al
yz

ed
,R

=
R

ec
al

la
na

ly
ze

d,
*=

A
gg

re
ga

te
d

ov
er

m
ul

ti
pl

e
sm

el
ls

9

in depth with precision and recall, especially in the fuzzy domain of ambiguity
(see Table 2). When looking at the characteristics that are described in
ISO 29148, we have not seen a quantitative analysis of precision and recall.
Furthermore, reported evidence does not include qualitative feedback from
engineers who are supposed to use the approach, which could reveal many
insights that cannot be captured by numbers alone. However, we postulate
that the accuracy of quality violations very much depends on the respective
context. This is especially true for the fuzzy domain of natural language
where it is important to understand the (context-specific) impact of a finding
to rate its detection for appropriateness and eventually justify resolving the
issue.

Second, the existing approaches are based on proprietary definitions of
quality, based on experience or, sometimes, simply on what can be directly
measured. The ARM tool [74] is loosely based on the IEEE 830 [32] standard.
However, as the recent literature survey by Schneider and Berenbach [67]
states: “the ISO/IEC/IEEE 29148:2011 is actually the standard that every
requirements engineer should be familiar with”. We are not aware of an
approach that evaluates the current ISO 29148 standard [33] in this respect.
As Table 1 shows, for most language quality defects of ISO 29148, there has
not yet been a tool to detect these quality defects. To all our knowledge,
for neither of these factors, there is an differentiated empirical analysis of
precision and recall. Yet, many other quality models (most notably from the
ambiguity handbook by Berry et al. [7]) and quality violations could lead to
Requirements Smells, as far as they comply with the definition given in the
next section.

Finally, taking a more technical perspective, our Requirements Smell detec-
tion approach does not fundamentally differ from existing approaches. Similar
to previous works, we apply existing NLP techniques, such as lemmatization
and POS tagging, as well as dictionaries. For the rules of the ISO 29148
standard, no parsing or ontologies (as used in other approaches) were required.
However, to detect superlatives and comparatives in German, we added a
morphological analysis, which have not yet seen in related work.

In summary, in our contribution, we extend the current state of reported
evidence on automatic QA for requirements artifacts via systematic studies
in terms of distribution, precision, recall, and relevance, as well as by means
of a systematic evaluation with practitioners under realistic conditions. We
perform this on both existing, as well as new quality defects taken from the

10

ISO 29148. Therefore, we extend our previously published first empirical
steps [24] to close these gaps by thorough empirical evaluation.

3. Requirements Smells

We first introduce the terminology on Requirements Smells as used in this
paper. In a second step, we define those smells we derived from ISO 29148
and which we use in our studies, before describing the tool realization in the
next section.

3.1. Requirements Smell terminology
Code smells are supposed to be an imprecise indication for bad code

quality [27]. We apply this concept of smells to requirements and define it as
follows: A Requirements Smell is an indicator of a quality violation, which may
lead to a defect, with a concrete location and a concrete detection mechanism.
In detail, we consider a smell as having the following characteristics:

1. A Requirements Smell is an indicator for a quality violation of a re-
quirements artifact. For this definition, we understand requirements
quality in terms of quality-in-use, meaning that bad requirements ar-
tifact quality is defined by its (potential) negative effects on activities
in the software lifecycle that rely on these requirements artifacts (see
also [26]).

2. A Requirements Smell does not necessarily lead to a defect and, thus, has
to be judged by the context (supported e.g. by (counter-/)indications).
Whether a Requirements Smell finding is or is not a problem in a certain
context must be individually decided for that context and is subject to
reviews and other follow-up quality assurance activities.

3. A Requirements Smell has a concrete location in an entity of the re-
quirements artifact itself, e.g. a word or a sequence. Requirements
Smells always provide a pointer to a certain location that QA must
inspect. In this regard, it differs from general quality characteristics,
e.g. completeness, that only provide abstract criteria.

4. A Requirements Smell has a concrete detection mechanism. Due to its
concrete nature, Requirements Smells offer techniques for detection of
the smells. These techniques can, of course, be more or less accurate.

11

Furthermore, we define a quality defect as a concrete instance or manifes-
tation of a quality violation in the artifact, in contrast to a finding which is
an instance of a smell. However, like a smell indicates for a quality violation,
the finding indicates for a defect. Fig. 1 visualizes the relation of these terms.

Instance

Quality Model

Requirements Smells

indicates for

RE
Entity

supported by

indicates for

detects

automated by

present in

instance of

decreases

FindingQuality
Defect

SmellQuality
Violation

Quality-in-
use

Smell
Detector

Figure 1: Terminology of Requirements Smells (simplified)

In the following, we will focus on natural language Requirements Smells,
since requirements are mostly written in natural language [58]. Furthermore,
the real benefits of smell detection in practice should come with automation.
Therefore, the remainder of the paper discusses only Requirements Smells
where the detection mechanism can be executed automatically (i.e. it requires
no manual creation of intermediate or supporting artifacts).

3.2. Requirements Smells based on ISO 29148
We develop a set of Requirements Smells based on an existing definition of

quality. For the investigations in scope of this paper, we take the ISO 29148
requirements engineering standard [33] as a baseline. The reasons for this are
two-fold.

First, the ISO 29148 standard was created to harmonize a set of existing
standards, including the IEEE 830:1998 [32] standard. It differentiates be-
tween quality characteristics for a set of requirements, such as completeness

12

or consistency, and quality characteristics for individual requirements, such as
unambiguity and singularity. The standard furthermore describes the usage
of requirements in different project phases and gives exemplary contents and
structure for requirements artifacts. Therefore, we argue that this standard is
based on a broad agreement and acceptance. Recent literature studies come
to the same conclusion [67].

Second, the standard provides readers with a list of so-called requirements
language criteria which support the choice of proper language for requirements
artifacts. The authors of the standard argue that violating the criteria results
“in requirements that are often difficult or even impossible to verify or may
allow for multiple interpretations" [33, p.12]. For defining our smells, which
we describe next, we refer to this section of the standard and use all the
defined requirements language criteria. We employ those criteria as a starting
point and define the smells by adding the affected entities (e.g. a word) and
an explanation. Here, we do not discuss the impact smells have on the quality-
in-use. Essentially, smells hinder the understandability of requirements and
consequently their subsequent handling and their verification (for a richer
discussion, see also previous work in [26]).

Our current understanding is based on the examples given by the standard.
A subset of the language criteria, namely Subjective Language, Ambiguous
Adverbs and Adjectives and Non-verifiable Terms, as defined in [33],
are strongly related, essentially since subjective language is a special type of
ambiguity, which may lead to issues during verification. Since the intention of
this work is to start with the standard as a definition of quality, in the following,
we will remain with the provided definition based on the language criteria
and leave the development of a precise and complete set of Requirements
Smells to future work. In detail, we use the requirements language criteria to
derive the smells summarized next.

Smell Name: Subjective Language
Entity: Word
Explanation: Subjective Language refers to words of which

the semantics is not objectively defined, such
as user friendly, easy to use, cost effective.

Example: The architecture as well as the programming
must ensure a simple and efficient main-
tainability.

13

Smell Name: Ambiguous Adverbs and Adjectives
Entity: Adverb, Adjective
Explanation: Ambiguous Adverbs and Adjectives refer to

certain adverbs and adjectives that are un-
specific by nature, such as almost always, sig-
nificant and minimal.

Example: If the (...) quality is too low, a fault must
be written to the error memory.

Smell Name: Loopholes
Entity: Word
Explanation: Loopholes refer to phrases that express that

the following requirement must be fulfilled
only to a certain, imprecisely defined extent.

Example: As far as possible, inputs are checked for
plausibility.

Smell Name: Open-ended, Non-verifiable Terms
Entity: Word
Explanation: Open-ended, non-verifiable terms are hard to

verify as they offer a choice of possibilities,
e.g. for the developers.

Example: The system may only be activated, if all re-
quired sensors (...) work with sufficient mea-
surement accuracy.

Smell Name: Superlatives
Entity: Adverb, Adjective
Explanation: Superlatives refer to requirements that ex-

press a relation of the system to all other
systems.

Example: The system must provide the signal in the
highest resolution that is desired by the sig-
nal customer.

14

Smell Name: Comparatives
Entity: Adverb, Adjective
Explanation: Comparatives are used in requirements that

express a relation of the system to specific
other systems or previous situations.

Example: The display (...) contains the fields A, B, and
C, as well as more exact build infos.

Smell Name: Negative Statements
Entity: Word
Explanation: Negative Statements are “statements of sys-

tem capability not to be provided"[33]. Some
argue that negative statements can lead to
underspecification, such as lack of explaining
the system’s reaction on such a case.

Example: The system must not sign off users due to
timeouts.

Smell Name: Vague Pronouns
Entity: Pronoun
Explanation: Vague Pronouns are unclear relations of a

pronoun.
Example: The software must implement services for ap-

plications, which must communicate with
controller applications deployed on other con-
trollers.

Smell Name: Incomplete References
Entity: Text reference
Explanation: Incomplete References are references that a

reader cannot follow (e.g. no location pro-
vided).

Example: [1] “Unknown white paper". Peter Miller.

15

4. Smella: A prototype for Requirements Smell detection

Requirements Smell detection, as presented in this paper, serves to support
manual quality assurance tasks (see also the next section). The smell detection
is implemented on top of the software quality analysis toolkit ConQAT,4 a
platform for source code analysis, which we extended with the required NLP
features. In the following, we introduce the process for the automatic part of
the approach, i.e. the detection and reporting of Requirements Smells. To
the best of our knowledge, there is no tool, other than the ones mentioned
in related work, that detect and present these smells in natural language
requirements documents.

Requirements

Annotation IdentificationParsing

Spec A1

Spec B1

Sec1 Req1
Req2
Req3

Sec2 Req1
Req2

Sec1 Req1
Req2
Req3

POS Tagging
Morphologic Analysis

Lemmatization

1 2 3 4
Presentation

Overview
Dashboard

Smell
Viewer

Figure 2: The overall smell detection process

The process takes requirements artifacts in various formats (MS Word,
MS Excel, PDF, plain text, comma-separated values) and consists of four
steps (see also Fig. 2):

1. Requirements parsing of the requirements artifacts into single items (e.g.
sections or rows), resulting in plain texts, one for each item

2. Language annotation of the requirements with meta-information

3. Findings identification in the requirements, based on the language
annotations

4. Presentation of a human-readable visualization of the findings as well
as a summary of the results

4
http://www.conqat.org

16

http://www.conqat.org

The techniques behind these steps are explained in the following section.

4.1. Requirements parsing
Our current tool is able to process several file formats: MS Word, MS

Excel, PDF, plain text and comma-separated values (CSV). Depending on
the format, the files are parsed in different ways. Plain text and PDF are
taken as is and parsed file by file. Microsoft Word files are grouped by their
sections. For Microsoft Excel and CSV files, we define those columns that
represent the IDs or names (if there are any), and those columns should be
used as text input to detect smells.

If a file is written in a known template, such as a common template for
use cases, we can make use of this template to understand structural defects,
such as lacking content items in a template. In the remainder of this paper,
however, we focus on the natural language Requirements Smells as provided
by the ISO standard.

4.2. Language annotation
For the annotation and smell detection steps, we employ three techniques

from Natural Language Processing (NLP) [36]. Table 3 additionally shows
which of the techniques we use for which smell.

POS Tagging: For two smells, we use part-of-speech (POS) tagging. Given
a sentence in natural language, it determines the role and function of
each single word in the sentence. The output is a so-called tag for
each word indicating, for instance, whether a word is an adjective, a
particle, or a possessive pronoun. We used the Stanford NLP library
[71] and the RFTagger [66] for this. Both are statistical, probabilistic
taggers that train models similar to Hidden Markov Models based on
existing databases of tagged texts. A detailed introduction into the
technical details of POS tagging is beyond the scope of this paper but
can be found, for example, in [36]. We use POS tagging to determine so-
called substituting pronouns. These are pronouns that do not repeat the
original noun and, thus, need a human’s interpretation of its dependency.

Morphological Analysis: Based on POS tagging, we perform a more de-
tailed analysis of text and determine a word’s inflection. This includes,
inter alia, determining a verb’s tense or an adjective’s comparison. We
use this technique to analyze if adjectives or adverbs are used in their
comparative or superlative form.

17

Dictionaries & Lemmatization: For the remaining five smells, we use
dictionaries based on the proposals of the standard [33] and on our
experiences from first experiments in a previous work [24]. We further-
more apply lemmatization for these words, which is a normalization
technique that reproduces the original form of a word. In other words,
if a lemmatizer is applied to the words were, is or are, the lemmatizer
will return for all three the word be. Lemmatization is in its purpose
very similar to stemming (see, e.g. the Porter Algorithm [61]), yet not
based on heuristics but on the POS tag as well as the word’s morpho-
logical form. For Requirements Smells, the difference is significant: For
example, the words use and useful stem to the same word origin (use),
but to different lemmas (i.e. meanings; use and useful). Whereas the
lemma use is mostly clear to all stakeholders, the lemma useful is easily
misinterpreted.

4.3. Findings identification
Based on the aforementioned information, we identify findings. This step

actually finds the parts of an artifact that exhibit bad smells. Dependent
on the actual smell, we use different techniques, as shown in Table 3. If the
smell relates to a grammatical aspect, we search through the information from
POS tagging and morphological analyses. For example, for the Superlatives
Smell, we report a finding if an adjective is, according to morphologic analysis,
inflected in its superlative form. If the smell does not relate to grammatical
aspects but rather the semantics of the requirements, we identify the smell
by matching the lemma of a word against a set of words from pre-defined
dictionaries. Since the requirements under analysis in our cases did not
contain references, incomplete references are not part of our tool at present.

4.4. Findings presentation
We implemented the presentation of findings in a prototype, which we

call Smella (Smell Analysis). Smella is a web-based tool that enables viewing,
reviewing and blacklisting findings as well as a hotspot analysis at an artifact
level. In the Smella presentation, we display the complete requirements
artifact and annotate findings in a spell checker style. This follows the idea of
smells as only indications that must be evaluated in their context. Lastly, the
system gives detailed information when a user hovers a finding (see Fig. 3). In
the following, we shortly describe the features of Smella in detail to provide
the reader with a rough understanding of the prototype.

18

Table 3: Detection techniques for smells

Smell Name Detection Mechanism

Subjective Language Dictionary
Ambiguous Adverbs and Adjec-
tives

Dictionary

Loopholes Dictionary
Open-ended, non-verifiable terms Dictionary
Superlatives Morphological analysis or POS tagging
Comparatives Morphological analysis or POS tagging
Negative Statements POS tagging and dictionary
Vague Pronouns POS tagging: Substituting pronouns.
Incomplete References Not in scope of this study

View findings: At the level of a single artifact, we present the text of the
artifact and its structure. We mark all findings in the text. With a
click on the markers, more information about the finding is displayed.
The tool provides an explanation of the rationale behind this smell and
possible improvements for the finding depending on the smell (every
smell has a message for improvements).

Review findings: We allow the user to write a review and to set a status for
each finding, both supporting feedback mechanisms within and between
project teams. A user has the possibility to accept or reject a finding
but also to set a custom state, for example under review. Accepting a
finding means the finding needs to be addressed. If a finding is rejected,
the finding does not need to be addressed. The semantics of the custom
status is open to the reviewer.

Blacklist findings: Smells are only indicators for issues. Therefore, users
can reject findings. If a finding is rejected by the user, the finding is
removed from the visualization and will not be presented to the user
anymore.

Disable smells: Often, users are interested in only a subset of smells or
even just one smell. Therefore, we allow the user to hide all findings of
particular smells and to select the smells she wants to display in the
artifact view.

19

Figure 3: A sample output from the smell detection tool (detailed artifact view) with some
smells disabled and some findings blacklisted

Analyze hotspots: In this view, we present all artifacts in a colored treemap
(see Fig. 4). Every box in the treemap is one artifact, with the color of
the box indicating the number of findings: the more red an artifacts is,
the more findings it contains (the more it “smells” bad). The artifacts
are grouped by their folder structure. The tool provides a summarized
treemap for all smells as well as a separate treemap for all individual
smells. With these treemaps, users can identify artifacts or groups of
artifacts exhibiting a high number of findings – for one single smell but
also for all smells together. This feature supports the identification of
candidates for in-depth reviews.

5. Requirements Smell detection in the process of quality assur-
ance

The Requirements Smell detection approach described in previous sections
serves the primary purpose of supporting quality assurance in RE. The detec-
tion process itself is, however, not restricted to particular quality assurance
tasks, nor does it depend on a particular (software) process model as we will
show in Sect. 6. Hence, a smell detection, similar to the notion of quality

20

Figure 4: A sample output from the smell detection tool (hotspot analysis view)

21

itself, always depends on the views in a socio-economic context. Thus, how
to integrate smell detection into quality assurance needs to be answered
according to the particularities of that context. In the following, we therefore
briefly outline the role smell detection can generally take in the process of
quality assurance. More concrete proposals on how to integrate it into specific
contexts are given in our case studies in Sect. 6.

We postulate the applicability of the Requirements Smell detection in the
process of both constructive and analytical quality assurance (see Fig. 5).
From the perspective of a constructive quality assurance, authors can use

Automatic
Smell Detection

Constructive QA Analytical QA

Detect
smells

Author Reviewer
Feedback

View findings &
Review findings

View findings &
Review findings

Create /
update

Visualize
smells

Figure 5: A suggestion for applying Requirements Smell detection in QA

the smell detection to increase their awareness of potential smells in their
requirements artifacts and to remove smells before releasing an artifact for,
e.g., an inspection. External reviewers in turn, can then use the smell detection
to prepare analytical, potentially cost-intensive, quality assurance tasks, such
as a Fagan inspection [20]. Such an inspection involves several reviewers
and would benefit from making potential smells visible in advance. Iterative
inspection approaches are also known as phased inspections, as defined by
Knight and Myers [43].

22

We furthermore believe that one major advantage is that the scope of our
smell detection is not to enforce resolving a potential smell but to increase
the awareness of the like and to make transparent later reasoning why certain
decisions have been taken. Please note that two different roles (e.g. require-
ments engineer and QA engineer) can take two different viewpoints on the
same smell, respectively its criticality and whether it should be resolved or
not. In addition, a finding could be unambiguous to the author, but unclear
to the target group of readers (represented by the reviewers). Therefore, one
contribution of our tool-supported smell detection is also to actively foster
the communication between reviewers and authors and to enable continuous
feedback between both roles. For this reason, we enable stakeholders in Smella
to comment on detected smells and make explicit whether they need to be
resolved or whether and why they have been accepted or rejected.

6. Evaluation

For a better, empirical understanding of smells in requirements artifacts, we
conducted an exploratory multi-case study with both industrial and academic
cases. We particularly rely on case study research over other techniques,
such as controlled experiments, because we want to evaluate our approach in
practical settings under realistic conditions. For the design and reporting of
the case study, we largely follow the guidelines of Runeson and Höst [63].

6.1. Case study design
Our overall research objective is as follows:

Research Objective: Analyze whether automatic analysis of Requirements
Smells helps in requirements artifact quality assurance.

To reach this aim, we formulate four research questions (RQ). In the
following, we introduce those research questions, the procedures for the case
and subjects selection, the data collection and analysis, and the validity
procedures.

6.1.1. Research questions
RQ 1: How many smells are present in requirements artifacts? To
see if the automatic detection of smells in requirements artifacts could help in
QA, we first need to verify that Requirements Smells exist in the real world.

23

The answer to this question fosters the understanding how widespread the
smells under analysis are in industrial and academic requirements artifacts.
RQ 2: How many of these smells are relevant? Not only the number
of detected smells is important. If many of the detected smells are false
positives and not relevant for the requirements engineers and developers, it
would hinder QA more than it would help. As relevancy is a rather broad
concept, we break down RQ 2 into two sub-questions.

RQ 2.1: How accurate is the smell detection? The first sub-
question looks at the more technical view on relevance. We want to find
false positives and false negatives to determine the precision and recall
of the analysis in terms of correct detection of the defined smell.
RQ 2.2: Which of these smells are practically relevant in which
context? This second sub-question is concerned with practical relevance.
We investigate whether practitioners would react and change the require-
ment when confronted with the findings.

RQ 3: Which requirements quality defects can be detected with
smells? After we understood how relevant the analyzed Requirements Smells
are, we want to understand their relation to existing quality defects in
requirements artifacts. Hence, we need to check whether, and if so, which
defects in requirements artifacts correspond to smells, as we understand smell
findings as indicators for defects.
RQ 4: How could smells help in the QA process? Finally, we collect
general feedback from practitioners whether (and how) smell detection could
be a useful addition to QA for requirements artifacts and whether as well as
how they would integrate the smell detection into their QA process.

6.1.2. Case and subjects selection
Our case and subject selection is opportunistic but in a way that maximizes

variation and, hence, evaluates the smell detection in very different contexts.
This is particularly important for investigating requirements artifacts under
realistic conditions, also due to the large variation in how these artifacts
manifest themselves in practice. A prerequisite for our selection is the access
to the necessary data. To get a reasonable quantitative analysis of the number
of smells (RQ 1) and qualitative analysis of the relation of smells and defects
(RQ 3), we complement our three industrial cases with a case in an academic
setting. There, various student teams are asked to provide software with a
certain set of (identical) functionality for a customer as part of a practical

24

course. This is also a realistic setting but provides us with a higher number
of specifications and reviews than in the industrial cases.

We will refer to the subjects of the industrial cases as practitioners and
we will call the latter subjects students.

6.1.3. Data collection procedure
We used a 6-step procedure to collect the data necessary for answering

the research questions.

1. Collect requirements artifact(s) for each case. We retrieved the re-
quirements artifacts to be analyzed in each case. For one case, the
requirements were stored in Microsoft Word Documents. For the other
cases, this involved extracting the requirements from other systems,
either a proprietary requirements management tool (resulting in a list
of html files), or the online task management system JIRA, which led to
a set of comma-separated values files. For the student projects, the stu-
dents handed in their final artifacts either as a single PDF or as a PDF
with the general artifact and another PDF with the use cases. Where
authors explicitly structured requirements in numbered requirements,
user stories or use cases, we counted these artifacts.

2. Run the smell detection via Smella. We applied our detection tool
as introduced in Sect. 4.4 on the given requirements artifacts, which
generated a list of smells per artifact.

3. Classify false positives. For all cases in which we wanted to present
our results to practitioners, we reviewed each detected finding. In
pairs of researchers, we classified the findings as either true or false
positive. We classified a finding as false positive if the finding was
not an instance of the smell, e.g. because the results of the linguistic
analysis was incorrect.5 For artifacts containing more than 10 findings
of a smell, we only inspected a set of 10 random findings (of that smell)
per artifact. The same holds for Case D, where we inspected 10 random
findings of each category for the whole case.

5For example, if the linguistic analysis incorrectly classified the word provider in the
sentence “As a provider, I want [. . .]” as a comparative adjective.

25

4. Inspect documents for false negatives. To calculate the recall of the smell
detection, for each case we randomly selected one artifact that a pair of
researchers inspected for false negatives. To ease the manual inspection,
we grouped the smells Subjective Language, Ambiguous Adverbs
and Adjectives, Loopholes, Non-verifiable Terms (as Ambiguity-
related smells). We classified whether a finding is a true or false
negative based on the same conditions as in the previous step.
One common cause for false negatives for dictionary-based smells can
be that an ambiguous phrase is not part of the dictionary. Since we
developed the dictionaries based on existing dictionaries, such as the
standard, these dictionaries are not yet complete and must be further
developed. However, since this is an issue that is not a problem of the
smell detection approach in general, but rather a configuration task, we
did not take these findings into consideration for the recall.

5. Get rating by practitioners. We selected a subset of the true positive
findings so that we cover all smells with a minimum of two findings
per smell as far as the artifacts allowed. When we found repeating or
similar findings, e.g. multiple similar sentences with the same smell, we
also included one of these findings into the set.
We presented this subset to the practitioners and interviewed them,
finding by finding, through three closed questions (see also Table 9):
Q1: Would you consider this smell as relevant? Q2: Have you been
aware of this finding before? Q3: Would you resolve the finding? Of
these, the former two must be answered with yes or no. For the last
question, we also needed to take the criticality into account. Therefore,
in case practitioners answered that they would resolve a finding, we
also asked whether they would resolve it immediately, in a short time
(i.e. within this project iteration) or in a long time (e.g. if it happens
again). In addition to these three questions, we took notes of qualitative
feedback, such as discussions.

6. Interview practitioners. In addition to the ratings, we performed open
interviews with practitioners about their experience with the smell
detection and how they might include it in their quality assurance
process. We took notes of the answers.

26

7. Get review results from students. Lastly, the students performed reviews
of the artifacts of other student teams. They documented and classi-
fied found problems according to a checklist (see Table A.11) without
awareness of the smell findings in their artifacts. We then collected the
review reports from the students.

6.1.4. Analysis procedure
We structure our analysis procedure into seven steps. Each step leads to

the results necessary for answering one of our research questions.

1. Calculate ratios of findings per artifact. To understand whether smells
are a common issue in requirements artifacts, we compared the quan-
titative summaries of smells in the various artifacts and domains. To
enable a comparison between different types of requirement artifacts, we
used the number of words in each artifact as a measure of size. Hence,
we finally reported the ratio of findings per 1000 words for each smell
and all smells in total. This provided answers for RQ 1.

2. Calculate ratios of findings for parts of user stories. In one case, we had
a common structure of the requirements, because they were formulated
as user stories. To get a deeper insight into the distribution of smells
and findings, we calculated the ratios of findings per 1000 words for each
part. We divided the user stories into the parts role (“As a. . . ”), feature
(“I want to. . . ”) and reason (“so that. . . ”) using regular expressions.
We counted the words and findings in each part. This provided further
insights into the answer for RQ 1.

3. Calculate ratios of false positives. After a rough overview obtained
under the umbrella of RQ 1 describing the number of findings for each
smell of the varying artifacts, we wanted to better understand the smell’s
relevance. The first step was to calculate the ratios of false positive as
we classified them in Step 3 of the data collection. We reported false
positive rates overall and for each smell. This provides the first part of
the answer to RQ 2.1.

4. Calculate ratios of false negatives. The precision of a smell detection is
tightly coupled with the recall. Therefore, we calculated the ratio of
detected smell findings to all existing findings, according to our manual
inspection, as described in Step 4 of the data collection procedure. This
provides the second part of the answer to RQ 2.1.

27

5. Calculate ratio of irrelevant smells. We were not only interested in
errors in the linguistic analysis but also in how relevant the correct
analyses were for the practitioners. Hence, we calculated and reported
the ratios of findings considered irrelevant by the practitioners. This
answers RQ 2.2.

6. Compare defects from reviews with findings. From the students, we
received review reports for each artifact. As the effort to check them
all would have been overwhelming, we took a random sample of 20% of
the artifacts. For each of the defects detected in the review, we checked
if there is a corresponding finding from a smell. This answers RQ 3.

7. Interpret interview notes. To answer finally RQ 4, we analyze the
interview transcripts and code the answers given by the interviewees
manually.

6.1.5. Validity procedure
First, we used peer debriefing in the sense that all data collection and

analyses were done by at least two researchers. Analysis results were also
checked by all researchers. This researcher triangulation especially increases
the internal validity. Furthermore, we kept an audit trail in a Subversion
system to capture all changes to documents and analyses.

Second, we performed all the classifications of findings into true and false
positives in pairs. This already helped to avoid misclassifications. To further
check our classifications, we afterwards did an independent re-classification of
randomly selected 10% of the findings and calculated the inter-rater agreement.
We discussed to clarify which findings we consider false positives and repeated
the classifications until we reached an acceptable agreement. The same
procedure held for the inspection of artifacts to detect false negatives, which
we also conducted in pairs. Furthermore, we also independently re-classified
one of the artifacts to understand the inter-rater agreement on the false
negatives. Overall, our analysis for false positives and relevance of the
findings is also a validity procedure in the sense that we check in RQ 2 the
results from RQ 1.

Third, we discussed with the practitioners what relevance of smells means
in the context of the study to avoid misinterpretations. Furthermore, we gave
the students review guidelines to give them an indication what quality defects
in requirements artifacts might be. Both serve in particular as mitigation to
threats to the internal and the construct validity.

28

Fourth, we performed the analysis of the correspondence between smells
and defects with a pair of researchers. This pair derived a classification of the
found and not found defects. Both other researchers reviewed the classification,
and we improved it iteratively until we reached a joint agreement.

Fifth, we performed member checking by showing our transcriptions and
interpretations for RQ 4 to the interviewed practitioners and incorporating
feedback.

Finally, to support the external validity of the results of our study, we
aimed at selecting cases with maximum variation in their domains, sizes, and
how they document requirements.

6.2. Results
In the following, we report on the results of our case studies. We first

describe the cases and subjects under analysis, before we answer the research
questions. We end by evaluating the validity of the cases.

6.2.1. Case and subjects description
The first three cases contain requirements produced in different industrial

contexts: embedded systems in the automotive industry, business information
systems for the chemical domain and agile development of web-based systems.
While the first two represent rather classical approaches to Requirements
Engineering, the third case applies the concept of user stories, as it is popular
in agile software development. The fourth case is in an academic background
and employs both use cases and textual requirements. Regarding subject
selection, for each industrial case we selected practitioners involved in the
company, domain and specification. We executed the findings rating (Step 5)
and the interviews regarding the QA process (Step 6) with the same experts,
so that their answer in Step 6 is based on their experience with practical, real
examples. In the following, we describe the cases, as well as the experts or
students for each case. Table 4 provides a quantitative overview of the cases.

Case A: Daimler AG. Daimler AG is a multinational automotive corporation
headquartered in Stuttgart, Germany. At Daimler, we analyzed six different
requirements artifacts (A1–A6) which were written by various authors. The
requirements artifacts describe functionality in different domains of engine
control as well as driving information. In this case, requirements are written
down in the form of sentences, identified by an ID. The authors are domain
experts who are coached on writing requirements.

29

The requirements artifacts A1–A6 consist of 323 requirements in total
(see Table 4). All of the artifacts of Daimler analyzed in our study were
created by domain experts in a pilot phase after a change in the requirements
engineering process as part of a software process improvement endeavour.
For RQ 2.2., we reviewed 22 findings with an external coach who works as a
consultant for requirements engineering and has tightly collaborated with the
group for many years.

Case B: Wacker Chemie AG. In the second case, we analyzed requirements
artifacts of business information systems from Wacker Chemie AG. Wacker is
a globally active company working in the chemical sector and headquartered
in Munich, Germany. The systems that we analyzed fulfil company-internal
purposes, such as systems for access to Wacker buildings or support systems
for document management.

We analyzed three Wacker requirements artifacts that were written by
five different authors. At Wacker, functional requirements are written as use
cases (including fields for Name, Description, Role and Precondition) whereas
non-functional requirements are described in simple sentences. The artifacts
consisted of 53 use cases and 13 numbered requirements (see Table 4). For the
reviews of the findings in RQ 2.2, we selected 18 findings and discussed them
with the Chief Software Architect, who also has several years of experience in
quality assurance.

Case C: TechDivision. For the third case, we analyzed the requirements of the
agile software engineering company TechDivision GmbH. TechDivision has
around 70 employees, working in 3 locations in Germany. They focus mainly
on web development, i.e. creating product portals and e-commerce solutions
for a variety of companies, as well as web consulting, especially focusing on
search engine optimizations. Many of their products involve customisation of
Magento6 or Typo37 frameworks.

In their projects, TechDivision follows an agile software development
process using either Scrum [68] or Kanban [3] methodologies. For their
requirements, TechDivision applies user stories [14], which they write and
manage in Atlassian JIRA8. User stories at TechDivison follow the common

6
http://www.magento.com

7
http://www.typo3.org

8
https://atlassian.com/software/jira

30

http://www.magento.com
http://www.typo3.org
https://atlassian.com/software/jira

Connextra format: As a [Role], I want [Feature], so that [Reason]. We will
also follow this terminology here.

The systems under analysis consist of two online shopping portals, a
customer-relationship system and a content-management system, all of which
we cannot name for non-disclosure-agreement reasons. In total, we analyzed
over 1,000 user stories containing roughly 28,000 words. For RQ 2.2, we
met with an experienced Scrum Master and a long-term developer, who have
worked on several projects for TechDivision.

Case D: University of Stuttgart. The requirements of Case D were created
by 52 groups of three 2nd-year students each during a compulsory practical
course in the software engineering programme at the University of Stuttgart.
We removed one artifact, because it was incorrectly encoded, thus resulting
in 51 requirements artifacts for this analysis.

20
00

40
00

60
00

80
00

Figure 6: Variation of size of requirements artifacts in Case D in words

The resulting requirements artifacts differ vastly in style; hence, we were
unable to count them in terms of requirements, but instead only counted the
structured use cases as provided by the authors, and quantified the artifacts

31

by word size. The average size of a requirements artifact was 4,471 words
(min: 1,425, max: 8,807, see Fig. 6) and contained 19 use cases (min: 6, max:
39), thus creating a set of artifacts of nearly a quarter of a million words,
including more than 950 use cases.

For practical reasons, we could not evaluate each research question in each
case: For example, RQ 3 depends on the existence of reviews with documented
results, which is often not existent in practice. Furthermore, depending the
answers of RQ 4 on the potentially less experienced students from Case D
would introduce a threat to the validity of our evaluation. Table 5 shows the
mapping between research questions and study objects. The interviews for
RQ 2.2 and RQ 4 lasted 60 minutes for each Case A and B and 120 minutes
for Case C.

6.2.2. RQ 1: How many Requirements Smells are present in the artifacts?
Under this research question, we quantify the number of findings that

appear in requirements. Table 6 shows the number of findings for each case,
each requirements artifact and each smell and also puts these numbers in
relation to the size of the artifact. We analyzed requirements of the size of
more than 250k words, on which the smell detection produced in total more
than 11k findings, thus revealing roughly 44 findings per thousand words.

Table 6 shows that all requirements artifacts contain findings of Require-
ments Smells. They vary from 5 findings for the smallest9 case (A3) up to
572 for the largest case (C4). The number of findings strongly correlates with
the size of the artifact (see Fig. 7, Spearman correlation of 0.9). Hence, in the
remainder, we normalize the number of findings by the size of the artifact.

The artifacts of Daimler have an average of 26 findings per thousand
words, in contrast to 41 for both Wacker and TechDivision and 43 for the
artifacts produced by the students. Best to analyze the variance within a
requirements artifact seems Case D, in which multiple teams had a similar
background and project size. Fig. 8 shows the variance between the artifacts
of Case D with an average of 44 findings, a minimum of 26 findings (D11)
and a maximum of 75 findings (D32) per 1,000 words.

When inspecting the different Requirements Smells, we can see that the
most common smells are vague pronouns with 25 findings per 1,000 words,
followed by the negative words smell with 6 findings and the loophole

9in terms of total number of words

32

●

●

●

●

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

0100200300400500

N
um

be
r o

f W
or

ds
 in

 A
rti

fa
ct

Number of Findings in Artifact

A1
A2

A3

A4
A5

A6

B1

B2
B3

C
1

C
2

C
3

C
4

D
6

D
11

D
13

D
15

D
16 D

19

D
20

D
22

D
24

D
28

D
31

D
32

D
34

D
41

D
42

D
43

D
45

D
49

●

D
ai

m
le

r

W
ac

ke
r

Te
ch

D
iv

is
io

n

St
ut

tg
ar

t

Fi
gu

re
7:

N
um

be
r

of
fin

di
ng

s
st

ro
ng

ly
co

rr
el

at
es

w
ith

siz
e

of
ar

tif
ac

t
(f

or
re

ad
ab

ili
ty

re
as

on
s,

fo
r

th
e

St
ut

tg
ar

t
ca

se
s

(b
lu

e)
on

ly
ID

s
of

le
ss

co
rr

el
at

in
g

ar
ti

fa
ct

s
ar

e
di

sp
la

ye
d)

.

33

●

●

●

30
40

50
60

70

Figure 8: Number of findings per 1,000 words in Case D

smell with 4 findings. The least often smells are non-verifiable terms
with 1 finding per 1,000 words, and ambiguous adverbs and adjectives
with 0.25 findings per 1,000 words. In fact, the most common smell, vague
pronouns, appears 100 times more often than the ambiguous adverbs and
adjectives. To analyze the variance in depth, we again take the students’
artifacts for reference. Fig. 9 shows the relative number of findings across the
projects.

Interpretation. We interpret the quantitative overview along three variables:
projects, contexts and the different Requirements Smells.

Projects When comparing at project level, we see that Cases A1–A6 (with
outlier A5) and C1–C4 (with outlier C3) show quite similar numbers.
In contrast B1 to B3 vary between 28 and 68 findings per 1,000 words.
When looking into the most extreme outliers B3 and D32, we see a
systematic error that creates a large number of findings: Both projects

34

● ● ●

●●●●

●● ●●

●

●

●●

Su
bj

ec
tiv

e
Lo

op
ho

le
s

Va
gu

e
P.

Su
pe

rla
tiv

es
N

eg
at

ive
s

C
om

pa
ra

tiv
es

N
on
−v

er
ifi

ab
le

Am
b.

 A
dv

er
bs

01020304050

Fi
gu

re
9:

V
ar

ia
ti

on
of

sm
el

ls
pe

r
1,

00
0

w
or

ds
in

C
as

e
D

35

repeatedly explain what the system should10 do instead of what it
must do. 16 of 19 loopholes findings in B3 and 29 of 37 loophole
findings in D32 root from this problem. This can lead to difficult
issues in contracting as requirements that are phrased with a should are
commonly understood as optional (see e.g. RFC2119 [9] for a detailed
explanation).
Hence, we could see a surprising consistency in two of three industrial
case studies. The Wacker data varies, so does the students case. In
both cases, the negative extremes point at issues that potentially have
expensive consequences.

Context The four cases differ strongly in their context: They write down
requirements in different forms, vary in their software development
methodology and also produce software for different domains. When
comparing the findings at the domain level, we see that Daimler artifacts
with an average of 26 findings per thousand words contain less findings
than both Wacker and TechDivision with 41 findings and the artifacts
produced by the students with 43 findings.
Our partners reported that there have been trainings for the authors of
the cases A1–A6 recently, which could explain the difference. Another
reason could be the strong focus that the automotive domain puts on
requirements and requirements quality in contrast to the other domains.
Lastly, also the strict process in this domain could be a reason for this
striking difference of the Daimler requirements. Unsurprisingly, the
students’ requirements form the lower end of the scale, yet not by much.

Requirements Smells When comparing the eight smells, we see a strong
variance between the number of findings, both in absolute as well as
relative values. A qualitative inspection indicates reasons for the most
occurring smells. First, the smell detection for vague pronouns finds
all substituting pronouns in the requirements. Especially in German, in
many sentences the reference of the pronoun can sometimes be derived
from gender and grammatical case of the word, thus correctly detecting
pronouns, but not vague pronouns. RQ 2.1 quantifies this issue. Second,
the most common indication for loophole findings is the aforementioned

10Soll is a German modal verb that is less strict than an English must.

36

use of the word should. We discuss this case in-depth with practitioners
in RQ 2.2. Third, we will also inspect reasons for the high number of
negative words findings in RQ 2.1 and RQ 2.2.

Answer to RQ 1. The number of findings in requirements artifacts strongly
correlates with the size of the artifact. There are roughly 44 findings per
1,000 words and some contexts show a striking similarity in the number of
findings for their artifacts. In our cases, the automotive requirements had a
lower number of findings whereas student artifacts contained a higher number
of findings relative to the size of the artifacts. The most common findings are
for the smells loopholes and vague pronouns.

6.2.3. RQ 2.1: How accurate is the smell detection?
To understand the capabilities of the smell detection, we need to un-

derstand precision as metric indicating how many of the detected findings
are correct, as well as recall as a metric indicating how many of the correct
findings are detected.

Precision. To understand to which extent the numbers of findings for certain
smells in RQ 1 are caused by the detection mechanism, we inspected a random
sample of 616 findings by taking equivalent sets of findings from each project
and manually classifying whether the finding fulfills the smell definition. We
could not inspect the same number of findings of each smell for each project,
because some projects only had few or even no findings of a certain smell (see
number of findings per project in Table 6).

Table 7 and Fig. 10 show the summary of this analysis: The precision
of the detection of the subjective language smell revealed only three false
positives in total, thus leading to a precision of 0.96. Non-verifiable words,
loophole, and ambiguous adverbs and adjectives smells range between
0.70 and 0.81, hence leading to roughly one mistake in four suggestions.
Comparative and superlative smells range around 0.5 which would mean
that every second finding is correct. At the rear end of the list are the
negative words and vague pronouns smells with one correct finding in
three to four suggestions. Across all smells, the precision is between 0.48
(over all inspections) and 0.59, if we take the varying number of inspected
findings between the smells into account. To understand these numbers, we
qualitatively inspected the false positive classifications, revealing the following
main reasons for false positives:

37

Grammatical errors in real world language. The first issue that cre-
ates false positives is the fact that our study analyzes real world lan-
guage. Some of the requirements, especially in Case C, contained a
number of grammatical flaws as well as dialectal phrases, which lead to
wrong results in the automatic morphologic analysis and automatic POS
tagging and consequently also to false positives during smell detection.

Vague pronouns. The smell detection for vague pronouns showed the low-
est precision. In the detection of this smell, we look for substituting
pronouns, which are pronouns where the noun is not repeated after the
pronoun11, of which we characterize only every fourth finding as a defect.
The reason behind this poor performance, besides a number of false
positives due to the poor grammar mentioned before, is the comparably
large number of grammatical exponents of the German language. In
addition to number and three grammatical genders, the German lan-
guage also has four grammatical cases. Therefore, in various instances
of substituting pronouns, there is only one grammatical possibility of
what the pronoun could refer to.

Findings in conditions. A third reason for false positives is that the smell
detection, so far, takes very little context into account. For example,
the comparatives smell aims at detecting requirements that define
properties of the system relative to other systems or circumstances12.
When searching for grammatical comparatives in requirements, roughly
48% of the cases are of the aforementioned kind. In roughly the same
number of cases, however, the comparative describes a condition. For
example, if the requirement states that if the system takes more than 1
second to respond [. . .], the comparison is not against another system
or circumstance but against absolute numbers. Therefore, in this case,
the comparative does not indicate a problem (one could even argue that
this is an indicator for good quality).

11E.g. The father of these. vs The father of these kids.
12As discussed in Sect. 3.2, the problem of comparatives in requirements is validation:

How can we understand whether a system fulfills a requirements if that requirement is
stated in a relative instead of an absolute way? What if the system in comparison changes
its properties, would this render the requirement suddenly unfulfilled?

38

A similar problem holds for the negative phrases smell: The smell
detection aims at revealing statements of what the system should not do.
Often, however, the negative is mentioned in conditions. For example,
if the requirements express what to do if the user input is not zero [. . .],
the negation relates to a condition and not to a property of the system.

Recall. When analyzing the accuracy of an automatic detection, we must look
not only at precision, but also at recall, i.e. the ratio of all detected findings
to all defects of a certain type in an artifact. To this end, we inspected one
artifact of each case, in total a set of roughly 16,200 words, and manually
identified the findings in each artifact. Due to the problems of distinguishing
the various ambiguity-related smells, we analyzed the recall of these four
smells as if it was one smell, without further differentiation (see Section 6.1.3).

The manual inspection revealed 200 findings in this artifact sample and
an average recall of 0.82. Table 8 and Fig. 10 show the summary of the
results: The comparison shows a recall between 0.84 and 0.95 for four of the
five investigated smells. The highest recall was achieved by the Comparative
Requirements Smell, with 0.95, which means that the smell detection missed
one in 20 findings. The fifth smell, with the lowest recall, is Superlative
Requirements Smell with a recall of 0.5. However, this smell is one of the
rarest of the smells, as one can also see in the results to RQ 1. Therefore
our analysis of the recall of this smell is based on few data points. Hence,
we suggest to take the recall of this smell with care, and suggest that future
studies should investigate this issue in more depth.

A further analysis of the false negatives shows that the smell detection
missed findings because of imprecisions in the NLP libraries (i.e. Stanford
NLP [71] for Lemmatization and POS Tagging and RFTagger [66] for mor-
phologic analysis). For the dictionary-based smells, the lemmatization did not
correctly deduce the correct lemma, e.g. it did not understand that a certain
word was a plural of a lemma. If only the lemmatized version of the word,
i.e. the singular form, is in the dictionary, then the smell detector does not
correctly identify the smell. In the false negative cases for the Comparative
and Superlative Requirements Smell, RFTagger did not correctly classify
the inflection.

Interpretation. The study revealed that the precision strongly varies between
the different smells. Qualitative analysis provided further insights described
next.

39

We can now explain the high number of findings for vague pronouns in
RQ 1. If we assume that a quarter of the findings are correct, the number of
findings in this category is closer to the remaining smells. Also, we could see
that while there are certain reasons of impreciseness that root from the study
objects themselves and are, thus, unavoidable, there is plenty of space for
optimization. First, existing techniques from NLP could be applied to improve
certain smells, such as the vague pronouns. Second, from the examples we
have seen, we would argue that the application of heuristics could heavily
improve the precision of existing smell detection techniques. For example,
if we exploit the information available from POS tagging, we can find out
whether a comparison refers to a number or numerical expression.

Regarding recall, our analysis shows only a slight variance between the
smells, with the only outlier being the Superlative Requirements Smell;
however, since this is a very rare smell, this recall is based on only few data
points, therefore, we must consider this result with care. When inspecting
the reasons for false negatives, we found that optimizations could be made
through the lemmatizer. Future research in this direction should compare
whether the accuracy of lemmatizers as reported in the field of computational
linguistics also holds for requirements engineering artifacts. Furthermore, we
analyzed requirements in German language where lemmatization is a more
difficult problem than in English, since the language makes stronger use
of inflections (e.g. with cases or gender). Hence, smell detectors based on
lemmatization for the English language might work better than the results
indicate in our analysis.

In general, the precision and recall are therefore comparable to other
approaches with related purposes (see Sect. 2). However, is it sufficient for
an application of Requirements Smells in practice?

First, when looking at precision, we must take into account that the
current state of practice consists still of manual work and that the cost for
running an automatic analysis is virtually zero. Nevertheless, checking a false
positive finding takes effort which an inspector could rather spend in reading
the document in more detail. However, as we see a high variation in the
precision over different smells, we need to discuss these separately. Several of
the smells have a precision of 0.7 and higher which is considered acceptable in
static code analysis [8]. For other Requirements Smells, the precision is below
0.5. This means that every other finding will be a false positive. This can be
critical in the effort spent in vain and annoy a user of the smell detection. Yet,
we follow Menzies et al. [57] that a low precision can be still useful “When

40

there is little or no cost in checking false alarms.” In our experience, the cost
of checking a finding is often just a few seconds.

Second, when looking at recall, most of the smell detections reach a recall
of more than 80%. Various publications, most prominently Kiyavitskaya [40]
and Berry et al. [5], argue that a recall close to 100% is a basic requirement
for any tool for automatic QA in RE. The core argument is that with a lower
recall, reviewers stop checking these aspects and consequently miss defects,
and that reviewers need to check the complete artifact anyway. However, if
taking the example of spell checkers and grammar checks, these are still used
on a daily basis, although they are far away from 100% recall. Therefore, one
could consequently also argue that the precision is more important than the
recall.

In any case, whether the reported precision and recall are sufficient in
industry needs further research in the future. As mentioned above, it mainly
depends on two factors: the required investment versus the gained benefit
(similar to the concept of technical debt). For the required investment, we
argue that, based on our experience of analyzing the various cases presented
here, one can quickly iterate through the detected findings with low investment.
To further support this discussion, the following research question analyzes
the aspect of the benefits to practitioners in more detail.

Answer to RQ 2.1. As shown in Tables 7 and 8, and as shown in Fig. 10,
the precision is on average around 59%, with an average recall of 82%, but
both vary between smells. We consider this reasonable for a task that is
usually performed manually. However, this also depends on the relevance of
findings to practitioners, which we analyze in RQ 2.2. The study also reveals
improvements for future work through the application of deeper NLP.

6.2.4. RQ 2.2: Which of these smells are practically relevant in which context?
To understand whether the Requirements Smells help detecting relevant

problems, we first performed a pre-study, in which we confronted practitioners
of Daimler and Wacker with findings. The pre-study, which we reported
in Femmer et al. [24], aimed at receiving qualitative and tacit feedback. It
showed that Requirements Smells can in fact indicate relevant defects.

In contrast, in this study we analyze relevance in specific categories by
interviewing practitioners at TechDivision on their opinion on the findings in
terms of relevance, awareness, and whether these practitioners would resolve
the suggested finding.

41

●●●●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision

R
ec
al
l

Subjective
Language

Ambiguous
Adverbs
and

Adjectives

Loopholes

Non−
verifiable
Terms

Superlative
Requirements

Comparative
Requirements

Negative
Words

Vague
Pronouns

Figure 10: Precision and recall of the discussed smell detection approaches.

42

Quantitative observations. Table 9 reports the 20 findings that we discussed
with TechDivision. In summary, we can see that they considered 65% of
the findings as relevant for their context. Furthermore, they have not been
aware of 45% of the findings. Lastly, they would act on 50% of the presented
findings and on 40% even immediately.

Qualitative observations (true positives). The findings that the tool produces
mostly constituted forms of underspecification. For example, in Finding #1
(see Table 9): "As a searcher, I want to see the checkboxes in the different
categories displayed more clearly, so that. . . " (for similar examples, see
Findings 3, 4, 14, 16, and 20). In this case, as in many of the other examples,
the practitioners stated that no developer could implement this story properly.
They also recalled various discussions in estimation meetings on what was to
be done to complete these types of stories13.

In the previous research questions, we have seen that Requirements Smells
are able to detect loopholes in requirements, such as the usage of the word
should. To understand the relevance of this finding in the context of an agile
company, we also discussed the loophole in Finding #6. When we pointed
out the finding, they responded that they considered expressing what the
system should do in user stories problematic. They considered this defect a
low risk, as the developers understood ("If you are told that you should take
out the trash, you understand that it is an imperative.") and their user stories
did never turn out to be of legal relevance. They concluded that they want
to avoid this, but it has no immediate urgency in a project situation.

ISO 29148 discusses the use of negative statements ("capabilities not to
be provided"). In a previous study [24] practitioners expressed their reluctance
of this criterion. In contrast, in this study, practitioners said they would
act upon 2 out of 3 of the negative statements (Findings #9–11) that we
presented to them as they revealed unclear requirements. In one case they
even remembered that this led to discussions about the implementation during
the sprint. Table 9 shows many more, similar examples.

13Note that discussions can have different objectives, i.e. what is to be implemented and
how. For these, how to implement a story is the team’s task and thus discussions can help
finding the best way. In contrast, what the product owner wants is outside of the team’s
scope and therefore should not be a matter of discussion.

43

Qualitative observations (false positives). Also interesting are those cases that
practitioners considered not relevant in their context or where practitioners
said they would not act upon. Summarized, the reasons were the following:

Domain and context knowledge: Some stories that were unclear to out-
siders were understandable for someone knowing the system under
consideration. For example, in user story #18 it was unclear to the first
and second author what their refers to. It was clear, however, to both
practitioners with knowledge about the system.

Process requirement: In Finding #8, the smell reveals another conspicu-
ous finding: The developer should put as low effort as possible into the
implementation of this story. In the discussion, the reason for this was
that the customer did not want to pay much for this implementation.
Thus the story should only be fulfilled if it was possible to be fulfilled
cheaply. While the practitioners told us they would not change anything
about this story, they agreed that the smell pointed out something that
violates common user story practice.

Finding in reason part: In four cases, the practitioners agreed to the find-
ing but considered it irrelevant as the finding was inside the reason part
of the user story. This is due to this part of the user story only serving
as additional information. This reason part is not used in testing nor is
the information directly relevant for implementation. The main purpose
is to understand the business value and to indicate the major goal to
the team, similar to goals and goal modeling in traditional requirements
engineering [50].

Answer to RQ 2.2. In summary, the practitioners expressed that 65% of
the discussed findings were relevant, as they lead to lengthy discussions and
unnecessary iterations in estimation. They also saw the problem of legal
binding, but in contrast to the practitioners of Case A and B, they considered
these findings less relevant. Due to these results, they expressed their strong
interest in exploring smell detection for projects; we will explain the results
of this discussion in RQ 4.

Further observations of quality defects in different parts of a user story
We considered especially the last explanation for rejecting findings (finding

in reason part of a user story) particularly interesting. We had noticed that

44

the reason part was often written in a rather imprecise way. To be able
to quantify this aspect, we automatically split user stories according to the
language patterns and quantified the distribution of words as well as findings
over the different parts of user stories.

Table 10 shows the results of this analysis. The number of words is roughly
distributed as follows: 11% of the words of a user story describe the role, 55%
of the words describe the feature and 34% describe the reason. Of the 1,082
user stories, 290 had no reason part at all. Due to this uneven distribution,
similar as in the previous analyses, we normalize the number of findings by
the number of words in each part resulting in the number of findings per
1,000 words.

Only 1% of the findings are located in the role part. In fact, when we
inspected these findings, they were false positives due to the grammatical
problems described in the previous section. The absence of findings in this
section is expected, as this part of the user story only names the role and does
not offer many chances for smells as described in Sect. 3.2. For the remainder,
46% of the findings are located in the feature and 53% are located in the
reason part. In relation to its size, the difference is striking: With 64 findings
per 1,000 words, the reason has nearly double the number of findings of the
feature part and nearly 70% more findings than the average requirement, as
analyzed in Sect. 6.2.2.

In summary, the reason part of user stories is particularly prone to smells,
but the qualitative analysis in RQ 2.2 reveals that practitioners consider
findings in this section to be less relevant. This investigation could support
further application of Requirements Smells in practice by helping to prioritize
smells according to their location.

6.2.5. RQ 3: Which requirements quality defects can be detected with smells?
For 44 of the 51 requirements artifacts the students provided technical

reviews. We qualitatively analyzed the results of 10 randomly selected reviews
(around 20%). The inspected reviews were conducted by 5–7 reviewers
(mean: 5.6), took 90 minutes and resulted in 18–69 defects (mean: 38.1). We
iterated through the 381 defects documented in the reviews and evaluated
whether the smell detection produced findings indicating these defects. If
no smell indicated the defect, we openly classified the defects. We did not
quantify these results, because the resulting numbers would assume and
suggest that the distribution of defects is representative for regular projects,

45

which we are unsure about (i.e. because of a high number of spelling and
grammatical issues).

The classification of the defects and their comparison with the detected
smells resulted in the following list of of defects indicated by Requirements
Smells:

Sentence not understandable. In some instances, when the defect sug-
gested changing the sentence to improve understandability, these sen-
tences were highlighted especially by the vague pronouns and nega-
tive statements smells.

Improper legal binding. Various requirements artifacts had issues with
improper legal binding. In one case, the reviewers recognized this and
demanded the use of the term must. The loopholes smell pinpointed
at this issue.

Unspecified/unmeasurable NFRs. Various smells, especially the super-
latives smell, indicated at defects of underspecification within non-
functional requirements.

The remaining defects were not indicated by Requirements Smells.

Interpretation. The quantitative distribution of defects is not necessarily
representative for industry projects and, thus, has not been not analyzed.
The reviews clearly show that manual inspection discovered the same defects
as in the previous research question: Understandability, legally binding
terminology and underspecified requirements. These are issues with regards
to representation but also the content described in the artifact. We argue that
these issues are common for requirements artifacts. Requirements Smells can
therefore indicate relevant defects from multiple, independent sources (manual
inspection, interviews with practitioners, independent manual reviews) for
multiple, independent cases.

Answer to RQ 3. Automatic smell detection can point to issues in both
representation (e.g. improper legal binding) and content (underspecified/un-
measurable NFRs). The analysis of the reported defects indicates that more
defects could be automatically detected (see section further discussion on
detectability of defects described next). Nevertheless, just as for static code
analysis, we see that automatic analysis can not indicate all defects and thus
must be accompanied by reviews [73]. The fourth research question aims at
analyzing this aspect in depth.

46

Further discussion on detectability of defects. During the analysis, if no smells
indicated the defect, we openly classified the defects. While discussing the
resulting list of defects and the degree to which they are detectable within the
group of authors, we came up with a classification which is broader as initially
planned while designing the study. This classification considers whether a
defect:

• Already can be detected
• Could be detected, but is not implemented yet in our detection
• Cannot be detected at the moment, but should be soon
• Cannot be detected at all and probably won’t be soon

This classification is purely based on our knowledge of existing related work
and our subjective expectations gained during the data analysis process. The
classification yielded in a map visualised in Fig. 11. The figure is structured
in two dimensions: On the vertical axis, we group the defects into defects
relating to the content, and defects relating to representation. Furthermore, on
the horizontal axis, we map the items according to the expected precision and
completeness we believe the detection could be (i.e. the classification above).
The further left an item, the more precise and complete we expect a smell
detection to be; the items on the right we assume to be close to impossible to
detect in a general case.

With the defects that our current approach does not reveal, this research
question shows that more defects could be detected: These are namely defects
with terminology, singularity in use cases and structural issues focusing on the
content such as the absence of mandatory elements in the artifact [37], struc-
tural redundancy [34] or structural inconsistency between content. It remains
unclear how far more enhanced language analysis with more sophisticated
NLP and ontologies can enable to understand language. In any case, when
a defect remains subtle and vague in its definition, such as an unintuitive
structuring or design, we only see potential for automation if a defect can be
defined precisely. For problems relating to the domain itself (e.g. incomplete
information about the domain or incorrect information with regards to the
domain), we consider it impossible to detect issues unless formalizing the
concepts of the domain.

6.2.6. RQ 4: How could smells help in the QA process?
After the interviews and analysis, we asked all involved practitioners

whether or not they think requirements smell detection is a helpful support,
and whether and how they would integrate it in their context. We asked

47

De
te
ct
ed

&
by
&R
eq

ui
re
m
en

ts
&S
m
el
ls

Se
nt

en
ce

 n
ot

 u
nd

er
st

an
da

bl
e

U
ns

pe
ci

fie
d/

un
m

ea
su

ra
bl

e
N

FR
s

Im
pr

op
er

 le
ga

l b
in

di
ng

In
co

rre
ct

 in
fo

rm
at

io
n

U
ni

nt
ui

tiv
e

U
se

 C
as

e
flo

w
 o

r d
ia

gr
am

s

La
ng

ua
ge
'se

m
an

*c
s

Se
m

an
tic

 c
lo

ne
s

M
is

si
ng

 m
an

da
to

ry
 it

em
s

Te
rm

in
ol
og

y

Pr
es
en
ta
*o

n'
an

d'
St
ru
ct
ur
e

Representa5on Content

Si
ng

ul
ar

ity
 in

 U
C

En
co

di
ng

U
nn

at
ur

al
 it

em
iz

at
io

ns
U

ni
nt

ui
tiv

e
st

ru
ct

ur
e

of
 ta

bl
e

U
na

pp
ea

lin
g

im
ag

e
U

nr
ea

da
bl

e
im

ag
e

U
nd

er
sp

ec
ifi

ed
 te

rm
s

U
nn

ec
es

sa
ry

 te
rm

s
in

 g
lo

ss
ar

y
N

am
in

g
vi

ol
at

in
g

co
nv

en
tio

n
U

nd
efi

ne
d

do
m

ai
n-

sp
ec

ifi
c

te
rm

s
In

co
ns

is
te

nt
 u

sa
ge

 o
f t

er
m

s

In
co

m
pl

et
e

in
fo

rm
at

io
n

Sp
el

lin
g

G
ra

m
m

ar
La

ng
ua

ge
 m

ix
tu

re
W

ro
ng

 w
or

d
(la

ng
ua

ge
)

Se
m

an
tic

al
ly

 c
on

tra
di

ct
in

g
in

fo
rm

at
io

n

De
te
ct
ab

le
by
&R
eq

ui
re
m
en

ts
&S
m
el
ls

Ra
th
er
&n
ot
&d
et
ec
ta
bl
e

by
&R
eq

ui
re
m
en

ts
&S
m
el
ls

W
ro

ng
 w

or
d

(d
om

ai
n)

St
ru

ct
ur

al
 re

du
nd

an
cy

 /
C

lo
ni

ng
St

ru
ct

ur
al

ly
 in

co
ns

is
te

nt
 d

ia
gr

am
s

Fi
gu

re
11

:
Fi

nd
in

gs
in

re
qu

ir
em

en
ts

re
vi

ew
s,

cl
as

si
fie

d
by

co
nt

en
t/

re
pr

es
en

ta
ti

on
an

d
de

te
ct

io
n

48

those questions openly and transcribed the answers for validation by the
interviewees and later coding. In the following, we report on the results
structured by topics. Where applicable, we provide the verbatim answers in
relation to their cases (A, B or C).

Overall Evaluation. In general, all practitioners agreed on the usefulness of
the smell detection even if considering different perspectives that arise from
their process setting. One practitioner (Case C) reports that he expects
one benefit in using smell detection is that it would lead to a reduction of
the time spent for effort estimations (in context of agile methods), as the
product owner could benefit from the smell detection on the fly and, thus,
avoid misinterpretations later.

Quotes on Overall Evaluation
A. “I think that smells can help to analyze a specification.”
B. “The method of Requirements Smells is a valuable extension

in the area of requirements engineering and gives helpful in-
put concerning the quality of specified requirements in early
development phases.”

C. “I think such a smell detection is of high value to make sure
that our team is confronted with already quality assured [user]
stories. This can reduce the time in our effort estimations,
because the product owner would directly notice on the fly what
could lead to misinterpretations later.”

Integration into Process. When asked for how the practitioners would integrate
the smell detection into their process setting, we got varying answers depending
on the process. The practitioner relying more on rich process models (Case
B) could imagine using a smell detection either as a support for the person
writing the requirements or as part of a more fundamental QA method for
the company. But also the practitioner relying more on the agile methods
(Case C) could imagine using Requirements Smells as a support for the person
writing the requirements or in context of analytical QA. In addition, one
potential use is seen in context of problem management. Importantly, all
practitioners see the full potential of a smell detection only if integrated in
their existing tool chain (see also quotes on constraints and limitations).

49

Quotes on Integration into Process
B. “I like to compare Requirements Smells to the “check spelling

aid" known e.g. from Microsoft Word. So for me Requirements
Smells are intuitive and lightweight and should be used and in-
tegrated within requirements engineering and quality assurance
processes.”

C. “As a product owner, I would use a smell detection on the fly
[...]. In addition, smell detection could help in analytical QA,
as it could reveal when a problem occurs repeatedly, either in
a project or in the company as a whole.”

Constraints and Limitations. One facet we consider especially interesting
when using qualitative data is the chance to reveal further fields of improve-
ment. We therefore concentrate now on the constraints that would hamper
the usage of a smell detection. One facet we believe to be important is that
practitioners want to avoid additional effort when using smell detection in
their context. Furthermore, the practitioner of Case A believes that the
automatic smell detection requires a common understanding on the notion of
RE quality. He further indicates that the smell detection should explicitly
take into account that some criteria cannot be met at every stage of a project.

Quotes on Constraints and Limitations
A. “First, the people who need to write the specification received

training which gives the required performance criteria. Sec-
ond, abstraction levels must be taken into account during the
smell detection process, since at higher abstraction levels differ-
ent criteria cannot be met (e.g. vague pronouns or subjective
language).”

B. “As a product owner, I would use a smell detection on the fly
provided that it would not mean additional effort [such as by
having to use another tool].”

Answer to RQ 4. Our practitioners provided a general agreement on potential
benefits of using smell detection a quality assurance context. When asked how
they would integrate the requirements smell detection, they see possibility
for both analytical and constructive QA, provided, however, this integration
would not increase the required effort, e.g. by integrating the detection into
existing tool chains.

50

6.2.7. Evaluation of validity
We use the structure of threats to validity from [64] to discuss the evalua-

tion of the validity of our study.

Construct validity. In our evaluation, we analyzed Requirements Smells in the
terms of false positives, relevance and relation to quality defects. There are
threats that the understanding of these terms varies and, thus, the results are
not repeatable. Yet, we are confident that our validity procedures described
in Sect. 6.1.5 reduced this threat. For the false positives, we classified a
subset of the findings independently, and afterwards compared (inter-rater
agreement Cohen’s kappa: 0.53) and discussed the results. We subsequently
reclassified a different subset of findings again, which lead to an inter-rater
agreement (Cohen’s kappa) of 0.72. For the classification of false negatives, we
reclassified one document separately, calculating the percentage of agreement
on false positives14. This lead to an agreement of 88%.

We consider both of these substantial agreements, especially in the inher-
ently ambiguous and complex domain of RE. Thus, we consider this threat
as sufficiently controlled.

Internal validity. A threat to the internal validity of our results is that the
experience of the students as well as the practitioners might play a role in
their ratings of relevance or detection of quality defects. We mitigated this
threat by choosing only practitioners for the ratings and interviews who had
several years of experience. The students are only in the second year. We
cannot mitigate this threat but consider the effect to be small. There might
be some defects not found by the students that could have been indicated
by a smell as well as unfound defects undetectable by smells. Hence, future
studies will add to the classification but are unlikely to change it substantially.
Personal pride could potentially have an impact on the answers to a RQ 2.2,
if practitioners are not able to professionally discuss their own work products.
In our cases, however, all practitioners openly accepted the discussions (as
can be seen in their answers). Even though we carefully supervised this
threat, we have not found signs of personal bias in the cases involved. Finally,

14We did not employ Cohen’s kappa here, since the number of true positives (non-smell
words) would strongly dominate the result and therefore skew the inter-rater agreement.
Instead, we calculated the ratio of findings which both rating teams independently classified
as false positive to the number of findings which only one of the teams classified false
positive.

51

the students might also have been influenced by the review guidelines we
provided. Yet, none of the investigated smells was explicitly listed in the
guidelines. Instead, the guideline contained rather high-level aspects such as
“unambiguity”. Although we consider this threat to be a minor one, it is still
present.

External validity. As requirements engineering is a diverse field, the main
threat to the external validity of our results is that we do not cover all domains
and ways of specifying requirements. We mitigated this threat to some degree
by covering at least several different domains and study objects, of which
some are purely textual requirements artifacts, some use cases, and some user
stories. We argue that this represents a large share of today’s requirements
practices.

Reliability. Our study contains several classifications and ratings performed
by people. This constitutes a threat to the reliability of our results. We are
confident, however, that the peer debriefing and member checking procedures
helped to reduce this threat.

7. Conclusion

In this paper, we defined Requirements Smells and presented an approach
to the detection of Requirements Smells which we empirically evaluated in
a multi-case study. In the following, we summarize our conclusions, relate
it to existing evidence on the detection of natural language quality defects
in requirements artifacts, and we discuss the impact and limitations of our
approach and its evaluation. We close with outlining future work.

7.1. Summary of conclusions
First, we proposed a light-weight approach to detect Requirements Smells.

It is based on the natural language criteria of ISO 29148 and serves to rapidly
detect Requirements Smells. We define the term Requirement Smell as an
indicator of a quality violation, which may lead to a defect, with a concrete
location and a detection mechanism, and we also give definitions of a concrete
set of smells.

Second, we developed an implementation that is able to detect Require-
ments Smells by using part-of-speech (POS) tagging, morphological analysis
and dictionaries. We found that it is possible to provide such tool support
and outlined how such a tool could be integrated into quality assurance.

52

Third, in the empirical evaluation, our approach showed to support us in
automatically analysing requirements of the size of 250k words. Findings were
present throughout all cases but in varying frequencies between 22 and 67
findings per 1,000 words. Outliers indicated serious issues. An investigation
of the detection precision showed an average precision around 0.59 over all
smells, again varying between 0.26 and 0.96. The recall was on average 0.82,
but also varied between 0.5 and 0.95. To improve the accuracy, we described
concrete improvement potential based on real world, practical examples.

A further analysis of reviews and practitioner’s opinions strengthen our
confidence that smells indicate quality defects in requirements. For these
quality defects, practitioners explicitly stated the negative impact of discovered
findings on estimation and implementation in projects. The study also
showed, however, that while Requirements Smell detection can help during
QA presumedly in a broad spectrum of methodologies followed (including
agile ones), the relevance of Requirements Smells varies between cases. Hence,
it is necessary to tailor the detection to the context of a project or company.
We analyzed this factor in depth, demonstrating that the reason part of a
user story contains most findings (absolutely and relatively), but practitioners
consider these findings less relevant as they argue that this part is not
commonly used in implementation or testing. This raises the question of the
relevance of this part at all, at least from a quality assurance perspective,
which should be investigated in future work.

Our comparison with defects found in reviews furthermore showed that
the Requirements Smell detection partly overlaps with results from reviews.
As a result, we provide a map of defects in requirements artifacts in which we
give a first indication where Requirements Smells can provide support and
where they cannot.

Therefore, we provide empirical evidence from multiple, independent
sources (manual inspection, interviews with practitioners, independent manual
reviews) for multiple, independent cases, showing that Requirements Smells
can indicate relevant defects across different forms of requirements, different
domains, and different methodologies followed.

7.2. Relation to existing evidence
Existing approaches in the direction of automatic QA for RE are based

on various quality models, including the ambiguity handbook by Berry et
al. [7], the now superseeded IEEE 830 standard [32] and proprietary models.
Yet, according to a recent literature review by Schneider and Berenbach [67],

53

ISO 29148 is the current standard in RE “that every requirements engineer
should be familiar with”. However, no detailed empirical studies (see Table 1)
exist for the quality violations described in ISO 29148. When comparing to
similar, related quality violations, also few empirical, industrial case studies
exist (see Table 2). Gleich et al. [30] and Chantree et al. [11] report for
conceptually similar problems, a precision of the detection between 34% and
75% (97% in a special case), and a recall between 2% and 86%. Krisch and
Houdek [49] report a lower precision in an industrial setting. The precision
and recall for the detection of the smells, which we developed based on the
description in the standard, are in a similar range to the aforementioned. In
summary, this work provides a detailed empirical evaluation on the quality
factors of ISO 29148, including a deeper understanding of both existing and
novel factors.

We also take a first step from the opposite perspective: So far, to all
our knowledge, all related work starts from a certain quality model and
goes into automation. Our results to RQ 3 provides a bigger picture for
understanding in how far quality defects in requirements could be addressed
through automatic analysis in general.

Our results to RQ 2.2 furthermore provides evidence for the claim by
Gervasi and Nuseibeh [29] that “Lightweight validation can discover subtle
errors in requirements.” More precisely, our work indicates that automatic
analysis can find a set of relevant defects in requirements artifacts by providing
evidence from multiple case studies in various domains and approaches. The
responses by practitioners to the findings do, to some extent, contradict the
claim by Kiyavitskaya et al. [40] who state that “any tool [...] should have
100% recall ”. Practitioners responded very positively on our first prototype
and the smells it finds. Yet, obviously, more detailed and broader evaluations,
especially conducted independently by other researchers not involved in the
development of Smella, should follow.

7.3. Impact/Implications
For practitioners, Requirements Smells provide a way to find certain issues

in a requirements artifact without expensive review cycles. We see three
main benefits of this approach: First, the approach, just as static analysis for
code, can enable project leads to keep a basic hygiene for their requirements
artifacts. Second, the review team can avoid discussing obvious issues and
focus on the important, difficult, domain-specific aspects in the review itself.
Third, the requirements engineers receive a tool for immediate feedback, which

54

can help them to increase their awareness for certain quality aspects and
establish common guidelines for requirements artifacts.

Yet, the low precision for some of the smells might cause unnecessary work
checking and rejecting findings from the automatic smell detection. Hence, at
least for now, it is advisable to concentrate on the highly accurate smells.

For researchers, this work sharpens the term Requirements Smell by
providing a definition and a taxonomy. By implementing and rating concrete
smell findings, we also came to the conclusion, however, that not all of the
requirements defects from ISO/IEC/IEEE 29148 can be clearly distinguished
as Requirements Smells. In particular, the difference between Subjective
Language, Ambiguous Adverbs and Adjectives, Non-verifiable Terms, and
Loopholes was not always clear to us during our investigations (see RQ 2.1).
Therefore, we, as a community, can take our smell taxonomy as a starting
point, but we also need to critically reflect on some smells to further refine
the taxonomy.

Finally, empirical evidence in RE is, in general, difficult to obtain because
many concepts depend on subjectivity [55]. One issue increasing the level of
difficulty in evidence-based research in RE remains that most requirements
specifications are written in natural language. Therefore, they do not lend
themselves for automated analyses. Requirements Smell detection provides
us with a means to quantify the extent of certain defects in a large sample
of requirements artifacts while explicitly taking into account the sensitivity
of findings to their context. Hence, this allows us to consider a whole new
spectrum of questions worth studying in an empirical manner.

7.4. Limitations
We concentrated on a first set of concrete Requirements Smells based on

our interpretation of the sometimes imprecise language criteria of ISO/IEC/-
IEEE 29148. There are more smells, also with different characteristics than the
ones we proposed and analyzed. In addition, even though we diversified our
study objects over domains, methods and different types of requirements, we
cannot generalize our findings to all applicable contexts. We therefore consider
the presented results only a first step towards the continuous application of
Requirements Smells in software engineering projects.

7.5. Future work
Our work focuses on Requirements Smells based on ISO/IEC/IEEE 29148.

Future work needs to clarify and extend this taxonomy based on related

55

work and experience in practice. This also includes the development of other
Requirements Smell detection techniques to increase our understanding about
which defects can be revealed by Requirements Smells and which defects
cannot.

Second, this first study gained first insights into the usefulness of Require-
ments Smells for QA. We furthermore sketched an integration of Requirements
Smells into a QA process. Yet, a full integration and the consequences must
be analyzed in depth. In particular, we need to understand whether smell
detection as a supporting tool, similar to spell checking, as pointed out
by on of our participants, enables requirements engineers to improve their
requirements artifacts.

Lastly, Requirements Smells focus on the detection of issues in requirements
artifacts. They require a thorough understanding of the impact of a quality
defect, which is hence also part of the requirements smell taxonomy. This
link must be carefully evaluated and analyzed in practice. Our preliminary
works on this topic [23, 59] provide first ideas in that direction.

Acknowledgments

We would like to thank Elmar Juergens, Michael Klose, Ilona Zimmer,
Joerg Zimmer, Heike Frank, Jonas Eckhardt as well as the software engineering
students of Stuttgart University for their support during the case studies and
feedback on earlier drafts of this paper.

This work was performed within the project Q-Effekt; it was partially
funded by the German Federal Ministry of Education and Research (BMBF)
under grant no. 01IS15003 A-B. The authors assume responsibility for the
content.

Bibliography

[1] V. Ambriola and V. Gervasi. On the systematic analysis of natural
language requirements with CIRCE. Automated Software Engineering,
13(1):107–167, 2006.

[2] B. Anda and D. I. K. Sjøberg. Towards an inspection technique for use
case models. In Proceedings of the 14th International Conference on
Software Engineering and Knowledge Engineering. ACM, 2002.

[3] D. J. Anderson. Kanban. Blue Hole Press, 2010.

56

[4] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer. Automated Check-
ing of Conformance to Requirements Templates using Natural Language
Processing. IEEE Transactions on Software Engineering, 41(10):944–968,
2015.

[5] D. Berry, R. Gacitua, P. Sawyer, and S. F. Tjong. The case for dumb
requirements engineering tools. In Requirements Engineering: Foundation
for Software Quality, pages 211–217. Springer Berlin Heidelberg, 2012.

[6] D. M. Berry, A. Bucchiarone, S. Gnesi, G. Lami, and G. Trentanni. A
new quality model for natural language requirements specifications. In
Requirements Engineering: Foundation for Software Quality. Essener
Informatik Beiträge, 2006.

[7] D. M. Berry, E. Kamsties, and M. M. Krieger. From Contract Drafting
to Software Specification : Linguistic Sources of Ambiguity. Technical
report, School of Computer Science, University of Waterloo, Waterloo,
ON, Canada, 2003.

[8] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler. A few billion lines of code
later: using static analysis to find bugs in the real world. Communications
of the ACM, 53(2):66–75, 2010.

[9] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels -
RFC 2119. https://www.ietf.org/rfc/rfc2119.txt, 1997.

[10] A. Bucchiarone, S. Gnesi, and P. Pierini. Quality Analysis of NL Re-
quirements : An Industrial Case Study. In 13th IEEE International
Requirements Engineering Conference, pages 390–394, 2005.

[11] F. Chantree, B. Nuseibeh, A. D. Roeck, and A. Willis. Identifying
Nocuous Ambiguities in Natural Language Requirements. 14th IEEE
International Requirements Engineering Conference, pages 59–68, sep
2006.

[12] A. Ciemniewska, J. Jurkiewicz, L. Olek, and J. Nawrocki. Supporting
Use-Case Reviews. In Business Information Systems, pages 424–437.
Springer Berlin Heidelberg, 2007.

[13] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

57

https://www.ietf.org/rfc/rfc2119.txt

[14] M. Cohn. User stories applied: For agile software development. Addison-
Wesley Professional, 2004.

[15] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh,
G. Kincaid, G. Ledeboer, P. Reynolds, P. Sitaram, A. Ta, and M. The-
ofanos. Identifying and measuring quality in a software requirements
specification. In Proceedings First International Software Metrics Sym-
posium, pages 141–152, 1993.

[16] F. De Bruijn and H. L. Dekkers. Ambiguity in natural language software
requirements: A case study. In Requirements Engineering: Foundation
for Software Quality, pages 233–247. Springer Berlin Heidelberg, 2010.

[17] C. Denger, D. Berry, and E. Kamsties. Higher quality requirements
specifications through natural language patterns. In Software: Science,
Technology and Engineering, pages 80–90. IEEE, 2003.

[18] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. An automatic quality
evaluation for natural language requirements. In Proceedings of the Sev-
enth International Workshop on Requirements Engineering: Foundation
for Software Quality, volume 1, pages 4–5, 2001.

[19] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The linguistic approach
to the natural language requirements quality: benefit of the use of an
automatic tool. In Proceedings 26th Annual NASA Goddard Software
Engineering Workshop, pages 97–105. IEEE Computer Society, 2001.

[20] M. Fagan. Design and code inspections to reduce errors in program
development. In Software pioneers, pages 575–607. Springer, 2002.

[21] D. Falessi, G. Cantone, and G. Canfora. Empirical Principles and
an Industrial Case Study in Retrieving Equivalent Requirements via
Natural Language Processing Techniques. IEEE Transactions on Software
Engineering, 39(1):18–44, 2013.

[22] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari. Application of linguistic
techniques for Use Case analysis. Requirements Engineering, 8(3):161–
170, 2003.

[23] H. Femmer, J. Kučera, and A. Vetrò. On the impact of passive voice
requirements on domain modelling. In Proceedings of the 8th ACM/IEEE

58

International Symposium on Empirical Software Engineering and Mea-
surement, ESEM ’14, pages 21:1–21:4, New York, NY, USA, 2014. ACM.

[24] H. Femmer, D. Méndez Fernández, E. Juergens, M. Klose, I. Zimmer,
and J. Zimmer. Rapid requirements checks with requirements smells:
Two case studies. In Proceedings of the 1st International Workshop on
Rapid Continuous Software Engineering, RCoSE 2014, pages 10–19, New
York, NY, USA, 2014. ACM.

[25] H. Femmer, D. Méndez Fernández, S. Wagner, and S. Eder. Supplemen-
tary online material: Analysis of related work. Created on: 2015-12-22.

[26] H. Femmer, J. Mund, and D. Mendez Fernandez. It’s the Activities,
Stupid! A New Perspective on RE Quality. In Proceedings of the 2nd
International Workshop on Requirements Engineering and Testing, pages
13–19, 2015.

[27] M. Fowler and K. Beck. Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[28] G. Génova, J. M. Fuentes, J. Llorens, O. Hurtado, and V. Moreno. A
framework to measure and improve the quality of textual requirements.
Requirements Engineering, 18(1):25–41, Sept. 2011.

[29] V. Gervasi and B. Nuseibeh. Lightweight validation of natural language
requirements. Software: Practice and Experience, 32(2):113–133, Feb.
2002.

[30] B. Gleich, O. Creighton, and L. Kof. Ambiguity detection: Towards a
tool explaining ambiguity sources. In Requirements Engineering: Foun-
dation for Software Quality, volume 6182, pages 218–232. Springer Berlin
Heidelberg, 2010.

[31] B. Hauptmann, M. Junker, S. Eder, L. Heinemann, R. Vaas, and P. Braun.
Hunting for smells in natural language tests. In Proceedings of the
International Conference on Software Engineering, pages 1217–1220,
2013.

[32] IEEE Computer Society. IEEE Recommended Practice for Software Re-
quirements Specifications. https://standards.ieee.org/findstds/
standard/830-1998.html, 1998.

59

https://standards.ieee.org/findstds/standard/830-1998.html
https://standards.ieee.org/findstds/standard/830-1998.html

[33] ISO, IEC, and IEEE. ISO/IEC/IEEE 29148:2011. https://standards.
ieee.org/findstds/standard/29148-2011.html, 2011.

[34] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz, S. Wag-
ner, C. Domann, and J. Streit. Can Clone Detection Support Quality
Assessments of Requirements Specifications? In Proceedings of the
International Conference on Software Engineering, pages 79–88, 2010.

[35] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones
matter? In Proceedings of the International Conference on Software
Engineering, pages 485–495, 2009.

[36] D. Jurafsky and J. H. Martin. Speech and Language Processing. Pearson
Education, 2nd edition, 2014.

[37] M. I. Kamata and T. Tamai. How Does Requirements Quality Relate to
Project Success or Failure? In 15th IEEE International Requirements
Engineering Conference, pages 69–78, 2007.

[38] E. Kamsties, D. M. Berry, and B. Paech. Detecting Ambiguities in
Requirements Documents Using Inspections. In Proceedings of the 1st
Workshop on Inspection in Software Engineering, pages 68–80, 2001.

[39] E. Kamsties and B. Peach. Taming ambiguity in natural language
requirements. In Proceedings of the International Conference on System
and Software Engineering and their Applications, pages 1–8, 2000.

[40] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry. Requirements for
tools for ambiguity identification and measurement in natural language
requirements specifications. Requirements Engineering, 13(3):207–239,
2008.

[41] E. Knauss and T. Flohr. Managing requirement engineering processes by
adapted quality gateways and critique-based RE-tools. In Proceedings of
Workshop on Measuring Requirements for Project and Product Success,
Nov. 2007.

[42] E. Knauss, D. Lübke, and S. Meyer. Feedback-Driven Requirements
Engineering : The Heuristic Requirements Assistant. In Proceedings of
the International Conference in Software Engineering, pages 587–590,
2009.

60

https://standards.ieee.org/findstds/standard/29148-2011.html
https://standards.ieee.org/findstds/standard/29148-2011.html

[43] J. C. Knight and E. A. Myers. An improved inspection technique.
Communications of the ACM, 36(11):51–61, 1993.

[44] L. Kof. Scenarios: Identifying missing objects and actions by means
of computational linguistics. In In Proceedings of the 15th IEEE In-
ternational Requirements Engineering Conference, pages 121–130, Oct
2007.

[45] L. Kof. Treatment of Passive Voice and Conjunctions in Use Case
Documents. Natural Language Processing and Information Systems,
4592:181–192, 2007.

[46] S. J. Körner and T. Brumm. Improving natural language specifications
with ontologies. In Proceedings of the 21st International Conference on
Software Engineering and Knowledge Engineering, pages 552–557. World
Scientific, 2009.

[47] S. J. Körner and T. Brumm. Natural Language Specification Improve-
ment With Ontologies. International Journal of Semantic Computing,
03(04):445–470, 2009.

[48] S. J. Körner and T. Brumm. RESI - A natural language specification
improver. In Proceedings of the 2009 IEEE International Conference on
Semantic Computing, pages 1–8. IEEE, 2009.

[49] J. Krisch and F. Houdek. The Myth of Bad Passive Voice and Weak
Words: An Empirical Investigation in the Automotive Industry. In
23rd IEEE International Requirements Engineering Conference, pages
344–351, 2015.

[50] A. V. Lamsweerde. Requirements Engineering. John Wiley & Sons, 2009.

[51] G. Lucassen, F. Dalpiaz, S. Brinkkemper, and J. van der Werf. Forging
High-Quality User Stories: Towards a Discipline for Agile Requirements.
In 23rd IEEE International Requirements Engineering Conference, pages
126–135, 2015.

[52] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering trace-
ability links in software artifact management systems using information
retrieval methods. ACM Transactions on Software Engineering and
Methodology, 16(4), Sept. 2007.

61

[53] J. Ludewig and H. Lichter. Software Engineering. dpunkt.verlag, 2nd
edition, 2010.

[54] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. EARS (Easy Ap-
proach to Requirements Syntax). Proceedings of the IEEE International
Conference on Requirements Engineering, pages 317–322, 2009.

[55] D. Méndez Fernández, J. Mund, H. Femmer, and A. Vetrò. In Quest for
Requirements Engineering Oracles: Dependent Variables and Measure-
ments for (good) RE. In Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, pages 3:1–3:10.
ACM, 2014.

[56] D. Méndez Fernández and S. Wagner. Naming the Pain in Requirements
Engineering: A Design for a Global Family of Surveys and First Results
from Germany. Information and Software Technology, 57(1):616–643,
2015.

[57] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald. Problems
with precision: A response to "Comments on ’data mining static code
attributes to learn defect predictors’". IEEE Transactions on Software
Engineering, 33(9):637–640, 2007.

[58] L. Mich, M. Franch, and P. L. Novi Inverardi. Market research for
requirements analysis using linguistic tools. Requirements Engineering,
9(2):151–151, 2004.

[59] J. Mund, H. Femmer, D. Méndez Fernández, and J. Eckhardt. Does
Quality of Requirements Specifications matter? Combined Results of
Two Empirical Studies. In Proc. of the 9th International Symposium on
Empirical Software Engineering and Measurement, pages 1–10, 2015.

[60] D. Parachuri, A. Sajeev, and R. Shukla. An Empirical Study of Structural
Defects in Industrial Use-cases. In Proceedings of the International
Conference on Software Engineering, pages 14–23. ACM, 2014.

[61] M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980.

62

[62] A. Rago, C. Marcos, and J. A. Diaz-Pace. Identifying duplicate func-
tionality in textual use cases by aligning semantic actions. Software &
Systems Modeling, pages 1–25, Aug. 2014.

[63] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, Dec. 2008.

[64] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study Research
in Software Engineering. Guidelines and Examples. Wiley, 2012.

[65] F. Salger. Requirements reviews revisited: Residual challenges and open
research questions. In Proceedings of the 2013 21st IEEE International
Requirements Engineering Conference, pages 250–255. IEEE, 2013.

[66] H. Schmid and F. Laws. Estimation of conditional probabilities with
decision trees and an application to fine-grained POS tagging. In Pro-
ceedings of the Conference on Computational Linguistics, pages 777–784.
Association for Computational Linguistics, 2008.

[67] F. Schneider and B. Berenbach. A Literature Survey on International
Standards for Systems Requirements Engineering. In Proceedings of the
Conference on Systems Engineering Research, volume 16, pages 796–805,
Jan. 2013.

[68] K. Schwaber and J. Sutherland. The scrum guide. Technical report,
Scrum.org, 2011.

[69] F. Shull, I. Rus, and V. Basili. How perspective-based reading can
improve requirements inspections. Computer, 33(7):73–79, 2000.

[70] S. F. Tjong and D. M. Berry. The design of SREE - A prototype potential
ambiguity finder for requirements specifications and lessons learned. In
REFSQ, pages 80–95. Springer Berlin Heidelberg, 2013.

[71] K. Toutanova, D. Klein, and C. D. Manning. Feature-rich part-of-
speech tagging with a cyclic dependency network. In Proceedings of the
2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology, 1(June):252–
259, 2003.

63

[72] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok. Refactoring
test code. CWI, 2001.

[73] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger. Comparing
bug finding tools with reviews and tests. In Proceedings of Testing of
Communicating Systems, pages 40–55. Springer, 2005.

[74] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt. Automated analysis of
requirement specifications. In Proceedings of the International Conference
on Software Engineering, pages 161–171. ACM, 1997.

[75] M. V. Zelkowitz, R. Yeh, R. G. Hamlet, J. D. Gannon, and V. R. Basili.
The Software Industry: A State of the Art Survey. Foundations of
Empirical Software Engineering: The Legacy of Victor R. Basili, 1:383–
383, 1983.

[76] M. Zhang, T. Hall, and N. Baddoo. Code bad smells: a review of
current knowledge. Journal of Software Maintenance and Evolution,
23(3):179–202, 2011.

Appendix A. Requirements Checklist

64

Table 4: Study objects

Artifact Topic Si
ze

in
W

or
ds

#
R

eq
ui

re
m

en
ts

#
U

se
C

as
es

#
U

se
r

St
or

ie
s

A1 Adaptive valve control 1896 91
A2 Exhaust control 2244 72
A3 Driving information 199 12
A4 Engine startup control 975 44
A5 Engine control 524 49
A6 Powertrain communication 1100 55

Sum Daimler 6938 323

B1 Management of access control 2093 9 18
B2 Event notification 1015 3 19
B3 Document management 458 1 16

Sum Wacker 3566 13 53

C1 Webshop for fashion articles 5226 168
C2 CMS in transportation domain 2742 123
C3 CRM system 6863 230
C4 Webshop for hardware articles 13124 561

Sum TechDivision 27955 1082

Avg Stuttgart 4470 18.9

Sum Stuttgart 227973 966

Sum over all 266432 336 53 1082

65

Table 5: Study objects usage in research questions

Case R
Q

1:
D

ist
rib

ut
io

n

R
Q

2.
1:

P
re

ci
sio

n

R
Q

2.
1:

R
ec

al
l

R
Q

2.
2:

R
el

ev
an

ce

R
Q

3:
D

ef
ec

t
T

yp
es

R
Q

4:
Q

A
P

ro
ce

ss
A: Daimler X X X X
B: Wacker X X X X
C: TechDivision X X X X X
D: Univ. of Stuttgart X X X X

66

Ta
bl

e
6:

Q
ua

nt
it

at
iv

e
su

m
m

ar
y

of
sm

el
lfi

nd
in

gs

C
as

e
N

um
W

or
ds

A
ll

Sm
el

ls
Su

bj
ec

ti
ve

L
an

-
gu

ag
e

Sm
el

l

L
oo

ph
ol

e
Sm

el
l

V
ag

ue
P

ro
-

no
un

s
Sm

el
l

Su
pe

rl
at

iv
es

Sm
el

l
N

eg
at

iv
e

W
or

ds
Sm

el
l

C
om

pa
ra

ti
ve

s
Sm

el
l

N
on

-
ve

ri
fia

bl
es

Sm
el

l

A
m

bi
gu

ou
s

A
&

A
Sm

el
l

ab
s

re
l

ab
s

re
l

ab
s

re
l

ab
s

re
l

ab
s

re
l

ab
s

re
l

ab
s

re
l

ab
s

re
l

ab
s

re
l

A
1

18
96

45
23

.7
4

2.
11

2
1.

05
13

6.
86

7
3.

69
11

5
7

3.
69

0
0

1
0.

53
A

2
22

44
52

23
.2

6
2.

67
3

1.
34

20
8.

91
1

0.
45

14
6.

24
5

2.
23

2
0.

89
1

0.
45

A
3

19
9

5
25

.1
0

0
0

0
3

15
.0

8
0

0
2

10
.0

5
0

0
0

0
0

0
A

4
97

5
29

29
.7

3
3.

08
1

1.
03

15
15

.3
8

0
0

8
8.

21
1

1.
03

1
1.

03
0

0
A

5
52

4
20

38
.2

0
0

0
0

14
26

.7
2

0
0

5
9.

54
0

0
1

1.
91

0
0

A
6

11
00

32
29

.1
0

0
0

0
8

7.
27

0
0

13
11

.8
2

7
6.

36
4

3.
64

0
0

Su
m

D
ai

m
le

r
69

38
18

3
26

.4
13

1.
87

6
0.

86
73

10
.5

2
8

1.
15

53
7.

64
20

2.
88

8
1.

15
2

0.
29

B
1

20
93

90
43

5
2.

39
11

5.
26

40
19

.1
1

6
2.

87
20

9.
56

7
3.

34
1

0.
48

0
0

B
2

10
15

28
27

.6
2

1.
97

1
0.

99
13

12
.8

1
0

0
3

2.
96

9
8.

87
0

0
0

0
B

3
45

8
31

67
.7

0
0

19
41

.4
8

9
19

.6
5

1
2.

18
0

0
1

2.
18

0
0

1
2.

18

Su
m

W
ac

ke
r

35
66

14
9

41
.8

7
1.

96
31

8.
69

62
17

.3
9

7
1.

96
23

6.
45

17
4.

77
1

0.
28

1
0.

28

C
1

52
26

22
9

43
.8

48
9.

18
5

0.
96

10
4

19
3

0.
57

29
5.

55
36

6.
89

1
0.

19
3

0.
57

C
2

27
42

12
0

43
.8

11
4.

01
7

2.
55

62
22

.6
1

3
1.

09
13

4.
74

24
8.

75
0

0
0

0
C

3
68

63
23

3
34

30
4.

37
14

2.
04

10
5

15
6

0.
87

31
4.

52
45

6.
56

1
0.

15
1

0.
15

C
4

13
12

4
57

2
43

.6
35

2.
67

16
1.

22
33

9
25

.8
3

11
0.

84
10

1
7

49
3.

73
9

0.
69

12
0.

91
4

Su
m

T
ec

hD
iv

is
io

n
27

95
5

11
54

41
.3

12
4

4.
44

42
1

61
0

21
.8

2
23

0.
82

17
4

6.
22

15
4

5.
51

11
0.

39
16

0.
57

M
ea

n
St

ut
tg

ar
t

44
70

19
8.

5
44

.4
6.

45
1.

44
19

.6
5

4
11

7.
37

26
.2

6
5.

12
1.

14
27

.5
9

6.
17

16
.6

3
3.

72
4.

71
1.

05
0.

96
0.

21

Su
m

St
ut

tg
ar

t
22

79
73

10
12

2
44

.4
32

9
1.

44
10

02
4

59
86

26
.2

6
26

1
1.

14
14

07
6.

17
84

8
3.

72
24

0
1.

05
49

0.
21

O
ve

r
al

l
26

64
32

11
60

8
43

.6
47

3
1.

78
10

81
4.

06
67

31
25

.2
6

29
9

1.
12

16
57

6.
22

10
39

3
26

0
0.

98
68

0.
26

67

Table 7: Precision of smell detection

Smell Fi
nd

in
gs

In
sp

ec
te

d

Fi
nd

in
gs

A
cc

ep
te

d

Fi
nd

in
gs

R
ej

ec
te

d

P
re

ci
sio

n

Subjective Language Smell 69 66 3 0.96
Ambiguous Adverbs and Adjectives Smell 21 17 4 0.81
Loophole Smell 60 43 17 0.72
Non-verifiable Term Smell 23 16 7 0.70
Superlative Requirements Smell 39 19 20 0.49
Comparative Requirements Smell 88 42 46 0.48
Negative Words Smell 129 42 87 0.33
Vague Pronouns Smell 187 48 139 0.26

Average 77 36.6 40.4 0.59
Overall 616 293 323 0.48

68

Table 8: Recall of smell detection within sample of 4 artifacts (16,271 words)

Smell Fi
nd

in
gs

in
ar

tif
ac

ts

Fi
nd

in
gs

id
en

tifi
ed

co
rr

ec
tly

R
ec

al
l

Ambiguity-related Smells 74 64 0.86
Superlative Requirements Smell 4 2 0.50
Comparative Requirements Smell 21 20 0.95
Negative Words Smell 64 54 0.84
Vague Pronouns Smell 37 34 0.92

Average 40 34.8 0.82
Overall 200 174 0.87

69

Ta
bl

e
9:

E
xe

m
pl

ar
y

fin
di

ng
s;

sh
or

te
ne

d
an

d
tr

an
sl

at
ed

by
th

e
au

th
or

s,
fin

di
ng

s
in

bo
ld

ID
F
in

di
ng

R
el

ev
an

t?
A
w

ar
e?

R
es

ol
ve

?

1
A

s
a

vi
si

to
r,

I
w

an
t

to
se

e
th

e
ch

ec
kb

ox
es

in
th

e
di

ffe
re

nt
ca

te
go

ri
es

di
sp

la
ye

d
m

o
r
e

c
l
e
a
r
l
y
,s

o
th

at
I

ca
n

se
e

m
or

e
qu

ic
kl

y
th

at
I

ca
n

se
le

ct
an

d
de

se
le

ct
ca

te
go

ri
es

.
Y
es

Y
es

Y
es

in
sh

or
t
te

rm

2
A

s
a

vi
si

to
r,

I
w

an
t

to
se

e
th

e
ch

ec
kb

ox
es

in
th

e
di

ffe
re

nt
ca

te
go

ri
es

di
sp

la
ye

d
m

or
e

cl
ea

rl
y,

so
th

at
I
ca

n
se

e
m

o
r
e

q
u
i
c
k
l
y

th
at

I
ca

n
se

le
ct

an
d

de
se

le
ct

ca
te

go
ri

es
.

N
o

N
o

N
o

3
A

s
an

ed
it

or
,I

w
an

t
to

m
ak

e
it

s
i
m

p
l
e
r

to
di

ffe
re

nt
ia

te
be

tw
ee

n
..

.
N

o
N

o
N

o
4

A
s

a
vi

si
to

r,
I

w
an

t
to

se
e

f
u
r
t
h
e
r

de
ta

ils
,e

.
g
.

(.
..)

,s
o

th
at

..
.

Y
es

Y
es

Y
es

im
m

ed
ia

te
ly

5
A

s
a

cu
st

om
er

,I
w

an
t,

if
I

ha
ve

a
l
a
r
g
e
r

nu
m

be
r

of
E

-M
ai

ls
in

m
y

m
ai

lb
ox

,.
..

Y
es

Y
es

Y
es

im
m

ed
ia

te
ly

6
A

s
an

ed
it

or
,I

w
an

t
to

m
ak

e
it

si
m

pl
er

to
di

ffe
re

nt
ia

te
be

tw
ee

n
A

an
d

B
,t

he
re

fo
re

,A
s
h
o
u
l
d

be
la

be
le

d
as

..
.

Y
es

N
o

Y
es

in
lo

ng
te

rm

7
A

s
a

pr
ov

id
er

,I
w

an
t

th
at

,a
s

f
a
r

a
s

p
o
s
s
i
b
l
e
,a

ll
fie

ld
s,

ar
e

m
ap

pe
d

be
tw

ee
n

Sy
st

em
A

an
d

Sy
st

em
B

.
Y
es

Y
es

Y
es

im
m

ed
ia

te
ly

8
A

s
a

pr
ov

id
er

I
w

an
t

th
e

ne
w

s
se

ct
io

n
to

be
im

pl
em

en
te

d
w

it
h

an
eff

or
t
a
s

l
o
w

a
s

p
o
s
s
i
b
l
e
.

Y
es

Y
es

N
o

9
A

s
a

vi
si

to
r,

I
do

n
o
t

w
an

t
to

se
e

ca
te

go
ry

X
,s

o
th

at
I

am
n
o
t

co
nf

ro
nt

ed
w

it
h

th
e

is
su

e.
N

o
N

o
N

o
10

A
s

a
vi

si
to

r
of

th
e

w
eb

pa
ge

,
I

w
an

t
fo

r
n
o
t

se
le

ct
ed

ca
te

go
ri

es
,

th
e

di
sp

la
ye

d
he

ar
ts

of
th

e
sc

or
e

(s
ea

rc
h

re
su

lt
s

lis
t)

to
be

di
sp

la
ye

d
in

su
ch

a
co

lo
r,

th
at

th
e

sc
or

e
di

sp
la

y
is

n
o
t

ch
an

ge
d

an
d

al
w

ay
s

on
ly

he
ar

ts
of

re
le

va
nt

ca
te

go
ri

es
ar

e
di

sp
la

ye
d

in
co

lo
r.

Y
es

Y
es

Y
es

im
m

ed
ia

te
ly

11
A

s
an

em
pl

oy
ee

,
I

w
an

t
th

at
an

ar
ti
cl

e,
if

n
o

pr
ic

e
is

im
po

rt
ed

,
de

sp
it

e
th

e
la

be
l

’a
va

ila
bl

e’
to

be
n
o
t

di
sp

la
ye

d
in

SY
ST

E
M

X
,s

o
th

at
th

e
ar

ti
cl

e
au

to
m

at
ic

al
ly

re
su

m
es

w
he

n
a

pr
ic

e
is

im
po

rt
ed

.
Y
es

Y
es

Y
es

im
m

ed
ia

te
ly

12
A

s
a

us
er

,I
w

an
t

to
ha

ve
th

e
po

ss
ib

ili
ty

to
us

e
cu

st
om

va
lu

es
fo

r
m

i
n
i
m

u
m

an
d

m
a
x
i
m

u
m

,s
o

th
at

(.
..

).
N

o
N

o
N

o
13

A
s
a

vi
si

to
r,

Iw
an

t
to

ha
ve

a
po

ss
ib

ili
ty

to
br

ow
se

th
ro

ug
h

pr
ev

io
us

an
d

ne
xt

pr
od

uc
ts

,s
o

th
at

Ic
an

q
u
i
c
k
l
y

an
d

e
a
s
i
l
y

lo
ok

at
m

ul
ti

pl
e

pr
od

uc
t

w
it

ho
ut

ha
vi

ng
to

go
ba

ck
to

th
e

ov
er

vi
ew

pa
ge

.
N

o
N

o
N

o

14
A

s
a

vi
si

to
r,

I
w

an
t

to
na

vi
ga

te
to

m
e
a
n
i
n
g
f
u
l
l
y

st
ru

ct
ur

ed
ca

te
go

ri
es

vi
a

th
e

m
en

us
.

Y
es

Y
es

Y
es

im
m

ed
ia

te
ly

15
A

s
a

vi
si

to
r,

I
w

an
t

to
q
u
i
c
k
l
y

op
en

th
e

pi
ct

ur
es

of
th

e
w

eb
si

te
,s

o
th

at
un

ne
ce

ss
ar

y
w

ai
ti

ng
is

av
oi

de
d.

Y
es

Y
es

Y
es

im
m

ed
ia

te
ly

16
A

s
a

vi
si

to
r

of
th

e
w

eb
si

te
,I

w
an

t
a

n
i
c
e
l
y

de
si

gn
ed

se
ar

ch
-s

ug
ge

st
-b

ox
w

he
n

I
en

te
r

a
te

xt
an

d
w

ai
t.

Y
es

Y
es

Y
es

im
m

ed
ia

te
ly

17
A

s
a

bu
ye

r,
I

w
an

t
to

se
le

ct
fr

om
a

se
t

of
sh

op
pi

ng
pr

ov
id

er
s

(.
..

),
so

th
at

I
ca

n
se

le
ct

th
e

b
e
s
t

su
it

ed
sh

op
pi

ng
pr

ov
id

er
.

N
o

N
o

N
o

18
A

s
an

ed
it

or
,I

w
an

t
to

ha
ve

m
ul

ti
pl

e
en

tr
y

po
in

ts
fo

r
lin

ki
ng

ca
te

go
ri

es
,s

o
th

at
th

e
vi

si
to

r
ca

n
(.

..
)

ge
t

an
ov

er
vi

ew
of

se
le

ct
ed

br
an

ds
an

d
ca

te
go

ri
es

an
d

t
h
e
i
r

fil
te

rs
.

Y
es

N
o

N
o

19
A

s
[O

T
H

E
R

SY
ST

E
M

],
I

w
an

t
th

at
an

or
de

r
of

th
e

st
at

us
’O

rd
er

in
co

m
e’

tr
an

si
ti

on
s

in
to

st
at

us
’w

ai
t

fo
r

tr
an

sm
is

si
on

in
to

[S
Y

ST
E

M
]’,

so
th

at
I

do
no

t
se

e
th

e
or

de
r

w
he

n
in

de
xi

ng
op

en
or

de
rs

an
d

so
I

do
no

t
pr

oc
es

s
th

e
or

de
r

m
ul

ti
pl

e
ti

m
es

(a
nd

th
at

o
n
e

ca
n

se
e

th
e

st
at

us
of

th
e

or
de

r
in

th
e

ba
ck

en
d

pr
op

er
ly

).

N
o

N
o

N
o

20
A

s
an

ed
it

or
,I

w
an

t
to

kn
ow

a
go

od
w

ay
ho

w
to

tr
an

sf
er

ne
w

s
co

nt
en

t
fr

om
[S

Y
ST

E
M

]t
o

[S
Y

ST
E

M
]t

o
be

ab
le

to
effi

ci
en

tl
y

m
ig

ra
te

e
v
e
r
y
t
h
i
n
g

at
on

ce
.

Y
es

Y
es

N
o

70

Ta
bl

e
10

:
Fi

nd
in

gs
in

di
ffe

re
nt

pa
rt

s
of

us
er

st
or

ie
s

(T
=

to
ta

l,
R

o=
ro

le
,F

=
fe

at
ur

e,
R

e=
re

as
on

)

C
as

e
#

St
or

ie
s

w
/o

re
as

on
Si

ze
in

W
or

ds
Fi

nd
in

gs
ab

so
lu

te
Fi

nd
in

gs
pe

r
1,

00
0

W
or

ds
To

ta
l

R
ol

e
Fe

at
ur

e
R

ea
so

n
T

.
R

o.
F.

R
e.

T
.

R
o.

F.
R

e.

C
1

16
8

23
52

26
80

1
23

75
20

50
22

9
1

83
14

5
44

1
35

71
C

2
12

3
45

27
42

26
0

15
52

93
0

12
0

0
62

58
44

0
40

62
C

3
23

0
19

68
63

82
4

30
90

29
49

23
3

5
81

14
7

34
6

26
50

C
4

56
1

20
3

13
12

4
11

88
82

23
37

13
57

2
0

30
7

26
5

44
0

37
71

Su
m

10
82

29
0

27
95

5
30

73
15

24
0

96
42

11
54

6
53

3
61

5
41

2
35

64

71

Table A.11: Checklist for the students’ requirements reviews. Created by Anke Drappa,
Patricia Mandl-Striegnitz and Holger Röder based on [13] and [53]. Translated from
German.

The document is well structured and easy to understand.

All used terms are clearly defined and consistently used.

All external interfaces are clearly defined.

The level of detail is consistent throughout the document.

The requirements are consistent and unambiguous.

The defined requirements are consistent with the state of the art.

All tasks and data have useful identifiers.

Data is not defined redundantly.

The defined relationships between data objects are necessary and sufficient.

The specification of quality attributes is realistic, useful, quantifiable and unambiguous.

The user interface is comfortable and easy to learn.

The use case describes a behaviour of the system which is valuable and visible for the actor.

The use case is described in a table which is consistently used for the whole requirements specification.

The use case has a unique ID.

The use case has a unique and expressive name.

The main actor’s goal is described in an understandable way.

All actors participating in the use case are specified.

If there is more than one actor, the main actor is identified.

The preconditions of the use case are specified.

The postconditions for the use case are specified.

It is clearly specified how the main actor triggers the main success scenario.

The main success scenario has 3 to 9 steps.

After the main success scenario, the postconditions hold.

The main actor reaches their goal by the main success scenario.

Each step is sequentially numbered.

It is clear which actor is executing the step.

The step does not describe details of the user interface.

The step describes exactly one action of the acting actor.

There are postconditions for each extension.

It is clearly specified in which step the main success scenario deviates into an extension.

The conditions for the deviation into an extension are clearly specified.

After an extension, all postconditions for that extension hold.

72

	Introduction
	Related work
	The notion of smells in software engineering
	Quality assurance of software requirements
	Discussion

	Requirements Smells
	Requirements Smell terminology
	Requirements Smells based on ISO 29148

	Smella: A prototype for Requirements Smell detection
	Requirements parsing
	Language annotation
	Findings identification
	Findings presentation

	Requirements Smell detection in the process of quality assurance
	Evaluation
	Case study design
	Research questions
	Case and subjects selection
	Data collection procedure
	Analysis procedure
	Validity procedure

	Results
	Case and subjects description
	RQ 1: How many Requirements Smells are present in the artifacts?
	RQ 2.1: How accurate is the smell detection?
	RQ 2.2: Which of these smells are practically relevant in which context?
	RQ 3: Which requirements quality defects can be detected with smells?
	RQ 4: How could smells help in the QA process?
	Evaluation of validity

	Conclusion
	Summary of conclusions
	Relation to existing evidence
	Impact/Implications
	Limitations
	Future work

	Requirements Checklist

