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1 Einleitung

Eine Vielzahl wissenschaftlicher Erkenntisse sind durch die optische Spektroskopie, der Un-

tersuchung der Wechselwirkung von Licht mit Materie, erzielt worden. Allen Techniken ge-

meinsam ist, daß aufgrund der Untersuchung der gestreuten Strahlung Information über die

untersuchte Probe gewonnen wird. Unter denjenigen Spektroskopiemethoden, die sichtbares

oder infrarotes Licht verwenden, bieten die Vibrationsspektroskopien wie die spontane Raman

Spektroskopie den großen Vorteil, dass sie keine Marker benötigen und es somit gestatten, die

Physik oder Chemie einer Probe betreffende Informationen ohne jegliche Probenpräparation

zu ermitteln. Die Kombination von spontaner Raman-Spektroskopie mit optischer Mikroskopie

ergibt ein Werkzeug, das in der Lage ist Strukturen auf der sub-µm Skala zu untersuchen. Der

Nachteil der spontanen Raman-Spektroskopie ist allerdings der geringe Streuquerschnitt, der

sich in lange Aufzeichnungsdauern für Spektren übersetzt, die es oft verhindern bspw. niedrig

konzentrierte Proben zu untersuchen. Andere Techniken, wie die oberflächenverstärkte Raman

Spektroskopie (engl. Surface-enhanced Raman spectroscopy (SERS)) oder die spitzenverstärkte

Raman Spektroskopie (engl. Tip-enhanced Raman spectroscopy (TERS)), überkommen diese

Begrenzung, indem das gemessene Signal um mehrere Größenordnungen angehoben wird. Sie

beruhen allerdings auf einem direkten Kontakt der Probe mit einem Substrat oder einer Spitze

und gehören deshalb zu den invasiven Methoden. Mit dem Aufkommen der Kohärenten Anti-

Stokes-Raman-Streuung (engl. Coherent anti-Stokes Raman Scattering (CARS)) Mikrospektro-

skopie war es erstmals möglich, diesen Nachteil zu beseitigen: Nun konnte die Aufzeichnungs-

dauer von Spektren um bis zu drei Größenordnungen reduziert werden. Die Herausforderung

bei der Verwendung der CARS-Mikrospektroskopie besteht nunmehr in der Aufbereitung der

Spektren.

Die Theorie besagt, dass CARS- und spontane Raman-Spektroskopie denselben Informati-

onsgehalt aufweisen. Dies konnte unter Verwendung von Phasenrückgewinnung der komplexen

Suszeptibilität und anschließender Rekonstruktion der spontanen Ramanantwort bereits für Pro-

ben mit stark überlappenden Banden gezeigt werden (siehe Rinia et. al. [1]). Eine überzeugende

Rekonstruktion der spontanen Ramanantwort in Fällen bei welchen vibronische und elektroni-

sche Antwort der Probe spektral überlappen stand jedoch bis heute aus. Sobald diese Bedingung

erfüllt ist, ist das Ergebnis einer allein auf Phasenrückgewinnung basierenden Rekonstruktion
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falsch. Dieses Unvermögen der anerkannten Rekonstruktionsmethoden, die korrekte vibroni-

sche Antwort χ(3)
Res(ν) bei gegebener spektraler Überlappung mit der elektronischen Antwort

χ(3)
E zu rekonstruieren, stellte selbstverständlich ein schwerwiegendes Problem dar. Dies ma-

nifestiert sich besonders bei der Rekonstruktion spektral hochaufgelöster Spektren, die stark

überlappende Banden aufweisen und somit besonders empfindlich auf Phasenfehler sind (siehe

Camp et. al. [2]). Diese Situation verschärfte sich sogar noch für Mischungen unterschiedli-

cher chemischer Komponenten. Auf der Basis derartig rekonstruierter Spektren konnten somit

keinerlei quantitative Aussagen getroffen werden. Die Entwicklung und Anwendung einer Me-

thode, die die quantitative Interpretation der erhaltenen Spektren erlaubt, ist zentraler Aspekt

dieser Arbeit. Es wird dargelegt, dass selbst bei signifikanter spektraler Überlappung zwischen

vibronischer Suszeptibilität χ(3)
Res(ν) und elektronischer Suszeptibilität χ(3)

E bei Anwendung die-

ser neuen Technik CARS- und spontane Raman-Mikrospektroskopie denselben Informations-

gehalt aufweisen. Zur Phasenrückgewinnung wird die Maximum-Entropie-Methode (MEM)

verwendet. Bei Beginn dieser Arbeit veranschlagte die MEM basierte Berechnung der Phasen-

spektren deutlich mehr Zeit als die Aufzeichnungsdauern der Spektren betrug. Eine Reduktion

des Rechenaufwands um drei Größenordnungen war wünschenswert. In dieser Arbeit wird ein

solcher Algorithmus entwickelt und präsentiert. Ein anderer Mangel der MEM-basierten Pha-

senrückgewinnung betraf die Endbereiche der Phasenspektren, wo deutliche Abweichungen

von den tatsächlichen Phasenspektren auffielen. Dieses Problem wird in dieser Arbeit durchge-

hend als Fensterung bezeichnet werden und es werden Methoden zur Vermeidung dieser Fens-

terung entwickelt und präsentiert. Die Rauschunterdrückung von Sätzen von Spektren unter

Verwendung der Singulärwertzerlegungsmethode (engl. singular value decomposition (SVD)

method), die vor sechs Jahren Standard war, stellt ein anderes Thema dar. Unter gewissen Be-

dingungen resultierte SVD in verfälschten Spektren, was eine robustere Methode zur Rausch-

unterdrückung notwendig machte. Eine neuartige und auf alle Arten von hyperspektralen Daten

anwendbare Rauschunterdrückungsmethode wird vorgeschlagen. Sie bewies sich auch noch in

Fällen, in denen SVD nicht mehr verwendet werden kann (siehe Abschnitt A.4.2). Letztendlich

wurde der Einfluss des effektiven nichtresonanten Untergrundes auf rekonstruierte Im[χ(3)
Res(ν)]

Amplituden bislang nicht ausreichend erörtert und wird deshalb in Appendix A.6.1 diskutiert.

Ausgestattet mit dieser neuen und leistungsstarken Technik werden einige aktuelle Fragestel-

lungen der Material- und Biowissenschaften in einer Art und Weise beleuchtet, wie es keine

andere Spektroskopietechnik momentan vermag.

Die erste Anwendung stellt die Gewinnung von hoch aufgelöster 3D Strukturinformation

von Polymeren dar. Da solche Messungen hunderttausende von Spektren beinhalten können und

somit bei Verwendung von spontaner Ramanspektroskopie viele Stunden Zeit in Anspruch neh-

men würden, waren derartige Messungen bisher nicht praktikabel. CARS-Mikrospektroskopie

hingegen erlaubt die Gewinnung hoch aufgelöster 3D Strukturinformation binnen Minuten. Die
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zweite Anwendung verwendet CARS-Mikrospektroskopie zur quantitativen und nichtinvasiven

Analyse der chemischen Struktur biologisch relevanter Lipide. In den Biowissenschaften stellt

die Aufnahme und der intrazelluläre Transport von Lipoproteinen niedriger Dichte (engl. low

density Lipoprotein (LDL)) in menschlichen Makrophagen ein hochaktuelles Thema dar. Die

Verwendung invasiver Methoden erlaubt die Untersuchung einiger Aspekte der LDL Aufnah-

me und des intrazellulären LDL Transportes wie etwa die Bestimmung der Größen von Lipid

speichernden Organellen unter Verwendung von Fluoreszenzspektroskopie oder die detaillier-

te Bestimmung der Lipidzusammensetzung unter Verwendung von Massenspektroskopie. Die

nichtinvasive und schnelle Bestimmung der chemischen Struktur biologisch relevanter Lipide

in lebenden Zellen war jedoch bisher nicht möglich. Eine derartige Bestimmung von örtlicher

Verteilung solcher Lipide, ihrer Kettenlängen nC−C, sowie ihres Sättigungsgrades nC=C in le-

benden menschlichen Makrophagenzellen wird sowohl auf Einzelzellen-Niveau als auch auf

Einzelorganellen-Niveau demonstriert.

Die Arbeit ist wie folgt gegliedert: Im Grundlagenkapitel Kap. 3 werden die zur Beschrei-

bung von Vibrationsspektren benötigten physikalischen Prinzipien dargelegt. Beginnend mit der

spontanen Raman Streuung in Abschnitt 3.1 werden wir in Abschnitt 3.2 fortfahren mit der Be-

schreibung von Pico Sekunden CARS, wo die Suszeptibilität χ(3)
Res kohärent in einem schmalen

Frequenzintervall abgetastet wird. Das ps-CARS Schema wird dann in Abschnitt 3.2.1 gene-

ralisiert um ein Kontinuum vieler gleichzeitig abgetasteter Frequenzen, oder in anderen Wor-

ten, multiplex-CARS Spektroskopie, zu beschreiben. Die verschiedenen Aspekte, inwiefern die

Probe oder die messtechnischen Umstände das Linienprofil von CARS Spektren beeinflussen,

werden ausführlich in Abschnitt 3.2.2 behandelt. Die Rekonstruktion des spontanen Raman-

spektrums beinhaltet die Phasenrückgewinnung der komplexen Suszeptibilität χ(3)
Res(ν). Ihre Not-

wendigkeit wird zusammen mit gängigen Vorgehensweisen im Abschnitt 3.3 besprochen. Die

notwendigen Transformationen sind im Appendix A.1 zusammengefasst. Nach einem kurzen

Vergleich der existierenden Phasenrückgewinnungsmethoden wird die Maximum Entropy Me-

thode (MEM) erläutert. Material und Methoden, die allen Ergebniskapiteln gemein sind, sind in

Kapitel 4 aufgeführt. Hier sind die zur Bestimmung von quantitativer Information aus rekonstru-

ierten Ramanspektren verwendeten univariaten und multivariate Methoden zu finden. Proben-

spezifische Messbedingungen, die Probenvorbereitung betreffende Prozeduren und Ähnliches

ist stets zu Beginn der Ergebniskapitel beschrieben. Im Kapitel 5 werden drei unbefriedigen-

de Aspekte gängiger Realisierungen MEM-basierter Phasenrückgewinnung behandelt. Die in

Kapitel 5 entwickelten und getesteten Werkzeuge werden zur Beantwortung aktueller Fragen

der Materialwissenschaft in Kapitel 6 sowie der Biowissenschaft in Kapitel 7 und 8 verwendet,

wo CARS-Mikrospektroskopie zur nichtinvasiven, quantitativen Untersuchung von biologisch

relevanten Lipiden dient. Das Ergebnis des Kapitels 7 ist die Vorraussetzung zur chemischen

Identifikation von Lipiden in komplexen heterogenen Systemen wie lebenden Zellen, was das
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Thema des folgenden Kapitels 8 darstellt. Unabhängig der gewählten Rekonstruktionsmethode

weist die CARS-Mikrospektroskopie einige Eigenarten auf, die so bei der spontanen Raman-

streuung nicht gegeben sind. Diese sind der Einfluss des nichtresonanten Beitrages χ(3)
NR, des

Referenzspektrums welches zur Normierung aller Spektren verwendet wird, und letztlich un-

terscheidet sich das Rauschen in rekonstruierten Raman Spektren von dem Rauschen in sponta-

nen Raman Spektren. Diese Aspekte stellen die Motivation für Appendix A.6 dar. Hier werden

alle denkbaren Fälle, wie ein nichtresonanter Beitrag χ(3)
NR zu einem CARS Spektrum beitragen

kann, simuliert, verglichen und detailliert diskutiert.
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2 Introduction

Many insights in various scientific disciplines are owed to optical spectroscopy, the study of the

interaction of light and matter. All techniques have in common that the analysis of the spec-

trum of the scattered light yields information regarding the matter or sample of interest. Among

the spectroscopy techniques that use visible light or infrared light, vibrational spectroscopies

like spontaneous Raman scattering spectroscopy offer the great advantage of being label-free

and thus allow to obtain information regarding the physics or chemistry of a sample of inter-

est without any sample preparation being necessary. The combination of spontaneous Raman

scattering spectroscopy with optical microscopy results in a tool capable of analyzing struc-

tures on the sub-µm length scale. However, the disadvantage of spontaneous Raman scattering

spectroscopy is the small scattering cross-section that translates into long spectrum acquisition

times that often prevent the analysis of e.g. low concentrated samples. Other techniques like

Surface-enhanced Raman spectroscopy (SERS) or Tip-enhanced Raman spectroscopy (TERS)

overcome this limitation by increasing the measured signal by orders of magnitude, but rely on

a direct contact of the sample with a substrate or a tip and thus are invasive. With the advent

of Coherent anti-Stokes Raman Scattering (CARS) micro-spectroscopy it was possible to over-

come this disadvantage: Now the spectrum acquisition times could be reduced by up to three

orders of magnitude. The challenge when using coherent Raman scattering spectroscopy is the

analysis of the spectra.

In theory, coherent Raman scattering spectroscopy yields the same information as sponta-

neous Raman scattering spectroscopy. This has been demonstrated by retrieving the phase of

the complex susceptibility and subsequent reconstruction of the spontaneous Raman response

for samples exhibiting highly overlapping bands (see Rinia et. al. [1]). However, no convincing

reconstruction has been shown yet for cases when the vibrational and the electronic response of

the sample spectrally overlap. Whenever this condition was fulfilled, the reconstruction result

based solely on a phase retrieval was wrong. The inability of the state of the art reconstruction

schemes to reconstruct the correct vibrational susceptibility χ(3)
Res(ν) as soon as it exhibits sig-

nificant spectral overlap with the electronic susceptibility χ(3)
E of course posed a serious prob-

lem. This became particularly apparent when reconstructing spectrally high resolved spectra

exhibiting overlapping bands that are highly sensitive to phase errors (see Camp et. al. [2]).
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The situation became even worse for mixtures of distinct chemical components. As a result, no

quantitative statements could be made based on such reconstructed spectra. The development

and application of such an analysis technique allowing a quantitative interpretation of the ob-

tained spectra is the central topic of this thesis. It will be demonstrated that when using this

new technique the same information is obtained by means of fast CARS micro-spectroscopy, as

when spontaneous Raman scattering spectroscopy is used even in cases where the vibrational

and the electronic susceptibilities χ(3)
Res(ν) and χ(3)

E , respectively, exhibit significant spectral over-

lap. The phase retrieval will be performed using the maximum entropy method (MEM). When

starting this thesis, the MEM based calculation of the phase spectra required significantly more

time than the acquisition of the spectra. A reduction of the computational time for the MEM

based phase retrieval by three orders of magnitude was desirable. In this thesis such an algo-

rithm will be developed and presented. Another shortcoming of the MEM based phase retrieval

concerned the spectral ends of the phase spectra, where strong deviations from the true phase

spectra could be observed. This problem will be referred to as windowing throughout this thesis

and methods to prevent this windowing are developed and presented. Another topic concerns

the denoising of sets of spectra using the singular value decomposition (SVD) method that was

state of the art six years ago. On certain conditions SVD turned out to result in falsified spectra

and a more robust method for the denoising was needed. Such a new denoising scheme, ap-

plicable for all kinds of hyperspectral data will be proposed, that showed to be still applicable,

where SVD cannot be used (see section A.4.2). Finally, the impact of the effective nonresonant

background on the reconstructed Im[χ(3)
Res(ν)] amplitudes was found to be not considered enough

so far and will be discussed in appendix A.6.1. With these new and powerful techniques light

will be shed on topics of current research in the material and life sciences in a way, no other

spectroscopy technique is capable of.

The first application is the extraction of highly resolved 3D physical structure information

of polymers. Because such a measurement involves hundreds of thousands of spectra and would

take many hours this is not feasable using spontaneous Raman spectroscopy, whereas multiplex

CARS microscopy allows highly resolved 3D physical structure information extraction within

minutes. The second application uses multiplex CARS microscopy for the quantitative and

noninvasive analysis of the chemical structures of biologically relevant lipids. In life science,

the uptake and intracellular transport of low density lipoproteins (LDL) in human macrophages

is of high interest. The use of invasive methods allowed to analyze certain aspects of the LDL

uptake and intracellular transport such as the determination of the size of lipid organelles using

fluorescence spectroscopy or of the detailed lipid composition using mass spectroscopy. It was

however not possible to determine the chemical structures of biologically relevant lipids in a

non-invasive and fast manner inside the living cell. This will be directly demonstrated in living

human macrophages by characterizing the spatial distribution of lipids, of their chain length
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nC−C, and of their degrees of acyl chain unsaturation nC=C on the single-cell and single-organelle

levels.

This thesis is organized as follows: In the fundamentals ch. 3 the physical principles needed

in order to describe vibrational spectra are given. Starting with spontaneous Raman scattering

spectroscopy, we will proceed describing picosecond CARS, where the susceptibility χ(3)
Res of

interest is probed in a coherent way in one narrow frequency interval. This scheme will be

generalized in order to describe a continuum of many simultaneously probed frequencies, or in

other words, multiplex-CARS spectroscopy. Emphasis is put on the various aspects, how the

lineshape of the CARS spectra is influenced by the sample and/or the measurement conditions.

The reconstruction of the spontaneous Raman spectrum involves the retrieval of the phase of

the complex susceptibility χ(3)
Res(ν). Its necessity along with the state of the art approaches is dis-

cussed in section 3.3. The transforms involved are discussed in the appendix A.1. After a short

comparison of existing phase retrieval methods, the maximum entropy method (MEM) will be

discussed. The materials and methods shared by the results chapters are given in ch. 4. The

methods used to extract quantitative information out of reconstructed Raman data, involving

univariate and multivariate analysis methodology, are given here. Sample specific measure-

ment conditions, sample preparation procedures etc. can be found in the materials section at

the beginning of each result chapter. Three unsatisfactory aspects in the current realisations

of MEM-based spectral phase retrieval will be addressed in ch. 5. The tools that have been

developed and tested in chapter 5 are applied two answer open questions in material science

in chapter 6 and in lipidomics in chapter 7 and 8, where CARS micro-spectroscopy is used

for the quantitative and noninvasive analysis of the chemical structures of biologically relevant

lipids. The results of chapter 7 serve as a prerequisite for the chemical identification of lipids

in complex and heterogeneous systems, such as living cells, which will be the subject of ch.

8. Independent of the reconstruction scheme used, hyperspectral CARS imaging has some pe-

culiarities that do not exist in spontaneous Raman scattering. These are the influence of the

nonresonant part of χ(3)
NR, the influence of the reference spectrum used to normalize all spectra

with, and finally the noise in reconstructed CARS spectra differs from the noise in spontaneous

Raman spectra. These aspects are the motivation for the appendix A.6, where first all possible

cases, how the nonresonant part of χ(3)
NR can contribute to the CARS spectrum are simulated,

compared and discussed in detail.
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3 Fundamentals

In this chapter first the classical description of Raman scattering is presented, starting with

the Maxwell equations that describe the interaction of light with matter. Spontaneous Raman

scattering (SR) can then be seen as the incoherent special case of the third-order scattering

process discussed here, coherent anti-Stokes Raman-scattering (CARS). After a brief historical

overview for each scattering process, each process will first be described semi-classically, and

then the connection to the quantum mechanical description will be drawn.

The representations used to discuss the analogies and differences among the scattering pro-

cesses will be the susceptibility in the complex plane and the quantum mechanical picture. The

descriptions of the spontaneous and coherent Raman effects are based on refs. [3], [4], [5], and

[6]. In a nonmagnetic medium with relative permeability µr = 1, a magnetic field B = µ0H, the

vacuum permeability µ0, and the magnetic field strength H, the Maxwell equations read:

∇B = 0 (3.1)

∇(ε0E + P) = ρ f ree (3.2)

∇ ×H =
∂

∂t
(ε0E + P) + j (3.3)

∇ × E = −
∂

∂t
B. (3.4)

Here, ε0 denotes the vacuum permittivity, E the electric field, and P the polarization. We assume

that the medium has neither free currents j nor free charges ρ f ree. So we set j = 0 and ρ f ree = 0.

The vacuum permittivity ε0 and permeability µ0 are linked with the vacuum speed of light

c0 =
√

1
ε0µ0

. The material dependent relative permittivity εr and permeability µr are linked with

the index of refraction n =
√
εrµr. The electric susceptibility χel and magnetic susceptibility

χmag are then given by εr = 1 + χel and µr = 1 + χmag, respectively. As we defined χmag = 0, for

the remainder of this thesis any susceptibilities are of electric nature. By taking the curl of eq.

3.4 and some rearrangements, we find the wave equation

∇ × ∇ × E(r, t) +
∂2E(r, t)

c2
0∂t2

= −
∂2P(r, t)
ε0c2

0∂t2
. (3.5)

The induced polarization P is in general a nonlinear function of the electric field. When we

introduce the wave vector k and the frequency ω of the electric field E(ω,k) and expand this
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induced polarization P, we obtain:

P(ω,k) = ε0χ
(1)(ω1, k1)E(ω1, k1) + ε0χ

(2)(±ω1 ± ω2,±k1 ± k2)E(ω1, k1)E(ω2, k2)

+ε0χ
(3)(±ω1 ± ω2 ± ω3,±k1 ± k2 ± k3)E(ω1, k1)E(ω2, k2)E(ω3, k3) + . . .

= P(1) + P(2) + P(3) + . . . .

(3.6)

In eq. 3.6, we have introduced the linear polarization P(1), the second-order nonlinear polar-

ization P(2), and the third-order nonlinear polarization P(3). χ(1) is the linear susceptibility, and

χ(n) (n = 2, 3, . . .) are the nonlinear susceptibility tensors of rank (n+1).

3.1 Spontaneous Raman scattering

The Raman effect describes the appearance of sidebands in the spectrum of narrowband light

scattered by a Raman active sample. The frequency difference between the sidebands and the

incoming light is independent of its frequency and characteristic for the sample molecule. The

effect was predicted by Mandelstam in 1918 and by Smekal in 1923 [7]. The effect is either

interpreted as a fine structure splitting of the Rayleigh scattering by Mandelstam or as the op-

tical analogue of the Compton effect by Raman [8]. All interpretations led to its successful

experimental observation first reported 1928 by C.V. Raman and K.S. Krishnan [8] in India,

and independently by G. Landsberg and L. Mandelstam [9] in 1928 in Russia. The experimen-

tal observation was termed second light in Raman’s nomenclature and combinatorial scattering

of light in the nomenclature used in Russia. Depending which literature is consulted, Landsberg

and Mandelstam or Raman and Krishnan are credited for first observing the effect. Raman’s dis-

covery was made on February 16th and Landsberg and Mandelstam’s on February 21st 1928.

Letters by Raman and Krishnan to Nature [8] were published on March 31st 1928, whereas

Landsberg and Mandelstam’s published in Naturwissenschaften on July 13th [9]. However,

India celebrates National Science Day on February 28th to honor the memory of Raman‘s dis-

covery in 1928. In Raman’s and Krishnan’s publications a very clear explanation of the nature

of the phenomenon is given, and both are cited by Mandelstam and Landsberg. In the end it

was the half page article by Raman [10] published on April 21st, which in 1930 gained him a

full Nobel Prize in Physics only two years after his publication.

Let us first derive the classical description of the spontaneous Raman scattering on the

microscopic level, and how it allows studying vibrations of nuclei. We consider a molecule

whose nuclei have a single vibrational mode of frequency ω0, and an incident light field E =

E0cos(ωLt) with the peak field amplitude E0. Because of its high frequency (ωL >> ω0), the in-

cident light field with frequency ωL interacts with the electrons within the sample, not with the

nuclei of the sample directly. The incident light field is displacing the electron density against

the nuclei, and in this manner is inducing the microscopic dipole moment p = αE(r, t). Here,
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α is the polarizability tensor, which depends on the vibrational nuclear coordinate Q(t) of the

nuclei, oscillating with the resonance frequency ω0. If we consider only the linear term of the

vibrational amplitude Q(t), we obtain a time depending polarizability α:

α(t) = α0 +
d

dQ
Q(t), (3.7)

where α0 denotes the time independent electrical polarizability. Assuming harmonic motion,

the vibrational amplitude Q(t) is given by Q(t) = Q0cos(ω0t + φ). If we insert this expression

into eq. 3.7, we obtain:

α(t) = α0 + α′cos(ω0t + φ), (3.8)

where α′ = ( dα
dQ )0Q0. If we insert eq. 3.8 into p(t) = α(t)E0cos(ωLt), we obtain the following

series for the dipole moment:

p(t) = α0E0cos(ωLt)︸           ︷︷           ︸
Rayleigh

+
1
2
α′E0cos((ωL + ω0)t + φ)︸                            ︷︷                            ︸

anti−S tokes Raman

+
1
2
α′E0cos((ωL − ω0)t + φ)︸                              ︷︷                              ︸

S tokes Raman

. (3.9)

In eq. 3.9 we see three dipole terms, the Rayleigh component at the same frequency as that

of the incident light field, the Stokes component appearing with respect to ω0 at a smaller

frequency ωS tokes = ωL − ω0, and the anti-Stokes component appearing at a higher frequency

ωanti−S tokes = ωL + ω0. Because in spontaneous Raman scattering the molecular vibrations are

considered to be stochastic and independent of each other, the phase φ of the vibrational nuclear

coordinates oscillations can take any value and is fully stochastic. This represents the incoherent

nature of spontaneous Raman scattering. For NS cat scattering molecules per unit volume, the

macroscopic polarization P is related to the microscopic dipole moment by P = NS catp. The

spontaneous Raman Stokes scattering intensity, which is typically measured in a spontaneous

Raman scattering experiment, is then expressed by

I(ωL − ω0) ∝ NS catzσRaman(ωL − ω0)|E0|
2, (3.10)

where z is the interaction path length in the Raman active medium. In this classical description,

the spontaneous Raman scattering cross-section σRaman for the Stokes scattering process can

then be expressed in the following form [11]:

σRaman,Q(ωL−ωS ) ∝

∣∣∣∣∣ dα
dQ0

∣∣∣∣∣2 . (3.11)

Next, we will discuss the polarization dependence of the spontaneous Raman scattering.

The geometry for detection of scattered Raman light under 90◦ is given in fig. 3.1. If linear

z-polarized light enters along the y-axis and the Raman scattered light is observed under 90 ◦

along the x-axis, the degree of Raman depolarization ρdepol is defined as the ratio of the Raman

intensities I‖ and I⊥ detected perpendicular and parallel to the xz-plane, respectively:

ρdepol ≡
I⊥
I‖
. (3.12)
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Figure 3.1: Geometry for the polarization-dependent Raman detection, taken from ref.

[5].

The degree of depolarization of a Raman band is theoretically described by ref. [5]:

ρdepol =
3γ2

s + 5γ2
as

45α2
+ 4γ2

s

(3.13)

with the mean polarizability α , the symmetric anisotropy γs, and the antisymmetric anisotropy

γas. The degree of depolarization can range from ρdepol = 0 for a fully polarized Raman band

to ρdepol = 3
4 for a fully un-polarized Raman band.

The above classical derivation of Raman scattering intensities (eqs. 3.10 and 3.11) provide

only a qualitative description of the spontaneous Raman scattering. It fails in quantitatively

describing scattering intensities, because it does not take the population densities of the ground

and vibrational states into account [4]. This is why we need a quantum mechanical description

in order to fully describe the Raman scattering. Generally, the absorption of a photon, where

its energy matches the energy difference ~ωL = ~(ων=1 − ων=0) between an initial state | ψν=0〉

and a final state | ψν=1〉, is a first-order transition that depends on the transition dipole moment

〈ψν=0 | p | ψν=1〉. Here, the macroscopic polarization is given by P = NS cat〈ψν=0 | p | ψν=1〉.

As depicted in fig. 3.2, a Raman like transition is a second-order process. Therefore, the two-

photon Raman transition dipole moment is given by 〈ψν=0 | p | ψvirt〉〈ψvirt | p | ψν=1〉. The virtual

state | ψvirt〉 is not a stationary state representing a solution of the time-independent Schrödinger

equation. Thus, it does not correspond to a sharp defined energy level. Furthermore, we have

to take all quantum states as possible intermediate states into account. In order to simplify

the photon picture, only one virtual state | ψvirt〉 is plotted in fig. 3.2. After introducing the

electric dipole moment operators p̂ρ and p̂σ for the Cartesian coordinates ρ and σ, respectively,
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an expression for the Raman polarizability tensor component (αρσ)10 is given in ref. [4]:

(αρσ)10 =
1
~

∑
virt,virt,0,1

[
〈ψν=1 | p̂ρ | ψvirt〉〈ψvirt | p̂σ | ψν=0〉

ωvirt − ων=0 − ωL − iΓvirt
+
〈ψν=1 | p̂σ | ψvirt〉〈ψvirt | p̂ρ | ψν=0〉

ωvirt − ων=1 + ωL + iΓvirt

]
,

(3.14)

where Γvirt is the half width of the virtual state related to its lifetime. Calculating the spontaneous

Raman scattering cross-section σRaman using Raman polarizability tensor components expressed

in eq. 3.14 is not trivial and lenghty, even when several simplifying approximations are taken

into account (see Placzek et. al. [12]). The interested reader is referred to ch. 9 in Mukamel

[6], where the quantum mechanically derived Raman cross-section σRaman, 10(ωL − ω0) is given

as:

σRaman, 10(ωL − ω0) ∝
4ωL(ωL − ω0)3

9~2c4

∑
|(αρσ)10|

2. (3.15)

Based on earlier work of Hellwarth [13], Mukamel proposes that the sum over all Raman tran-

sition amplitudes
∑
|(αρσ)10|

2 is directly proportional to the imaginary part of the third order

susceptibility χ(3)(ω), so that we can rewrite the spontaneous Raman cross-section as:

σRaman,χ(3) ∝ Im[χ(3)
Res(ω)]. (3.16)

Eq. 3.16 thus directly represents the relation between the spontaneous Raman and coherent

Raman scattering experiments. We will provide an experimental verification of the validity of

eq. 3.16 in this thesis.

Figure 3.2: Energy level diagrams for (B) the Rayleigh, (C) the Stokes Raman, and (A)

the anti-Stokes Raman scattering processes.
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3.2 Coherent anti-Stokes Raman scattering

Coherent anti-Stokes Raman scattering (CARS) was first experimentally reported by Maker and

Terhune [14] in 1965, both at this time being employed in the Ford motors cars company. Un-

like in spontaneous Raman scattering, where a single laser excitation field is used, in CARS

three incident laser fields EPump,EProbe and ES tokes at frequencies ωPump, ωProbe and ωS tokes, re-

spectively, interact with the nonlinear sample making CARS a four-wave mixing process. The

energy level diagram for the CARS process using narrow-band picosecond (ps)-pulses is shown

in fig. 3.3. When the frequency difference ωPump − ωS tokes is matching a vibrational resonance

∣∣∣ψν=0
〉∣∣∣ψν=1
〉

|ψe=1〉

ωPump
ωS tokes

ωProbe
ωCARS

Figure 3.3: Energy level diagram for the CARS process using narrow band ps-pulses.

| ψν=0,1〉 and | ψe=1〉 denote the vibrational and electronic resonant states, respectively.

frequency, the CARS signal is resonantly enhanced. Depending on whether three distinct

fields, or only two fields, EPump and ES tokes are incident, the terms non-degenerate and degener-

ate CARS are used, respectively. To interact with a nonlinear χ(3)-active medium, the incident

fields have to be spatially and temporally overlapped. When the phase-matching condition

∆k = kCARS − (kPump + kProbe − kS tokes) ≈ 0 is fulfilled, the third-order nonlinear polarization

P(3)
CARS ∝ χ

(3)EPumpEProbeE∗S tokes is induced and a new coherent field is emitted at the new CARS

frequency ωCARS = ωPump + ωProbe − ωS tokes. The nonlinear susceptibility χ(3) is a tensor

of rank 4 with 81 entries. By convention, the tensor elements of χ(3) are distinguished by the

Cartesian polarization components of the CARS, pump, probe, and Stokes fields. When these

fields are monochromatic, linearly polarized, and copropagate collinearly, the ith component of

the induced polarization reads [15]:

P(3)
i (ωCARS ) =

6
mdeg!

∑
jkl

χ(3)
i jkl(−ωCARS ;ωPump, ωProbe,−ωS tokes) × E j(ωPump)Ek(ωProbe)El(ωS tokes)∗

(3.17)
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with mdeg being the number of equal input frequencies. The CARS intensity ICARS , which is

experimentally detected, is then:

ICARS =
∣∣∣P(3)

CARS

∣∣∣2 ∝ ∣∣∣χ(3)
∣∣∣2 . (3.18)

In the most general case, all 81 tensor elements of χ(3)
i jkl are different [16]. In degenerate CARS,

which is the case dealt with throughout this thesis, in a transparent, optically inactive and

isotropic medium, only two independent tensor elements χ(3)
1111 and χ(3)

1221 remain. The quan-

tity χ(3)
i jkl can be split into a nonresonant part χ(3)

i jkl NR, which arises from electronic contributions,

and a vibrationally resonant part χ(3)
i jkl Res. Being far off an electronic resonance |ψe=1〉, as illus-

trated in fig. 3.3, χ(3)
i jkl NR is assumed to be frequency-independent and a purely real quantity. If

we consider an isolated Raman resonance, we obtain for the resonant tensor elements [17]:

χ(3)
1111 Res =

A1111

ω0 − (ωPump − ωS tokes) − iΓ
= CNS catΓ

α2
+ ( 4

45 )γ2
s

ω0 − (ωPump − ωS tokes) − iΓ
(3.19)

χ(3)
1221 Res =

A1221

ω0 − (ωPump − ωS tokes) − iΓ
= CNS catΓ

( 1
15 )γ2

s

ω0 − (ωPump − ωS tokes) − iΓ
. (3.20)

Both eq. 3.19 and eq. 3.20 describe a complex Lorentzian profile of a damped harmonic oscil-

lator with resonance frequency ω0, a damping constant 2Γ, and amplitude Ai jkl. The amplitudes

are directly proportional to the number density of scatterers NS cat. C is a proportionality con-

stant. In combination with eq. 3.18, we find the quadratic dependence of the measured CARS

signal on NS cat. The parameters α and γs have already been introduced in eq. 3.13 for the

spontaneous Raman scattering case. With γas = 0 in the transparent medium, we can define the

following depolarization ratios for the resonant and the nonresonant coherent Raman scattering

in eq. 3.21 and eq. 3.22, respectively:

ρdepol Res =
χ(3)

1221 Res

χ(3)
1111 Res

=
3γ2

s

45α2
+ 4γ2

s

(3.21)

ρdepol NR =
χ(3)

1221 NR

χ(3)
1111 NR

=
1
3
. (3.22)

While eq. 3.21 is equivalent to eq. 3.13 describing the degree of depolarization for the sponta-

neous Raman case, eq. 3.22 has no spontaneous Raman scattering counterpart. The value of 1
3

is a result of Kleinmann’s symmetry [18], where χ(3)
1122 NR = χ(3)

1212 NR = χ(3)
1221 NR =

χ(3)
1111 NR

3 . When

the pump/probe, the Stokes, and the CARS fields are parallel polarized, χ(3)
1111 is probed. With

this polarization geometry being fulfilled throughout this thesis, the subscripts representing the

Cartesian coordinates will be skipped in the subsequent discussions. For example, χ(3) will be

used instead of χ(3)
1111.

The quantum mechanical description of the CARS process makes use of the density ma-

trix ρD = |ψ〉〈ψ|, where the time-averaged macroscopic polarization is described as 〈P〉 =
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NS cattr(ρDP). Perturbation theory allows then to calculate the third-order terms of the nonlinear

polarization P(3) and the components of the third-order susceptibility χ(3). The detailed quantum

mechanical description of the CARS process is beyond the scope of this thesis. The interested

reader is referred to visit the comprehensive treatments given by Boyd [16] or Mukamel [6].

3.2.1 Multiplex CARS

When narrow-band ps-pulses are used in CARS, only a narrow frequency range of the Raman

spectrum is probed. In order to cover a broader range, either the frequency difference between

the two spectrally narrow fields, ωPump − ωS tokes, needs to be consecutively swept through, or

a broadband Stokes field exciting a manifold of Raman modes simultaneously is required. In

the latter approach of multiplex CARS detection, either a broadband fs-laser Stokes pulse or a

supercontinuum (SC) Stokes pulse is used. As is illustrated in fig. 3.4, within the spectral band-

width of the broadband Stokes field, the nonlinear third-order polarization for all vibrational

resonances is induced, which is expressed in the frequency domain as follows [19]:

∣∣∣ψν=0
〉∣∣∣ψν=1
〉∣∣∣ψν=2
〉∣∣∣ψν=3
〉

|ψe=1〉

ωPump

ωS tokes ωProbe ωCARS

Figure 3.4: Energy level diagram for the multiplex CARS process using a narrowband

pump/probe pulse and a broadband Stokes pulse. | ψν=i〉 (i = 0, . . . , 3) and | ψe=1〉 denote

the vibrational and electronic states, respectively.

P(3)(ωCARS ) =

$ ∞

−∞

χ(3)(−ωCARS : ωPump, ωProbe,−ωS tokes)

EPump(ωPump)E∗S tokes(ωS tokes)EProbe(ωProbe)

δ(ωPump − ωS tokes + ωProbe − ωCARS )dωS tokesdωPumpdωProbe.

(3.23)
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Because in a typical experiment the Stokes field is spectrally much broader than the pump field,

eq. 3.23 can be approximated by:

P(3)(ωCARS ) =

χ(3)(−ωCARS : ωPump, ωProbe,−ωS tokes)EPump(ωPump)E∗S tokes(ωS tokes)EProbe(ωProbe).
(3.24)

For degenerate CARS, with eq. 3.18 the measured power spectrum then corresponds to

ICARS (ωCARS ) ∝ |χ(3)(−ωCARS : ωPump, ωPump,−ωS tokes)|2|EPump(ωPump)|4|ES tokes(ωS tokes)|2.

(3.25)

In order to become independent of the Stokes intensity spectral profile |ES tokes(ωS tokes)|2, as

well as of the spectral sensitivity curves of the detection system components, in practice, the

measured CARS spectrum of the sample is normalized with a reference spectrum

S (ωCARS ) =
ICARS sample(ωCARS )

ICARS re f (ωCARS )
. (3.26)

The reference spectrum ICARS re f (ωCARS ) must be purely nonresonant and measured under the

exact same conditions as the measured sample spectrum ICARS sample(ωCARS ) of interest.

3.2.2 The CARS line shape

In this section, the CARS spectral line shape ICARS (ν) as a function of wavenumbers ν = 10−2ω
2πc in

cm−1 will be discussed in more detail. As Druet et. al. [20] and Voroshilov et. al. [21] pointed

out, the assumption of a purely real nonresonant background χ(3)
NR and a vibrational resonant

susceptibility χ(3)
Res(ν) = |χ(3)

Res(ν)|e
iφRes(ν) with the purely vibrational resonance phase spectrum

φRes(ν) as defined in eq. 3.19, is no more valid when either the frequency of the pump field

νPump or that of the CARS field νCARS = 2νPump − νS tokes approaches an electronic resonance.

To account for the latter, they have introduced an additional phase angle φR that represents a

constant phase shift between χ(3)
Res(ν) and χ(3)

NR. Furthermore, the presence of a nearby purely

electronic susceptibility is assumed, which is described by an additional complex background

term χ(3)
E eiφE , where φE and χ(3)

E are frequency independent constants. The full model for the

third-order complex susceptibility χ(3)
tot (ν) used in all subsequent simulations is then given by

χ(3)
tot (δ) = χ(3)

NR + χ(3)
E eiφE + χ(3)

Res(δ)e
iφR =

∣∣∣χ(3)
tot (δ)

∣∣∣ eiφtot(δ), (3.27)

where δ = ν0 − (νPump − νS tokes) is the detuning from the Raman resonance frequency ν0 or

relative Raman shift. Substitution into eq. 3.18 and eq. 3.19 yields an expression for the CARS

line shape

ICARS (δ) =
∣∣∣χ(3)

tot (δ)
∣∣∣2 =

∣∣∣∣∣χ(3)
NR + χ(3)

E eiφE +
A

δ − iΓ
eiφR

∣∣∣∣∣2 . (3.28)
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In the following simulations, we emphasize on the relationship between ICARS (δ) and the

total phase φtot(δ) = tan−1 Im[χ(3)
tot (δ)]

Re[χ(3)
tot (δ)]

of the total third order susceptibility χ(3)
tot (δ). First, we discuss

the simple case where the frequencies of all fields are assumed to be far off any electronic

resonance, so that φR = 0 and χ(3)
E = 0. In this case, eq. 3.28 reduces to:

ICARS (δ) =
∣∣∣χ(3)

tot (δ)
∣∣∣2 =

∣∣∣χ(3)
Res(δ) + χ(3)

NR

∣∣∣2 =
∣∣∣χ(3)

Res(δ)
∣∣∣2 + 2Re[χ(3)

Res(δ)]χ
(3)
NR + χ(3)

NR
2 , (3.29)

and the total phase spectrum is then given by:

φtot(δ) = tan−1

 |χ(3)
Res(δ)|sin(φRes(δ))

χ(3)
NR + |χ(3)

Res(δ)|cos(φRes(δ))

 . (3.30)

The total CARS intensity consists then of three terms, which add up to the dispersive, Fano-type

CARS line shape, as shown for a single Lorentzian Raman resonance in fig. 3.5.

Figure 3.5: Simulation of a CARS spectral profile of an isolated vibrational resonance in

the presence of a real and constant susceptibility contribution, using eq. 3.28 with φR = 0

and χ(3)
E = 0. The simulation parameters are Γ = 20 cm−1, A = 1 cm−1, and χ(3)

NR = 1.

In fig. 3.6 A, χ(3)
tot (δ) used for the simulation of the intensities in fig. 3.5 is shown in the

complex plane. The resonance follows a circle with a diameter of A
Γ
, and is peaking at zero

detuning (δ = 0). In fig. 3.6 B, the same χ(3)
tot (δ) is shown in a frequency-resolved manner

together with the projections on the real and imaginary planes. In fig. 3.6 C, the corresponding

CARS spectrum ICARS (δ) and the total phase spectrum φtot(δ) are shown.
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Figure 3.6: Simulation of a complex χ(3)
tot (δ) for an isolated vibrational resonance χ(3)

Res(δ)

in the presence of a real and constant susceptibility χ(3)
NR (A) in the complex plane and (B)

in a frequency-resolved manner together with the projections on the real and imaginary

planes. (C) The corresponding CARS spectrum ICARS (δ) =
∣∣∣χ(3)

tot (δ)
∣∣∣2 and the total phase

spectrum φtot(δ), calculated using eq. 3.29 and eq. 3.30, respectively. The simulation

parameters were the same as used in fig. 3.5.
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The total phase spectrum φtot(δ) in fig. 3.6 C is symmetric around its maximum value, which

corresponds to a detuning δ > 0, as indicated by the green point in fig. 3.6 A. In the limiting

cases being far off the vibrational resonance, |δ| >> Γ, the CARS spectrum takes the constant

value of lim |δ|�Γ |χ
(3)
tot (δ)|2 = (χ(3)

NR)2 , and the total phase is zero, lim |δ|�Γ φtot(δ) = 0.

1. Concentration dependence of χ(3)
tot (δ) at fixed χ(3)

NR

As can be seen from eq. 3.19, the concentration of molecular scatterers is proportional

to the amplitude A of the Lorentzian line that describes the vibrational resonance. Next,

we elucidate this concentration dependence of the complex χ(3)
tot (δ), the CARS line shape

ICARS (δ), and the phase spectrum φtot(δ) for the simple case described by eq. 3.29 and

eq. 3.30. Fig. 3.7 shows the corresponding simulations for increasing vibrational am-

plitudes A at a fixed value of χ(3)
NR. With increasing amplitude A, the maximum intensity

of the CARS spectrum increases quadratically, and the spectral position of the maximum

approaches the resonance frequency from δ < 0. The spectral position of the correspond-

ing minimum on the other hand diverges to +∞. The total phase spectrum φtot(δ) does

not show any dispersive character, and its spectral width and center frequency increase

with increasing amplitude A, approaching φtot(δ) = φRes(δ) for the limiting case where∣∣∣χ(3)
Res(δ)

∣∣∣ >> ∣∣∣χ(3)
NR

∣∣∣. With |δ| >> Γ being far off the vibrational resonance, all CARS

spectra take the value of
∣∣∣χ(3)

NR

∣∣∣2, while the total phase spectrum φtot(δ) becomes zero.

2. The influence of χ(3)
NR on χ(3)

tot (δ) at a fixed χ(3)
Res(δ)

For the simple case described by eq. 3.29 and eq. 3.30, we next study the influence of χ(3)
NR

on χ(3)
tot (δ) at a fixed χ(3)

Res(δ). Fig. 3.8 shows the corresponding simulations of χ(3)
tot (δ), the

CARS spectrum
∣∣∣χ(3)

tot (δ)
∣∣∣2, and the total phase φtot(δ) for increasing values of χ(3)

NR. Only for

χ(3)
NR = 0, the spectral position of the maximum of the CARS line matches the resonance

center frequency, and the total phase φtot(δ) changes from 0 for δ << 0 to π for δ >> 0.

Hence, in the limiting case where χ(3)
NR <<

∣∣∣χ(3)
Res

∣∣∣, the total phase represents the vibrational

phase, i.e. φtot(δ) = φRes(δ). With increasing χ(3)
NR, the spectral position of the maximum

of the CARS line shifts to more negative detuning values, and a minimum in the CARS

spectrum becomes more pronounced. Again, the spectral width and center frequency of

the total phase spectrum φtot(δ) decrease with increasing χ(3)
NR, and the phase does not show

any dispersive character. With |δ| >> Γ being far off the vibrational resonance, all CARS

intensities take the value of
∣∣∣χ(3)

NR

∣∣∣2, and the total phase spectrum φtot(δ) is zero.
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Figure 3.7: Simulation of the concentration dependence of the complex χ(3)
tot (δ) for

an isolated vibrational resonance χ(3)
Res(δ) of increasing vibrational amplitude A in

the presence of a fixed χ(3)
NR. (A) Plots of χ(3)

tot (δ) in the complex plane. All reso-

nances follow circles and peak for zero detuning. (B) CARS spectra
∣∣∣χ(3)

tot (δ)
∣∣∣2 are

shown together with the total phase spectra φtot(δ), calculated using eq. 3.29 and

eq. 3.30, respectively. The simulation parameters are Γ = 20 cm−1, χ(3)
NR = 1, and

the amplitude values are A = 1.0 cm−1, 2.0 cm−1, 5.0 cm−1, and 10.0 cm−1.

Looking at the frequency dependence of χ(3)
tot (δ), e.g. in fig. 3.6 A, it becomes clear that

for a given amplitude A and value of χ(3)
NR, the spectral points of maximum and minimum
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CARS intensity, δICARS (δ)=max and δICARS (δ)=min, respectively, lie on a line going through the

origin of the complex plane.

Figure 3.8: Simulation of the complex χ(3)
tot (δ) for an isolated complex vibrational

resonance χ(3)
Res(δ) in the presence of an increasing nonresonant background con-

tribution χ(3)
NR. (A) Plot of χ(3)

tot (δ) in the complex plane. The resonances follow

circles that peak at zero detuning (δ = 0), and are shifted along the real axis by

the amount of the simulated χ(3)
NR. (B) CARS lines shapes

∣∣∣χ(3)
tot (δ)

∣∣∣2 and total phase

spectra φtot(δ), calculated using eq. 3.29 and eq. 3.30, respectively. The simulation

parameters are Γ = 20 cm−1, A = 1.0 cm−1, and the values for χ(3)
NR are 0, 0.1, 0.5,

and 1.0.
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The spectral positions of the maximum of the total phase φtot(δ) spectrum, its first and

its second inflexion point δ ∂2φtot (δ)
∂δ2

=max
and δ ∂2φtot (δ)

∂δ2
=min

, respectively, lie within the spectral

window spanned by δICARS (δ)=max and δICARS (δ)=min. The following conditions are fulfilled:

δICARS (δ)=max < δ ∂2φtot (δ)
∂δ2

=max
< δφtot(δ)=max < δ ∂2φtot (δ)

∂δ2
=min

< δICARS (δ)=min. (3.31)

In general, whenever the circle described by χ(3)
Res(δ) extends into the second quadrant of

the complex plane, both the spectral position of the CARS minimum δICARS (δ)=min and the

second inflexion point of the total phase δ ∂2φtot (δ)
∂δ2

=min
diverge to +∞. This is an important

aspect in the phase retrieval of an unknown CARS spectrum where χ(3)
Res(δ) � χ(3)

NR.

3. The influence of a phase factor eiφR on χ(3)
tot (δ)

Next, the influence of an additional phase shift φR between χ(3)
Res(δ) and χ(3)

NR, as expressed

by the phase factor eiφR in eq. 3.27, will be discussed. This will be the case when any

frequency of the pump/probe, Stokes, and CARS fields is close to an electronic reso-

nance. For the sake of simplicity the electronic susceptibility term is still assumed to be

negligible, i.e. χ(3)
E = 0, and eq. 3.27 reduces to

χ(3)
tot (δ) = χ(3)

NR + χ(3)
Res(δ)e

iφR = χ(3)
NR + |χ(3)

Res(δ)|e
i(φRes(δ)+φR) = |χ(3)

tot (δ)|e
iφtot(δ). (3.32)

The total phase spectrum φtot(δ) is then obtained from eq. 3.32 as

φtot(δ) = tan−1

 |χ(3)
Res(δ)|sin(φRes(δ) + φR)

χ(3)
NR + |χ(3)

Res(δ)|cos(φRes(δ) + φR)

 . (3.33)

Using eq. 3.32, we find the CARS spectrum ICARS (δ) to be

ICARS (δ) =
∣∣∣χ(3)

tot (δ)
∣∣∣2 = (χ(3)

NR)2 + |χ(3)
Res(δ)|

2 + 2χ(3)
NR|χ

(3)
Res(δ)|cos(φRes(δ) + φR). (3.34)

Fig. 3.9 shows the simulations of the complex χ(3)
tot (δ), the CARS line shape

∣∣∣χ(3)
tot (δ)

∣∣∣2,

and the total phase spectrum φtot(δ) for different values of φR. As can be seen in fig. 3.9

A, the effect of the additional phase factor eiφR is a rotation of χ(3)
Res(δ) in the complex

plane around the point [χ(3)
NR, 0]. As shown in fig. 3.9 B, the CARS and phase spectra for

φR = 0 and φR = π are point reflections of each other. Here, the order of constructive and

destructive interference in the CARS spectrum is swapped. With the course of χ(3)
Res(δ) no

longer being restricted to the first and second quadrant of the complex plane (see fig. 3.9

A), the total phase spectrum φtot(δ) itself becomes dispersive for values φR , 0, π. Note

that the point of zero detuning (δ = 0) is rotating with increasing φR until for φR = π the

phase is the vertical reflection of the phase for φR = 0. With |δ| >> Γ being far off the

vibrational resonance, the CARS spectrum still takes the value
∣∣∣χ(3)

NR

∣∣∣2 independent of φR,

and the total phase still becomes zero.
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Figure 3.9: Simulation of a complex χ(3)
tot (δ) for an isolated complex vibrational

resonance χ(3)
Res(δ) in the presence of a real nonresonant background χ(3)

NR and an

increasing phase shift φR between a fixed χ(3)
NR and χ(3)

Res(δ). (A) Plot of χ(3)
tot (δ) in

the complex plane calculated using eq. 3.32. The resonance follows a circle that

is rotated by the phase angle φR around the point [χ(3)
NR, 0]. (B) CARS line shapes

|χ(3)
tot (δ)|2 and total phase spectra φtot(δ), calculated using eq. 3.34 and eq. 3.33,

respectively. The simulation parameters are A = 1, Γ = 20 cm−1, χ(3)
NR = 1, and

φR = 0, π2 , π.
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4. Simulation of the full model of χ(3)
tot (δ) according to eq. 3.27

Finally, the full model of χ(3)
tot (δ) given by eq. 3.27, which consists of a rotation of the

vibrational resonance χ(3)
Res(δ) by the phase angle φR [20],[21], an additional electronic

susceptibility contribution χ(3)
E eiφE , and a constant nonresonant background χ(3)

NR, will be

discussed. For this most general case, the total phase spectrum φtot(δ) is directly derived

from eq. 3.28 as

φtot(δ) = tan−1

 χ(3)
E sin(φE) + |χ(3)

Res(δ)|sin(φRes(δ) + φR)

χ(3)
NR + χ(3)

E cos(φE) + |χ(3)
Res(δ)|cos(φRes(δ) + φR)

 , (3.35)

and the CARS line shape is found as

ICARS (δ) =
∣∣∣χ(3)

tot (δ)
∣∣∣2 = (χ(3)

NR)2 + (χ(3)
E )2 + |χ(3)

Res(δ)|
2 + 2χ(3)

NRχ
(3)
E cos(φE)

+2χ(3)
NR|χ

(3)
Res(δ)|cos(φRes(δ) + φR) + 2χ(3)

E |χ
(3)
Res(δ)|cos(φE − φRes(δ) − φR). (3.36)

Fig. 3.10 shows the corresponding simulation of the complex χ(3)
tot (δ), the CARS line

shape |χ(3)
tot (δ)|2, and the total phase spectrum φtot(δ) for the parameters χE = 1.5, φE = π

3

and φR = −π8 . As can be seen in fig. 3.10 A, the effect of the additional electronic sus-

ceptibility term χ(3)
E eiφE is a translation of χ(3)

Res(δ) in the complex plane from the point

[χ(3)
NR, 0] to [χ(3)

NR + χ(3)
E cos(φE), χ(3)

E sin(φE)]. The phase factor eiφR then rotates the vibra-

tional resonance χ(3)
Res(δ) around the point [χ(3)

NR +χ(3)
E cos(φE), χ(3)

E sin(φE)]. As shown in fig.

3.10 B, both the CARS and total phase spectra show a varying degree of constructive and

destructive interference, which depends on the amplitudes and signs of χ(3)
E , φE and φR.

Compared to the simple case where χ(3)
E = 0 and φR = 0 (see eq. 3.29 and eq. 3.30), both

the CARS and the total phase spectra exhibit dispersive character and have constant offset

values. With |δ| � Γ being far off the vibrational resonance, we can define an effective

complex susceptibility χ(3)
E e f f that combines all frequency independent contributions to

the total susceptibility χ(3)
tot (δ) given by eq. 3.28, and that describes the new origin of the

purely vibrational resonance in the complex plane:

lim|δ|�Γ χ(3)
tot (δ) = χ(3)

E e f f = |χ(3)
E e f f |e

iφE e f f = χ(3)
NR + χ(3)

E eiφE , (3.37)

where

φE e f f = tan−1

 sin(φE)χ(3)
E

χ(3)
NR + cos(φE)χ(3)

E

 . (3.38)

In this limiting case, the CARS intensity is then given by |χ(3)
E e f f |

2:

limδ|�Γ|χ
(3)
tot (δ)|

2 = |χ(3)
E e f f |

2 = χ(3)
NR

2 + 2χ(3)
NRχ

(3)
E cos(φE) + χ(3)

E
2 . (3.39)
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Consequently, eq. 3.38 and eq. 3.39 yield the offset values of the simulated CARS and

total phase spectra shown in fig. 3.10 B to be φE e f f and |χ(3)
E e f f |

2, respectively.

Figure 3.10: Simulation of a complex χ(3)
tot (δ) for an isolated single vibrational res-

onance χ(3)
Res(δ) in the presence of a real nonresonant background χ(3)

NR, an additional

electronic susceptibility term χ(3)
E eiφE , and a phase shift φR between a fixed χ(3)

NR

and a fixed χ(3)
Res(δ). (A) The resonance calculated using eq. 3.27 follows a circle

in the complex plane that is rotated by the phase angle φR, and whose origin is

translated by χ(3)
E eiφE . (B) CARS spectrum ICARS (δ) and total phase spectrum φ(δ)

calculated using eq. 3.36 and 3.35, respectively. The simulation parameters are A

= 1, Γ = 20 cm−1, χ(3)
NR = 1, and χ(3)

E = 0, φR = 0 (solid line) or χ(3)
E = 1.5, φE = π

3

and φR = −π8 (dotted line).
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Note that both offset values are independent of the parameter φR. Using eq. 3.37 and eq.

3.38, we can rewrite the general expression for the total susceptibility as follows:

χ(3)
tot (δ) = χ(3)

E e f f + χ(3)
Res(δ)e

iφR =
[
|χ(3)

E e f f | + χ(3)
Res(δ)e

i(φR−φE e f f )
]

eiφE e f f , (3.40)

which results in an expression for the CARS spectra given by:

ICARS (δ) =
∣∣∣χ(3)

tot (δ)
∣∣∣2 =

∣∣∣∣|χ(3)
E e f f | + χ(3)

Res(δ)e
i(φR−φE e f f )

∣∣∣∣2 . (3.41)

As can be seen, the complex pure vibrational resonance χ(3)
Res(δ) then appears rotated by

an effective phase shift:

φe f f = φR − φE e f f , (3.42)

which together with the effective nonresonant constant
∣∣∣∣χ(3)

E e f f

∣∣∣∣ describes any deviation of

the CARS line shape from the pure Lorentzian resonance line
∣∣∣χ(3)

Res(δ)
∣∣∣. From eq. 3.42

follows that for the special case of φR = φE e f f , 0, the effective phase shift φe f f is zero,

and the corresponding total phase spectrum φtot(δ) would not appear dispersive. Only the

phase offset φE e f f would still be present. In other words, the pure vibrational resonance

χ(3)
Res(δ) would be in phase with the effective non-resonant susceptibility χ(3)

E e f f .

We have to keep in mind that in the actual experiment only the CARS spectrum is accessible.

In the most general case, all discussed parameters will change the shape and amplitudes of the

measured CARS spectrum. Without the knowledge of φe f f and of
∣∣∣∣χ(3)

E e f f

∣∣∣∣, the desired Raman

response spectrum Im[χ(3)
Res(δ)] cannot be reconstructed correctly. Therefore, knowledge of the

whole spectrum is indispensable in order to extract these parameters from a measured CARS

spectrum and to draw quantitative conclusions, e.g. regarding concentrations of molecular scat-

terers!

3.3 Phase retrieval and reconstruction of complex χ(3)(ν) in

multiplex CARS

3.3.1 Phase retrieval

”The life as we know it, would be very different without the FFT.“

Charles Van Loan

In order to draw quantitative conclusions from the measured CARS power spectrum S (ν), the

complex function χ(3)
Res(ν) containing the full vibrational information has to be retrieved. This

can be done by fitting the CARS spectrum with a model of complex Lorentzian bands using

eq. 3.29 [22]. However, this approach is not suitable for unknown and/or inhomogeneous line

26



shapes. In order to obtain χ(3)
Res(ν) in a model-independent way, the vibrational phase φRes(ν) has

to be retrieved. Among other methods valid only for single isolated resonances (e.g. [23], [24]),

two established methods for the phase retrieval will be presented and compared in this section.

The first approach is based on integral transforms, such as the Kramers-Kronig relations [25],

[26] and the Hilbert/Bose transform. The second approach is the maximum entropy method

(MEM), first applied to CARS spectra by Vartiainen [27].

3.3.1.1 The Kramers-Kronig (KK) method

When the KK method is used for retrieving the spectral phase φ(ν) of an unknown complex sus-

ceptibility χ(3)(ν) = |χ(3)(ν)|eiφ(ν) from a CARS power spectrum S (ν) = |χ(3)(ν)|2, one proceeds

by taking the logarithm of χ(3)(ν) [28], [29], [30]

ln
[
χ(3)(ν)

]
= ln

[ √
S (ν)

]
+ iφ(ν) . (3.43)

The real part of ln
[
χ(3)(ν)

]
is a function of the measured power spectrum S (ν), while the imagi-

nary part directly represents the desired phase spectrum φ(ν). Both the real and imaginary parts

are coupled by the KK relations as follows:

φ(ν) = −
P

π

∫ +∞

−∞

ln
[√

S (ν′)
]

ν − ν′
dν′ (3.44)

ln
[ √

S (ν)
]

=
P

π

∫ +∞

−∞

φ(ν′)
ν − ν′

dν′. (3.45)

Here, P denotes the Cauchy principal value, so that lim
ν→∞
φ(ν) = 0 and lim

ν→∞
ln

[√
S (ν)

]
= 0.

We identify the right hand sides as the Hilbert transforms H of ln
√

S (ν) and φ(ν), which form a

Hilbert pair. In practice, the calculation of φ(ν) = H (ln
√

S (ν)) is performed using the discrete

Hilbert transform (DHT) (see appendix A.1.2). In Cicerone and Vartiainen [31], phase retrieval

by time domain KK (TDKK), a KK variant where causality is ensured by usage of the Heavyside

function, and by the maximum entropy method (MEM) are stated to be functionally equivalent

for a large range of CARS cases. However, the KK method has various disadvantages: As first

shown by Kircheva et. al. [29] and Vartiainen et. al. [32], for the case of a meromorphic

response function that is described by a degenerate third-order nonlinear susceptibility, the KK

method fails. Because of the shortcomings of the FFT as a spectral predictor (see the discussion

in section 3.3.1.2), problems with the KK method can also be expected, if the spectral window

consists of sparse data samples, e.g. less than hundred values.

3.3.1.2 The maximum entropy method (MEM)

The maximum entropy method is a variational principle to estimate a power spectrum by a cer-

tain measure of entropy. MEM became very popular in time series analysis for geophysical,
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speech, sonar, radar data processing [33], only to count a few, in obtaining the power spec-

tral density (PSD) [34], [35], [36], [37], and especially for the phase retrieval in spectroscopy

[38]. There are many different approaches that predict the power spectrum S (ν) of a time se-

ries, ranging from simply applying the FFT via moving average models (or all-zero models)

to autoregressive (AR, or all-pole) models. The MEM method is equivalent to an AR spectral

estimator for the one-dimensional case [33]. It is important to mention that the simple approach

of calculating the autocorrelation function (ACF) using the FFT of a time series gm(t) = g(tm) as

PSD is limited. Problems arise in distinguishing between the spectral response of two signals

(frequency resolution [33], [37]), and also in windowing, which is the leakage of energy from

the main lobe into side lobes. The spectral predictors can be classified into non-parametric ap-

proaches, for which no a priori information is needed (for example periodograms and the Welch’

method), and in parametric approaches. The latter assume an underlying autoregressive (AR)

process, such as MEM as introduced by Burg [39]. Burg was interested in a power spectrum

S (ν), for which the measured data are given in terms of a time series gm(t). The corresponding

ACF values C(m) can then be calculated from gm(t).

Here, on the other hand, we want to use MEM for retrieving the phase from a measured

power spectrum S (ν). The conventional way to calculate S (ν) out of the first M ACF values via

C(m) = FS (ν) is to assume C(m) = 0 for |m| > M [40]. The number m is the order or the mth

lag. Burg assumes (and earlier Shannon [41]) that these ACF values C(m) are non-zero, but are

such that they add no information to the process. The entropy of a stationary time series gm(t),

where its statistical properties remain unchanged with time, is related to S (ν) as [37]:

h ∝
∫ ν1

ν0

logS (ν)dν. (3.46)

Adding no information corresponds to maximizing the entropy h, which is given by

∂

∂C(m)
∝

∫ ν1

ν0

logS (ν)dν = 0, |m| > M. (3.47)

The measured power spectrum can be fitted using the MEM model [37]:

S (ν) = | f (ν)|2 =
|β|2∣∣∣1 +

∑M
k=1 ake(−2πikν)

∣∣∣2 , (3.48)

with ak and β = |b0|
2 being the MEM coefficients, and f (ν) is a complex model function. In

order to obtain the ak and β coefficients, we will not use the Burg technique [39], but use systems

theory. The MEM is equivalent to least-squares fitting an all-pole model to the data [42]. As

mentioned, we assume that the sequence gm(t) belongs to an autoregressive (AR) and stationary

process. That means, the sequence gm(t) is predictable from linear combinations (LC’s) of past

output values gm−k (k = 1, . . . ,M), and of an error sequence em(t) due to white noise as only

input [43]:

gm(t) = −

M∑
k=1

akgm−k(t) + em(t). (3.49)
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The relationship between the AR-parameters ak and the ACF C(m) is given by the Yule-Walker

equation [33]: 
C(0) C∗(1) . . . C∗(M)

C(1) C(0) . . . C∗(M − 1)
...

...
. . .

...

C(M) C(M − 1) . . . C(0)




1

a1
...

aM


=


b0

0
...

0


, (3.50)

where the first matrix C(m, n) is the autocorrelation matrix. Only for a stationary process gm(t),

the matrix C(m, n) = 〈gm, gn〉 (m, n ∈ Z) satisfies C(m, n) = C(m + k, n + k) (m, n, k ∈ Z).

That means that the autocorrelation matrix does not depend on two independent variables, but

only on their difference. In this case, the system given in eq. 3.50 will be a Toeplitz system.

Otherwise, it would be a more complex Gram system [44]. Furthermore the matrix C(m, n) is

symmetric. If an inverse matrix exists, C(m, n) is symmetric positive definite (SPD) [45]. In the

frequency domain, input and output are connected via their z-transforms. For a finite record of

gm(t), the ACF can only be approximated [42], which is done using the all-pole model derived

by taking the z-transform of eq. 3.49 and z = ei2πν [38]. We obtain

f (ν) =
E(ν)

1 +
∑M

k=1 ake−i2πkν
, (3.51)

with the prediction coefficients ak and E(ν) being the Fourier transform of the error sequence

em(t), i.e.: E(ν) = F (em(t)), where the gain factor is 1. By solving eq. 3.50, we obtain the

coefficients ak and β. Using eq. 3.49, the time response of the system gm(t) is obtained as a

byproduct [46]. When we compare eq. 3.48 with eq. 3.51, and define the phase for the complex

denominator in eq. 3.51 as φMEM(ν) = arg
{
1 +

∑M
k=1 ake−i2πkν

}
[47], we have found the complex

function f (ν) as

f (ν) =
|β|e−iφMEM(ν)

|1 +
∑M

k=1 ake(−i2πkν)|
= Fg(t). (3.52)

In summary, with the autocorrelation coefficients C(m) given by FS (ν), we can calculate the

time response g(t) using the coefficients ak and β obtained from eq. 3.50, and obtain the MEM

phase as

φMEM(ν) = arg { f (ν)} = arg {Fg(t)} . (3.53)

How the autocorrelation coefficients C(m) are efficiently calculated will be discussed in

section 5.1. How the system of equations given in eq. 3.50 can be efficiently solved will be the

topic of section 5.2.

When compared with the KK method, MEM gives good phase retrieval results, even when

only small spectral regions and/or data sampling are available. MEM is more data adaptive

than the KK method in the sense that no extrapolations beyond the frequency boundaries of the
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measured power spectrum are necessary. MEM offers the possibility of freely choosing up to

which order the phase retrieval is performed, a feature that is not available in the KK method.

This feature of MEM can be used for the drastic reduction of noise and of the computational

cost. MEM is therefore the method of choice for the analysis of CARS spectra throughout this

thesis.

3.3.2 Estimation of the error-phase spectrum

As Vartiainen et. al. [48] have pointed out, the MEM based phase retrieval reduces the problem

of finding the phase φMEM(ν) belonging to the measured modulus spectrum S (ν) to the problem

of finding an error-phase φerror(ν), which is superimposed to the desired pure vibrational phase

spectrum φRes(ν). The same holds for the KK based phase retrieval [31]. Because the phase of

the nonresonant contribution χ(3)
NR is the reference, a prerequisite for the correct phase retrieval

is the presence of at least one anchor point within the CARS power spectrum, which is not

affected by any nearby vibrational resonance. In general, the error-phase φerror(ν) is slowly

varying with frequency. Possible origins include: First, the error-phase φerror(ν) is simply a

consequence of the discretisation of the measured power spectrum. Secondly, the appearance

of the error-phase φerror(ν) is due to an erroneous reference spectrum for eliminating the Stokes

profile (see eq. 3.26), as for example due to contributions of two photon fluorescence signals. In

summary, the error-phase φerror(ν) represents the accumulated experimental imperfections, and

thus needs to be distinguished from the effective phase φe f f discussed in section 3.2.2, which is

a sample-specific property. No matter if KK or MEM phase retrieval is used, the removal of the

error-phase φerror(ν) from the retrieved phase, e.g. φretrieved(ν) = φMEM(ν) yields the estimated

phase φestimated(ν) as:

φestimated(ν) = φretrieved(ν) − φerror(ν) . (3.54)

The desired reconstruction of the complex χ(3)(ν) is then

χ(3)(ν) =
√

S (ν)eiφestimated(ν) . (3.55)

3.3.2.1 Polynomial error-phase estimation

In order to approximate an error-phase spectrum φerror(ν), the knowledge and supervized selec-

tion of a nonresonant subset of point(s) S NR(ν) from within the CARS spectrum S (ν), or rather

a nonresonant subset of point(s) φMEM NR(ν) from within the retrieved MEM-phase spectrum

φMEM(ν) is needed. The estimation of φerror(ν) can be carried out using polynomial or spline

fitting. An efficient way is to solve the following polynomial interpolation equation as proposed
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by Press [49]:

φerror(ν) = B0 + B1ν
1 + . . . + Bpν

p , (3.56)

with the coefficients B satisfying the Vandermonde system VVanB = φerror(ν) (see appendix

A.2). The polynomial approximation can iteratively be improved as suggested by Beier [50].

The disadvantage of the described polynomial method is that for a broad spectrum φMEM(ν)

and a large set of nonresonant points φMEM NR(ν), a high order p is needed for a good approx-

imation of φerror(ν). This easily gives rise to fit instabilities. Spline’s on the other hand are

piecewise defined polynomial functions between several points of φMEM NR(ν). From the nu-

merous Spline functions available [51], the Akima type composed of a set of polynomials of

order p ≤ 3 was chosen because it allows to calculate the slope of the error-phase spectrum

at a given point φMEM NR(ν) using only ±2 neighboring points. This Akima polynomial has to

fulfill the following conditions at both values: The function value φerror(ν) and its slope must be

equal to the corresponding values of the MEM-phase φMEM NR(ν). This gives four conditions

for two evaluated points, and in this way the polynomial is fully determined [52]. In contrast

to the polynomial interpolation equation (eq. 3.56), by using the Akima spline values separated

by more than two values have no influence on φerror(ν) at all! This results in a good robust-

ness against outliers when compared with other interpolation methods [52], [53]. In practice,

when dealing with noisy φMEM(ν) spectra, it is helpful to calculate the mean of the nonresonant

regions φMEM NR(ν) prior evaluating the Akima Spline.

An alternative method for approximating the error-phase spectrum φerror(ν) is based on the

wavelet transform (see appendix A.3). This unsupervized error-phase estimation method is

highly desirable in cases of an unknown and heterogeneous spectra.
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4 Methods

This chapter summarizes all used methods, that are common to all the experimental results

shown. Here, the general specifications of the hardware and the data analysis strategy will be

described. The reader finds the sample-specific measurement conditions and sample preparation

procedures details in the materials section at the beginning of each result chapter.

4.1 The spontaneous Raman microscope

Spontaneous Raman (SR) spectra were recorded using a commercial system (WITec GmbH,

Germany: WITec alpha 300 RA). This confocal Raman microscope is equipped with a cw laser

source, delivering 37 mW at λEx = 532 nm measured before the objective (Nikon: 100x/0.95

N.A.) focussing the excitation beam into the sample. The backscattered Raman signal is col-

lected using the same objective and separated from the excitation wavelength using a dichroic

beamsplitter. The Raman scattered light is then coupled into a multi-mode fibre (fibres with 25

µm and 50 µm have been used, as will be indicated in section 5.4.1, 6.2.2 and 7.2.3) and passed

to a lens based spectrometer with > 60 % throughput (WITec GmbH, Germany: UHTS300,

focal length 300 mm, aperture ratio f/4, microscope optimized gratings with 1800 lines/mm or

600 lines/mm blazed for 532 nm excitation). The spectrometer is equipped with a peltier-cooled

CCD camera (Andor: Newton DU 970N-UVB-353 EMCCD, 200 x 1600 pixels, 606 spectra

/ second in full vertical binning, 1515 spectra / second in crop mode, 16 bit digitization, max.

read out rate 2.5 MHz). The sample was scanned using a three-axis piezo-scan table (Physik

Instrumente: P-527K 056), which has an operating displacement of 200 µm in x and y direc-

tion, and 20 µm in z direction. Some spectra (see section 7.2.3) have been recorded with a

precursor of the WITec 300 system, the WITec CRM-200 system (WITec GmbH, Germany),

which however has the same key specifications apart from the objective (Nikon ELWD, 40x/

0.6 N.A.).
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4.2 The multiplex CARS microscope

The homebuildt CARS setup has been developed over the past years in the lab and consists

over several options for laser excitation and imaging systems. The CARS setup used is given

in fig. 4.1. The setup uses two laser pulse trains with a repetition rate of 76 MHz delivered

Figure 4.1: The multiplex CARS microscope. For the resulting specifications in depen-

dence of the movable mirrors E and D see tab. 4.1. See text for details.

by two mode-locked Ti:sapphire (Coherent: MIRA 900-D and MIRA 900-P) laser oscillators,

that are pumped by two Nd:YVO4 lasers (Coherent: Verdi V6 and V10, respectively). With

one Ti:sapphire laser oscillator running in the ps mode (pulse duration 4.3 ps) serving as the

narrow band pump source, and the other Ti:sapphire laser oscillator running in the fs mode

(pulse duration 188 f s) and serving as the broad pulse source, a multiplex CARS spectral range

of ≈ 400 cm−1 can be covered. When the fs pulses are fed into a photonic crystal fibre (PCF,

NKT: NL-PM 750, Femtowhite) using the mirror (E), a supercontinuum (SC) is generated and

the frequency range of the multiplex CARS spectrum can be extended to ≈ 4000 cm−1. To

avoid backreflections from the fiber into the oscillator, a Faraday isolator (FI) is used. The

combination of a half-wave plate and a Polarizer (HWP + P) serves for controlling the power.

Only the wavelength components > 800 nm of the generated SC are used for Stokes pulse

excitation by applying a longpass (LP) filter. Using telescopes (T1 and T2), the pump and

Stokes beams are collimated and their diameters are set to match the diameter of the back

aperture of the focussing objective (Obj 3). Polarizers (P) assure that both beams are linear
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polarized and parallel oriented. After combining both collimated beams using a dichroic beam

combiner (BC), the copropagating pulse trains are fed into an inverted microscope (Olympus:

IX 71) and focussed into a sample using an 60x/1.2 N.A. w. (Olympus UPlanSApo) objective

(Obj 3). The temporal overlap between the pump and the Stokes pulses is achieved by an active

electronic synchronisation unit (Coherent: Synchrolock-AP), which consists of monitoring a

part of the Ti:sapphire outputs with photodiodes, and feeding these photodiode signals into a

dual-phase locked loop (PLL), with one loop operating at the fundamental pulse repetition rate,

and the second loop on the 175th harmonic at 14 GHz. It is this second loop, that enables

a stable synchronisation with 55 f s timing jitter. The pulse repetition rate of one oscillator

(slave) is controlled via the adjustment of the cavity length in a three-stage process (using a

DC motor as first stage, a LF galvanometer driven delay line as second stage, and a HF-piezo

actuator as the third stage), while the second oscillator (master) is running free [54]. A control

knob allows to adjust for temporal overlap of the pump and Stokes pulses. Having achieved

spatial and temporal overlap of pump and Stokes pulse trains in the sample, a CARS signal

can be generated. The generated CARS light is collected in the forward-direction using an

60x/0.9 N.A. w. (Olympus LUMPlanFI/IR) objective (Obj 4), and spectrally separated from

the pump and Stokes wavelength using a shortpass filter (F). Depending on the position of

the detection mirror (D), the CARS signal is passed either as a free beam to an astigmatism

corrected Czerny-Turner spectrometer (S1, Acton Research: SpectraPro-150, focal length 150

mm, aperture ratio f/4, scanning range 0-2800 nm using a 600 lines/mm grating) equipped with

a liquid nitrogen (LN2) cooled CCD camera (CCD1, Princeton Instruments: Spec-10:100B,

100 x 1340 pixels, minimum readout 2.58 ms per spectrum, 16 bit digitization, max. read

out rate 1 MHz). Alternatively, the collected light was coupled into a custom made single-

mode fibre (SMF, OZ optics: SMJ-3S5-633-4/125-3-2) and into the spectrometer / CCD-system

described in section 4.1. The sample can be scanned using either a three-axis piezo-scan table

(Physik Instrumente: PZT P-517.3CL), which has an operating displacement of 100 µm in x

and y direction, and 20 µm in z direction, or using the scanning table described in section 4.1.

All experiment control and data acquisition software was written in house by Dr. Alexander

Kovalev, a former member of the group. The resulting spectral specifications are depending on

the excitation source and detection system used and are summarized in tab. 4.1. Note that the

lower limit for the spectral resolution is determined by the spectral width of the pump pulses and

therefore is in all combinations approximately 4 cm−1. Depending on the spectrometer used, the

intrinsic spectral resolution of the spectrometer is 3.7 cm−1 or 1.2 cm−1, thus not reducing the

actual resolution given by the pump pulse.

34



Table 4.1: Specifications of the multiplex CARS microscope for the different excitation

sources and detection systems used.

Excitation source CARS maximum minimum
/ detection system spectral range spectral integration used in
used covered resolution time tint section

ps-SC/CCD1 4000 cm−1 4 cm−1 2.58 ms section 7.2.4 and 8.2.3

ps-fs/CCD1 400 cm−1 4 cm−1 2.58 ms section 6.2.3

ps-fs/CCD2 400 cm−1 4 cm−1 670 µs section 6.2.3

4.3 Data analysis of spontaneous Raman spectra

This section describes, how to extract molecular information of interest out of the experimental

Raman raw data. Unless otherwise indicated, data analysis steps were coded in MATLAB r12

(MathWorks). An overview of the analysis steps 1.-8. for spontaneous Raman spectra is given

in the flowchart fig. 4.2.

1. Dark count correction and frequency calibration

The CCD cameras used are cooled in order to reduce the thermal noise that leads to

a frequency independent signal even when the CCD array is not illuminated at all. This

offset does not contain any information concerning the vibrational contrast and thus has to

be subtracted. The wavenumber axis is calibrated using the Rayleigh peak as a reference

for zero Raman shift.

2. Cosmic ray removal

High-energy particles, that can be of cosmic origin, give raise for spikes in the recorded

spectra at random spectral positions and times. The cosmic ray removal (CRR) is per-

formed using a filter, that exploits the abrupt change in the recorded signal intensity

caused by such events. Values detected as cosmic rays are replaced by the median of

the neighboring values. The CRR is performed using the WITec software.

3. Background subtraction

If the Raman spectrum of a solvent or a substrate (e.g. a glass coverslip) is superim-

posed to the sample spectra, then these components represent a background spectrum.

A weighted subtraction of this independently measured background components is per-

formed.

35



recorded raw spectra
1. Dark count correction

and frequency calibration

2. Cosmic ray removal

3. Background subtraction

4. Baseline estima-

tion and subtraction
Im[χ(3)

Res(ν, x, y, z, t)]

Mark 1

single or

hyperspec-

trum?

5. Denoising

univariate analysis (e.g. fit)

6. uni- or

multivariate

analysis?

multivariate anal-

ysis (e.g. PCA)

7. Quantification of

information content

e.g. concentra-

tion dependencies,

histograms, . . .

8. Visual-

ization of

information

content

e.g. 3D imaging,

isosurfaces, . . .

e.g. chemical and

physical structure maps,

image correlations, . . .

Single spectrum

Hyperspectrum

Figure 4.2: Flow chart of the spontaneous Raman data processing pipeline separated into

data preconditioning (before mark 1) and data analysis (after mark 1).
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4. Baseline estimation and subtraction

If for example additional fluorescence from the sample is superimposed on the Raman

spectrum, it can be estimated as a baseline. This can be done with a polynomial approach

or a wavelet prism approach [55], see the methods described in appendix A.3. It is how-

ever necessary to assure that the data are equidistant, before e.g. a polynomial is fitted

to the data. This is achieved using the akima spline interpolation described in section

3.3.2.1.

5. Denoising

Prior to extracting quantitative information from the background-corrected Raman spec-

trum, it is appropriate to increase the data’s SNR by reducing the noise level without

reducing the signal level. In cases, where the signals are above the noise level, the sin-

gular value decomposition (SVD) procedure described in appendix A.4.1 can be used.

However, if relatively small signal amplitudes within the noise level or even below are

present, SVD is inappropriate. Small signal amplitudes present in a certain Raman spec-

trum of a hyperspectrum can be removed by SVD and/or appear after performing SVD

at a wrong spatial position. In these cases an alternative method based on the bilateral

filter was developed and applied, see appendix A.4.2. Which denoising scheme is used in

the particular applications is mentioned in the detailed method chapters of the particular

result chapter.

6. Univariate or multivariate analysis

Depending whether a single spectrum or a hyperspectral data set is analyzed, the infor-

mation content is extracted by univariate or multivariate data analysis methods described

in section 4.5. Univariate data analysis methods analyze one-dimensional data-sets like

single spectra or line-scans, while multivariate data analysis methods like the principal

component analysis (PCA) analyze a complete hyperspectrum at once. It is however im-

portant to note, that results obtained by multivariate data analysis methods are only valid

for the particular data set of interest and they cannot be translated to other data sets by

implication.

7. Quantification of the information content

Prior to visualization, the information content first must be quantified. In the case of

a single Raman spectrum, this can be the peak amplitude of a resonance representing

the concentration of a substance, or the ratio of peak amplitudes representing e.g. the

volume fraction of a substance in the crystalline state. In the case of a hyperspectrum,

the information content can be the volume of e.g. lipid droplets or the size distribution of

certain domains.
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8. Visualization of information content

Depending on the dimensionality of the information content, the results are plotted as a

line-scan, histogram, image, or three dimensional distribution.

4.4 Data analysis of CARS spectra

Unless otherwise indicated, data analysis steps concerning the recorded CARS spectra were

coded in MATLAB r12 (MathWorks). An overview of the analysis steps 1.-11. for CARS

spectra is given in the flowchart in fig. 4.3. The subsequent steps can involve a denoising

of χ(3)
Res(ν, x, y, z, t) (as described in section 4.3), and again univariate or multivariate analysis,

quantification of the information content and visualisation, depending on the dimensionality of

the data. These analysis steps are equivalent to the ones in the spontaneous Raman case and are

shown in the flowchart fig. 4.2 after Mark 1.

1. Dark count correction

Like in the SR case, the dark counts due to thermal noise do not contain any information

and must be removed in order to not falsify the subsequent analysis of the CARS spectra.

The sensitivity of the latter on the offset level is discussed in appendix A.5. The average

dark count value can be obtained from the recorded raw spectra in spectral regions, where

either

a. the shortpass filter has blocked any CARS signal,

b. or outside the CARS spectral bandwidth.

Then this value can be subtracted from every raw spectrum. Within one spectrum, the

dark count value derived by a. and b. can be different. It turned out, that subtracting the

smaller of these two values leads to the better result.

2. Cosmic ray removal

Cosmic ray removal (CRR) is performed using the WITec software as in the SR case.

3. Frequency calibration

Due to refractive index inhomogeneity in the sample in combination with the ≈ 1.2 m

long free beam-path between the sample and the spectrometer, the center position, where

the CCD array is hit, can change. In this way the deflection of the beam translates into a

shift of the whole spectrum along the wavelength scale. If not corrected, this frequency

shift could later be interpreted by mistake as frequency shifts of the reconstructed Raman

bands. Furthermore, the elimination of the Stokes pulse profile according to eq. 3.26 is

only possible, when the sample and reference spectra are identically frequency calibrated.
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If not, eq. 3.26 is introducing parasite oscillations that would again be interpreted as

vibrational information in the following steps of the analysis and therefore falsify the

spectral interpretation. The known wavelength edge of the shortpass filter (F in fig. 4.1)

is used as a spectral marker. When expressed in units of spectral pixels, the frequency shift

typically is in the range of max. ± 2 pixel, corresponding to max. ± 7.4 cm−1, when the

600 lines/mm grating is used. In order to detect and correct the shift more exact, first the

resolution of the spectra is increased by using the Akima spline interpolation described

in section 3.3.2. It was found, that the most robust and reliable way to detect this position

is not finding the maximum of the derivative of the spectrum, but to detect the spectral

position of the edge, where the spectrum has reached 50 % of the maximum transmission

value of the spectrum in the region of the edge. Each raw spectrum is backshifted by the

value obtained. In this way an image of the spectral shift correction value ∆ν(x, y, z, t) is

generated, that represents a map of the local pixel deflection.

4. Correction for etaloning artefacts of the CCD detector

Etaloning is an issue when back-illuminated CCD arrays are used. The thickness of the

back-thinned CCD chip is in the range of the detected CARS signals wavelength. Thus,

the chip acts like an etalon. The light is reflected between the front and back-surfaces and

interferes with each other, resulting in a spectral modulation of the measured spectrum

known as etaloning. The amplitude of this spectral modulation depends on the actual

CARS intensity and is therefore changing within a heterogeneous sample. This is why

this spectral modulation cannot be eliminated by using eq. 3.26 where a single modu-

lated reference CARS spectrum is used. Any remaining modulation due to etaloning in

the CARS spectra would be interpreted as vibrational information in the following steps

of the analysis, and therefore falsify the spectral interpretation. In order to obtain an

etaloning modulation spectrum under identical experimental conditions used for record-

ing the CARS spectra, a CARS spectrum of a nonresonant sample is measured. This is

filtered using a robust Loess filter in order to extract the oscillatory part only, resulting in

the etaloning modulation spectrum oscillating around 1. Etaloning is then removed for

each raw spectrum by dividing it with the etaloning modulation spectrum.

5. Correction for intra-Stokes background contributions

When using an ultra-broadband Stokes excitation as in the combinations E1/D1 or E1/D2,

and when the spectral width of the Stokes pulse spectrum is bigger than the frequency

difference (νPump − νS tokes), not only one, but two CARS fields are generated at each

sample position, and the coherent sum of these two is recorded. The first CARS field is

generated by the interaction of pump and Stokes pulses in the sample according to eq.

3.24. Its intensity spectrum is given by ICARS (ν). The second CARS field is generated by
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the combination of intra-Stokes components, and thus is independent of the pump pulse.

This intra-Stokes CARS field adds up with the CARS field of the sample in a coherent

manner on the CCD chip. The intra-Stokes CARS intensity INTO(ν) can be independently

recorded, when the temporal overlap of the pump pulse is not fulfilled. The homodyne

mixing of the two CARS fields yields the following total recorded spectral intensity:

Itotal(ν) = ICARS (ν) + INTO(ν) + 2
√

ICARS (ν)INTO(ν)cos(φCARS − φNTO) . (4.1)

Assuming that the relative phase difference between both fields is negligible (φCARS ≈

φNTO), the CARS spectrum of the sample that is free of intra-Stokes contributions is:

ICARS (ν) =
( √

Itotal(ν) −
√

INTO(ν)
)2

. (4.2)

This correction has to be carried out for both the sample and reference spectra, Itotal sample(ν)

and Itotal re f (ν) , respectively, with the intra-Stokes background generated under equal con-

ditions. Because both intra-Stokes spectra, INTO sample(ν) and INTO re f (ν), depend on the

Stokes profile, they have the same spectral shape and only differ by a factor c, when

χ(3)
NR re f , χ(3)

NR sample: INTO sample(ν) = cINTO re f (ν). The factor c can be determined from

a nonresonant region of Itotal sample(ν) of the sample. Having determined the factor c, the

correction of the measured total CARS spectrum of the sample then reads:

ICARS sample(ν) =
( √

Itotal sample(ν) −
√

cINTO re f (ν)
)2

. (4.3)

In an analogous manner, Itotal re f (ν) is corrected and yields ICARS re f (ν).

6. Calculation of the normalized CARS spectrum S (ν, x, y, z, t)

Having performed the previous steps for both the sample spectrum Isample (ν, x, y, z, t) and

the reference spectrum Ire f (ν), the normalized CARS spectrum S (ν, x, y, z, t) is calculated

according to eq. 3.26 (see also the discussion in appendix A.6). Prior to the subsequent

data analysis steps, each normalized CARS spectrum S (ν, x, y, z, t) needs to be converted

into an equidistant wavenumber axis. A negative and thus physically meaningless CARS

spectrum S (ν, x, y, z, t) can be caused by noise at the destructive side of strong resonances.

In these cases, smoothing of the CARS spectrum S (ν, x, y, z, t) only in this spectral region

is performed.
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Figure 4.3: Flow chart showing the CARS spectra analysis pipeline, consisting of pre-

conditioning, two options for the reconstruction of χ(3)
Res (ν, x, y, z, t), and a background

subtraction. The subsequent analysis steps are the same as in the spontaneous Raman

case, see the flow chart in fig. 4.2 after mark 1.
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7. Determination of
χ(3)

NR sample(x,y,z,t)

χ(3)
NR re f

The importance and the influence of the ratio
χ(3)

NR sample(x,y,z,t)

χ(3)
NR re f

is discussed in appendix A.6.

This ratio can be derived in a supervised way from nonresonant regions of the normalized

CARS spectrum as follows:

S NR(x, y, z, t) =

χ(3)
NR sample(x, y, z, t)

χ(3)
NR re f


2

∀ ν , where : χ(3)(ν, x, y, z, t) = χ(3)
NR(x, y, z, t) .

(4.4)

In section 5.3.3, an alternative and unsupervized method is described. Performed for each

sample spectrum in a hyperspectral data set, a map of χ(3)
NR(x,y,z,t)sample

χ(3)
NR re f

is obtained. Note, when

CARS spectra reconstructed with different reference spectra are compared, the factor
χ(3)

NR(x,y,z,t)sample

χ(3)
NR re f

must be scaled according to the ratio of the different χ(3)
NR of the different

references used, see appendix A.6 for a detailed discussion.

8. MEM phase retrieval (DCT or CPCG based)

Subsequent phase retrieval of all normalized CARS spectra S (ν, x, y, z, t) is performed us-

ing the DCT or CPCG MEM algorithms, as newly developed in this thesis and discussed

in detail in chapter 5. As a result, we obtain the phase spectra φMEM (ν, x, y, z, t) as given

in eq. 3.53.

9. Error-phase φerror(ν, x, y, z, t) estimation and subtraction

Either a polynomial (see section 3.3.2.1) or a wavelet prism based (see appendix A.3)

error-phase estimation is performed, and the obtained error-phase φerror (ν, x, y, z, t) is

subtracted from the MEM phase φMEM (ν, x, y, z, t), resulting in an estimation of the vi-

brational phase according to eq. 3.54.

10. Reconstruction of complex χ(3)
Res (ν, x, y, z, t)

a. Reconstruction of complex χ(3)
Res (ν, x, y, z, t) based on an estimated phase

φest (ν, x, y, z, t)

The reconstruction of the complex χ(3)
Res (ν, x, y, z, t) is performed according to eq.

3.55, resulting in the full characterization of the real and imaginary part of the vibra-

tional Raman response. However, only in cases where φe f f (x, y, z, t) = 0 is fulfilled,

this step will result in reconstructed Raman spectra Im[χ(3)
Res(ν, x, y, z, t)] that match

spectra obtained by spontaneous Raman spectroscopy.
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b. Reconstruction of complex χ(3)
Res (ν, x, y, z, t) based on the minimisation

of
∫ ∣∣∣Im[χ(3)

Res (ν, x, y, z, t)]
∣∣∣ dν

The reconstruction of the complex χ(3)
Res (ν, x, y, z, t) is based on the minimisation

of
∫ ∣∣∣Im[χ(3)

Res (ν, x, y, z, t)]
∣∣∣ dν using a frequency independent phase shift φe f f (x, y, z, t)

and the ratio
χ(3)

NR sample(x,y,z,t)

χ(3)
NR re f

as optimisation parameters. These two parameters are

obtained in an unsupervised manner. This new procedure has been developed in

this thesis, and will be discussed in section 5.3.3. In this way, the reconstruction

is performed without any a priori assumptions. If the SNR however is poor, a su-

pervised determination of the ratio
χ(3)

NR sample(x,y,z,t)

χ(3)
NR re f

is more accurate. In the case of

φe f f (x, y, z, t) = 0, both schemes 10.a and 10.b result in the same reconstructed com-

plex χ(3)
Res (ν, x, y, z, t).

11. Raman component background subtraction

In the case of a known solvent Raman spectrum Im[χ(3)
Res solvent(ν)] (e.g. water), we can

subtract its weighted component from the reconstructed Im[χ(3)
Res(ν, x, y, z, t)] spectrum.

4.5 Quantification of the information content

This section lays out the analysis methods used in order to quantify the information content of

a vibrational spectrum. Before going into details, first the term hyperspectrum χ(3) (ν, x, y, z, t)

is defined as a multidimensional array, or tensor of rank two or higher. Concerning both, the

spontaneous Raman and CARS data sets, the analysis of the spectrally and spatially resolved

data can be divided into multivariate and univariate methods. In terms of analyzing hyperspec-

tra, univariate methods only analyze one-dimensional subsets of the hyperspectrum at a time.

Multivariate methods, on the other hand, use a certain model to the whole tensor. Here, only

univariate methods will be treated and in particular curve fitting.

4.5.1 Used fit model

What method is used in particular depends on the application. When spectral details like ampli-

tude ratios or band positions need to be analyzed, decomposition of the spectrum using a certain

fit model is the method of choice.

4.5.1.1 Curve fitting

The Raman line profile is typically described by a Lorentzian:

Im[χ(3)
Res] = L(ν) =

AΓL

(ν0 − δ)2 + Γ2
L

, (4.5)
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where the subscript L refers to the Lorentzian. In the real world, the presence of Gaussian

broadening implies that eq. 4.5 is convoluted with a Gaussian lineshape [56]:

G(ν) = e−
[

(ν0−δ)
ΓG

]2

, (4.6)

where ΓG is the FWHM of the Gaussian line shape. The convolution results in the Voigt profile

V(ν):

V(ν) = (G ∗ L)(δ) = A
∫ +∞

−∞

G(δ′)L(δ − δ′)dδ′ = A
∫ +∞

−∞

e−
[

(ν0−δ
′)

ΓG

]2
ΓL

(ν0 − (δ − δ′))2 + Γ2
L

dδ′ .

(4.7)

Unfortunately, eq. 4.7 cannot be deposited in a closed analytical way to be evaluated by a

certain fitting routine. Note, that in eq. 4.7 there are two different line width’s, ΓL and ΓG.

However, only one representative linewidth per resonance is assumed in the analysis performed

throughout this thesis that is ΓL = ΓG = Γ. Then eq. 4.7 becomes a pseudo Voigt (PSV) profile,

defined as a weighted sum of eq. 4.5 and eq. 4.6:

V(ν)Pseudo = (1 − µ)G(ν) + µL(ν) , (4.8)

with µ being the relative weight of the Lorentzian contributions. As Meier [56] is pointing

out, the model eq. 4.8 allows to obtain good results when fitting a single band in a spectrum

Im[χ(3)
Res(ν, x, y, z, t)] with four parameters. Therefore, the decomposition model used to fit n

profiles reads:

Im[χ(3)
Res(ν, x, y, z, t)] =

n∑
i=1

V(ν)Pseudo i

=

n∑
i=1

Ai

[
µi

Γi

(ν0 i − δ)2 + Γ2
i

+ (1 − µi)e
−

[
(ν0 i−δ)

Γi

]2]
.

(4.9)

The actual fit algorithm used was a trusted-region reflective method provided by the MATLAB

function lsqcurvefit. The accuracy of the fit depends on the SNR of the input data, which rep-

resents the general disadvantage of using univariate fitting routines. The computational cost is

high and a linearisation of eq. 4.9 in order to use fast linear algebra methods is not straight

forward. However, curve fitting is performed in order to analyze each spectrum individu-

ally, yielding for every spectrum and for every ith resonance the peak amplitude Ai, the area∫ ν2

ν2
V(ν)Pseudo idν, the width Γi, the weight µi, and the center frequency ν0 i. The obtained fit

parameters allow the generation of peak amplitude and ratio maps, and can be analyzed further

using statistical methods, as will be discussed next.

4.5.2 Statistical methods

In practice, the hyperspectral data sets χ(3) (ν, x, y, z, t) can contain thousands of Raman spectra

accompanied with a high dimensionality of the data. In this section, the statistical tools used in
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order to obtain degrees of correlation, histogram distributions, and 2D image autocorrelations

based on the extracted fit parameters will be outlined.

4.5.2.1 Determination of the degree of correlation

In some cases, one is interested in the determination of correlations between different fit param-

eters or quantities extracted from the hyperspectral data set. Here, the covariance matrix Cov
containing information regarding the variances and correlations between the components of the

hyperspectral parameter data set is calculated. The covariance matrix contains the variances

V j, j on the main diagonal. The measure for determining the degree of correlation Ci, j is the

zeroth lag of the normalized covariance function and is related to the covariance matrix Cov as

follows:

Ci, j =
Covi, j√
Covi,iV j, j

. (4.10)

4.5.2.2 Parameter distribution histogram analysis

For hyperspectra, often a global analysis concerning the distribution of a certain spectroscopic

parameter or of a derived quantity is needed. MATLAB routines were written that in an auto-

mated way generate histograms of the quantities of interest, determine the statistical parameters

of the distributions by fitting the latter to a linear combinations of Gaussian distributions, and

determine the degrees of correlation. If the distributions modality is two or higher, it makes

sense to select one species in the correlation plot and map the spatial distribution of this subset

of the data only.

4.5.2.3 Image autocorrelation analysis

In order to determine the size and number statistics of a quantity of interest (for example, the

image contrast within a 2D image) in an automated way, image correlation analysis (ICA) was

performed. For an image quantity i(x, y) in the spatial domain, the normalized 2D autocorrela-

tion function (ACF) can be defined as follows [57]:

g(η, ξ) =
〈i(x, y)i(x + η, y + ξ) − i(x, y)〉

〈i(x, y)〉2
− 1 =

G(η, ξ)
〈i(x, y)〉2

− 1 . (4.11)

Here the brackets 〈〉 denote spatial averaging, η and ξ are the spatial lag coordinates in x and

y, respectively, and G(η, ξ) is the autocorrelation function G(η, ξ) = 〈i(x, y)i(x + η, y + ξ)〉. The

actual calculation of G(η, ξ) is performed using the FFT [58]:

G(η, ξ) = F −1 [
(F i(x, y))(F ∗i(x, y))

]
. (4.12)

Every object in i(x, y) having a size exceeding one pixel will lead to g(η, ξ) > 0 at the corre-

sponding spatial frequency lag. Uncorrelated noise in i(x, y) will accumulate to a spike at zero
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lag (η, ξ) = (0, 0) with magnitude gNoise(0, 0). The ACF is fitted with a linear combination of

2D-Gaussians and one offset:

g(η, ξ) = g(0, 0)e
−

( η

w
′
η

)2

+

 ξ

w
′

ξ

2
+ gNoise(0, 0)e

−

 η2+ξ2

w2
Noise′


+ g0 . (4.13)

The first 2D Gaussian term contains the desired size and number statistics of the correlated

objects. The number density of those objects NOb j in units of ob jects
µm2 is related to the magnitude

of g(0, 0) by NOb j = 1
g(0,0)A , where A is the total image area of the input image. The e−2 radii of

the object size along the η and ξ dimensions are given by w
′

η and w
′

ξ, respectively. We define the

2D-size of an object as the full width half maxima by wη = w
′

η

√
2ln(4) and wξ = w

′

ξ

√
2ln(4).

The second Gaussian term represents the noise peak at zero lag (η, ξ) = (0, 0). The last term g0

is an offset and is needed because of the apodisation problem arising when the Fourier transform

is applied to a data set i(x, y) with restricted size. This results in an ACF that has not completely

vanished, even at the maximum lags. ICA will be applied to obtain the distribution of domain

sizes derived from i(x, y)-maps of the degree of crystallinity in polymers (see ch. 6).
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5 Novel concepts in MEM-based phase
retrieval

“If I had 60 minutes to cut down a tree, I would spend 40 minutes sharpening the

ax and 20 minutes cutting it down.”

Abraham Lincoln

In this chapter, three unsatisfactory aspects in the current realisations of MEM based spectral

phase retrieval will be addressed. First, a new way of calculating the autocorrelation coefficients

C(m) in MEM is presented. The second aspect concerns the optimization of the algorithm

used for solving the eigenvalue problem (EP) in MEM by implementing a new Toeplitz solver.

The third aspect addresses new general concepts of reconstructing the desired complex purely

vibrational susceptibility χ(3)
Res(ν). These three theoretical innovations and novel concepts will

then be evaluated using experimental CARS data of toluene.

5.1 New approaches of calculating the autocorrelation coeffi-

cients in MEM

Coventionally, the reconstruction of Im[χ(3)
Res(ν)] using MEM as described in section 3.3 calcu-

lates the autocorrelation coefficients C(m) using the FFT. The complex-valued FFT-MEM, as

originally developed for phase retrieval by Vartiainen [27], possesses the windowing problem at

the spectral ends, which is caused by the finite frequency window covered by the measurement,

and arises when a spectrum has not equal values at its end-points. As a consequence, large

deviations are observed at the spectral end-points, when the reconstructed Im[χ(3)
Res(ν)] spectrum

is compared with its spontaneous Raman spectrum. To circumvent this problem, the squeezing

procedure in MEM phase retrieval was previously introduced by Vartiainen et. al. [48]. A

squeezing parameter K is introduced and the maximum entropy model given in eq. 3.51 for the

CARS spectrum S (ν, x, y, z, t,K) is then modified as follows:

S (ν, x, y, z, t,K) =

∣∣∣∣∣∣ β(x, y, z, t,K)
1 +

∑M
k=1 ak(x, y, z, t,K)e−2πikν

∣∣∣∣∣∣ =

∣∣∣∣∣ β(x, y, z, t,K)
AM(ν, x, y, z, t,K)

∣∣∣∣∣ . (5.1)
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Here, the normalized frequency ν defined by the lower and upper limit of the CARS spectrum,

νmin and νmax, respectively, is introduced:

ν =
1

(2K + 1)

(
νCARS − νmin

νmax − νmin
+ K

)
; νmin ≤ νCARS ≤ νmax; K = 0, 1, . . . . (5.2)

Now S (ν, x, y, z, t,K) is defined via the squeezing parameter as

S (ν, x, y, z, t,K) =


S (νmin, x, y, z, t) ; 0 ≤ ν < K

2K+1 ; νCARS < νmin

S (ν, x, y, z, t) ; K
2K+1 ≤ ν ≤

K+1
2K+1 ; νmin ≤ νCARS ≤ νmax

S (νmax, x, y, z, t) ; K+1
2K+1 < ν ≤ 1 ; νCARS > νmax .

(5.3)

The CARS spectrum in eq. 5.1 is now decomposed into M Fourier components AM:

AM(ν, x, y, z, t; K) = 1 +

M∑
k=1

ak(x, y, z, t,K)e−2πikν . (5.4)

The ME coefficients ak and β are then determined by solving eq. 3.50, where the autocorrelation

coefficients C(m) are calculated at a discrete set of normalized frequencies νn = n/N (n =

0, 1, . . . ,N) with N = (2K + 1)(N0 − 1) + 1, where N0 denotes the number of data samples in

S (ν, x, y, z, t,K), via the discrete Fourier transform (DFT):

C(m,K) = N−1
N−1∑
n=0

S (νn, x, y, z, t,K)e2πimνn; K = 0, 1, . . . . (5.5)

In order to separate into the real and the imaginary parts, eq. 5.5 can be rewritten as:

C(m; K) = N−1

N−1∑
n=0

S (νn, x, y, z, t,K)cos(
2πmn

N
) ± i

N−1∑
n=0

S (νn, x, y, z, t,K)sin(
2πmn

N
)

 . (5.6)

This result of the DFT represents the magnitudes and phase angles belonging to the normalized

frequency νn. The DFT transform kernel is linear, separable, and symmetric. It has fixed basis

functions, and fast implementations are available. However, being a complex transformation,

the DFT assumes that both amplitude and phase are encoded in the spectrum S (νn, x, y, z, t,K).

Moreover, the implicit periodicity of the DFT gives rise to boundary discontinuities at the spec-

trum end-points, which leads to a significant high-frequency content. In addition to the fact

that many DFT coefficients are needed in order to not loose information encoded in the CARS

spectrum, the artefact caused by the boundary discontinuities will remain, even if all DFT coeffi-

cients are calculated up to the Nyquist frequency of νNyq = N/2. The drawback of this squeezing

procedure is the increased number of sample points and number M of unknown parameters.

To overcome these problems, I have introduced the discrete cosine transform (DCT, D) for

phase retrieval. Eq. 5.7 gives the definition of the DCT as given in [59]:

C(m) = D (S (νn, x, y, z, t))

= w
N∑

n=1

S (νn, x, y, z, t)cos
(
π(2n − 1)(k − 1)

2N

)
; k = 1, 2, . . . ,N;

(5.7)
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where w =


√

1
N k = 1√
2
N 2 ≤ k ≤ N .

Though using real cosine basis functions only, eq. 5.7 is not the real part of the DFT described

in eq. 5.6. What makes the DCT superior to the DFT? The DCT transform of a CARS spectrum

S (νn, x, y, z, t) consisting of N0 samples is generating a symmetric spectrum S (νn, x, y, z, t)′ of

2N0 samples by appending a reversed copy to itself (see fig. 5.11 in section 5.4.2). Subsequently

a 2N0 DFT is performed on S (νn, x, y, z, t)′.

The main properties of the DCT are: The DCT results in N0 nonzero cosine terms and N0

zero sine terms. The DCT is making the transform of S (νn, x, y, z, t) periodic, and thus is remov-

ing the windowing phenomenon. Another useful property of the DCT is that any correlation in

the spectrum S (νn, x, y, z, t) will lead to energy compaction superior to that of the DFT, a use-

ful feature in data and high-frequency content reduction, (see the semi-logarithmic plot of the

|C(m,K)| coefficients spectrum, calculated using the DFT and the DCT transform in fig. 5.12

in section 5.4.2). Eqs. 5.6 and 5.7 look very much alike. However, because the squeezing

procedure is no longer needed, using eq. 5.7 results in a reduction of the computation time.

For N0 samples in a CARS spectrum and calculating the maximum number M = N0 au-

tocorrelation coefficients, the phase retrieval applying the conventional DFT based approach

needs two DFT calculations to calculate the vectors AM(ν,K = 0) (eq. 5.4) and CM(m,K = 0)

(eq. 5.6). Then, the Toeplitz-matrix of size N2
0 (eq. 3.50) must be solved. Using the MATLAB

Cooley-Tukey based FFT function [60], the computational cost for each DFT step is of the order

O(N0logN0), and for solving the Toeplitz-matrix using the MATLAB Levinson command is of

O (N2
0 ). The overall computational cost is therefore of order O (N2

0 + 2N0logN0), where solv-

ing the Toeplitz-matrix accounts for approximately 80%. Using the same DFT MEM-approach

with the additional squeezing procedure with K = 1, the length of the vectors AM(ν,K = 1) (eq.

5.4) and CM(m,K = 1) (eq. 5.6) are 3N0, and the Toeplitz-matrix is now of size 9N2
0 and real.

The corresponding computational cost is therefore of the order O (9N2
0 + 6N0log3N0), which is

roughly one order of magnitude higher than without squeezing (K = 0). In contrast, the DCT

MEM approach requires only one DFT calculation for the vector AM(ν), one DFT-based DCT

calculation for the vector CM(m) of O (N0logN0) [61], and solving the Toeplitz-matrix. The

corresponding computational cost is therefore the same as for the DFT based approach without

squeezing (K = 0), and is of the order O (N2
0 + 2N0logN0).
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5.2 Implementation of a new Toeplitz solver

In order to drastically reduce the computational cost of solving the eigenvalue problem (EP)

containing a Toeplitz matrix (see eq. 3.50), it is worth to take care of how the Toeplitz matrix

is actually inverted. This sub-chapter discusses four different generations of Toeplitz solvers,

listed in tab. 5.1.

Table 5.1: Comparion of computational costs of four generations of Toeplitz solvers.

Gen. Name computational cost reference

1 Cholesky-algorithm O N3
0 [62]

2 Levinson Durbin recursion algorithm O N2
0 [63]

3 Various so called fast direct solvers O N0(logN0)2 [64], [65]

. . . O N0(logN0)3

4 Super-fast conjugated gradient based solver O N0log(N0) [66]

Gauß-elimination and Cholesky-algorithm
The Gauß-elimination and the Cholesky-decomposition belong to the class of direct solvers,

which give the exact solution of the EP in a finite number of steps. The basic idea of the Gauß-

elimination is to transform the EP Ca=b into LUa=b with a lower left triangular matrix L
and an upper right triangular matrix U. We are interested in the computational cost for solving

this EP involving a matrix C of size N2
0 and a vector of size N0. The costs for performing the

multiplications a = U−1b and b = L−1b sum up to the total cost of O ( N3
0

3 + N2
0 −

N0
3 ) [67]. For

a large, symmetric, positive definite (SPD) matrix, the Cholesky-decomposition C = LLT [62]

is reducing the cost of the LU-decomposition to O ( N3
0

6 +
N2

0
2 + N0

3 ). However, the cost is still of

order O N3
0 . CCD cameras easily have 1000 spectral pixels, which translates to N0 = 1000 for

the length of the input vector. A large hyperspectrum can then contain 106 or more spectra, so

that we have to invert 106 matrices of size N2
0 . Therefore, the Cholesky-decomposition with a

cost of order O N3
0 is not suitable: If one multiplication is performed in 10−9 sec, the matrix

inversions for such a hyperspectrum would take 106N3
010−9 sec ≈ 11.4 days!

Levinson Durbin recursion algorithm
Solving eq. 3.50 with a computational cost of O N2

0 is possible, when the Levinson Durbin

recursion algorithm is used [63], [68]. The basic idea is to start solving the simple N0 × N0

problem with N0 = 1. Subsequently, the corresponding problem for N0 + 1 is solved. Thus,

using lower order solutions, the next order solution is obtained inductively. A rather compact
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description of the algorithm can be found in ref. [69], which will briefly be given in the appendix

A.7. The algorithm needs O M multiplications and additions to go from step M to M + 1. M

is the maximum lag number as introduced in section 3.3.1.2. This results in a computational

cost of O N2
0 calculations. When the algorithm by Trench [70] is used, the exact cost is O 4N2

0 .

Further improvements by Zohar [71] reduced the cost to O 3N2
0 . When compared with the

Cholesky-decomposition, this already is a drastic reduction of the computational cost. Using

the example given above, this gives 106N2
010−9 sec ≈ 16.7 minutes, which is still not really

satisfactory.

5.2.1 Fast and superfast solvers

Fast direct solvers
In the 1980s various so called fast direct solvers have been developed [64], [65]. To directly

cite Strang [72]: ”The mathematics is beautiful. It (the methods) uses subtle algebraic prop-

erties of transforms to produce an exact solution. The algorithms are somewhat outside the

usual range of numerical linear algebra ...”. Some of these algorithms can be applied for our

case of symmetric, positive definite Toeplitz matrices [73]. With a computational cost rang-

ing from O N0(logN0)2 to O N0(logN0)3, using the example given above, we obtain between

106103(log(103))210−9 sec = 48 sec and 106103(log(103))210−9 sec = 329 sec, which only rep-

resents a marginal reduction in computation time. Therefore, these solvers will not be discussed

in detail here. The interested reader is referred to ref. [74]. Fortunately, there exists a more sta-

ble and even faster way of inverting a Toeplitz matrix, which will be discussed next.

Circulant preconditioned conjugated gradient method

”What is eternal is circular and what is circular is eternal.”

Aristotle [384 - 322 BC]

Before introducing this 4th generation Toeplitz solver, let us have a closer look at the Toeplitz

matrix C. It has constant diagonal elements, and every entry Ci− j only depends on the difference

i − j. With this invariance, the matrix C is a convolution matrix. The continuous counterpart of

eq. 3.50 is then a convolution: ∫ 1

0
c(t − s)a(s)ds = b(t), (5.8)

where the integration is performed within the finite, normalized interval [0 1]. Exactly these

integration boundaries give rise to the windowing at the spectral ends. After performing the

Fourier transform, eq. 5.8 becomes Ca = b. However, because C is finite, the Fourier transform

cannot give an explicit solution. As Strang [72] pointed out: The transform method is still the
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key, but only in the periodic case it will work without difficulty. The periodic case for a discrete

problem corresponds to a special case of Toeplitz matrices, i.e. the circulant matrix. In contrast

to the general properties of symmetric, positive definite (SPD) Toeplitz matrices, in a circulant

matrix CCirculant each entry only depends on the difference between its row and column index

modulo N0: CCirculant i j = CCirculant kl, where j − i ≡ l − k (mod N0), and N0 × N0 is the size of

the matrix. The direct comparison of a symmetric and real Toeplitz matrix with a real circulant

matrix makes this point more clear:

CToeplitz =



C(0) C(1) . . . . . . C(M)

C(1) C(0) C(1) . . . C(M − 1)
...

...
...

. . .
...

...
...

...
. . . C(1)

C(M) C(M − 1) . . . C(1) C(0)


(5.9)

CCirculant =



C(0) C(M) . . . . . . C(1)

C(1) C(0) C(M) . . . C(2)
...

...
...

. . .
...

...
...

...
. . . C(M)

C(M) C(M − 1) . . . C(1) C(0)


. (5.10)

We see that CCirculant is not symmetric, but the value C(1) appears again in the upper right

corner. In general, a symmetric Toeplitz matrix is fully determined by the first column, which

makes N0 entries (with N0 being equal M), while a symmetric circulant matrix has only N0
2 + 1

degrees of freedom. As described above, the usual way to solve eq. 3.50 containing a Toeplitz

matrix 5.9 is a direct method, such as using the Levinson Durbin recursion with computational

cost of O N2
0 . For circulants, on the other hand, the discrete FFT of a and b is used. For

every circulant, the matrix-vector division and multiplication is performed in only N0log(N0)

operations by diagonalizing the circulant matrix CCirculant using the Fourier matrix F [75]:

CCirculant = FN0ΛF−1
N0
, [FN0] j,k =

1
√

N0
e−

2πi( j−1)(k−1)
N0 ; 1 ≤ j, k ≤ N0 , (5.11)

where Λ is a diagonal matrix holding the eigenvalues λk

λk =

N0−1∑
j=0

CCirculant j e
2πi jk
N0 ; k = 0, . . . , (N0 − 1) (5.12)

of CCirculant [76]. Now, the matrix-vector products CCirculanta and C−1
Circulanta are computed via

FFT as

CCirculanta = F −1(F (a) ∗F (c)) (5.13)

C−1
Circulanta = F −1 F (a)

F (c)
(5.14)
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in N0log(N0) operations for every vector a. Here, the vector c is the first column of CCirculant.

The eigenvalues of CCirculant are given by

λk = F (c) . (5.15)

However, we still have to solve the Toeplitz system. How do the nice properties of the

circulant CCirculant help to solve eq. 3.50? At this point, the technique of preconditioning comes

into play. The idea behind preconditioning is that instead of solving eq. 3.50, we solve

M−1CToeplitza = M−1b , (5.16)

where M is a preconditioner matrix. Solving eq. 5.16 requires less calculation steps than

solving eq. 3.50, provided that the eigenvalues of M−1CToeplitz are more clustered around unity

than those of CToeplitz. Normally, the eigenvalues of Toeplitz matrices are not clustered [77]!

Likewise, the product CToeplitza is calculated as follows: Any Toeplitz Matrix of the form given

by eq. 5.9 can be embedded into a circulant matrix C̃Circulant of size 2N0 x 2N0 using the matrix

W, where Wi j = wi− j,wi = CToeplitz i−N0 for i > 0, wi = CToeplitz i+N0 for i < 0, and an arbitrary

element w0 [78]:

W =


0 C(M) . . . C(2) C(1)

C(M) 0 C(M) . . . C(2)
...

...
...

. . . C(M)

C(1) C(2) . . . C(M) 0


. (5.17)

This increase of the size of the embedded matrix CToeplitz is compensated by the fact that the

product C̃Circulant ã can efficiently be computed asCToeplitz W
W CToeplitz


 a

0

 =

 CToeplitza
Wa

 . (5.18)

Only 2N0 log(2N0) = 2N0 logN0 + 2N0 log2 operations are required, while a general matrix-

vector multiplication takes (2N0)2 operations [79]. Instead of using the preconditioner matrix

M−1 in eq. 5.16, we solve the preconditioned system

C̃Circulant ã =

 CToeplitza
Wa

 = b̃ . (5.19)

The first row of C̃Circulant reads

c̃ = [C(0),C(1), . . . ,C(M), 0,C(M), . . . ,C(1)] , (5.20)

which is the first row of CToeplitz followed by its reversed copy without its first value C(0).

With c̃ defining the circulant C̃Circulant = circ(c̃) periodic boundary conditions are ensured. The

circulant matrix C̃Circulant is now a symmetric matrix, and a Toeplitz matrix buildt using the
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vector c̃ equals the circulant matrix C̃Circulant. Note that this is exactly what is done in the DCT

prior performing a DFT.

Next, the idea behind the iterative conjugate gradient (CG) method [80] will be briefly

discussed. The CG method was first described by Hestenes et. al. [66]. If the matrix C̃Circulant

is SPD, eq. 5.19 is solved by minimizing the quadratic form f(ã) with a minimum of iteration

steps [81]. The quadratic form f(ã) is a scalar function of a vector and reads:

f(ã) =
1
2

ãT C̃Circulantã − bT ã + const. (5.21)

Let us first consider the simple method of steepest descent, where for each iteration step i

the negative gradient −∇f(ãi) = b̃ − C̃Circulantãi and the point αmin i along the direction di that

minimises f(ãi) are calculated. With the residual ri = −∇f(ãi) being a measure of how far off we

are from the minimum, we can express αmin i =
rT

i−1ri−1

rT
i−1C̃Circulantri−1

[81]. The steepest descent method

can then be written as:

ã0, r0 = b = 0 Initial guess

for i=1:k Loop body, do until some stop condition is fulfilled

αmin i =
rT

i−1ri−1

rT
i−1C̃Circulantri−1

minimize f(ã)

ri = b̃ − C̃Circulantãi calculate ith residual

ãi = ãi−1 + αmin iri−1 refine solution vector ã

(5.22)

The quadratic form f(ã) is only symmetric, when all the eigenvalues of C̃Circulant are the same.

Only in this case, the gradient will directly point towards the minimum. In the general case,

f(ã) will be elliptic. Because the two search directions of subsequent iterations di and di−1 are

orthogonal to each other, the algorithm will result in a zigzag path to the minimum and often the

same directions will be followed. Therefore, the convergence will be rather poor. Unlike in the

steepest descent method, in the circulant preconditioned conjugate gradient (CPCG) method,

the two search vectors di and di−1 are defined to be A-orthogonal, i.e. they have conjugate

directions, and fulfill:

dT
i C̃Circulantdi−1 = 0 . (5.23)

The combination of a conjugate gradient (CG) and circulant preconditioning (CP) was first

proposed by Reid [82]. As a result, the initial residual error can be expressed as a sum of

A-orthogonal components, with the conjugate directions method eliminating one of these com-

ponents with every iteration step. It can be proven that this procedure will converge for a matrix

of size N0 ×N0 after N0 steps. A simple way to compute this set of A-orthogonal search vectors

di is to calculate the Gram-Schmidt coefficients ζi using the Gram-Schmidt orthogonalisation
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(Gram [83] and Schmidt [84]). However, this approach has the disadvantages of high compu-

tational cost of O(N3
0 ) and needs to keep all previous search vectors di in the memory. CPCG

is avoiding these disadvantages by making not only the new search directions di, but also the

residuals A-orthogonal. By repeatedly applying a matrix to a vector a Krylov subspace is cre-

ated, which reduces the complexity per iteration from ON2
0 to OM (with M being the number

of nonzero entries of C̃Circulant), and most of the Gram-Schmidt coefficients ζi disappear. The

CGCP algorithm can be written as [80]:

c̃′ = F (c̃) precompute the Fourier transform of c̃

ã0 = 0 Initial guess

ζ0 = r0 = d0 = b Initialisation

for i=1:k Loop body, do until some stop condition is fulfilled

zi = F −1(F (ri)/c̃′); calculate matrix-vector product C̃−1
Circulantri

ζi =
zT

i ri

zT
i−1ri−1

calculate Gram-Schmidt coefficients (Fletcher-Reeves formula)

di = zi + ζidi−1 update the direction-vector

Ai = F −1(c̃′F (di)) calculate matrix-vector product C̃Circulantdi

αmin i =
rT

i ri

dT
i Ai

minimize f(ã)

ãi = ãi−1 + αmin idi refine solution vector ã

ri = ri−1 − αmin iAi refine residuals

(5.24)

The vectors zi and Ai hold the temporary matrix-vector products, and b = |β|2 denotes a vector

of form b = [1 0 . . . 0]. As a result four FFT’s are necessary for each iteration step.

In the CPCG algorithm given in eq. 5.24, the Fourier-transform of the circulant vector c̃,

(see eq. 5.13 and 5.14) is performed as c̃′ = F (c̃) before the loop with c̃ being the result of

embedding D(S (ν)). It is not necessary to make the vector periodic twice. One can start directly

with embedding the CARS spectrum S (ν) into the circulant vector c̃′. In this way, the number

of transforms needed for the phase retrieval is reduced. When we introduce an operator ℵCPCG

that accepts a CARS spectrum S (ν) and solves the EP given in eq. 5.19 using the algorithm

given in eq. 5.24, the expression of the MEM phase retrieval (eq. 3.53) can be written directly

as

φMEM(ν) = arg
[
F (ℵCPCG(S (ν)))

]
. (5.25)

The convergence speed of this iterative method to solve eq. 3.50 is mainly given by the compu-

tational cost necessary to calculate the matrix-vector products. Consulting again our example

given above, four DFT calculations of length 2N0 are needed per iteration step. The correspond-
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ing computing time per step is therefore 8N0log2N0 10−9 sec = (8N0logN0 + 8N0log2) 10−9 sec

≈ 60 sec. Typically, less then 5 iteration steps suffice.

The main properties of the CPCG method are summarized as follows:

1. Computational cost per iteration step is only O (2N0log(2N0)).

2. Fast convergence, each iteration step gives a better approximation as the previous step.

Typically less then 5 iterations are necessary.

3. CPCG is very storage efficient: Each step requires the calculation of two inner products

of vectors of length 2N0, and one multiplication of the coefficient matrix with a vector of

length 2N0. Thus, the CPCG method is a matrix-free method.

4. The original matrix is unaltered during the iteration.

In summary, the simulated number of computing operations as a function of the number of

the spectral data points N0 is compared for the different MEM phase retrieval approaches in fig.

5.1. As can be seen, the number of operations for the CPCG method with five iteration steps

Figure 5.1: Semilogarithmic plot of the simulated number of computing operations as a

function of the number of the spectral data points N0 for the four MEM phase retrieval

approaches DFT with (K = 0) and (K = 1), DCT, and CPCG. Using five iteration steps,

the crossover of the DCT MEM curve with the CPCG MEM curve was found to be at

N0 ≈ 235.
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is much less than either the DFT based approach without squeezing (K = 0) or the DCT based

approach, especially, when N0 becomes large. A crossover is achieved for N0 ≈ 235 where

5(8N0logN0 + 8N0log2) = N2
0 + 2N0logN0.

Finally, we will address three points concerning the further speed up of the CPCG algorithm

given in eq. 5.24. First, it is useful to insert the element w0 in the embedding matrix W (see eq.

5.17) as often as necessary in order to obtain a matrix C̃Circulant of size 2k×2k, (k ∈ N). Secondly,

the Fletcher-Reeves formula ζi =
zT

i ri

zT
i−1ri−1

for the calculation of the Gram-Schmidt coefficients is

only one of many formulas known in literature [85]. I have tested as well the Polak-Ribiere

formula ζi =
zT

i (ri−ri−1)
zT

i−1ri−1
[86] and the original Hestenes-Stiefel formula ζi =

zT
i (ri−ri−1)

dT
i−1(ri−ri−1)

[66]. The

rate of convergence was found to be the highest, when the Fletcher-Reeves formula was used.

However, a good result for a smaller number of iterations (four) is obtained, when the Polak-

Ribiere formula is modified to ζi =
zT

i (ri−0.15ri−1)
zT

i−1ri−1
. Thirdly, introducing a damping factor in the

update of the direction-vector di = zi+0.52ζidi−1 was found to result in a further reduction of the

number of iterations needed to three. This represents the limits of the CPCG solver approach

regarding the computational speed. In order to even further reduce the computational cost from

O N0logN0 to O N0, the hierarchical H-Matrices introduced by Hackbusch in 1999 [87] may

offer a powerful alternative.

5.3 New concepts of reconstructing χ(3)
Res(ν)

A nearby electronic resonance affects the CARS spectrum S (ν) and thus influences the re-

trieved phase spectrum. As was discussed in section 3.2.2, the complex vibrational suscepti-

bility χ(3)
Res(ν) is then rotated by an additional phase angle φR and translated by an additional

complex and frequency-independent electronic susceptibility χ(3)
E eiφE in the complex plane. A

total χ(3)
tot (ν) (eq. 3.39) is obtained, whose real and imaginary parts still form a Hilbert pair. In

order to disentangle the electronic and vibrational contributions to the total susceptibility, and

thus to obtain the pure vibrational phase needed to reconstruct the spontaneous Raman response

of the sample, knowledge of the effective phase angle φe f f (eqs. 3.42 and 3.38) and of the ef-

fective nonresonant electronic susceptibility χ(3)
E e f f (eq. 3.39) are required. Since |χ(3)

E e f f |
2 is

defined as the CARS intensity far off any vibrational resonance (see eq. 3.37), S NR, we can

determine its value from the actual measurement by |χ(3)
E e f f | =

√
S NR. No matter if the MEM or

the KK based phase retrieval is used, the effective phase φe f f needs to be determined by using

an additional concept.
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5.3.1 Determination of the effective phase φe f f of χ(3)
tot(ν) using Hilbert

pairs

A similar problem of how to determine an effective phase factor φe f f has commonly been en-

countered in nuclear magnetic resonance (NMR) spectroscopy, where in 1969 Ernst [88] pro-

posed the use of the functional

φe f f = tan−1

∫ νmax

νmin
q1(ν)dν∫ νmax

νmin
q2(ν)dν

. (5.26)

Here, the idea is to integrate over two functions q1(ν) and q2(ν) that form a Hilbert pair, or are

quadrature components of each other. This idea was later applied by Bostick [28] to CARS

spectroscopy. In order to act only on the pure complex vibrational susceptibility of interest

χ(3)
Res(ν), we first have to subtract the effective nonresonant contribution |χ(3)

E e f f |
2 to the measured

CARS spectrum S (ν), extracted from its nonresonant region of S NR(ν). To obtain a suitable

Hilbert pair, we then define [30]

q1(ν) = S (ν) − |χ(3)
E e f f |

2 (5.27)

and

q2(ν) = H S (ν) , (5.28)

Here H S (ν) represents the Hilbert transform of S (ν) (see appendix A.1.2).

Alternatively, the real and imaginary parts of the reconstructed susceptibility χ(3)
tot (ν) =

√
S (ν)eiφestimated(ν), as obtained by using the conventional reconstruction procedure (see section

3.3.2) with |χ(3)
E e f f | =

√
S NR(ν) subtracted also form a suitable Hilbert pair:

q1(ν) = Re[χ(3)
tot (ν) − χ

(3)
E e f f ] (5.29)

and

q1(ν) = Im[χ(3)
tot (ν)] . (5.30)

With χ(3)
E e f f and φe f f being known, the wanted vibrational resonant susceptibility χ(3)

Res(ν) is then

obtained by back rotation in the complex plane via:

χ(3)
Res(ν) = [χ(3)

tot (ν) − χ
(3)
E e f f ]e

−iφe f f . (5.31)

The determination of φe f f using the functional eq. 5.26 is not satisfactory for real data

involving noise and background. For example, even for the simulated case of φe f f = π
6 , χ(3)

E e f f =

1 and A = 1 cm−1 using eq. 5.26 and the Hilbert pair defined in eqs. 5.27 and 5.28, φe f f can

only be extracted with a relative error of 20 percent. This translates into a relative amplitude

error of the reconstructed Raman response of approximately one percent. The relative error for
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the extracted phase factor φe f f slightly reduces to 17 percent, when the Hilbert pair defined by

eqs. 5.29 and 5.30 is used. Furthermore, the estimation of φe f f using eq. 5.26 is very sensitive

to errors in the baseline of the measured CARS spectrum S (ν), due to the integration over a

wide spectral region, as was already pointed out by Ernst [88]. Because of these deficiencies,

more robust ways for the determination of φe f f are required.

5.3.2 Determination of the effective phase φe f f of χ(3)
tot(ν) using the ratio of

maximum to minimum excursions in the retrieved estimated phase
or the reconstructed Im[χ(3)

tot(ν)] spectrum

Ernst [88] also suggested the determination of the effective phase φe f f by using the ratio of

maximum to minimum excursion, thus avoiding the use of Hilbert transforms. Here, we have

further developed this concept for CARS. As derived in appendix A.8 (see eq. A.50), a simple

expression approximates the dependence of φe f f on the normalized ratio rphase of maximum to

minimum phase excursions of the retrieved estimated phase spectrum φestimated(ν):

φe f f (rphase) = δRcos−1
(

2
rphase

− 1
)
, (5.32)

with

rphase =
max(φestimated(ν)) − min(φestimated(ν))

max(φestimated(ν))
. (5.33)

Here, φestimated(ν) is defined according to eq. 3.54, and δR is a sign correction parameter defined

in eq. A.49 in appendix A.8. The accuracy of the extraction of φe f f using eq. 5.32 and eq.

5.33 is illustrated in fig. 5.2, where the extracted φe f f values are plotted as a function of the

introduced simulated φe f f vales for various ratios of |χ
(3)
Res(ν)|

χ(3)
E e f f

ranging from 0.1 to 1. The biggest

relative errors for the extracted φe f f values occur, when χ(3)
E e f f ≥ sin(φe f f )Im[χ(3)

Res(ν)] is no more

fulfilled (eq. A.46). However, error propagation through the reconstruction of the complex

susceptibility (eq. 3.55) and its backrotation by φe f f (eq. 5.31) results in relative errors of the

Im[χ(3)
Res(ν)] amplitudes not exceeding one percent for χ(3)

Res(ν)

χ(3)
NR

> 1.5. For the above example given

in section 5.3.1, the relative error of φe f f is only 7 percent, which propagates into a relative error

of Im[χ(3)
Res(ν)] amplitudes of approximately 0.7 percent.

Does this approach work for all phase angles φe f f and ratios
χ(3)

E e f f

|χ(3)
Res(ν)|

? What is the minimum

signal-to-noise (SNR) of a measured CARS spectrum needed for a reliable extraction of the

φe f f values? To answer these questions, we next determine the relative errors made in the

reconstruction of Im[χ(3)
Res(ν)] amplitudes based on the extracted φe f f values of simulated CARS

spectra with known φe f f , χ
(3)
E e f f , and χ(3)

Res(ν) parameters. In the 2D plots in fig. 5.3 A and B, the

relative errors of Im[χ(3)
Res(ν)] amplitudes are shown as a function of φe f f and χ(3)

E e f f /|χ
(3)
Res|without

and with the correction of φe f f , respectively. In fig. 5.3 A, the relative error in Im[χ(3)
Res(ν)]
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Figure 5.2: Dependence of the analytically determined φe f f values using eqs. 5.32 and

5.33 extracted from simulated CARS spectra as a function of the simulated input φe f f

values and given |χ(3)
Res(ν)|

χ(3)
E e f f

values amounting to 0.1, 0.2, 0.5, 0.83, 0.91 and 1. Simulations

were performed for a single resonance of amplitude A = 1cm−1 and χ(3)
E e f f = 1.

Figure 5.3: 2D plots of the relative error in the reconstructed Im[χ(3)
Res(ν)] amplitudes as

a function of φe f f and
χ(3)

E e f f

|χ(3)
Res(ν)|

(A) without and (B) with correction of φe f f according to

eq. 5.31. Extraction of φe f f was done by using eq. 5.32 and eq. 5.33. Simulations were

performed for a single resonance of amplitude A = 1 cm−1.

60



monotonically increases from zero for φe f f = 0 to 100 % for φe f f = π. The latter corresponds to

an Im[χ(3)
Res(ν)] amplitude pointing downwards in the complex plane. A further increase of φe f f

results in a decrease of the error to zero at φe f f = 2π. In the region 0 ≤
χ(3)

E e f f

|χ(3)
Res(ν)|

≤ 1, the error

builds a local maximum at φe f f = π/2 and
χ(3)

E e f f

|χ(3)
Res(ν)|

= 0.5. This is the limiting case excluded by eq.

A.46 (see appendix A.8), where the CARS spectrum S (ν) is simply a frequency-independent

constant, and therefore the estimated phase will be zero. When correcting for φe f f using eq.

5.31, this maximum in the Im[χ(3)
Res(ν)] error persists, as can be seen in fig. 5.3 B, while for all

remaining ratios of
χ(3)

E e f f

|χ(3)
Res(ν)|

, that are not excluded by eq. A.46, the correction of the Im[χ(3)
Res(ν)]

amplitude errors induced by φe f f works satisfactory.

Using the same approach described above for the estimated phase spectrum, we next deter-

mine φe f f using the ratio of maximum to minimum excursions of the uncorrected Im[χ(3)
tot (ν)]

spectrum. For that, we define the ratio

rIm[χ(3)
tot (ν)]

=
max(Im[χ(3)

tot (ν)]) − min(Im[χ(3)
tot (ν)])

max(Im[χ(3)
tot (ν)])

. (5.34)

Substituting rIm[χ(3)
tot (ν)]

instead of rphase into eq. 5.32 allows us to extract φe f f , and via eq. 5.31

the determination of Im[χ(3)
Res(ν)]. The 2D plots in fig. 5.4 A and B show the relative errors of

reconstructed Im[χ(3)
Res(ν)] amplitudes as a function of φe f f and

χ(3)
E e f f

|χ(3)
Res(ν)|

without and with correc-

tion for φe f f , respectively. The results shown in fig. 5.4 are very much alike to those shown in

Figure 5.4: 2D plots of the relative error in the reconstructed Im[χ(3)
Res(ν)] amplitudes as

a function of φe f f and
χ(3)

E e f f

|χ(3)
Res(ν)|

(A) without and (B) with corrections according to eq. 5.31.

φe f f was extracted using eq. 5.33 and eq. 5.35. Simulation were performed for a single

resonance of amplitude A = 1 cm−1.

fig. 5.3, indicating that the determination and correction of φe f f using the ratio of maximum to

minimum excursions in the retrieved estimated phase φestimated and the reconstructed Im[χ(3)
Res(ν)]

are equivalent. For the example used in section 5.3.1, we obtain an error of 0.7 % for the recon-

structed Im[χ(3)
Res(ν)] amplitude. But using the approach based on the reconstructed Im[χ(3)

Res(ν)],

no error-phase estimation is necessary.
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Next, we added noise to the simulated CARS spectra S (ν). The minimum SNR needed in

order to not exceed a relative error of 10 % in the reconstructed Im[χ(3)
Res(ν)] amplitudes was

found to be approximately 10.

In conclusion, we have introduced a method for the removal of the dispersive character in the

Im[χ(3)
tot (ν)] spectrum using the ratio of maximum to minimum excursions of the retrieved phase

spectrum φestimated(ν) or the reconstructed Im[χ(3)
tot (ν)] spectrum itself. It was demonstrated by

simulations that the method works for all effective phase factors φe f f and ratios
χ(3)

E e f f

|χ(3)
Res(ν)|

, provided

that the criterion given in eq. A.46 and a SNR ≥ 10 of the CARS spectrum are fulfilled. How-

ever, because for the extraction of φe f f a resonant region of S (ν) needs to be chosen manually,

this method is not unsupervised! The determination and correction of φe f f is working reliably,

provided the maximum and minimum excursions of the estimated phase or of the Im[χ(3)
tot (ν)]

spectrum are obtained for an isolated Raman resonance, such as a strong and narrow Raman

line. However, this approach must fail when vibrational bands overlap, such that the maximum

of one band resides at the minimum of the neighboring band. Because of these limitations, an

unsupervized method to determine both φe f f and χ(3)
E e f f simultaneously is desirable, which is

applicable to any complex CARS spectrum with overlapping bands.

5.3.3 Unsupervized determination of both the effective phase φe f f and the
effective nonresonant contribution χ(3)

E e f f of χ(3)
tot(ν)

“... überlegte ich oft, ob nicht etwa eine vernünftigere Anordnung von Kreisen zu

finden sei, von welchen alle erscheinende Ungleichmässigkeit abhinge...”

Copernicus (Commentariolus, 1509)

In this section, an unsupervised method for the reconstruction of the pure vibrational suscepti-

bility χ(3)
Res(ν) from a measured CARS spectrum in the presence of a nearby electronic resonance

is developed that is generally applicable for a CARS spectrum consisting of overlapping bands.

Before going into the math of this new approach, it is useful to recapitulate from ch. 3 what we

know about the consequences of φe f f , φE e f f , and χ(3)
E e f f on the measured CARS power spectrum

S (ν):

1. As shown in section 3.2.2, a rotation of a vibrational resonance around [χ(3)
NR, 0] by the

angle φR , φe f f in the complex plane (see fig. 3.9) does not lead to an offset phase, but

rather to a dispersive shape of the total phase spectrum φtot(ν).

2. A translation of the vibrational resonance by χ(3)
E eiφE in the complex plane (see fig. 3.10)

leads also to a dispersive shape of the total phase spectrum for φe f f , 0 and to an offset

phase φE e f f (see eq. 3.27). Because φE e f f is factoring out in the description of the
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measured CARS spectrum (eq. 3.40 and eq. 3.41), neither the MEM nor the KK methods

are able to retrieve this offset phase directly.

5.3.4 The case of a single chemical component

As discussed in ch. 3, both the full model for the total susceptibility χ(3)
tot (ν) and the model used

in MEM phase retrieval (see eqs. 3.27 and 3.48) provide analytical expressions describing one

and the same measured CARS intensity spectrum. Hence, we can write for the CARS spectrum

S (ν) =
∣∣∣∣ √S (ν)eiφMEM(ν)

∣∣∣∣2 =
∣∣∣∣|χ(3)

E e f f | + χ(3)
Res(ν)e

iφe f f

∣∣∣∣2 , (5.35)

where φMEM(ν) is the retrieved phase spectrum. χ(3)
E e f f and φe f f are specific for the single chem-

ical component under investigation, and are defined by eq. 3.39 and eq. 3.42, respectively.

Assuming the identity of both models for the complex susceptibility, we obtain an expression

for the desired pure vibrational complex susceptibility spectrum of that single chemical compo-

nent

χ(3)
Res(ν) =

√
S (ν)ei(φMEM(ν)−φe f f ) − |χ(3)

E e f f |e
−iφe f f . (5.36)

Written in matrix form, the real and imaginary parts of χ(3)
Res(ν) are then given by: Re[χ(3)

Res(ν)]

Im[χ(3)
Res(ν)]

 =

 cos(φe f f ) −sin(φe f f )

−sin(φe f f ) cos(φe f f )

×√
S (ν)

 cos(φMEM(ν))

sin(φMEM(ν))

−∣∣∣∣χ(3)
E e f f

∣∣∣∣  cos(φe f f )

−sin(φe f f )

 .

(5.37)

From eq. 5.37 follows that the correct Raman response Im[χ(3)
Res(ν)] is directly reconstructed

from a measured CARS spectrum S (ν) and its retrieved phase spectrum, φMEM(ν), provided

that both φe f f and |χ(3)
E e f f | have been correctly determined. Note, that the determination and the

correction of an phenomenological error-phase φerror(ν), as described in section 3.3.2, now is

redundant.

In order to determine both parameters in an unsupervized manner, we here exploit the

properties of a pure Raman response spectrum. If reconstructed correctly, all vibrational res-

onances contributing to the measured CARS spectrum exhibit non-negative Im[χ(3)
Res(ν)] ampli-

tudes (Im[χ(3)
Res(ν)] > 0), and the area below the reconstructed Im[χ(3)

Res(ν)] spectrum is maxi-

mized, i.e.
∫ ν2

ν1
Im[χ(3)

Res(ν)]dν = MAX. In order to demonstrate the sensitivity of this integral to

deviations of the purely vibrational resonance response, CARS spectra of a single Lorentzian

resonance were simulated for 0 ≤ φe f f ≤ 2π and 0.1 ≤ χ(3)
E e f f ≤ 1, and the MEM-phase was

retrieved using the DCT-MEM (eq. 3.55). Then, the reconstructed Im[χ(3)
tot (ν)] spectra were

numerically integrated and plotted as a function of φe f f in fig. 5.5. The
∫

Im[χ(3)
tot (ν)]dν curve

is a cosine-like function, and around its desired maximum, a change of φe f f will only result

in a small change of
∫

Im[χ(3)
tot (ν)]dν. However, the

∫
|Im[χ(3)

tot (ν)]|dν curve is much steeper for

φe f f near zero, and thus its minimization offers a higher sensitivity in the determination of φe f f .
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Figure 5.5:
∫
|Im[χ(3)

tot (ν)]|dν (black curve) and
∫

Im[χ(3)
tot (ν)]dν (red curve) as a function

of φe f f as obtained from the reconstructed Im[χ(3)
tot (ν)] using the DCT-MEM phase and eq.

3.55. A single Lorentzian resonance (see eq. 3.27) and χ(3)
E e f f values of 0.1,0.2, 0.5, 0.75

and 1 were simulated.

When
|χ(3)

E e f f |

|χ(3)
Res(ν)|

≤ 1,
∫
|Im[χ(3)

tot (ν)]|dν shows also a dependence on the ratio
|χ(3)

E e f f |

|χ(3)
Res(ν)|

. We see from

eqs. 5.36 and 5.37, that for a measured CARS spectrum S (ν) and its retrieved phase spec-

trum φMEM(ν) one can obtain the unknown parameters φe f f and χ(3)
E e f f of the single chemical

component by solving the following minimisation problem:

F1(φe f f , |χ
(3)
E e f f |) =

∫ ν2

ν1

∣∣∣Im[χ(3)
Res(ν)]

∣∣∣ dν =∫ ν2

ν1

∣∣∣∣ √S (ν)
(
sin(φMEM(ν) − φe f f )

)
− |χ(3)

E e f f |sin(−φe f f (ν))
∣∣∣∣ dν = MIN .

(5.38)

This functional is efficiently solved using an Ansatz of a constant effective phase, where φe f f

is assumed to be frequency independent in the spectral range of interest. The second param-

eter χ(3)
E e f f can also be obtained simultaneously solving the functional eq. 5.38 because it is

functionally independent from φe f f . In this way, the approach given by eq. 5.38 is fully unsu-

pervized! Note, that a criterion similar to eq. 5.38 can of course also be derived for the real part

of the χ(3)
Res(ν) spectrum. As can be seen in fig. 5.5,

∫
|Im[χ(3)

tot (ν)]|dν is a π-periodic function of

φe f f . Similar to the phase extrema used in eq. 5.32, a case analysis is needed to determine if
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φe f f ∈ [−π2 ,
π
2 ) or φe f f ∈ (π2 ,

3π
2 ]. The corresponding sign correction factor δR is here determined

by the order of the appearance of the relative minimum S min and maximum S max in the CARS

spectrum:

δR =


1 ν

∣∣∣∣∣
S max(ν)

< ν

∣∣∣∣∣
S min(ν)

−1 ν

∣∣∣∣∣
S min(ν)

< ν

∣∣∣∣∣
S max(ν)

.
(5.39)

If we complete eq. 5.36 with eq. 5.39, we obtain:

χ(3)
Res(ν) =

√
S (ν)eiδR(φMEM(ν)−φe f f ) − |χ(3)

E e f f |e
−iδRφe f f . (5.40)

Next, we will evaluate the relative errors made in the reconstruction of relative Im[χ(3)
Res(ν)]

amplitudes using eq. 5.38 and eq. 5.40 from simulated CARS spectra with known φe f f , χ
(3)
E e f f ,

and χ(3)
Res(ν) spectrum. In the 2D plots in fig. 5.6 A and B, the relative errors of Im[χ(3)

Res(ν)]

amplitudes are shown as a function of φe f f and
χ(3)

E e f f

|χ(3)
Res(ν)|

without and with the correction of the

extracted φe f f and χ(3)
E e f f values, respectively. The discussion given for figs. 5.3 and 5.4 holds

Figure 5.6: 2D plots of the relative error in the reconstructed Im[χ(3)
Res(ν)] amplitudes as a

function of φe f f and
χ(3)

E e f f

|χ(3)
Res(ν)|

(A) without and (B) with correction of φe f f according to eq.

5.40. φe f f was extracted by solving the minimisation problem given eq. 5.38. Simulations

were performed for a single resonance of amplitude A = 1 cm−1.

here as well. This simulation for an isolated resonance indicates that the determination and

correction of φe f f and χ(3)
E e f f using eq. 5.38 and eq. 5.40 works satisfactorily, similar to the

method described in section 5.3.2. For the example used in section 5.3.1, the error for the

reconstructed Im[χ(3)
Res(ν)] amplitudes is negligible.

Once χ(3)
E e f f = χ(3)

E e f f (χ
(3)
NR, χ

(3)
E , φE, φR) and φe f f = φe f f (χ

(3)
NR, χ

(3)
E , φE, φR) are determined

with negligible errors using eq. 5.38, it is possible to estimate φE, φR, χ(3)
NR, and χ(3)

E by fitting

the nonresonant part of the measured CARS and the retrieved phase spectra to eq. 3.39 and eq.

3.35, respectively.
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This approach is demonstrated for the simulation example shown in fig. 3.10. The obtained

parameter values are listed and compared with their respective simulation input values in tab.

5.2. As can be seen from tab. 5.2, the extraction of φe f f and χ(3)
E e f f from a simulated CARS

Table 5.2: Comparison of extracted values of χ(3)
NR, χ(3)

E e f f , χ
(3)
E , φe f f , φR, φE, and φE e f f

using eqs. 5.38, 3.38, 3.39, and 3.42 with those input values used for the simulation of

the CARS spectrum (eq. 3.28).

Parameter simulated value extracted value relative error

φE e f f 0.639 0.583 8.8 %

χ(3)
E e f f |1.5eφE + χ(3)

NR| = 2.179 2.180 0.0 %

χ(3)
NR 1 1.097 9.7 %

χ(3)
E 1.5 1.665 11.0 %

φe f f φR − φE e f f = -1.031 -0.986 4.3 %

φR −π8 = -0.3927 -0.403 2.7 %

φE
π
3 = 1.0472 0.953 9.0 %

spectrum and the corresponding MEM-phase spectrum using eq. 5.38 recovers the respective

simulation input parameters satisfactory. The subsequent estimation of φR, φE, χ(3)
NR, and χ(3)

E

also recovers their respective simulation input values satisfactory. While the relative error for

φR is below 3 %, higher relative errors of about 10 % are obtained for φE, χ(3)
NR, and χ(3)

E due to

their stronger functional dependence (see eq. 3.27). In conclusion, this simulation example for

an isolated Raman resonance demonstrates that it is possible, to extract and fully characterize

each electronic and vibrational contribution to the total complex susceptibility according to the

model given in eq. 3.27 from the knowledge of a measured CARS spectrum and a retrieved

phase spectrum.

Next, we will come back to our initial question whether the method using eqs. 5.38 and

5.40 not only handles a spectrum of an isolated resonance but also a spectrum of overlapping

resonances. For this purpose we will demonstrate our approach for a simulated CARS spectrum

of a lipid (FAME 18:1, see section 7.3.2) in water, with a highly congested CH-stretching

region. Here, we assume that the lipid and water behave as a single chemical component,

which is described by a single set of φe f f and |χ(3)
E e f f |. The CARS spectrum was simulated

using a model for χ(3)
Res(ν) containing both lipid and water resonances and eq. 5.35. φe f f was

then determined using eq. 5.38. The pure complex Im[χ(3)
Res(ν)] of the vibrational response was

then reconstructed using the DCT-MEM approach and eq. 5.40. The simulation is performed

using χ(3)
E e f f = 1 and for two distinct values of φe f f : φe f f = 0◦ and φe f f = 30◦. The results

are presented in fig. 5.7. Without noise, for a simulated φe f f = 0◦, values of φe f f = 1◦ and

χ(3)
E e f f = 0.9837 are determined, and for a simulated φe f f = 30◦, φe f f = 29◦ and χ(3)

E e f f = 1.0003
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Figure 5.7: Reconstruction of the pure vibrational response of simulated CARS spectra of

a FAME-lipid-water sample, exhibiting overlapping bands in the highly congested CH-

stretching region. The simulation is performed using χ(3)
E e f f = 1 and for two φe f f values:

φe f f = 0◦ (black curves) and φe f f = 30◦ (red curves). Shown are the input Im[χ(3)
tot (ν)]

spectra simulated according to eq. 3.40 together with the respective Im[χ(3)
Res(ν)] spectra,

as extracted using the functional (eqs. 5.38 and 5.40). The latter are offset by 0.05 units.

are determined. With added noise corresponding to a SNR of 25 in the CH-stretching region and

a SNR of 7.5 in the fingerprint region of that CARS spectrum for a simulated φe f f = 0◦ values

of φe f f = 4◦ and χ(3)
E e f f = 1.0033 are determined, and for a simulated φe f f = 30◦, φe f f = 29◦

and χ(3)
E e f f = 1.0005 are determined. The relative errors in φe f f and χ(3)

E e f f do not exceed 4◦ and

1.6%, respectively. When compared with the isolated single resonance band, the errors have

not increased significantly.

In conclusion, the novel method applies well for spectra containing overlapping bands and

noise too! The small differences between simulated and extracted φe f f and χ(3)
E e f f are due to

the broad water bands, whose Im[χ(3)
Res(ν)] is even at 5000 cm−1 not exactly zero. Additionally,

the MEM procedure intrinsically does only give exactly zero in the nonresonant regions at the

spectral ends. A subsequent correction of the background will however remove these residual

differences concerning the baseline, when simulated and reconstructed χ(3)
Res(ν) are compared.
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5.3.5 The case of a mixture of distinct chemical components

In the previous section, we have treated the case of a single chemical component with its char-

acteristic φe f f and χ(3)
E e f f values. Here, we will extend this approach for a mixture of n chem-

ical components, which do not interact with each other, and each have their distinct φe f f j and

χ(3)
E e f f j values ( j = 1 . . . n).

In analogy to the expression for the total susceptibility of a single chemical component given

in eq. 3.40, the model for the mixture then reads

χ(3) mix
tot (ν) =

n∑
j=1

c j

[
|χ(3)

E e f f j|e
iφE e f f j + χ(3)

Res j(ν)e
iφR j

]
, (5.41)

where c j are the fractions of the jth component with
∑n

j=1 c j = 1. With ν being far off the

vibrational resonances, we can define an effective complex susceptibility χ(3) mix
E e f f that combines

all frequency independent contributions of χ(3) mix
tot (ν):

χ(3) mix
E e f f = |χ(3) mix

E e f f |e
iφmix

E e f f =

n∑
j=1

c j|χ
(3)
E e f f j|e

iφE e f f j , (5.42)

where

|χ(3) mix
E e f f |

2 =

n∑
j=1

c2
j |χ

(3)
E e f f j|

2 + 2
n∑

j,k=1
j,k

c jck|χ
(3)
E e f f j||χ

(3)
E e f f k|cos(φE e f f j − φE e f f k) , (5.43)

and

φmix
E e f f = tan−1


∑n

j=1 c j|χ
(3)
E e f f j|sin(φE e f f j)∑n

j=1 c j|χ
(3)
E e f f j|cos(φE e f f j)

 . (5.44)

Using eqs. 5.42 - 5.44, we can rewrite eq. 5.41 as follows:

χ(3) mix
tot (ν) =

|χ(3) mix
E e f f | +

n∑
j=1

c jχ
(3)
Res j(ν)e

i(φR j−φ
mix
E e f f )

 eiφmix
E e f f . (5.45)

As can be seen, each vibrational resonance component, χ(3)
Res j(ν), then appears rotated by an

effective phase shift:

φmix
e f f j = φR j − φ

mix
E e f f . (5.46)

Note that for the single component case of n = 1, eqs. 5.42, 5.44 , 5.45, and 5.46 reduce to

eqs. 3.37, 3.38, 3.40, and 3.42, respectively. However, in the general case of a mixture of n

components eqs. 5.43 and 5.44 describe a coupling of all n components. Eq. 5.45 results then

in an expression for the CARS spectrum given by

S (ν) = |
√

S mix(ν)eiφmix
MEM(ν)|2 = ||χ(3) mix

E e f f | +

n∑
j=1

c jχ
(3)
Res j(ν)e

iφmix
e f f j |2 . (5.47)
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Assuming the identity of both the model used in MEM phase retrieval (see eq. 3.27 and

eq. 3.28) and χ(3) mix
tot (ν) (eq. 5.45) for the complex susceptibility of the mixture, we obtain an

expression for the pure vibrational susceptibility spectrum of the nth component χ(3)
Res n(ν):

χ(3)
Res n(ν) =

1
(1 −

∑n−1
j=1 c j)

 √S mix(ν)ei(φmix
MEM(ν)−φmix

e f f n)
− |χ(3) mix

E e f f |e
−iφmix

e f f n −

n−1∑
j=1

c jχ
(3)
Res j(ν)e

i(φmix
e f f j−φ

mix
e f f n)

 .
(5.48)

Unlike for the single-component case of n = 1, where eq. 5.48 reduces to eq. 5.36, the

extraction of the pure vibrational resonance χ(3)
Res n(ν) of an n-component mixture requires pior

knowledge of the relative fractions, phase shifts, and susceptibilities of all (n − 1) remaining

species. Even with χ(3)
Res j(ν) and φmix

e f f j ( j = 1 . . . (n − 1)) known from independent single-

component measurements, the fractions c j of the (n − 1) components cannot be correctly de-

termined and directly be subtracted from the mixture spectrum as long as χ(3) mix
E e f f and φmix

E e f f are

unknown.

By simply applying the single-component functional (eq. 5.38) to an n-component mixture,

the curve shown in fig. 5.5 for a single component will not be sinusoidal any more. This is

illustrated in fig. 5.8 for a two-component mixture of a lipid and water used for the simulation

in fig. 5.7, where
∫
|Im[χ(3) mix

tot (ν)]|dν is simulated as a function of the phase shift value of

lipids (φe f f 2) and for the cases of φe f f 2 = φe f f 1 and φe f f 2 = φe f f 1 + 30◦. As can be seen,

for the simulated case of distinct phase shifts, the curve shows deviations from the symmetric

sinusoidal curve obtained for the case of no phase shift. This information could of course be

useful, because it allows to tell, whether a single or a mixture of non-interacting species are

contributing to a given CARS spectrum. Note that this is a coherent feature not offered by

spontaneous Raman spectroscopy!

Because χ(3) mix
E e f f and φmix

E e f f couple all n species of the mixture with each other, the fractions

c j and the pure vibrational response χ(3)
Res n(ν) can only be obtained by making simplifying ap-

proximations. We first assume that all n components share an identical electronic contribution to

their complex susceptibilities, such as φE e f f = φE e f f j and |χ(3)
E e f f | = |χ

(3)
E e f f j| for all j = 1 · · · n.

In this case, eqs. 5.43, 5.44, and 5.46 simplify to

|χ(3) mix
E e f f | = |χ

(3)
E e f f | , (5.49)

φmix
E e f f = φE e f f , (5.50)

and

φe f f j = φR j − φE e f f . (5.51)
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Figure 5.8:
∫
|Im[χ(3) mix

tot (ν)]|dν as a function of φe f f 2 for a two-component mixture

of a lipid (component 2) and water (component 1, see fig. 5.7) for the cases where

φe f f 2 = φe f f 1 (red curve) and φe f f 2 = φe f f 1 + 30◦ (black curve), as obtained from

the reconstructed Im[χ(3) mix
tot (ν)] using the DCT-MEM phase and the single-component

functional F1 (eq. 5.38).

Eq. 5.48 then reduces to

χ(3)
Res n(ν) =

1
1 −

∑n−1
j=1 c j

 √S mix(ν)ei(φmix
MEM(ν)−φe f f n) − |χ(3) mix

E e f f |e
−iφe f f n −

n−1∑
j=1

c jχ
(3)
Res j(ν)e

i(φe f f j−φe f f n)


(5.52)

In analogy to the single-component case described in the preceding section, we define a min-

imization problem in order to obtain the pure vibrational response of χ(3)
Res n(ν), provided all

(n − 1) components are known from independent experiments:

Fn(φe f f n, |χ
(3) mix
E e f f |) =

∫ ν2

ν1

dν|Im[χ(3)
Res n(ν)]|

=

∫ ν2

ν1

dν
1

1 −
∑n−1

j=1 c j

∣∣∣∣[ √S mix(ν)sin(φmix
MEM(ν) − φe f f n) − |χ(3) mix

E e f f |sin(−φe f f n)
]∣∣∣∣

−

n−1∑
j=1

c jIm[χ(3)
Res j(ν)e

i(φe f f j−φe f f n)] = MIN .

(5.53)
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Solving eq. 5.53 directly represents a minimization problem with (n+1) free fit parameters. For

complex mixtures with large n, this results in large fit errors due to the large free fit parameter

space. This drawback can be circumvented, when the relative fractions of all (n−1) components

are also known. In this case, the functional eq. 5.53 yields φe f f n and |χ(3) mix
E e f f | directly, and

χ(3)
Res n(ν) is obtained according to eq. 5.52.

For the simplest mixture of two non-interacting components, the functional then reads

F2(φe f f 2, |χ
(3) mix
E e f f |) =

∫ ν2

ν1

dν
1

1 − c1

∣∣∣∣∣{ √
S mix(ν)sin(φmix

MEM(ν) − φe f f 2) − |χ(3) mix
E e f f |sin(−φe f f 2)

− c1

(
Re[χ(3)

Res 1(ν)]sin(φe f f 1 − φe f f 2) + Im[χ(3)
Res 1(ν)]cos(φe f f 1 − φe f f 2)

)}∣∣∣∣∣
= MIN .

(5.54)

With prior knowledge of χ(3)
Res 1(ν) and φe f f 1 from an independent experiment recorded under

identical conditions, solving eq. 5.54 provides estimates of φe f f 2 of the second component,

|χ(3) mix
E e f f |, and the fraction c1 of the first component. Substitution into eq. 5.52 finally yields

the pure vibrational response of the second component, χ(3)
Res 2(ν). As a result, both vibrational

responses and their relative fractions making up the mixture are obtained in an unsupervized

manner.

The relative fraction c j ( j = 1 · · · (n − 1)) can independently be approximated provided

that spectral features can be identified, which are only characteristic for the jth species, and

do not overlap with a spectral feature of any other species. This will next be demonstrated for

the two-component case, where χ(3)
Res 1(ν) and φe f f 1 are known, and its relative fraction c1 in

the mixture with an unknown second species has to be determined. The error made when the

first component is rotated by an estimated effective phase shift φest
e f f , which is obtained when

its mixture with the unknown second species is approximated by using the single-component

functional (eq. 5.38), i.e. F1(φest
e f f , |χ

(3) mix
E e f f |), is given by:

∆χ(3)
Res 1(ν) = χ(3) est

Res 1 (ν, φest
e f f ) − χ

(3)
Res 1(ν, φe f f 1) = χ(3)

Res 1(ν, φe f f 1)(ei(φest
e f f−φe f f 1)

− 1) (5.55)

where φe f f 1 and χ(3)
Res 1(ν) have been correctly obtained from the CARS spectrum of the pure

first species by solving eq. 5.40 and using F1(φe f f 1, |χ
(3) mix
E e f f 1|) (eq. 5.38), respectively. Here,

χ(3) est
Res 1 (ν, φest

e f f ) = χ(3) est
Res 1 (ν, φe f f 1)eiφest

e f f is obtained using eq. 5.40 for the first species and φest
e f f .

In order to obtain an estimate for the fraction c1, we correct χ(3) est
Res 1 (ν, φest

e f f ) with the error given

by eq. 5.55. Correspondingly, χ(3) mix est
Res (ν, φest

e f f ) is obtained using eq. 5.40 for the mixture and

φest
e f f . By minimizing the difference of the scaled and corrected response of the first species with

respect to the estimated response of the mixture, i.e.∫
min

(
0, Im[χ(3) mix est

Res (ν, φest
e f f )] − c1Im[χ(3) est

Res 1 (ν, φest
e f f ) − ∆χ(3)

Res 1(ν)]
)

dν = 0 , (5.56)
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and by calculating eq. 5.56 iteratively, a good estimation of c1 is obtained.

Using eqs. 5.54 and 5.52, the reconstruction of pure vibrational responses from a mixture

of the same two species of FAME 18:1 and water, previously shown in fig. 5.7, will next be

demonstrated. Here, distinct phase shift values for the pure lipid and water of φe f f 2 = 30◦

and φe f f 1 = 0◦, respectively, are simulated. The results are presented in fig. 5.9. With an

Figure 5.9: Reconstruction of the pure vibrational response of simulated CARS spectra of

a mixture of a FAME 18:1 lipid (component 2) and water (component 1). The simulation

is performed using χ(3) mix
E e f f = 1 and for two φe f f 2 values: φe f f 2 = 0◦ (black curves) and

φe f f 2 = 30◦ (red curves), while φe f f 1 = 0◦ was fixed. Shown are the input Im[χ(3) mix
tot (ν)]

spectra simulated according to eq. 5.45 together with the known Im[χ(3)
Res 1(ν)] spectrum

of the pure water component and the Im[χ(3)
Res 2(ν)] spectrum of the lipid component, as

extracted using eqs. 5.52, 5.55 and 5.56. The latter are offset by 0.07 units.

extracted angle of 27.5◦ for the lipid species being very close to the simulated φe f f 2 = 30◦, the

reconstruction of the unknown pure vibrational response is satisfactory.

In biological applications of CARS microscopy, image pixel spectra recorded inside a cell

typically contain a mixture of cytoplasmic proteins, lipids, and water. To eliminate the influence

of water, first pixel spectra with the focus filled with water only (e.g. outside a cell) have to be
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identified. Using the functional for a single component (eq. 5.38) will in this case provide the

correct Im[χ(3)
Res 1(ν)] and φe f f 1 for water. Next, its relative fraction c1 to each pixel spectrum has

to be determined. We eliminate the water contribution in each pixel spectrum by substituting

χ(3)
Res 1(ν), φe f f 1, and c1 into the two-component functional given by eq. 5.54. The analysis

pipeline for reconstructing a CARS hyperspectrum of a mixture of one known χ(3)
Res 1(ν) and

φe f f 1 and one unknown species χ(3)
Res 2(ν) and φe f f 2 is summarized in fig. 5.10.

5.4 Experimental test of novel concepts in MEM phase re-

trieval

So far, a new and efficient way of calculating the autocorrelation coefficients in MEM based

phase retrieval using the DCT transform has been presented in section 5.1, the implementation

of a new Toeplitz solver for eq. 3.50 containing the autocorrelation matrix has been presented

and compared in section 5.2, and a theory that allows quantifying an additional phase factor eiφe f f

and removing its influence on the reconstruction of the pure vibrational susceptibility χ(3)
Res(ν) of

the sample of interest has been derived in section 5.3. In this section, these novel concepts will

be verified by applying them to experimental data with toluene as sample.

5.4.1 Materials and Methods

Neat toluene (Riedel-de-Haën, SPECTRANAL, 99.9% purity) was used as a strong Raman

scattering sample, because it has both sharp narrow bands in the fingerprint region as well as

overlapping broad bands in the CH-stretching region. Toluene was transferred into a sample

chamber consisting of two microscope cover slips of 150 µm thickness (Roth Chemie, Karl-

sruhe, Germany, #H877), separated by a spacer with an approximate thickness of 300 µm.

Unpolarized, parallel and perpendicular polarized spontaneous Raman scattering spectra

were recorded using 32 mW laser power at an excitation wavelength λEx = 532 nm, a 100 x

objective, detected using a 50 µm fibre and a 600 g/mm grating with 10 sec integration time.

For the CARS measurements, the setup with Stokes supercontinuum pulse generation and

the spectrometer S1 (E in position E1 and mirror D in position D1) was used, as described in

section 4.2. The pump wavelength was set to λPump = 800.65 nm. The pump and Stokes beam

powers were 20 mW and 10 mW, respectively. A time series containing 10 spectra with an

integration time of 100 ms per spectrum was recorded, and averaged before further processing.

Estimation of φe f f and χ(3)
E e f f was performed using eq. 5.38 within the range from 339 cm−1 to

1892 cm−1 for the fingerprint region and the range from 2081 cm−1 to 3560 cm−1 for the CH-

stretching region. Additionally, φe f f was estimated using eq. 5.32 for the isolated resonance

band at 803 cm−1. For the phase retrieval using the CPCG solver, five iterations were used.
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CARS spec-

tral data set:

S mix(ν, x, y, z, t) and

φmix
MEM(ν, x, y, z, t)

1. Select CARS spectrum

characteristic for first com-

ponent only: S 1(ν, x, y, z, t)

and φMEM 1(ν, x, y, z, t)

independently

measured CARS

spectrum char-

acteristic for

first component

only: S 1(ν)

and φMEM 1(ν)

φR1(x, y, z, t)

χ(3)
Res 1(ν)

2. Calculate χ(3)
Res 1(ν) and φe f f 1

using F1 (eq. 5.38) and eq. 5.40

3.a Calculate χ(3)
Res 2(ν, x, y, z, t),

φe f f 2(x, y, z, t), and c1(x, y, z, t)

using F2 (eq. 5.52) and eq. 5.54

3.b Estimation of c1(x, y, z, t)

when species 1 has unique

spectral features using the

iterative approach given

by eq. 5.55 and eq. 5.56

φR2(x, y, z, t)

χ(3)
Res 2(ν, x, y, z, t)

4. Raman component

background subtraction

Mark 1

Figure 5.10: Flow chart showing the CARS spectra analysis pipeline for extracting the

vibrational responses and relative fractions of the pure components in a two-component

mixture. The subsequent analysis steps are the same as in the spontaneous Raman case,

see the flow chart in fig. 4.2 after mark 1.
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5.4.2 Experimental results

Fig. 5.11 shows the CARS spectra of toluene for the different approaches for calculating the

autocorrelation coefficients in MEM based phase retrieval using the DCT (upper spectrum) and

DFT (K = 0, lower spectrum). The lower spectrum shows the measured CARS spectrum

extended with its reversed copy. The dependencies of the autocorrelation factors |C(m,K)| be-

Figure 5.11: Input CARS spectra for the calculation of autocorrelation coefficients in

MEM based phase retrieval using the DCT (upper spectrum) and the DFT (K = 0, lower

spectrum). The discontinuity (black arrow) is avoided in the input spectrum for the DCT

transform due to symmetrization. The DCT input spectrum is shifted by 10 units for

better visibility. Two values of S NR(ν) = |χ(3)
E e f f |

2 are highlighted (red arrows): |χ(3)
E e f f |

2 =

1.06 at 877 cm−1 and |χ(3)
E e f f |

2 = 1.77 at 2703 cm−1.

longing to both input CARS spectra are plotted in fig. 5.12. For m ≤ 400, the values of |C(m,K)|

calculated using the DCT exceed those calculated using the DFT, indicating the superior energy

compaction of the DCT. This crossover occurs at smaller m for input CARS spectra exhibiting

correlations or broader bands, e.g the water band.

The corresponding retrieved MEM-phase spectra φMEM(ν,K) are shown in fig. 5.13 A to-

gether with their estimated error-phase spectra φerror(ν,K) derived using spline fits. Clearly, the

DFT based MEM phase without squeezing (K = 0) shows the windowing-effect at the spectral
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Figure 5.12: The |C(m,K)| spectra corresponding to the DFT and DCT of the CARS

input spectra of toluene as shown in fig. 5.11. For m ≤ 400 (see arrow), more energy is

contained in the DCT when compared to that in the DFT (K = 0). For the high frequency

components (m > 400), about a four times higher content is observed in the DFT (K = 0).

Curves have been smoothed for better visibility.

end-points. This problem is avoided by applying either the DFT MEM-approach with squeez-

ing (K = 1), the DCT approach, or the CPCG solver. All three schemes result in the same phase

spectrum, revealing sharp narrow bands in the fingerprint region as well as the broad bands in

the CH-stretching region on top of a slowly varying error-phase φerror(ν,K). In fig. 5.13 B,

the corresponding reconstructed Im[χ(3)
tot (ν)] spectra calculated according to eq. 3.55 are shown.

They all look very similar, except for the DFT case with K = 0 at the spectral end-points, where

the windowing effect results in an unsatisfactory estimation of the error-phase φerror(ν,K = 0),

and thus erroneous reconstructed amplitudes for the resonances near the spectral end-points.

The reconstructed Im[χ(3)
tot (ν)] spectrum using the DFT based MEM with squeezing K = 1 is

identical to those using the DCT- or the CPCG-based approaches. All these three approaches

are equivalent in terms of reconstruction performance. It is obvious from fig. 5.13 B that the

reconstructed Im[χ(3)
tot (ν)] spectra and its spontaneous Raman counterpart are not matching. Not

only are the peak amplitude ratios wrong (see the CH-stretching region), also the narrow bands

appear still dispersive, the center frequencies are slightly red shifted, and negative amplitudes

at 505 cm−1, 787 cm−1, 1003 cm−1 and 2820 cm−1 are observed. Moreover, the entire CH-
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Figure 5.13: (A) Retrieved MEM-phase spectra φMEM(ν) (solid lines) together with the

estimated error-phase spectra φerror(ν) (dashed lines) and (B) reconstructed Im[χ(3)
tot (ν)]

spectra corresponding to the CARS spectra of toluene as shown in fig. 5.11, using the

DFT-based MEM without squeezing (K = 0, spectrum A), the DFT-based MEM with

squeezing (K = 1, spectrum B), the DCT-based MEM (spectrum C), and the CPCG-

based MEM (spectrum D). Spectral regions assigned to be off-resonance are highlighted

in red. The spectra for the different cases are shifted with respect to each other (A) by

0.5 rad and (B) by 1. Shown in blue is the spontaneous Raman spectrum of toluene for

comparison.
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stretching region appears distorted, which the error-phase spectra estimations φerror(ν,K = 0)

try to compensate by introducing kinks at about 3300 cm−1. In conclusion, this example of

toluene illustrates that the removal of the windowing effect in MEM based phase retrieval and

the reconstruction with an error-phase estimation according to eq. 3.55 alone do not automat-

ically result in the wanted pure Raman response of the sample. One could easily be mislead

of assigning all the spectral components with negative MEM phase values to a non-resonant

subset of points φNR(ν), which are used for the error-phase φerror(ν,K) estimation (see section

3.3.2), resulting in erroneous Im[χ(3)
Res(ν)]-spectra with underestimated amplitudes and shifted

resonance center frequencies!

The solution to this problem is based on the novel concept introduced in section 5.3.3.

Briefly, the error-phase φerror(ν,K) is reinterpreted by a physical model for the total nonlinear

susceptibility that takes a phase factor eiφe f f and an effective nonresonant susceptibility χ(3)
E e f f ,

which are specific properties of the sample, into account! The purely vibrational Im[χ(3)
Res(ν)] is

then obtained according to eq. 5.36 by using the retrieved MEM-phase spectrum φMEM(ν,K)

instead of the estimated phase spectrum φestimated(ν,K) directly, and determining φe f f and χ(3)
E e f f

via the minimization of the functional given in eq. 5.38. As shown in fig. 5.14 , the re-

constructed spectrum of Im[χ(3)
Res(ν)] is in good agreement with the corresponding spontaneous

Raman scattering spectrum of Toluene. All amplitude ratios almost perfectly match, and the

dispersive character and the center frequency shifts of the bands observed in fig. 5.13 B have

disappeared. The absolute value of the amplitudes has changed as well. For example, the con-

gested CH-stretching region being resonant from 2820 to 3230 cm−1, unlike as in fig. 5.13, the

relative amplitudes now match almost perfectly with those of its spontaneous Raman spectrum.

Such good agreement cannot be achieved using the conventional phase retrieval approaches,

that use spline or polynomial error-phase estimation schemes.

Fig. 5.15 shows the comparison of the complex χ(3)
Res(ν) in a frequency resolved manner using

the novel reconstruction concept according to eq. 5.40 (green curve) with the complex χ(3)
tot (ν)

obtained using the conventional reconstruction approach according to eq. 3.55 (red curve). As

can be seen, the conventional reconstruction leads to dispersive line shapes, a real part spectrum

not centered around zero, and ’twisted’ frequency dependencies where the spectrum leans into

the 4th quadrant of the complex plane. Clearly, the new approach is favorable because it directly

results in the vibrational response of the sample, χ(3)
Res(ν), and in the characterization of the

electronic contributions with values of χ(3)
E e f f = 1.03, φe f f = 36.1◦ in the fingerprint region and

of χ(3)
E e f f = 1.33 and φe f f = 4.3◦ in the CH-stretching region. For comparison, using the ratio

of maximum to minimum excursions in the retrieved phase spectrum (see section 5.3.2), at 803

cm−1, a value of φe f f = 37.8◦ representative for the fingerprint region was determined. When

the values for χ(3)
E e f f are directly extracted from the nonresonant region of the CARS spectrum

shown in fig. 5.11, (χ(3)
E e f f )

2 = 1.06 is found at 877 cm−1, while (χ(3)
E e f f )

2 = 1.77 is found at
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Figure 5.14: Comparison of the reconstructed Im[χ(3)
Res(ν)] spectrum (red) with the spon-

taneous Raman scattering spectrum (blue) of toluene. The reconstruction was performed

using the DFT based MEM phase with squeezing φMEM(ν,K = 1) (curve B in fig. 5.13

A) and applying eq. 5.40. Subsequent background correction was performed for both

spectra using the same set of off-resonant regions. The spectra are normalized to the

peak intensities at 1003 cm−1 and 3060 cm−1 in the fingerprint and CH-stretching regions,

respectively.

2703 cm−1. Thus, the χ(3)
E e f f values directly extracted from the CARS spectra confirm the values

extracted from the minimization procedure according to eq. 5.40, and can essentially not be

chosen better manually. Being fully unsupervised, the novel concept of reconstructing χ(3)
Res(ν)

using eq. 5.38 and eq. 5.40 is clearly the superior method of choice.

5.5 Summary and Conclusions

In this chapter, three novel strategies for the quantitative analysis of CARS spectra have been

introduced.

First, a new approach of calculating the autocorrelation coefficients in the MEM-based re-

trieval of CARS spectra has been demonstrated. While the reconstruction of an Im[χ(3)
Res(ν)]
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Figure 5.15: The frequency resolved complex χ(3)
Res(ν) reconstructed from a measured

CARS spectrum of neat toluene using the novel reconstruction concept according to eq.

5.40 (green curve) in comparison with the complex χ(3)
tot (ν) obtained using the conven-

tional reconstruction approach according to eq. 3.55 (red curve).

spectrum based on the novel DCT-based MEM approach has been shown to be identical with

that obtained using the conventional DFT-based MEM approach with squeezing, the compu-

tation time has been reduced by almost one order of magnitude because only the real parts of

the autocorrelation coefficients C(m) are calculated. In conclusion, the proposed DCT-based

MEM-phase retrieval combines the speed advantages of the DFT-based MEM-phase retrieval

with the advantage of the conventional squeezing of the spectrum, which avoids the windowing

problem at the retrieved MEM-phase spectrum end points.

Second, a new Toeplitz solver for the Eigenwert problem in MEM has been successfully

implemented. The new circulant preconditioned conjugate gradient (CPCG) based MEM ap-

proach has been shown to be faster than the DFT-based MEM with squeezing, and to outper-

form the DCT-based MEM approach when spectra with more than ≈ 235 samples need to be

reconstructed. Its different order of the computational cost makes the CPCG approach better

equipped for spectra recorded with higher spectral resolution (more samples), which will be
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available in the near future. The CPCG approach then allows performing the MEM-phase re-

trieval in time spans shorter than the actual acquisition time of a CARS spectrum, thus opening

the way towards FPGA-based on-chip CARS spectral analysis!

Third, novel concepts for an unsupervised and quantitative reconstruction of CARS data

have been presented, which are summarized by the newly defined functional F1 (eq. 5.38). As a

result, the pure complex vibrational susceptibility χ(3)
Res(ν) of the sample is obtained via eq. 5.40

together with its third-order electronic susceptibility contributions described by χ(3)
E e f f and φe f f .

Using this novel method, it is not necessary to introduce a frequency-dependent error-phase

φerror(ν), as is the case in conventional phase retrieval of CARS spectra. In fact, it was shown

that the error-phase φerror(ν) can be interpreted by the effective phase shift φe f f between the

pure vibrational response χ(3)
Res(ν) and the pure electronic response χ(3)

E e f f of the sample. When

compared with the conventional approach of reconstructing Im[χ(3)
Res(ν)] from a CARS spectrum

(eq. 3.55), the novel concept is superior in cases where the MEM-phase does not return to zero

within a given spectral window of the CARS spectrum. The latter can also be caused in a sam-

ple with an extreme ratio of |χ
(3)
Res(ν)|

2

|χ(3)
E e f f |

2 . In these cases, the conventional reconstruction approach

fails, where the new concept does not. The proposed direct determination of the samples elec-

tronic parameters χ(3)
E e f f and φe f f based on the new concept (eq. 5.38) implies that background

contributions to the nonresonant regions within the CARS spectrum are spectrally flat. This

means, no fluorescence and more importantantly, no windowing at the spectrum end points

is allowed. Consequently, only in combination with an approach preventing the windowing

problem, such as the newly implementation of the DCT-based MEM approach and the CPCG

Toeplitz solver, our novel concept of reconstructing the pure vibrational response of the sample

will be feasable in the full spectral range available in the measured CARS spectrum. To my

best knowledge, the agreement between our reconstructed Raman response and an independent

measured spontaneous Raman scattering spectrum with a level of quality as presented in this

chapter is unmatched. Furthermore, we generalized our novel concept of reconstructing the

pure vibrational and electronic responses of a molecular sample for mixtures of distinct chem-

ical components that do not interact with each other. By introducing the general form of the

functional (eq. 5.53) and the definition eq. 5.52, an unknown species contributing to a mixture

can be reconstructed in a quantitative manner, provided prior knowledge about the other mixture

components is available. Only in this way, mixtures of several components can be reconstructed

in a quantitative manner.

The novel methods developed in this chapter are the prerequisites for the quantitative anal-

ysis of CARS spectral experiments presented in chapters 7 and 8.
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6 Quantitative mapping of the physical
microstructure of thin polymer films

6.1 Motivation

In order to demonstrate the capability of multiplex CARS microscopy to extract the physical

structure properties of an unknown molecular sample, we are interested in the physical proper-

ties of polymer thin films. The knowledge of their micro-domain structure, its 3D distribution

and the size of domains is of high interest for material processing technology. As sketched

in fig. 6.1, the polymer chains in a semicrystalline polymer are arranged in ordered phases

(crystallites) that are embedded in an amorphous matrix. The chemical structures of the two

Figure 6.1: Illustration of the arrangement of a polymer macromolecule in amorphous

(A) and fully crystalline (B) domains. The combination of both domains results in a

heterogeneous micro-domain structure (C). (Taken from [89]).

polymers investigated in this chapter, polypropylene and polyethylene, are given in fig. 6.2.

There are several conventional methods to measure crystallinity in polymers. First, there is

the differential scanning calorimetry (DSC), where the sample of interest is heated to a certain

temperature together with a reference, and the electrical power needed for balancing the tem-

perature of both, sample and reference, is measured. In this way, melting and crystallization of

the sample is directly revealed [90]. Consequently, DSC is invasive by nature. It is lacking any
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Figure 6.2: Chemical structures of polypropylene and polyethylene.

spatial resolution, and is rather slow with acquisition times in the range of minutes. Then, there

is wide-angle X-ray scattering (WAXS) [90], where the crystal structure can be directly deter-

mined from the intensity of X-ray bands in a non-invasive manner. However, this technique is

again lacking spatial resolution and is rather slow with acquisition times in the range of several

minutes [90]. Similar properties hold for conventional NMR spectroscopy, that is noninvasive,

but again lacks spatial resolution and is still rather slow with acquisition times in the range of

minutes [91]. In contrast, noninvasive Raman scattering microscopy offers sub-micron spatial

resolution with acquisition times in the range of 100 ms, when a state of the art confocal Raman

microscope is used. Because of the already discussed limitations of spontaneous Raman scat-

tering (see ch. 3), we here exploit the coherent signal enhancement offered by multiplex CARS

microscopy in order to demonstrate the high speed 3D mapping of micro-domain structures in

thin films of polypropylene (PP) and polyethylene (PE).

In isotropic polymers, characteristic vibrational bands that carry information about the crys-

tallinity, that is a measure for the volume fraction of the polymer macromolecules being in the

crystalline phase, needs to be analyzed in order to quantify the 3D micro-domain structure in

polymers. Fig. 6.3 shows the reconstructed Im[χ(3)
Res(ν)] spectra of isotropic polypropylene and

polyethylene films in the fingerprint region. In the case of isotactic PP, the two most prominent

resonances are at 810 cm−1 and 840 cm−1. The resonance at 810 cm−1 is assigned to CH2, C-C

and C-CH stretching mode contributions predominantly of the long helical chains present in the

crystalline phases, while the resonance at 840 cm−1 is assigned to CH2 rocking and C − CH3

stretching mode contributions predominantly present in the amorphous phase. For polypropy-

lene, we define the normalized amplitude of the 810 cm−1 band as follows:

cPP =
A(810cm−1)∑n

i Ai
with n = 2, 3 or 4 , (6.1)

where Ai stands for the peak amplitude of the ith pseudo Voigt (PSV) profile VPseudo i as extracted

from the spontaneous or reconstructed Raman spectrum within the Raman shift interval [780

cm−1, 870 cm−1]. In the case of high density PE, the two most prominent resonances are at 1300

cm−1 and 1420 cm−1 are of interest, which are assigned to the CH2 twisting mode and to a CH2
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Figure 6.3: Reconstructed Im[χ(3)
Res(ν)] spectra in the fingerprint region of (A) an isotropic

polypropylene film and (B) a high density polyethylene film, as obtained from multiplex

CARS measurements.

bending mode with an overtone contribution, respectively. The intensity of the latter arises from

the crystalline phases, which leads to the following definition of the normalized amplitude of

PE:

cPE =
A(1420cm−1)
A(1300cm−1)

. (6.2)

In this chapter, we first evaluate the Raman model for the definition of the normalized am-

plitude in PP (eq. 6.1). Next, using fast multiplex CARS microscopy, we will demonstrate

the 2D mapping of cPP in the isotropic, oriented and necking regions in a drawn PP film, and

study the 3D microdomain structures of high crystallinity in isotropic PP and PE. Also, we will

evaluate the signal enhancement in CARS by comparing the acquisition times with respect to

spontaneous Raman experiments. Finally, we will compare our cPP with crystallinity values

obtained using conventional DSC and X-ray techniques for the isotropic PP.
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6.2 Materials and methods

6.2.1 Preparation and prior characterization of thin PE and PP films

The preparation and prior characterization of thin PE and PP films were conducted by our col-

laboration partners, Dr. Goulnara Nikolaeva and Dr. Kirill Prokhorov, at the Prokhorov General

Physics Institute, Russian Academy of Sciences, Moscow in Russia. The molecular weights

of PE and PP was about 105 Daltons. Films were fabricated with a force of 50 kN at 190
◦C during 5 min and then cooled within 6-7 min. Molding conditions were chosen to produce

optically transparent films with minimal thickness, which allowed both recording transmission

CARS spectra and uniaxial drawing of the films without rupture up to the formation of a neck-

ing region. Thicknesses of the non-deformed PP and PE films were about 90 µm and 60 µm,

respectively. The films were drawn on an Instron testing machine at room temperature with the

rate of 20 mm/minute. Non-deformed films were studied by DSC and X-ray analysis. X-ray

studies were performed in transmission mode on a DRON-3M diffractometer equipped with

an asymmetric quartz monochromator, which focused a primary CuKα-radiation beam on the

detector. X-ray diffraction spectra were recorded in the region of diffraction angles 2Θ ranging

from 6 ◦ to 36 ◦ in steps of 0.04 ◦, and an accumulation time of 10 sec. Standard procedures

where used for the calculation of the degree of crystallinity of PE and PP based on the X-ray

spectra, as described in ref. [92] and in ref. [90], respectively. In both cases absolute errors are

less than 5 %. Thermal characteristics of the samples were recorded on a DSC 30 calorimeter

with TC-15 processor and STAR SW 8.00 Mettler software. Experiments were carried out in

nitrogen atmosphere in heating – cooling – heating mode with rates of 10 K/min. Enthalpy of

melting of PP with the degree of crystallinity, equal to 100 %, was found to be ∆H0
m = 165 J/g.

Enthalpy of melting of PE with the degree of crystallinity, equal to 100 %, was found to be ∆H0
m

= 290 J/g.

6.2.2 Spontaneous Raman scattering spectroscopy

Spontaneous Raman scattering data of polypropylene were recorded using the setup described

in section 4.1. The full laser power of 37 mW was focussed using the 100x objective in com-

bination with the 25 µm fibre and the 1800 lines/mm grating. The spatial scanning step size

was set to 400 nm. The integration time was 2 s per spectrum. The spectra were background

corrected in the region 775.5 cm−1 - 885.1 cm−1 using a second order polynomial function as

described in section 3.3.2.1. In order to increase the SNR for establishing the best fit model,

the averages of 1600 spectra recorded in both the oriented and isotropic regions of PP were

analyzed. Both mean spectra then were globally fit. The fit model used is described by a linear

combination of up to four Lorentzian bands (eq. 4.9) with µi = 1 (i = 1 . . . 4). Concerning the
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weak bands centered at 825 cm−1 and 838 cm−1, all line shape parameters were shared except

the amplitudes. For the resonances centered at 810 cm−1 and 840 cm−1, all line shape parameters

were allowed to vary freely.

6.2.3 Multiplex CARS microscopy

For the fast mapping of cPP and cPE in PP and PE films, respectively, the multiplex CARS setup

with the configuration E2-D1 (see fig. 4.1) was used. To probe the vibrational range of interest

for PP, the broadband Stokes pulse was centered at λS tokes = 828.3 nm and the narrowband pump

pulse was centered at λPump = 775.1 nm. Different regions of interest within the isotropic, the

oriented and the necking regions of one and the same drawed PP film were imaged. In the

oriented and isotropic regions in PP, the dimensions of the scan areas were 50 µm × 33 µm (100

pixel × 66 pixel) with a scan step size of 500 nm, the laser powers were 20 mW and 10 mW

for the pump and Stokes beam, respectively, and the pixel integration time was 20 ms. In the

necking region of PP, the dimension of the scanned area was 100 µm × 10 µm (250 pixel × 25

pixel) with a scan step size of 400 nm, the laser powers were 40 mW and 20 mW for the pump

and Stokes beam, respectively, and the pixel integration time was 50 ms. For performing CARS

in the vibrational range of interest for PE, the Stokes pulse was centered at λS tokes = 868.3 nm

and the pump wavelength was centered at λPump = 775.1 nm. For the isotropic region in PE, the

dimension of the scanned area was 20 µm × 20 µm (50 pixel × 50 pixel) with a scan step size of

400 nm, the laser powers were 40 mW and 20 mW for the pump and Stokes beam, respectively,

and the pixel integration time was 50 ms. For the 3D mapping of cPE in PE, the dimensions of

the scanned volume were 50.4 µm × 1.5 µm × 12.1 µm (100 pixel × 4 pixel × 31 pixel) with a

scan step size of 504 nm, the laser powers were 40 mW and 20 mW for the pump and Stokes

beam, respectively, and the voxel integration time was 50 ms. For the 3D mapping of cPP in

PP, the multiplex CARS setup with the configuration E2-D2 (see fig. 4.1) was used. Here, the

dimensions of the scanned volume were 33.3 µm × 33.3 µm × 10 µm (100 pixel × 100 pixel

× 30 pixel) with a scan step size of 333 nm, the laser powers were 33 mW and 12 mW for the

pump and Stokes beam, respectively, and the voxel integration time was 670 µs.

With all vibrational bands of interest having a SNR much higher than one, the reconstructed

Im[χ(3)] data were denoised using SVD with six singular values σ = 6 (see appendix A.4.1). A

two band pseudo Voigt fit model (see eq. 4.9 in section 4.5.1) was used to extract the peak am-

plitudes for each spectrum. The cPP and cPE values are then calculated as peak ratios according

to eq. 6.1 and eq. 6.2, respectively.
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6.3 Evaluating the Raman model for the definition of cPP in

polypropylene

As shown by Nielsen et. al. [93], the two main resonances at ≈ 810 cm−1 and ≈ 840 cm−1

(see fig. 6.3 A) appear during solidification of a polypropylene melt as a result of a splitting

of a broad resonance centered at ≈ 830 cm−1 that is assigned to a melt-like amorphous phase.

Consequently, three phases are distinguished: a crystalline phase (helical chains within crystals,

represented by the resonance at ≈ 810 cm−1), an atactic melt-like phase (represented by the

resonance at ≈ 830 cm−1), and an isomeric defect phase (short chains in helical conformation,

represented by the resonance at ≈ 840 cm−1). Fig. 6.4 shows the spontaneous Raman spectra

of isotropic and oriented PP together with the global fit result based on three Lorentzian bands.

The extracted fit parameters are summarized in tab. 6.1. The three resonances centered at 809.1

cm−1, 833.5 cm−1 and 842.1 cm−1 have been clearly resolved. Using eq. 6.1 and these three

resonances, we obtain:

c3 bands
PP =

A(809.1cm−1)
A(809.1cm−1) + A(833.5cm−1) + A(842.1cm−1)

(6.3)

A close inspection of the residuals in the 830 cm−1 region reveals deviations between the fit

curve and the experimental data. This observation suggests that the shoulder at ≈ 830 cm−1

is composed of at least two bands, and a fourth resonance has to be taken into account when

modeling the Raman spectra of PP.

Using a four-band global fit model, a better match with both the isotropic and the oriented

PP is achieved, as can be seen in fig. 6.5. As a result, we observe a splitting of the previously

identified resonance at ≈ 833.5 cm−1 into two resonances centered at 831.4 cm−1 and 835.7

cm−1. The corresponding fit results are also summarized in tab. 6.1. A possible assignment for

these two weak resonances is based on the resonances observed in syndiotactic polypropylene,

where the resonances at 831.4 cm−1 and 835.7 cm−1 are interpreted as short polymer chains

with iterated gauche-gauche-trans-trans (ggtt)n structures for n = 4 and n = 3, respectively

[94]. Consequently, the four bands would then be assigned to a crystalline phase (helical chains

within crystals, represented by the resonance at 809.1 cm−1), a phase containing (ggtt)4 (repre-

sented by the resonance at 831.4 cm−1), a phase containing (ggtt)3 (represented by the resonance

at 835.7 cm−1), and an isomeric defect phase (short chains in helical conformation, represented

by the resonance at 842.1 cm−1). Using four resonances, eq. 6.1 is recast as:

c4 bands
PP =

A(809.1cm−1)
A(809.1cm−1) + A(831.4cm−1) + A(835.7cm−1) + A(842.1cm−1)

. (6.4)

Note, that the resonances at 831.4 cm−1 and 835.7 cm−1 are very weak, and are only clearly

visible in the shown mean spectra obtained with an overall integration time of almost one hour.

We can therefore not expect to resolve these weak bands when we use much shorter spectrum
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Figure 6.4: Global fit of the spontaneous Raman spectra of isotropic and oriented PP

using a three-band fit model (see eq. 4.9 with µi = 1, i = 1 . . . 3).

acquisition times, which results in significantly lower signal to noise ratios with the capability

of only resolving the two most intense resonances centered at 809.1 cm−1 and 842.1 cm−1. The

corresponding fit results are also summarized in tab. 6.1. Using these two resonances only, the

cPP defined as:

c2 bands
PP =

A(809.1cm−1)
A(809.1cm−1) + A(842.1cm−1)

. (6.5)

The calculated normalized amplitudes extracted using the two-, three- and four-band fit models
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Figure 6.5: Global fit of the same spontaneous Raman spectra of isotropic and oriented

PP as shown in fig. 6.4 using a four-band fit model (see eq. 4.9 with µi = 1, i = 1 . . . 4).

according to eq. 6.5, eq. 6.3 and eq. 6.4, respectively, are compared in tab. 6.2. We conclude

that the cPP values obtained with the three-band and the more accurate four-band models are

identical within the fitting errors. However, the use of the simplified two-band model will yield

up to 10 % and 8 % higher cPP values in the cases of isotropic and oriented PP, respectively,

thus representing an upper bound for cPP.
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Table 6.2: Comparison of cPP values extracted from spontaneous Raman spectra of

isotropic and oriented PP obtained using a two-, a three- and a four-band Lorentzian

fit model.

isotropic polypropylene oriented polypropylene

c2 bands
PP 0.54 ± 0.02 0.86 ± 0.02

c3 bands
PP 0.51 ± 0.02 0.80 ± 0.02

c4 bands
PP 0.49 ± 0.02 0.79 ± 0.02

6.4 Mapping cPP and cPE by multiplex CARS microscopy

By application of an uniaxial force, the drawed polymer film undergoes a transition from the

isotropic state to an oriented state within the so-called necking region that separates the two

states from each other, which is illustrated in fig. 6.6. Depending on the actual draw ratio,

the transition can occur on a length scale smaller than 50 µm. Thus, high spatial resolution is

needed to spatially resolve the changes of the cPP and cPE values across this necking region.

Fig. 6.7 A and B show the 2D maps of cPP in isotropic and oriented regions of one and the

same PP film. Here, and for the remainder of the chapter, the two-band model is used for the

calculation of cPP values, i.e. cPP ≡ c2 bands
PP for each image pixel according to the definition

given in eq. 6.5. For the isotropic region of the polypropylene film shown in fig. 6.7 A,

Figure 6.6: Illustration of oriented, necking and isotropic regions in a drawed polypropy-

lene film prepared with a draw ratio of 20 mm/min.
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Figure 6.7: cPP maps obtained by multiplex CARS microscopy inside (A) isotropic and

(B) oriented regions of a thin PP film as indicated by the inserts. Histograms show the

distribution of the cPP values across the indicated line profiles. (C) Comparison of typical

reconstructed Im[χ(3)
Res(ν)] spectra, taken at selected pixels inside the oriented (A) and the

isotropic regions (B and C) of PP.
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domains with high (position C in the map) and low (position B) cPP values are observed. A

lateral profile across the cPP map reveals the average size of these domains to be in the range of

3-4 µm. The distribution of the cPP values along this line profile is centered at cPP = 0.48 with a

FWHM of 0.1. In the oriented region of the same film of polypropylene, the x-y-map of the cPP

appears homogeneous, as is shown in fig. 6.7 B. Its values along the line profile are centered

around a mean of cPP = 0.85 and distributed within a FWHM of 0.03. Within the diffraction-

limited resolution of the setup, no distinct domains are observed. In fig. 6.7 C, the reconstructed

Im[χ(3)(ν)] spectra taken at positions with low (position B in fig. 6.7 A) and high (position C in

fig. 6.7 A) cPP values are shown together with the spectrum from the oriented region (position

A in fig. 6.7 B). In fig. 6.8, we are mapping the cPP values in the necking region. When a line

profile is plotted across this necking region, we obtain a bimodal distribution, directly revealing

the transition from the isotropic to the oriented PP regions. The high cPP distribution inside the

Figure 6.8: cPP map obtained by multiplex CARS microscopy across the necking region

of thin PP film prepared with a drawing ratio of 20 mm/min, as indicated by the inset.

The histogram shows the bimodal distribution of the cPP values across the indicated line

profile.

oriented region is centered at around 0.69 with a FWHM of 0.1, while the low cPP distribution

inside the isotropic region is centered at around 0.48 with a FWHM of 0.16. In the isotropic

region adjacent to the necking region, the similar cPP values are obtained to those deep inside

the isotropic region far away of the necking region. The cPP values obtained in the oriented

region adjacent to the necking region however do not match those values obtained deep inside

the oriented region far away of the necking region. We observe an asymmetry in terms of how

far away from the necking region the cPP values match the values belonging to the limiting

cases. By defining the cPP interval between the FWHM values of both sub-distributions as

boundaries, the size of the necking region in PP can be determined to be (20 ± 5) µm for this

particular draw ratio of 20 mm/minute.

So far, all cPP maps shown have been recorded in two spatial dimensions. In order to

fully characterize the micro-domain distribution and size, we need to perform multiplex CARS
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imaging in all three spatial dimensions. For example, do the microdomains observed inside

isotropic polypropylene (fig. 6.7 A) span the whole depth of the PP film? In fig. 6.9 A, the

Im[χ(3)
Res(809.1 cm−1)] amplitude reconstructed from a 3D CARS experiment scanning a volume

of 33 µm × 33 µm × 10 µm inside isotropic polypropylene film is shown. When passing from

Figure 6.9: (A) 3D-mapping of the Im[χ(3)
Res(809.1 cm−1)], as extracted from fast mul-

tiplex CARS microscopy of an isotropic PP film embedded in water. (B) Correspond-

ing x-z-cross-section of the Im[χ(3)
Res(809.1 cm−1)] amplitudes shown together with line

profiles along the x- and z-axis, revealing column like structures of increased ampli-

tudes perpendicular to an interfacial layer with homogeneous high amplitudes of thick-

ness (2.7 ± 0.1) µm. This PP-water interface is used to determine the spatial resolution

of our multiplex CARS experiment along the z-dimension, which was extracted to be

(0.7 ± 0.1) µm from the derivative curve d(Im[χ(3)
Res(809.1 cm−1)])

dz .

the inside of the PP film at the top to the PP-water interface at the bottom, vertical domains with

high or low Im[χ(3)
Res(809.1 cm−1)] amplitudes are observed. However, close to the interface,

a horizontal layer of an increased and constant Im[χ(3)
Res(809.1 cm−1)] amplitude is observed.

Passing through the polypropylene interface into bulk water, the amplitude diminishes to zero.

In fig. 6.9 B, an amplitude map is shown for a x-z-cross-section plane of the data shown in
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fig. 6.9 A together with the line profiles along the x- and z-dimensions. We can use the plotted

amplitude profiles along the z-dimension to measure the thickness of the observed interfacial

layer as well as the longitudinal spatial resolution of our experiment. The fit of the derivative

of the amplitude profile along the z-axis provides the longitudinal resolution, which amounts to

(0.7±0.1) µm, and the thickness of the interfacial layer of (2.7±0.1) µm. The high longitudinal

resolution is a result of the confocal CARS detection scheme using a single-mode fibre with 4

µm core diameter (see section 4.2).

In the next step, the cPP values are calculated for each voxel using eq. 6.5. In order to

visualise the 3D microstructure of high- and low-cPP domains, fig. 6.10 A shows the iso-surface

at cPP = 0.57, which is separating the high-cPP domain enclosured from the low-cPP domain.

Here, we can clearly observe the vertical structures inside the isotropic polypropylene that seem

Figure 6.10: Calculated 3D-structure of cPP for the same data set of isotropic polypropy-

lene film shown in fig. 6.9. (A) The iso-surface contouring cPP = 0.57 is shown. (B) 2D

cPP-maps are shown for representative x-y- and x-z-cross-section-planes.

to sit on top of the horizontal layer of constant and high cPP values at the interface to water.

When the 3D-microstructure of cPP is analyzed layer by layer, starting in the x-y-plane inside

the isotropic part at the top, the high-cPP domains are directly visualized, as can be seen by

fig. 6.10 B. These structures disappear until approximately 500 nm above the interfacial layer

of high-cPP values. The mean has values around cPP = 0.59 inside the interfacial layer, and

decreases with entering deeper into the film. Approximately 3 µm above the interfacial layer,

the mean cPP value stabilizes at cPP = 0.51. When the x-z-cross-section layers are analyzed, the

vertical structures and the interfacial layer with constant and high-cPP values can be observed

directly (fig. 6.10 B). Thus, the interfacial layer identified in the amplitude map in fig. 6.9 B

can now directly be assigned to the homogeneous interfacial layer in the cPP map!
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In order to adress the question, whether birefringence effects in the polypropylene film in-

fluences the calculated cPP maps, the corresponding map of the χ(3)
NR(x, y, z) values, which were

extracted from the same χ(3)(x, y, z) data set, were generated (data not shown). Since no mi-

crostructure in the χ(3)
NR(x, y, z) map has been observed, we can conclude that only vibrational

resonant features cause the observed microdomain structure of cPP, and birefringence artifacts

can be excluded. A possible explanation for the existence of the horizontal interface layer of

high cPP values could be the high density of crystallization germs at the beginning of the cool-

ing of the PP film (personal communication by Prof. Eduard Oleinik, Semenov Institute of

Chemical Physics, and Dr. Goulnara Nikolaeva, Prokhorov General Physics Institute, Russian

Academy of Sciences, Moscow in Russia.).

In order to quantify the 3D distribution of the domain sizes, image correlation analysis of

the 2D cPP-maps has been performed for the stack x-y-image sections above the homogeneous

interfacial layer. As shown for the x-y-maps in fig. 6.11, the autocorrelation amplitude of the

cPP-map is calculated and then fitted with a 2D Gaussian model (eq. 4.13). In this way, the

average domain size wη(z) and wξ(z) and number density Nob j(z) of domains are obtained as a

function of z for all z > 4.5 µm. No trends along the z-direction are observed for the extracted

average domains with the mean value of 〈wη(z)〉 = (2.5 ± 0.2) µm and 〈wξ(z)〉 = (2.2 ± 0.1) µm,

which suggests slightly elliptical domains in the x-y cross-section. The average number density

Nob j(z) of micro-domains is decreasing with increasing z and stabilises around z = 6 µm. The

mean value of the density 〈Nob j(z)〉 is (0.19 ± 0.03) µm−2.

It is interesting that the observed column micro-structures in PP also have been observed in

thin PE film. Here, Im[χ(3)
Res(ν)] spectra reconstructed from multiplex CARS microscopy data

using the definition of cPE of PE (eq. 6.2) have been used. In the 2D cPE-map of PE shown

in fig. 6.12 A, micro-domains can be observed that are very similar to the ones observed for

isotropic polypropylene. The lateral line profile reveals again domains with a mean size of

≈ 2 µm. The vertical structures that can be observed in the 3D cPE-map of the same sample (fig.

6.12 B) are very similar to the ones observed for polypropylene. The column micro-structures

span the measured scan depth of the PE film, which extends over more than 12 µm.

For the specific cases of isotropic PP and PE, we can directly equate the normalized ampli-

tudes cPP and cPE as defined by eq. 6.1 and eq. 6.2, respectively, to the degree of crystallinity

[95],[96], and can compare the crystallinity values obtained by CARS with the reference mea-

surements using the DSC technique, the X-ray technique, and spontaneous Raman scattering.

For isotropic PP, very good agreement between the crystallinity values obtained by CARS (cPP

= 0.48 ±0.02) with those obtained by spontaneous Raman scattering (cPP = 0.54 ±0.02), is

obtained. This result is expected since the spontaneous Raman spectrum and the Im[χ(3)
Res(ν)]

spectrum reconstructed from multiplex CARS yield one and the same Raman response of the

sample. The degree of crystallinity of an isotropic PP film of identical preparation history, as
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Figure 6.12: (A) 2D cPE-map in the x-y plane and the lateral crystallinity profile along the

indicated line of a thin isotropic polyethylene film, as obtained from Im[χ(3)
Res(ν)] spectra

reconstructed from multiplex CARS spectroscopy and the definition of cPE (eq. 6.2). (B)

3D imaging of cPE of the same sample, also revealing column like structures of high cPE

perpendicular to the plane of the film.

measured by the DSC technique, amounts to cPP = 0.69 ±0.03, whereas the degree of crys-

tallinity measured by an X-ray experiment amounts to cPP = 0.65 ±0.03. Both values coincide

within their error bars. However, when compared with Raman-based techniques, DSC and X-

ray yield systematically higher values. This has been previously observed by Nielsen et. al.

[93], who introduced a scaling factor of 0.93, relating the crystallinity obtained by spontaneous

Raman scattering using eq. 6.3 with the crystallinity obtained by DSC. Based on our experi-

mental values, we obtain a corresponding scaling factor of 0.78. Taking into account that the

crystallinity values obtained by a two-band Raman model represent an upper bound (see the

discussion in section 6.3), we obtain a scaling factor of 0.71.

6.5 Summary and Conclusions

Multiplex CARS microspectroscopy in combination with the reconstruction of the Im[χ(3)
Res(ν)]

Raman response has been demonstrated to be capable of extracting physical structure informa-

tion in polymers in a label-free and quantitative manner.

In the case of PP, a careful re-examination of the signature Raman bands with high signal to

noise ratios in the [780 cm−1, 870 cm−1] range using spontaneous Raman data resulted in both a

refined four-band Raman model and a revised definition of the crystallinity in isotropic PP. This

careful evaluation revealed a fourth resonance in the spectral range of interest for crystallinity

determination of polypropylene that is poorly discussed in literature. As a consequence, the

conventional use of a simplified two-band Raman model yields 10 % higher crystallinity values

representing an upper bound for Raman-derived crystallinity values in isotropic PP. The crys-
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tallinity values obtained using CARS agreed very well with those obtained using spontaneous

Raman scattering.

In this application of quantitative multiplex CARS microscopy, we have demonstrated the

noninvasive 2D and 3D visualization of the physical micro-structure in polymers with sub-µm

spatial resolution in all three spatial dimensions. High and low crystalline micro-domains have

been resolved with 330 nm lateral and 700 nm longitudinal spatial resolution in isotropic PP

films. This example also demonstrates the enhancement of the SNR, when CARS and SR are

compared. Using CARS and the smallest possible readout times of our CCD camera of 670 µs,

we still obtain a signal to noise of SNR = 20. Using confocal spontaneous Raman scattering,

the same SNR is obtained for pixel dwell times of 800 ms. The enhancement factor turns out

to exceed 1000! The stack shown in fig 6.9 consists of image slices, each with 100 pixel ×

100 pixel. Using multiplex CARS imaging, the acquisition per slice takes only 7 seconds. In

a spontaneous Raman experiment, this would take almost 2 h! The stack shown consists of

31 slices! Thus, multiplex CARS microscopy offers fast mapping due to short pixel spectrum

acquisition times in the sub-ms range.

The new CARS method was applied to spatially resolve the polyolefin deformation in a thin

PP film prepared with a drawing ratio of 20 mm/min. As such, 2D maps of the normalized 810

cm−1 resonance amplitude revealed µm-sized domains of increased crystallinity in isotropic PP,

a homogeneous and high amplitude in oriented PP, and the size of the necking region with a

continous transition between the values obtained in isotropic and oriented PP to be (20± 5) µm.

Fast 3D crystallinity imaging has been demonstrated in isotropic PP and PE, revealing both

an horizontal interfacial layer of high molecular order at the boundary of the isotropic PP film

and extended vertical domains of high crystallinity being orthogonal to it. 2D image correlation

analysis of the latter revealed almost equal average domain sizes in the horizontal x and y

dimensions, and extended structures along the vertical z-dimension, suggesting the existence

of near-cylindrical domains of high crystallinity spanning the whole depth of the polymer film.

This observation is an unexpected result, which asks for further investigations into the polymer

growth dynamics.

Finally, the crystallinity values obtained for isotropic PP have been compared with DSC and

X-ray measurements performed by our collaboration partners. Using a literature value provided

by Nielsen et. al. [93] for rescaling the crystallinity values obtained using DSC and X-ray

measurements, in the case of polypropylene qualitative agreement with the crystallinity values

obtained by CARS was achieved.

The results presented in this chapter demonstrate that multiplex CARS imaging is highly

sensitive to the physical structure of polymers, and allows studying their 3D micro-domain

structure in a fast and noninvasive way on the sub-µm length scale. To the best of our knowl-

edge, besides multiplex CARS spectroscopy, no other method is capable of mapping physical
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structure parameters of macromolecular samples, such as the crystallinity of polymers with such

high acquisition speeds and 3D spatial resolution, as demonstrated in this chapter.
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7 Quantitative chemical structure analysis
of lipids

This chapter demonstrates the capability of CARS microspectroscopy of quantitative and non-

invasive analysis of the chemical structures of biologically relevant lipids. The results of this

chapter serve as a prerequisite for the chemical identification of lipids in complex and hetero-

geneous systems, such as living cells, which will be the subject of ch. 8. In this chapter, first

the investigated biological lipids will be introduced. Particular emphasis is put on the specific

Raman spectral signatures that represent the chemical structures of the lipid molecules. It will

then be shown that structural properties can be distinguished based on the spontaneous Raman

spectra, and that the same discriminations and conclusions based on these can be drawn from

reconstructed Im[χ(3)
Res(ν)] spectra, obtained from CARS spectroscopy. Finally we will then

demonstrate that the results obtained by spontaneous Raman and reconstructed Im[χ(3)
Res(ν)] in

a non-invasive manner agree well with the corresponding chemical analysis results obtained by

the gold standard in lipidomics that is mass spectroscopy.

7.1 The lipids of low density lipoproteins

The regulation of lipids and cholesterol in the human body is of great interest in various fields of

medicine, such as atherosclerosis, thrombosis, vascular biomedicine and lipidomics. The lipid

biochemistry of the living cell involves the uptake of fatty acids (FAs), triglycerides (TAGs),

phospholipids (PLs), cholesterol (Chol) and esterified cholesterol (cholesterylesters, CEs). The

lipid biochemistry involves the lipid transportation from one compartment within the cell to

another and the biochemical reactions that modify their molecular structures. Typical reactions

of those lipids are enzyme driven elongation or shortening of their acyl chains, by using for

example elongase, and changes in their degree of acyl chain unsaturation by using reductase

and desaturase, or by non-enzymatic oxidisation [97]. Concerning Chol and CEs, the typical

reaction is their oxidisation resulting in a whole set of oxysterols. Being insoluble in water

these lipids are stored and transported as lipoprotein particles. Lipoprotein particles are distin-

guished by their density and their diameters ranging from 10 to 1000 nm. The density ranges
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from 0.95 to 1.006 g/ml for very low density lipoprotein (VLDL, diameter of ≈ 30-70 nm),

from 1.006 to 1.063 g/ml for low density lipoprotein (LDL, ”bad” cholesterol, diameter of ≈

20-25 nm) and from 1.063 to 1.21 g/ml for high density lipoprotein (”good” cholesterol, HDL,

diameters of ≈ 8-11 nm) [98]. In the human body, LDL particles are essential in the transport

of Chol, for example from the liver to the body tissue. An LDL particle consists of a water

insoluble core (containing approximately 3000 lipid molecules, [97]), which is surrounded by

a water soluble monolayer of phospholipids. The detailed composition of a LDL shell is as

follows: Approximately 700 phospholipid molecules [99] that encompass phosphatidylcholine

(PC, about 450 molecules/LDL particle), sphingomyelin (SM, about 185 molecules/LDL parti-

cle), and 80 molecules of lysophosphatidylcholine (lyso-PC) [99]. Embedded is an APOB-100

apoprotein that has 4536 amino acid residues [97]. Additionally, the shell contains unesteri-

fied Chol (UC). Literature values for the number of UC molecules in the shell differ: While in

ref. [99] 600 UC molecules are assigned to the shell, ref. [100] assignes 400 UC molecules

to the shell and 200 to the core. The detailed composition of a LDL core is as follows: 170

TAG and 1600 CE molecules [99] with some of these molecules penetrating into the mono-

layer shell [97], 200 molecules of UC [100], 10 molecules of phosphatidylethanolamine (PE)

[101], 7 molecules of diacylglycerol (DAG) [102], 2 molecules of ceramide (CER) [103] and

some phosphatidylinositol [104]. Besides lipids, LDL particles also carry lipophilic antioxi-

dants: 6 molecules of K-tocopherol and traces of Q-tocopherol, carotenoids, oxycarotenoids

and ubiquinol-10 [99]. The schematic arrangement of the main constituents of an LDL particle

of 20 nm diameter at a temperature above the phase transition of the core CEs at 20 ◦C is shown

in fig. 7.1 A [97]. The water insoluble Chol, CE, and TAG molecules are encapsulated by the

water soluble monolayer of phospholipids. The monolayer of 2 nm thickness is the yellowish

background. The average composition of the molecular components of the LDL particle shown

in Fig. 7.1 A is in agreement with the above listing of the lipid molecules in a LDL particle, and

is as follows: 20 percent protein (gray), 20 percent phospholipids (dark blue, SM 16:0 and PC

16:0/18:2∆9;12), 40 percent CEs (yellow, 18:2∆9;12), 10 percent unesterified Chol (UC, red), and

5 percent TAG (green, 16:0/18:2∆9;12/14:0)) [97]. Domains that are rich in unesterified Chol,

phospholipids, and APOB-100 apoprotein can be seen, as well as the penetration of the mono-

layer shell by core lipids. In summary, the composition of an LDL particle is quite complex.

In addition, each category of lipids (CEs, TAG, SM, PC) has a broad variety of different chain

lengths, the degrees of acyl chain unsaturation and of the isomerisation of the carbon chain (cis

or trans). Fig. 7.1 B, C, and D show the chemical structures of three typical representatives of

the lipid classes, such as a fatty acid methyl ester (FAME, methyl oleate 18:1) , a TAG (trioleate

3C18:1), and a CE (cholesteryl oleate C18:1), respectively. All molecules shown have the same

chain length nC−C=18 and degree of acyl chain unsaturation nC=C=1. FAMEs do not occur in

LDL particles. The molecular structure of all occuring lipids share the FAME lipid acyl chain,
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Figure 7.1: (A) Schematic structure and lipid composition of a low density lipoprotein

(LDL) particle (modified from ref. [97]). (B) Chemical structures of FAME (methyl

oleate 18:1), (C) TAG (trioleate 3C18:1), and (D) CE (cholesteryl oleate C18:1). See text

for abbreviations.

only the residues differ. This makes FAMEs a good model to study the influence of acyl chain

length and the degree of acyl unsaturation on the Raman spectrum. A FAME molecule consists

of an acyl chain with an ester C=O bond. A certain number of double bonds separated by at

least two single bonds can be present in the acyl chain. When three of these FAMEs are bound

to glycerol, a TAG is obtained with the structure shown in fig. 7.1 C for trioleate 3C18:1. Within

a TAG molecule, each of the three acyl chains can be different in length and saturation, meaning

that using Raman spectroscopy only a representative average length and average degree of acyl

chain unsaturation is measured. When the FAME acyl chain is connected with a Chol molecule

(or in general an oxysterol), one obtains a CE as shown in fig. 7.1 D, where we can expect

that as a first approximation the spectral properties of both Chol and FAME will be combined,

which will be discussed in detail in section 7.3. In addition, in the case of unesterified Chol,

oxidisation can lead to a variety of oxidisation products, such as oxysterols (see fig. 7.2).

The oxidisation of Cholesterol (cholest-5-en-3β-ol, see fig. 7.2 on the top) can be of enzy-

matic or non-enzymatic nature, resulting in oxysterols that contain additional groups attached

to the Chol structure. These additional groups make oxysterols very biologically active, and

this is where the interest in oxysterols stems from. Oxysterols like epoxy-, keto-, and hydroxy-

cholesterol regulate cellular functions, de novo sterol and DNA synthesis [106], as well as the
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Figure 7.2: Molecular structures of Cholesterol and oxysterols in the non-enzymatic oxi-

disation pathway of cholesterol (adapted from ref. [105]).

plasma membrane structure in terms of permeability, hydrophobic thickness, and conforma-

tional order [107], only to name a few. They have as well been shown to be two orders of

magnitude more reactive than unoxidized Chol [108]. Oxysterols can easily be produced by

contact with air in presence of light and/or heat [109]. We will concentrate on the oxysterols

that are involved in the non-enzymatic oxidisation of Chol. The corresponding pathway is given

by Brown [105] in fig. 7.2. Starting with Chol at the top, reactive oxygen species (ROS) at-

tack Chol, leading to a peroxyl radical (COO−) by removing hydrogen from the carbon atom

number 7 in the B-ring of Chol and to a subsequent reaction with molecular oxygen [110].

As an intermediate step, 7-α/β cholesterol hydroperoxides (7-α/β- OOHC) are formed. At

early stages of non-enzymatic Chol oxidisation, this is the major oxysterol formed [110]. How-

ever, when transition metals are present, the (7-α/β- OOHC) are turned into alkoxy radicals

(7-α/β−CO−), from which 7-α/β- hydroxycholesterol and 7-ketocholesterol are formed [105],

[111], which are the major non-encymatically formed oxysterols in tissue. It has been shown

that 7-β-hydroxycholesterol is connected with cardiovascular diseases [111], and is correlated
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with atherosclerotic progression [112]. Chol, 7-α-hydroxycholesterol, and 7-ketocholesterol

are used as models for CEs containing these structures. They lack the acyl chain, but the

main focus is paid to distinguish Chol, 7-α-hydroxycholesterol, and 7-ketocholesterol from

each other. The spectral properties of CEs containing both Chol (or oxysterols) and a fatty acid

acyl chain, as a first approximation again will be treated as a linear combination. This will be

discussed in detail in section 7.3. With the only difference between 7-α-hydroxycholesterol and

7-β-hydroxycholesterol being the direction, in which the OH group at position C-7 is point-

ing at, their spontaneous Raman spectra are expected to be indistinguishable. Therefore, 7-α-

hydroxycholesterol is used to spectrally characterize both oxysterols.

With the sizes of LDL particles of approximately 20 nm, both spontaneous Raman and

CARS spectroscopy will always measure average spectra of more than one LDL particle inside

the focal detection volume. In order to be able to distinguish and quantify the LDL lipid con-

stituents, we need to establish characteristic Raman spectral features for each lipid constituent,

which serve as basis spectra for the decomposition of measured spectra. The strategy therefore

is as follows: First, pure model standard lipids (FAMEs, a TAG, and CEs) will be analyzed.

Once the spectral markers for the determination of the chain length, the degree of acyl chain

unsaturation, and the type of isomerisation have been identified, these signatures will be used

to calibrate the spontaneous Raman and reconstructed Im[χ(3)
Res(ν)] spectra of the LDL particles.

This will then allow to quantify the LDL composition.

As already mentioned, we will concentrate on the oxysterols that are involved in the non-

enzymatic oxidisation of Chol. It is known, that the uptake mechanism in human macrophages

is different, when enzymatically modified lipoprotein particles (ELDL) and oxidised lipoprotein

particles (OxLDL) are compared [113]. Before studying differences in living human macrophages

using in vivo CARS spectroscopy (see chapter 8), here we first characterize the spectral signa-

tures of oxysterols in ELDL, OxLDL, and native LDL particle solutions in vitro, using both

spontaneous Raman and CARS spectroscopy.

7.2 Materials and methods

7.2.1 Preparation of LDL solutions

Isolation of human native LDL with densities ranging from 1.006 mg/ml to 1.063 mg/ml from

plasma of healthy blood donors was carried out according to the method of Bligh and Dyer

[114], and subsequent enzymatic degradation was performed by Margot Grandl in the labora-

tory of Prof. Dr. med. Gerd Schmitz at the University hospital in Regensburg [115]. LDL was

diluted to 2 mg/ml protein in PBS (w/o Ca2+, Mg2+). Enzyme treatment was conducted with

trypsin (6.6 µg/ml) (Sigma, Taufkirchen, Germany) and cholesterol esterase (40 µg/ml) (Roche
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Biochemica, Mannheim, Germany) for 48 h at 37 °C. Oxidative modification of LDL was per-

formed according to published protocols [116] by dialyzing LDL (1 mg of protein/ml) against

5 µM CuS O4. Modified lipoproteins were stored at 4 °C. Prior to spectroscopic measure-

ments, the stock solutions of LDL (concentrations: ELDL 2 mg/ml, LDL 4.5 mg/ml, OxLDL

0.94 mg/ml) were diluted by adding 1 ml of PBS buffer (Dulbecco’s PBS, PAA Laboratories

GmBH) to a final volume of 0.3 ml of each LDL solution. In order to increase the LDL con-

centration, these solutions were then ultra-centrifuged for 45 min. in polycarbon tubes at 140

krpm using a Discovery ME150 SE centrifuge (Thermo Fisher Scientific) at 4 °C, and then split

into three parts with volumes 1050 µl, 150 µl and 100 µl ordered corresponding to the increas-

ing LDL concentrations. The 100 µl fraction with the highest concentration was then used for

spontaneous Raman measurements, as described in section 7.2.3.

7.2.2 Pure standard lipids investigated

The used FAME standards were methyl myristoleate, 14:1 (LGC, Wesel, Germany), methyl

palmitoleate 16:1 (Sigma, Taufkirchen, Germany), methyl oleate 18:1 (LGC), methyl 11c-

eicosenoate 20:1 (LGC), methyl erucate 22:1 (LGC), methyl stearate 18:0 (Sigma), methyl

linoleate 18:2 (Sigma), methyl linolenate 18:3 (Sigma), methyl elaidate 18:1t (Sigma), and

methyl linolelaidate 18:2t (Sigma). The used TAG standard was trioleate 3C18:1 (Sigma). The

FAME and TAG standards have been stored at -20 °C prior to the spectroscopic measurements.

The CE standards were obtained from our collaboration partners at the University of Re-

gensburg. The used CE standards were Cholesteryl palmitate C16:0, cholesteryl palmitoleate

C16:1, cholesteryl stearate C18:0, cholesteryl oleate C18:1, cholesteryl linoleate C18:2, and

cholesteryl arachidonate C20:4. The CE standards were dissolved as 1 mg/ml solution in a

1:1 n-Hexan-isopropanol solution. In order to measure the CE spectra without the solvent, the

solvent was evaporated in the dark and at 4 °C prior to performing the spontaneous Raman mea-

surements. Because the fully saturated CE (C18:0) is solid at room temperature, it was heated

to a temperature above its phase transition temperature before recording the spectra.

The used cholesterol and oxysterols were Cholesterol (Sigma), 7-α-hydroxycholesterol (Avanti

Polar Lipids, Alabaster, USA), and 7-ketocholesterol (Avanti Polar Lipids). Prior to sample

preparation, the cholesterol and oxysterols were stored at -20 °C and under exclusion of light.

Samples were dissolved in chloroform (Merck, Schwalbach, Germany) or in CCl4 (Sigma).

7.2.3 Spontaneous Raman spectroscopy

Spontaneous Raman spectra of the pure FAME and TAG standards were recorded using the

WITec CRM-200 system, described in section 4.1, at room temperature inside an aluminium

reservoir that was covered during the measurements with a microscope cover slip of 150 µm
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thickness (Roth Chemie, Karlsruhe, Germany, #H877). Measurement conditions: Excitation

wavelength λEx = 532 nm, laser power 21 mW, 40x 0.6 N.A. objective, 600 g/mm grating.

Parallel- and perpendicular-polarized spectra were recorded using the 25 µm (N.A. = 0.12)

fibre with 10x2 sec integration time. Data analysis details: The CRR removal and the dark

count subtraction was performed using the WITec software. No further background subtraction

was performed in the CH-stretching region (2000 - 3445 cm−1). In the fingerprint region (566

- 2040 cm−1), the iterative polynomial approach (see description in section 4.3) was performed

without subtraction of the glass reference spectrum. The order of the polynomial was p = 5.

The pure CEs were also transferred into an aluminium reservoir and covered during the

measurements at room temperature with a microscope cover slip of 150 µm thickness (Roth

Chemie, Karlsruhe, Germany, #H877). SR spectra of the pure CEs were recorded using the

WITec alpha 300 RA system, described in section 4.1. Measurement conditions: Excitation

wavelength λEx = 532 nm, laser power 32 mW, 100x objective, 600 g/mm grating. Unpolar-

ized, parallel- and perpendicular-polarized time series spectra were recorded using the 50 µm

fibre with 1000x0.1 sec integration time at several positions. Time series spectra did not show

any spectral signs of oxidisation except for C20:4. In the case of C20:4, 10 time series spec-

tra were recorded using 100x0.1 sec integration time at 10 different positions. Data analysis

details: The CRR removal, dark count subtraction and averaging of all time series spectra was

performed using the WITec software. No further background subtraction was performed in the

CH-stretching region (2000 - 3734 cm−1). In the fingerprint region (335 - 2070 cm−1), the itera-

tive polynomial approach (see description in section 4.3) was performed without glass reference

subtraction. The order of the polynomial was p = 9.

For cholesterol and all oxysterols investigated, solutions with 100 mM concentration were

filled into a sample chamber made of a microscope slide (Roth Chemie, Karlsruhe, Germany,

#H868) and a microscope cover slip of 150 µm thickness (Roth Chemie, #H877), both being

separated from each other by another microscope cover slip that acts as a spacer. These cham-

bers then were sealed using sodium silicate to avoid evaporation of the chloroform and CCl4

solvents. SR spectra were recorded using the WITec alpha 300 RA system, described in sec-

tion 4.1. Measurement conditions: Excitation wavelength λEx = 532 nm, laser power 32 mW,

100x objective, 600 g/mm grating. Unpolarized, parallel- and perpendicular-polarized time se-

ries spectra were recorded using the 100 µm fibre with 1000x0.1 sec integration time for the

chloroform dissolved sterols, and using the 50 µm fibre with 5000x0.1 sec integration time for

the CCl4 dissolved sterols. Data analysis details: After CRR using the WITec software, dark

count subtraction was performed using MATLAB. In the CH-stretching region, the chloroform

solvent spectrum was subtracted. Supervised background correction was performed in the spec-

tral regions 192-2302 cm−1 and 2303-3355 cm−1 using the iterative polynomial approach [50]

followed by Akima spline background correction (see the description in section 3.3.2.1). The
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orders of the polynomials were p = 5 and p = 2 in the fingerprint and CH-stretching regions,

respectively.

Spontaneous Raman spectra of the LDL particle solutions extracted from patients were

recorded using the WITec alpha 300 RA system, described in section 4.1. With the excita-

tion wavelength at λEx = 532 nm, fractions of β-carotene [117] are excited in (pre-)resonance

to its excited electronic states. The Raman spectrum of the LDL particles therefore would be

superimposed with a very strong Raman signal of β-carotene. To avoid this problem, bleaching

of the β-carotene fraction prior to the measurements of the Raman spectra of the LDL particles

was performed at a laser power of 32 mW for 30 min. Thereafter, the measurement conditions

of the LDL solutions were: Excitation wavelength λEx = 532 nm, laser power 32 mW, 100x

objective, 600 g/mm grating. Unpolarized, parallel and perpendicular polarized time series

spectra were recorded using the 100 µm fibre with integration times of 600x1 sec for LDL and

6000x0.1 sec for ELDL and OxLDL solutions. Data analysis details: The CRR removal and av-

eraging of all time series spectra was performed using the WITec software. A first background

subtraction was performed using the first-order polynomial background function of the WITec

software, and a spectral mask consisting of off-resonant regions. Then, a second background

correction was performed in the spectral regions 192-2302 cm−1 and 2303-3355 cm−1 using the

iterative polynomial approach (see description in section 4.3). The orders of the polynomials

were p = 15 and p = 3 in the fingerprint and CH-stretching regions, respectively. Subsequent

Akima spline background correction was not necessary.

7.2.4 CARS spectroscopy

For the CARS measurements of the FAME standards and LDL solutions, the setup described

in section 4.2 was used with supercontinuum generation and the spectrometer S1 (E in position

E1 and mirror D in position D1). All CARS measurements have been performed at room

temperature. The samples were transferred into a sample chamber consisting of two microscope

cover slips of 150 µm thickness (Roth Chemie, Karlsruhe, Germany, #H877), separated by a

spacer with an approximate thickness of 300 µm. The Pump wavelength was set to λPump =

808.1 nm.

The following measurement conditions have been used for the FAME standards: Powers

used were 20 mW and 10 mW for the Pump and Stokes beams, respectively. Time series con-

taining 100 spectra with an integration time of 100 ms per spectrum have been measured for

each FAME standard. Data analysis details: All 100 spectra per FAME standard have been

reconstructed separately as described in section 5.3.3. The only supervised background sub-

traction was performed after the reconstruction using an Akima spline.

The following measurement conditions have been used for the LDL solutions: Powers used

were 40 mW and 10 mW for the Pump and Stokes beams, respectively. Time series containing
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300 spectra with an integration time of 100 ms per spectrum have been measured for each

LDL solution. Data analysis details: All 300 spectra per LDL solution have been reconstructed

separately as described in section 5.3.3. Because during the CARS measurement the signal

intensity was fluctuating, only the spectra of the time series with the highest SNR have been

used for the analysis. This leads to the following effective CARS spectrum integration times

of 2.6 sec for OxLDL, 8 sec for ELDL and 1.8 sec for LDL. To minimize spurious remains

of etaloning from the used CCD, a background spectrum was generated from the spectra with

the smallest SNR. This background spectrum was smoothed and subtracted in the fingerprint

region. The only supervised background subtraction was performed after the reconstruction

using an Akima spline.

7.2.5 Mass spectroscopy

For comparison, mass spectroscopy has been carried out on the LDL, ELDL and OxLDL parti-

cles by our collaborators at the University hospital in Regensburg. After addition of chloroform

and water, the samples were centrifuged (20 min/4 krpm at room temperature). The dried

chloroform phase was dissolved for quantitative lipid analysis. Lipid extracts were analyzed by

electrospray ionization tandem mass spectrometry (ESI-MS/MS) as described previously [118],

[119], [120], [121], [122] and [123].

7.3 Spontaneous Raman spectra of pure lipid components

Fig. 7.3 presents the parallel-polarized spontaneous Raman (SR) spectra of CE C18:1, TAG

3C18:1, and FAME 18:1, whose molecular structures are shown in fig. 7.1 B-D. In all three

cases, the number of double bonds in the acyl chain is nC=C = 1, and the length of the carbon

chain is nC−C = 18. On the first glimpse, all three spectra are very much alike. The simplest

lipid, both in terms of spectral features as well as the molecular structure, is the FAME (methyl

oleate 18:1). In its spectrum, the most pronounced isolated bands in the fingerprint region

are centered at 1267 cm−1 and 1655 cm−1 assigned to cis C=C double bonds at 1300 cm−1

and at 1440 cm−1 both assigned to the CH2 bonds, and the C=O bond centered at 1740 cm−1

(see also the assignment table 7.1). In the CH-stretching region, overlapping contributions of

symmetric and asymmetric CH2 and CH3 stretching modes are observed. Additionally, a band

centered at around 3007 cm−1 assigned to cis C=C bonds is observed on top of the tail of the

CH-stretching intensity. The most intense band in the CH-stretching region is the symmetric

CH2 stretching mode centered at 2848 cm−1, typical for acyl-chains. When the spectrum of the

TAG (trioleate 3C18:1) is compared with the FAME (methyl oleate 18:1), the only differences

are the signal intensities of methyl oleate being more pronounced at 2947 cm−1 (assigned to
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Figure 7.3: Parallel-polarized spontaneous Raman spectra of FAME (methyl oleate 18:1),

TAG (trioleate 3C18:1), and CE (cholesteryl oleate C18:1). Spectra are normalized to the

peak intensity at 1740 cm−1 and offset against each other for better visibility. Spectra in

the CH-stretching region are scaled down by a factor of 0.2.

the asymmetric CH3 stretch) and less pronounced in the region 2890-2910 cm−1 (assigned to

the asymmetric CH2 stretch) than those of trioleate. This can be directly understood from

the molecular structures of methyl oleate and trioleate: To form a trioleate molecule, three

terminal OCH3 groups of the three methyl oleate molecules react to form the glycerol structure

CH2OH − CHOH − CH2OH. Consequently, a TAG has three CH3 groups less, but two CH2

groups more than in three corresponding FAME molecules. When the spectrum of the CE

(cholesteryl oleate C18:1) is compared with the FAME spectrum, more differences due to Chol

show up. An isolated band at 700 cm−1 and a manifold of weak and overlapping bands covering

the region from 710 cm−1 to 1400 cm−1 are assigned to the sterol rings and their C-C stretching

modes.

In addition, a new band centered at 1674 cm−1 shows up, which is assigned to the cis C=C bond

between carbon atoms five and six of the B ring of Chol. All bands observed in FAME can

also be found in C18:1, but the intensity ratios have changed: The intensity of the broad band

centered at 1440 cm−1 has increased, while the intensities of the bands at 1655 cm−1 and 2848

cm−1 have decreased. In first approximation, the CE spectrum can be understood as the linear
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Table 7.1: Observed Raman peak frequencies ν0 and their tentative assignment for

FAMEs, CE standards, Cholesterol, 7-ketocholesterol, 7-α-hydroxycholesterol, LDL,

OxLDL, and ELDL.

ν0 / cm−1 assignment observed in species

546 - Chol, 7-ketocholesterol and LDLs

600-610 - Chol, 7-α-hydroxycholesterol, CEs and LDLs

700 - Chol, CEs and LDLs

849 C − H bending [124] Chol, FAMEs, TAGs, CEs and LDLs

920 - Chol and LDLs

1001 - 7-ketocholesterol and LDLs

1061 C −C asym. skeletal vibrations [125] FAMEs, TAGs, CEs and LDLs

1184 C −C skeletal vibrations [125] 7-ketocholesterol and ELDL

1267 cis = C − H in plane in alkyl chains [126] FAMEs, TAGs, CEs and LDLs

1300 γ CH2 twist, chain length [127] FAMEs, TAGs, CEs and LDLs

1440 δ CH2 bend, chain length [127], [125] FAMEs, TAGs, CEs and LDLs

1460 δ CH3 asym. bend [125] FAMEs, TAGs, CEs and LDLs

∼ 1630 C = C stretch [128] 7-ketocholesterol and OxLDL

1655-1660 cis C = C stretch in alkyl chains [126],[129] FAMEs, TAGs, CEs and LDLs

1669 C = O stretch [130], [124] 2-cyclohexen-1-one, 7-ketocholesterol, OxLDL and CEs

1669-1674 C = C stretch [131], [132] Chol, 7-ketocholesterol,

7-α-hydroxycholesterol and LDLs

1670 trans C = C stretch in alkyl chains [129] FAMEs

1720-1745 C = O stretch [132] FAMEs, TAGs, CEs, LDL and OxLDL

2740 CH2(δ + γ) [133] FAMEs, CEs, Chol and LDLs

2820-2855 CH2 sym. [134] FAMEs, CEs, Chol and LDLs

2855-2885 CH3 sym. [134] FAMEs, CEs, Chol and LDLs

2885-2940 CH2 asym. [134] FAMEs, CEs, Chol and LDLs

2940-2980 CH3 asym. [134] FAMEs, CEs, Chol and LDLs

3008 trans = C − H in alkyl chains [129] FAMEs, TAGs and CEs

3007, 3013-3019 cis = C − H in alkyl chains [126], [129] FAMEs, TAGs, CEs, LDL and ELDL

3032 C = C − H stretch in six-membered rings [124] Chol, 7-ketocholesterol,

7-α-hydroxycholesterol, CEs and OxLDL

3600 free hydroxyl stretching [128] Chol, 7-ketocholesterol,

7-α-hydroxycholesterol and saturated CEs
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combination of the FAME 18:1 and the Chol basis spectra.

7.3.1 Identification of spectral features for Cholesterol oxidisation

Fig. 7.4 shows the spectra of Chol and its oxysterols, 7-α-hydroxycholesterol and 7-

ketocholesterol, dissolved in chloroform. For the assignment of the bands, see the table 7.1.

The characteristic vibrational bands observed for cholesterol are at 700 cm−1, 849 cm−1, and

Figure 7.4: Parallel-polarized spontaneous Raman spectra of cholesterol and its oxys-

terols 7-α-hydroxycholesterol and 7-ketocholesterol, dissolved in chloroform. Spectra

are normalized to the peak intensity at 2870 cm−1. (In the spectral regions where the

bands of the solvent chloroform reside, no data are shown).

a broad feature in the 920 cm−1 region. For 7-ketocholesterol, the bands at 1001 cm−1, 1184

cm−1, and a strong band at 1630 cm−1 are characteristic. Compared to Cholesterol, no band

at 601 cm−1 is observed for 7-ketocholesterol. The spectrum of 7-α-hydroxycholesterol is al-

most identical with that of 7-ketocholesterol. The only characteristic spectral feature of 7-α-

hydroxycholesterol is the missing band at 546 cm−1.

In order to distinguish Chol from its oxysterols, we make use of the main spectral differences

between the three compounds observed in the region between 1600 cm−1 and 1700 cm−1, and

shown in the inset of fig. 7.4. Chol has only one vibrational band at 1674 cm−1 that is assigned to

the cis C=C double bond between carbons 5 and 6 of the B-ring (see the chemical structure given

in fig. 7.2). In the B-ring of Chol, the vibrational energy of the cis C=C double bond is slightly

increased when compared to the cis C=C double bond in acyl chains at 1655 cm−1. Compared

to Chol, the additional -OH group attached to position C-7 in 7-α-hydroxycholesterol results in

a decrease of the vibrational energy of the cis C=C double bond in the B-ring. The spectrum

112



of 7-ketocholesterol however shows striking differences: Two strong bands appear, one band

with a width of more than 20 cm−1 located at 1665 cm−1, and a second band at 1632 cm−1 with

a width of 15 cm−1, which are assigned to the C=O double bond and the cis C=C double bond,

respectively. These red-shifts of the Raman resonance frequencies of the C=O double bond and

the cis C=C double bond have previously been observed for the structural changes in the B-ring

subunit in cyclohexanone and 2-cyclohexen-1-one [130]: In cyclohexanone, which lacks the

cis C=C double bond, the C=O double bond appears at 1709 cm−1, while it shows up as two

bands centered at 1669 cm−1 and 1682 cm−1 in the case of 2-cyclohexen-1-one, which contains

a cis C=C double bond. This cis C=C double bond appears at ≈ 1616 cm−1 [135]. Although

not spectrally resolved in 7-ketocholesterol, this double band character explains the increased

width of the observed band at 1665 cm−1, when compared with Chol or 7-α-hydroxycholesterol.

These numbers can be compared with ketones of steroids, where the spectral position of the

C=O band is characteristic to the structure. When attached to the six membered B-ring, the

C=O band appears in the spectral region 1700 cm−1 – 1720 cm−1. The conjugation of the cis

C=C double bond and the C=O bond causes the resonance frequency of the latter to downshift

by 30-40 cm−1 [124]. An infrared spectrum of 7-ketocholesterol is published by Chicoye et.

al. [128], where two bands at approx. 1635 cm−1 and 1678 cm−1 have been observed, which

provides further evidence that the band assignment for 2-cyclohexen-1-one can qualitatively be

transferred to 7-ketocholesterol.

In all three spectra shown in fig. 7.4, the weak bands observed in the spectral region between

2720 cm−1 and 2760 cm−1 are assigned in the literature to either CH-stretching modes [136] or to

combination modes of CH2 (δ+γ) [133]. However, the three molecules discussed here differ in

the number of C-H bonds at position C-7: Chol has two C-H bonds, 7-α-hydroxycholesterol has

one, and 7-ketocholesterol none at all. These differences suggest that their correct assignment is

to combination modes of CH2 (δ + γ) [133]. Finally, we observe the band at 3600 cm−1, which

is assigned to free hydroxyl stretching modes [128].

In order to obtain spectra in the CH-stretching region without any overlap of the Ra-

man bands of the solvent Chloroform, measurements of Chol, 7-α-hydroxycholesterol and

7-ketocholesterol were repeated in CCl4, a solvent which is lacking per definition any CH-

vibrations. The corresponding spontaneous Raman spectra are shown in fig. 7.5. All spec-

tra have a similar form with two main maxima located at approximately 2870 cm−1 and 2940

cm−1, assigned to symmetric CH3 stretching and asymmetric CH3 stretching modes, respec-

tively. Although differences of the molecular structures between Chol, 7-α-hydroxycholesterol,

and 7-ketocholesterol are small, they can be found in their spectra of the CH-stretching region.

When compared with Chol, 7-ketocholesterol and 7-α-hydroxycholesterol have one CH2 group

less due to the C=O-bond and the hydroxy-group at C-7, respectively, which results in less in-

tensities at 2850 cm−1. In the case of 7-ketocholesterol, no hydrogen is connected to C-7. In
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Figure 7.5: Unpolarized spontaneous Raman spectra of cholesterol and its oxysterols,

7-α-hydroxycholesterol and 7-ketocholesterol, dissolved in CCl4. All spectra are nor-

malized to the peak intensity at 2870 cm−1.

the case of 7-α-hydroxycholesterol, there is one hydrogen left. However, the number of CH3

groups is in both cases unchanged, and it is reasonable to normalize the spectra to the peak

intensity of the symmetric CH3 stretching mode. Around 2900 cm−1, 7-ketocholesterol has the

least intensity that might be related to the shift of the asymmetric CH3 stretching mode at 2947

cm−1, while for Chol and 7-α-hydroxycholesterol the spectral position is at 2938 cm−1. A small

red-shift of 2 cm−1 can be observed for the symmetric CH3 stretching mode in the case of 7-

α-hydroxycholesterol. The small features at 3010 cm−1 and 3040 cm−1 are assigned to noise.

The cis C=C double bond from the B-ring shows up as a weak and broad band at around 3032

cm−1 in Chol, which is even weaker and difficult to see in 7-α-hydroxycholesterol. In the case

of 7-α-hydroxycholesterol, the SNR is much lower than for the other two spectra, which is due

to the poor solubility of 7-α-hydroxycholesterol in CCl4.

In summary, because of the isolated resonances observed in the fingerprint region, it is

clearly easier to distinguish cholesterol, 7-α-hydroxycholesterol, and 7-ketocholesterol in the

fingerprint region rather than in the CH-stretching region. Thus, the key for being sensitive for

the small changes induced in the molecular structure during oxysterol genesis is to have spectral

information in the fingerprint region!
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7.3.2 Identification of spectral signatures for the lipid chain length

Having introduced the classes of molecules that constitute LDL particles and intracellular lipids,

in the next step, we will identify spectral Raman signatures that reflect their chemical structure

differences in acyl chain length and the degree of acyl unsaturation, as represented by the num-

ber of carbon atoms nC−C and the number of double bonds nC=C, respectively. Fig. 7.6 shows the

parallel-polarized SR spectra of a series of FAMEs with nC=C = 1 fixed and nC−C ranging from

14 to 22. With increasing chain length nC−C, the relative intensities of the bands at 1300 cm−1,

1440 cm−1, and 2845 cm−1 increase, which reflect the increasing number of CH2 groups in the

lipid chain. The band at 1300 cm−1 representing nC−C is overlapping with the band at 1267 cm−1

Figure 7.6: Parallel-polarized spontaneous Raman spectra of FAMEs with nC=C = 1 fixed

and varying nC−C, showing the chain length dependence. Spectra are normalized to the

peak intensity at 1740 cm−1. Spectra in the CH-stretching region are scaled down by

a factor of 0.2. The inset shows the linear dependence of the sum of the relative peak

intensities of the resonances at 1440 cm−1 and 1460 cm−1 on the carbon chain length.

representing nC=C, while the bands at 1440 cm−1 and 1460 cm−1 both representing nC−C are well

isolated from bands representing nC=C. In the inset of fig. 7.6, the sum of the peak intensities
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at 1440 cm−1 and 1460 cm−1 is normalized to the peak intensity at 1740 cm−1, and plotted as

a function of the chain length nC−C. A linear dependence with a slope of 0.203 is observed.

Besides the peak at 2845 cm−1, the complete CH-stretching intensity is increasing with nC−C.

Therefore, the CH-stretching region is not very specific to determine lipid chain length. Finally,

we observe again the weak bands at 2740 cm−1 and 2760 cm−1, whose intensities are correlated

with the intensities of the bands at 1300 cm−1 and 1440 cm−1. This observation supports again

the assignment of the bands at 2740 cm−1 and 2760 cm−1 to combination modes CH2(δ + γ)

[133].

Next, we will investigate the chain length dependence in the more complex CEs. Fig. 7.7

shows the parallel-polarized spontaneous Raman spectra of two saturated CEs (nC=C = 0) with

nC−C= 16 and nC−C= 18. When compared with the corresponding spectra for the chain length

dependence of the FAMEs series (fig. 7.6), we obtain a quite similar picture. The entire spec-

Figure 7.7: Parallel-polarized spontaneous Raman spectra of CEs with nC=C = 0 fixed

and nC−C = 16 compared with nC−C = 18. Spectra are normalized to the peak intensity at

1740 cm−1. Spectra in the CH-stretching region are scaled down by a factor of 0.2.

trum intensity is increasing with increasing chain length nC−C. The sum of the peak intensities at

1440 cm−1 and 1460 cm−1 normalized for the peak intensity at 1740 cm−1 increases by a factor
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of 1.25, which is slightly higher than the factor of 1.14 obtained for the FAMEs. This difference

can be explained by the spectral contribution of Chol to the intensity at 1440 cm−1. Like in the

FAME series, we see a similar picture for the weak bands at 2740 cm−1 and 2760 cm−1 in CEs,

whose intensities are again increasing with the chain length. If no double bonds are present in

the acyl chain of CEs, additional Raman bands residing in the range between 2400 cm−1-2660

cm−1 are observed (not shown). Note that in both CE spectra shown in fig. 7.7 the band at 3032

cm−1 assigned to the cis double bond in the B ring of Chol is clearly visible.

7.3.3 Identification of spectral signatures for the degree of acyl chain un-
saturation in lipids

In fig. 7.8, the parallel-polarized spontaneous Raman spectra of a series of FAMEs with

nC−C = 18 fixed and nC=C of cis type ranging from 0 to 3 are shown. The following depen-

dencies are observed: With increasing degree of acyl chain cis-unsaturation, the relative inten-

sities of the bands at 863 cm−1, 1267 cm−1, 1655 cm−1 and 3007 cm−1 increase. The band at

Figure 7.8: Parallel-polarized spontaneous Raman spectra of FAMEs with nC−C = 18

fixed and varying nC=C, showing the influence of the cis-double bonds. Spectra are nor-

malized to the peak intensity at 1740 cm−1. Spectra in the CH- and OH-stretching regions

are scaled by a factor of 0.5 and 10, respectively. The inset shows the linear depen-

dence of the relative Raman peak intensity at 1655 cm−1 on the degree of acyl chain

cis-unsaturation.
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1655 cm−1 assigned to the C = C stretching mode is the most isolated one, and therefore is a

good candidate for the characterization of the degree of acyl chain unsaturation. The relative

peak Raman intensity at 1655 cm−1 is plotted as a function of nC=C in the inset of fig. 7.8. A

linear dependence is observed with a slope of 4.57. On the other hand, the relative intensities

of the bands at 1300 cm−1, 1440 cm−1, 2740 cm−1, 2760 cm−1, 2845 cm−1, and of the whole

CH-stretching region decrease. This observation is again in agreement with the assignment of

the bands at 2740 cm−1 and 2760 cm−1 to combination modes of CH2 (δ + γ) [133]. Each intro-

duction of a double bond reduces the number of CH2 groups per molecule by two. Surprisingly,

a weak band at 3280 cm−1 catches the eye that has to the best of my knowledge not been re-

ported in literature yet. It clearly shows a dependence on the number of cis double bonds, and

is tentatively assigned to the second harmonic overtone of the 1655 cm−1 vibration.

In fig. 7.9, the parallel-polarized spontaneous Raman spectra of a series of FAMEs with

nC−C = 18 fixed and nC=C of trans type ranging from 0 to 2 are shown. The following depen-

Figure 7.9: Parallel-polarized spontaneous Raman spectra of FAMEs with nC−C = 18

fixed and varying nC=C, showing the influence of the trans-double bonds. Spectra are

normalized to the peak intensity at 1740 cm−1. Spectra in the CH- and OH-stretching

regions are scaled by a factor of 0.5 and 10, respectively. The inset shows the linear

dependence of the relative Raman peak intensity at 1670 cm−1 on the degree of acyl chain

trans-unsaturation.

dencies are observed: With increasing degree of acyl chain trans-unsaturation, the intensities of

the bands at 1670 cm−1 and 3000 cm−1 increase. The same dependence holds for the intensities
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of the band at 1300 cm−1 and of the CH-stretching bands. Again, the band at 1670 cm−1 is

the most isolated, and is therefore a good candidate for the characterization of the degree of

acyl chain trans unsaturation. The relative peak Raman intensity at 1670 cm−1 is plotted as a

function of the number of nC=C in the inset of fig. 7.9. A linear dependence is observed with a

slope of 4.5. The overtone band is now shifted to 3320 cm−1, supporting its assignment to the

second harmonic overtone of the 1670 cm−1 vibrational mode. On the other hand, the intensity

of the band at 2845 cm−1 is the only one that is decreasing. When cis- and trans-acyl chain

unsaturation are compared, the following spectral differences exist: In the trans-case, no bands

occur at 863 cm−1 and 1267 cm−1. Instead, a new band occurs at 1206 cm−1. The bands at 1655

cm−1 and 3007 cm−1 in the cis-case are shifted to 1670 cm−1 and approximately 3000 cm−1 in

the trans case, respectively.

Next, the degree of acyl chain unsaturation nC=C of cis-type is characterized for a series of

CEs. Fig. 7.10 shows the parallel-polarized spontaneous Raman spectra of CEs with nC−C = 18

fixed and nC=C of cis type ranging from 0 to 2. Most of the dependencies that have been observed

in the case of FAMEs (fig. 7.8) are also found for the CEs. Although the fully saturated C18:0

may possibly contain crystalline residues, as indicated by the relatively sharp Raman bands at

2845 cm−1 and 2900 cm−1, the main purpose of showing this spectrum is the lack of any Raman

intensity at 1657 cm−1 and 3007 cm−1, when double bonds in the acyl chain are absent, while

a Raman band at 3032 cm−1 assigned to the cis double bond of the B-ring of Chol remains.

However, the Raman band representing the degree of acyl chain cis unsaturation in FAMEs at

1657 cm−1 is now partially overlapping with the band at 1674 cm−1 originating from Chol. The

relative peak Raman intensity at 1657 cm−1 is plotted as a function of nC=C in the inset of fig.

7.10. A good linear fit with a slope of 2.56 is obtained. Note that only for the spectrum of the

fully saturated CE, the band at 3032 cm−1 assigned to the cis double bond in the B ring of Chol

is clearly visible. For nC=C > 0, this band is masked. If we look carefully, we observe again a

similar intensity dependence for the weak bands at 2740 cm−1 and 2760 cm−1. Like in FAMEs,

their intensities are decreasing with of nC=C.

7.3.4 Extracting chain length and degree of acyl chain unsaturation of
unknown lipids

Obtaining the dependence of Raman spectral intensities on either the carbon chain length or

the acyl chain unsaturation of lipids can indeed often be found in the literature, where only one

of these two chemical structure parameters is varied, while the other is fixed [137], [138]. In

most cases, the peak intensities at 1440 cm−1 and at 1655 cm−1 are independently used for cali-

brating the chain length [137] and the degree of acyl chain cis unsaturation [138], respectively.

However, we found that both peak intensities rather depend on both structure parameters simul-
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Figure 7.10: Parallel-polarized spontaneous Raman spectra of CEs with nC−C = 18 fixed

and nC=C = 0 compared with nC=C = 1 and nC=C = 2 showing the influence of the

cis-double-bonds. Spectra are normalized to the relative peak intensity at 1740 cm−1.

Spectra in the CH-stretching region are scaled down by a factor of 0.2. The inset shows

the linear dependence of the peak intensity at 1657 cm−1 on the degree of acyl chain

cis-unsaturation.

taneously. For example, the intensity at 1655 cm−1 is increasing with increasing number of cis

double bonds, (fig. 7.8), but is decreasing with increasing chain length (fig. 7.6). Likewise, the

relative peak intensity at 1440 cm−1 is decreasing with increasing number of cis double bonds

(fig. 7.8), while it is increasing with increasing chain length (fig. 7.6). This dependence of

Raman spectral signatures on both structure parameters leads to a false extraction of one or the

other parameter, when only a single linear dependence of relative peak intensities is used. To

give another example using the linear dependence shown in the inset in fig. 7.6, the chain length

of the FAME 18:3 would incorrectly be determined to be nC−C = 12 instead of nC−C = 18! To

circumvent such misinterpretation, it is first useful to identify Raman peak intensities, which

only depend on a single chemical structure parameter. It turns out the sum of the relative peak

intensity values at 1440 cm−1 and 1460 cm−1 exhibits the strongest dependence on the chain-
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length nC−C, while its sensitivity to nC=C, the number of double bonds, is the weakest. In the

FAMEs series, the linear fit results of the relative peak intensities dependencies of nC−C and

nC=C, as extracted from the spectra shown in figs. 7.6 and 7.8, respectively, are summarized in

tab. 7.2. Regarding the sensitivity to the degree of acyl chain unsaturation, the slopes of 4.014

Table 7.2: Results of the linear fit to y = ax + b of the relative peak dependencies of nC−C

and nC=C, as extracted for the FAME series, shown in fig. 7.6 and fig. 7.8, respectively.

y =
A(1440 cm−1)+A(1460 cm−1)

A(1740 cm−1) y =
A(1655 cm−1)
A(1740 cm−1) y =

A(3005 cm−1)
A(1740 cm−1)

x = nC−C

slope a 0.203 -0.086 -0.035

offset b 0.382 5.856 4.635

x = nC=C

slope a -0.570 4.570 4.014

offset b 4.575 0 0

and 4.570 for the nC=C dependencies of the intensities of the relative peak intensities at 3005

cm−1 and 1655 cm−1, respectively, only differ by about 14 %. However, the comparison of the

corresponding slopes for the nC−C dependencies indicates that the relative peak intensities at

3005 cm−1 is about three times less sensitive on the chain length nC−C when compared to the

relative peak intensity at 1655 cm−1. Therefore, we do not suffer any loss of sensitivity towards

extracting nC=C in FAMEs when the peak intensity ratio A(3005 cm−1)
A(1740 cm−1) is used. Another benefit for

choosing this ratio for the extraction of the degree of the acyl chain unsaturation is that only cis

double bonds contribute to the intensity at this particular frequency, while at 1655 cm−1 not only

water but also the Amide I band of proteins can contribute to extracted intensities in biological

samples. Consequently, in order to disentangle the chain length and the number of cis double

bonds, it is necessary to obtain good spectra in both the fingerprint and the CH-stretching re-

gion! Using tab. 7.2, it is of course possible to determine nC=C and nC−C from the measurement

of two relative peak intensities. However, this approach brakes down, when lipids are analyzed,

with nC=C and nC−C not covered by the FAMEs standard series that are used for the calibration.

7.4 Spontaneous Raman spectra of LDL particles

We now turn to the Raman spectroscopic characterization of the LDL, ELDL, and OxLDL

particles suspended in buffer and subsequent to bleaching of β-carotene. Their unpolarized

spectra are shown in fig. 7.11. Characteristic for Chol and oxysterols are the band at 700 cm−1

(most pronounced in LDL), the bands at 725 cm−1 and 746 cm−1 (most pronounced in LDL
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Figure 7.11: Unpolarized spontaneous Raman spectra of OxLDL, ELDL and LDL par-

ticles suspended in buffer solution. Spectra are normalized to the peak intensity at 2850

cm−1. Spectra in the fingerprint region are magnified by a factor of 3.

and OxLDL), and the bands at 1674 cm−1 and at 3032 cm−1 (most pronounced in OxLDL).

Characteristic for the unsaturated (cis type) acyl chains are the bands at 1267 cm−1, 1655 cm−1

and 3007 cm−1, which are most pronounced in LDL and ELDL. The prominent bands of LDL,

ELDL and OxLDL are also listed and assigned in table tab. 7.1. Especially the band at 3007

cm−1 indicates the complete lack of cis double bonds in OxLDL, which cannot be directly seen

from the bands at 1267 cm−1 and 1655 cm−1 due to the strong spectral overlap with the spectral

features of Chol. This is a good example for the necessity of recording the full Raman spectrum

containing information of both the fingerprint region and the CH-stretching region! The band

at 1740 cm−1 assigned to the C=O bond in methyl esters is most intense for LDL and OxLDL.

However, the main spectral difference is observed in the spectral region between 1600 cm−1 and

1700 cm−1. With no trans double bonds expected, the broad bands appearing at 1667 cm−1 in

ELDL and LDL can be explained by the overlap of the 1655 cm−1 band of the acyl chain and the

band at 1674 cm−1 assigned to Chol, similar to the spectrum of the CE containing two double

bonds (see fig. 7.10). OxLDL, however, shows an additional band appearing at 1636 cm−1! The

only candidate substance that has a band at 1636 cm−1 is 7-ketocholesterol. This interpretation

is in agreement with the result of Brown and coworkers [106], who state that 7-ketocholesterol
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represents the second prevalent sterol (after Chol) in copper-oxidized LDL with a total sterol

content of 28-33 %.

To model the spectra of the LDL particles, we assume that they are described as lin-

ear combinations of pure CEs (C16:0, C16:1, C18:1, and C18:2), 7-ketocholesterol, 7-α-

hydroxycholesterol, and free Chol spectra, which serve as basis spectra:

I(ν)LDL = cC16:0I(ν)C16:0 + cC16:1I(ν)C16:1 + cC18:1I(ν)C18:1 + cC18:2I(ν)C18:2

+c7−ketocholesterolI(ν)7−ketocholesterol + c7−α−hydroxycholesterolI(ν)7−α−hydroxycholesterol + cCholI(ν)Chol

(7.1)

The approximate composition of an LDL particle is then obtained by a linear fit of its spec-

trum to eq. 7.1, using the retrieved spectrum and the normalized basis spectra shown in fig.

7.12. The CEs and Chol basis spectra are normalized to the sterol band at 700 cm−1. The 7-

ketocholesterol and the 7-α-hydroxycholesterol basis spectra were then scaled such to match

with the normalized Chol basis spectrum in the CH-stretching region. The fractions cx of the

xth constituents represent the free fit parameters. Figs. 7.12 A, B, and C show the decomposi-

tion of the measured OxLDL, LDL, and ELDL spectra, respectively. The corresponding best fit

results in relative fractions for each component are summarized in tab. 7.3. Fig. 7.13 compares

the relative fractions of free Chol (FC), oxysterols (CEOx), and of CEs for the native LDL,

ELDL, and OxLDL solutions. Here, the total fraction of CE is the sum of all relative fractions

of the individual CEs, and the total fraction of CEOx is the sum of the relative fractions of

7-ketocholesterol and 7-α-hydroxycholesterol. Fig. 7.13 (A) reveals that for all LDL particles

the relative fractions of CEs dominate. In the case of OxLDL, the best fit was obtained when

the relative fraction of both 7-α-hydroxycholesterol and free Chol were set to zero. Free Chol

was only found in ELDL particles, while CEOx is most pronounced in native LDL particles.

For LDL and ELDL particles, the major CE fraction is C18:2, while in OxLDL particles C16:0

dominates, as can be seen from fig. 7.13 (B). Finally, we have to compare our results with the

gold standard in lipidomic research, which is mass spectroscopy. The results of the mass spectra

analysis that correspond to the same three particle samples are given in fig. 7.14. Fig. 7.14 (A)

reveals that for all LDL particles the relative fractions of CEs dominate. Most of free Chol is

found in ELDL particles, while CEOx is most pronounced in OxLDL particles. The major CE

fraction is C18:2, while the C16:0 fraction is most pronounced for OxLDL particles, as can be

seen from fig. 7.14 (B). From this comparison we see that within the error bars the same rela-

tive fractions of CEs concerning the chain length and the degree of acyl chain unsaturation are

obtained from the spontaneous Raman spectra. This is a very useful result because it demon-

strates the capability of spontaneous Raman spectroscopy to characterize LDL particles in their

native state! However, concerning the determination of the relative contents of free Chol (FC),

its oxysterols, and oxidised CEs using SR has limitations: For example, we cannot distinguish

between 7-ketocholesterol and an oxidized CE in a mixture of both components, which is a
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Figure 7.13: Relative fractions of (A) total CEs, free Chol (FC) and oxysterols (CEOx),

and (B) of the different CE species, separated by their chain length and their degree of

unsaturation for the native LDL, ELDL, and OxLDL particle solutions as obtained by

the linear decomposition of their spontaneous Raman spectra (see fig. 7.12). Error bars

represent a conservative estimate of the error of ±30%.

task that is easily fulfilled by mass spectroscopy. However, we see the highest relative contri-

bution of 7-ketocholesterol in the OxLDL sample, and the highest relative contribution of Chol

in the ELDL sample, both results being in agreement with the relative fractions obtained by the

mass spectra as shown in fig. 7.14 A. Although both spectroscopy methods are very different

approaches, the qualitative pictures obtained from each method are the same!

125



Figure 7.14: Mean concentrations of (A) total CEs, free Chol (FC), and oxysterols

(CEOx) and (B) the different CE species separated by their chain length and their de-

gree of acyl chain unsaturation for the LDL, ELDL, and OxLDL particle solutions, as

obtained by mass spectroscopy by Margot Grandl and Gerd Schmitz, Institute of Clinical

Chemistry and Laboratory Medicine from the University of Regensburg. Error bars repre-

sent ± the mean standard deviation from three independent experiments, each performed

in triplicate.
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Table 7.3: Comparison of fractions of CEs relative to total CEs obtained by Raman and

mass spectroscopies.

Raman Mass
spectroscopy spectroscopy

OxLDL LDL ELDL OxLDL LDL ELDL

C16:0 (40 ± 12)% (7 ± 2)% (10 ± 3)% (24 ± 3)% (12 ± 2)% (9 ± 4)%

C16:1 (23 ± 7)% (7 ± 2)% (9 ± 3)% (8 ± 2)% (6 ± 2)% (6 ± 3)%

C18:1 (13 ± 4)% (18 ± 5)% (28 ± 8)% (30 ± 3)% (19 ± 5)% (26 ± 14)%

C18:2 (24 ± 7)% (69 ± 21)% (54 ± 16)% (37 ± 19)% (63 ± 11)% (59 ± 32)%

7.5 CARS spectra of pure lipid components

The purpose of the studies presented in this section is the demonstration of the spectral identi-

fication of characteristic spectral signatures for the chemical structure parameters in pure lipids

and LDL particles (see section 7.3 and section 7.4), when Im[χ(3)
Res(ν)] spectra are reconstructed

from measured CARS spectra in the correct and quantitative manner. Therefore, we first directly

compare the measured spontaneous Raman spectrum and the reconstructed Im[χ(3)
Res(ν)] spec-

trum for one and the same lipid, i.e. methyl linolenate 18:3, in fig. 7.15. Except for the different

scaling factors used to normalize the spectra in the fingerprint and the CH-stretching regions,

which may be caused by the different excitation wavelength used in the spontaneous Raman and

the CARS measurements, both spectra match outstandingly well. Even in the congested and

strongly overlapping high wavenumber region, every spectral detail in the spontaneous Raman

spectrum is correctly reproduced in the reconstructed Im[χ(3)
Res(ν)] spectrum. For example, the

intensity ratio between the isolated bands corresponding to the C=C and C=O bonds centered

at 1655 cm−1 and 1740 cm−1, respectively, is correctly reproduced by the CARS measurement.

Fig. 7.15 demonstrates that the same spectral information is obtained, regardless of whether

spontaneous or coherent Raman scattering is performed. However, in the case of the CARS

experiment, the spectral profile of the pump pulse is convoluted with the Raman line profile

(see eq. 3.23), leading to a slightly reduced spectral resolution in the reconstructed Im[χ(3)
Res(ν)]

spectrum when compared to the spectral resolution in the spontaneous Raman spectrum. The

lower spectral resolution of the CARS experiment translates into an apparent smoothing of the

sharp bands and smaller relative amplitudes when compared to those in the spontaneous Ra-

man spectrum. In order to use the Raman spectral signatures for chain length and degree of

acyl chain unsaturation previously identified in sections 7.3.2 and 7.3.3, respectively, we have

obtained the reconstructed Im[χ(3)
Res(ν)] spectra for the same series of FAME lipids. Fig. 7.16

is the analogue to fig. 7.6, showing the dependence of the reconstructed Im[χ(3)
Res(ν)] spectra
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Figure 7.15: Reconstructed Im[χ(3)
Res(ν)] and the parallel-polarized spontaneous Raman

spectrum of FAME 18:3, revealing that the same information is obtained from sponta-

neous or coherent Raman spectroscopy. The spectra are normalized to the peak intensity

at 1740 cm−1. The spectra in the CH-stretching region are scaled down by factors of

0.5 and 0.1 in the case of the spontaneous and the reconstructed Im[χ(3)
Res(ν)] spectrum,

respectively. The spontaneous Raman spectrum is smoothed to match the lower spectral

resolution of the reconstructed Im[χ(3)
Res(ν)] spectrum.

for a series of FAMEs with nC=C = 1 on the chain length. We obtain a very similar picture to

fig. 7.6. All trends are reproduced by the series of reconstructed Im[χ(3)
Res(ν)] spectra, even for

the weak band at 2760 cm−1. The sum of the relative peak intensities at 1440 cm−1 and 1460

cm−1 shows a linear dependence on the chain length with a slope of 0.149. Compared to the

corresponding spontaneous Raman case (fig. 7.6) with a slope of 0.203, the reduced slope is

predominantly attributed to the bilateral filtering applied to denoise the Im[χ(3)
Res(ν)] spectra (see

appendix A.4.2).

In addition to the corresponding spontaneous Raman case, information regarding the pure

electronic susceptibility is obtained by extracting the effective phase angles φe f f using eq. 5.38

with |χ(3)
E e f f | =

√
S NR extracted from the CARS spectra in the spectral range from 1818 cm−1

to 1855 cm−1 and fixed. As shown in fig. 7.17, the extracted φe f f linearly increases with nC−C,
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Figure 7.16: Reconstructed Im[χ(3)
Res(ν)] spectra of FAMEs with nC=C = 1 fixed and vary-

ing nC−C showing the chain length dependence. The spectra are normalized to the peak

intensity at 1740 cm−1. The spectra in the CH-stretching region are scaled down by a

factor of 0.07. The inset shows the linear dependence of the sum of the relative peak

intensities of the resonances at 1440 cm−1 and 1460 cm−1 on the carbon chain length.

while |χ(3)
E e f f | =

√
S NR remains constant within ±1%. The linear fit through the zero origin of

φe f f results in a slope of 0.04. This observed dependence correlates with the red-shift of the

UV absorption peak with increasing acyl chain length within the FAME series, as reported for

saturated hydrocarbons in ref. [139]. This red-shift results in an increasing contribution of the

electronic susceptibility χ(3)
E e f f to the measured CARS spectrum.

Fig. 7.18 shows the influence of the number of cis-double bonds on the reconstructed

Im[χ(3)
Res(ν)] spectra for a series of FAMEs with nC−C = 18 fixed and varying nC=C. Again,

all trends observed in the spontaneous Raman case (fig. 7.8) are reproduced by the series of

reconstructed Im[χ(3)
Res(ν)] spectra. From the relative peak intensity of the band at 1655 cm−1,

a linear dependence on the degree of acyl chain unsaturation with a slope of 3.3 is obtained.

When compared to the value of 4.57 obtained in the spontaneous Raman case, the discrepancy

is predominantly caused by the spectral convolution of the pump pulse that reduces the relative

amplitude of the narrow band at 1655 cm−1. Bilateral filtering reduces the slope by only 6 %.

Fig. 7.19 is the analogue of fig. 7.9, showing the dependence of the reconstructed
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Figure 7.17: Effective phase angles φe f f and |χ(3)
E e f f | =

√
S NR, as extracted by eq. 5.38, of

FAMEs with nC=C = 1 fixed and varying nC−C representing the chain length dependence

of the pure electronic susceptibility contribution χ(3)
E e f f to the measured CARS spectrum.

Error bars represent ± the standard deviation.

Im[χ(3)
Res(ν)] spectra on the number of trans-double bonds for a series of FAMEs with nC−C = 18

fixed. As in the case of FAME 18:3 (see fig. 7.15), the reconstructed Im[χ(3)
Res(ν)] spectra are

nicely reproducing the spontaneous Raman spectra shown in fig. 7.9, taking the different spec-

tral resolutions into account. The relative peak intensity at 1670 cm−1 shows a linear dependence

on the number of trans double bonds with a slope of 3.60, which compares to a slope of 4.5 ob-

tained in the spontaneous Raman case (fig. 7.9). Just like in the spontaneous Raman case, the

slopes obtained for the number of cis- and trans double bonds are identical within the errors.

To conclude this section, the same structure parameter information of lipids regarding the

chain length and acyl chain unsaturation can be obtained, regardless whether spontaneous or

coherent Raman scattering spectroscopy is performed. However, as a consequence of the con-

volution of the spectral profile of the pump pulse with the vibrational band-width in CARS

spectroscopy, the slopes of the linear dependencies of the chain length and the degree of unsat-

uration are different. In order to quantify the chain length or the degree of acyl chain unsatu-

ration based on reconstructed Im[χ(3)
Res(ν)] spectra, the linear dependencies plotted in fig. 7.16
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Figure 7.18: Reconstructed Im[χ(3)
Res(ν)] spectra of FAMEs with nC−C = 18 fixed and

varying nC=C, showing the influence of acyl chain cis-unsaturation. The spectra are nor-

malized to the peak intensity at 1740 cm−1. The spectra in the CH-stretching region are

scaled down by a factor of 0.1. The inset shows the linear dependence of the relative

peak intensity at 1655 cm−1 on the acyl chain cis-unsaturation. Error bars represent ± the

standard deviation.

- fig. 7.19 need to be used. The linear fit results are summarized in tab. 7.4. Comparing the

different slopes clearly demonstrates that the band at 3005 cm−1 is 44.5 times more sensitive

to nC=C when compared to nC−C, and thus is the signature band of choice for the determination

of nC=C. Though less sensitive for the extraction of the chain length nC−C, the sum of peak

amplitudes at 1440 cm−1 and 1460 cm−1 will be used.

7.6 CARS spectra of LDL particles

Next, we want to answer the question if we can also distinguish between the different types of

LDL particles using CARS spectroscopy. The reconstructed Im[χ(3)
Res(ν)] spectra of the LDL,

ELDL, and OxLDL particle suspensions are shown in fig. 7.20. Again, their main spectral

differences are reproduced. Especially, the band assigned to 7-ketocholesterol at 1636 cm−1

is clearly visible for the OxLDL particles. Also, the shift to higher wavenumbers of the band

at 1660 cm−1 when going from ELDL to OxLDL is clearly visible. In the CH-stretching re-
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Figure 7.19: Reconstructed Im[χ(3)
Res(ν)] spectra of FAMEs with nC−C = 18 fixed and

varying number of trans double bonds nC=C, showing the influence of acyl chain trans-

unsaturation. The spectra are normalized to the relative peak intensity at 1740 cm−1. The

spectra in the CH-stretching region are scaled down by a factor of 0.5. The inset shows the

linear dependence of the peak intensity at 1670 cm−1 on the acyl chain trans-unsaturation.

Error bars represent ± the standard deviation.

Table 7.4: Results of the linear fit to y = ax + b of the relative peak dependencies of nC−C

and nC=C, as extracted for the FAME series, shown in fig. 7.16 and fig. 7.18, respectively.

y =
A(1440 cm−1)+A(1460 cm−1)

A(1740 cm−1) y =
A(3005 cm−1)
A(1740 cm−1)

x = nC−C

slope a 0.149 -0.359

offset b 1.260 18.889

x = nC=C

slope a -0.285 13.340

offset b 4.237 0
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Figure 7.20: Reconstructed Im[χ(3)
Res(ν)] spectra of OxLDL, ELDL, and LDL particles in

solution. The spectra are normalized to the peak intensity at 2850 cm−1. The spectra in

the fingerprint regions are magnified by a factor of 6.

gion, each LDL spectrum has its unique shape. In order to directly compare the reconstructed

Im[χ(3)
Res(ν)] spectra with the corresponding spontaneous Raman scattering spectra in fig. 7.21,

the spontaneous Raman spectra are plotted together with the reconstructed Im[χ(3)
Res(ν)] counter-

parts for OxLDL, ELDL, and LDL. For OxLDL particles (fig. 7.21 A), all major bands observed

in the spontaneous Raman scattering spectrum are also found in the reconstructed Im[χ(3)
Res(ν)]

spectrum as well. Clearly, the mentioned shoulder at 1636 cm−1 assigned to 7-ketocholesterol

and the missing band around 3005 cm−1 assigned to the cis=C-H mode are evident in both spec-

tra. The missing band at 3005 cm−1 indicates that the intensity at 1655 cm−1 must originate from

Chol or its oxysterols! For ELDL particles (fig. 7.21 B) and LDL particles (fig. 7.21 C), all

major bands in the spontaneous Raman scattering spectrum are also found in the reconstructed

Im[χ(3)
Res(ν)] spectrum, and qualitatively match each other within their SNR.

We have seen that CARS spectra of LDL particles reproduce all main spectral features of

lipids, Chol, and oxysterol. Thus, we can describe them as mixtures of CEs, Chol, and its

oxysterols, and a linear decomposition analysis of reconstructed Im[χ(3)
Res(ν)] spectra of the LDL

particles, as performed in section 7.4 holds.
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Figure 7.21: Reconstructed Im[χ(3)
Res(ν)] and parallel-polarized spontaneous Raman spec-

tra of (A) OxLDL, (B) ELDL and (C) LDL particles in solution. The spectra are nor-

malized to the peak intensity at 2850 cm−1. The spectra in the fingerprint regions are

magnified by a factor given in the figures. The spontaneous Raman spectra are smoothed

in order to match the lower spectral resolution of CARS measurements.
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7.7 Summary and conclusions

For a series of model compounds (FAMEs and CEs) for aliphatic lipid chains, it has been

demonstrated that the chain length nC−C is proportional to the sum of the relative peak ampli-

tudes of the CH2 and CH3 bending modes at 1440 cm−1 and 1460 cm−1, when normalized to the

peak intensity of the C = O stretching mode of the ester mode in the lipid molecule. The degree

of cis and trans acyl unsaturation nC=C has been demonstrated to be linearly dependent to the

relative peak amplitudes of the C = C stretching modes at 1655 cm−1 and 1670 cm−1, respec-

tively, when normalized to the peak intensity of the C = O stretching mode of the ester mode.

Likewise, it has been shown that the relative amplitude of the = C − H stretch at 3005 cm−1 is

also proportional to nC=C in both the cis and trans unsaturation. When compared to the relative

peak amplitudes at 1655 cm−1 and 1670 cm−1, the 3005 cm−1 relative amplitude depends much

less on the chain length parameter nC−C. We can distinguish FAMEs from CEs, and quantify

them in terms of two chemical structure parameters. We can furthermore interpret the spectra

of CEs as a linear combination of Chol and FAMEs spectra.

For Cholesterol, another important lipid class, we have identified spectral Raman signatures

not only allowing the distinction from other aliphatic molecules, but also from its oxysterols.

It has been demonstrated, that the disappearance of the C = C double bond and of the =

C − H stretching modes assigned to the B-ring of Cholesterol at 1669 cm−1 and 3032 cm−1,

respectively, can be exploited as markers for Cholesterol oxidation. Moreover, the appearance

of a new band at 1655 cm−1 in the 7-ketocholesterol, which is assigned to the C = O bond in the

B-ring of Cholesterol, demonstrates the high sensitivity of spontaneous Raman spectroscopy to

a minor change in the molecular structure of Cholesterol.

The direct comparison of the reconstructed Im[χ(3)
Res(ν)] spectra obtained from CARS mea-

surements with their spontaneous Raman counterparts for one and the same lipid model com-

pound has confirmed their spectral identity. This agreement allows us to use the same spectral

signatures for the acyl chain structure determined in the spontaneous Raman spectra as well as

in the reconstructed Im[χ(3)
Res(ν)] spectra. For the characterization of structure parameters based

on the relative amplitudes, the spectral resolution of the CARS and the spontaneous Raman

methods must be taken into account.

Based on the identification and quantification of lipid classes discussed above, I demon-

strated that by using pure lipid class basis spectra, I can decompose the vibrational response of

the different LDL particles that consist of a heterogeneous mixture of CEs, CEOx, and Chol. Us-

ing both spontaneous Raman scattering and CARS, the relative fractions of these lipid classes

were determined for native LDL, enzymatically degraded LDL (ELDL), and oxydized LDL

(OxLDL) nanoparticles. All three variants of LDL were found to be spectroscopically distin-

guishable because of differences in their relative compositions of CEs, Chol and oxysterols. In
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the spectrum of OxLDL, we could directly identify the presence of 7-ketocholesterol, as one

of the products of in atherosclerotic lipoproteins. The linear decomposition of the LDL par-

ticles spectra resulted in the relative fractions of CEOx, Chol, and the relative abundancies of

chain length and degree of acyl chain unsaturation. A direct comparison with the corresponding

abundancies obtained from mass spectroscopy measurements of the same LDL particle solu-

tions gives a good qualitative agreement. In contrast to invasive mass spectroscopy, the relative

abundancies obtained by using CARS and spontaneous Raman methods are noninvasive by

nature!

In summary, we provide recipes for the identification of lipid structure and composition of

a priori unknown lipid species. This is the prerequisite for live cell studies presented in the

subsequent chapter.
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8 Mapping chemical structure parameters
of lipids in living cells

In ch. 7, the Raman spectral signatures of chemical structures of lipids in LDL particles and

their ingredients, such as oxysterols, TAGs and CEs, and model compounds for TAGs have been

characterized. A linear intensity dependence of Raman marker bands in the chain length and

the degree of acyl chain unsaturation was established for the lipid model compounds. In this

chapter, CARS spectral imaging will now be applied for rapid mapping of these chemical struc-

ture parameters of lipids in living macrophages loaded with the different lipoprotein particles.

Section 8.3 will characterize the different types of cells on the single-cell and single-organelle

levels, with respect to the spatial distribution of lipids, of their chain length nC−C, and of their

degrees of acyl chain unsaturation nC=C.

8.1 The LDL uptake mechanism in human macrophages

As was described in section 7.1, LDL particles transport lipids and cholesterol to macrophages.

The uptake, intracellular transportation, and storage of LDL particles in human macrophages in-

volves several subcellular specialized compartments, called organelles, that have specific func-

tions and distinctive chemical compositions. In eukaryotes, complex, dynamic and mobile or-

ganelles called lipid droplets serve as the main lipid store [140]. Endosomes are another type

of organelles specialized for the membrane transport of substances (endocytosis). One differ-

entiates between early endosomes (EE), located close to the cell membrane and late endosomes

(LE), located closer to the cell nucleus. The LE organelles transport lipids that are by then

already processed by the cell to the lipid droplets where they are stored.
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Figure 8.1: Schematic illustration of the different uptake and storage mechanisms of

ELDL (left) and OxLDL (right) particles in human macrophages (modified, from Schmitz

et. al. [113]).

Based on mass spectroscopy by Grandl et. al. [141], it was found that the uptake mech-

anisms of lipoprotein depends upon the type of loaded LDL particles. Fig. 8.1 illustrates the

main differences between the uptake mechanisms of ELDL and OxLDL particles in human

macrophages, as reported by Schmitz et. al. [113]. The EE is bigger in OxLDL-loaded cells,

while bigger lipid droplets are observed in ELDL-loaded cells. An increased relative fraction of

oxidised Chol in OxLDL-loaded cells is expected. Although mass spectroscopy was the basis

for the model given in fig. 8.1, and is still the most used technique in lipidomic research today,

it is an invasive technique by its nature and averages over many cells. Mass spectroscopy, there-

fore, cannot give any insight in the spatial arrangement and the temporal evolution of the lipid

composition inside a living cell, hence still many questions remain unanswered.

The questions that we want to answer are manifold: Can CARS microscopy distinguish the

lipid composition and their spatial distribution not only within the living cell, but also within a

single living organelle? Can we spectrally differentiate the intracellular distribution of the lipid

composition between unloaded, OxLDL-, and ELDL-loaded cells?
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8.2 Materials and methods

8.2.1 Preparation of cell lines

Two human monocyte cell lines, HL-60 and THP-1, were investigated in this work, which

were derived from a patient with acute promyelocytic and monocytic leukemia [142], [143],

respectively.

HL-60 cells are white blood cells, isolated from healthy, normolipidemic volunteers by Mar-

got Grandl and Gerd Schmitz from the Institute of Clinical Chemistry and Laboratory Medicine

from the University of Regensburg. The isolation was carried out with the apolipoprotein E3/E3

genotype (this is the common type found in the majority of the population) by leukapheresis

followed by counterflow elutriation. The isolated cells then were shipped on dry ice to Stuttgart,

where they have been cultured by Dr. Andrea Zappe in IMDM(PAN-Biotech) + 20 % FBS. A

cryo-cup of the cells was sowed in 40 ml medium in a medium sized cell culture flask and

incubated for roughly 10 days at 37 °C, 5 % CO2. When treated with phorbol 12-myristate 13-

acetate (PMA), they differentiate to macrophages [144]. The concentration of the PMA stock

solution was 2 mg/ml, and 1.48 µl PMA has been put on 30 ml Medium (IMDM(PAN-Biotech)

+ 20 % FBS) (conc. 0.1 µg/ml). In this medium the cells were sowed in 10 cm dishes (300 000

cells/ml Medium). After three days the cells were differentiated and have attached themselves

to the bottom of the dishes. The cells have been washed twice with PBS buffer and were trypsi-

nated afterwards. Now the cells have been sowed into glass bottom culture dishes (MatTek),

and they were given time until the next day to attach themselves. Next, the cells were loaded

as follows: 200 µl of the OxLDL stock solution (concentration 2 mg/ml) was put on 10 ml of

medium without PMA (concentration 60 µg/ml). 674 µl of the ELDL stock solution (concen-

tration 0.89 mg/ml) was put on 10 ml of medium without PMA (concentration 40 µg/ml). Of

this medium 3 ml was put on a culture dish with medium and incubated for 24 h.

THP-1 cells have been used for mass spectroscopy measurements by Margot Grandl from

the Institute of Clinical Chemistry and Laboratory Medicine from the University of Regens-

burg. The cells were cultured in macrophage serum-free medium (Invitrogen, Karlsruhe, Ger-

many) with recombinant human monocyte-colony stimulating factor (M-CSF) 50 ng/ml (R&D

Systems, Minneapolis, Minnesota) at 37 °C/5 % CO2 to induce phagocytic differentiation as

previously described [145]. Cells were cultured at 106 cells/ml either on plastic petri dishes,

Ultra Low Attachment 6-well plates (Costar Corning, Bodenheim, Germany) or Lab-Tek II

glass chamber slides (Nalge Nunc Intl., Naperville, IN). On the fourth day loading with ELDL

(40 µg/ml) or OxLDL (80 µg/ml) was performed for 48 h. Cells were harvested on day(s)

1 (initial state), 4 (M-CSF differentiated) and 6 (loaded) respectively and experiments were

performed. Cells were checked at all incubation states for apoptosis by flow cytometry using

AnnexinV-FITC and Propidiumiodid (PI) staining as described previously [146].
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The cells have been kept in the incubator at 37 °C and 5% CO2 prior to the measurements.

8.2.2 Mass spectroscopy

Lipid extracts were analyzed by Margot Grandl from the Institute of Clinical Chemistry and

Laboratory Medicine from the University of Regensburg using electrospray ionization tandem

mass spectroscopy (ESI-MS/MS), as described in [118].

8.2.3 CARS spectral imaging of living HL-60 cells

The conditions for the CARS measurements were as follows: The Pump wavelength was cen-

tered at λPump = 801.6 nm. Actual power levels varied but did not exceed 30 mW and 15 mW for

the Pump and Stokes beams, respectively, and are indicated in the figure captions. Actual pixel

spectrum integration times varied for the different experiments ranging from 10 ms to 200 ms,

and are also given in the figure captions. The de-etaloning of raw spectra was performed with

a de-modulation spectrum recorded at an image region outside of any cells, this way assuring

that the de-modulation spectrum is free of any vibrational resonance features of interest. If in a

close-up image scan, no such pixel spectra were available, the de-modulation spectrum of the

preceding large area image scan was used. Because of the limited signal-to-noise ratio of the

CARS spectrum above 4000 cm−1, where the wings of the very broad water bands reside, each

CARS pixel spectrum has been substituted using a model for water prior performing the phase

retrieval. Here, a spontaneous Raman spectrum of water was described as a linear combina-

tion of complex Lorentzian bands according to eq. 3.19. In this way, the CARS spectrum of

water is simulated, and then fitted to every measured CARS pixel spectrum using the model

S (x, y, z, ν)water = |cH2O(x, y, z)χ(3)
Res H2O(ν)e−iφH2O(x,y,z) + χ(3)

NR(x, y, z)|2 with the weight cH2O(x, y, z)

and the phase φH2O(x, y, z) as parameters. In doing so, the measured CARS spectra have been

extrapolated up to approximately 6800 cm−1, allowing for the robust phase retrieval of both

lipids and water. Prior to the analysis of the chain length nC−C and the degree of acyl chain

unsaturation nC=C, the mean of the reconstructed cytoplasm pixel spectra was scaled according

to the intensity of water at 3400 cm−1, and subsequently subtracted from every pixel spectrum,

resulting in lipid vibrational features only, as was described in section 5.3.3. If in a close-up

image scan of an individual organelle no cytoplasm pixel spectra were available, the mean cyto-

plasm spectra of the preceding large area image scan was used. Denoising of the reconstructed

pixel spectra was performed using the bilateral filtering method described in appendix A.4.2.

Only neighbouring pixels not resolved within the diffraction limit of our setup are considered

in the bilateral filter kernel. Depending on the scan step size and the reconstructed Im[χ(3)
Res(ν)]

amplitudes, the half widths of the Gaussian filter kernels, σ and σrange, varied between 2 and

6 and between 6 and 34, respectively. An increase of the SNR of approximately three was
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achieved. Univariate spectral data analysis was performed for every pixel spectrum in the fin-

gerprint and the CH-stretching regions in order to extract chemical structure parameters. Here,

the peak amplitudes of resonances of interest were obtained by using the Pseudo-Voigt model

given by eq. 4.9. In order to not affect the statistics of the extracted chemical structure pa-

rameters, the univariate data analysis was performed using the not denoised spectra. In order

to identify and select lipid-rich organelles inside the cytoplasm of the cells, a threshold of 3.2

times the integrated CH-stretching signals inside the cytoplasm was defined. If in a close-up

image scan no such thresholds could be defined, the threshold of 3.2 times the integrated signal

of the preceding large area image scan was used.

8.3 Comparison of intracellular lipids in unloaded, ELDL-,

and OxLDL-loaded HL-60 cells

8.3.1 Extracting the vibrational response of lipid-rich organelles

As an example, fig. 8.2 A shows a typical map of an ELDL-loaded HL-60 cell, as obtained when

the reconstructed Im[χ(3)
Res(ν)] is integrated in the CH-stretching region. While the pixel contrast

is almost zero outside the cells, inside the cytoplasm, a rather homogeneous image contrast pre-

dominantly due to proteins and a strong contrast of lipid-rich organelles are observed. Fig. 8.2

B shows the image mask for those selected image pixels that are representative for lipid-rich

organelles in the cell. In order to count the number of individual organelles and to obtain their

pixel spectra of maximum intensity, only isolated maxima that are separated by the diffraction

limit of our setup are considered. The 71 identified isolated organelles are marked as red points

in fig. 8.2 B. Representative mean reconstructed Im[χ(3)
Res(ν)] spectra of water, the cytoplasmic

proteins and of lipids shown in fig. 8.2 C, were obtained by spatially averaging image pixels

outside the cell, inside the cytoplasm, and over the selected pixel of maximum CH-stretch in-

tensity in the lipid organelles, respectively. While the mean reconstructed Im[χ(3)
Res(ν)] spectrum

of water represents a pure species spectrum, the mean cytoplasm spectrum is a mixture of pre-

dominantly proteins and water. The mean Im[χ(3)
Res(ν)] spectrum of the identified lipid organelles

shows strong spectral contributions that are typical for lipids, water, and weaker contributions of

cytoplasmic proteins. For example, when compared with the peak intensity of water recorded

outside the cell, approximately half of the water intensity is observed in pixel spectra of the

lipid organelles. In other words, there are no pixels that contain only lipids! Assuming that

every pixel spectrum can be described as a linear combination of basis spectra of pure water,

cytoplasmic proteins, and lipids, the spectrum of the lipid organelles is obtained by subtracting

the properly scaled mean reconstructed Im[χ(3)
Res(ν)] spectra of the cytoplasm and water for every

pixel spectrum.
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Figure 8.2: Live-cell CARS spectral imaging of an ELDL-loaded HL-60 cell. (A) image

contrast generated by integrating the reconstructed Im[χ(3)
Res(ν)] spectra within the interval

[2750 cm−1, 3050 cm−1]. (B) Threshold-based definition of an image mask for the selec-

tion of individual lipid-rich organelles, whose maximum spectral intensities are indicated

by red points. (C) Typical mean reconstructed Im[χ(3)
Res(ν)] spectra of water, the cytoplas-

mic proteins, and of the selected lipid-rich organelles for this cell as obtained by spatial

averaging over 20, 619, and 71 image pixels, respectively. Spectra in the CH-stretching

region are scaled down by a factor of 0.2. The image dimensions are 14.08 µm × 12.95

µm (100 pixel × 91 pixel), the laser powers used were 30 mW and 15 mW for the pump

and Stokes beams, respectively, and the spectrum integration time per pixel was 100 ms.

8.3.2 Spatial distributions of lipid structure parameters

Next, we will map and compare the density of cis C = C, the acyl chain length nC−C, and

the degree of acyl chain unsaturation nC=C of the intracellular lipids for the different types of

cells using the amplitude of Im[χ(3)
Res lipid(ν)] at 1665 cm−1, the ratios A(1440 cm−1)+A(1460 cm−1)

A(1740 cm−1) and
A(3005 cm−1)
A(1740 cm−1) , respectively, as defined from the FAME model lipids in ch. 7. Corresponding maps

that are representative for an unloaded, an OxLDL-loaded, and an ELDL-loaded cell are shown

142



in fig. 8.3. In the first column, the maps proportional to the density of cis C = C bonds reveal

the presence of lipid rich organelles in all three types of cells. However, they are increasing

both in size and density when going from the unloaded to the OxLDL-loaded and the ELDL-

loaded cell. These observed morphological changes of lipid organelles are in agreement with

the biological uptake and storage model given in fig. 8.1. In the second column, the degree

of acyl chain unsaturation is directly mapped for the three cells. A rather homogeneous map is

obtained in the case of the unloaded cell, while the cells loaded with OxLDL and ELDL particles

exhibit heterogeneous distributions with strong deviations of up to a factor of two around their

averages. The mean of the unsaturation ratio is increasing from 3.6 for the unloaded, to 5 for

the OxLDL-loaded and to 8.3 for the ELDL loaded cells. Among all cell types studied, not only

the mean value of the cell is highest for ELDL-loaded cells, but also the highest image pixel

values are found in this cell type. In the third column, the amplitude ratio representing the acyl

chain length of lipids is mapped for the same three cells. All types of cells have approximately

the same mean value of 4.5. However, the unloaded cell has a slightly higher mean value than

the OxLDL- and ELDL-loaded cells. The chain length ratio map of the unloaded cell again

appears more homogeneous, while the corresponding maps of the OxLDL- and ELDL-loaded

cells show image pixel ratio values that vary by a factor of up to two around their mean values.

When the values for the acyl chain length nC−C and for the degree of the acyl chain unsat-

uration nC=C would be extracted from tab. 7.4, rapidly growing errors have to be expected for

values that are not contained in the series of the FAME model lipids used in the calibration.

To avoid these errors, the observed differences in the spatial distribution maps representing the

chain length nC−C and of the degree of acyl chain unsaturation nC=C and their mutual correla-

tion will next be statistically analyzed by means of two-dimensional histograms of the ratios

rC−C =
A(1440 cm−1)+A(1460 cm−1)

A(1740 cm−1) and rC=C =
A(3005 cm−1)
A(1740 cm−1) , representing the acyl chain length nC−C

and the degree of acyl chain unsaturation nC=C, respectively. The upper row of fig. 8.4 plots

the two-dimensional histograms using only the pixel spectra of maximum intensity inside the

selected lipid organelles in those unloaded, OxLDL-loaded, and ELDL-loaded cells shown in

fig. 8.3. For comparison, the lower row shows the corresponding two-dimensional histograms

using all pixel spectra within the image mask of selected lipid-rich organelles. The lines repre-

sent the dependencies for the degree of acyl chain unsaturation where nC−C = 18 is fixed (red

line) and for the acyl chain length where nC=C = 1 is fixed (green line), as observed for the

FAME model compounds shown in figs. 7.18 and 7.16, respectively. The most narrow 2D-

distribution is observed for the unloaded cell, as shown in the first column in fig. 8.4. Assuming

2D normal distributions, mean and standard deviation values of (〈rC=C〉, 〈rC−C〉) = (3.6, 4.7) and

(δrC=C , δrC−C ) = (1.3, 0.7), respectively, are observed for all pixel spectra of organelles within the

image mask, which agrees well with (〈rC=C〉, 〈rC−C〉) = (3.4, 4.7) and (δrC=C , δrC−C ) = (1.1, 0.7)

observed when only the maximum pixel spectra of the selected lipid organelles are considered.
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The comparison of (〈rC=C〉, 〈rC−C〉) with respect to the FAME calibration lines of nC=C = 1 and

nC−C = 18 suggests a mean value (standard deviation) of 0.3(0.1) for the degree of unsatu-

ration 〈nC=C〉 and of 24(4) for the chainlength 〈nC−C〉, respectively. However, concerning the

distributions belonging to OxLDL-loaded cells, completely different pictures are obtained. The

distributions are much broader when compared with the case of the unloaded cell.

For the OxLDL-loaded cell, the 2D-distribution over all pixel values within the lipid droplet

organelle mask exhibits mean values of (〈rC=C〉, 〈rC−C〉) = (5.2,4.3) with standard deviations of

(δrC=C , δrC−C ) = (2.9, 1.4). These values correspond to a mean chain length value of (〈nC−C〉 =

22(7) and an average degree of acyl chain unsaturation of 〈nC=C〉 = 0.4(0.2). However, within

the broad distribution approximately half the pixel values are located below the line nC−C =

18 with apparent low mean values of the number of 〈nC=C〉 when compared with the case of

the unloaded cell. Again, a very similar distribution is observed for the OxLDL-loaded cell,

when only the maximum intensity spectra are used, where the mean values of 〈rC=C〉, 〈rC−C〉) =

(5.7, 4.5) and (δrC=C , δrC−C ) = (2.4, 1.4).

The broadest distribution is obtained for the ELDL loaded cell. Using a Gaussian fit, the

distribution of all pixels within the lipid organelles mask yields (〈rC=C〉, 〈rC−C〉) = (8.6, 4.5)

and (δrC=C , δrC−C ) = (3.2, 1.1). These values correspond to a mean (standard deviation) chain

length value of 〈nC−C〉 = 23(6) and for the degree of acyl chain unsaturation 〈nC=C〉 = 0.6(0.2).

The mean number of double bonds is approximately twice the value of that observed for the

unloaded loaded cell. Note that some pixel spectra even indicate the existence of two double

bonds! Again, a very similar distribution with (〈rC=C〉, 〈rC−C〉) = (8.0, 4.4) and (δrC=C , δrC−C ) =

(2.4, 0.9) is obtained, when only the maximum pixel spectrum intensity of lipid organelles is

considered. As for the other two cells samples, we conclude that the intracellular statistics is

not influenced by choosing the spectra with maximum densities of lipids only.

8.3.3 Control experiments

In order to evaluate the origin of the observed lipid heterogeneity in the living HL-60 cells,

we have performed two control experiments. First, we tested if the diffusion dynamics of the

cell will cause the apparent heterogeneity. Second, by imaging individual polystyrene beads

in aqueous environment, which act as model systems for individual intracellular organelles of

similar sizes but having a well defined homogeneous distribution of Raman peak amplitudes

throughout the bead, we tested the intrinsic limit for the distribution width and the accuracy of

reconstructing Im[χ(3)
Res(ν)] amplitudes.
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8.3.3.1 Time dynamics of lipid organelles inside the living cell

A representative organelle inside an OxLDL-loaded cell is shown in fig. 8.5, where the peak

amplitudes A(1655 cm−1) of the reconstructed Im[χ(3)
Res lipid(ν)] are mapped in the x-y plane to-

gether with their corresponding z-y cross-section map of a single selected lipid organelle. With

Figure 8.5: Density maps of C = C stretching modes using the peak amplitude of

Im[χ(3)
Res lipid(ν)] at 1655 cm−1 for a HL-60 cell loaded with OxLDL particles. Measure-

ment conditions were 30 mW and 15 mW for the pump and Stokes beams, respectively.

The pixel dwell time was 100 ms. The scan step sizes were 157 nm in the x-y map of the

whole cell. The 3D zoom-in was scanned in steps of 49 nm and 400 nm for the x-y and

z-y cross-section maps, respectively. The scale bar is 1 µm.

a pixel dwell time of 100 ms and 150 × 109 pixel spectra for the whole cell map, every 15 sec-

onds, a new line was scanned. It is interesting to investigate the time scales of possible dynamics

of lipid organelles in the cells. For the same lipid organelle shown in the close-up image in fig.

8.5, a time series was measured over almost 4 minutes, taking a spectrum every 100 ms without

moving the scan table. The temporal profiles of the total Im[χ(3)
Res lipid(ν)] amplitudes integrated

within the range from 2600 cm−1 to 3050 cm−1 (red curve) and the relative fraction of water

(blue curve) are shown in fig. 8.6. One observes relative changes in the order of 12 % on the

time scales of seconds. When the temporal profile of the relative fraction of water in the focal

volume is compared with that of the integrated lipid amplitudes, they show an anticorrelation in

time with relative changes of > 30% on the time scale of minutes (see times > 100 sec). This is

not too surprising for a living and therefore dynamic system. The observed dynamics must be

caused by tiny movements of either the lipid organelle inside the cell, or the whole cell on the

sub-µm level. The time scale of the slow diffusion dynamics is much higher than the mentioned
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Figure 8.6: Temporal profiles of the integrated Im[χ(3)
Res lipid(ν)] spectrum (red curve) after

subtraction of the scaled mean cytosplasm spectrum and of the relative water content

(blue curve), when focussed on the single lipid organelle inside the OxLDL-loaded cell

shown in the 3D zoom-in in fig. 8.5. The spectrum integration time is 100 ms for the

object and reference spectrum, the total length of the time series is 234 seconds. Powers

are 30 mW and 15 mW for the pump and Stokes beams, respectively.

15 seconds, a line scan takes. Therefore, the effect of cell dynamics or intracellular organelle

dynamics on neighboring pixel spectra is assumed to be negligible.

8.3.3.2 Mapping the homogeneous chemical distribution inside a single 750 nm-
polystyrene bead

Next, the pixel-to-pixel accuracy of the reconstructed Im[χ(3)
Res(ν)] for a well defined microscopic

model system with homogeneous chemical composition will be investigated. Fig. 8.7 A shows

a representative Im[χ(3)
Res(ν)] spectrum when focussed on a single polystyrene (PS) bead (see the

diploma thesis by Stefan Gomes da Costa [147]). Subsequent to its CARS spectral imaging,

each reconstructed pixel spectrum has been fitted to a sum of Lorentzian bands, resulting in a

map of Im[χ(3)
Res(ν)] amplitudes at 3030 cm−1, shown in the insert. The corresponding statistical

distribution of normalized peak amplitude values at 3030 cm−1, where normalization is per-

formed with the total spectrum integrated from 2700 cm−1 to 3400 cm−1, is shown in fig. 8.7

B. The width of the normalized amplitude distribution is a measure for the relative error of the

reconstruction within the microscopic beads of homogeneous chemical composition. The stan-

dard deviation is ± 6.2%. Consequently, only relative amplitude changes exceeding this value
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Figure 8.7: Control experiment that maps the homogeneous chemical distribution inside

750 nm-beads in water. (A) Reconstructed Im[χ(3)
Res(ν)] pixel spectrum recorded at the

position indicated in the insert map together with a fit to Lorentzian bands. The insert

shows the map of peak amplitudes of the Lorentzian band centered at 3030 cm−1. (B) The

corresponding histogram of peak amplitudes exhibits a narrow distribution with a relative

FWHM of 12.4%. The insert shows the map of peak amplitudes when normalized by

the sum of the areas of all Lorentzian bands of the fits. The scale bars are 500 nm. The

measurement step size is 68.3 nm. Powers are 20 mW and 5 mW for the pump and Stokes

beams, respectively. The spectrum integration time is 100 ms for the object and reference

spectrum (see the diploma thesis by Stefan Gomes da Costa [147]).

will be considered to be significant for the identification of lipid composition heterogeneities

inside living cells.

8.3.4 Determination of the composition of lipids

We next will compare the mean reconstructed Im[χ(3)
Res(ν)] spectra of the lipid organelles and

cytoplasms of the different types of cells. In fig. 8.8, the cytoplasm spectra used in the recon-

struction to obtain the pure lipid spectra are compared for all three cell types. Vibrational bands

can be observed at 580 cm−1 and 747 cm−1 (assigned to tryptophane), at 1021 cm−1 (assigned

to phenylalanine) and at 1114 cm−1 (assigned to C-C, respectively C-N stretching vibrations

in proteins). In the spectral range from 1200 cm−1 to 1700 cm−1, first the amide III appears

around 1250 cm−1, followed by the CH2 bending mode at 1450 cm−1. The amide II appears as a

shoulder at approximately 1550 cm−1 of the amide I at 1664 cm−1 with both being on top of the

bending mode of water at 1629 cm−1. In the CH-stretching region, all cytoplasm spectra show

signatures typical for proteins with the maximum intensity at about 2930 cm−1. The spectra
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Figure 8.8: Mean cytoplasm spectra of the unloaded, the OxLDL-loaded, and the ELDL-

loaded HL-60 cells shown in fig. 8.3, as obtained by spatial averaging over 617, 1064,

and 619 spectra, respectively. All three CARS measurements were recorded at 30 mW

and 15 mW for the pump and Stokes beams, respectively. The pixel spectrum integration

time was 100 ms. All spectra are normalized to the peak intensity at 2930 cm−1 assigned

to the CH2 asymmetric stretch vibrations of proteins. Spectra in the CH-stretching region

are scaled down by 1
8 .

represent a mixture of cytoplasmic proteins, but do not show any spectral features of lipids. No

significant differences between the three types of cells are observed.

In fig. 8.9, the mean spectra of the selected pure lipid droplet organelles belonging to these

three cells are compared. Note the striking similarity when compared with the spontaneous Ra-

man spectra of the FAME model lipids presented in figs. 7.6 and 7.8, or with the reconstructed

Im[χ(3)
Res(ν)] spectra of the FAME model lipids shown in figs. 7.16 and 7.18. All major bands

found in the FAME model lipids can also be found in the mean lipid organelle spectra. When

the normalized mean lipid organelle spectra are compared regarding the different LDL particle

loading, the following four observations are noticeable. First, the normalized spectra show al-

most the same peak intensities at 1080 cm−1, 1300 cm−1, and 1440 cm−1, which indicates that

the mean lipid chain lengths are comparable. This is in agreement with the maps of the chain

length given in fig. 8.3, which have similar contrast. Second, we observe a trend of increasing

peak amplitudes of Im[χ(3)
Res(ν)] at 870 cm−1, 1267 cm−1, 1655 cm−1, and at 3005 cm−1, when

going from the unloaded, OxLDL-loaded, to the ELDL-loaded cell. Consequently, the mean
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Figure 8.9: Mean spectra of selected lipid droplets organelles of the unloaded, the

OxLDL-loaded, and the ELDL-loaded HL-60 cells shown in fig. 8.3, as obtained by

averaging over 63, 128, and 71 lipid organelles, respectively. All three CARS measure-

ments were recorded at 30 mW and 15 mW for the pump and Stokes beams, respectively.

The pixel spectrum integration time was 100 ms. All spectra are normalized to the peak

intensity at 1740 cm−1 assigned to the C=O-bond. Spectra are scaled down in the CH-

stretching region by a factor of 0.1

degree of unsaturation follows a trend as 〈nC=C unloaded〉 < 〈nC=C OxLDL loaded〉 < 〈nC=C ELDL loaded〉

, which is again in agreement with the increase of contrast in the map of the degree of the acyl

chain unsaturation shown in fig. 8.3. To conclude, while the mean cytoplasm spectra do not,

the mean lipid organelle spectra clearly allow to differentiate between the cells. However, the

mean lipid organelle spectra are not identical with the mean reconstructed Im[χ(3)
Res(ν)] spectra

of the pure LDL particle solutions (see fig. 7.20 presented in ch. 7). This indicates that between

uptake and storage the living cell has influenced the lipid composition of the LDL particles.

As shown in fig. 8.9, the mean reconstructed Im[χ(3)
Res(ν)] spectra of the selected lipid or-

ganelles do not reveal spectral features typical for CEs, Chol, or oxysterols. Consequently, the

lipid organelle spectra are well described by using a linear combination of the simple FAME

standard spectra. Though FAMEs are not present in cells, here we exploit the fact that they

are spectrally almost identical to TAGs (see the molecular structure in fig. 7.1 and the spon-

taneous Raman spectrum in fig. 7.3), that make up the organelles. Therefore, the results for

FAMEs listed in tab. 7.4 will be used in order to estimate the chain length and their degree
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of acyl chain unsaturation in the organelle. In fig. 8.10, the mean reconstructed reconstructed

Figure 8.10: Linear decomposition of the mean spectrum of identified lipid organelles in

the ELDL-loaded cell shown in fig. 8.3 into the 16:1, 18:1, and 18:2 FAME lipid basis

spectra. Spectra (see fig. 7.16 and fig. 7.18) in the CH-stretching region are scaled down

by a factor of 0.1.

Im[χ(3)
Res(ν)] spectra of all 71 selected lipid organelles in the ELDL-loaded cell, shown in fig.

8.3, is plotted together with the mean reconstructed Im[χ(3)
Res(ν)] spectra of the 16:1, 18:1, and

18:2 FAMEs. Also shown is the best fit result of a linear combination of these three FAMEs,

resulting in relative weights of 30.8% 18:1, 53.8% 18:2, and 15.4% 16:1 FAMEs, respectively.

Less good agreement is observed in the spectral region from 2880 cm−1 to 2960 cm−1, which

can be explained by a possible presence of 16:0 FAME in the lipid organelles. The latter is

not accounted for in the decomposition model, because no reconstructed Im[χ(3)
Res(ν)] spectrum

is available. However, when we consult the spontaneous Raman spectrum of the 18:0 FAME,

a linear combination including 16:0 would improve the result not only in the spectral region

from 2880 cm−1 to 2960 cm−1, but also at 1300 cm−1, 1440 cm−1 and 2850 cm−1 where saturated

FAMEs have slightly higher relative intensities when compared with unsaturated FAMEs of the

same chain length (see fig. 7.8).

Having estimated the mean acyl chain length and the mean degree of acyl chain unsaturation

in the lipid organelles, we now have to compare our findings with the established gold standard
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in lipid research: Fig. 8.11 summarizes the result of a typical mass spectroscopy measurement

of THP-1 cells, which are another type of human monocytes, loaded with OxLDL and ELDL

particles, as obtained by our collaboration partners at the Institute for Clinical Chemistry and

Laboratory Medicine, University of Regensburg. In good agreement with the relative weights

Figure 8.11: Mean concentrations of CEs species standards separated by their chain

length and degree of acyl chain unsaturation for typical ELDL- and OxLDL-loaded

THP1-cells, as obtained from mass spectroscopy experiments by Margot Grandl and

Gerd Schmitz, Institute for Clinical Chemistry and Laboratory Medicine, University of

Regensburg. Error bars represent ± the mean standard deviation.

obtained from the linear analysis of the mean spectrum of individual organelles in the ELDL-

loaded cells, as shown in fig. 8.10, the mass spectroscopy results in a lipid composition of

ELDL-loaded cells consisting primarily of equal parts of C18:1 and C18:2 fractions (see fig.

8.11). The relative fractions of those CE species sharing the same chain length nC−C relative to

the total of CE species in ELDL- and OxLDL-loaded THP-1 cells arranged according to their

chain length nC−C as obtained from mass spectroscopy are summarized in tab. 8.1. The relative

fractions of those CE species sharing the same degree of acyl chain unsaturation nC=C relative to

the total of CE species in ELDL- and OxLDL-loaded THP-1 cells arranged according to their

degree of acyl chain unsaturation nC=C as obtained from mass spectroscopy are summarized

in tab. 8.2. A mean (FWHM) of the chain length distribution of 〈nC−C〉 = 18.1(2.7) and a

mean (FWHM) degree of acyl chain unsaturation of 〈nC=C〉 = 1.4(1.1) for ELDL-loaded THP-1

cells is obtained, when normal distributions are assumed. Compared with the values obtained
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Table 8.1: Fractions of CE species sharing the same chain length nC−C relative to the total

of CE species in ELDL- and OxLDL-loaded THP-1 cells arranged according to their

chain length nC−C as obtained from mass spectroscopy (see fig. 8.11).

nC−C ELDL-loaded OxLDL-loaded

THP-1 cells THP-1 cells

14 0.023 0.05

16 0.16 0.37

18 0.50 0.44

20 0.20 0.05

22 0.03 0.05

Table 8.2: Fractions of CE species sharing the same degree of acyl chain unsaturation

nC=C relative to the total of CE species in ELDL- and OxLDL-loaded THP-1 cells ar-

ranged according to their degree of acyl chain unsaturation nC=C as obtained from mass

spectroscopy (see fig. 8.11).

nC=C ELDL-loaded OxLDL-loaded

THP-1 cells THP-1 cells

0 0.10 0.34

1 0.36 0.39

2 0.27 0.07

3 0.07 0.02

4 0.08 0.05

from the two-dimensional histogram shown in fig. 8.4, within the errors, these values are in

agreement with the values obtained by the mass spectroscopy.

Using tabs. 8.1 and 8.2, an average chain length of 〈nC−C〉 = 17.0(1.2) and an average degree

of acyl chain unsaturation of 〈nC=C〉 = 0.6(1.3) for OxLDL-loaded THP-1 cells is obtained,

when normal distributions are assumed. When compared with the values obtained from the

two-dimensional histograms, the values again match within the errors. Furthermore, most of

the pixel spectra with a chain length below 〈nC−C〉 = 14 are observed in the two-dimensional

histograms belonging to the cell loaded with OxLDL particles. The results obtained by mass

and CARS spectroscopies are compared in tab. 8.3.

The comparison presented in tab. 8.3 demonstrates that the results obtained using mass

and CARS spectroscopies agree within the error bars. Both techniques reveal the same trends.

Twice the value of the mean degree of acyl chain unsaturation 〈nC=C〉 and a small increase of

154



Table 8.3: Comparison of the means (standard deviations) of the distributions of the de-

gree of unsaturation of 〈nC=C〉 and the mean chain length 〈nC−C〉 of the CE species in

ELDL- and OxLDL-loaded THP-1 cells as obtained by using mass and CARS spectro-

scopies.

ELDL-loaded cells OxLDL-loaded cells

〈nC−C〉 obtained by mass spectroscopy 18.1(2.7) 17.0(1.2)

〈nC−C〉 obtained by CARS spectroscopy 23(6) 22(7)

〈nC=C〉 obtained by mass spectroscopy 1.4(1.1) 0.6(1.3)

〈nC=C〉 obtained by CARS spectroscopy 0.6(0.2) 0.4(0.2)

the mean acyl chain length 〈nC−C〉 is observed for the ELDL-loaded cells when compared with

the OxLDL-loaded cells.

8.4 Summary and conclusions

This chapter has demonstrated the characterization and mapping of chemical structure parame-

ters of lipids, such as the mean degree of acyl chain unsaturation 〈nC=C〉 and the mean acyl chain

length 〈nC−C〉 using CARS spectroscopy, based on the quantitative reconstruction of solely the

pure vibrational response of the lipid component Im[χ(3)
Res lipid(ν)]. Such a quantitative recon-

struction of the lipid response only is possible based on the novel approach of reconstructing

Im[χ(3)
Res(ν)] that was developed in chapter 5.

A comparison of the reconstructed vibrational response Im[χ(3)
Res lipid(ν)] of the LDL par-

ticle solutions with the mean response Im[χ(3)
Res lipid(ν)] of the lipid organelles of living cells

after loading with these LDL particles revealed significant differences: Despite feeding LDL,

known to contain Chol derivatives, to the cells, no clear spectral evidence of Chol derivatives

was observed in the cells. All lipid droplet spectra are well described using the reconstructed

Im[χ(3)
Res(ν)] spectra of the simple FAME model standards. This suggest that the cells did digest

the LDL particles, and predominately TAG molecules are stored in the lipid organelles.

Concerning the comparison of unloaded, ELDL- and OxLDL-loaded cells, CARS spec-

troscopy revealed the presence of lipid organelles in all three types of cells. An increasing

trend regarding both the size and the density of lipid organelles is observed when going from

the unloaded to the OxLDL- and the ELDL-loaded cells. This result is in agreement with a

previous fluorescence-based high-content study performed by Grandl and Schmitz [141], but

using CARS spectroscopy this confirmation is obtained in a label-free manner! When going

from the unloaded to the OxLDL- and the ELDL-loaded cells, the mean chemical structure
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parameters 〈nC=C〉 and 〈nC−C〉 where found to increase and remain constant, respectively. Het-

erogeneous maps and rather broad distributions of the lipid structure parameters are obtained

for the OxLDL- and ELDL-loaded cells, when compared with the unloaded cells. These re-

sults have not been observed inside a living cell to date. Control experiments demonstrated that

neither fluctuations nor experimental shortcomings cause the observed broad distributions. All

observed distributions of lipid structure parameters exceeding the relative standard deviation of

± 6.2% as obtained for PS beads of homogeneous chemical composition are considered to be

genuine.

The comparison of the mean values of 〈nC=C〉 and 〈nC−C〉 obtained by using mass and CARS

spectroscopies (see tab. 8.3) reveals a good agreement with each other. However, using CARS

spectroscopy allows the investigation of individual lipid organelles in a living cell in space

and time with sub-micron spatial resolution in a non-invasive manner. In contrast, mass spec-

troscopy, by its nature is invasive and relies on the measurement of an ensemble of many cells.

On the other hand, it has a much higher resolution in differentiating lipid structure parame-

ters allowing the identification of different chain lengths, where CARS only gives an average.

CARS microspectroscopy thus was demonstrated to be a promising tool for spatial and/or time

resolved live cell studies to answer open questions in lipidomics.
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9 Conclusions and Outlook

A big part of this thesis deals with the mathematical and computational methodology needed

for the quantitative analysis in CARS micro-spectroscopy that then was successfully applied to

study systems ranging from the material sciences (see ch. 6) over biochemistry (see ch. 7) to

medicine (see ch. 8). Therefore, a whole software bundle involving many subroutines needed

to be developed (see ch. 4). Windowing at the spectral ends was removed by using a real-

valued discrete cosine transform (DCT) instead of the FFT. This approach turned out to remove

the same problem occuring when the Hilbert transform is used as well. Replacing the Levinson

Durbin solver with a more advanced CPCG solver turned out to remove the windowing problem

as well, but in addition drastically reduces the computational cost for the MEM based phase

retrieval. The new and faster solver offers O N0logN0 complexity and thus allows the real-

time analysis of tenthousands of spectra per second. This fast solver is therefore well suited

for time-critical applications and/or applications, where very long vectors need to be processed

using MEM. This involves the application of MEM in fluorescence correlation spectroscopy

(FCS, see [148]), real-time flood forecasting [149], image deconvolution [150] or the calculation

of the Lyapunov exponent of chaotic systems [151]. The CPCG solver approach only needs

several iteration steps and thus has reached its limits regarding the computation speed. However,

the hierarchical H-Matrices introduced by Hackbusch in 1999 [87] are possibly a powerful

alternative as they offer O N0 complexity.

The really challenging problem solved was the development of a more general reconstruc-

tion scheme capable of giving exact results in all possible experimental cases involving cases,

where all prior concepts fail. This concept is based on a more general model of coherent Raman

spectra and it is this concept, that allows to deliver the correct χ(3)
Res(ν) for all potential exper-

imental cases in a straightforward manner. Additional information regarding the electronic

susceptibilities χ(3)
E can now be extracted using the same setups previously used or even by re-

analyzing old data. For the first time, the true vibrational susceptibility χ(3)
Res(ν) can be retrieved

even in cases where χ(3)
Res(ν) exhibits strong spectral overlap with χ(3)

E . Now quantitative CARS

micro-spectroscopy can be performed in unknown, complex and heterogeneous samples like

biopolymers, tissues or living cells. Several possible applications of the newly developed meth-

ods in other fields come into mind, first other phase-sensitive spectroscopies such as e.g. sum
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frequency generation [152], optical reflectance spectroscopy [153] or for cases in spontaneous

Raman spectroscopy, where the line-shapes are of Breit-Wigner-Fano-type like the G-band in

graphene [154]. In principle, the newly developed methods are interesting for all cases, where

resonances (discrete states) are coherently coupled to an e.g. electronic continuum and the

power spectrum of the corresponding complex function is measured. This involves cases like

Fano coupling [155],[156], resonant ultrasound spectroscopy [157],[158],[159], and measure-

ments of complex quantities such as the complex admittance of resonators in engineering [160].

The bilateral filter was demonstrated in this thesis to be a powerful tool regarding the denois-

ing of reconstructed or spontaneous Raman spectra. The trilateral filter [161], an enhanced bilat-

eral filter, seems to be even more powerful regarding the denoising. First tests regarding certain

combinations of bilateral or trilateral filtering with SVD or its dimensionality matched exten-

sions to tensors like PARAFAC (see [162]) or Tucker-n (see [163] for the three-dimensional

case) have been promising not only regarding the improved reduction of noise, but as well

regarding the possibility of a drastic reduction of storage needed for large reconstructed hy-

perspectra, when such tensor factorization techniques are used. The ultimate goal regarding

both, denoising and data reduction, is an independent component analysis, where using the al-

ternating least squares approach very promising first results have been obtained during the work

involved in this thesis. The reconstruction approach developed in this thesis allows in principle

to determine for a single CARS spectrum, how many individual species with different electronic

susceptibilities χ(3)
E are present. When performed in a frequency resolved manner, unsupervized

background estimation is within reach. Furthermore two datasets are available: The measured

spectra on the one hand and the integrated reconstructed spectra as a function of the effective

phase φe f f on the other. The determination of the effective phase φe f f based on the ratio of max-

imum to minimum excursions in the retrieved estimated phase could help to reduce the number

of fit parameters, when isolated resonances are present in the hyperspectral dataset.

Quantitative CARS micro-spectroscopy was applied in order to answer questions arising

in material sciences. The conventional MEM-based reconstruction of Im[χ(3)
Res(ν)] was applied

for the non-invasive 2D and 3D visualization of the micro-domain structure in polymers in

ch. 6. The demonstration of very fast mapping of the crystallinity in PP and PE polymer

thin films by CARS micro-spectroscopy raises expectations regarding the investigation of more

complex polymer systems such as copolymers (mixtures of two or more polymers) or poly-

mer blends. The identification of 7-keto-Chol in the OxLDL particle suspensions using CARS

micro-spectroscopy offers the possibility to determine its concentration in human patients in a

non-invasive and fast manner. However, in the same manner as 7-keto-Chol was identified, other

lipids or proteins could be detected. Concerning the calibration using lipid models, the complex

landscape spanned by the parameters chain length and number of double bonds would need to be

sampled using more calibration points. This would allow to formulate a better model and would
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then allow to transform the intensity ratios into absolute values of chain length and number of

double bonds for a bigger range of possible combinations of chain length and number of double

bonds. The demonstrated capabilities of CARS micro-spectroscopy characterizing the average

lipid composition in single lipid organelles in living cells can be transferred to other systems

such as investigating lipid bilayers, lipid domains or the secondary structure of proteins such as

collagen. Fast characterization of lipids and proteins in living cells or tissue is essential in lipid

research, where both, high speed data acquisition and non-invasiveness is highly desirable. This

is why lipid research is a growing application of CARS micro-spectroscopy. In summary, the

results achieved in this thesis are of high interest for the field of CARS micro-spectroscopy and

beyond. The main results are currently prepared for publication.
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V2 ]

δS (ν) . . . . . . . . Simulated noise amplitude in the normalized CARS spectrum [cm−2]
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∆χ(3)
Res 1(ν) . . . Error made when the first component is rotated by an effective phase shift φest

e f f

δφMEM(ν) . . . . Simulated noise amplitude in the MEM phase [rad]

δICARS re f (ν) . Simulated shot noise amplitude in the reference CARS spectrum,

δICARS re f (ν) = ∆G
√

ICARS re f (ν) [cm−2]

δICARS sample(ν) Simulated shot noise amplitude in the sample CARS spectrum,

δICARS sample(ν) = ∆G
√

ICARS sample(ν) [cm−2]

δIm[χ(3)
Res(ν)] . Simulated noise amplitude in the reconstructed Im[χ(3)

Res(ν)] amplitude [cm−1]

∆ν(x, y, z, t) . Spectral shift correction map [cm−1]

δDirac . . . . . . . . Delta function [1
s ]

δDirac +(t − nT ) Dirac comb [1
s ]

∆G . . . . . . . . . . Width of Gaussian noise [cm−2]

δm . . . . . . . . . . Diagonal elements of D
δR . . . . . . . . . . . sign correction parameter for eq. A.50

δ . . . . . . . . . . . Detuning parameter, δ = ν0 − (νPump − νS tokes) [cm−1]

ε0 . . . . . . . . . . . Vacuum permittivity [ F
m ]

εr . . . . . . . . . . . Relative permittivity [ F
m ]

η . . . . . . . . . . . Spatial lag coordinate [m]

γas . . . . . . . . . . Antisymmetric anisotropy, γas = 3
4

∑
ρσ(αρσ − ασρ)2 [C2m4

V2 ]

ΓG . . . . . . . . . . Width of a Gaussian band G(ν) [cm−1]

ΓL . . . . . . . . . . Width of a Lorentzian band L(ν) [cm−1]

γm . . . . . . . . . . mth Schur parameter

γs . . . . . . . . . . . Symmetric anisotropy, γs = 1
2

∑
ρσ(αρρ − ασσ)2 + 3

4

∑
ρσ(αρσ + ασρ)2 [C2m4

V2 ]

Γvirt . . . . . . . . . half width of the virtual state

p̂ρ . . . . . . . . . . electric dipole operator for the Cartesian coordinates ρ [Cm]

p̂σ . . . . . . . . . . electric dipole operator for the Cartesian coordinates σ [Cm]

λEx . . . . . . . . . . Excitation wavelength [nm]

λk . . . . . . . . . . . Eigenvalues of CCirculant

Λ . . . . . . . . . . . Diagonal matrix holding eigenvalues λk of CCirculant, Λ = diag(λ1, . . . , λk)

ρD . . . . . . . . . . Density matrix

BPoly . . . . . . . . Matrix holding polynomial interpolation coefficients

Cov . . . . . . . . . Covariance matrix, covariance of a vector g: Cov =
cov(g1, g1) . . . cov(g1, gn)

. . .

cov(gn, g1) . . . cov(gn, gn)


c . . . . . . . . . . . . First column of CCirculant

C(m, n) . . . . . . Autocorrelation matrix, relation with Cov: Ci, j =
Covi, j√

Covi,iCov j, j

CCirculant . . . . . Circulant matrix of size N0 × N0, CCirculant i j = CCirculant kl, when j − i ≡ l −
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k (mod N0)

CToeplitz . . . . . . Toeplitz matrix of size n × n

D . . . . . . . . . . . Diagonal matrix of size n × n, D =


δ1 . . . 0

. . .

0 . . . δn


E0 . . . . . . . . . . Peak electrical field amplitude [ V

m ]

FN0 . . . . . . . . . Fourier matrix of size N0 × N0, [FN0] j,k = 1
√

N0
e−

2πi( j−1)(k−1)
N0 , 1 ≤ j, k ≤ N0

Im . . . . . . . . . . Identity matrix of size m × m, Im =


1 . . . 0

. . .

0 . . . 1


Jm . . . . . . . . . . Anti-unity or exchange matrix of size m × m, Jm =


0 . . . 1

...

1 . . . 0


L . . . . . . . . . . . Lower left matrix of size n × n, L =


l11 . . . 0

. . .

ln1 . . . lnn


p . . . . . . . . . . . Dipole moment [Cm]

rm+1 . . . . . . . . . (m+1)th Szegöe vector

U . . . . . . . . . . . Upper right matrix of size n × n, U =


u11 . . . u1n

. . .

0 . . . unn


VVan . . . . . . . . Vandermonde matrix

s . . . . . . . . . . . . Wavelet scale

t . . . . . . . . . . . . Wavelet translation [s]

D . . . . . . . . . . . Discrete cosine transform (DCT)

D−1 . . . . . . . . . Inverse discrete cosine transform (IDCT)

F . . . . . . . . . . Fast Fourier transform (FFT)

F −1 . . . . . . . . Inverse fast Fourier transform (IFFT)

H . . . . . . . . . . Discrete Hilbert transform (DHT)

L . . . . . . . . . . Laplace transform

P . . . . . . . . . . Cauchy principal value

W . . . . . . . . . . Continuous Wavelet transform (WT)

Z . . . . . . . . . . z-transform

| ψν=0〉 . . . . . . . Vibrational ground state

| ψν=1〉 . . . . . . . First excited vibrational state

| ψe=1〉 . . . . . . . First excited electronic state

| ψvirt〉 . . . . . . . Virtual state
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µ . . . . . . . . . . . Weight of the Lorentzian contributions in a Voigt band V(ν)

µ0 . . . . . . . . . . . Vacuum permeability [ H
m ]

µr . . . . . . . . . . . Relative permeability [ H
m ]

ν . . . . . . . . . . . . Normalized frequency [ 1
cm ]

ν0 . . . . . . . . . . . Raman resonance frequency [cm−1]

νmax . . . . . . . . . Upper limit of the normalized frequency [ 1
cm ]

νmin . . . . . . . . . Lower limit of the normalized frequency [ 1
cm ]

νNyq = N/2 . . Nyquist frequency [ 1
cm ]

νn . . . . . . . . . . . Discrete set of normalized frequencies νn = n
N = n

(N=(2K+1)(N0−1)+1) (n =

0, 1, . . . ,N) [ 1
s ]

ω . . . . . . . . . . . Frequency [ 1
s ]

ω0 . . . . . . . . . . Frequency of the sample’s vibration [1
s ]

ωanti−S tokes . . . anti-Stokes frequency ωanti−S tokes = ωL + ω0 [ 1
s ]

ωCARS . . . . . . . CARS field frequency [1
s ]

ωL . . . . . . . . . . Frequency of the incident light field [1
s ]

ωProbe . . . . . . . Probe field frequency [1
s ]

ωPump . . . . . . . Pump field frequency [ 1
s ]

ωS tokes . . . . . . . Stokes field frequency [1
s ]

ωS tokes . . . . . . . Stokes frequency ωS tokes = ωL − ω0 [ 1
s ]

ωS . . . . . . . . . . Frequency of the scattered Raman light field [ 1
s ]

α . . . . . . . . . . . Mean polarizability, α = 1
3

∑
ρρ αρρ [Cm2

V ]

φ . . . . . . . . . . . Phase [rad]

φest
e f f . . . . . . . . . Estimated effective phase shift [rad]

φmix
e f f j . . . . . . . . Effective phase shift of χ(3)

Res j(ν) of the jth chemical component [rad]

φmix
E e f f . . . . . . . Phase angle of the effective complex susceptibility of a n-component mixture

[rad]

φmix
MEM(ν) . . . . . MEM-phase of a n-component mixture [rad]

φCARS . . . . . . . Phase of the sample CARS field [rad]

φe f f . . . . . . . . . Effective phase shift [rad]

φe f f j . . . . . . . . Effective phase shift of the jth chemical component [rad]

φerror(ν, x, y, z, t) Slowly varying error-phase [rad]

φestimated(ν, x, y, z, t) Estimated phase (KK or MEM based) [rad]

φE . . . . . . . . . . Phase of χ(3)
E [rad]

φE e f f . . . . . . . Offset phase [rad]

φE e f f j . . . . . . Phase angle of the effective nonresonant electronic susceptibility of the jth

chemical component [rad]

φMEM(ν, x, y, z, t) Phase obtained using the MEM procedure [rad]
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φMEM NR(ν, x, y, z, t) Nonresonant points / regions of φMEM(ν, x, y, z, t) [rad]

φNTO . . . . . . . . Phase of the intra-Stokes CARS field [rad]

φretrieved(ν, x, y, z, t) Retrieved phase phase (KK or MEM based) [rad]

φR . . . . . . . . . . Phase acting on χ(3)
Res(ν) [rad]

φR j . . . . . . . . . Phase acting on χ(3)
Res j(ν) of the jth chemical component [rad]

φtot(δ) . . . . . . . Phase φtot(δ) = tan−1 Im[χ(3)
tot (δ)]

Re[χ(3)
tot (δ)]

[rad]

Ψ(t) . . . . . . . . . Mother wavelet

Ψs,t(t) . . . . . . . Wavelet basis function

ψe=1 . . . . . . . . . Wave function of an electronic resonance

ρ . . . . . . . . . . . Molecule coordinate [m]

ρdepol . . . . . . . . Depolarization ratio

ρdepol NR . . . . . Depolarization ratio for the nonresonant part χ(3)
NR

ρdepol Res . . . . . Depolarization ratio for the resonant part χ(3)
Res

σ . . . . . . . . . . . Molecule coordinate [m]

σi . . . . . . . . . . . ith singular value

σRaman . . . . . . . Spontaneous Raman scattering cross section [ cm2

sr ]

a . . . . . . . . . . . Vector holding the MEM or prediction coefficients ak

B . . . . . . . . . . . Magnetic field [T ]

b . . . . . . . . . . . Vector holding the MEM coefficients

cx . . . . . . . . . . . Fraction of the xth basis spectrum in a linear combination

di . . . . . . . . . . . Search vector of the ith iteration step

E . . . . . . . . . . . Electric field [ V
m ]

EProbe . . . . . . . Electric probe field [ V
m ]

EPump . . . . . . . Electric pump field [ V
m ]

ES tokes . . . . . . . Electric Stokes field [ V
m ]

f(ã) . . . . . . . . . Quadratic form of C̃Circulant ã = b̃, f(ã) = 1
2 ãT C̃Circulantã − bT ã + const.

H . . . . . . . . . . . Hierarchical matrix

H . . . . . . . . . . . Magnetic field strength [ A
m ]

j . . . . . . . . . . . . Current [A]

kCARS . . . . . . . Wave vector of the anti-Stokes field [ 1
m ]

kPump . . . . . . . . Wave vector of the Pump field [ 1
m ]

kS tokes . . . . . . . Wave vector of the Stokes field [ 1
m ]

M . . . . . . . . . . Preconditioner matrix

P . . . . . . . . . . . Polarization [ C
m2 ]

P(3) . . . . . . . . . Induced third-order nonlinear polarization, P(3)
CARS = χ(3)EPumpEProbeE∗S tokes [ C

m2 ]

ri = −∇f(ãi) . . Residual at the ith iteration step

W . . . . . . . . . . Matrix embedding CToeplitz into CCirculant, where Wi j = wi− j,wi = CToeplitz i−N0
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for i > 0 and wi = CToeplitz i+N0 for i < 0, element w0 is arbitrary

ã . . . . . . . . . . . Vector holding the MEM or prediction coefficients ak in eq. 5.19

b̃ . . . . . . . . . . . Vector holding the MEM coefficients in eq. 5.19

c̃ . . . . . . . . . . . . First row of C̃Circulant with size 2N0

C̃Circulant . . . . . Circulant of size 2N0 x 2N0 with CToeplitz embedded

ξ . . . . . . . . . . . . Spatial lag coordinate [m]

ζi . . . . . . . . . . . Gram-Schmidt coefficients

A . . . . . . . . . . . Area of an image [µm2]

Ai jkl . . . . . . . . . Amplitude of a Raman resonance [cm−1]

ak . . . . . . . . . . . MEM or prediction coefficient

AM . . . . . . . . . . Fourier components, a CARS spectrum S (ν, x, y, z, t,K) is decomposed in

C(m) . . . . . . . . Autocorrelation coefficients

c0 . . . . . . . . . . . Vacuum speed of light [m
s ]

Ca . . . . . . . . . . Scaling factor in the case a

Cb . . . . . . . . . . Scaling factor in the case b

Cc . . . . . . . . . . Scaling factor in the case c

cPE . . . . . . . . . . Normalized amplitude of the 1420 cm−1 band in Polyethylene (PE)

cPP . . . . . . . . . . Normalized amplitude of the 810 cm−1 band in Polypropylene (PP)

c2 bands
PP . . . . . . Crystallinity in Polypropylene (PP) using two bands and eq. 6.5

c3 bands
PP . . . . . . Normalized amplitude of the 810 cm−1 band in Polypropylene (PP) using four

bands and eq. 6.4

c3 bands
PP . . . . . . Normalized amplitude of the 810 cm−1 band in Polypropylene (PP) using three

bands and eq. 6.3

em(t) . . . . . . . . Prediction error sequence [s]

f ∗(t) . . . . . . . . Sampled data [s]

F1(φe f f , χ
(3)
E e f f ) Single component functional

F2(φe f f , χ
(3)
E e f f ) n = 2-component functional

Fmix(φe f f ,
√

S NR) Functional minimizing only the negative part f − = max(− f , 0) = min( f , 0)

of Im[χ(3)
tot (ν)]

Fn(φe f f , χ
(3)
E e f f ) n-component functional

G(η, ξ) . . . . . . 2D autocorrelation function with spatial lag coordinates η and ξ

g(η, ξ) . . . . . . . Normalized 2D autocorrelation function with spatial lag coordinates η and ξ

G(ν) . . . . . . . . Gaussian band

g(t) . . . . . . . . . Time response function [s]

gNoise(0, 0) . . . Noise peak at (η, ξ) = (0, 0) with width wNoise

h . . . . . . . . . . . Entropy [ J
K ]

i(x, y) . . . . . . . Image with spatial coordinates x and y
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I⊥ . . . . . . . . . . . Perpendicular to the xz-plane polarized component of the CARS intensity [ W
m2 ]

I‖ . . . . . . . . . . . Parallel to the xz-plane polarized component of the CARS intensity [ W
m2 ]

ICARS (ν) . . . . . CARS spectral profile [ W
m2 ]

ICARS (ν) . . . . . CARS intensity [ W
m2 ]

ICARS re f (ν) . . CARS intensity generated in the reference [ W
m2 ]

ICARS re f (ωCARS ) CARS intensity of the reference [ W
m2 ]

ICARS sample(ν) CARS intensity generated in the sample [ W
m2 ]

ICARS sample(ωCARS ) CARS intensity of the sample [ W
m2 ]

INTO(ν) . . . . . Intra-Stokes CARS intensity [ W
m2 ]

INTO re f (ν) . . . Intra-Stokes CARS intensity of the reference [ W
m2 ]

INTO sample(ν) Intra-Stokes CARS intensity of the sample [ W
m2 ]

Itotal(ν) . . . . . . Total CARS intensity (sample and intra-Stokes CARS) [ W
m2 ]

Itotal re f (ν) . . . . Total CARS intensity (sample and intra-Stokes CARS) of the reference [ W
m2 ]

Itotal sample(ν) . Total CARS intensity (sample and intra-Stokes CARS) of the sample [ W
m2 ]

Im[χ(3)
Res solvent(ν)] Resonant susceptibility of the solvent [m2

V2 ]

L(ν) . . . . . . . . . Lorentzian band

M . . . . . . . . . . . Number of autocorrelation values

m . . . . . . . . . . . Lag number or order of AR process

mdeg . . . . . . . . . Degeneracy, number of equal input frequencies

N . . . . . . . . . . . Length of a discrete signal

N . . . . . . . . . . . Number of samples in a squeezed CARS spectrum S (ν, x, y, z, t,K) of length

N0, N = (2K + 1)(N0 − 1) + 1

N0 . . . . . . . . . . Number of samples in a CARS spectrum S (ν, x, y, z, t,K)

NOb j . . . . . . . . Number of correlated objects in an image i(x, y) [ ob jects
µm2 ]

NS cat . . . . . . . . Number density of molecules

rC−C . . . . . . . . . Ratio representing the chain length nC−C: rC−C =
A(1440 cm−1)+A(1460 cm−1)

A(1740 cm−1)

rC=C . . . . . . . . . Ratio representing the degree of acyl chain unsaturation nC=C: rC=C =
A(3005 cm−1)
A(1740 cm−1)

rIm[χ(3)
tot (ν)]

. . . . . Normalized ratio of maximum to minimum excursion of reconstructed

Im[χ(3)
tot (ν)], rIm[χ(3)

tot (ν)]
=

max(Im[χ(3)
tot (ν)])−min(Im[χ(3)

tot (ν)])

max(Im[χ(3)
tot (ν)])

rphase . . . . . . . . Normalized ratio of maximum to minimum estimated phase excursion,

rphase(φestimated(ν)) =
max(φestimated(ν))−min(φestimated(ν))

max(φestimated(ν))

s . . . . . . . . . . . . Complex frequency variable [ 1
s ]

S (νn, x, y, z, t)′ CARS spectrum S (νn, x, y, z, t) with a reversed copy appended as used in the

DCT

s(t) . . . . . . . . . Signal [s]

S mix(ν) . . . . . . CARS spectrum of a n-component mixture [cm−2]
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ss(νn) . . . . . . . Approximation component [cm−1]

sanalytic(t) . . . . Analytic signal [s]

sbackground(ν) . . Background component [cm−1]

si(νn) . . . . . . . . Detail component, (i = 1, . . . , s) [cm−1]

S max . . . . . . . . Relative maximum in a CARS spectrum S (ν)

S min . . . . . . . . . Relative minimum in a CARS spectrum S (ν)

snoise(ν) . . . . . . Noise component [cm−1]

S NR(ν, x, y, z, t) Nonresonant region of a normalized CARS spectrum

sscaling . . . . . . . Scaling factor in general

ssignal(ν) . . . . . Signal component [cm−1]

T . . . . . . . . . . . Sampling interval [s]

tint . . . . . . . . . . Integration time for recording a spectrum [s]

V(ν) . . . . . . . . Voigt band

V j, j . . . . . . . . . . variances

wη . . . . . . . . . . Half-width of g(η, ξ) along the η-direction [m]

wξ . . . . . . . . . . Half-width of g(η, ξ) along the ξ-direction [m]

wNoise . . . . . . . Half-width of the noise peak gNoise(0, 0) [m]

z . . . . . . . . . . . . interaction path length in the Raman active medium [m]

ρ f ree . . . . . . . . . Charge [C]

c(ξ,σ) . . . . . . fixed d dimensional Gaussian filter kernel

k . . . . . . . . . . . Wave vector [ 1
m ]

r . . . . . . . . . . . . Position vector [m]

s(ξ,σrange) . . . d-dimensional Gaussian filter kernel

K . . . . . . . . . . . Squeezing parameter

n . . . . . . . . . . . Index of refraction

Q(t) . . . . . . . . . Nuclei coordinate [m]
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A.1 Used transforms

A.1.1 Fourier transform (FT), discrete FT (DFT), and fast Fourier trans-
form (FFT)

For an arbitrary given signal function x(t), the Fourier transform (FT) X(ω) allows to rewrite

x(t) as [164]

x(t) =
1

2π

∫ −∞

∞

X(ω)eiωtdω , (A.1)

with X(ω) being

X(ω) =

∫ −∞

∞

x(t)e−iωtdt . (A.2)

We can consider eq. A.2 and eq. A.1 as the forward and inverse Fourier transform, respectively.

In practice, the continuous signal x(t) will be sampled with a certain sampling interval T , and

will become a discrete signal. In the discrete FT (DFT), the integral becomes a sum, ranging

from the first to the Nth sample. The following equations A.3 and A.4 are the MATLAB nota-

tion of the fast Fourier transform (FFT) and of the inverse FFT (IFFT), respectively , using the

Cooley Tukey FFT algorithm [60]:

F (x(t)) = X(k) =

N∑
j=1

x( j)w( j−1)(k−1)
N , (A.3)

F −1(x(t)) = x( j) =
1
N

N∑
k=1

X(k)w−( j−1)(k−1)
N , (A.4)

wN = e
−2π i

N , (A.5)

with eq. A.5 being the Nth root of unity. For a real input signal x(t), the FFT will be a hermitian

symmetric function, which will be symmetric around the Nyquist frequency νNyq = N
2 . All

information is contained in the positive frequencies, and F = F −1. In other words, for x(t)

being real, it makes no sense to use complex basis functions e
2πi
N , as in the FFT. More appropriate

is to define a real transform using the cosine basis functions, as will be introduced in section

5.1.
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A.1.2 The Hilbert transform (HT) and the discrete Hilbert transform
(DHT)

The Hilbert transform (HT) (David Hilbert, 1862-1943) H of a signal s(t) is obtained via the

following singular integral operator [165]:

H (s(t)) =
P

π

∫ ∞

−∞

s(x)
t − x

dx , (A.6)

where P denotes the Cauchy principal value. It is important that eq. A.6 is understood in the

Cauchy principal value sense, meaning that zero is approximated in the exact same manner from

±∞ omitting the singularities in the direct neighborhood: H (s(t)) = P
π

limε→0

∫
|t−x|>ε

s(t)
t−xdx. Eq.

A.6 corresponds to a convolution of s(t) with a singular kernel

H (s(t)) = s(t) ∗
1
πt

, (A.7)

which corresponds to a phase shift of the whole signal s(t) by −π2 . This phase shift corre-

sponds to a time delay of the signal, but because this time delay may be different for every t,

the determination of the phase shift is not trivial! In the frequency domain, FH (s(t))(ω) =

−i sign(ω)F s(t), the phase shifting can be understood as follows: When s(t) is represented

as a linear combination of pure frequencies cos(ωt + φ), the phase shifted version of this

reads sign(x)sin(ωt + φ). To complexify a real signal or to obtain a complex analytic func-

tion sanalytic(t), the use of the HT was introduced by Gabor in 1946 [166]. The analytic signal

obtained then reads:

sanalytic(t) = s(t) + iH (s(t)) = s(t) ∗
[
δDirac(t) +

i
πt

]
, (A.8)

which is sometimes called Gabors complex signal. In eq. A.8, s(t) and H (s(t)) form a Hilbert

pair with s(t) being the in-phase component and H (s(t)) being the quadrature component of the

analytic signal sanalytic(t). In practice, the HT is approximated with a discrete HT (DHT). Several

techniques and algorithms for calculating the DHT have been presented, most of them being

FFT based [167], [168],[169], [170], and [171]. The analytic signal is calculated by performing

a FFT on s(t), replacing all negative frequencies with zero, and transforming back via IFFT

[171]. However, the FFT kernel as used in the MATLAB implementation of the algorithm

[171] is giving rise to the windowing phenomenon at the spectral ends. This can be avoided

when the FFT kernel is replaced by a discrete cosine transform (DCT) kernel [172]. Olkkonen

et. al. [172] are going one step further by replacing the cosine kernel in the modified DHT’s

DCT kernel by a sine kernel, claiming this algorithm being faster and more robust against noise

than the FFT kernel. The modified DCT kernel based DHT will be used in this thesis. The

relevant properties of the HT are:

1. computational cost of the HT is of O2Nlog(N), with N being the length of the discretised

signal s(t),
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2. H c = 0 (c = const.),

3. H H [s(t) + c] = −s(t) (c = const.).

The HT is used in signal processing (eg. calculating envelopes of signals), engineering (e.g.

Bose transforms), network theory (where the so called allpass filter, a filter that only shifts the

phase φ of a signal, comes very close to a Hilbert transformer) and in optics with the Kramers

Kronig relations. The latter application is discussed in section 3.3.1, where the different phase

retrieval methods are laid out.

A.1.3 The z transform

The z-transform Z is the discrete analogon of the Laplace transform L . It is a complex

function. The theory of sampled data approximates the data as trains of impulse functions

f ∗(t) =
∑∞

n=0 f (nT )δDirac +(t − nT ). Here, the Dirac comb δDirac +(t − nT ) represents the nth

sampling of the data at time nT , with T being the sampling interval. The Laplace transform L

of such a discrete sampled function is L ( f ∗(t)) =
∑∞

n=0 f (nT )e−snT , with s being the complex

frequency variable of the kernel e−st of the Laplace transform L ( f ∗(t)) =
∫ ∞

0
f (t)e−stdt. The

notation δDirac + represents the condition lim
η→0

δ(t − η) = δ+(t), meaning that this pulse is covered

by the integration range of the L integral. Substituting the variable z = esT leads for T = 1 to

the z-transform Z :

Z ( f (n)) =

∞∑
n=0

f (T )z−n , (A.9)

with the inverse z-transform Z −1 being Z −1[Z ( f (n))] = f (n) [173]. The z-transform will be

used in section 3.3.1.2 to deduce the maximum entropy model.

A.1.4 The wavelet transform (WT) and the discrete wavelet transform
(DWT)

The continuous Wavelet transform (WT) W of a signal s(t) is given as [174],[175],[176]:

W (s(t)) =

∫
s(t)Ψ∗s,t(t)dt , (A.10)

with Ψs,t(t) being the wavelet basis functions that are generated from a so-called mother wavelet

Ψ(t) by scaling with scale s and translation with t:

Ψ∗s,t(t) =
1
√
s
Ψ

( t − t
s

)
. (A.11)

Similar to the calculation of the Fourier transformation F via the FFT, the WT is calculated

via a fast discrete Wavelet transform (DWT). Note that equation A.10 is projecting the one-

dimensional signal s(t) to a two dimensional scale-time (s, t) representation. This gives rise

202



to the main difference between FFT and DWT. In the FFT case, a signal is decomposed into

plane waves, while the DWT decomposes the signal into wave packages with a finite frequency

bandwidth. In the FFT case the sine basis functions are completely delocalized in the frequency

domain and localized in the time domain, while Wavelets are fairly localized in both domains.

As a consequence, the DWT has the ability to decompose a signal spectrum into different fre-

quency components, while retaining the original spectral resolution of the signal s(t).

A.2 Polynomial error-phase estimation

To efficiently solve the polynomial interpolation of the error-phase spectrum φerror(ν) using eq.

3.56 in chapter 3, the coefficients BPoly need to satisfy the following system

VVan


BPoly(0)

BPoly(1)
...

BPoly(p)


=


1 ν(0) · · · ν(0)p

1 ν(1) · · · ν(1)p

...
...

...

1 ν(p) · · · ν(p)p




BPoly(0)

BPoly(1)
...

BPoly(p)


=


φerror(ν(0))

φerror(ν(1))
...

φerror(ν(p))


, (A.12)

where VVan is the Vandermonde matrix. Especially for calculating all φerror(ν, x, y, z, t) vectors

of a hyperspectrum, the following approach is very computationally cost effective. The com-

puting routine to determine the polynomial interpolations of order p for all error-phase spectra

φerror(ν, x, y, z, t) for a hyperspectrum is as follows

VVan(:, 1 : (p + 1)) = 1 Prepare Vandermonde matrix

for i=n:1 For order p=n to p=1:

VVan(:, i) = νNR ◦ V(:, i + 1)Van write polynomial

end coefficients in rows of VVan

[Q,R] = qr(VVan, 0) Perform QR decomposition

BPoly = R\(QTφMEM(ν, x, y, z, t)T ) Calculate polynomial coefficients

using MATLAB’s backslash operator

φestimated(ν, x, y, z, t) = φMEM(ν, x, y, z, t) Prepare φestimated(ν, x, y, z, t) matrix

for i=0:n For order p=0 to p=n:

φestimated(ν, x, y, z, t) = φestimated(ν, x, y, z, t)

− BPoly(i + 1, :) ◦ (νT )(n−1) Subtract polynomial matrix of order n − 1

end .

Here, we have introduced the Hadamard product, which is denoted by ◦. BPoly denotes a matrix

holding the polynomial coefficients, Q and R are the matrices obtained by performing the QR
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decomposition VVan = QR [81], using e.g. the Gram-Schmidt process mentioned in section

5.2.1.

A.3 Error-phase estimation using the wavelet prism (WP)

decomposition

The wavelet transform is used in the wavelet prism (WP) decomposition [177] of an unknown

discretized spontaneous Raman spectrum s(νn) of length N (n = 1, 2, . . . ,N) [55]. Using the

Mallat pyramid algorithm [178], a discretized function s(νn) is decomposed into a sum of s so

called detail components si(νn), (i = 1, . . . , s) and one approximation component bs(νn):

s(νn) = s1(νn) + s2(νn) + . . . + ss(νn) + bs(νn) . (A.13)

All these spectral components are mutually orthogonal. If no spectral overlap between the noise

component snoise(ν), the signal component ssignal(ν) of interest, and the background sbackground(ν)

is present, the summands given in eq. A.13 can be combined to

s(ν) = snoise(ν) + ssignal(ν) + sbackground(ν) . (A.14)

The functionality of the WP decomposition and its differentiation from the FFT is demonstrated

in Fig. A.1, where a simulated isolated Lorentzian band of A = 1 cm−1 and Γ = 20 cm−1 serving

as the signal component ssignal simulated(ν) is added to a simulated slowly varying background

component sbackground simulated(ν) = −10−5ν + 2 ∗ 10−12ν3 + 0.05 sin(5 ∗ 10−4ν) and a simulated

Gaussian noise component snoise simulated(ν) with a noise amplitude of 0.2. The WP settings are as

follows: Decomposition level s = 22, used wavelet type symlet (sym8), snoise(ν) =
∑6

i=1 si(νn),

ssignal(ν) =
∑12

i=7 si(νn), and sbackground(ν) =
∑s=22

i=13 si(νn) + bs(νn). Fig. A.1 A clearly demon-

strates the ability of the WP decomposition to recover the correct spectral components, such that

snoise(ν) ≈ snoise simulated(ν), ssignal(ν) ≈ ssignal simulated(ν), and sbackground(ν) ≈ sbackground simulated(ν).

Fig. A.1 B shows the dependence of the probability amplitude of each WP component on

its scale s. The first 6 components are dominated by snoise simulated(ν). For components 7 to

12, the signal ssignal simulated(ν) dominates. And for all higher components, the background

sbackground simulated(ν) is dominant. The different components can easily be distinguished by the

relative minima representing the spectral overlap between the particular components. Next

we will compare the ability of the FFT to separate these three spectral components with

the WP approach. In fig. A.1 C the moduli of the FFT’s F (s(νn)), F (snoise simulated(νn)),

F (ssignal simulated(νn)) and F (sbackground simulated(νn)) are plotted for the first 150 Fourier frequen-

cies. When compared with the WP approach, the FFT spectra do not offer the possibility to

define relative minima as accurate differentiators between the components snoise simulated(νn),

ssignal simulated(νn) and sbackground simulated(νn).
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Figure A.1: (A) Simulation of a retrieved phase spectrum (φretrieved(δ)) consisting of a

sum of an isolated Lorentzian band of A = 1 cm−1 and Γ = 20 cm−1 serving as a

signal ssignal simulated(νn), a slowly varying background component sbackground simulated(νn),

and a Gaussian noise component snoise simulated(νn) (solid curves). The corresponding re-

covered spectral components snoise(νn), ssignal(νn), and sbackground(νn) as obtained by the

WP decomposition are also shown as dotted lines. (B) Probability amplitudes of the

recovered spectral components snoise(νn), ssignal(νn), and sbackground(νn) as obtained by

the WP decomposition. (C) Moduli of the FFT’s F (ssimulated(νn)), F (snoise simulated(νn)),

F (ssignal simulated(νn)), and F (sbackground simulated(νn)) for the first 150 Fourier frequencies.
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In order to test the applicability of the WP error-phase estimation also for the reconstruc-

tion of broadband CARS spectra covering the entire Raman shift range of > 3500 cm−1, we

compare the WP approach with the conventional polynomial error-phase estimation scheme for

the MEM-phase spectrum of toluene in fig. A.2. The polynomial error-phase estimation was

Figure A.2: Comparison of the error-phase estimation φerror(ν) obtained using the Akima

spline approach with the spectral component error-phase sbackground(ν) as obtained by the

Wavelet prism approach for a retrieved MEM-phase spectrum φMEM(ν) of toluene.

performed using an Akima spline that fits the nonresonant spectral regions of the MEM-phase

spectrum marked in red. The WP error-phase estimation was performed iteratively, using a de-

composition level s = 12, a wavelet type symlet (sym12), and an error-phase spectrum defined

as sbackground(ν) =
∑s=12

i=7 si(νn) + bs(νn). Each iteration step consists of (i) the WP decomposition

of the MEM phase spectrum, (ii) the calculation of its WP background component sbackground(ν),

(iii) the fit of sbackground(ν) to the nonresonant spectral end points of the MEM-phase spectrum

(green points in fig. A.2), and (iv) the re-definition of the MEM phase spectrum by clipping

and replacing its spectral amplitudes by the approximated sbackground(ν) in those spectral regions

where the MEM-phase spectrum amplitude exceeds sbackground(ν) [50]. The iterative algorithm

is terminated once the root-mean-square of the difference between sbackground(ν) and its values

of the preceding iteration is less than an empirically determined threshold, or until a prede-

fined maximum number of iterations are performed. At this point, sbackground(ν) is considered as

an optimized estimate of the error-phase spectrum. When the error-phase spectrum estimated
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using the Akima spline approach is compared with the WP background component spectrum,

one observes good agreement in the spectral range from 1120 cm−1 to 2670 cm−1. However,

at around 1000 cm−1 and 3140 cm−1, the WP decomposition result clearly identifies resonant

features in the MEM phase spectrum as background, whereas the Akima spline error phase

estimation fails.

In summary, the WP decomposition results in an acceptable error-phase spectrum estimation

with the advantage of being unsupervized, that is no previous knowledge about nonresonant

spectral regions is necessary. However, it is still a supervized approach with respect to choose

snoise(ν), ssignal(ν), and sbackground(ν). If however knowledge about nonresonant spectral regions is

available, using the Akima spline approach even results in a better estimation of the background

spectrum. This is why in this thesis the polynomial error-phase estimation approaches described

in section 3.3.2.1 are used.

A.4 Data denoising schemes

A.4.1 Denoising by singular value decomposition (SVD)

SVD is a matrix factorization or factor analysis method that can be used to construct a set of

basis vectors for a given hyperspectral data set Im[χ(3) (ν, x, y, z, t)] using principal components

analysis (PCA). The aim is to rewrite the data-matrix Im[χ(3) (ν, x, y, z, t)] as a linear sum of

product terms [179]. This is performed by finding the eigenvalues and associated basis vec-

tors or eigenvectors (EV’s), which are ordered by sample variance subject to the constraint of

orthogonality. By only taking a subset of basis vectors into account, a low-dimensional repre-

sentation of the high-dimensional hyperspectral data set Im[χ(3) (ν, x, y, z, t)] is created. SVD is

very popular for a wide range of applications. It can distinguish between EV’s that differ only

slightly and can become imperative to use for larger matrices containing more than several 1000

values. SVD makes use of the theorem, that any matrix Im[χ(3) (ν, x, y, z, t)] can be decomposed

into a product of three matrices as follows

Im[χ(3) (ν, x, y, z, t)] = USVT . (A.15)

Interestingly, the first occurrence of this idea can be dated back to the works of Eu-

genio Beltrami in 1873 [180]. Here, U and V are orthonormal matrices and fulfill

UUT = VVT = I, where I is the unity matrix. The columns of U hold orthonor-

malized EV’s of the covariance matrix Im[χ(3) (ν, x, y, z, t)]Im[χ(3) (ν, x, y, z, t)]T . Thus, U
spans the row space of Im[χ(3) (ν, x, y, z, t)]. The columns of V hold orthonormalized EV’s

of the covariance matrix Im[χ(3) (ν, x, y, z, t)]T Im[χ(3) (ν, x, y, z, t)]. Consequently, V spans

the column space of Im[χ(3) (ν, x, y, z, t)]. The diagonal matrix S = diag (σ1, . . . , σn)
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holds n singular values σi, being the square roots of the respective eigenvalues of

Im[χ(3) (ν, x, y, z, t)]T Im[χ(3) (ν, x, y, z, t)]: S2 = VT Im[χ(3) (ν, x, y, z, t)]Im[χ(3) (ν, x, y, z, t)] T V =

UT Im[χ(3) (ν, x, y, z, t)]Im[χ(3) (ν, x, y, z, t)]T U.

We are interested in using SVD for increasing the signal to noise ratio in the data sets

Im[χ(3) (ν, x, y, z, t)] as shown by Otto and coworkers [181], [182]. The data set will be arranged

as follows: U is a position-independent orthonormal basis set, while V takes into account the

position dependent variation of the vectors in U. The singular values in S simply represent the

degree of how much their respective vectors in U and V contribute to Im[χ(3) (ν, x, y, z, t)]. The

singular values σi are now ordered as σ1 >= σ2 >= . . . >= σn >= 0. When Im[χ(3) (ν, x, y, z, t)]

has rank r < n, it follows that σr+1 = σr+2 = . . . = σn = 0 [183]. In practice, this is the case

when the EV’s are neither completely independent nor Im[χ(3) (ν, x, y, z, t)] is completely domi-

nated by noise. Then, instead of using all n EV’s, a good approximation of Im[χ(3) (ν, x, y, z, t)]

is obtained using only k EV’s with r ≤ k ≤ n. Reconstructing Im[χ(3) (ν, x, y, z, t)] using only

the first k singular values in S is simply performed with the matrix multiplication eq. A.15. This

directly leads to the following advantageous properties of the SVD: discarding higher dimen-

sions will significantly reduce the noise level in the data, provided the noise is assumed to be

white (or in other words, the noise content along all dimensions is the same). This reduction of

the dimensionality further comes along with a significant data reduction.

In order to choose the number k of the first singular values in S, it is helpful to plot the

ordered singular values as a function of dimensionality, as is shown in fig. A.3. For the singular

values of the example data set shown, only the first k = 7 are of importance, because all singular

values of higher dimensionality than k = 7 are of minor significance.

It is important to mention the following disadvantages and pitfalls when using SVD as a

data denoising tool. First, we have to keep in mind that the EV’s do not have any physical rep-

resentation until they are projected onto the real basis vector corresponding to the independent

components making up the data set Im[χ(3) (ν, x, y, z, t)]. If this is not performed, the EV’s can

have negative values and mixes spectral features of several independent components. For ex-

ample, in the case of single-events like cosmic rays, this results in the cosmic ray being mixed

into several EV’s, which introduces an artefact in all spectra. Therefore, it is mandatory to

remove single-events prior performing SVD [184]. Normalization of Im[χ(3) (ν, x, y, z, t)] is an-

other issue. Being based on detecting spectral variations, the ordering of the singular values

depends on the variation of the amplitudes of the rows and columns in Im[χ(3) (ν, x, y, z, t)],

and absolute intensity variation can mask the variation of signals of interest [185]. In addi-

tion, the noise in the data set is not white but of Poissonian distribution linked to the abso-

lute peak intensities (for a detailed discussion visit appendix A.6). Therefore, SVD should

be performed only with data sets having comparable absolute peak intensities. Finally, SVD

and PCA treat the hyperspectrum Im[χ(3) (ν, x, y, z, t)] as a matrix. So even when the rank of
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Figure A.3: Semilogarithmic plot of the first 200 singular values for a typical experi-

mental data set of 3800 reconstructed Raman scattering spectra of an unloaded HL-60

cell.

Im[χ(3) (ν, x, y, z, t)] is higher than two, it is treated in a vectorized 2D form of the data-matrix,

as Im[χ(3) (ν, x, y, z, t)] = vec Im[χ(3) (ν, x, y, z, t)] [186]. This means that the information about

the arrangement of the data is not taken into account!

In this thesis the SVD was computed in MATLAB, using the two-phase algorithm intro-

duced by Golub [187],[183]. First, the data set Im[χ(3) (ν, x, y, z, t)] is transformed into an upper

bidiagonal form. Next, this matrix is factorized using a QR decomposition. The computational

cost of the QR decomposition is of order O n3. Therefore, for large data sets Im[χ(3) (ν, x, y, z, t)]

with dimensions m × n (m, n > 1000; m > n), it is appropriate to calculate the economy sized

SVD. Instead of calculating U, S, and V with dimensions m × m,m × n, n × n, respectively, the

smaller matrices U and S of sizes m × n and n × n, respectively, are calculated [188].

A.4.2 Denoising by bilateral filtering

For cases where the requirements are to increase the SNR of a hyperspectral data set

Im[χ(3) (ν, x, y, z, t)] without loosing both weak spectral intensity features and the information

about neighboring spectra, the bilateral filtering method was developed. The basic idea is to use

the intensity correlation between neighboring values along all dimensions (see tab. A.1), and

to decide whether the intensity value of interest, e.g. Im[χ(3)(ν, x, y, z, t)], is correlated with its
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neighboring values in at least one of its five dimensions. If they are completely uncorrelated,

they represent noise. In this way, the information, which pixel spectra are adjacent is not only

maintained but exploited! If we look at the number of direct neighboring pixels as a function

of the dimensionality d of the data, we can consider the following cases listed in tab. A.1 A

Table A.1: Table showing the rapidly increasing number of direct neighboring pixels in

hyperspectra of dimensionality d.

dimensionality example number of
d neighboring

pixels 3d − 1

0 point measurement, for example Im[χ(3)(2850 cm−1)] 0

1 single spectrum, for example Im[χ(3)(ν)] 2

2 time series, for example Im[χ(3)(ν, t)] 8

3 3D hyper spectrum, for example Im[χ(3)(ν, x, y)] 26

4 4D hyper spectrum, for example Im[χ(3)(ν, x, y, z)] 80

hyperspectral data-set with a high dimensionality d and a high number of direct neighboring

pixels allows a robust and efficient filtering of uncorrelated noise. All we need is to define a

Gaussian filter kernel c(ξ,σ) of the same dimensionality d as the hyperspectral data set

c(ξ,σ) = e
(
−ξ
σ

)2

, (A.16)

where for the case of d=4 in table A.1 ξ = (ν, x, y, z) is the four-dimensional coordinate vec-

tor, and σ =
(
σν, σx, σy, σz

)
is the four-dimensional half widths vector. Then the actual filter

process is the convolution of the d-dimensional input data Im[χ(3)(ξ)]in with the d-dimensional

Gaussian filter kernel c(ξ,σ) [189]:

Im[χ(3)(ξ)]out =
(
c ∗ Im[χ(3)]in

)
(ξ) =

∫
e−

(
||ξ−r||
σ

)2

× Im[χ(3)(r)]indr . (A.17)

The expression ||ξ−r|| in eq. A.17 denotes the Euclidian norm, which is the distance between the

coordinates ξ and r. However, the disadvantage of this naı̈ve filtering approach by convolution

is a reduction of the resolution along all dimensions. This is demonstrated in fig. A.4, where a

3D hyperspectrum with ξ = (ν, x, y) of a size of 130 pixel × 128 pixel × 128 pixel is simulated.

The 3D hyperspectrum Im[χ(3) (ξ)]in consists of the species A (FAME 18:1, see ch. 7 for details)

spectra in one half of the x-y-subspace, and of the species B (FAME 18:3) spectra in the other

half. Gaussian noise was added to each spectrum artificially reducing the SNR to ≈ 10. The

spectra of species A and B have different intensities at 2860 cm−1, which results in the spatial
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Figure A.4: Illustration of the result of filtering a 3D hyperspectrum Im[χ(3) (ξ)]in (A,B)

using a fixed 3D Gaussian kernel c(ξ,σ) (C) with chosen half-widths of σx = σy = 10

spatial pixels and σν = 4 spectral pixels, corresponding to 14.8 cm−1. The resulting

output hyperspectrum Im[χ(3) (ξ)]out (D,E).

step that can be seen in fig. A.4 A. Fig. A.4 C shows the normalized and fixed Gaussian kernel

as given by eq. A.16, with the isosurfaces for 0.2 and 0.5 (FWHM) indicated in red. The

2D projections are plotted in green. By applying eq. A.17, we have reduced effectively the

spatial and the spectral noise levels. However, at the same time, both the spatial and the spectral

resolutions have been reduced. After filtering, the sharp spatial step appears smeared out (see

fig. A.4 D) and so do the spectral features, as can be seen in spectra belonging to neighboring

pixels across the step (see fig. A.4 E).

So far, the intensity itself has not yet been exploited as an information independent of the

spatial and spectral dimensions. Using this extra dimension for denoising images is known as
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bilateral or Tomasi-Manduchi filtering [190], [191], [189]. Jiang et. al. [192] describe the

math for d=2, which will here be generalized for data of higher dimensionality. In addition

to the filtering using the Gaussian c(ξ,σ) defined in eq. A.16 (in this context called closeness

function), a second Gaussian s(ξ,σrange) (in this context called similarity function) is defined

for the range filtering

s(ξ,σrange) = e
−

(
Im[χ(3)(ξ)]in
σrange

)2

, (A.18)

where for the case of d = 3 in tab. A.1 ξ = (ν, x, y) and σrange = (σrange ν, σrange x, σrange y). The

convolution integral with the combined filtering kernel then reads as follows

Im[χ(3)(ξ)]out =
(
(c × s) ∗ Im[χ(3)]in

)
(ξ) =

∫
e−

(
||ξ−r||
σ

)2

× e
−

(
||Im[χ(3)(ξ)]in−Im[χ(3)(r)]in ||

σrange

)2

× Im[χ(3)(r)]indr .

(A.19)

When compared with eq. A.17, the new vector σrange denotes the half widths used for the

intensity similarity along each dimension. With other words, for every pixel-value the fixed

Gaussian kernel c(ξ,σ) is weighted with another Gaussian s(ξ,σrange) representing the intensity

difference between a pixel value and its neighboring pixel values. For the case of 2D data sets

(d=2), bilateral filtering was successfully used in cryo-electron microscopy [192], [193], and

imaging [194], [195]. However, to the best of my knowledge, bilateral filtering has not been

applied to high dimensional spectroscopic data sets yet.

It is straight forward to generalize the bilateral filtering principle to more dimensions, as is

illustrated in fig. A.5 for the same 3D-hyperspectrum, previously shown in fig. A.4. Here, the

3D Gaussian kernel c(ξ,σ) is weighted with a 3D similarity function s(ξ,σrange) that represents

the intensity difference along the two spatial dimensions and along the spectral dimension. The

combined 3D-bilateral filter kernel c(ξ,σ)× s(ξ,σrange) is shown in fig. A.5 (C) for a represen-

tative pixel spectrum located at the boundary separating species A from species B (see the blue

spectrum in fig. A.5 B and E, x = y = 64), and a Raman shift of 2860 cm−1. The normalized

combined 3D-bilateral filter kernel is again plotted together with the isosurfaces for 0.2 and 0.5

(FWHM) indicated in red. The 2D projections are plotted in green. The noise is reduced while

preserving the spatial and spectral resolution (compare fig. A.5 A and B with fig. A.5 D and E).

The spatial step and all spectral features are preserved, and no ’mixing’ of the spectra belonging

to the two spectrally distinct species nearby the boundary is observed. The implementation of

the bilateral filter in MATLAB is done by d-dimensional Gaussian filtering. In order to not

reduce the resolution in any dimension, the FWHM must be set corresponding to the data’s

resolution along each corresponding dimension. Because of the weighting of the fixed Gaus-

sian kernel c(ξ,σ), the bilateral filter is data adaptive which results in a slower computational

processing of the convolution given in eq. A.19. By using the algorithm given by Paris [195]

based on a signal processing approach, shorter calculation times can be achieved.
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Figure A.5: Illustration of the result of filtering a 3D hyperspectrum Im[χ(3) (ξ)]in (A,B)

using a fixed 3D Gaussian kernel c(ξ,σ) weighted with another 3D Gaussian similarity

function s(ξ,σrange) with chosen half-widths of σx = σy = 10 spatial pixels, σν = 4

spectral pixels, corresponding to 14.8 cm−1, and σrange ν = σrange x = σrange y = 0.02.

The resulting output hyperspectrum Im[χ(3) (ξ)]out (D,E).

A.5 Influence of an offset to the CARS spectrum

Here, the influence of an offset to the measured CARS spectrum S (ν) is considered. Such

an offset can be caused by an erroneous dark count correction of raw spectra, by two photon

fluorescence background originating from the sample, or by a wrong normalization with an

incorrectly determined reference spectrum ICARS re f erence(ν) (see eq. 3.26). Using the same

model for χ(3)
tot (δ) as used in the simulations shown in fig. 3.6, offsets of +0.2 and −0.2 are

added to the normalized CARS spectrum |χ(3)
tot (δ)|2 (see fig. A.6 A). Here, we are first interested
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in the spectral shapes of the retrieved phase φ(3)
tot (δ). We notice that asymmetric line shapes

for the single Lorentzian line are obtained when the CARS spectra are offset. The plot of the

corresponding reconstructed χ(3)
tot (δ) in the complex plane (fig. A.6 B) reveals that the resonances

are no more exactly circular but have a curd or kidney-like shape, depending on the sign of the

offset. The points of zero detuning (δ = 0) and maximum detuning (δ = ±∞) are no longer

superimposed upon each other. Note that all χ(3)
tot (δ) curves remain almost completely in the first

and fourth quadrant of the complex plane, and thus the susceptibility remains causal (see the 100

x close up in fig. A.6 C). However, the asymmetric line shape does not affect the determination

of the frequency independent phase φe f f needed for the reconstruction of the complex χ(3)
Res(δ).

The maximum error caused by the simulated offsets of S (ν) = ±0.2 is found to be 11.2 % of

Im[χ(3)
Res(δ)]. Thus, the functional in eq. 5.38 in section 5.3.3 is very robust against an erroneous

dark count correction of the raw spectra. Nevertheless, the asymmetry introduced by such an

erroneous dark count correction can not be removed, and therefore must be avoided in the first

place.

A.6 Influence of noise and relative amount of χ(3)
NR amplitudes

on reconstructing Im[χ(3)
Res] amplitudes

A.6.1 Introduction

When normalizing measured CARS spectra of a sample by a purely nonresonant reference

CARS spectrum (see eq. 3.26), we have assumed that the latter is measured under ex-

actly the same experimental conditions. Because within a heterogeneous sample χ(3)
NR Re f ,

χ(3)
NR sample(ν, x, y, z, t), a single reference spectrum cannot normalize the nonresonant background

in every spectrum of a hyperspectrum as χ(3)
NR sample = f (ν, x, y, z, t) to unity. Furthermore, when

we want to compare the different samples, we also have to deal with different reference CARS

spectra |χ(3)
NR Re f |

2. We have seen in the simulation presented in section 3.2.2 (fig. 3.8) that a vari-

ation of χ(3)
NR sample affects both the CARS spectra and the corresponding phase spectra. Here, we

will simulate the influence of noise and relative χ(3)
NR amplitudes on the reconstructed Im[χ(3)

Res(ν)]

amplitudes for the following three cases of normalizing the CARS spectrum:

The first case (a) deals with a heterogeneous sample, where χ(3)
NR sample is fixed, and scales

by a factor Ca(x, y, z, t) in space and time, i.e. χ(3)
sample(ν, x, y, z, t) = Ca(x, y, z, t)χ(3)

NR sample +

χ(3)
Res sample(ν, x, y, z, t). This scenario was simulated in section 3.2.2 (fig. 3.8), and corresponds,

for example, to bleaching of electronic contributions of carotenoids over time. The correspond-

ing equation for the normalized CARS spectrum S (ν) thus reads:

S (ν, x, y, z, t) =
|Ca(x, y, z, t)χ(3)

NR sample + χ(3)
Res sample(ν, x, y, z, t)|

2

|χ(3)
NR Re f |

2
. (A.20)
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Figure A.6: Simulation of constant offsets of ± 0.2 added to the normalized CARS spec-

trum S (δ) = |χ(3)
tot (δ)|2 of an complex isolated Lorentzian χ(3)

Res(δ) in the presence of a

nonresonant background χ(3)
NR. (A) CARS spectra S (δ) − 0.2, S (δ), S (δ) + 0.2 and the

corresponding MEM phase spectra φMEM(δ), calculated using eq. 3.28 and eq. 3.53, re-

spectively. Plots of the corresponding reconstructed χ(3)
tot (δ) in the complex plane (B, C).

The simulation parameters are A = 1 cm−1, χ(3)
NR = 1, and Γ = 20 cm−1.
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Case (b) deals with a heterogeneous sample, where both χ(3)
NR sample(ν, x, y, z, t) and

χ(3)
Res sample(ν, x, y, z, t) scale likewise by a factor Cb(x, y, z, t), i.e. χ(3)

sample(ν, x, y, z, t) =

Cb(x, y, z, t)(χ(3)
NR sample + χ(3)

Res sample(ν)). This case corresponds to one species present in differ-

ent concentrations. The corresponding equation for the normalized CARS spectrum S (ν) thus

reads:

S (ν, x, y, z, t) = Cb(x, y, z, t)2
|χ(3)

NR sample + χ(3)
Res sample(ν)|

2

|χ(3)
NR Re f |

2
. (A.21)

Case (c) deals with different reference spectra, which corresponds to comparing independent

CARS measurements. The corresponding equation for the normalized CARS spectrum S (ν)

thus reads:

S (ν, x, y, z, t) =
|χ(3)

sample(ν, x, y, z, t)|
2

|Ccχ
(3)
NR Re f |

2
. (A.22)

All simulations have been performed in MATLAB. The noise of the simulated sample

and reference CARS spectra is assumed to be shot noise. This is taken into account by

adding Gaussian noise of width ∆G, which is weighted by the square root of the simulated

CARS amplitudes, resulting in noise amplitudes of δICARS sample(ν) = ∆G
√

ICARS sample(ν) and

δICARS re f (ν) = ∆G
√

ICARS re f (ν). The normalized CARS spectra S (ν) are then simulated for

the different Gaussian width ∆G and different ratios Ca, Cb, and Cc, according to eq. 3.26.

The corresponding Im[χ(3)
Res(ν)] spectra are reconstructed using the DCT-MEM (see ch. 5).

The simulation parameters for a single Lorentzian resonance centered at ν0 = 0 cm−1 are

A = 1 cm−1 and Γ = 20 cm−1 (see eq. 3.28). Noise amplitudes for the CARS spectra

δS (ν), the MEM phase δφMEM(ν), and the reconstructed Im[χ(3)
Res(ν)] amplitude δIm[χ(3)

Res(ν)]

were calculated as standard deviations for the first 100 points within the nonresonant region

from −5000 cm−1 to −4900 cm−1 and within the frequency interval ± 2 cm−1 around the center

frequency ν0 = 0 cm−1. The nonresonant contributions χ(3)
NR Re f and χ(3)

NR sample are set to unity.

The simulated Gaussian noise widths are ∆G 0 cm−2, 0.001 cm−2, 0.01 cm−2, 0.1 cm−2 and 1

cm−2.

A.6.2 Simulation results

We are first interested in the noise amplitudes δS (ν), δφMEM(ν), and δIm[χ(3)
Res(ν)] in the nonres-

onant regions as a function of Ca, Cb, and Cc. The results for the case a (eq. A.20) are shown

as the first row in fig. A.7. Fig. A.7 A shows the quadratic dependence of the noise amplitude

in the nonresonant region of the simulated CARS spectra on Ca. The noise amplitude in the

nonresonant region of the corresponding MEM phase spectra is shown in Fig. A.7 B. Without

added noise, the phase noise in the nonresonant region is decreasing with increasing Ca. With
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noise, δφMEM(ν) becomes constant for values of Ca ≥ 1. For Ca < 1 and high levels of simu-

lated ∆G, a kink in the phase noise is observed. In these cases, δS (ν) approaches zero values,

which leads to maximum phase noise, i.e. the MEM-phase then arbitrary varies from −π to π.

In fig. A.7 C, the noise amplitude in the nonresonant region of the corresponding reconstructed

Im[χ(3)
Res(ν)] is shown. Not surprisingly, one observes the impact of the above discussed trends.

For Ca < 1, the dependencies of δS (ν) and δφMEM(ν) cancel each other, leading to a constant

δIm[χ(3)
Res(ν)]. For Ca ≥ 1, the quadratic dependence of δS (ν) leads to a linearly increasing

δIm[χ(3)
Res(ν)] on Ca.

The next case simulated is case b (eq. A.21), the simulation results are shown in the second

row in fig. A.7. The influence of δS (fig. A.7 D), δφMEM(ν) (fig. A.7 E), and δIm[χ(3)
Res(ν)] (fig.

A.7 F) on Cb is reproducing the respective dependencies observed for case a. However, without

simulated noise, the MEM phase noise amplitude remains constant in the nonresonant region,

as is expected when the phase does not change.

The results for case c (eq. A.22) are shown as the third row in fig. A.7. Here, the

δIm[χ(3)
Res(ν)] is depending on Cc, and without the amount of Cc taken into account, wrong

Im[χ(3)
Res(ν)] amplitudes are reconstructed! Also, δS (ν) shows different behaviour than in cases

a and b: The opposite trend is observed for increasing Cc. The noise amplitude δφMEM(ν) (fig.

A.7 H) shows the same behaviour as in case b. A reference spectrum that has a nonresonant

susceptibility different than the sample spectrum will act like scaling the CARS spectrum by a

factor 1
C2

c
but will not affect the MEM phase spectrum. As a result, the reconstructed Im[χ(3)

Res(ν)]

spectrum will be scaled by 1
Cc

. Consequently, δIm[χ(3)
Res(ν)] in the nonresonant region shows

the opposite trends than in case a and case b, fig. A.7 C and F, respectively. To circumvent

the dependence on Cc, we have to rescale the reconstructed Im[χ(3)
Res(ν)] spectrum with 1

Cc
. As

a result of the rescaling, the dependencies of the δS (ν) and δIm[χ(3)
Res(ν)] on Cc resemble those

of cases a and b, while the dependence of δφMEM(ν) on Cc of course remains unchanged. The

corresponding results of the rescaling are shown in the fourth row in fig. A.7.

Next, we are interested in the dependence of δIm[χ(3)
Res(ν)] in both the resonant and the non-

resonant regions on Ci (i=a,b,c). The results for cases a and b are shown in fig. A.8 A and B,

respectively. All curves show linear dependencies on Ca for values Ca ≥ 1. Note, that the noise

amplitudes are higher in the nonresonant region of Im[χ(3)
Res(ν)] than in the resonant region! The

same observation holds for case b (fig. A.8 B). The results for case c with rescaling (not shown)

again look like the mirrored version of case b.

However, we have not considered so far, whether or not there is an optimum ratio
χ(3)

NR S ample

χ(3)
NR Re f

,

where the signal to noise ratio (SNR) of the reconstructed Im[χ(3)
Res(ν)] spectrum is maximized.

Therefore, the ratio of the peak amplitude of the reconstructed Im[χ(3)
Res(ν)] spectrum at ν0 =

0 cm−1 to the standard deviation δIm[χ(3)
Res(ν)] of the first 100 values in the nonresonant region

of the reconstructed Im[χ(3)
Res(ν)] spectrum is determined and plotted as function of Ca, Cb, and
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Figure A.8: Simulated δIm[χ(3)
Res(ν)] in the resonant (solid curves) and nonresonant region

(dotted curves) for case a (A) and case b (B).

Cc for cases a, b, and c with rescaling, respectively. The results are plotted in fig. A.9. The

Figure A.9: Comparison of simulated SNR in reconstructed Im[χ(3)
Res(ν)] spectra corre-

sponding to cases a and b (A), and case c with rescaling (B).

simulated SNR curves exhibit opposite dependencies, when cases a and b are compared to c

with rescaling. We obtain the same SNR dependence, regardless of whether Ca (case a) or Cb

(case b) is changed. In cases a and b shown in fig. A.9 A, the SNR is almost constant up to

values of Ca = 0.7 and then drops. For case c with rescaling, shown in fig. A.9 B, the SNR is

constant for Cc ≥ 1.3, but drops for values below 1.3. Not surprisingly, for the SNR it makes

no difference, if the reconstructed spectra are scaled by χ(3)
NR Re f or not.

The CARS signal depends quadratically on the sample concentration, and under the as-

sumption of Poissonian noise, the CARS noise amplitude δS is quadratic with the sample con-

centration. The CARS spectrum S (ν) contributes to the reconstructed Im[χ(3)
Res(ν)] spectrum as

√
S (ν), and so its noise amplitude δIm[χ(3)

Res(ν)] is linear with the sample concentration (case

b). This is definitively not the case in spontaneous Raman scattering spectra, where the noise

scales directly with
√

Im[χ(3)
Res(ν)], and therefore is independent of the sample concentration in
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nonresonant regions. Fig. A.10 illustrates this situation for a spontaneous Raman spectrum

simulated with a Poissonian noise amplitude of ± 0.1 cm−1
√

Im[χ(3)
Res(ν)]. There is almost no

Figure A.10: Simulated Im[χ(3)
Res(ν)] and δIm[χ(3)

Res(ν)] spectra corresponding to spon-

taneous Raman scattering with and without a simulated noise amplitude of ± 0.1

cm−1
√

Im[χ(3)
Res(ν)]. (See text for the remaining simulation parameters used).

signal far away from the resonance center frequency, and therefore almost no noise. The noise

amplitude δIm[χ(3)
Res(ν)] is highest at the center frequency, and the SNR at the resonance is de-

termined to be approximately 21. (Here the noise amplitude δIm[χ(3)
Res(ν)] within the frequency

interval ±2 cm−1 around the center frquency ν0 = 0 cm−1 was used). A completely different

picture is obtained for the corresponding CARS simulations as shown in fig. A.11 for the case

b. Similar results are obtained in case a. In contrast to the spontaneous Raman spectrum shown

in fig. A.10, the noise amplitudes δS (ν) and δIm[χ(3)
Res(ν)] are not zero in the nonresonant region.

Fig. A.11 A shows a maximum and a minimum of δS (ν), representing the regions of maximum

constructive and destructive interferences, respectively. In δIm[χ(3)
Res(ν)] however (fig. A.11 B),

only a minimum appears that is slightly shifted from the center frequency ν0 = 0 cm−1. This

means, that in the case of CARS the noise amplitude of the Im[χ(3)
Res(ν)] spectrum is less close

to the resonance compared with the noise in the nonresonant region! In both, case a and case

b, the SNR has a higher value of ≈ 85 when compared to that obtained in the spontaneous Ra-

man case. (Here, again the noise amplitude δIm[χ(3)
Res(ν)] within the frequency interval ±2 cm−1

around the center frquency ν0 = 0 cm−1 was used).
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Figure A.11: Simulated S (ν) and δS (ν) (A) and Im[χ(3)
Res(ν)] and δIm[χ(3)

Res(ν)] (B) spectra

corresponding to the CARS simulations for case b. The simulation parameters are ∆G = ±

0.1 cm−2, and
χ(3)

NR S ample

χ(3)
NR Re f

= 1. (See text for the remaining simulation parameters used).
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Generally, when we want to compare hyperspectra measured under different conditions,

such as integration times, pump and Stokes powers, and different reference spectra, we have

to rescale the reconstruction result. Different measurement conditions will be considered by

introducing the scaling factor sscaling:

sscaling =

χ(3)
NR S ample1(x,y,z,t)

χ(3)
NR Re f 1

χ(3)
NR S ample2(x,y,z,t)

χ(3)
NR Re f 2

=
Ci 1Cc 2

Ci 2Cc 1
; with i = a or b . (A.23)

If the hyperspectra share the same reference spectrum, eq. A.23 simplifies to

sscaling =
χ(3)

NR S ample1(x, y, z, t)

χ(3)
NR S ample2(x, y, z, t)

=
Ci 1

Ci 2
; with i = a or b , (A.24)

and if the hyperspectra share the same sample spectrum, eq. A.23 simplifies to

sscaling =
χ(3)

NR Re f 2

χ(3)
NR Re f 1

=
Cc 2

Cc 1
. (A.25)

So far, only simulation results have been presented. Next, eqs. A.23 - A.25 will be applied to

experimental CARS spectra of a water sample with known concentration of 55.55 M. Water was

measured under different measurement conditions and reconstructed using different reference

spectra (for details, see ch. 7). The measurement conditions for the water (sample) spectrum are

200 ms spectrum dwell time, 15 mW pump power and 7.5 mW Stokes power. The measurement

conditions for the reference spectrum A are the same as for the water spectrum. Measurement

conditions for the reference spectrum B are 50 ms spectrum dwell time, 30 mW pump power

and 15 mW Stokes power. For the reference spectra C and D, the measurement conditions

were identical to that of spectrum B, except for the spectrum dwell times of 100 ms and 200

ms, respectively. The values of χ(3)
NR Re f are 12.3, 16.84, 22.90, and 31.88 for spectrum A,

B, C, and D, respectively. Using spectrum A as reference, the scaling factor sscaling becomes

1, 1.37, 1.86, and 2.59 for the spectra A, B, C, and D, respectively. Fig. A.12 shows the

reconstructed Im[χ(3)
Res(ν)] spectrum of water obtained from CARS spectra using the different

reference spectra measured under different conditions. Clearly, the unscaled reconstruction

shown in fig. A.12 A results in different spectral amplitudes of one and the same sample,

and thus we would not deduce the correct water concentrations. However, using the above

determined scaling factors, the reconstructed spectra match almost perfectly, as shown in fig.

A.12 B. The inset compares the determined concentration of water based on the reconstructed

Im[χ(3)
Res(ν)] amplitude with and without scaling as a function of the ratio

χ(3)
NR S ample(ν)

χ(3)
NR Re f

. For example

for the ratio of
χ(3)

NR S ample(ν)

χ(3)
NR Re f

= 1.37, the error of 24 % would already be significant!

Next, we consider the general case, where all four spectra (χ(3)
NR S ample1(ν), χ(3)

NR Re f 1,

χ(3)
NR S ample2(ν), χ(3)

NR Re f 2) in eq. A.23 are needed. We will use the same spectrum A as in the
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Figure A.12: Comparison of reconstructed Im[χ(3)
Res(ν)] spectra obtained from CARS mea-

surements of neat water without (A) and with (B) taking into account the different mea-

surement conditions for the reference spectra A, B, C, and D using the rescaling given by

eq. A.25.

previous case, and compare it with a spectrum E recorded at 30 mW pump power, 5 mW Stokes

power, and 100 ms spectrum dwell time. Both spectra are shown in fig. A.13 A. Using eq.

A.23, the corresponding scaling factor sscaling reads sscaling = 1.1221. As shown in fig. A.13 B,

Figure A.13: Comparison of the reconstruction Im[χ(3)
Res(ν)] spectra obtained from CARS

measurements of neat water without (A) and with (B) taking the different measurement

conditions for spectra A and E into account, using the rescaling given by eq. A.23.

using the scaling factor results in almost perfectly matching peak intensities and thus a correct

concentration is determined.
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A.6.3 Conclusions

Reconstructed Im[χ(3)
Res(ν)] amplitudes from pixel spectra within one and the same hyperspec-

trum using the same reference CARS spectrum for the Stokes profile elimination can be directly

compared with each other. However, the spectra that are reconstructed using different reference

CARS spectra (χ(3)
NR Re f ) for the Stokes profile elimination cannot directly be compared. By

taking the scaling factor sscaling for the different reference spectra into account, the rescaled am-

plitudes of the reconstructed Im[χ(3)
Res(ν)] spectra can quantitatively be compared independent

of which reference spectrum is used. The noise behaviour in reconstructed Im[χ(3)
Res(ν)] in non-

resonant regions is in cases a and b the same. Fig. A.9 suggests, that it is favorable to use a

reference CARS spectrum which results in
χ(3)

NR S ample

χ(3)
NR Re f

= 1. In practice, it is not possible to deter-

mine χ(3)
NR Re f in an absolute manner, only the ratio

χ(3)
NR S ample(x,y,z,t)

χ(3)
NR Re f

can be determined. Since it is

a priori unknown, whether in the experiment case a or case b applies, this uncertainty can only

be cicumvented by ensuring conditions where Ca and Cb are close to unity. In order to compare

spectra that where processed using two different reference spectra χ(3)
NR Re f 1 , χ(3)

NR Re f 2, the re-

constructed amplitudes of Im[χ(3)
Res1(ν)] need to be rescaled by

χ(3)
NR Re f 2

χ(3)
NR Re f 1

to allow for a quantitative

comparison with the amplitudes Im[χ(3)
Res2(ν)].

The different cases laid out in this chapter do not need to be considered in spontaneous

Raman scattering, where Im[χ(3)
Res(ν)] is measured directly. Another difference between sponta-

neous Raman spectroscopy and CARS is their noise characteristics. While there is no noise in a

spontaneous Raman spectrum within the nonresonant region and the noise is highest at the res-

onance frequency, a different picture holds in the Im[χ(3)
Res(ν)] spectra reconstructed from CARS

spectra. Due to the contribution of χ(3)
NR S ample to the CARS spectra, noise is also present in the

nonresonant region of the corresponding reconstructed Im[χ(3)
Res(ν)] spectrum. In case b, this

noise is correlated with the sample concentration. Additionally, in CARS, the SNR is found to

be smallest close but not on the resonance frequency. While the noise in a spontaneous Raman

spectrum will be of Poissonain nature, it is not in the Im[χ(3)
Res(ν)] spectrum reconstructed from

a measured CARS spectrum!

A.7 The Levinson Durbin recursion algorithm

Following Ng [69], the Levinson Durbin recursion algorithm for solving the Toeplitz equation

in MEM (see section 3.3.1.2) will briefly be discussed here. We can solve the inverse Cholesky

decomposition UT CU = D (with D being a diagonal matrix) by performing an UDL decompo-

sition of C−1
m at each iteration step m:

C−1
m+1 =

Im rm

0 1


C−1

m 0
0 δ−1

m


Im 0
rT

m 1

 ,m = 1, . . . , (n − 1) , (A.26)
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while Cm+1 can be written as an LDU decomposition:

Cm+1 =

 Im 0
−rm

T 1


Cm 0

0 δm


Im −rm

0 1

 ,m = 1, . . . , (n − 1) . (A.27)

Here, the matrix Im denotes the identity matrix. The matrices C−1
m+1 and Cm+1 are connected

via the anti-unity or exchange matrix Jm, which is a matrix having all elements zero except the

elements on the counterdiagonal being unity: JmCT
mJm = Cm. In this way, we can calculate the

scalar values δm, the diagonal elements of D:

δm = C0 + Cm
T Jmrm ,m = 1, . . . , (n − 1) , (A.28)

the Szegöe vectors rm+1 (the columns of U):

rm+1 =

 0

rm

 + γm

 1

Jmrm

 ,m = 1, . . . , (n − 2) , (A.29)

and the so called Schur parameters γm

γm = −
Cm+1 + CT

mrm

δm
,m = 1, . . . , (n − 2) . (A.30)

With U and D known, the solution is given by a = UD−1UT b and can be calculated via the

Szegöe recurrence relation. It follows the Levinson Durbin algorithm as:

a1 =
b1

C0
solve 1x1 problem

δ0 = C0 calculate first diagonal element of D

for m=1:n-1 Loop body, do up to the autocorrelation index m

γ(m−1) = −
Cm + CT

(1:m−1)r(1:m−1))

δ(m−1)
calculate new Schur parameter

r(2:m) = r(1:m−1) + γ(m−1)r(m−1:−1:1) calculate new Szegöe vector

r1 = γ(m−1)

δm = C0 + CT
(1:m)r(m:−1:1) calculate diagonal elements of D

a(m+1) =
b(m+1) + bT

(1:m)r(1:m)

δm
induction step for entry m + 1 of solution vector

a(1:m) = a(1:m) + a(m+1)r(1:m) update solution vector a

(A.31)
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A.8 Derivation of the dependence of the effective phase φe f f

from the ratio of maximum to minimum MEM phase ex-

cursions

The objective of this appendix is to find a relation between the maximum and minimum of the

estimated phase spectrum φestimated(ν) (see eq. 3.54) and the effective phase φe f f (defined in eq.

3.42). The desired relation should be independent of the unknown χ(3)
Res(ν) and χ(3)

E e f f . In order

to deduce φe f f from a normalized ratio of maximum to minimum estimated phase excursions

rphase(φestimated(ν)) =
max(φestimated(ν)) − min(φestimated(ν))

max(φestimated(ν))
, (A.32)

we need to express the angles that characterize tangents of form y = mx from the origin of the

complex plane to the circle described by the vibrational resonance as a function of φe f f (see fig.

A.14). This is a circle of radius max(Im[χ(3)
Res(ν)])

2 that is rotated around [χ(3)
E e f f , 0] by the angle φe f f ,

and is given in cartesian coordinates as follows:x − χ(3)
E e f f −

max(Im[χ(3)
Res(ν)])

2
sin(φe f f )

2

+

y − max(Im[χ(3)
Res(ν)])

2
cos(φe f f )

2

=

max(Im[χ(3)
Res(ν)])

2

2

.

(A.33)

After substitution of y = mx in eq. A.33 and rearranging, we first obtain a quadratic equation in

x of the form x2A1 − xB1 + C1 = 0 with

A1 = (1 + m2) (A.34)

B1 = 2χ(3)
E e f f + max(Im[χ(3)

Res(ν)])sin(φe f f ) + m max(Im[χ(3)
Res(ν)])cos(φe f f ) (A.35)

C1 = χ(3)
E e f f

[
max(Im[χ(3)

Res(ν)])sin(φe f f ) + χ(3)
E e f f

]
. (A.36)

We need the discriminant to be zero, so we need to solve B2
1 − 4A1C1 = 0 for m(φe f f ). This

leads to a quadratic equation in m of the form m2A2 + mB2 + C2 = 0 with

A2 = (max(Im[χ(3)
Res(ν)])cos(φe f f ))2 − 4χ(3)

E e f f − 4max(Im[χ(3)
Res(ν)])χ

(3)
E e f f sin(φe f f )(A.37)

B2 = 2(max(Im[χ(3)
Res(ν)]))

2sin(φe f f )cos(φe f f ) + 4max(Im[χ(3)
Res(ν)])χ

(3)
E e f f cos(φe f f )(A.38)

C2 = (max(Im[χ(3)
Res(ν)])sin(φe f f ))2 , (A.39)

with the solution

m1,2(φe f f ) =

−cos(φe f f )
[
sin(φe f f )

[
max(Im[χ(3)

Res(ν)])
2

]2
+

max(Im[χ(3)
Res(ν)])

2 χ(3)
E e f f

]
±

max(Im[χ(3)
Res(ν)])

2

√
E(φe f f )[

max(Im[χ(3)
Res(ν)])cos(φe f f )

2

]2
− sin(φe f f )χ

(3)
E e f f max(Im[χ(3)

Res(ν)]) − (χ(3)
E e f f )

2

(A.40)

where E(φe f f ) = (χ(3)
E e f f )

2 + max(Im[χ(3)
Res(ν)])χ

(3)
E e f f sin(φe f f ) . (A.41)
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Now the slopes m1(φe f f ) and m2(φe f f ) correspond to the maximum and minimum phase angles

as

max(φestimated(ν)) = tan−1[m1(φe f f )]

min(φestimated(ν)) = tan−1[m2(φe f f )] . (A.42)

Substituting eq. A.40 and eq. A.42 into eq. A.32 results in a complex expression for rphase,

which is neither beautiful nor simple. Furthermore, rphase(φe f f ) will also be a function of the

unknown χ(3)
Res(ν) and χ(3)

E e f f .

To obtain a simplified expression for rphase(φe f f ), we use here a trigonometric ap-

proach, as illustrated in fig. A.14. With b = cos(φe f f )
max(Im[χ(3)

Res(ν)])
2 and c =

Figure A.14: Representation of a simulated total susceptibility χ(3)
tot (ν) in the complex

plane for the geometrical derivation of the effective phase φe f f from the ratio of maxi-

mum to minimum phase excursions. Simulation parameters are A = 1 cm−1, χ(3)
E e f f = 1,

φE e f f = 0, and φe f f = φR = π
6 using the full model given by eq. 3.40.√

(χ(3)
E e f f )

2 + sin(φe f f )χ
(3)
E e f f max(Im[χ(3)

Res(ν)]) +

[
max(Im[χ(3)

Res(ν)])
2

]2
, one obtains the angles κ =

sin−1
(

b
cos(φe f f )c

)
and γ = sin−1

(
b
c

)
. In analogy to eq. A.42, we obtain the phase angle extrema as

max(φestimated(ν)) = κ + γ

min(φestimated(ν)) = κ − γ . (A.43)
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Substitution into eq. A.32 yields

1
rphase(φe f f )

=
1
2

(1 +
γ

κ
) . (A.44)

The χ(3)
tot (ν) values corresponding to the phase extrema, χ(3)

tot (max(φestimated(ν, φe f f ))) and

χ(3)
tot (min(φestimated(ν, φe f f ))), are plotted in the complex plane as a function of the angle φe f f

and for different ratios of 1 ≤ χ(3)
Res

χ(3)
E e f f

≤ 10 in fig. A.15. It can be observed, how the

Figure A.15: Loci of χ(3)
tot (max(φestimated(ν, φe f f ))) (red) and χ(3)

tot (min(φestimated(ν, φe f f )))

(black) phase as a function of φe f f and for different ratios of χ(3)
Res

χ(3)
E e f f

. Simulation param-

eters are χ(3)
Res(ν) = 1, φE e f f = 0, χ(3)

E e f f = 1, 1.1, 2, and 10 (eq. 3.40). The maximum

and minimum of χ(3)
tot (φestimated(ν, φe f f )) follow more and more kidney-shaped curves with

increasing ratio χ(3)
Res

χ(3)
E e f f

in a counterclockwise or clockwise manner, respectively. (The loci

corresponding to χ(3)
E e f f = 1.1, 2, and 10 have been shifted to χ(3)

E e f f = 1 for better visibil-

ity by 0.1, 1, and 9, respectively).

curve changes its form from being circular for χ(3)
Res(ν)

χ(3)
E e f f

<< 1 to becoming more and more

kidney-shaped when χ(3)
Res(ν)

χ(3)
E e f f

approaches unity. However, the expression given in eq. A.44 still

needs to be uncoupled from the unknowns χ(3)
Res(ν) and χ(3)

E e f f . When we use the abbreviation
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D =
max(Im[χ(3)

Res(ν)])

2

√
(χ(3)

E e f f )2+sin(φe f f )χ(3)
E e f f max(Im[χ(3)

Res(ν)])+
 max(Im[χ(3)

Res(ν)])
2

2 and perform a Tailor expansion of the ratio

γ

κ
=

sin−1(cos(φe f f )D)
sin−1(D) around D = 0, one obtains

γ

κ
= cos(φe f f ) −

1
6

D2cos(φe f f )sin2(φe f f ) − O(D4). (A.45)

The Tailor expansion corresponds to the assumption that Im[χ(3)
Res(ν)]
2 << c, which rearranged gives

the following condition

sin(φe f f )Im[χ(3)
Res(ν)] << χ

(3)
E e f f (A.46)

Whenever Im[χ(3)
Res(ν)] ≥ χ

(3)
E e f f and φe f f ∈ [0, π], the rotated resonance can include the complex

plane’s origin, and the representation of phase angle extrema as being the tangents to the locus

of the resonance becomes impossible. The limiting case where Im[χ(3)
Res(ν)] = χ(3)

E e f f is also

illustrated in fig. A.15. Here, the most left locus passes through the origin of the complex

plane. When only the first term of eq. A.45, γ

κ
� cos(φe f f ), is substituted into A.44, one obtains

1
rphase(φe f f )

=
1
2

(1 + cos(φe f f )) = cos(
φe f f

2
)2 . (A.47)

Using x = cos−1(2y−1) = 2cos−1(
√

y) as the inverse of y = cos( x
2 )2 gives the desired expression

for φe f f as a function of rphase

φe f f (rphase) = cos−1
(

2
rphase

− 1
)
. (A.48)

In general, φe f f ∈ R can have any value 0 ≤ φe f f ≤ 2π. By the order of the appearance of

min(φestimated(ν)) and max(φestimated(ν)), (what ”comes first”), one can determine φe f f ∈ [0, π) or

φe f f ∈ (π, 2π]. The factor δR then represents the sign correction parameter for eq. A.48

δR =


1 ν

∣∣∣∣∣
max(φestimated(ν))

< ν

∣∣∣∣∣
min(φestimated(ν))

−1 ν

∣∣∣∣∣
min(φestimated(ν))

< ν

∣∣∣∣∣
max(φestimated(ν))

.
(A.49)

Taking into account the above case analysis of eq. A.49, the final expression for the determina-

tion of the effective phase φe f f is

φe f f = δR cos−1
(

2
rphase

− 1
)
. (A.50)
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