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Abstract 

Since the very first observation of magnetic hysteresis of purely molecular origin in 

1993,
1
 the field of molecular magnetism

2,3
 has become a versatile and flourishing area of 

scientific research. Single-molecule magnets
2-8

 are metal complexes exhibiting an energy 

barrier for spin reversal, leading to magnetic bistability and slow relaxation of the 

magnetization after having switched off an external magnetic field. Their potential for 

practical applications such as ultrahigh-density magnetic data storage devices was recognized 

early on
1
 and with the goal of achieving higher and higher energy barriers, a wide range of 

different kinds of single-molecule magnets has been synthesized up to now.
5,9-12

 The first 

generation typically comprised clusters of exchange-coupled transition metal ions with high 

electron spins, with the manganese cluster [Mn12O12(OAc)16(H2O)4]
13

 exhibiting a total spin 

of S = 10 as the most prominent example.
1,3-8,10,14

 For integer spin systems the energy barrier 

is given by |D| ∙ S ², where D describes the axial zero-field splitting, while the energy barrier 

for half-integer spin systems is given by |D| ∙ (S ² – ¼).
3
 The quadratic dependence of the 

barrier height on the spin motivated chemists to synthesize metal complexes with very high 

total spins; however, with limited success.
15-18

 It was shown that high spins tend to come 

along with low anisotropies
19,20

 and increased interest thus focused on magnetic anisotropy. 

Magnetic anisotropy is mainly caused by spin-orbit coupling and special interest is currently 

focused on the synthesis and investigation of (mononuclear) complexes of highly anisotropic 

metal centers, e.g. lanthanide or cobalt complexes.
9,11,21-24

 Although rather high energy 

barriers can be achieved in such systems, practical application remains problematic and has 

not been realized yet. Reasons are for example the lack of rational design criteria and the 

complex interplay of different magnetic relaxation pathways, including under-barrier 

relaxation, which have not been fully understood yet.  

The aim of this work was therefore the comprehensive magnetic and spectroscopic 

investigation of selected molecular lanthanide and cobalt compounds in order to obtain a 

deeper insight into the correlation of molecular and electronic structures as well as the 

corresponding magnetic properties. The applied spectroscopic methods included electron 

paramagnetic resonance spectroscopy, far-infrared spectroscopy and optical methods. Special 

emphasis was placed on magnetic circular dichroism (MCD) spectroscopy, which served as a 

main tool for electronic structure determination and unravelling magnetic relaxation 

mechanisms. However, since the MCD-spectrometer was not part of the available 
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experimental equipment at the University of Stuttgart, its design, setup and characterization 

were the first part of this work. 

The successfully installed MCD-spectrometer essentially consists of an Aviv 

Model 42 circular dichroism spectrometer combined with an Oxford Instruments SM-4000-10 

optical cryomagnet, providing magnetic field strengths up to 10 T. A variable temperature 

insert allows for temperature stabilization between 1.5 and 300 K. The circular dichroism 

spectrometer shows an excellent spectral resolution of up to 0.1 nm, which was crucial for the 

accurate determination of f-f-transition energies of the studied lanthanide compounds in the 

further course of this work.  A Rochon polarizer combined with a photoelastic modulator 

generates alternately left and right circularly polarized light, which is focused onto the sample 

in the center of the magnetic field by using appropriate optics. A home-built sample cell 

allows for studying frozen solutions, mulls and thin films. A photomultiplier tube and an 

indium gallium arsenide photodiode are used for the detection of the resulting light intensity 

in the near UV-, visible- and near-IR regions. Worthwhile mentioning is the spectrometer’s 

rather large wavelength range from 200 to 2000 nm, which has rarely been realized in MCD-

spectroscopy up to now. MCD-experiments in the near-IR region proved to be essential for 

the electronic structure determination of the cobalt compounds in this work. The performance 

of the spectrometer was tested by recording CD- and MCD-spectra of literature-known 

samples and verified by excellent agreement between the obtained spectra and the published 

data. Special interest concerned the spectrometer’s sensitivity and the possibility of 

employing MCD-spectroscopy for the investigation of monolayers. Indeed, preliminary 

measurements on Langmuir-Blodgett deposited monolayers of the well-known single-

molecule magnet DyPc2
25

 showed very promising results, including not only the observation 

of clear spectra but also optical detection of magnetic hysteresis.  

In the further course of this work MCD-spectroscopy was employed as one of the 

main tools for the electronic structure determination of selected lanthanide and cobalt 

compounds. The studied lanthanide compounds were literature-known molecular tetra-

carbonates of erbium (1-Er) and dysprosium (1-Dy)
26,27

, which were chosen mainly due to the 

colorlessness of the carbonate ligands allowing for optical detection of f-f-transitions. 

Successful synthesis and structural characterization were followed by detailed magnetometric 

studies. Both 1-Er and 1-Dy are field-induced single-molecule magnets with energy barriers 

of 52 cm
-1

 and 29 cm
-1

, respectively, according to spectroscopic data. However, 1-Er and 

1-Dy show significant differences in their magnetic relaxation behavior. For 1-Dy, a 

significant contribution of the Orbach relaxation, i.e. the thermally activated over-barrier 
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relaxation was observed, while for 1-Er the barrier independent Raman as well as direct 

relaxation processes were shown to be dominant. The magnetic studies were complemented 

by detailed spectroscopic investigations which were far beyond what is usually done in the 

field of molecular magnetism. The combination of far-infrared-, luminescence- and MCD-

spectroscopy allowed for the experimental determination of no fewer than 48 energy levels 

for 1-Er and 55 levels for 1-Dy, which built the foundation for the subsequent crystal field 

analysis for electronic structure determination. In addition, the results of EPR-spectroscopic 

studies were used for fine-tuning and verifying the respectively determined crystal field 

parameters. Crystal field analysis was performed by iterative fitting of calculated against 

experimentally determined energy levels and led to reliable sets of parameters that allowed for 

the satisfactory simulation of all the experimental data. The corresponding wave functions 

describe heavily mixed states and calculating the magnetic dipole strengths for transitions 

between the relevant states led to a quantitative understanding of the magnetic relaxation 

pathways. The combination of magnetometry and spectroscopy thus not only enabled the full 

electronic structure determination for the single-molecule magnets 1-Er and 1-Dy, but also 

provided a deeper insight into magnetic relaxation. Worthwhile mentioning is the finding that 

none of the applied methods is suitable on its own for the determination of reasonable crystal 

field parameters. Thus, this work provides a recipe for the electronic structure determination 

of low-symmetry mononuclear lanthanide complexes.  

Besides the investigation of lanthanide compounds, this thesis deals with two classes 

of cobalt complexes. The first class comprises the mononuclear complexes (HNEt3)22 and 

(NMe4)22 in which one Co(II) ion is ligated by the nitrogen donors of two doubly 

deprotonated 1,2-bis(methanesulfonamido)-benzene-ligands. Rather acute N-Co-N bite angles 

indicate strong deviations from ideal tetrahedral symmetry. The static magnetic properties 

hint at very high energy barriers for spin reversal and with the help of far-infrared 

spectroscopy, the axial zero-field splitting parameters were determined as D = –115 cm
-1

  for 

(HNEt3)22 and D = –112.5 cm
-1

 for (NMe4)22. The corresponding energy barriers belong to 

the highest ever reported for 3d-transition metal complexes,
11,24,28

 making (HNEt3)22 and 

(NMe4)22 extraordinarily interesting systems for probing single-molecule magnet behavior. 

Indeed, investigating the dynamic magnetic properties confirmed single-molecule magnet 

behavior. Slow relaxation of the magnetization in an alternating magnetic field was observed 

even in the absence of an external static field, which is rarely observed in mononuclear Co(II) 

complexes.
11,24

 The unique magnetic properties were fully explained by analyzing 

spectroscopic results. Multi-frequency EPR-spectra, recorded on (HNEt3)22 and (NMe4)22, 
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displayed no signals. Taking into account the EPR selection rules, this finding confirms the 

high negative values for D and indicates rather axial, e.g. pure mS = 3/2 ground doublets. 

The MCD-spectra showed very intense signals that were assigned to spin-allowed d-d-

transitions. Subsequent crystal field analysis assuming D2d point symmetry revealed that the 

strong axial crystal field generated by the ligands leads to a large splitting of the electronic 

terms and thus in turn to a relatively small energy gap between the electronic 
4
B1 ground state 

and the first excited state 
4
B2. The resulting increase in second-order spin-orbit coupling 

explains the high energy barriers observed in (HNEt3)22 and (NMe4)22. The MCD-signal 

intensities show magnetic hysteresis with coercive fields of 0.24 T and 0.14 T, confirming the 

presence of significant magnetic bistability. Thus, this work shows that magnetic bistability in 

mononuclear complexes does not necessarily require linear coordination symmetries, in 

contrast to a current trend in related literature.
29-31

 The key factors for the appearance of axial 

ground states seem to be acute N-Co-N angles as well as the presence of symmetry beyond 

the directly coordinated donor atoms. (HNEt3)22 and (NMe4)22 are thus promising starting 

points for the synthesis of improved single-molecule magnets.  

The second class of cobalt compounds studied in this work included dimers of 

distorted octahedrally coordinated Co(II) ions bridged by quinone based bridging ligands.
32

 In 

the bridging ligands, one or two oxygen donors of 2,5-dihydroxy-1,4-benzoquinone were 

replaced by isoelectronic [NR] groups, leading to the asymmetrically bridged dimer 5[OTf]2 

in the former case and to the symmetrically bridged dimers 3[BF4]2 and 4[BPh4]2 in the latter 

case. The main focus of investigation lay on the impact of the bridging ligand on the magnetic 

coupling between the cobalt centers, since it was reported that exchange coupling might 

prevent undesired under-barrier relaxation of the magnetization.
33,34

 In view of the potential 

non-innocent behavior of the bridging ligands, another interesting question concerned the 

observation of valence tautomerism in the corresponding one-electron oxidized species, which 

could lead to interesting switchable properties.
35

 However, no valence tautomerism was 

observed in the mixed-valent species 3[BF4]3 and 5[OTf]3. The magnetic properties of the 

complexes were studied with the help of static susceptibility and magnetization measurements 

and analyzed by means of different models. It was shown that due to the strong deviations 

from ideal octahedral coordination symmetry the application of a common spin Hamiltonian 

is appropriate. Weak antiferromagnetic exchange couplings were found for 5[OTf]2 and 

3[BF4]2 and the corresponding exchange coupling constants were determined as 

Jex = -0.47 cm
-1

 and Jex = –0.52 cm
-1

. In contrast, ferromagnetic exchange with 

Jex = +0.76 cm
-1

 was found for 4[BPh4]2. The different signs of the exchange coupling 
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constants can be explained by different relative contributions of possible exchange paths, 

influenced by the different substituents at the bridging ligands or slight geometry differences. 

The observations indicate that electron withdrawing substituents favor ferromagnetic 

couplings, which are preferred in the context of molecular magnetism. The magnetometric 

investigations were complemented by EPR-spectroscopic studies. Simulating the obtained 

spectra required assuming anisotropic exchange couplings; however, the isotropic mean 

values agreed excellently with the coupling constants determined by magnetometry.  

All in all, it can be concluded that this work provides a significant contribution to the 

deeper understanding of the features relevant for single-molecule magnets. The electronic 

structure determination for selected lanthanide and cobalt complexes applying advanced 

magnetometric and spectroscopic techniques not only led to an understanding of the static and 

dynamic magnetic properties but also allowed for the development of design criteria and new 

approaches for improved single-molecule magnets in the future. 
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Zusammenfassung 

Seit der erstmaligen Beobachtung magnetischer Hysterese rein molekularen Ursprungs 

im Jahr 1993
1
 hat sich der Bereich des molekularen Magnetismus

2,3
 zu einem eigenständigen 

und vielseitigen Forschungsgebiet entwickelt. Als Einzelmolekülmagneten
2-6

 werden dabei 

Metall-Komplexe bezeichnet, welche aufgrund einer Energiebarriere für Spin-Umkehr 

magnetische Bistabilität aufweisen und somit auch nach Abschalten eines externen 

Magnetfelds für gewisse Zeit magnetisiert bleiben. Schnell wurde deren praktisches Potential 

im Gebiet der magnetischen Datenspeicherung erkannt
1
 und mit dem Ziel hoher 

Energiebarrieren wurde bis heute eine Vielzahl verschiedenartiger Einzelmolekülmagnete 

synthetisiert.
5,9-12

 Die erste Generation umfasste dabei typischerweise Cluster von austausch-

gekoppelten Übergangsmetall-Ionen mit hohem Gesamtelektronenspin, wie zum Beispiel der 

in diesem Zusammenhang meist untersuchte Mangan-Komplex [Mn12O12(OAc)16(H2O)4]
13

 

mit einem Gesamtelektronenspin von S = 10, der als Prototyp der Einzelmolekülmagneten 

gilt.
1,3-8,14

 Für Systeme mit ganzzahligem Elektronenspin ergibt sich die Energiebarriere aus 

|D| ∙ S ², wobei D die axiale Anisotropie des Systems wiedergibt, während die Energiebarriere 

für halbzahlige Spin-Systeme mit |D| ∙ (S ² – ¼) beschrieben wird.
3
 Die quadratische 

Abhängigkeit vom Elektronenspin motivierte zur Synthese von Metall-Komplexen mit immer 

höheren Gesamtspins, allerdings mit lediglich mäßigem Erfolg.
15-18

 Es wurde gezeigt, dass 

hohe Spins tendenziell niedrige Anisotropien mit sich bringen,
19,20

 woraufhin sich vermehrtes 

Interesse der magnetischen Anisotropie zuwandte. Magnetische Anisotropie wird 

hauptsächlich durch die Stärke der Spin-Bahn-Kopplung beeinflusst und besonderes Interesse 

liegt momentan auf der Synthese und Untersuchung von Metall-Komplexen mit stark 

anisotropen Metall-Zentren, wie zum Beispiel Lanthanoid(III)- oder Cobalt(II)-Ionen.
9,11,21-24

 

Obwohl in derartigen Systemen bereits sehr viel höhere Energiebarrieren erreicht werden 

konnten als in den Einzelmolekülmagneten der ersten Generation, ist die praktische 

Anwendung problematisch und bisher nicht realisiert. Gründe hierfür sind zum Beispiel das 

Fehlen rationaler Design-Kriterien und das komplexe Zusammenspiel verschiedener 

magnetischer Relaxationsmechanismen, die u.a. auch das Durchtunneln der Energiebarriere 

beinhalten und bisher nicht vollständig verstanden sind.  

Ziel dieser Arbeit war deshalb die umfassende magnetische und spektroskopische 

Untersuchung ausgewählter molekularer Lanthanoid- und Cobalt-Verbindungen, um damit 

zum tieferen Verständnis der Zusammenhänge zwischen molekularer und elektronischer 
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Struktur sowie den magnetischen Eigenschaften beizutragen. Die zu diesem Zweck 

eingesetzten spektroskopischen Methoden umfassten Elektronenspinresonanz-Spektroskopie, 

Ferninfrarot-Spektroskopie sowie optische Methoden. Hervorzuheben ist hierbei die 

magnetische Zirkulardichroismus-Spektroskopie (MCD-Spektroskopie), die einen 

wesentlichen Beitrag zur Aufklärung der vorliegenden elektronischen Strukturen und der 

damit verbundenen magnetischen Relaxationsmechanismen lieferte. Da das verwendete 

MCD-Spektrometer nicht von Beginn an Teil der Ausstattung war, ist dessen Design, Aufbau 

sowie Charakterisierung als erster Teil der vorliegenden Arbeit anzusehen.   

Das erfolgreich in Betrieb genommene MCD-Spektrometer besteht im Wesentlichen 

aus einem Aviv Model 42 Zirkulardichroismus-Spektrometer in Kombination mit einem 

Oxford Instruments SM-4000-10 optischen Kryomagneten, welcher magnetische Feldstärken 

von bis zu 10 T ermöglicht. Ein Temperaturregelungs-Einsatz ermöglicht die Stabilisierung 

von Temperaturen zwischen 1.5 und 300 K. Das Zirkulardichroismus-Spektrometer besitzt 

eine exzellente spektrale Auflösung von bis zu 0.1 nm, was im weiteren Verlauf dieser Arbeit 

vor allem für die exakte Bestimmung von f-f-Übergangsenergien in den untersuchten 

Lanthanoid-Komplexen von Bedeutung war. Die Kombination eines Rochon-Polarisators mit 

einem photoelastischen Modulator erzeugt alternierend links und rechts zirkular polarisiertes 

Licht, welches mit Hilfe geeigneter Optik auf die Probe im Zentrum des Magnetfelds 

fokussiert wird.  Eine eigens gestaltete Probenzelle erlaubt die Untersuchung von gefrorenen 

Lösungen, Verreibungen oder dünnen Filmen. Ein Photoelektronenvervielfacher sowie eine 

Indiumgalliumarsenid-Photodiode dienen zur Detektion der resultierenden 

Strahlungsintensität im nahen UV-, sichtbaren- und nahen IR-Bereich. Bemerkenswert ist der 

Wellenlängenbereich des Spektrometers, welcher mit 200 bis 2000 nm sehr breit ist und 

bisher in kaum einem anderen MCD-Spektrometer realisiert wurde.  Vor allem die MCD-

Untersuchungen im nahen Infrarot-Bereich erwiesen sich als ausschlaggebend für die 

Bestimmung der elektronischen Struktur in den hier untersuchten Cobalt(II)-Komplexen. Die 

Funktionstüchtigkeit des vollständig installierten MCD-Spektrometers wurde anhand von CD- 

und MCD-Untersuchungen an literaturbekannten Proben erprobt und durch gute 

Übereinstimmung der erhaltenen Spektren mit den vorliegenden Literaturdaten bestätigt. Ein 

besonders interessanter Aspekt im Zusammenhang mit der Charakterisierung des 

Spektrometers betraf dessen Sensitivität und den denkbaren Einsatz der MCD-Spektroskopie 

zur Untersuchung von Monolagen. Tatsächlich zeigten vorläufige Messungen an Monolagen 

des Einzelmolekülmagneten DyPc2
25

 sehr vielversprechende Ergebnisse, die nicht nur die 
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Beobachtung deutlicher Spektren sondern auch optisch detektierter magnetischer Hysterese 

beinhalteten.  

Im weiteren Verlauf dieser Arbeit wurde die MCD-Spektroskopie als eine der 

wesentlichen experimentellen Methoden zur Aufklärung der elektronischen Struktur 

ausgewählter Lanthanoid(III)- und Cobalt(II)-Komplexe eingesetzt. Bei den untersuchten 

Lanthanoid-Verbindungen handelte es sich um literaturbekannte molekulare Tetra-Carbonate 

des Erbiums (1-Er) und des Dysprosiums (1-Dy)
26,27

, welche hauptsächlich aufgrund der 

Farblosigkeit des Carbonat-Liganden und der damit verbundenen Möglichkeit zur optischen 

Detektion von f-f-Übergängen gewählt wurden. Nach erfolgreicher Synthese und struktureller 

Charakterisierung wurden die magnetischen Eigenschaften im Detail untersucht. Sowohl 1-Er 

als auch 1-Dy sind sogenannte feld-induzierte Einzelmolekülmagneten mit Energiebarrieren 

von 52 cm
-1

 bzw. 29 cm
-1

, basierend auf spektroskopischen Daten. 1-Er und 1-Dy zeigen 

gravierende Unterschiede im magnetischen Relaxationsverhalten: Während für 1-Dy bei 

höheren Temperaturen ein signifikanter Beitrag des Orbach-Prozesses, d.h. der thermisch 

aktivierten Überwindung einer Energiebarriere nachgewiesen wurde, dominieren bei 1-Er der 

sogenannte Raman-Prozess sowie die direkte Relaxation, welche in erster Näherung 

unabhängig von der Energiebarriere sind. Die magnetometrischen Messungen wurden durch 

detaillierte spektroskopische Untersuchungen ergänzt, die weit über die sonst im Bereich des 

molekularen Magnetismus üblichen Untersuchungen hinausgehen. Die Kombination von 

Ferninfrarot-, Lumineszenz- und MCD-Spektroskopie erlaubte die experimentelle 

Bestimmung von nicht weniger als 48 Energieniveaus für 1-Er und 55 Niveaus für 1-Dy, 

welche die Grundlage für die anschließende Kristallfeldanalyse zur Bestimmung der 

elektronischen Strukturen bildeten. Zusätzlich dienten die Ergebnisse ESR-spektroskopischer 

Untersuchungen zur Feinabstimmung und Verifizierung der jeweils bestimmten 

Kristallfeldparameter. Die Kristallfeldanalyse erfolgte durch iterative Anpassung berechneter 

an experimentell ermittelte Energien und führte zu verlässlichen Parametersätzen, die 

zufriedenstellende Simulationen aller experimentellen Daten erlaubten. Die zugehörigen 

Wellenfunktionen beschreiben stark gemischte Zustände und durch Berechnung der 

magnetischen Dipolstärken für Übergänge zwischen den relevanten Niveaus konnte ein 

quantitatives Verständnis des Relaxationsverhaltens gewonnen werden. Die Kombination 

magnetometrischer und spektroskopischer Methoden erlaubte somit nicht nur die vollständige 

Bestimmung der elektronischen Struktur der Einzelionenmagnete 1-Er und 1-Dy, sondern 

lieferte auch einen Beitrag zum tieferen Verständnis der magnetischen Relaxation. 

Erwähnenswert ist außerdem die Feststellung, dass keine der angewandten Methoden für sich 
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allein zur Bestimmung sinnvoller Parametersätze herangezogen werden konnte und diese 

Arbeit somit als Anleitung für die experimentelle Bestimmung der elektronischen Strukturen 

mononuklearer Lanthanoid-Komplexe mit niedriger Symmetrie dienen kann.  

Neben der Untersuchung der Lanthanoid-Carbonate befasste sich diese Arbeit mit 

Cobalt-Komplexen, welche in zwei Klassen unterteilt werden können. Die erste Klasse 

beinhaltete die einkernigen Komplexe (HNEt3)22 und (NMe4)22, in welchen jeweils ein 

Co(II)-Ion von den Stickstoff-Donoren zweier zweifach deprotonierter 1,2-

Bis(methansulfonamido)benzol-Liganden koordiniert wird. Mit verhältnismäßig kleinen 

N-Co-N-Winkeln sind die Koordinationssymmetrien im Vergleich zu idealer tetraedrischer 

Symmetrie stark verzerrt. Die statischen magnetischen Eigenschaften deuteten auf sehr hohe 

Energiebarrieren für die Spin-Umkehr hin und mit Hilfe der Ferninfrarot-Spektroskopie 

konnten die axialen Anisotropie-Parameter zu D = –115 cm
-1

 für (HNEt3)22 und 

D = -112.5 cm
-1

 für (NMe4)22 bestimmt werden. Die zugehörigen Energiebarrieren gehören 

damit zu den höchsten bisher veröffentlichten Energiebarrieren für 3d-Metall-Komplexe
11,24,28

 

und machen (HNEt3)22 und (NMe4)22 zu außerordentlich interessanten Systemen für die 

Erprobung von Einzelmolekülmagnet-Eigenschaften. Tatsächlich bestätigte die Untersuchung 

der dynamischen magnetischen Eigenschaften, dass es sich bei (HNEt3)22 und (NMe4)22 um 

Einzelmolekülmagneten handelt. Langsame Relaxation der Magnetisierung im magnetischen 

Wechselfeld konnte ohne Anlegen eines zusätzlichen statischen Magnetfelds nachgewiesen 

werden, was (HNEt3)22 und (NMe4)22 deutlich von vielen anderen Co(II)-basierten 

Einzelmolekülmagneten abhebt.
11,24

 Die einzigartigen magnetischen Eigenschaften konnten 

durch Auswertung spektroskopischer Daten erfolgreich erklärt werden. ESR-Spektren bei 

verschiedenen Frequenzen zeigten keinerlei Signale, was anhand der ESR-Auswahlregeln 

einerseits die hohen Werte und negativen Vorzeichen für D bestätigt und andererseits auf 

stark axiale, d.h. nahezu reine elektronische Grundzustände hindeutet. Die MCD-Spektren 

wiesen intensive Signale auf, welche spin-erlaubten d-d-Übergängen zugeordnet werden 

konnten. Die anschließende Kristallfeldanalyse unter Annahme von D2d-Symmetrie 

verdeutlichte, dass das von den Liganden erzeugte starke axiale Kristallfeld zu einer starken 

Aufspaltung der elektronischen Terme führt, wodurch eine verhältnismäßig geringe 

Energiedifferenz zwischen dem elektronischem Grundzustand 
4
B1 und dem ersten angeregten 

Zustand 
4
B2 resultiert. Die dadurch bedingte verstärkte Spin-Bahn-Kopplung zweiter Ordnung 

erklärt die in (HNEt3)22 und (NMe4)22 beobachteten hohen Energiebarrieren. Die MCD-

Signal-Intensitäten zeigten magnetische Hysterese mit Koerzitivfeldstärken von 0.24 T für 

(HNEt3)22 und 0.14 T für (NMe4)22, was das Vorliegen signifikanter magnetischer 
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Bistabilität beweist. Im Rahmen dieser Arbeit konnte demzufolge gezeigt werden, dass das 

Auftreten magnetischer Bistabilität in einkernigen Komplexen nicht zwangsläufig instabile 

lineare Koordinationssymmetrien erfordert, wie es in der aktuellen Literatur häufig vermittelt 

wird.
29-31

 Als Schlüsselfaktoren für das Auftreten axialer Grundzustände konnten kleine 

N-Co-N-Winkel, d.h. axiale Verzerrung, sowie das Vorliegen von Symmetrie über die direkt 

koordinierten Donoratome hinaus identifiziert werden. (HNEt3)22 und (NMe4)22 bilden damit 

einen vielversprechenden Ausgangspunkt für die Synthese verbesserter 

Einzelmolekülmagnete.  

Die zweite Klasse der in dieser Arbeit untersuchten Cobalt-Komplexe beinhaltete 

Dimere verzerrt oktaedrisch koordinierter Cobalt-Ionen, welche durch chinon-basierte 

Liganden verbrückt sind.
32

 In den Brückenliganden wurden jeweils ein oder zwei Sauerstoff-

Donoren von 2,5-Dihydroxy-1,4-Benzochinon durch isoelektronische [NR]-Gruppen ersetzt, 

woraus im ersten Fall das asymmetrisch verbrückte Dimer 5[OTf]2 und im zweiten Fall die 

symmetrisch verbrückten Dimere 3[BF4]2 und 4[BPh4]2 resultierten. Diese unterscheiden sich 

durch verschiedene Substituenten am Brückenliganden. Der Schwerpunkt der 

Untersuchungen lag hierbei auf dem Einfluss des Brückenliganden auf die magnetische 

Kopplung zwischen den Cobalt-Zentren, da in der Vergangenheit berichtet wurde, dass 

magnetische Kopplung das Auftreten unerwünschter Relaxationsmechanismen wie 

Quantentunneln der Magnetisierung einschränken kann.
33,34

 Aufgrund des potentiell nicht-

unschuldigen Verhaltens der Brückenliganden betraf eine weitere Fragestellung das Auftreten 

von Valenz-Tautomerie in den zugehörigen einfach oxidierten Spezies, welche zu 

interessanten schaltbaren magnetischen Eigenschaften führen könnte.
35

 Hinweise auf 

Valenztautomerie in den gemischt-valenten Spezies 3[BF4]3 und 5[OTf]3 wurden allerdings 

nicht beobachtet. Die magnetischen Eigenschaften der Komplexe wurden mit Hilfe statischer 

Suszeptibilitäts- und Magnetisierungsmessungen untersucht und anhand verschiedener 

Modelle analysiert. Dabei zeigte sich, dass aufgrund der stark verzerrten oktaedrischen 

Umgebung der Co(II)-Ionen die Anwendung des gebräuchlichen Spin-Only-Formalismus 

gerechtfertigt ist. Für 5[OTf]2 und 3[BF4]2 wurden schwach antiferromagnetische 

Austauschwechselwirkungen beobachtet und die zugehörigen Kopplungskonstanten wurden 

zu Jex = –0.47 cm
-1

 für 3[BF4]2 und Jex = –0.52 cm
-1

 für 5[OTf]2 bestimmt. Trotz der 

unterschiedlichen Verbrückungs-Symmetrien sind die Kopplungen demzufolge sehr ähnlich. 

Im Gegensatz dazu wurde für 4[BPh4]2 eine ferromagnetische Austauschkopplung mit einer 

Kopplungskonstanten von Jex = +0.76 cm
-1

 beobachtet. Die unterschiedlichen Vorzeichen der 

Austauschkopplung können durch unterschiedliche relative Beiträge möglicher 
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Austauschpfade, bedingt durch verschiedene Substituenten am Brückenliganden, bzw. leicht 

variierender Geometrien, erklärt werden. Die Ergebnisse deuten darauf hin, dass 

elektronenziehende Substituenten die im Bereich des molekularen Magnetismus bevorzugten 

ferromagnetischen Austauschwechselwirkungen begünstigen. Die magnetometrischen 

Untersuchungen wurden durch ESR-spektroskopische Messungen ergänzt. Zufriedenstellende 

Simulationen der erhaltenen Spektren erforderten die Annahme anisotroper 

Kopplungskonstanten, deren Mittelwerte allerdings sehr gute Übereinstimmung mit den 

magnetometrisch bestimmten Kopplungskonstanten aufwiesen.  

Im Hinblick auf die Gesamtheit der hier vorgestellten Arbeit lässt sich abschließend 

zusammenfassen, dass diese einen signifikanten Beitrag zum besseren Verständnis der für 

Einzelmolekülmagneten relevanten Eigenschaften liefert. Die Ermittlung der elektronischen 

Strukturen ausgewählter Lanthanoid- und Cobalt-Komplexe anhand detaillierter 

magnetometrischer und spektroskopischer Untersuchungen führte nicht nur zum Verständnis 

von statischen und dynamischen magnetischen Eigenschaften, sondern ermöglichte auch die 

Entwicklung von Design-Kriterien sowie neuer Ansätze, die in naher Zukunft zu optimierten 

Einzelmolekülmagneten führen könnten. 
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1 Introduction 

In 1993, the observation of magnetic hysteresis of purely molecular origin
1
 in the 

famous manganese cluster [Mn12O12(OAc)16(H2O)4] (“Mn12ac”)
13

 resulted in great euphoria in 

the scientific community. Such magnetically bistable molecules are promising candidates for 

modern applications such as ultrahigh-density magnetic data storage devices
1,36

 and the vision 

that one day a single molecule could act as one bit attracted the interest of many research 

groups. Since then, the field of molecular magnetism
2,3

 has become a flourishing and versatile 

area of scientific research. A wealth of so-called single-molecule magnets (SMMs) has been 

reported,
3-7,9-12,21-24,28,33,37

 all of them showing an energy barrier for spin reversal, the essential 

condition for magnetic bistability and for slow relaxation of the magnetization. High spin-

reversal barriers in metal complexes can be achieved by the combination of high ground state 

electron spins with large magnetic anisotropies. While early approaches for increasing the 

barriers mainly focused on increasing the total spins in clusters of exchange-coupled 3d-

transition metal ions,
10

 more modern approaches are based on employing strongly anisotropic 

metal centers, i.e. metal ions with incompletely quenched orbital angular momenta. The 

development from large spins to large anisotropies led to the advent of single-molecule 

magnets containing e.g. lanthanide
9,21,23,37

 or cobalt ions
11,22,28

, but also actinide based single-

molecule magnets
12

 are enjoying great interest.   

However, in spite of the intense effort put into the design of new single-molecule 

magnets and the observation of record energy barriers up to several hundreds of 

wavenumbers, SMMs are still far away from practical application. One of the main reasons is 

the complex interplay of several magnetic relaxation pathways
3,38

, including not only over-

barrier relaxation, but also barrier-independent relaxation processes like quantum tunneling of 

the magnetization, Raman-like processes or direct relaxation. These processes prevent the 

observation of significant magnetic bistability and since they have not yet been fully 

understood, they are hard to predict and eliminate. A much deeper insight into the correlation 

between dynamic magnetic properties and the molecular as well as the electronic structure is 

therefore mandatory for the improvement of future molecular magnets. 

In this context, the contribution of the work presented here lies in the comprehensive 

magnetometric and spectroscopic investigation of selected lanthanide- and cobalt-based 

molecular nanomagnets. The experimental results will serve to determine the electronic 

structures which in turn allow for an understanding of the magnetic behavior and for the 

derivation of new approaches towards improved materials. 
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2 Background 

2.1 Basic Concepts in Molecular Magnetism 

2.1.1 Characteristics of Single-Molecule Magnets 

Typically, single-molecule magnets (SMMs)
3-8

 are clusters of exchange-coupled transition 

metal ions, with Mn12ac
13

 being the most prominent example.
1,3-8,14

 They show slow 

relaxation of the magnetization due to magnetic bistability, meaning that they remain 

magnetized for a certain time after having switched off an external magnetic field. 

Importantly, the characteristic magnetic properties are of purely molecular origin with 

negligible intermolecular interactions. The origin of magnetic bistability is the presence of an 

energy barrier for spin reversal which has to be overcome. For pure spin magnetism, i.e. for 

magnetic ions with completely quenched orbital angular momenta, this energy barrier is given 

by 

 

∆𝐸 = |𝐷| ∙ 𝑆²  (1) 

 

for systems with integer electron spins S (non-Kramers systems) and by  

 

∆𝐸 = |𝐷| ∙ (𝑆2 −
1

4
)  (2) 

 

for systems exhibiting half-integer spins S (Kramers systems).
3
 Thus, the energy barrier is 

determined by two factors: The spin S and the axial zero-field splitting (ZFS) parameter D. S 

is the ground state spin of the whole molecule and results from exchange coupling of the 

individual electron spins, usually via the bridging ligands (super-exchange). The strength of 

the exchange coupling is described by the coupling constant Jex which can be isotropic or 

anisotropic. In the isotropic case the Hamiltonian describing the interaction between two 

paramagnetic ions can be formulated as 

 

ℋ𝑒𝑥 = −𝐽𝑒𝑥�̂�1 ∙ �̂�2 (3) 

 

where Ŝ1 and Ŝ2 represent the spin operators for each of the two metal ions.
3
 According to 

equation (3), Jex is positive for ferromagnetic coupling and negative for anti-ferromagnetic 

coupling but several sign conventions can be found in literature, some of them also including 

a factor of 2.
39

 Thus, care has to be taken when comparing data. In Mn12ac, ferrimagnetic 
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coupling between four Mn(IV) centers (S = 3/2) and eight Mn(III) centers (S = 2) results in a 

giant spin of S = (8 x 2) – (4 x 3/2) = 10 (Figure 1).
1
 The sign and the magnitude of the 

exchange coupling not only depend on the metal centers themselves, but also on the nature of 

the bridging ligands and the relative orientation of the orbitals involved. Considering the 

extent of overlap of the spin-containing molecular orbitals based on the bridging geometry, 

the sign of the exchange coupling can be predicted by means of the so-called Goodenough-

Kanamori rules.
40-42

  

The ZFS parameter D is a measure for the axial anisotropy of the system and describes 

the separation of the MS states within the spin ground state. MS is the magnetic spin quantum 

number for the coupled system and adopts values from –S to +S. In a completely isotropic 

system all MS states are degenerate, but axial distortion and second-order spin-orbit coupling 

lift this degeneracy resulting in an energy level structure which is commonly described by a 

double-well potential.
3-8

 The value of D is expected to be high for systems with small energy 

gaps between the electronic ground term and admixing excited terms. The double-well 

potential for Mn12ac is schematically illustrated in Figure 2a. Here D is negative, meaning that 

the states with MS = ±S = ±10 are lowest in energy. They remain twofold degenerate, but are 

separated by the energy barrier E which was determined to 46 cm
-1

.
43

  

In addition to axial zero-field splitting, low-symmetry molecules exhibit rhombic zero-

field splitting which is accounted for by the transverse ZFS parameter E. Rhombic distortion 

causes mixing of different MS states and in the case of non-Kramers systems all degeneracy 

can be lifted even in the absence of a magnetic field. 

 

 

Figure 1: Spin structure in Mn12ac.
1
 Four Mn(IV) centers (S = 3/2; shown in blue) couple ferrimagnetically to 

eight Mn(III) centers (S = 2; shown in red), resulting in an S = 10 ground state. Grey circles represent oxygen 

bridges. 
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Figure 2: Schematic illustration of the double-well potential for Mn12ac.
6
 a) In the absence of an external field 

the ±MS states are degenerate. b) If an external magnetic field is applied, the twofold degeneracy is lifted, 

resulting in an asymmetric shape. 

 

The corresponding ZFS Hamiltonian is given by  

 

ℋ𝑍𝐹𝑆 =  𝐷(�̂�𝑧
2 −

1

3
(𝑆(𝑆 + 1)) + 𝐸(�̂�𝑥

2 − �̂�𝑦
2) 

 

(4) 

 

where x, y and z label the three principal axes and are conventionally chosen such that 

0  |E/D|  1/3.
3,44

 The distortion described by the E term mixes only states which differ by 

MS = ±2 (second-rank operators). For 3d systems with S  2 higher-rank terms are possible; 

however, they are often neglected in order to avoid over-parametrization. 

When an external magnetic field B is applied, the states will be further split by the 

Zeeman interaction and the double-well potential will become asymmetric (Figure 2b). The 

well corresponding to negative values for MS will be lowered in energy with respect to the 

other and will therefore be preferably populated: The molecule becomes magnetized and 

reaches its saturation magnetization at low temperatures and high fields when only the lowest-

lying state is populated. The Zeeman splitting is described by the Hamiltonian  

 

ℋ𝑍𝑒𝑒𝑚𝑎𝑛 = 𝜇𝐵 ∑ 𝑔𝑘,𝑞𝐵𝑘�̂�𝑞
𝑘,𝑞=𝑥,𝑦,𝑧

 
 

(5) 

 

where µB denotes the Bohr magneton and g is the orientation-dependent Landé factor of the 

system.
3,38
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When the external magnetic field is switched off, the system will relax, meaning that both 

wells will be populated equally again. This process requires overcoming the energy barrier by 

climbing up the ladder of MS states (multi-step Orbach relaxation).
3
 Thus, for high energy 

barriers and at sufficiently low temperatures, slow relaxation of magnetization will be 

observed. In Mn12ac magnetic relaxation can take up to several months.
1
  

In an ideal SMM, such a thermally activated multi-step Orbach relaxation would be 

the only pathway for magnetic relaxation and the temperature dependence of the relaxation 

time   could be solely described by an Arrhenius law 

 

𝜏𝑂𝑟𝑏𝑎𝑐ℎ = 𝜏0 ∙  𝑒
−∆𝐸

𝑘𝐵𝑇
⁄

 (6) 

 

with the attempt time 0, the energy barrier E, the Boltzmann constant kB and the 

temperature T.
3,38

 In real systems however, not only the Orbach process contributes to the 

magnetic relaxation, but also the Raman process, the direct process and quantum tunneling of 

magnetization.
3,38

 These relaxation pathways give rise to effective energy barriers Ueff which 

are usually much smaller than the expected barrier E. A more detailed description will be 

given in section 2.1.3. 

The quadratic dependence of the energy barrier on the cluster spin S in equations (1) 

and (2) motivated chemists to synthesize metal ion complexes with rather large ground state 

spins. For instance, new records were obtained in 2006 in a ferromagnetically coupled Mn19 

aggregate exhibiting a spin of S = 83/2
15

 and recently in a Fe42 cluster with S = 45
18

.  

However, in contrast to expectations the energy barriers were very small. Meanwhile it is 

well-known that the cluster anisotropy constant D is not independent of the ground state spin 

S and that large spins tend to come along with low anisotropies, preventing high anisotropy 

barriers.
19,20

 Attention therefore has turned to the design of metal ion complexes employing 

highly magnetically anisotropic metal centers.
9,11,12,22-24,28,37

 High anisotropy can be achieved 

by using metal centers with unquenched orbital angular momenta such as lanthanide(III) or 

octahedrally coordinated cobalt(II) ions (first-order spin-orbit interactions) or by ligand field 

design that leads to admixing of excited states with orbital angular momentum (second-order 

spin-orbit coupling).    
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2.1.2 Single-Ion Magnets 

The term “single-ion magnets” (SIMs) denotes a newer generation of single-molecule 

magnets. Here each molecule contains only one single paramagnetic metal ion and the origin 

of the observed energy barriers therefore lies in the single ion anisotropy. The electron spins 

of such systems are limited to the individual spins of the metal centers, i.e. to a maximum of 

S = 5/2 for d-block ions and maximally S = 7/2 for f-block ions. However, strongly 

anisotropic metal centers such as Ln(III) ions are considered promising candidates.  

In this context the major breakthrough was achieved in 2003 by Ishikawa et al. by the 

observation of SMM behavior in the dysprosium and terbium analogues of the lanthanide 

double-deckers (NBu4)[Ln(Pc)2].
25

 In these molecules, the Ln(III) ions are complexed by two 

negatively charged phthalocyaninato ligands, resulting in a fairly axial complex geometry 

which can be described by D4d symmetry (Figure 3). For the Tb(III) analogue, an 

experimentally determined effective energy barrier of 230 cm
-1

 was reported,
25

 a value that 

has never been achieved for any SMM of the first generation. In contrast to complexes of the 

d-block metal ions, the energy barriers in lanthanide complexes originate from the crystal 

field splitting which is a rather small effect compared to the spin-orbit interaction due to the 

effective shielding of the f-orbitals. In the context of lanthanides, the concept of zero-field 

splitting, i.e. the application of a spin Hamiltonian, is thus not appropriate anymore.  

The high symmetry of the lanthanide double-deckers allowed the parametrization of 

the crystal field by analyzing magnetic susceptibility as well as NMR data and indeed a 

dependence of the energy barrier height on the energies of the crystal field states was 

found.
25,45,46

 The knowledge of these energies thus appears to be crucial to explain the 

magnetic properties of lanthanide SIMs.  

   

 

Figure 3: Chemical structure of the [Ln(Pc)2]
-
 anion. Reprinted with permission from N. Ishikawa, M. Sugita, 

T. Ishikawa, S. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694.
25
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However, most lanthanide complexes exhibit lower symmetries than D4d and the 

determination of their electronic structures requires much more experimental effort. A 

detailed description of the electronic structure of lanthanide based SIMs and its determination 

will be given in chapter 2.2. Although the employment of lanthanide ions in single-ion 

magnets frequently leads to the observation of record effective energy barriers,
9,21,23-25,37

 real 

magnetic bistability is rarely observed. Out of hundreds of reported lanthanide based SIMs, 

only a few show magnetic hysteresis which is the ultimate proof for magnetic bistability. One 

reason is effective under-barrier relaxation like quantum tunneling of the magnetization 

(QTM) and a lot of research activity focusses on this issue. A possible way to suppress QTM 

is seen in the inclusion of exchange coupling, which is very hard to achieve between 4f ions 

and requires e.g. radical bridging ligands.
23,33,34

  

This finding suggests that it is worthwhile going back to 3d transition metal ions 

where exchange couplings are much easier obtained. Various examples of 3d single-ion 

magnets have already been reported
11,24,28

 and the challenge now is to find metal-ligand 

combinations that a) create a large uniaxial anisotropy resulting in a maximum zero-field 

splitting and b) allow the modification of the ligands making them potentially bridging 

ligands. Concerning the choice of the metal ions, metal centers with largely unquenched 

orbital angular momenta in a given coordination geometry are preferred: For metal complexes 

with quenched orbital momenta, the ZFS arises from second-order spin-orbit coupling which 

admixes excited states into the ground state. If orbital angular momentum is unquenched, 

however, spin-orbit coupling is a first-order effect and potentially leading to much higher 

energy barriers, as can be seen for the lanthanides. One of the most promising 3d ions is 

Co(II) due to its d
7
 electronic configuration. As a representative of 3d SIMs and because 

Co(II) plays a major role in this work, the electronic structure of Co(II) complexes as well as 

suitable models for the description of their magnetic properties will be considered in 

section  2.2.  

 

2.1.3 Magnetic Relaxation 

Since single-molecule magnets are characterized by slow relaxation of the 

magnetization, the understanding of the contributing relaxation mechanisms is of crucial 

importance. In addition to the pure Orbach mechanism, Raman processes, direct relaxation 

and quantum tunneling of magnetization might occur.
3,34,38

 A schematic illustration is given in 

Figure 4.  
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Figure 4: Schematic illustration of the mechanisms contributing to the magnetic relaxation in SMMs.
34

 Blue 

horizontal lines correspond to energy levels of the lattice, whereas red lines represent levels (microstates) within 

the spin system. |a⟩, |b⟩ and |c⟩ denote the microstates involved, i.e.|S,MS⟩ states for clusters of ions with 

quenched orbital momenta and |J,mJ⟩ states for systems with largely unquenched orbital momenta, respectively. 

Arrows depict transitions between these levels.  

 

The interplay of these processes hampers the progress towards practical application of SMMs 

since the Orbach mechanism (Figure 4, left) is the only process which directly depends on the 

energy gap between microstates. 

Orbach relaxation
3,34,38,47

 is a type of spin-lattice relaxation, meaning that it requires 

energy exchange between the magnetic ion and the surrounding lattice: The absorption of 

phonons leads to temporary population of excited microstates from where the spin systems 

can either fall back to the initial states or relax to the other side of the energy barrier, in both 

cases under emission of phonons (2-phonon-process). Concerning the contributing 

microstates, three cases have to be distinguished: In the case of exchange-coupled 3d metal 

ions with quenched angular orbital momenta, the excited microstates are the higher lying MS 

states within the total spin ground state and overcoming the energy barrier requires 

subsequent absorption of phonons (Figure 5a). In mononuclear 3d ion complexes however, 

the relevant microstates arise from the uncoupled ground state spin and are more commonly 

labeled by lower-case mS. In lanthanide compounds, the excited states involved are low-lying 

crystal field levels, which in case of relatively pure states can be labeled by the magnetic total 

angular momentum quantum number mJ (Figure 5b). In all cases, the effectiveness of the 

Orbach mechanism is determined by the availability of phonons with the required energy.  
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Figure 5: a) Schematic representation of the Orbach relaxation for clusters of exchange-coupled 3d transition 

metal ions. Overcoming the energy barrier requires subsequent absorption of phonons. b) Schematic illustration 

of thermally activated relaxation for lanthanide SIMs. Depending on the nature of the low-lying |J,mJ⟩ states, 

various pathways are allowed, including not only Orbach relaxation but also thermally assisted QTM. 

 

According to equation (6), the temperature dependence of the relaxation time for a 

pure Orbach mechanism is given by a simple Arrhenius law and the corresponding energy 

barrier can be determined by a linear fit of the ln  vs. 1/T plot. This is illustrated in Figure 6 

for the exotic linear iron(I) SIM [K(crypt-222)][Fe(C(SiMe3)3)2], where an effective energy 

barrier of Ueff = 226 cm
-1

 was obtained.
29

 Figure 6 also shows that such a fit can be justified 

only at comparatively high temperatures whereas at low temperatures clear deviations from 

linearity occur. These deviations arise from the influence of the other relaxation pathways.  

The Raman mechanism
3,34,38,39,48,49

 is depicted in Figure 4 as well. Similar to the 

Orbach process, it is a phonon-assisted mechanism, but in this case the relaxation occurs via 

virtual intermediate states. The energy released by the spin systems is then taken up by 

superpositions of lattice waves with frequency differences matching the released energy. The 

temperature dependence of the relaxation time for the Raman process is given in equation (7): 

 

𝜏𝑅𝑎𝑚𝑎𝑛
−1 = 𝐶𝑅𝑎𝑚𝑎𝑛  ∙  𝑇

𝑛𝑅𝑎𝑚𝑎𝑛  (7) 

 

CRaman is an empirically determined coefficient (Raman coefficient), T is the temperature and 

nRaman is the Raman exponent which depends on the kind of system under study: For integer 

spin systems (non-Kramers systems) with isolated ground states an exponent of nRaman = 7 

was derived, whereas nRaman = 9 was found for non-integer spin systems (Kramers ions). For 

systems with very low lying, i.e. thermally populated excited states, nRaman = 5 is valid.  



Basic Concepts in Molecular Magnetism  11

   

 

Figure 6: Arrhenius plot for the linear iron(I) single-ion magnet [K(crypt-222)][Fe(C(SiMe3)3)2].
29

 Gratefully 

adapted with permission from Macmillan Publishers Ltd: Nature Chemistry; J. M. Zadrozny, D. J. Xiao, 

M. Atanasov, G. J. Long, F. Grandjean, F. Neese, Nat. Chem. 2013, 5, 577; copyright (2013). 

 

For temperatures above the Debye temperature of the studied compound, i.e. when all phonon 

states are occupied, the Raman exponent is nRaman = 2. The contribution of the Raman process 

to the magnetic relaxation is manifested in a clear curvature in the Arrhenius plot. 

The third spin-lattice relaxation mechanism is the direct relaxation (Figure 4).
34,38,39

 It 

is a one-phonon process, meaning that the energy released by flipping the spin is directly 

taken up by the lattice as a phonon. Since energy differences between spin up and spin down 

states are strongly affected by the magnetic field, the relaxation time for direct relaxation not 

only depends on the temperature but also on the magnetic field strength: 

 

𝜏𝑑𝑖𝑟𝑒𝑐𝑡
−1 = 𝐴𝑑𝑖𝑟𝑒𝑐𝑡  ∙  𝐻

𝑛𝑑𝑖𝑟𝑒𝑐𝑡  ∙  𝑇 (8) 

 

Adirect is an empirical coefficient again, H is the magnetic field strength, T is the temperature 

and ndirect is the exponent for direct relaxation. Obviously, this exponent has to be different for 

Kramers and non-Kramers systems, since Kramers systems always show twofold degeneracy 

in the absence of a magnetic field (Kramers theorem
50

) while for non-Kramers systems this is 

not necessarily the case. Thus, for non-Kramers systems ndirect = 2 was derived and for 

Kramers systems ndirect = 4. However, in the presence of hyperfine coupling to nuclear spins, 

the microstates of Kramers systems cannot be considered degenerate anymore and ndirect = 2 

as for non-Kramers systems becomes more appropriate.
38

 Direct relaxation is especially 

important for so-called field-induced SMMs where slow relaxation of the magnetization can 

only be observed in the presence of an external magnetic field. 



 12  Background 

 

Besides the above-mentioned relaxation mechanisms quantum tunneling of the 

magnetization (QTM)
3,34,51

 might occur (Figure 4). This quantum mechanical phenomenon 

was predicted long ago, but first experimental evidence was found in the investigation of 

molecular magnets. Taking Mn12ac as an example, characteristic steps in the magnetic 

hysteresis loop were observed, which were attributed to minima of the relaxation time due to 

QTM.
51-54

 QTM means that the spins find a shortcut through the energy barrier, which leads 

to very fast relaxation even at low temperatures. Although it is a rather fascinating 

phenomenon, it is also a major problem concerning magnetic bistability.  It occurs when the 

microstates on each side of the energy barrier are very close in energy, for example in zero 

field or at certain magnetic field strengths when the states are expected to cross. To make 

QTM possible, the states involved need to be coupled by transverse interactions, e.g. by 

rhombic ZFS, by transverse magnetic fields or by hyperfine coupling to nuclear spins. The 

resulting wave functions are then symmetric and antisymmetric linear combinations of the up 

and down states and are delocalized on both sides of the barrier.
34

 The energy difference 

between them is termed tunnel splitting and corresponds to the rate QTM with which the 

system can tunnel through the barrier. Successful avoiding of QTM requires highly axial 

systems, meaning that the rhombic ZFS parameter E as well as higher-order off-diagonal ZFS 

terms causing state mixing are close to zero. Furthermore, transverse magnetic fields, i.e. 

fields applied perpendicular to the preferred direction of magnetization (easy axis of 

magnetization) and the presence of nuclear spins in close proximity to the relaxing electron 

spins should be avoided. Since also magnetized neighboring molecules can cause transverse 

magnetic fields, SMMs are often diluted in diamagnetic host materials. However, reliable 

prediction and control of the extent of QTM for a given compound have not yet been achieved 

and remain a goal for the future. The tunneling rate is commonly described by equation (9) 

 

𝜏𝑄𝑇𝑀
−1 = 

𝐵1

1 + 𝐵2𝐻²
 

 

(9) 

 

where B1 and B2 are system dependent parameters and H is the magnetic field strength. In the 

Arrhenius plot QTM is manifested as a flattening of the curve in the low-temperature regime.  

Real systems can show contributions of all of the above-mentioned relaxation 

mechanisms, leading to strongly curved Arrhenius plots. In such cases, linear fits are not 

justified at all and may yield unreasonable values for the energy barriers. The application of 

spectroscopic methods is then essential for the explanation of the magnetic properties. 
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2.2 Electronic Structure of Ln(III) Compounds 

2.2.1 Free Ln(III) Ions 

Understanding the magnetic properties of lanthanide-based single-molecule magnets 

requires the understanding of their electronic structures. A detailed description of the 

electronic structures of lanthanide compounds has been given e.g. by Wybourne and co-

workers
55,56

.  

Free Ln(III) ions are characterized by electronic configurations [Xe]4f 
N
 with N being 

the number of electrons within the f-shell. Depending on the value of N, a number of different 

arrangements of the electrons within the f-shell is possible. The states arising from different 

electron arrangements, called terms, exhibit different energies due to electrostatic interactions. 

These terms are commonly labeled by term symbols of the general form 
2S+1

L, where 2S+1 

denotes the spin multiplicity with S being the total electron spin of the respective Ln(III) ion 

and L corresponds to the total orbital angular momentum. According to Hund’s rules
57,58

 and 

taking into account the Pauli exclusion principle
59

, the ground state for a given 4f 
N
 

configuration is characterized by the maximum spin S and for a given spin S by the maximum 

value for L. Taking Dysprosium(III) as an example, the electrostatic interactions in its 4f
 9
 

electronic configuration lead to a ground state with S = 5/2 and L = 5, labeled by 
6
H. The first 

excited term is then given by 
6
F, corresponding to S = 5/2 and L = 3. 

In addition to electronic repulsion, magnetic interactions have to be taken into account, 

including spin-orbit, spin-spin, spin-other-orbit and similar interactions. Spin-orbit coupling is 

by far the predominant one and arises from the coupling of the electron spin magnetic 

moment and the magnetic field originating in the orbital motion of the electron. In terms of a 

pure Russell-Saunders coupling scheme, coupling of the total spin S with the total orbital 

angular momentum L results in a total angular momentum, denoted by the quantum number J. 

J can adopt values ranging from L + S to |L – S|, which means that each LS term is split into 

(2S + 1) components. For N > 7, the ground state is given by J = L + S, whereas for N  7 a 

ground state with J = |L – S| is obtained. In many cases such a simple Russell-Saunders 

coupling scheme is not appropriate; however, the spin-orbit split states are commonly labeled 

by the corresponding term symbols 
2S+1

LJ. For Dysprosium(III) this is 
6
H15/2.  

A much more realistic description of the electronic states of Ln(III) ions is obtained by 

applying the so-called intermediate coupling scheme. Here, mixing of different LS states with 

the same J-value via second-order spin-orbit coupling is taken into account. Generally, the 

importance of these perturbations increases with decreasing separation of the levels and 
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neglecting them in energy calculations might lead to deviations of up to several hundreds of 

wavenumbers.  

Taking into account not only the major electrostatic and spin-orbit interactions but also 

the remaining minor perturbations, the effective free-ion Hamiltonian
60

 acting within the 4f 
N
 

configuration is given by 

 

ℋ𝑓𝑟𝑒𝑒 𝑖𝑜𝑛 = 𝐸𝐴𝑉𝐸 + ∑ 𝐹𝑘𝑓𝑘
𝑘=2,4,6

+ 𝜁4𝑓𝐴𝑆𝑂 +  𝛼𝐿(𝐿 + 1) + 𝛽𝐺(𝐺2) + 𝛾𝐺(𝑅7)

+ ∑ 𝑡𝑖𝑇
𝑖

𝑖=2,3,4,6,7,8

+ ∑ 𝑚𝑘𝑀
𝑘 + ∑ 𝑝𝑘𝑃

𝑘

𝑘=2,4,6𝑘=0,2,4

  

 

 

 

(10) 

 

EAVE contains all the spherically symmetric perturbations and therefore only shifts the energy 

of the entire 4f 
N
 configuration. Adjusting EAVE allows setting the ground-state energy to zero. 

The above-mentioned electrostatic repulsion between the electrons of the 4f 
N
 configuration is 

described parametrically by the second term. The radial electrostatic integrals F
 k
 are taken as 

adjustable parameters while the fk represent the angular parts of the matrix elements of the 

electrostatic interaction. The F
 0

 parameter is not included in this term since it is already 

incorporated in EAVE. A complete tabulation of the electrostatic energy matrices for all the f 
N
 

configurations has been provided by Nielson and Koster.
61

 

The term 4fASO corresponds to the spin-orbit coupling, where 4f is the spin-orbit 

coupling constant and ASO represents the angular part of the spin-orbit interaction.  

In order to obtain reasonable agreement between experimentally observed and 

calculated energy levels, higher-order terms also have to be included in the Hamiltonian. 

These are for example the two-electron Coulomb correlation contributions parametrized by , 

,  and the  three-electron correlation contributions parametrized by T
 i
 with ti being the 

three-particle operators. They account for spin-independent interactions between 

configurations of equal parity. Magnetically correlated corrections such as spin-spin and spin-

other-orbit interactions are accounted for by the term ∑ mkM k
k=0,2,4 , where mk are the 

operators and M k the so-called Marvin integrals. Finally, the electrostatic correlated spin-orbit 

interactions are described by the last term in equation (10) with pk as operators and P
 k
 as 

parameters.  

Praseodymium(III) with only two electrons in the f-shell serves as a comparatively 

simple example for demonstrating the calculation of the matrix elements for the major 

electrostatic and spin-orbit interactions:
55,56

 For two equivalent electrons, the matrix elements 

for Coulomb repulsion are of the form 
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⟨(𝑛𝑙)2; 𝑆𝐿 |
𝑒2

𝑟12
| (𝑛𝑙)2; 𝑆𝐿⟩ =∑𝑓𝑘(𝑙, 𝑙)𝐹

𝑘(𝑛𝑙, 𝑛𝑙)

𝑘

  
 

(11) 

 

where n is the principal quantum number, e.g. n = 4 for 4f-electrons, l corresponds to the 

orbital angular momentum of a single electron (l = 3 for f-electrons), e is the electronic charge 

and r12 is the distance between the interacting electrons. The angular factors fk can be 

evaluated by: 

 

𝑓𝑘(𝑙, 𝑙) = (−1)
𝐿 ⟨𝑙‖𝐶(𝑘)‖𝑙⟩² {

𝑙 𝑙 𝑘
𝑙 𝑙 𝐿

}   (12) 

 

〈l‖C
 (k)‖l〉 are reduced matrix elements of the spherical tensor operators Cq

 (k)
, which transform 

like the spherical harmonics Ykq: 

 

𝐶𝑞
(𝑘)
= √

4𝜋

2𝑘 + 1
𝑌𝑘𝑞   

 

(13) 

 

The part in curly brackets in equation (12) is a Wigner-6j-symbol. The reduced matrix 

elements can be calculated by 

 

 ⟨𝑙‖𝐶(𝑘)‖𝑙⟩ =  (−1)𝑙[(2𝑙 + 1)(2𝑙 + 1)]0.5 (
𝑙 𝑘 𝑙
0 0 0

) (14) 

 

where the last factor is a Wigner-3j-symbol. For k = 2 and l = 3 for f-electrons we obtain 

 

⟨𝑓‖𝐶(2)‖𝑓⟩ = (−7) ∙ (
3 2 3
0 0 0

) = (−7) ∙
2

√105
  

 

(14a) 

 

leading to the following expression for f2 in the 
3
H term in Pr(III): 

 

𝑓2(𝑓, 𝑓) = (−1)
5 ∙ ((−7) ∙

2

√105
)

2

 {
3 3 2
3 3 5

} = −0.1111  
 

(12a) 

 

The factors f4 and f6 can be calculated in the same way and for the 
3
H term of Pr(III), the 

Coulomb energy is then given by: 
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𝐸(3𝐻) = −0.1111 ∙ 𝐹2 − 0.0468 ∙ 𝐹4 − 0.0018 ∙ 𝐹6  (15) 

 

The corresponding energies of the other LS states of Pr(III) are given in Table A 1 in the 

appendix. 

Within a two-electron configuration, the matrix elements for spin-orbit coupling can 

be written as: 

 

⟨(𝑛𝑙)2𝑆𝐿𝐽𝑀|ℋ𝑆𝑂|(𝑛𝑙)
2𝑆′𝐿′𝐽𝑀⟩ 

= ⟨(𝑛𝑙)2𝑆𝐿𝐽𝑀 |∑𝜁𝑛𝑙(�̂�𝑖
(1) ∙ 𝑙𝑖

(1))

2

𝑖=1

| (𝑛𝑙)2𝑆′𝐿′𝐽𝑀⟩ 

= 𝜁𝑛𝑙(−1)
𝑆′+𝐿+𝐽 {

𝑆 𝑆′ 1
𝐿′ 𝐿 𝐽

}∑⟨𝑠1𝑠2𝑆‖𝑠𝑖
(1)‖𝑠1𝑠2𝑆

′⟩

2

𝑖=1

⟨𝑙1𝑙2𝐿‖𝑙𝑖
(1)‖𝑙1𝑙2𝐿

′⟩ 

= (−1)𝑆
′+𝐿+𝐽+1  ∙ 2𝜁𝑛𝑙       

∙  √𝑠(𝑠 + 1)(2𝑠 + 1)𝑙(𝑙 + 1)(2𝑙 + 1)(2𝑆 + 1)(2𝑆′ + 1)(2𝐿 + 1)(2𝐿′ + 1)

∙ {
𝑆 𝑆′ 1
𝐿′ 𝐿 𝐽

} {𝑆 1 𝑆′
𝑠 𝑠 𝑠

} {𝐿 1 𝐿′
𝑙 𝑙 𝑙

}   

 

 

 

 

 

 

 

 

 

 

 

 

 

(16) 

 

Thus, for l1 = l2 = 3, s1 = s2 = ½, L = L’ = 5, S = S’ =1 and J = 4 a diagonal matrix element of 

– (3 ∙ 4f) is obtained. In a pure Russell-Saunders coupling scheme, this would correspond to 

the 
3
H4 term of Pr(III). The other matrix elements can be calculated in an analogous way.  

In an intermediate coupling calculation, the obtained matrix elements of the 

electrostatic and spin-orbit interactions are arranged in energy matrices, one for each value of 

J. By choosing particular values for the parameters F
 k
 and 4f, the matrix elements are then 

expressed in numerical form. Finally, diagonalization of these matrices yields the sets of 

eigenvalues and eigenvectors. The energy matrix for J = 4 in Pr(III) in the intermediate 

coupling scheme is obtained as 

 
  

 

(

 
 
 
 
𝐸( 𝐹 

3 ) +
3

2
𝜁

√33

3
𝜁 0

√33

3
𝜁 𝐸( 𝐺) 

1 −
√30

3
𝜁

0 −
√30

3
𝜁 𝐸( 𝐻 

3 ) − 3𝜁)

 
 
 
 

 

 

 

 

 

 

(17) 
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where the terms E(
2S+1

L) correspond to the Coulomb energies given in Table A 1. The matrix 

elements for J = 0 to J = 6 as well as the resulting eigenvalues and eigenvectors are tabulated 

in the appendix, Table A 2 and Table A 3. They clearly illustrate the differences between 

Russell-Saunders coupling and intermediate coupling calculations. While in the Russell-

Saunders coupling scheme only diagonal matrix elements are obtained, the application of the 

intermediate coupling scheme yields mixed state compositions with different energies. The 

effect of the different coupling schemes on the energy level structure of Pr(III) is shown in 

Figure 7. 

Since the f-shell is an inner shell, meaning that it is shielded by the closed s
2
p

6
 shells, 

the influence of the environment on the f-electronic structures of Ln(III) compounds is rather 

small compared to e.g. the d-electronic structures of 3d ions. Thus, for different compounds of 

a given lanthanide, the free-ion parameters will not differ to a large extent. The free-ion levels 

can be probed by spectroscopic techniques, especially optical spectroscopy. In this context a 

rather complete and very important analysis of the free-ion levels within the series of Ln(III) 

ions was provided by Dieke and coworkers.
62

 It led to the generation of so-called Dieke 

diagrams (Figure 8) which allow the estimation of the energetic positions of the respective 

terms and facilitate the interpretation of experimental spectra.  

 

 

Figure 7: Comparison of the influence of Russell-Saunders coupling and intermediate coupling on the electronic 

level structure of Pr(III).  For reasons of clarity, only the six lowest lying levels are shown. The corresponding 

energies are given in Table A 3. Only the electrostatic and the spin-orbit perturbations were considered. The 

free-ion parameters were set to F
 2
 = 68995 cm

-1
, F

 4
 = 56119 cm

-1
, F

 6
 = 38864 cm

-1
 and 4f = 737 cm

-1
. The 

ground state energies were set to zero. 
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Figure 8: Dieke diagram illustrating the energy level structure of Ln(III) ions doped into host lattices. The 

thickness of a line indicates the magnitude of the respective crystal-field splitting.
63

 Reprinted with permission 

from G. H.  Dieke, H. M. Crosswhite, Applied Optics 1963, 2, 675. 
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2.2.2 Ln(III) Ions in a Crystal Field  

In real systems, lanthanide ions are surrounded by ligands and the electric fields 

produced by the electrons of these ligands lead to a further splitting of the free ion states. This 

splitting is called crystal field splitting and strongly depends on the local symmetry around the 

Ln(III) ions. The 
2S+1

LJ states are split into their mJ components, where mJ is the magnetic 

total angular momentum quantum number. For non-Kramers systems, where J is an integer, a 

maximum number of 2J + 1 crystal field levels for each term may be observed, whereas for 

Kramers ions (non-integer values for J) according to Kramers’ theorem
50

 a twofold 

degeneracy of the ±mJ states has to be retained, leading to a maximum number of J + ½ 

crystal field levels, respectively. For example, the ground state 
3
H4 of Pr(III) might be split by 

a crystal field into nine microstates with different energies, whereas the 
6
H15/2 ground state of 

Dy(III) can be maximally split into eight components.  

Compared to electronic repulsion and spin-orbit coupling, the crystal field splitting is a 

rather small perturbation and the observed splittings are in the range of only hundreds of 

wavenumbers. Nevertheless, the crystal field splitting is responsible for the SIM behavior of 

many lanthanide complexes because the energy differences between the ground microstates 

and the first or second excited ones correspond to the energy barriers described in section 2.1.  

Concerning the crystal field Hamiltonian, two different notations are commonly used: 

In the context of magnetism, the Hamiltonian is often expressed in terms of the so-called 

extended Stevens operators
64,65

, whereas in optical lanthanide spectroscopy, only the so-called 

Wybourne notation
55,56,60

 is appropriate. In terms of the extended Steven operators, the crystal 

field Hamiltonian is given by 

 

ℋ𝐶𝐹(𝐸𝑆𝑂) =  ∑𝐵𝑘
𝑞𝑂𝑘

𝑞

𝑘,𝑞

=∑𝐴𝑘
𝑞〈𝑟𝑘〉𝜃𝑘𝑂𝑘

𝑞

𝑘,𝑞

  (18) 

 

The Stevens operators Ok
 q

 are combinations of the cartesian components Jx, Jy and Jz of the 

total angular momentum operator Ĵ and belong to the class of tesseral tensor operators. 𝜃𝑘 are 

the Stevens factors and depend not only on k, but also on the quantum number J and are 

therefore usually expressed as J, J and J for k = 2, 4, 6, respectively. Explicit expressions 

for the Stevens operators and tabulated values for the Stevens factors can be found in 

literature.
64,65

  The coefficients Bk
 q

 (Ak
q
) are crystal field parameters that have to be empirically 

determined.  Different possible definitions and symbols for the crystal parameters often cause 

confusion in literature and the comparison of literature values thus should be done very 
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carefully. As in the case for the free ion parameters F
 k
, the values for k are limited to k  2l, 

i.e. k  6 for f-electrons and they have to be even. Depending on the symmetry of the studied 

compound, q can adopt integer values ranging from –k to k. An explanation will be given 

below. The dependence of the crystal field Hamiltonian (18) on the total angular momentum 

implicates the restriction of the crystal field parametrization to a given Russell-Saunders 

multiplet. This might be sufficient if one is only interested in the ground state crystal field 

splitting, but will inevitably lead to wrong descriptions of higher lying states. Furthermore, 

the different microstates do not all show the same sensitivity to the variation of a given crystal 

field parameter and the ground state crystal field levels thus might be insufficient to reliably 

determine all of them. Since the community of molecular magnetism has recently realized 

more and more the importance of spectroscopic techniques for the determination of crystal 

field parameters,
66,67

 the Wybourne notation of the Hamiltonian, which acts within the whole 

4f 
N
 configuration of a given Ln(III) compound should be preferred. 

A description of the crystal field splittings of not only the ground terms but also of the 

energetically higher lying spectroscopically accessible terms requires a Hamiltonian including 

the free-ion part and the crystal field part: 

 

ℋ = ℋ𝑓𝑟𝑒𝑒 𝑖𝑜𝑛 +ℋ𝐶𝐹   (19) 

 

ℋ𝑓𝑟𝑒𝑒 𝑖𝑜𝑛 is the free-ion Hamiltonian defined in equation (10) and ℋ𝐶𝐹 is the crystal field 

Hamiltonian in Wybourne notation
55,56,60

 which is given by 

 

ℋ𝐶𝐹(𝑊𝑦𝑏) = −𝑒𝑉𝐶𝐹(𝑊𝑦𝑏)  (20) 

 

The crystal field potential 𝑉𝐶𝐹(𝑊𝑦𝑏) is defined as a linear combination of spherical tensor 

operators of various ranks: 

 

𝑉𝐶𝐹(𝑊𝑦𝑏) =  ∑𝐵𝑘𝑞𝐶𝑞
(𝑘)

𝑘,𝑞

 
(21) 

 

The spherical tensor operators Cq
 (k)

 are related to the spherical harmonics 𝑌𝑘𝑞 by equation (13) 

and the coefficients Bkq are the crystal field parameters that can contain a real and an 

imaginary part, which show the same symmetry properties as the corresponding tesseral 

harmonics. For f 
N
 configurations, the matrix elements of the crystal field potential have the 

form 
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⟨𝑓𝑁𝛼𝑆𝐿𝐽𝑚𝐽|𝑉𝐶𝐹|𝑓
𝑁𝛼′𝑆𝐿′𝐽′𝑚𝐽′⟩ 

=∑𝐵𝑘,𝑞 ⟨𝑓
𝑁𝛼𝑆𝐿𝐽𝑚𝐽 |𝑈𝑞

(𝑘)| 𝑓𝑁𝛼′𝑆𝐿′𝐽′𝑚𝐽′⟩

𝑘,𝑞

⟨𝑓‖𝐶(𝑘)‖𝑓⟩ 

 

 

(22) 

 

where  is an additional quantum number for distinguishing terms with the same L and S 

values and Uq
 (k) is a unit tensor operator as defined by Racah

68,69
. All the other symbols have 

their usual meaning. An expression for the reduced matrix elements 〈f ‖C
 (k)‖ f 〉 has already 

been given in equation (14). Due to the selection rules for non-vanishing 3j-symbols, non-zero 

values for these matrix elements are only obtained if 2l + k is even, meaning that k itself has 

to be even. Odd values for k become important if states of different parities are mixed, 

explaining the observed intensity of the actually forbidden f-f-transitions in optical spectra. 

Furthermore, the 3j-symbol is only different from zero if 

 

|𝑙 − 𝑘| ≤ 𝑙 ≤ |𝑙 + 𝑘| (23a) 

 

leading to  

𝑘 ≤ 2𝑙 (23b) 

 

Thus, for 4f ions k is restricted to the values k = 0, 2, 4, 6.  

Taking into account the Wigner-Eckart theorem
70,71

, evaluation of the matrix elements 

of the unit tensor operator Uq
 (k) yields 

 

⟨𝑓𝑁𝛼𝑆𝐿𝐽𝑚𝐽|𝑈𝑞
(𝑘)|𝑓𝑁𝛼′𝑆𝐿′𝐽′𝑚𝐽′⟩ 

= (−1)𝐽−𝑚𝐽 (
𝐽 𝑘 𝐽′

−𝑚𝐽 𝑞 𝑚𝐽′
) ∙ ⟨𝑓𝑁𝛼𝑆𝐿𝐽‖𝑈(𝑘)‖𝑓𝑁𝛼′𝑆𝐿′𝐽′⟩ 

 

 

(24) 

 

where 

⟨𝑓𝑁𝛼𝑆𝐿𝐽‖𝑈(𝑘)‖𝑓𝑁𝛼′𝑆𝐿′𝐽′⟩ 

= (−1)𝑆+𝐿+𝐽
′+𝑘[(2𝐽 + 1)(2𝐽′ + 1)]

1
2 

⋅ {
𝐽 𝐽′ 𝑘

𝐿′ 𝐿 𝑆
} ⟨𝑓𝑁𝛼𝑆𝐿‖𝑈(𝑘)‖𝑓𝑁𝛼′𝑆𝐿′⟩ 

 

 

 

 

(25) 
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The doubly reduced matrix elements of U (k) in equation (25) can be calculated by a recursion 

formula in terms of the so-called coefficients of fractional parentage. They are constants for a 

given lanthanide ion and tabulated in the work of Nielson and Koster.
61

  

The selection rules for the Wigner-3j-symbol in equation (24) yields: 

 

|𝑞| ≤ 𝑘 (26a) 

 

and 

 

𝑞 =  𝑚𝐽 −𝑚𝐽′ (26b) 

 

This means that the values for q run from –k to k and non-zero values for q are responsible for 

off-diagonal matrix elements, leading to a mixing of states with mJ = q. Thus, in an 

expanded form the crystal field potential can be expressed as 

 

𝑉𝐶𝐹(𝑊𝑦𝑏) 

= ∑ [𝐵𝑘0𝐶0
(𝑘)
+∑(𝐵𝑘𝑞 (𝐶−𝑞

(𝑘)
+ (−1)𝑞𝐶𝑞

(𝑘)
) + 𝑖𝐵𝑘−𝑞 (𝐶−𝑞

(𝑘)
− (−1)𝑞𝐶𝑞

(𝑘)
))

𝑞=1

]

𝑘=2,4,6

 

 

 

 

(21b) 

 

where the real and imaginary parts of Bkq are denoted as Bkq and Bk-q, respectively.
60

 The term 

B00C0
 (0)

 is not included because it is spherically symmetric and is absorbed in the free ion 

parameter EAVE. Further restrictions to the values of q appearing in (21b) are due to the local 

symmetry around the Ln(III) ion because the crystal field potential has to be invariant with 

respect to all the symmetry operations of the relevant point group. The non-zero (k, q) 

combinations can be determined by checking which tesseral harmonics show the same 

symmetry properties as the point group.
60

 

For instance, while the crystal field potential for the D4d symmetric Ln(III) double-

deckers described in section 2.1.2 includes only three crystal field parameters, nine 

parameters are needed for compounds exhibiting C2v symmetry: 

 

𝑉𝐶𝐹(𝐷4𝑑) =  𝐵20𝐶0
(2)
+ 𝐵40𝐶0

(4)
+ 𝐵60𝐶0

(6)
  (21c) 

 



Electronic Structure of Ln(III) Compounds  23

   

𝑉𝐶𝐹(𝐶2𝑣) =  𝐵20𝐶0
(2)
+ 𝐵22(𝐶−2

(2)
+ 𝐶2

(2)
) + 𝐵40𝐶0

(4)
+ 𝐵42(𝐶−2

(4)
+ 𝐶2

(4)
)

+ 𝐵44(𝐶−4
(4)
+ 𝐶4

(4)
) + 𝐵60𝐶0

(6)
+ 𝐵62(𝐶−2

(6)
+ 𝐶2

(6)
)

+ 𝐵64(𝐶−4
(6)
+ 𝐶4

(6)
) + 𝐵66(𝐶−6

(6)
+ 𝐶6

(6)
)  

 

 

 

 

 

(21d) 

 

As a simple example of a crystal field calculation, Pr(III) in D4d symmetry might be chosen. 

The 
3
F3 multiplet is the only J = 3 term and can be treated as a pure Russell-Saunders coupled 

term. According to the tables of Nielson and Koster
61

, the doubly reduced matrix elements are 

given by 

 

⟨𝑓2 𝐹 
 3 ‖𝑈(2)‖𝑓2 𝐹 

3 ⟩ = ⟨𝑓2 𝐹 
 3 ‖𝑈(4)‖𝑓2 𝐹 

 3 ⟩ = ⟨𝑓2 𝐹 
 3 ‖𝑈(6)‖𝑓2 𝐹 

 3 ⟩ = −1 3⁄  (27) 

 

Subsequent application of equations (25), (24), (14) and (22) yields the matrix elements which 

allow the energy level calculation: 

 

⟨𝑓2 𝐹3,±3 
3 |𝑉𝐶𝐹|𝑓

2 𝐹3,±3 
3 ⟩ =

1

12
𝐵20 −

1

198
𝐵40 −

5

1716
𝐵60 

 

(28a) 

 

⟨𝑓2 𝐹3,±2 
3 |𝑉𝐶𝐹|𝑓

2 𝐹3,±2 
3 ⟩ =

7

594
𝐵40 +

5

286
𝐵60 

 

(28b) 

 

⟨𝑓2 𝐹3,±1 
3 |𝑉𝐶𝐹|𝑓

2 𝐹3,±1 
3 ⟩ = −

1

20
𝐵20 −

1

594
𝐵40 −

25

572
𝐵60 

 

(28c) 

 

⟨𝑓2 𝐹3,0 
3 |𝑉𝐶𝐹|𝑓

2 𝐹3,0 
3 ⟩ = −

1

15
𝐵20 −

1

99
𝐵40 +

50

858
𝐵60 

 

(28d) 

 

The influence of a D4d symmetric crystal field on the level structure of Pr(III) calculated in an 

intermediate coupling scheme is illustrated in Figure 9. 

In the context of molecular magnetism, crystal fields that lead to large separations 

between the ground microstates and the lowest excited microstates, i.e. large energy barriers, 

are desired. Furthermore, symmetries resulting in rather pure states (q = 0) with ground states 

exhibiting large mJ values are preferable in order to suppress under-barrier relaxation 

processes of the magnetization. One method for creating such strong axial crystal fields is e.g. 

the synthesis of linear complexes, as recently realized in [(iPr3Si)2N–Sm–N(SiiPr3)2].
72

 

However, the synthesis of such complexes is a demanding task and their low stability makes 

them unsuitable for practical applications. 



 24  Background 

 

 

Figure 9: Influence of a D4d symmetric crystal field on the level structure of Pr(III). a) Energies of the three 

lowest-lying free-ion terms calculated with F
 2
 = 68995 cm

-1
, F

 4
 = 56119 cm

-1
, F

 6
 = 38864 cm

-1
 and 

 = 737 cm
-1

. b) Crystal field split energy levels with B20 = 110 cm
-1

, B40 = –330 cm
-1

 and B60 = –650 cm
-1

. 

 

Fortunately, it has been shown that low-symmetry compounds might also possess axial 

crystal field eigenstates
73,74

 and in order to make progress towards the rational design of 

lanthanide based SIMs, the relations between electronic and molecular structure of such low-

symmetry compounds need to be much better understood. This requires the accurate 

determination of the crystal field parameters, which can be a difficult task due to their high 

number (up to 27) for low symmetries. Thus, the combination of several magnetometric and 

spectroscopic methods is required and the obtained best-fit parameter sets should 

satisfactorily simulate all of the experimental data.   
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2.3 Electronic Structure and Magnetism of Co(II) Compounds 

2.3.1 Octahedrally Coordinated Co(II) 

Due to its incompletely quenched orbital angular momentum, octahedrally coordinated 

Co(II) has become a rising star in molecular magnetism.
11,22,28

 However, for the same reason 

the description of the electronic structure is comparatively complex and several cases have to 

be distinguished. The electronic configuration of Co(II) is [Ar]3d
7
, leading to a 

4
F free-ion 

ground term. Excited terms are 
4
P, 

2
G, 

2
H, 

2
P, 

2
D, 

2
F and 

2
D in order of ascending energy. The 

energies of these terms can be calculated in a similar way as shown for the free Ln(III) ions 

(compare section 2.2.1, equations (11), (12), (14)), but due to the presence of seven d-

electrons, the calculation becomes more complicated compared to the example of Pr(III) with 

only two electrons. Since the values of k are restricted to k  2l, only two radial electrostatic 

integrals, namely F
 2

 and F
 4

, appear in the free-ion Hamiltonian of Co(II). However, for 3d-

ions it is more convenient to express the energies of the LS states in terms of the so-called 

Racah parameters A, B and C, which are linear combinations of the parameters F
 k
:
68,75,76

 

 

𝐴 =  𝐹0 −
1

9
𝐹4 

(29a) 

 

𝐵 =  
1

49
𝐹2 −

5

441
𝐹4 

 

(29b) 

 

𝐶 = 
5

63
𝐹4 

 

(29c) 

 

The advantage of the Racah parameters consists in the sole dependence of the energies of 

terms with maximum spin S on the parameter B. Since F
 0

 is absorbed in the free ion 

parameter EAVE, the Racah parameter A is usually set to zero. C can be roughly approximated 

as C   4.5 B.
77

 Explicit expressions for the diagonal electrostatic matrix elements of Co(II) 

are listed in Table A 4 in the appendix (section 8.1.2)
75,78

 while the left-hand side of the 

Tanabe-Sugano diagram
75

 shown in Figure 10 provides a graphical illustration.  

Since 3d-electrons are much more affected by the environment compared to 4f-

electrons, the crystal field splitting is the next interaction to be considered.  
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Figure 10: Tanabe-Sugano diagram for d
7
 ions in an octahedral crystal field (C = 4.633 B). This image was 

published in Lever, A. B. P. Inorganic Electronic Spectroscopy, Copyright Elsevier (1968).
75

  

 

In perfect octahedral symmetry, the crystal field produced by the ligands splits the d-orbitals 

into two sets with energies of – 4 Dq (t2g orbitals) and + 6 Dq (eg orbitals), leading to an 

overall splitting of O = 10 Dq with Dq being the cubic crystal field parameter as defined by 

Griffith.
78

 The relations to the cubic crystal field parameters in Wybourne notation are given 

by:
79,80

 

 

𝐵40 = 21 𝐷𝑞 (30a) 

 

𝐵44 = 21 ∙ √
5

14
 𝐷𝑞 

 

(30b) 

 

eg and t2g are the group theoretical representations of the respective orbitals in the group Oh. eg 

corresponds to the dx²-y² and dz² orbitals while t2g represents the dxy, dxz and dyz orbitals. As 

shown in Figure 11, population of these orbitals by seven electrons can lead to different 

configurations: Depending on the size of the splitting, either the high-spin (HS) or the low-

spin (LS) configuration can be favored and the corresponding ground states are 
4
T1g and 

2
Eg, 

respectively. Excited HS states arising from the 
4
F free ion term are 

4
T2g and 

4
A2g.  
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Figure 11: a) High-spin states arising from the 
4
F free ion state in octahedrally coordinated Co(II). 

4
T1g 

corresponds to the ground state, while 
4
T2g and 

4
A2g are excited states. b) Low-spin ground state for large crystal 

field splittings. 

 

Approximations for the relative energies of these excited states can be derived by noting that 

4
T2g corresponds to a one-electron excitation and 

4
A2g to a two-electron excitation. Thus, 

 

𝐸( 𝑇2𝑔) = 𝐸(𝑒𝑔) + 𝐸(𝑡2𝑔) = 6𝐷𝑞 − 4𝐷𝑞 = 2𝐷𝑞 
4  (31a) 

 

𝐸( 𝐴2𝑔) = 2𝐸(𝑒𝑔) = 2 ∙ 6𝐷𝑞 = 12𝐷𝑞 
4  (31b) 

 

Taking into account the degeneracy of the states and noting that the barycenter of the various 

terms obtained from a common free ion term lies at zero relative to that term, the energy of 

the 
4
T1g ground state can be derived as 

 

𝐸( 𝑇1𝑔) = −𝐸( 𝑇2𝑔) 
4

 
4 −

1

3
𝐸( 𝐴2𝑔) = −6 𝐷𝑞 

4  
 

(31c) 

 

resulting in relative energies of E(
4
T1g) = 0, E(

4
T2g) = 8 Dq and E(

4
A2g) = 18 Dq. However, 

equations (31a) to (31c) are only valid in very weak crystal fields. As the crystal field 

becomes stronger, configurational interaction can occur, meaning that terms of the same 

symmetry and same spin can mix. For example, 
4
T1g(

4
F) can mix with 

4
T1g(

4
P) and their 

energies become functions of both B and Dq.
75

 

The splitting patterns of the Co(II) free-ion terms in an octahedral crystal field and the 

relative energies depending on the ratio Dq/B are illustrated in the d
7
-Tanabe-Sugano diagram 

in Figure 10. Similar to the Dieke diagram for Ln(III) ions, it facilitates the interpretation of 

experimental spectra and allows the rough estimation of the parameters B and Dq.  

Since the 
4
T1g ground state is an orbitally degenerate term, the magnetic properties of 

octahedrally coordinated Co(II) ions cannot be treated within the spin-only formalism where 
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any effects attributed to orbital magnetism are included only by allowing the g-factor to adopt 

values different from 2. More sophisticated models are needed and one of them was 

formulated by Lines
81

 more than 40 years ago. In its original version, the Lines model is a 

statistical description of paramagnetic Co(II) clusters in which unquenched orbital momentum 

plays an essential role, but for which Heisenberg coupling (i.e. isotropic exchange coupling) 

between real spins is qualitatively appropriate. Importantly, the 
4
T1g ground state is 

characterized by a spin S = 3/2 and an effective orbital quantum number L = 1, leading to a 

12-fold degeneracy. The matrix elements of L̂ within the states of 
4
T1g are the same as those 

of –
3

2
L̂ between the P functions (structural isomorphism of 

4
T1g and 

4
P).

78,81
 Thus, spin-orbit 

coupling can be accounted for by diagonalizing the operator –
3

2
krλSOL̂Ŝ within the 

representation |mL,mS⟩. SO is the spin-orbit coupling coefficient related to   by λSO= 
±ζ

2S
, 

where a positive sign applies to electronic shells less than half-full and a negative sign for 

shells more than half-filled. kr represents the reduction of the free-ion spin-orbit coupling due 

to the admixing of the 
4
P state into the ground state and due to distortions by the partial 

covalent bonding with the ligands. The diagonalization leads to a sixfold degenerate level 

with E = –9/4 kr SO, a fourfold degenerate level with E = 3/2 kr SO and a ground Kramers 

doublet with E = 15/4 kr SO.
81

 Within this ground Kramers doublet, the real spin S can be 

replaced by (5/3 s) with s being a fictitious spin ½. For exchange-coupled clusters, this leads 

to the effective spin-1/2 Hamiltonian
81

 

 

ℋ = −
25

9
∑
1

2
𝐽𝑒𝑥�̂�𝑖�̂�𝑗

𝑖,𝑗

− 𝑔0µ𝐵𝐻 ∑�̂�𝑖,𝑧
𝑖

 
(32) 

 

where g0 = (10/3 + kr) is the effective g-value in the ground doublet. Diagonalizing yields the 

eigenvalues 

 

𝐸(𝑆,𝑀𝑆) = −(
25

18
) 𝐽𝑒𝑥 [𝑆(𝑆 + 1) − (

3𝑚

4
)] − 𝑔0µ𝐵𝐻 𝑀𝑆 

 

(33) 

 

The magnetization of a system is defined as the energy change with an applied field. Taking 

into account the Boltzmann distribution, the cluster magnetization can be written as 
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𝑀 = 𝑔0µ𝐵
∑ 𝑀𝑆𝑒

−
𝐸(𝑆,𝑀𝑆)
𝑘𝐵𝑇𝑆,𝑀𝑆

∑ 𝑒
−
𝐸(𝑆,𝑀𝑆)
𝑘𝐵𝑇𝑆,𝑀𝑆

 

 

(34) 

 

In the limit of weak magnetic fields, the expansion of the exponentials leads to an expression 

for the molar magnetic susceptibility which is defined as the change of the magnetization with 

the magnetic field: 

 

𝜒𝑚 =
𝑁𝐴
𝑘𝐵𝑇

𝑔0
2µ𝐵
2𝐹𝑚(𝑇) 

(35) 

 

NA is Avogadro’s constant and Fm(T) depends on the number m of Co(II) centers within the 

cluster. For monomers and dimers it is derived as: 

 

𝐹1 =
1

4
 

 

 

(36a) 

𝐹2 = 
2

3 + 𝑒
−25𝐽𝑒𝑥
9𝑘𝐵𝑇

 

 

 

(36b) 

Please note that the original equations given by Lines
81

 have been modified in order to obtain 

negative coupling constants J for antiferromagnetic couplings.
82

 

However, so far only the ground Kramers doublet was taken into account, but the 

energy separation between the quartet and ground-state doublet is only ca. 300 cm
-1

, which 

means that the upper levels cannot be neglected.
81

 In the Lines model they are now included 

in an effective field approximation, meaning that the exchange coupling within the ground 

Kramers doublet is treated exactly, while the excited levels are included as a molecular 

field.
81

 This is implemented by replacing g0 by a temperature-dependent g factor g(T) which 

also includes the effect of inter-cluster interactions. Equation (35) thus becomes 

 

𝜒𝑚 =
𝑁𝐴
𝑘𝐵𝑇

[𝑔(𝑇)]²µ𝐵
2𝐹𝑚(𝑇) 

(37) 

 

Explicit expressions for the evaluation of g(T) are given in the appendix, section 8.1.3. The 

Lines model has been successfully applied to a range of Co(II) compounds,
82-84

 but reasonable 

agreement between experimental results and simulations can be only achieved for nearly 

perfect octahedral symmetries.  
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However, most compounds do not display perfect Oh symmetry and axial distortion of 

the octahedron causes symmetry lowering to D4h. This is, of course, crucial for molecular 

magnets because in perfect cubic symmetry no magnetic anisotropy is observed. The terms 

split further and the description of these splittings requires further crystal field parameters in 

addition to Dq. For this purpose Ballhausen introduced the tetragonal radial parameters Ds 

and Dt.
76

 With V̂tet signifying the tetragonal crystal field operator, they are defined by:  

 

⟨𝑑𝑥²−𝑦²|�̂�𝑡𝑒𝑡|𝑑𝑥²−𝑦²⟩ = 2𝐷𝑠 − 𝐷𝑡 (38a) 

 

⟨𝑑𝑥𝑦|�̂�𝑡𝑒𝑡|𝑑𝑥𝑦⟩ = 2𝐷𝑠 − 𝐷𝑡 (38b) 

 

⟨𝑑𝑧²|�̂�𝑡𝑒𝑡|𝑑𝑧²⟩ = −2𝐷𝑠 − 6𝐷𝑡 (38c) 

 

⟨𝑑𝑥𝑧|�̂�𝑡𝑒𝑡|𝑑𝑥𝑧⟩ = ⟨𝑑𝑦𝑧|�̂�𝑡𝑒𝑡|𝑑𝑦𝑧⟩ = −𝐷𝑠 + 4𝐷𝑡 (38d) 

 

and the following relationships between Ballhausen’s and Wybourne’s crystal field 

parameters are obtained:
79,80

 

 

𝐵20 = −7𝐷𝑠 (39a) 

 

𝐵40 = 21𝐷𝑞 − 21𝐷𝑡 (39b) 

 

𝐵44 = 21√
5

14
 𝐷𝑞 

 

(39c) 

 

Thus, Ds contains the effects of B20 and Dt those of the difference between B40 and its value in 

an undistorted cubic symmetry. It is important to note that Dq in equation (39) has a different 

meaning than before: While Dq defined by Griffith denotes the crystal field parameter of the 

perfect cubic site, the Dq parameter in Ballhausen’s notation also contains tetragonal 

components. It can be shown that
79

 

 

𝐷𝑞(𝐵𝑎𝑙𝑙ℎ𝑎𝑢𝑠𝑒𝑛) = 𝐷𝑞(𝐺𝑟𝑖𝑓𝑓𝑖𝑡ℎ) +
7

12
𝐷𝑡 

 

(40) 
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Under the influence of an axial distortion, the 
4
T1g ground term of Co(II) splits into the two 

components 
4
A2g and 

4
Eg. Relative to the 

4
T1g term as zero, the energies of these terms can be 

calculated as:
75

 

 

𝐸( 𝐴2𝑔) = −2𝐷𝑠 + 8𝐷𝑡 
4  (41a) 

 

𝐸( 𝐸𝑔) = 𝐷𝑠 + 3𝐷𝑡 
4   

(41b) 

 

Thus, the energy difference ax between these terms is: 

 

Δ𝑎𝑥 = 𝐸( 𝐸𝑔 
4 ) − 𝐸( 𝐴2𝑔 

4 ) = 3𝐷𝑠 − 5𝐷𝑡 (42) 

 

Depending on the sign of ax, two cases can be distinguished: If ax > 0, 
4
A2g becomes the 

ground state (compare Figure 12). Since this is an orbitally nondegenerate state, the magnetic 

properties of the system can be treated within the spin-only formalism and a typical spin 

Hamiltonian as described in equation (4) can be applied. If ax < 0 however, 
4
Eg becomes the 

ground state and neither the Lines model nor the spin-only formalism is appropriate to 

describe the magnetic properties.  

An empirical model dealing with this latter situation and based on a perturbational 

approach has recently been developed by Lloret et al.
85

 Following Lines’ idea, the ground 

doublet is described through an effective spin Seff = ½ with a Landé factor g0. In order to 

simulate the magnetic susceptibility over the whole temperature range, g0 is then replaced by 

a temperature dependent function G(T), which takes into account the population of excited 

states in an empirical way: 

 

𝐺(𝑇) =
∑ [∏ (∑ 𝐴𝑖,𝑗,𝑘𝑥𝑗

𝑖2
𝑖=0 )𝑇𝑘3

𝑗=1 ]4
𝑘=0

∑ [∏ (∑ 𝐵𝑖,𝑗,𝑘
2
𝑖=0 𝑥𝑗

𝑖)𝑇𝑘3
𝑗=1 ]4

𝑘=0

 
 

(43) 

 

with x1 = r, x2 = ax and x3 = . The parameter r has a similar meaning as the parameter kr 

appearing in the Lines model accounting for the orbital reduction. The empirical coefficients 

Ai,j,k and Bi,j,k depend on the sign of ax and are listed in the appendix, section 8.1.4. 
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Figure 12: a) Splitting of the 
4
T1g ground term under an axial distortion. b) For ax > 0, 

4
A2g becomes the ground 

state. c) For ax < 0, 
4
Eg becomes the ground state. 

 

Comparable to equations (36a) and (37), the product of molar magnetic susceptibility and 

temperature for mononuclear axially distorted octahedral Co(II) complexes can be modeled 

by  

 

𝜒𝑚𝑇 =
𝑁𝐴µ𝐵

2

4𝑘𝐵
[𝐺(𝑇)]² 

 

(44) 

 

In polynuclear compounds the situation is complicated by the presence of exchange 

interaction. The corresponding Hamiltonian has to contain at least the terms indicated in 

equation (45)
85

 

 

ℋ = −∑𝐽𝑒𝑥,𝑖�̂�𝑖�̂�𝑖+1

𝑛

𝑖=1

−∑𝛼𝑟𝑖𝜆𝑖�̂�𝑖�̂�𝑖

𝑛

𝑖=1

+∑Δ𝑎𝑥,𝑖 [�̂�𝑧𝑖
2 −

2

3
]

𝑛

𝑖=1

+ 𝜇𝐵𝐻∑(−𝛼𝑟𝑖�̂�𝑖 + 𝑔𝑒�̂�𝑖)

𝑛

𝑖=1

 

 

 

 

 

(45) 

 

in which the first term represents the isotropic exchange between the different Co(II) sites, the 

second term is the spin-orbit coupling, the third term treats the deviation from the ideal 

octahedron and the last term describes the Zeeman interaction in the presence of a magnetic 

field. A relevant point in the approximations by Lloret is the application of the magnetic 

coupling described by Jex solely to the ground Kramers doublet of each interacting ion. The 

magnetic interaction in the excited doublets is ruled out and the magnetic properties are those 

of magnetically isolated ions, described by the G(T) function. Furthermore, the contributions 
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from the excited levels on the magnetic properties of the ground doublet are accounted for by 

using a perturbational approach. 

 It can be shown that the Landé factor of the ground doublet is strongly anisotropic as 

expected in non-cubic symmetries and it depends both on the magnetic properties of the 

single Co(II) ions and on the strength of the exchange coupling. Thus, for polynuclear 

complexes, the G(T) function has to be replaced by a function G(T, Jex):
85

 

 

𝐺(𝑇, 𝐽𝑒𝑥) = 𝐺(𝑇) +
𝑛

2
Δ𝑔𝑃0 

(46) 

 

where n is the average number of Co(II)-Co(II) interactions of each Co(II) ion, e.g. n = 1 for 

dimers. g is the difference between the g-values parallel and perpendicular to the molecular 

z axis 

 

Δ𝑔 = −
100𝐽𝑒𝑥
81𝛼𝑟𝜆

(𝛼𝑟 + 2) 
(47) 

 

and P0 is a population factor given by 

 

𝑃0 =
𝑒
(−
4𝛼𝜆
𝑘𝐵𝑇

)

3 + 2𝑒
(−

5𝛼𝜆
2𝑘𝐵𝑇

)
+ 𝑒

(−
4𝛼𝜆
𝑘𝐵𝑇

)
 

 

(48) 

 

The molar susceptibility is then calculated by using equation (37) where g(T) is replaced by 

G(T, Jex). The advantage of this model lies in the fact that it is not restricted to a given sign of 

ax and reasonable agreement between experiment and simulation can be achieved for both 

cases. 
85

 

 

2.3.2 Tetrahedrally Coordinated Co(II) 

The basic concepts for the description of the electronic structure of octahedral Co(II) 

compounds introduced in section 2.3.1 can now be adapted to tetrahedral systems. In 

tetrahedral symmetry, the splitting of the d-orbitals is reversed compared to octahedral 

symmetry, i.e. the e orbitals are lower in energy than the t2 orbitals. Since they do not point 

exactly towards the ligating atoms, the energy separation 10 Dq is generally smaller than for 

octahedral symmetry with |Dq (tetrahedron)|  |– 4/9 Dq (octahedron)|.
76

 According to the 
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different possibilities of orbital populations, the 
4
F free ion ground term splits up into the 

terms 
4
A2(F), 

4
T2(F) and 

4
T1(F) in order of ascending energy.  

Because of the orbitally non-degenerate 
4
A2 ground term, tetrahedrally coordinated 

Co(II) is a typical ZFS system, where orbital contributions to the magnetic properties due to 

admixing of excited states manifest themselves in large g-values.
44

 Neglecting configurational 

interactions, the energies of the terms arising from the 
4
F free ion term can be estimated by 

equations (31a) – (31c) taking negative signs.
75

 Thus, the resulting relative energies are given 

by E(
4
A2) = 0, E(

4
T2) = 10 Dq and E(

4
T1) = 18 Dq. A graphical illustration is provided by the 

Tanabe-Sugano diagram in Figure 13, noting that the diagram for d
7
 configuration in 

tetrahedral environment is the same as for d
3
 in octahedral symmetry due to the reversed 

splitting patterns in tetrahedral and octahedral crystal fields.  

Symmetry reduction to D2d leads to further splittings of the degenerate terms, e.g. the 

excited terms 
4
T2(F) and 

4
T1(F) split into 

4
B2 + 

4
E and 

4
A2 + 

4
E, respectively, whereas the 

ground state transforms as 
4
B1. The corresponding relative energies can be expressed in terms 

of the crystal field parameters defined by Ballhausen and are listed in Table A 7 in the 

appendix.
75

 

 

 

Figure 13: Tanabe-Sugano diagram for d
3
 ions in an octahedral field (C = 4.5 B). This image was published in 

Lever, A. B. P. Inorganic Electronic Spectroscopy, Copyright Elsevier (1968).
75
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In addition to these symmetry-related energy level splittings, second-order spin-orbit 

coupling will split the states, leading to a zero-field-splitting of the 
4
B1 ground state given by 

2D, with D being the axial ZFS parameter introduced in section 2.1.1. The value of D strongly 

depends on the energy separation between the ground state and the lowest excited states and 

can be estimated by equation (49) which is based on perturbation theory:
44

 

 

𝐷 = 4𝜆² [
1

𝐸( 𝐸) 4
−

1

𝐸( 𝐵2) 
4

] 
 

(49) 

 

Equation (49) clearly shows that large negative ZFS parameters are only obtained if 
4
B2 lies 

lower in energy than 
4
E and if there is a large energy separation between them. In other 

words, designing pseudo-tetrahedral Co(II) based single-ion magnets with large energy 

barriers requires axial crystal fields with high values of the crystal field parameter Dt. Indeed, 

fourfold coordinated Co(II) complexes with rather high energy barriers have been 

reported.
28,86-92
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2.4 Experimental Methods for Studying SMMs 

2.4.1 Magnetometry 

SQUID magnetometry (SQUID: Superconducting Quantum Interference Device) is by 

far the most common method for studying single-molecule magnets.
3,65

 A direct current (dc) 

SQUID experiment allows the investigation of the static magnetic properties: The sample is 

magnetized by an external static magnetic field while being moved up and down in a system 

of superconducting coils. The thereby induced current is proportional to the magnetization of 

the sample and with the help of the SQUID element this current is converted to a voltage. 

Calibration is usually performed using a palladium reference sample and allows the direct 

output of the sample magnetization.   

The magnetization is defined as the change of energy with respect to the magnetic 

field
2
 

 

𝑀 = −
𝜕𝐸

𝜕𝐻
 

 

(50) 

 

whereas the magnetic susceptibility is the change of the magnetization with respect to the 

field, i.e. the second derivative of the energy. At weak fields, a linear dependence is observed 

and the susceptibility is in good approximation given by the ratio of the magnetization and the 

magnetic field.
2
 

 

𝜒 =
𝜕𝑀

𝜕𝐻
≈
𝑀

𝐻
 

 

(51) 

 

The susceptibility contains a positive paramagnetic part due to the presence of unpaired 

electrons and a negative diamagnetic part, which is due to the movement of paired electrons:
2
 

 

𝜒𝑡𝑜𝑡𝑎𝑙 = 𝜒𝑑𝑖𝑎 + 𝜒𝑝𝑎𝑟𝑎 (52) 

 

Since they cannot be measured independently, the molar diamagnetic susceptibility m,dia is 

commonly estimated with the help of the empirically determined Pascal‘s constants
93

 or 

simply by 𝜒𝑚,𝑑𝑖𝑎 = −
𝑀𝑀

2
∙ 10−6 cm

3 
mol

-1
, where MM is the molar weight of the sample. 

According to Curie’s law, the molar paramagnetic susceptibility is given by
2,3,65
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𝜒𝑚 =
𝑔2𝜇𝐵

2

3𝑘𝐵𝑇
𝑆(𝑆 + 1) 

 

(53a) 

 

resulting in a horizontal line in the T vs. T plot, as demonstrated in Figure 14 for an S = ½ 

system. In the case of lanthanides, S has to be replaced by J and g denotes the theoretical g-

value gJ:
65

 

 

𝑔𝐽 = 1 +
𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
 

 

(53b) 

 

 However, equation (53) is only valid for isotropic, thermally isolated electronic ground 

states. If zero-field splitting or crystal field splitting contribute to the magnetic properties, the 

depopulation of excited Ms, mS or mJ states will cause a decrease in T at low temperatures. 

In the presence of exchange coupling, minima or maxima will be observed and the positions 

of these extrema depend on the coupling strengths and the ground state spins (Figure 14).  

In addition to the temperature dependent measurements yielding information about the 

microstate level structure, field dependent measurements at low temperatures are of great 

interest, since they provide information about the composition of the ground state. At low 

temperatures and high fields only the lowest lying Zeeman level will become populated and 

the magnetization will saturate. 

 

 

Figure 14: Examples of the temperature-dependence of the molar paramagnetic susceptibility. Black: Simulation 

for S = 1/2 and g = 2. Red: Simulation for an exchange-coupled system of two S = 1/2 ions with g = 2 and 

Jex = 10 cm
-1

. Blue: Simulation for S = 3/2 with g = 2 and a negative ZFS parameter D = –10 cm
-1

. 
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The saturation behavior strongly depends on the ground state spin as well as on the zero-field 

splitting parameters or the crystal field parameters. Furthermore, the observation of hysteresis 

in a field dependent magnetization loop is of course proof of magnetic bistability.  

The dynamic magnetic properties of SMMs are usually probed by alternating 

current (ac) SQUID magnetometric measurements, where the sample is exposed to an 

oscillating magnetic field.
3
 In the presence of an energy barrier, the sample magnetization is 

not able to follow the fast field oscillations and an out-of-phase component of the magnetic 

susceptibility will be observed: 

 

𝜒𝑎𝑐 = 𝜒
′ − 𝑖𝜒′′ (54) 

 

where 𝜒′ and 𝜒′′ denote the in-phase and the out-of-phase components, respectively. A 

temperature dependent maximum in 𝜒′′ is observed when the relaxation time corresponds to 

the angular frequency  of the oscillating magnetic field, i.e. 

 

𝜔𝜏 = 1 (55) 

 

Thus, relaxation times can be determined by temperature and frequency dependent ac 

magnetometric measurements. A very convenient way is the generation of so-called Argand 

diagrams
3
, where 𝜒′′ is plotted against 𝜒′ resulting in semi-circularly shaped plots. The 

experimental data can then be fitted to modified Debye functions of the form
3,94

 

 

𝜒′ =
(𝜒0 − 𝜒∞)[1 + (𝜔𝜏 )

1−𝛼  𝑠𝑖𝑛
𝛼 𝜋
2 )]

1 + 2(𝜔𝜏 )1−𝛼 𝑠𝑖𝑛
𝛼 𝜋
2 + (𝜔𝜏 )2

(1−𝛼 )
+  𝜒∞ 

 

(56a) 

 

𝜒′′ =
(𝜒0 − 𝜒∞)[(𝜔𝜏 )

1−𝛼  𝑐𝑜𝑠
𝛼 𝜋
2 )]

1 + 2(𝜔𝜏 )1−𝛼 𝑠𝑖𝑛
𝛼 𝜋
2 + (𝜔𝜏 )2

(1−𝛼 )
 

 

 

(56b) 

 

where 𝜒0 and 𝜒∞ are the isothermal and adiabatic susceptibilities, i.e. the x-intercepts in the 

Argand plots and  describes the distribution of relaxation times, i.e. the widths of the semi-

circles. Based on the relaxation times, the contributing relaxation mechanisms and the 

effective energy barrier can be determined by analyzing the resulting Arrhenius plot. 

However, although SQUID magnetometry is definitely a very useful method, it is 

usually not sufficient for the complete electronic structure analysis of low-symmetry 
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compounds since the high number of parameters required for their description inevitably leads 

to over-parametrization. Thus, magnetometry needs to be complemented by spectroscopic 

techniques, e.g. EPR, FIR or optical spectroscopy. 

 

2.4.2 EPR Spectroscopy 

In the presence of an external magnetic field, the remaining degeneracies of the 

microstates will be lifted due to the Zeeman interaction. The corresponding Hamiltonian has 

been already introduced in section 2.1.1. In an EPR experiment (EPR: Electron Paramagnetic 

Resonance)
38,95

 transitions between these Zeeman sublevels are induced by the irradiation of 

microwaves. Commonly, spectra are recorded at a constant microwave frequency by 

sweeping the magnetic field (continuous wave EPR) and the signals are obtained as the first 

derivative of the absorption bands. Other experimental techniques include for example 

frequency domain magnetic resonance (FDMR) where the magnetic field is kept constant and 

the frequency is varied, or pulsed methods. A signal is obtained when the resonance condition 

 

Δ𝐸 = ℎ𝜈 = 𝑔𝜇𝐵Δ𝑚𝑆𝐵 (57) 

 

is fulfilled, where mS has to be replaced by mJ for lanthanides or by MS for exchange-

coupled spin-only systems. Since EPR transitions are magnetic dipole transitions, the 

selection rule is given by mS = 1. This selection rule is relaxed for low-symmetry 

compounds where state-mixing occurs and as a result, mS (mJ, MS) is no good quantum 

number anymore. Due to magnetic anisotropy the g-value shows an orientation dependence, 

which gives rise to up to three lines in the spectra. However, not only g-value anisotropy leads 

to the observation of more than one line, also hyperfine coupling to nuclear spins, weak 

exchange coupling or zero-field splitting can cause additional signals. For instance, if the 

zero-field splitting lies in the range accessible by the applied microwave frequency, 

transitions between the Zeeman sublevels of different Kramers doublets might be observed.  

In order to distinguish between the signals of different nature, it is useful to compare spectra 

recorded at different microwave frequencies. g-value anisotropy will be resolved much better 

at higher frequencies while signals due to zero-field splitting will result in a non-zero y-

intercept in a plot of microwave frequency vs. resonance field. Thus, multi-frequency EPR is 

a powerful tool not only for the accurate determination of the g-values of the ground Kramers 

doublet, but it might also give information about low lying excited states.  
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2.4.3 FIR Spectroscopy 

The far-infrared (FIR) region of the electromagnetic spectrum ranges from about 10 to 

700 cm
-1

, making FIR spectroscopy a powerful tool for the investigation of zero-field 

splittings (3d single-ion magnets) or crystal field splittings (lanthanide-based single-ion 

magnets) within the electronic ground term.
44,96,97

 The selection rule is the same as for EPR 

spectroscopy and similarly it is relaxed by the mixing of states in low-symmetry compounds.  

An important aspect concerning FIR spectroscopy is the occurrence of low-energy vibrations 

in the same range as the studied zero-field splittings or crystal field splittings, which 

complicates the recorded spectra. In order to distinguish between these vibrational transitions 

and the transitions of interest, it is thus useful to record the spectra in the presence of 

magnetic fields with different field strengths. While transitions due to vibrations will not be 

strongly affected by the magnetic field, the transitions due to zero-field splitting or crystal 

field splitting will shift depending on the magnetic field strength. Normalizing the spectra by 

dividing them by the spectrum at highest magnetic field then allows their assignment. 

Although vibronic coupling can still lead to a splitting pattern of the ZFS or crystal field 

based signals, normalized FIR spectra allow a much more accurate determination of the zero-

field splitting or the energies of the crystal field states compared to e.g. SQUID 

magnetometry. Whenever it is possible, FIR spectroscopy should thus be applied to 

complement magnetometry or EPR spectroscopy.  

 

2.4.4 Optical Spectroscopy 

The term optical spectroscopy usually includes spectroscopic methods operating with 

excitation wavelengths in the near-infrared, visible and ultra-violet regions of the 

electromagnetic spectrum, i.e. ranging from about 5000 to 50000 cm
-1

. Absorption of optical 

photons induces transitions to states arising from excited free-ion terms, called d-d- or f-f-

transitions. If the spectra are recorded at low temperatures with sufficient resolution, they 

provide important information about the electronic level structure. Transitions may occur 

through magnetic dipole, electric dipole or electric quadrupole mechanisms.
75,98

 The majority 

of optical transitions are electric dipole transitions, but magnetic dipole transitions are also 

frequently observed in the optical spectra of lanthanide compounds. For magnetic dipole 

transitions, the selection rules are given by J = 0, 1; L = 0; S = 0 and mS (mJ) = 1 

(compare EPR and FIR spectroscopy).
98

 Generally, the selection rules follow from the 

transition dipole moment, which has to be non-zero: 
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⟨𝜓𝑎|�̂�|𝜓𝑏⟩ ≠ 0 (58) 

 

a and  b are the wave functions of the initial and final states and �̂� denotes the dipole 

moment operator. Non-zero values of the transition dipole moment are only possible if the 

direct product of the group theoretical representations of the initial and final wave functions 

with the particular dipole moment operator contains the totally symmetric representation, e.g. 

A1g.
75

 Concerning electric dipole transitions, the components �̂�𝑥, �̂�𝑦 and �̂�𝑧 of the electric 

dipole moment operator transform as translations, therefore having an ungerade parity. 

Allowed transitions thus require that the direct product of the representations of the wave 

functions involved is odd, which is only possible if l = 1. It immediately follows that d-d- 

and f-f-transitions are parity forbidden. A similar argumentation taking into account the 

orthogonality of spin states leads to the spin selection rule S = 0.
75

 

However, in spite of the forbidden character of d-d and f-f-transitions, non-zero 

intensities are observed in experimental spectra. This phenomenon can be explained by any 

mechanism which permanently or temporarily removes inversion symmetry.
75

 One of the 

most important mechanisms is the temporary removal of the symmetry center by vibronic 

coupling, meaning that electronic transitions occur with simultaneous excitation of ungerade 

vibrational modes.
60,75,98

 Vibronic coupling manifests itself in the observation of vibrational 

fine structures in the observed signals, thus complicating the interpretation of experimental 

spectra.
60

 Besides vibronic coupling, permanent symmetry reductions by the coordination of 

the ligands can lead to relaxation of the parity selection rule. If the molecule does not show a 

center of symmetry, it is not appropriate to talk about orbitals being even or odd to 

inversion.
75

 Taking D2d symmetry as an example, a transition from B2 to E will be allowed in 

x- and y-direction.  

A very important theory explaining the observed intensities in optical spectra of 

lanthanide compounds was independently derived by both Judd and Ofelt.
98-100

 The basic idea 

is that the intensity of so-called induced electric dipole transitions arises from the admixing of 

states of opposite parity (e.g. 4f 
N-1

n’d
1
) into the 4f 

N
 ground state. This is only possible in 

non-centrosymmetric compounds where odd crystal field parameters Bkq appear 

(k = 1, 3, 5, 7) and can be explained by the integer perimeter rule concerning the 3j-symbol 

given in equation (14), i.e. l +  k +  l’ with l’ = l  1 has to be an integer. According to the 

Judd-Ofelt theory, the following relaxed selection rules for induced electric dipole transitions 

are obtained: S = 0, L  6, J  6 and mJ = – ( + q), where  represents the light 
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polarization, i.e.  = +1 for right circularly polarized light and  = –1 for left circularly 

polarized light.
98

  

Having mentioned the mechanisms accounting for the intensity of d-d- or f-f-

transitions, which are the same for the different optical techniques, it is now important to 

distinguish between luminescence, electronic absorption and magnetic circular dichroism 

spectroscopy.  

Luminescence spectroscopy can be seen as complementary to FIR spectroscopy, since 

it allows the determination of the level structure within the electronic ground term. In a 

luminescence experiment the irradiation of light leads to the population of an excited state 

which can be either a state within the 3d 
N
 or 4f 

N
 configuration or an excited state of the 

ligand. If electrons of the ligands are excited, one can make use of the so-called antenna 

effect, meaning that the excitation is followed by an energy transfer from the ligand to the 

metal ion.
101,102

 After successful excitation, the system will return to the ground state by 

emission of radiation which can be detected perpendicular to the excitation light beam. 

According to Kasha’s rule
103

, considerable emission takes only place from the lowest 

microstate of an excited term and experimentally observed splitting patterns of the signals 

thus correspond to the level structure (e.g. crystal field levels) of the ground term. Of course 

vibronic coupling might lead to additional signals, shoulders or line-broadening and 

complicates the interpretation of the experimental spectra. Another issue is the existence of 

efficient quenching mechanism, e.g. energy can be taken up very efficiently by OH-vibrations 

leading to non-radiative deactivation.
101,102

  

The counterpart to luminescence is electronic absorption spectroscopy. If the spectra 

are recorded at very low temperatures, only the lowest lying state will be populated and from 

there the absorption of radiation will lead to population of the microstates within the excited 

electronic terms. Thus, the observed splitting patterns of the detected absorption bands 

correspond to the crystal field splittings of the excited terms. The excited term crystal field 

splittings can then serve to determine the corresponding crystal field parameters, which in 

turn provide information about the electronic ground state.
60

  

In addition to luminescence and electronic absorption spectroscopy, magnetic circular 

dichroism (MCD) spectroscopy
104,105

 is a very powerful optical method for the investigation 

of single-molecule magnets. In an MCD-spectrum, the absorption difference of left and right 

circularly polarized light (abbreviated as lcp and rcp) is recorded, but in contrast to 

conventional circular dichroism (CD) spectroscopy, MCD-measurements are performed in the 

presence of a magnetic field applied parallel to the excitation light beam. Due to the Faraday 
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effect
106

, which states that all substances in a longitudinal magnetic field show optical activity 

caused by circular birefringence, MCD-spectroscopy is not restricted to chiral compounds. 

The different absorption of lcp and rcp by the magnetized sample leads to elliptical 

polarization and the MCD signal is defined by 

 

𝑀𝐶𝐷 ≡ Δ𝐴 = 𝐴(𝑙𝑐𝑝) − 𝐴(𝑟𝑐𝑝) − 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝐶𝐷 (59) 

 

with Δ𝐴 being the differential absorption, A(lcp) and A(rcp) being the absorption of lcp and 

rcp and natural CD designating the zero-field dichroism of chiral samples. The differential 

absorption is related to the ellipticity 𝜃 by a simple conversion factor: 

 

𝜃 = Δ𝐴 ∙ 32980 (60) 

 

One of the great advantages of MCD-spectroscopy immediately follows from 

equation (59): Since Δ𝐴 is a signed quantity, MCD-spectra often provide a much better 

resolution compared to conventional electronic absorption spectroscopy. Another advantage 

lies in the enhanced intensity of intra-configurational d-d- and f-f-transitions compared to e.g. 

intra-ligand or charge-transfer transitions, allowing their identification. Similarly to electronic 

absorption, MCD-spectroscopy at low temperatures allows the determination of excited term 

crystal field splittings, but dependent on the nature of the states involved, different signal 

shapes can be observed.
107

 The general MCD-expression
104,105

 is provided in equation (61) 

 

∆𝐴

𝐸
= 𝛾𝜇𝐵𝐵 [𝐴1 (−

𝜕𝑓(𝐸)

𝜕𝐸
) + (𝐵0 +

𝐶0
𝑘𝐵𝑇

) 𝑓(𝐸)] 
 

(61) 

 

where  is a collection of spectroscopic constants and f(E) is a line-shape function, e.g. a 

Gaussian. A1, B0 and C0 represent the so-called MCD terms: An A-term is observed if 

degenerate states are involved in the transition. If a magnetic field is applied, the degeneracy 

is lifted and lcp and rcp will be absorbed at different energies, as illustrated in Figure 15 for 

the simple example of a transition from a non-degenerate 
1
S state to an orbitally threefold 

degenerate 
1
P term. A-terms manifest themselves as temperature-independent derivative 

shaped signals. B-terms arise from the field-induced mixing of the zero-field eigenfunctions. 

Since this is a second-order effect, B-terms usually show rather weak absorption-like signals 

(Figure 15). C-terms are the greatest source of information concerning MCD spectroscopy on 

single-molecule magnets.  
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Figure 15: Schematic illustration of different MCD terms. a) Faraday A-term due to a degenerate excited state. b) 

Faraday B-term due to field-induced mixing of states. c) Faraday C-term due to a degenerate ground state. Blue 

lines represent the absorption of lcp and red lines represent the absorption of rcp.
104,105

 

 

They occur due to the Zeeman splitting of degenerate ground states and according to the 

Boltzmann equilibrium among the Zeeman sublevels, they show pronounced temperature 

dependence (Figure 15). The shape of C-terms is asymmetric absorption-like.  

At low temperatures, C-terms dominate the MCD-spectra of paramagnetic metal 

complexes and their temperature and field dependence provide information about the 

electronic ground state. Thus, MCD-spectroscopy links the benefits of electronic absorption 

and EPR-spectroscopy since it allows the simultaneous investigation of electronic ground and 

excited states. Ground state properties are usually investigated by variable temperature and 

variable field experiments on C-terms (VTVH-MCD spectroscopy), where the wavelength of 

the excitation light is kept constant at the signal maximum while the field and the temperature 

are varied. The recorded VTVH isotherms are comparable to SQUID magnetometric 

magnetization curves: At low fields, the intensity increases linearly with the field. At 

intermediate fields, the intensity starts to level off and at high fields, saturation is observed. 

The saturation behavior depends on the ground state properties, e.g. the g-values and the ZFS 

parameters. A general expression for the analysis of VTVH curves for typical ZFS systems 

has been derived by Solomon and Neese
108

: 

 

Δ𝜖𝑎𝑣
𝐸

=
𝛾

4𝜋𝑆
∫∫ ∑𝑁𝑖(𝑙𝑥〈𝑆𝑥〉𝑖𝑀𝑦𝑧 + 𝑙𝑦〈𝑆𝑦〉𝑖𝑀𝑥𝑧 + 𝑙𝑧〈𝑆𝑧〉𝑖𝑀𝑥𝑦) 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

𝑖

2𝜋

0

𝜋

0

 

 

(62) 
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where the summation is performed over all levels i of the ground state. Δ𝜖𝑎𝑣 is the 

orientation-averaged difference of the extinction coefficients for lcp and rcp, Ni is the 

Boltzmann population of the i
th

 sublevel, 〈𝑆𝑝〉 with p = x, y, z are the spin expectation values, 

lp are direction cosines and Mpp’ are effective polarization products. 

It has been shown that the MCD saturation behavior is a weak function of the ratio 

E/D but a strong function of the sign of D and moderately sensitive to the value of D. 

Furthermore, it strongly depends on the polarization of the transition under study. In case of 

systems with large axial zero-field splittings, the ground state can be treated within the 

effective spin-1/2 approximation and equation (62) simplifies to
108

  

 

Δ𝜀𝑎𝑣
𝐸

= −
𝛾

4𝜋
∫ ∫𝑡𝑎𝑛ℎ (

𝑔𝜇𝐵𝐵

2𝑘𝐵𝑇
)
𝑠𝑖𝑛𝜃

𝑔
(𝑙𝑥
2𝑔𝑥𝑀𝑦𝑧

𝑒𝑓𝑓
+ 𝑙𝑦

2𝑔𝑦𝑀𝑥𝑧
𝑒𝑓𝑓
+ 𝑙𝑧

2𝑔𝑧𝑀𝑥𝑦
𝑒𝑓𝑓
)𝑑𝜃𝑑𝜙

 

𝜙

 

𝜃

 (63) 

 

where the gp are effective g-values and g is given by g = (Gx + Gy + Gz) with Gp = lpgp. Due to 

the strong dependence of the MCD C-term intensity on the polarization of a given transition, 

one more advantage of MCD is the possibility to obtain orientation-dependent information 

even by studying frozen solutions or mulls with randomly oriented molecules. For instance, 

magnetic bistability might be probed by recording MCD-detected magnetic hysteresis curves 

of only a subset of excited molecules, e.g. those with their molecular z-axis oriented parallel 

to the magnetic field. 
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3 Aim of this Work 

Lanthanide and cobalt complexes belong to the most promising candidates for 

improved single-molecule magnets and a lot of research activity is focused on the synthesis of 

new compounds.
9,11,22,23,28,37,66

 However, SMMs are still far from practical application. The 

reasons are for example the lack of rational design criteria and the interplay of several 

relaxation mechanisms, which have not yet been fully understood. The general aim of this 

work is therefore the comprehensive magnetic and spectroscopic investigation of molecular 

lanthanide and cobalt compounds in order to gain deeper insight into the correlation between 

the molecular as well as the electronic structure and the magnetic properties. Besides 

magnetometry, which is often the only tool employed for studying SMMs, a range of 

spectroscopic techniques including electron paramagnetic resonance, far-infrared 

spectroscopy and optical methods will serve to determine the electronic structures.  

Since magnetic circular dichroism spectroscopy has been shown to be an outstanding 

tool for studying ground state as well as excited state properties,
104,105,108-116

 the first part of 

this work is concerned with the setup and characterization of a modern MCD-spectrometer 

allowing measurements at wavelengths ranging from the ultra-violet to the near-infrared 

region of the electromagnetic spectrum (200 – 2000 nm). This comparatively wide 

wavelength range allows gaining as much information as possible and to the best of my 

knowledge has rarely been realized up to now. The setup of the MCD-spectrometer not only 

involves choosing the main parts, i.e. the CD-spectrometer and the magnet, but also 

connecting these parts by appropriate optics and optomechanics. After successful installation, 

the spectrometer needs to be characterized, e.g. concerning the baseline, the signal calibration 

and the sensitivity. Especially the sensitivity is an interesting aspect because if it is high 

enough, MCD-spectroscopy could provide a possibility for studying orientation-dependent 

properties of SMM monolayers, which usually requires more sophisticated and less available 

methods. Once the MCD-spectrometer is operative, it will serve together with the other 

above-mentioned methods to study the chosen lanthanide and cobalt compounds.  

Regarding the study of lanthanide compounds, isostructural molecular tetra-carbonates 

of dysprosium and erbium with the general formula [C(NH2)3]5[Ln(CO3)4] ∙ 11 H2O (Ln = Er, 

Dy; 1-Er and 1-Dy)
26,27

 were chosen. In addition to the potential SIM behavior, this choice is 

mainly based on the colorlessness of the carbonate ligands, which allows for the detection of 

optical f-f-transitions without disturbing intra-ligand transitions. Another criterion is the facile 
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and literature-known synthesis as well as the stability of the compounds. After successful 

synthesis and structural characterization, this subproject aims for probing and understanding 

the SIM behavior by performing detailed magnetometric and spectroscopic studies. Although 

optical spectroscopy is a well-established and extremely useful tool for the electronic 

structure determination of lanthanide compounds,
60,117

 it is not yet a standard method for 

studying single-ion magnets. Instead, it is still quite common to perform only magnetometric 

measurements, frequently combined with ab initio calculations. Magnetometry is definitely 

essential while ab initio calculations might be suitable to obtain a first idea about the 

electronic ground state but they are not sufficient for a full understanding. The community has 

realized more and more this fact and spectroscopic methods have been called for in recent 

SMM-related literature.
66,67

 Thus, the detailed spectroscopic studies in this work are aimed to 

progress clearly beyond what has ever been done before regarding the electronic structure 

determination of lanthanide based SIMs. Furthermore, this work is intended to provide a 

recipe for the reliable determination of crystal field parameters for low-symmetry compounds 

and to show which difficulties may arise.  

Another subproject of this work is concerned with the investigation of Co(II) 

complexes. The studied Co(II) complexes can be divided into two groups. The first group 

involves the distorted tetrahedrally coordinated complexes (HNEt3)2[Co
II
(L

1
)2] ((HNEt3)22) 

and (NMe4)2[Co
II
(L

1
)2] ((NMe4)22) with H2L

1
 = 1,2-bis(methanesulfonamido)benzene. The 

strong axial distortion compared to regular tetrahedrons displayed by these complexes makes 

them interesting candidates for SIMs. Thus, the performance as SIMs will be probed by 

magnetometric measurements and the observations will be explained by the analysis of 

spectroscopic results. Based on these results, design criteria for improved Co(II)-based SIMs 

will be confirmed and complemented. In this regard, special attention is focused on the 

development of realistic design criteria, meaning that they can be applied without too much 

synthetic effort and that stable complexes are obtained, which can be handled in air. Only 

such design criteria can lead to practically applicable compounds and this work is intended to 

provide an important contribution towards this objective. 

The second group of cobalt compounds investigated in this work are dimers of 

octahedrally coordinated cobalt centers bridged by quinone-based bridging ligands, where one 

or more oxygen donors of 2,5-dihydroxy-1,4-benzoquinone are substituted by isoelectronic 

[NR] groups. Substitution of two oxygen donors leads to symmetric bridges while the 

substitution of only one oxygen donor results in an unsymmetrical bridging situation. Two 

symmetrically bridged dimers, namely [{(tmpa)Co
II
}2(µ-L

2
)][BF4]2 (3[BF4]2) and 
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[{tmpa)Co
II
}2(µ-L

3
)][BPh4]2 (4[BPh4]2) as well as the unsymmetrically bridged dimer 

[{(tmpa)Co
II
}2(µ-L

4
)][OTf]2 (5[OTf]2) are studied with H2L

2
 = 2,5-di-[2-(methoxy)-anilino]-

1,4-benzoquinone, H2L
3
 = 2,5-di-[2-(trifluoromethyl)-anilino]-1,4-benzoquinone and 

H2L
4
 = 2-[4-(isopropyl)-anilino]-5-hydroxy-1,4-benzoquinone. Tris(2-pyridylmethyl)amine 

(tmpa) serves as a co-ligand. Concerning these dimers, the focus lies on the study of the 

nature of the exchange coupling, especially by means of SQUID magnetometry and EPR 

spectroscopy. Depending on the variation of the bridging ligand or the substituting groups, 

ferromagnetic or antiferromagnetic coupling might be observed. For single-molecule magnets 

ferromagnetic coupling combined with a large anisotropy is preferred and finding magneto-

structural correlations is a prevailing goal concerning Co(II) based SMMs.
118

 Another very 

interesting property of quinonoid-bridged dicobalt complexes is the possible observation of 

valence tautomerism due to the potential non-innocent behavior of the bridging ligands.
35

 This 

means that oxidation of one of the Co(II) centers may lead to a redox-induced electron 

transfer from the second Co(II) center to the bridging ligand, resulting in a radical bridge 

between two diamagnetic Co(III) centers. Valence tautomeric equilibria have been shown for 

several dicobalt complexes and provide a possibility for switching the magnetic properties by 

external stimuli like temperature, light irradiation or pressure.
35,119,120

 Therefore, the study of 

quinonoid-bridged cobalt complexes in this project not only involves the determination of the 

exchange coupling but also probing the presence of valence tautomeric phenomena. 
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4 Results and Discussion 

4.1 Design and Setup of the MCD-Spectrometer 

4.1.1 General Considerations 

Typically, a MCD-spectrometer operating in the visible region of the electromagnetic 

spectrum consists of a conventional CD-spectrometer equipped with a magnet.
105,121

 A 

principle scheme of the experimental single-beam setup is presented in Figure 16. The CD-

spectrometer contains the light source, the monochromator, the polarizer for generating 

linearly polarized light, the photoelastic modulator (PEM) for the generation of circularly 

polarized light and the detector. The detector compartment needs to be detachable since the 

magnet has to be placed in front of it. The magnet provides a magnetic field parallel to the 

direction of light propagation and the studied sample is positioned in the center of this 

magnetic field. Preventing disturbing interactions between the electronics or the magnetic 

parts of the spectrometer and the magnetic field requires a sufficient distance depending on 

the stray field of the magnet. With the help of appropriate optics and optomechanics, the 

circularly polarized light produced by the spectrometer is focused onto the optically 

transparent sample, where differential absorption of lcp and rcp takes place. The resulting 

elliptically polarized light then needs to be refocused onto the detector, e.g. a photomultiplier 

(PMT) for the visible range.  

In the following sections, the different parts of the MCD-spectrometer built up in this 

work will be described, followed by its characterization concerning the baseline, the signal 

calibration and the sensitivity.  

 

 

Figure 16: Schematic representation of the experimental single-beam MCD-setup. Drawn with the help of Jan 

Vaverka (ERASMUS student, February – August 2015), using the Autodesk 3D-CAD-Software Inventor®. 
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4.1.2 The CD-Spectrometer 

The CD-spectrometer utilized in this work is an Aviv Model 42 Spectrometer 

manufactured by Aviv® biomedical, inc. It allows time- and wavelength dependent CD-

measurements in a wide wavelength range (200 – 2000 nm) with an excellent resolution of up 

to 0.1 nm.  

The light source is a commercially available tungsten halogen low-voltage lamp 

(OSRAM HLX 64663) with a nominal voltage of 36 V and a nominal wattage of 400 W. The 

luminous flux is 16200 lm and the color temperature is 3250 K. According to Planck’s law for 

black body radiation
122,123

, this color temperature corresponds to a maximum in spectral 

energy density u (,T) at approximately 900 nm, as shown in Figure 17. At higher 

wavelengths, the spectral energy density slowly decreases while at lower wavelengths this 

decrease is much steeper. The light source is placed in a ventilated box at the backside of the 

spectrometer and a screw allows the adjustment of the height in order to optimize the light 

intensity reaching the sample (Figure 17).  

The polychromatic light provided by the light source is guided to a Cary 14 double 

monochromator, which disperses the light into its individual wavelengths. It consists of a 

Czerny-Turner fused silica prism monochromator in series with a 600 lines/mm echelette 

grating. Figure 18 illustrates the arrangement of the optical elements: The radiation from the 

lamp enters the monochromator through the entrance slit, gets dispersed by the prism and the 

grating and the resulting monochromatic radiation leaves through the variable exit slit.
124

 The 

prism-grating design not only improves wavelength resolution compared to single 

monochromators but also reduces stray light. 

 

 

Figure 17: Left: Black body radiation spectrum at 3250 K. Around 200 nm, the energy density gets close to zero 

and determines the high energy limit of the spectrometer. Right: Photograph of the halogen low-voltage lamp 

used in the CD-spectrometer. 
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Figure 18: Arrangement of the optical elements in the prism-grating double monochromator.
124

 

 

While prisms suffer from light absorption of the glass leading to poor dispersion curves in the 

NIR, gratings exhibit more uniform dispersion curves. However, gratings show different 

orders of reflection besides the used first order. Due to second-order stray light at a given 

angle, multiples of the prime wavelengths may be reflected. One way to solve these issues is 

the combination of prisms and gratings: At long wavelengths, a prism does not separate the 

wavelengths efficiently anymore, but it eliminates second order stray light. The grating then 

provides the necessary spectral resolution.
121

 

The dispersive elements are connected to a wavelength cam, which converts the non-

linear dispersion into the linear motion of an external gear drive mechanism moved by a 

stepper motor. Each motor step corresponds to a wavelength change of 0.01 nm and thus sets 

the limit for wavelength specification. The wavelength repeatability is better than 0.05 nm in 

the entire wavelength range (typically 0.02 nm) and the spectral resolution is ca. 0.1 nm in 

most of the UV-Vis range. Due to the linear wavelength scale, only one point needs to be 

specified for wavelength calibration. The calibration wavelength corresponds to the position 

of an optical beam switch linked to the motion of the wavelength cam. More details about 

wavelength calibration will be given below. The monochromator slit widths contributing to 

the spectral bandwidth are controlled by a stepper motor, and a potentiometer on the drive 

senses the slit positions. The bandwidth can be chosen between 0.005 nm and 10 nm and in 

the constant bandwidth mode the spectrometer software converts the desired bandwidth to the 

corresponding slit width using a stored version of the monochromator dispersion function. 
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The slit height can be manually regulated using a knob adjusting a mask. This option allows 

optimizing the light intensity and the beam position on the sample.  

After the monochromator, an achromatic lens and a Rochon polarizer generating 

linearly polarized light are placed. In the Aviv Model 42 CD Spectrometer, the Rochon 

polarizer consists of two optically connected prisms of single crystal magnesium fluoride. 

Magnesium fluoride was chosen because of its high and rather uniform transparency in the 

spectral range from 200 to 6000 nm,
125

 making it an ideal material for the application in the 

desired MCD-spectrometer. It exhibits a tetragonal, i.e. uniaxial crystal system resulting in 

optical anisotropy. Due to different refractive indices along different axes, birefringence is 

observed whenever the light path is not parallel to the principal axis.
121,126

 A schematic 

illustration of the utilized Rochon polarizer is given in Figure 19.
127

 The optical axes of the 

MgF2 prisms are oriented perpendicular to each other, with one of them being parallel to the 

direction of light propagation. At the interface, double refraction occurs and the incident ray 

splits up into two separate beams with vertical and horizontal polarizations, i.e. the ordinary 

and extraordinary ray. While the ordinary beam passes straight through the polarizer, the 

extraordinary ray is refracted. The angular separation between the ordinary and the 

extraordinary ray is 5.1 degrees at 200 nm and 4.6 degrees at 546 nm.
127

 For the CD- or 

MCD-measurements in this work, the extraordinary ray is discarded by a mask after the 

photoelastic modulator and only the ordinary ray is forwarded to the sample (single-beam 

setup).  

As shown in Figure 20, the photoelastic modulator (PEM)
121

 is positioned after the 

Rochon polarizer and converts the linearly polarized light into circularly polarized light. The 

PEM consists of a metal plated crystalline quartz block, which acts as a large piezoelectric 

oscillator with a resonance frequency of 50 kHz.  

 

 

Figure 19: Schematic illustration of the MgF2 Rochon polarizer utilized in the Aviv Model 42 CD Spectrometer. 

OA denotes the optical axes of the MgF2 prisms and D denotes the angular separation between the ordinary and 

the extraordinary ray. Reprinted with permission from Karl Lambrecht Corporation, Chicago.
127
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Figure 20: Left: Polarizer compartment containing an achromat, the Rochon polarizer and the photoelastic 

modulator. A cuvette holder behind the PEM allows conventional CD-measurements at room temperature. Right: 

View through the fused silica block of the PEM towards the polarizer. 

 

At one end it is attached to a clear fused silica block where the light passes through. By 

applying a varying voltage to the metal plated part (1 V per 400 nm), a mechanical strain is 

induced, which is transferred as pressure waves to the fused silica block. The pressure waves 

cause birefringence in the usually optically isotropic fused silica, resulting in different 

refractive indices for light with vertical and horizontal polarizations. The PEM is mounted at a 

45 degree angle relative to the linear polarization of the incident rays, i.e. relative to the PEM 

the incident light exhibits equal portions of vertical and horizontal polarization in phase with 

each other. Due to the strain-induced birefringence, the vertical and horizontal components 

traverse the glass at different rates, leading to a phase shift when the light emerges the PEM. 

Since the pressure waves are continuously passing back and forth through the fused silica 

block, the phase shifts periodically between +90 and –90 degrees resulting in alternatingly left 

and right circularly polarized light. Different conventions regarding the definition of lcp and 

rcp exist. The convention used throughout this work is demonstrated in Figure 21: Lcp 

corresponds to the case where the electric field vector rotates counter-clockwise when 

propagating towards the observer, while rcp corresponds to a clockwise rotation.
128

 The 

periodically alternatingly left and right circularly polarized radiation passes the sample, which 

is either placed inside a cuvette behind the PEM (see Figure 20) for conventional CD-

measurements at room temperature or inside a magnet for MCD-measurements.  

Detection is carried out using a photomultiplier (PMT) for the UV and visible range 

and an indium gallium arsenide (InGaAs) photodiode for the NIR range. As shown in Figure 

22, both detectors are placed in the detector compartment, which is detachable from the 

polarizer compartment in order to allow MCD measurements. A software controlled detector 

motor allows automatic detector crossover at a user specified wavelength.  
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Figure 21: Definition of left and right circularly polarized light used throughout this work.  

 

The PMT is a custom-built end window photomultiplier tube manufactured by Hamamatsu 

Photonics K.K. with an S20 response range from 190 to 870 nm. S20 is the spectral number 

and refers to multialkali photocathodes. During the CD-measurements an adjustable voltage is 

applied to the dynodes while the DC current induced by the photoelectric effect is held 

constant. This leads to increased sensitivity. The applied voltage is thus a measure for the 

light intensity reaching the detector, e.g. low light intensity due to absorption by a sample 

leads to a positive peak in the dynode voltage. The typical dynode voltage profile between 

200 and 900 nm for the model 42 MCD spectrometer is shown on the right hand side in 

Figure 22. It was recorded without any sample and with the detector compartment being 

directly attached to the polarizer compartment. The DC level was fixed to the default value of 

1 V and the bandwidth was set to 1 nm. 

 

Figure 22: Left: Detector compartment containing the InGaAs NIR detector and the photomultiplier tube. Right: 

Characteristic dynode voltage profile of the photomultiplier recorded at a fixed bandwidth of 1 nm and a DC 

level of 1 V. 
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The increase of the dynode voltage at low wavelengths ( < 300 nm) is attributed to the 

emission limit of the light source (Figure 17) and the limited transmission of the optics. At 

high wavelengths ( > 800 nm), a second increase is observed because the lower energy of the 

incoming photons leads to less emission of electrons from the metal. Very high dynode 

voltages result in increased noise in the CD-spectrum and if the dynode voltage reaches a 

plateau above ca. 800 V, the CD-measurement is not reliable at all anymore.  When 

measuring an absorbing sample, the bandwidth should be chosen in a way that finds a 

compromise between the spectral resolution and the light intensity reaching the detector.  

The peaks arising in the PMT voltage due to light absorption by a standard sample 

were employed for the wavelength calibration of the spectrometer. The wavelength 

calibration was performed in factory by using a solution of 40 g L
-1

 holmium oxide in 10 % 

(volume fraction) perchloric acid and repeated during the installation of the instrument. The 

solvated Ho
3+

 cation has a very stable coordination and shows characteristic narrow 

f-f-transitions. Most of the observed bands in the visible range are thus NIST-certified (NIST: 

National Institute of Standards and Technology) as intrinsic traceable wavelength 

standards.
129

 Especially the most intense peak attributed to the transition to the 
5
F4 free ion 

state and located at 536.4 nm for a spectral bandwidth of 0.1 nm
129

 was employed for 

assigning the calibration wavelength (the so-called “home wavelength”). The calibration 

wavelength corresponds to the starting position of the optical beam switch linked to the 

motion of the wavelength cam. 

The InGaAs NIR detector was manufactured by Teledyne Judson Technologies 

(model J23D-M204-R02M-60-2.6-CSW) and operates over the spectral range from about 

800 nm to 2200 nm. In order to reduce the dark current, the detector is surrounded by a metal 

dewar (model M204) enabling cooling with liquid nitrogen. Suprasil quartz glass was chosen 

for the windows. Since the detector’s active area is only 2 mm, special care has to be taken 

when focusing and adjusting the incoming light beam. Details about the utilized optics and 

optomechanics will be given in section 4.1.4. 

If a CD active sample is placed in the light path, lcp and rcp will be absorbed to a 

different extent and the light intensity after the sample will oscillate with the resonance 

frequency of the PEM. Compared with the overall light intensity, this oscillation is very small 

and as a result a signal with a small AC component superimposed on the DC component is 

obtained. The signal path is schematically shown in Figure 23: The components of the 

detected mixed signal are separated with the help of a band-pass filter and after amplification 

the AC signal reaches a sample-and-hold circuit, which also receives square wave time 
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signals from the PEM. The sample-and-hold circuit samples the signal at a given time and 

stores the information for a given time interval. The time signals arriving at the sample-and-

hold circuit correspond to the phase shifts of +90 and –90 degrees and are thus used to trigger 

the measurement of the lcp and rcp amplitudes. The difference is the amplitude of the AC 

signal and is sent to the computer, where an A/D card samples the AC amplitude as well as 

the amplified DC signal.  The software builds the AC/DC ratio, which is scaled to become the 

CD signal. CD signal intensity calibration is performed by adjusting the gain on the amplifier 

in the AC signal circuit.  

Also the CD signal intensity calibration was performed in factory and repeated during 

the installation of the instrument. As a reference sample, a solution of 1.0 mg mL
-1

 (1S)-(+)-

10-camphor sulfonic acid (CSA) in water was used that shows an intense positive CD signal 

at 290.5 nm. However, after adding the additional optics for the MCD-setup, some slight 

recalibration was required and the corresponding data will be discussed in section 4.1.5. 

Both detectors use the same circuit but for the InGaAs detector the data need to be 

corrected for the dark current. The dark signal is measured with the help of a (closed) 

chopper, which is located between the light source and the monochromator entrance slit (not 

shown in Figure 18). The CD signal is then calculated as 

 

𝐶𝐷𝑁𝐼𝑅 = 100 ∙ ∆𝐺𝑎𝑖𝑛 ∙
∆𝐼 − ∆𝐼𝑂𝑓𝑓𝑠𝑒𝑡

𝐼 − 𝐼𝐷𝑎𝑟𝑘 − 𝐼𝑂𝑓𝑓𝑠𝑒𝑡
 

 

(64) 

 

where I and I are the measured total intensity and intensity difference and IDark accounts for 

the dark signal. IOffset is a correction for electrical offsets and IOffset is an optional additional 

correction besides the dark correction. The factor 100 is a scaling factor for converting 

voltage to millidegrees and Gain is included to correct for differences between the PMT and 

the InGaAs detector outputs. Signal calibration in the NIR range thus includes the appropriate 

adjustment of the offset parameters.  

 

Figure 23: Schematic illustration of the electronic circuit used to extract the CD signal (according to a draft by 

Dr. Glen Ramsay, Chief Scientist at Aviv Biomedical, Inc.). 
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4.1.3 Magnet and Sample Holder 

For MCD-measurements, basically three types of magnets are available: Permanent 

magnets, electromagnets and superconducting magnets. Although superconducting magnets 

are usually the most expensive and require cooling with liquid helium, they are preferred in 

modern MCD-spectrometers since they allow VTVH MCD measurements up to much higher 

fields. Furthermore, the liquid helium from the helium reservoir can be used for cooling the 

sample. A superconducting magnet was therefore chosen for the MCD-spectrometer built up 

in this work. The magnet employed is an Oxford Instruments SM-4000-10 optical split-coil 

cryomagnet providing horizontal magnetic fields up to 10 T. The magnetic field is controlled 

by a Mercury iPS power supply, which also monitors the cryogen levels. A schematic 

illustration of the magnet system is given in Figure 24. The helium reservoir (20 l) is shielded 

from thermal radiation by a liquid nitrogen bath (24 l) and both are thermally insulated from 

the environment by an outer vacuum chamber (OVC). The Nb3Sn superconducting coils are 

thermally linked to the liquid helium bath. Four outer windows out of Spectrosil B allow 

optical access to the sample. 

 

 

Figure 24: Schematic illustration of the Oxford Instruments SM-4000-10 optical cryomagnet containing the VTI 

and the sample rod. Reprinted with permission from Oxford Instruments GmbH.
130
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The choice of Spectrosil B as the window material is based on its excellent transmission in the 

desired spectral range and the absence of birefringence which would affect the polarized light.  

A variable temperature insert (VTI) with a sample space diameter of 25 mm allows 

temperature stabilization between 1.5 and 300 K. A stepper motor controlled needle valve 

regulates the helium flow from the helium reservoir to the sample. However, before the 

helium arrives at the sample, it passes a heat exchanger at the base of the sample tube. The 

heat exchanger is fitted with a heater and a calibrated Cernox
TM

 thin film resistance 

temperature sensor allowing temperature measurement and control. The temperature 

regulation system is controlled by a Mercury iTC temperature controller. Four inner 

Spectrosil B windows, each having a diameter of 10 mm, provide optical access to the VTI. 

An appropriate sample rod was supplied together with the magnet system. It is 

equipped with an additional heater and a Cernox
TM

 temperature sensor allowing an accurate 

determination of the sample temperature. As shown in Figure 25, the sample cell containing 

the sample is attached to the bottom of the sample rod. The sample cell is home-built and 

designed for studying samples as mulls, polymer films or frozen solutions. It consists of a 

copper middle part, which can be screwed to the sample rod and contains a 12 mm diameter 

bore for the light passing through. When studying mulls or polymer films, the sample is 

pressed between two fused silica disks (15 mm diameter) which are screwed to one side of the 

middle part with the help of an appropriate copper counterpart. For studying frozen solutions, 

each side of the middle part is covered with a fused silica disk and a copper counterpart and 

O-rings serve for sealing. The solution can be injected via a small hole in the middle part. In 

order to avoid losing the sample by evaporation or leaking, the solution is frozen in liquid 

nitrogen before inserting it into the VTI.  

 

 

Figure 25: Home-built sample cell screwed to the sample rod. Fused silica disks are attached to both sides of the 

middle part. Left: Top view. Right: Side view. 
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The cryomagnet is placed on a home-built non-magnetic table which enables 

horizontal and vertical fine positioning with the help of a crank and a micrometer screw. This 

fine positioning allows finding the optimum spot of the light beam passing the sample. Due to 

the comparatively high stray fields of superconducting magnets, the magnet has to be placed 

at adequate distances from the CD-spectrometer and the detector compartment. This 

precaution not only prevents the photomultiplier or the PEM control circuit from being 

affected by the magnetic field but also poor homogeneity of the magnetic field by interaction 

with static steel. According to the stray field of the magnet, distances of about 1 m between 

the polarizer compartment and the outer magnet window and 1.5 m between the opposite 

magnet window and the detector compartment were chosen. For practical reasons, e.g. the 

location of the helium recovery line in the laboratory, the magnet was oriented with the 

magnetic field anti-parallel to the light path. This means that the observed MCD signals show 

reversed signs and the spectra have to be corrected by multiplication with a factor of –1.  

  

4.1.4 Optics and Optomechanics 

The design and construction of the optical layout were one of the main tasks in the 

design of the MCD-spectrometer. The material of the employed lenses should show a high 

transmission over the entire wavelength range and no birefringence affecting the light 

polarization should occur. Thus, UV-grade fused silica lenses (Thorlabs) suitable for 

wavelengths between 185 and 2100 nm were chosen. Uncoated lenses were chosen since anti-

reflection coatings are available only for limited wavelength ranges.  

Focusing the light first onto the sample within the magnet and afterwards onto the 

detector requires at least four lenses. Depending on the nature of these lenses, two possible 

basic layouts illustrated in Figure 26 and their combinations have been considered: Option 1 

involves two pairs of biconvex lenses while option 2 employs two pairs of plano-convex 

lenses with the first lens of each pair collimating the light and the second one focusing it. In 

order to find out which option performs better, simulations using the ZEMAX 8.0 optical 

design software
131

 were carried out. The required data of the optical layout within the 

polarizer compartment were provided by Aviv and the corresponding light path is shown in 

Figure 27. Simulations based on these data showed that smaller spot sizes as well as lower 

wavelength dependencies can be achieved by implementation of option 2. Best results were 

obtained with four plano-convex lenses having diameters of 50.8 mm and focal lengths of 

250 mm for lenses 1, 3 and 4 and a focal length of 200 mm for lens 2. The corresponding data 

and drawings are shown in the appendix, section 8.2.1.   
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Figure 26: Schematic illustration of the basic optical layouts considered for focusing the light onto the sample 

and the detector. 

 

 

Figure 27: Optical layout within the polarizer compartment according to the data provided by Aviv biomedical, 

Inc. For reasons of clarity, only five rays belonging to one field point (center) and one wavelength (1000 nm) are 

shown. 

 

This version of the optical layout sufficed for CD- and MCD-measurements in the 

visible range. However, due to the comparatively small active area of the InGaAs detector, 

satisfactory spectra in the NIR range required an improved focusing of the light beam onto the 

detector, i.e. a smaller spot size. According to equation (64), insufficient light intensity leads 

to high baseline offsets and unphysically large CD signals. Thus, simulations were revised by 

adding an additional small lens in front of the detector. Although the light beam is 

rectangularly shaped, which suggests that the integration of a cylindrical lens would be 

beneficial, better performance was simulated by adding another plano-convex lens with a 

diameter of 25.4 mm and a focal length of 75 mm. The simulated light path beginning from 

the polarizer compartment is shown in Figure 28, while Figure 29 shows the full field spot 

diagrams at the sample surface and at the detector position. The selected field points for the 
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simulations correspond to the maximum monochromator slit width of about 3 mm and a 

rather small slit height of 4 mm. The full field spot diagrams show that a sample diameter of 

at least 6 mm and a detector surface diameter of at least 3 mm are necessary in order to catch 

the full light intensity of the given field points. Since the clear sample cell diameter is 12 mm, 

no intensity is cut off when the light passes the cell, even if the experimental slit height is 

larger than in the simulation. However, care has to be taken when preparing the sample, i.e. it 

has to be rather homogeneous. When single crystals are going to be studied, either the 

implementation of an additional lens or an aperture is required. 

 

 

Figure 28: Simulated optical layout for the MCD-spectrometer using five plano-convex (PLX) lenses. Top: Light 

path from the spectrometer exit to the sample. Bottom: Light path from the sample to the detector. For reasons of 

clarity, only five rays corresponding to one field point (center) and one wavelength (1000 nm) are shown.  

 

 

Figure 29: Simulated full field spot diagrams corresponding to the optical layout shown in figure 28. Left: 

Sample surface. Right: Detector position. Different colors represent different wavelengths: 1000 nm (blue), 

1500 nm (green) and 2000 nm (red). 
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 With a diameter of only 3 mm, the illuminated area at the detector position is much smaller 

than at the sample surface because lens number 5 is positioned directly in front of the 

detector. Although the required area is still larger than the active area of the InGaAs detector, 

the spot size corresponds to a reduction of about 40 % compared to the first version of the 

MCD-spectrometer with only four lenses (compare Figure A 2 in the appendix). Figure 29 

also shows a clear wavelength dependency of the focal spots, which is more pronounced at 

the detector site. The spot size is smallest for wavelengths around 1000 nm since the distances 

given in Figure 28 were optimized for 1000 nm. The utilization of achromatic lenses could 

reduce the wavelength dependency and has to be considered for future versions of the 

spectrometer.  

The experimental realization of the simulated optical layout involved mounting the 

lenses onto aluminum rails, which were fixed to the tables where the CD-spectrometer, the 

magnet and the detector compartment are placed on (Figure 16). Appropriate rail carriers 

allow the fine positioning of the lenses parallel to the light path, which was performed by 

monitoring the detector signal while carefully moving the lenses. The experimentally 

determined optimum distances agree rather well with the simulated ones and only slight 

changes were necessary. Fine-positioning of the lenses perpendicularly to the light beam was 

performed with the help of linear translation stages placed on top of the rail carriers while 

vertical adjustment was possible by height adjustable optical post holders.  

The light path had to be shielded from ambient light since ambient light reaching the 

detector leads to artificial CD signal lowering (compare equation 64). In the first version of 

the MCD-spectrometer, light shielding was achieved by a combination of rigid PVC pipes and 

flexible rubber hoses. However, although ambient light was efficiently shielded, this setup 

turned out to be rather cumbersome concerning maintenance work, e.g. readjusting the lenses 

or checking the magnet windows for impurities. Thus, for the second version of the MCD-

setup a more user-friendly alternative was chosen by designing a wooden box that perfectly 

fits to the dimensions of the tables and the optomechanics. This wooden box was designed 

and assembled with the help of Michal Kern and Jan Vaverka as part of their Erasmus 

projects at the University of Stuttgart and with the help of Dr.-Ing. Petr Neugebauer (Institute 

of Physical Chemistry, University of Stuttgart). The top and the side covers of the box can be 

removed separately whenever it is necessary, e.g. for lens readjustment. For efficient light 

shielding, the fixed parts of the box are sealed with polyethylene sealant while black foam 

serves for sealing the flexible parts. Figure 30 shows the current state of the complete MCD-

setup including the wooden box.  
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Figure 30: Photographs showing the current state of the MCD-setup. Left: Front view onto the completed MCD-

setup. Right: View into the opened box containing the lenses. 

 

However, work is ongoing concerning the user-friendly change of the magnet between several 

applications, e.g. MCD-, torque-detected EPR- or FDMR-spectroscopy.   

 

4.1.5 Characterization of the MCD-Spectrometer 

Figure 31 shows the PMT dynode voltage profile and the corresponding CD baseline 

recorded with the completed MCD-setup (shown in red) in comparison to the baseline 

measurements for the CD-spectrometer with the detector box directly attached to the 

spectrometer (shown in blue). The measurements were performed using bandwidths and step 

sizes of 1.0 nm, default DC levels of 1.0 V and averaging times of 1 s. The baselines 

corresponding to the completed MCD-setup were recorded with the magnet cooled down but 

the VTI temperature set to 300 K and no magnetic field applied, in order to provide similar 

experimental conditions. Compared to the dynode voltage of the CD-spectrometer, the dynode 

voltage of the MCD-spectrometer shows a similar shape, i.e. reaching high values at the 

wavelength limits due to low source emission at low wavelengths and lower detector 

sensitivity at higher wavelengths. However, higher voltages have to be applied for keeping the 

DC level constant, which might be attributed to the longer distance between the light source 

and the detector and the additional lenses and windows the light passes through. Close to the 

wavelength limits, the dynode voltage recorded with the MCD-setup shows a flattening which 

was not observed before. This flattening might hint to an imperfect shielding of ambient light 

resulting in a higher overall light intensity on the detector. Although the laboratory lamps 

were switched off during the measurement, a remaining source for ambient light is the 

spectrometer light source itself with its light shining through the lamp compartment at the 

back of the spectrometer.  
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Figure 31: Left: Dynode voltage profiles recorded without any samples, using bandwidths and step sizes of 

1.0 nm. Right: Corresponding CD baselines. Spectra recorded with the detector box directly attached to the CD-

spectrometer are shown in blue while red lines correspond to measurements with the completed MCD-setup. 

 

This effect is negligible in wavelength regions where light intensity is high enough but leaves 

room for improvement close to the wavelength limits, e.g. by designing an additional light 

shielding for the lamp compartment. 

At about 765, 580, 545 and 420 nm the dynode voltage profiles show weak artefacts, 

which can be attributed to the optics within the CD-spectrometer since they are not enhanced 

by the additional optics in the MCD-setup. However, these artefacts do not affect the CD 

baselines shown on the right of Figure 31. As expected, the CD baselines show a higher noise 

level in regions where the dynode voltage is high but are essentially flat in between. 

Interestingly, the CD baseline recorded with the MCD-setup is smoother than the one 

recorded with the CD-spectrometer, indicating that the light reaches the detector more 

uniformly due to the additional lenses.   

Figure 32 shows the NIR baseline recorded at room temperature using the InGaAs 

NIR detector. The bandwidth was set to 5.0 nm and the step size was 1.0 nm. The offset 

parameters defined in equation (64) were fixed to Gain = 2.00, IOffset = 0.04 and IOffset = 0. 

As will be shown below, these offset parameters were determined with the help of an aqueous 

Ni(II) tartrate solution. However, the optimum values, especially IOffset, strongly depend on 

the light intensity reaching the detector and thus in turn on the bandwidth and the sample 

properties. While the energies at which CD signals appear are reliable, absolute CD signal 

intensities in the NIR region should therefore be regarded critically. The NIR baseline shows 

some artefacts with signs and intensities depending on the offset parameters. The presence of 

the artefacts can be partially attributed to the fused silica optics and for comparison, the 



Design and Setup of the MCD-Spectrometer  67

   

transmission spectrum of fused silica
132

 is given in Figure 32 as well. Clear transmission 

minima around 940, 1250 and 1380 nm and a rather broad feature around 1900 nm occur, 

which can be assigned to overtone and combination vibrations from OH groups within the 

silica.
133,134

 Water molecules might also play a role, especially concerning the broad 

absorption around 1900 nm.
135

 One possibility to improve the situation is the employment of 

fused silica with a lower OH content. However, not only the lenses for the MCD-setup consist 

of fused silica but also parts within the CD-spectrometer itself. In addition to the fused silica 

based signals, rather strong artefacts appear at wavelengths around 1000 nm, but their origin 

remains unclear so far. Since they do not correspond to the transmission spectrum shown in 

Figure 32 and since they have already been observed in factory, they cannot be solely 

attributed to the additional optics of the MCD-setup. However, future improvements could be 

achieved by employing a red-enhanced PMT allowing for covering the range from 

800 to 1200 nm with this detector. 

Although baseline effects are undesirable, they are less problematic in MCD-

spectroscopy than in CD-spectroscopy, since they can be easily eliminated by recording 

spectra at opposite magnetic fields and subtracting the data. By doing so, all the field-

independent artefacts will be eliminated while the MCD signal intensity is doubled. 

The signal intensity calibration of the CD-spectrometer in the visible range was 

already performed in the factory and during the installation of the instrument by using a 

reference solution of CSA in water. 

 

 

Figure 32: CD baseline in the NIR range using the InGaAs NIR detector (shown in red) compared to the 

transmission spectrum of UV-grade fused silica
132

 (shown in blue). The CD-spectrum was recorded at room 

temperature with a bandwidth of 5.0 nm and a step size of 1.0 nm. The transmission data were provided by 

Thorlabs, Inc. 
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However, additional optics might lead to depolarization effects and therefore slight 

recalibration was performed after setting up the MCD-spectrometer. CSA shows an intense 

positive CD signal at 290.5 nm with a molar ellipticity of [ ]M = 7.78 ∙ 10
3
 deg cm

2
 dmol

-1
.
136

 

Thus, CD-spectra of a solution of dried CSA in doubly distilled water (1.006 g L
-1

) in a 1 cm 

cuvette were recorded and the AC gain was adjusted until the observed baseline-corrected CD 

signal was satisfactorily close to the expected value. The final spectrum is shown in the 

appendix, section 8.2.2.  

Since it is known from literature that CD signal calibration at only one wavelength 

might not be sufficient,
136

 calibration was additionally checked by recording CD-spectra of an 

aqueous solution of Ni(II) tartrate, which shows a wealth of literature-reported CD signals
137

 

in the entire visible range. The Ni(II) tartrate solution was prepared by mixing aqueous 

solutions of nickel(II) chloride  hexahydrate (0.5682 g in 10 ml H2O) and sodium L-(+)-

tartrate dihydrate (0.8285 g in 10 ml H2O), leading to a Ni(II) concentration of 7.043 g L
-1

. 

For final CD calibration, the AC gain was adjusted in such a way that both the CSA and the 

Ni(II) tartrate solution spectra showed excellent agreement with literature data
137

. The 

observed signal maxima compared to literature values
137

 are summarized in Table 1 while 

Figure 33 shows the baseline-corrected CD spectrum of the Ni(II) solution recorded in the 

visible range with a bandwidth of 1.0 nm, increments of 0.3 nm and an averaging time of 

1.5 s. It should be mentioned that the calibration measurements using CSA and Ni(II) tartrate 

were performed using the first version of the MCD-setup, i.e. with only four plano-convex 

lenses and PVC pipes for light shielding. In order to make sure that the fifth lens and the 

wooden box for light shielding do not affect the calibration, the measurements were repeated 

using the current version of the MCD-setup. The obtained spectra (see Figure 33) in the 

visible range showed no significant differences to the previous measurements. Generally, 

wavelength and CD signal intensity calibration should be checked regularly, especially when 

the instrument has been out of use for some longer time period.  

In addition to the CD signals in the visible range, Ni(II) tartrate shows a strong 

negative band around 1100 - 1200 nm and this compound was thus also used for checking the 

performance of the InGaAs NIR detector. For a solution having a Ni(II) concentration of 

7.043 g L
-1

 and a pathlength of 1 cm, an absorption difference of A = –0.0023 corresponding 

to a molar ellipticity of [ ]M = –632 deg cm
2
 dmol

-1 
was reported

138
 and this value was used 

in order to determine the optimum offset parameters appearing in equation (64). 
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Table 1: Comparison of experimentally observed CD signals for aqueous solutions of CSA and Ni(II) tartrate 

with literature values. 

Observed CD maxima Literature data
136,137

 

 / nm [ ]M / deg cm
2
 dmol

-1
  / nm [ ]M / deg cm

2
 dmol

-1
 

(1S)-(+)-10-camphor sulfonic acid (CSA) 

290.5 (+7.71  0.06) ∙ 10
3 290 +7.78 ∙ 10

3
 

nickel(II) tartrate 

371.2 +50.4  0.6 371 +50.3 

399.1 –49.9  1.9 399 –46.7 

427.9 +35.9  0.5 428 +35.8 

471.7 +8.6  0.2 470 +8.3 

718.3 –104.3  0.8 718 –101.2 

778.3 –112.4  1.6 777 –110.7 

 

 

 

Figure 33: Room temperature CD-spectra of aqueous Ni(II) tartrate solutions. The spectra shown in blue and 

purple were recorded using the first version of the MCD-setup (four plano-convex lenses). The NIR and the 

visible range were studied separately. The spectrum shown in red corresponds to the current MCD-setup (five 

lenses) and was recorded with an automatic detector change at 900 nm. Intensity differences in the NIR range are 

attributed to the different light intensities reaching the InGaAs detector as well as different offset parameters 

during the measurements. In the NIR spectrum recorded with the first version of the spectrometer, baseline 

effects are more pronounced. 
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The offset parameters were adjusted until the CD signal intensity was close to the reported 

value and the overlap with the PMT detected CD-spectrum and the quality of the baseline 

were also taken into account. For a bandwidth of 3.0 nm, the following optimized offset 

parameters were obtained: Gain = 2.00, IOffset = 0.0505 and IOffset = 0.0005. The 

corresponding spectrum (recorded with the first version of the MCD-setup) is shown in Figure 

33. However, for the NIR CD-spectrum recorded with the current MCD-setup and the same 

bandwidth (see also Figure 33), the offset parameters were set to Gain = 2.00, IOffset = 0.04 

and IOffset = 0. This clearly demonstrates the dependence of the offset parameters on the light 

intensity reaching the detector and, as already mentioned above, absolute CD signal 

intensities in the NIR range are not reliable yet. However, this effect might play a lesser role 

in MCD- than in CD-spectroscopy, since in MCD-spectroscopy baseline effects can be 

eliminated by subtracting spectra for opposite magnetic fields and because typically 

normalized intensities are considered. 

The very first MCD-measurements in this work were performed on a 

poly(vinyl alcohol) film of K3[Fe(CN)6]. K3[Fe(CN)6] has been subjected to a range of MCD 

studies
139-142

 in the past and therefore is a suitable sample for comparison  purposes. The 

[Fe(CN)6]
3-

 anion shows three very intense ligand-to-metal charge transfer (LMCT) 

transitions, which are due to excitations from the occupied ligand orbitals to the t2g orbitals of 

the octahedrally coordinated low-spin (LS) Fe(III) central ions.
104

 The electronic ground state 

of LS Fe(III) is 
2
T2g and the LMCT transitions can be identified as 

2
T2g  

2
T1u() (LMCT1), 

2
T2g  

2
T2u() (LMCT2) and 

2
T2g  

2
T1u() (LMCT3) at approximately 24500, 32700 and 

40500 cm
-1

, respectively.
141

 The spectra are dominated by Faraday C-terms and group 

theoretical considerations predict a positive sign for the signals arising from LMCT1 and 

LMCT3 and a negative sign for the signal due to LMCT2.
104

  

Films of K3[Fe(CN)6] in PVA were prepared according to a procedure described in 

literature.
142

 Aqueous solutions of K3[Fe(CN)6] and PVA were mixed and the resulting 

mixture was put onto glass slides. After drying in the dark for several days, the films were 

removed with the help of a razor blade and the clearest and most homogeneous film was used 

for the MCD measurements. MCD-spectra were recorded at several temperatures and 

magnetic fields and the baseline corrected spectra obtained at 2 K are shown in Figure 34. The 

three LMCT bands showing the expected signs and relative intensities are observed around 

24000, 33000 and 38500 cm
-1

, in good agreement with literature.
140,141

 Comparable to the 

spectra reported in literature, splittings of the bands are observed, which might be attributed to 

vibrational overtones or excited-state vibronic, crystal-field or spin-orbit effects.
142
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Figure 34: MCD-spectra of a film of K3[Fe(CN)6] in poly(vinyl alcohol) recorded at 2 K and different magnetic 

fields, as indicated. The bandwidth was set to 3.0 nm and the step size was 5.0 nm. 

 

All in all, the rather satisfactory agreement between the experimental spectra and literature 

data shows that the MCD-spectrometer provides reliable results and can thus also be used for 

studying new compounds.  

Another very interesting aspect concerning the MCD-spectrometer is its sensitivity. If 

the sensitivity is high enough, MCD-spectroscopy could provide a possibility to study 

monolayers of single-molecule magnets, which currently requires much more sophisticated 

and less available techniques, e.g. synchrotron based methods. Since lanthanide 

bis(phthalocyanines) are not only relevant in molecular magnetism but also show strong 

absorptions in the visible range, they are promising candidates for sensitivity studies. The 

strong absorptions are based on intra-ligand electronic transitions and depending on the 

participating orbitals, they are classified into the B-band and the Q-band.
143-145

 Especially the 

Q-band leading to characteristic derivate-shaped MCD signals around 16000 cm
-1

 is 

extremely useful, since it is very sensitive to structural changes. For this reason, polystyrene 

films with varying concentrations of the famous SIM (NBu4)[Dy(Pc)2]
25

 were studied by 

MCD-spectroscopy. The films were prepared by mixing various amounts of solutions of 

polystyrene in toluene and (NBu4)[Dy(Pc)2] in ethanol and spreading the mixture onto glass 

slides for drying. The effective thickness, i.e. the number of molecules along the direction of 

light propagation for the MCD measurements was estimated with the help of the mass and the 

physical thickness of the dried film. A more detailed description is given in the experimental 
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part. The [Dy(Pc)2]
-
 species oxidized during the film drying process and nearly quantitative 

oxidation was confirmed by comparing the room temperature electronic absorption spectrum 

of the most highly concentrated film with reported spectral data
146

 of the [Dy(Pc)2] complex 

in different redox states. The corresponding absorption spectrum is provided in the appendix, 

section 8.2.3. It was thus not the MCD signal of the anionic form but the signal of the neutral 

form of the compound that was observed during the sensitivity studies. However, since the 

neutral form is also expected to show SIM behavior
147

 and since the main interest was to 

probe the possibility of monolayer detection, the oxidation was not a concern.  

The obtained baseline-corrected MCD-spectra of the most highly concentrated film 

with an estimated effective thickness of 3.2 molecules are shown in Figure 35a. The spectra 

were recorded at 2 K and various magnetic fields, as indicated. The main feature is a strong 

negative peak at 15198 cm
-1

, which is attributed to the Q-band and serves as the reference 

peak for comparison with the spectra of the lower concentrated films. The magnetic field 

dependence of this peak shows that at 2 T, the intensity is close to saturation and further 

increasing the magnetic field would not result in a significant intensity gain. Thus, the spectra 

of the lower concentrated films were recorded at 2 K and 2 T only. A comparison of the 

spectra for the different concentrations is shown in Figure 35b: Down to an effective 

thickness of 0.06 molecules, a clear MCD signal was observed. This number is extremely 

small and it has to be emphasized that the estimation of the films’ effective molecular 

thicknesses (see experimental section) was not very accurate.  

 

 

Figure 35: MCD spectra of films of the oxidized dysprosium bis(phthalocyanine) complex. a) Spectra of the 

most highly concentrated film with an estimated effective thickness of 3.2 molecules, recorded at 2 K and 

various magnetic fields. b) MCD spectra for different concentrations recorded at 2 K and 2 T. The estimated 

effective thicknesses of the films are shown online. 
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This is clearly demonstrated in the spectra of films 2 and 3, since for both of them an effective 

thickness of 0.7 molecules was calculated but different MCD intensities are observed. The 

intensity difference indicates large error bars. However, these preliminary results are very 

promising and strongly hint at the possibility of monolayer detection.  

Monolayer detection was probed by studying samples of dysprosium 

bis(phthalocyanine) deposited on fused quartz coverslips. The samples were fabricated by Dr. 

Jiří Novák, Dr. Chennan Wang and Jakub Rozbořil at the Central European Institute of 

Technology at the Masaryk University, Brno by Langmuir-Blodgett deposition of a 

1.78 mg ml
-1

 solution of (NBu4)[Dy(Pc)2] in chloroform. Preliminary characterization by 

XRD measurements indicated effective thicknesses of 1-2 molecules. An example for a 

baseline-corrected MCD-spectrum at 1.5 K and 2 T is shown in Figure 36a. It is gratifying to 

see that the spectrum clearly shows the expected negative MCD peak even though it is weaker 

than expected from the results on the polystyrene films. The spectrum thus confirms the 

previously assumed possibility of monolayer detection for lanthanide bis(phthalocyanines).  

Figure 36b shows the MCD detected hysteresis curve for the Langmuir-Blodgett 

deposited sample recorded at 1.5 K. The wavelength was kept fixed at 656 nm and the 

intensity data were recorded while sweeping the magnetic field between –2 and +2 T with a 

sweep rate of 0.5 T min
-1

. The hysteresis curve shows a clear and promising opening, possibly 

due to slow relaxation of magnetization. Work in this direction is still ongoing and 

measurements on more and better characterized samples will be performed in the near future. 

Interesting aspects are for example the orientation dependence or the behavior of multilayers.  

 

 

Figure 36: MCD spectra of a dysprosium bis(phthalocyanine) layer deposited on fused quartz. a) Baseline 

corrected MCD spectrum recorded at 1.5 K and 2 T. b) MCD detected hysteresis curve at 1.5 K, 656 nm and a 

magnetic field sweep rate of 0.5 T min
-1

.  
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4.2 Molecular Lanthanide Tetra-Carbonates 

 

Preliminary work regarding this subproject was performed by Claudio Eisele during his six 

week student’s research internship (February/March 2012) and by Julia E. Fischer as part of 

her diploma thesis (April – October 2012).
148

 Both projects were carried out under my 

supervision. Work done by others is indicated in the text at the position where it appears for 

the first time.  

 

Part of the results presented below has already been published in: Journal of the American 

Chemical Society, 2015, 137, 13114 – 13120.
149

 

 

4.2.1 Synthesis and Structural Characterization 

The molecular tetra-carbonates 1-Er and 1-Dy with the general formula 

[C(NH2)3]5[Ln(CO3)4] ∙ 11 H2O (Ln = Er, Dy) were synthesized according to a slightly 

modified literature method
26

 by mixing aqueous solutions of guanidine carbonate and the 

respective Ln(III) nitrate. Filtering off the resulting precipitates led to clear solutions out of 

which the products were crystallized. Pale pink (1-Er) and colorless (1-Dy) crystals were 

obtained that were characterized by elemental analysis and conventional infrared 

spectroscopy.  

Elemental analyses were performed by Barbara Förtsch (Institute of Inorganic 

Chemistry, University of Stuttgart) and the analyses of freshly prepared samples showed 

excellent agreement between experimental and calculated values. However, the compounds 

tend to lose lattice water molecules, as shown by repetition of the elemental analyses after the 

crystals had been exposed to air for six days. The corresponding data are given in 

section 6.2.1.  

Conventional infrared spectra at room temperature were recorded as part of the 

diploma thesis by Julia E. Fischer.
148

 The observed peaks agree well with the reported 

literature data
27

 and can be assigned to the internal modes of the coordinated bidentate 

carbonate anions
27,150

 (appendix, section 8.3.1).  

X-Ray crystallographic analyses at 100 K, performed by Dr. Wolfgang Frey (Institute 

of Organic Chemistry, University of Stuttgart), revealed that both 1-Er and 1-Dy crystallize 

as hendecahydrates in the monoclinic space group P21/n. The respective cell parameters are 

listed in Table 2 and for 1-Er they are in good agreement with the data published by Goff et 
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al.
26

 For the dysprosium tetra-carbonate, Goff et al. reported the chemical formula 

[C(NH2)3]4[Dy(CO3)4(H2O)](H3O
+
) ∙ 13 H2O, including a ninefold coordinated Dy(III) central 

ion, in contrast to our results. They reported a rather atypical Dy-H2O bond and a hydronium 

ion in the lattice for charge balance.
26

 However, since the accurate determination of hydrogen 

positions solely by X-Ray diffraction studies is rather difficult, their assignments are not 

beyond doubt. Janicky et al. reported the structures of a series of molecular lanthanide tetra-

carbonates with the chemical formulae [C(NH2)3]5[Ln(CO3)4(H2O)] ∙ 2 H2O (for Ln = Pr(III), 

Nd(III), Sm(III), Eu(III), Gd(III), Tb(III)) and [C(NH2)3]5[Ln(CO3)4] ∙ 2 H2O (for Ln = Y(III), 

Dy(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III)), showing a change in the coordination 

number from nine for Tb(III) to eight for Dy(III) due to the decreasing ionic radii of the 

Ln(IIII) central ions.
27

 Although they obtained dihydrates instead of hendecahydrates, which 

might be attributed to their different synthetic procedure
27

, their finding supports the eight-

fold coordination of Dy(III) in 1-Dy found in this work.  

 

Table 2: Crystallographic data for 1-Er and 1-Dy at 100 K. 

 [C(NH2)3]5[Er(CO3)4] ∙ 11 H2O 

(1-Er) 

[C(NH2)3]5[Dy(CO3)4] ∙ 11 H2O 

(1-Dy) 

formula weight / g mol
-1

 905.92 901.10 

a / Å 8.8284(6) 8.7616(6) 

b / Å 20.9625(14) 21.1384(16) 

c / Å 19.6598(13) 19.7207(13) 

 / deg 90.00 90.00 

 / deg 94.266(2) 94.254(2) 

 / deg 90.00 90.00 

volume / Å
3
 3628.3(4) 3642.3(4) 

Z 4 4 

R-factor / % 4.73 7.42 

space group P21/n P21/n 

system monoclinic monoclinic 
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The crystal structures of 1-Er and 1-Dy were reproducible for several batches and the 

obtained data can be considered reliable. Experimental details about the structure 

determination and refinement are provided in the experimental part, section 6.2.2. 

The unit cells of 1-Er and 1-Dy contain discrete [Ln(CO3)4]
5-

 anionic units, where the 

Ln(III) centers are coordinated by eight oxygen atoms of the bidentate carbonate ligands. For 

molecular symmetry considerations, it is helpful to map the distances between the carbonate 

carbon atoms of the [Ln(CO3)4]
5-

 anions, as shown in Figure 37. Three sets of distances are 

found, showing that the site symmetry is far from perfectly tetrahedral (all distances in Å): 

3.970/4.030, 4.318/4.352, 5.043/5.069 for 1-Er and 4.046/4.101, 4.297/4.384, 5.138/5.139 for 

1-Dy. The highest approximate symmetry is thus C2v, which was used for the analysis of the 

spectroscopic data. The real symmetry is C1 since the rest of the ligands has to be taken into 

account as well. The average Ln-O bond lengths are 2.336 Å for 1-Er and 2.363 Å for 1-Dy, 

which is somewhat shorter than in reported extended three-dimensional Ln(III) carbonate 

structures
151-154

 and thus further confirms the molecular nature of the systems.  

As shown in Figure 38, the [LnO8] polyhedra and the guanidine counter ions 

[C(NH2)3]
+
 are stacked in columns along the crystallographic a axis and are separated by 

ribbons of guanidine cations stacked along b in the bc plane. Within the ab plane, the [LnO8] 

units are separated by guanidine counter ions and lattice water molecules. Although the water 

molecules are part of an extended network of hydrogen bonds, they also act as additional 

spacers between the Ln(III) centers. Indeed, the shortest Er-Er and Dy-Dy distances in 1-Er 

and 1-Dy are 8.828 Å and 8.762 Å, respectively, justifying neglecting of intermolecular 

interactions.
155

  

 

 

Figure 37: a) Crystallographically determined molecular structure of the [Er(CO3)4]
5-

 anion in 1-Er viewed 

perpendicular to the pseudo C2-axis. b) Molecular structure of the [Er(CO3)4]
5-

 anion in 1-Er viewed along the 

pseudo C2-axis, with distances between carbonate carbon atoms (in Å) indicated. c) Molecular structure of the 

[Dy(CO3)4]
5-

 anion in 1-Dy viewed along the pseudo C2-axis, with distances between carbonate carbon atoms (in 

Å) indicated. 
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Figure 38: Packing diagrams of 1-Er. Left: Unit cell viewed along the crystallographic a axis. Right: View along 

the crystallographic c axis. Erbium: green, oxygen: red, nitrogen: violet, carbon: grey, hydrogen: light grey. 

 

The identity and phase purity of the compounds were further confirmed by room 

temperature X-ray powder diffraction studies performed by Dr. Pierre Eckold at the Institute 

of Inorganic Chemistry at the University of Stuttgart. Figure 39 shows the experimentally 

obtained X-ray diffraction data of 1-Er and 1-Dy together with the calculated diffraction 

patterns. The peak positions agree rather well, only some slight signal intensity differences 

were observed. These intensity differences are probably due to the fact that the powders were 

measured in their respective mother liqueurs while the calculated patterns are based on the 

single crystal X-ray analysis.  

 

Figure 39: Powder X-ray diffraction patterns of 1-Er and 1-Dy at room temperature. Red and green color refers 

to experimentally observed data while simulated diffraction patterns are displayed in blue. The measurements 

were performed by Dr. Pierre Eckold. 
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4.2.2 Magnetic Properties 

The magnetic characterization of 1-Er and 1-Dy was carried out by means of detailed 

direct current (dc) and alternating current (ac) susceptibility and magnetization measurements. 

Figure 40 shows the temperature dependence of the products of the molar magnetic 

susceptibility  and the temperature T for 1-Er and 1-Dy, studied as mixtures with silicone 

grease. The dc T value of 1-Er at room temperature is T = 10.82 cm
3
 K mol

-1
 while for 

1-Dy a room temperature value of T = 13.12 cm
3
 K mol

-1
 is observed. These numbers are 

somewhat smaller than the free ion values of 11.48 cm
3
 K mol

-1
 for the 

4
I15/2 ground term of 

1-Er and 14.17 cm
3
 K mol

-1
 for the 

6
H15/2 ground state of 1-Dy expected from Curie’s law in 

equation (53). Such deviations can be indicative for large crystal field splittings, meaning that 

not all of the crystal field states are occupied at 300 K. With decreasing temperature, T 

decreases until at 1.8 K values of T = 3.75 cm
3
 K mol

-1
 (1-Er) and 8.57 cm

3
 K mol

-1
 (1-Dy) 

are reached. This decrease is attributed to the influence of the crystal field splittings of the 

electronic ground multiplets and the resulting depopulation of higher lying crystal field states 

at low temperatures. As shown in Figure 40, the molar magnetization reaches values of 

4.59 µB (1-Er) and 5.28 µB (1-Dy) at 1.8 K and 7 T.  

Extracting the nine crystal field parameters required for C2v symmetry solely from the 

magnetic data would lead to rather meaningless results because of the problem of over-

parametrization. However, with the help of comprehensive spectroscopic studies it was 

possible to determine reliable sets of crystal field parameters that allowed reasonable 

simulation of not only the spectroscopic but also the magnetic data (solid lines in Figure 40). 

The crystal field analysis will be subject of section 4.2.4. 

The magnetization dynamics of 1-Er and 1-Dy was investigated by temperature and 

frequency dependent ac susceptibility measurements. Figure 41 shows the temperature 

dependence of the real and imaginary components ’ and ” at various ac frequencies and an 

applied dc field of Hdc = 1000 Oe. Applying a dc field in addition to the ac field permanently 

lifts the degeneracy of the microstates and therefore reduces the probability for quantum 

tunneling of the magnetization.
156

 Clear frequency dependent maxima of the out-of-phase 

susceptibilities ” are observed, indicating slow relaxation of the magnetization due to the 

presence of effective energy barriers and the inability of the magnetization to follow the 

oscillating magnetic field. However, without an applied dc field no such maxima were 

observed, meaning that 1-Er and 1-Dy are so-called field-induced single-ion magnets. 
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Figure 40: Left: Temperature dependence of the product of the magnetic susceptibility  and the temperature T 

for 1-Er (red) and 1-Dy (green). The measurements were performed at an applied dc field of 0.1 T. Right: 

Magnetic field dependence of the magnetization of 1-Er (red) and 1-Dy (green) at 1.8 K. Solid lines correspond 

to the simulations based on the crystal field analysis (see text). 

 

 

Figure 41: Temperature dependence of the ac susceptibilities for 1-Er (left) and 1-Dy (right) at an applied dc 

field of Hdc = 1000 Oe and at various ac frequencies. Top: In-Phase component '; bottom: Out-of-phase 

component ''. Solid lines are guides for the eyes. 
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The generation of Argand plots of the out-of-phase (”) as functions of the in-phase 

components (’) of the ac susceptibilities allowed the extraction of relaxation times and their 

distributions by fitting with generalized Debye functions
3,94

 (equation 56). The Argand plots 

for 1-Er and 1-Dy are shown in Figure 42. For 1-Er, the Argand diagram clearly shows two 

overlapping semicircles revealing the presence of two well separated relaxation domains. 

Satisfactory fits were therefore only possible with the help of the sum of two modified Debye 

functions
157

, yielding best-fit parameters for a fast and a slow relaxation process.  Lanthanide-

based SIMs with multiple relaxation processes are well-known in literature and the 

appearance of more than one relaxation domain is often attributed to different environments 

of the individual lanthanide ions or to intermolecular interaction.
155,157-162

 Since the Er(III) 

centers in 1-Er are all symmetry-equivalent, the second relaxation process in 1-Er appearing 

at very low temperatures (the fast process) might be attributed to the influence of distorted 

water molecules or the partial loss of lattice water. Partial loss of water molecules may result 

in increased dipolar interactions between the Er(III) centers, creating additional relaxation 

pathways. Indeed, no clear maximum of ” but only a shoulder is observed for longer dried 

samples of 1-Er and 1-Dy. The corresponding data are shown in the appendix, section 8.3.2. 

However, distinct relaxation phases with significantly different time constants were also 

reported for single spin systems and attributed to the temperature- and field-dependent 

contribution of distinct relaxations paths.
163,164

 

 

 

Figure 42: Argand plots for 1-Er (left) and 1-Dy (right) at different temperatures and an applied dc field of 

Hdc = 1000 Oe. Solid lines correspond to the best fits using generalized Debye equations.  
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For 1-Dy, the presence of two distinct relaxation processes is much less pronounced 

and the Argand plots were thus satisfactorily simulated by assuming only one relaxation 

domain. The respective best-fit parameters are listed in Table A 10 in the appendix (section 

8.3.3). The quality of the fits is further demonstrated in Figure 43, where the obtained 

parameters are used for the simulation of the frequency dependence of the ac susceptibilities 

of 1-Er and 1-Dy. For 1-Er, reliable parameters were only obtained for temperatures up to 

3.2 K (fast process) and 4.0 K (slow process), where the corresponding semi-circles in the 

Argand plots are sufficiently pronounced. The fast process not only shows significantly 

smaller relaxation times than the slow process but also much weaker temperature dependence. 

The fast process is therefore not attributed to a thermally activated 2-phonon mechanism, for 

which strong temperature dependence would be expected. However, clear temperature 

dependence was observed for the relaxation times of the slow process, indicating significant 

contributions of thermally activated relaxation mechanisms. 

 

 

Figure 43: Frequency dependence of the ac susceptibilities of 1-Er (left) and 1-Dy (right) at an applied dc field 

of Hdc = 1000 Oe and various temperatures. Top: In-phase component '; bottom: Out-of-phase component ''. 

Solid lines correspond to simulations using the parameters obtained by fitting the Argand plots.  
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While the distribution of relaxation times of the slow process is quite narrow (  0.04), that 

of the fast process is rather broad ( = 0.1 to  = 0.3), supporting the assumption of structural 

distortions being the reason for the observation of two distinct relaxation domains.  

For 1-Dy, the Argand plots provided reliable parameters for temperatures up to 6.0 K 

and the obtained parameter for the distribution of relaxation times is in the range of 

 = 0.01 (for 6.0 K) to  = 0.19 (for 1.8 K). 

In Figure 44, the relaxation times  extracted for 1-Er and 1-Dy are displayed as 

Arrhenius plots (ln  as functions of the inverse temperature T
 -1

), showing a strongly curved 

dependence for the slow process and a rather temperature independent fast process in 1-Er. 

Since a linear Arrhenius plot is expected for a pure Orbach mechanism, further relaxation 

mechanisms like quantum tunneling of the magnetization, direct relaxation and Raman 

processes have to be taken into account. The temperature dependence of these four relaxation 

mechanisms is given by the combination of equations (6), (7), (8) and (9): 

 

𝜏−1 =
𝐵1

1 + 𝐵2𝐻²
+ 𝐴𝑑𝑖𝑟𝑒𝑐𝑡 ∙ 𝐻

𝑛𝑑𝑖𝑟𝑒𝑐𝑡 ∙ 𝑇 + 𝐶𝑅𝑎𝑚𝑎𝑛 ∙ 𝑇
𝑛𝑅𝑎𝑚𝑎𝑛 + 𝜏0

−1exp ( −
Δ𝐸

𝑘𝐵𝑇
) 

 

(65) 

 

In contrast, the Arrhenius plot obtained for 1-Dy shows a pronounced linear regime at higher 

temperatures (T  3.6 K), hinting at a rather pure Orbach mechanism. A linear fit using 

equation (6) seems to be reasonable and yields an effective energy barrier of Ueff = 30 cm
-1

 

(appendix, section 8.3.4). However, at low temperatures (T  3.6 K), clear deviation from 

linearity is observed and simulating the data in the entire temperature range requires 

application of equation (65) as well. Interestingly, reasonable fits can be obtained even 

without including the Orbach mechanism at all, demonstrating that equation (65) represents a 

severely over-parametrized problem (appendix, section 8.3.4). For getting deeper insight into 

the nature of the relaxation mechanisms involved, more detailed magnetometric and 

spectroscopic studies are required.  

At very low temperatures (in practice at 1.8 K), it can be assumed that the 

contributions of the two-phonon mechanisms (Raman, Orbach) are negligible and only the 

field dependent direct relaxation and quantum tunneling processes have to be taken into 

account. Thus, further ac susceptibility measurements were performed at 1.8 K and various 

applied dc bias fields. 
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Figure 44: Arrhenius plots for 1-Er (left) and 1-Dy (right) obtained at applied dc fields of 1000 Oe. Open 

symbols correspond to the experimentally observed data. Dashed lines illustrate the different contributions to the 

relaxation while solid lines represent the sums of these contributions. For reasons of clarity, only the 

contributions to the slow process are shown for 1-Er.  

 

The resulting frequency dependence of ’ and ” as well as the simulations based on the 

parameters obtained by fitting the corresponding Argand plots are shown in the appendix, 

section 8.3.5. The field dependence of the relaxation times for 1-Er and 1-Dy is illustrated in 

Figure 45 and can be explained by equation (65): At low dc fields, quantum tunneling 

dominates and relatively fast relaxation is observed. With increasing field, the relaxation 

times increase due to suppressing of quantum tunneling until a maximum is reached at 

intermediate fields. Higher fields favor direct relaxation processes and the relaxation times 

decrease again. This behavior was modeled by using the combination of equations (8) and (9), 

i.e. the first two terms in equation (65) and least-squares fitting yielded the best-fit parameters 

given in Table 3. ndirect was fixed to the theoretical value of ndirect = 2 for a Kramers doublet in 

the presence of hyperfine interactions.
38

 

 

Table 3: Best-fit parameters describing the magnetic field-dependence of the relaxation times for 1-Er and 1-Dy 

at 1.8 K. 

 1-Er 1-Dy 

 fast process slow process  

Adirect / T
 -2

 K
-1

 s
-1

 19 ∙ 10
4
 1621 466 

B1 / s
-1

 50 ∙ 10
15

 25.2 9.82 

B2 / T
 -2

  3 ∙ 10
14

 318 58.3 
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Figure 45: Magnetic field dependence of the relaxation times of 1-Er and 1-Dy at 1.8 K. Solid lines correspond 

to the best fits (see text). 

 

At dc fields higher than 0.2 T, the relaxation times for 1-Dy increase again, which cannot be 

simulated by equations (8) and (9). Such a behavior has been observed by others as well
30

 but 

has not yet been fully understood. Possible explanations might lie for example in the presence 

of nuclear spins or small intermolecular interactions that lead to minima in the relaxation 

times at given fields.
165,166

 

Table 3 reveals that the values derived for the fast process in 1-Er are extremely larger 

than those for the slow process, supporting the previously made assumption that the fast 

process in 1-Er does not arise from a thermally driven two-phonon relaxation mechanism. 

Comparing 1-Er and 1-Dy, lower values are found for 1-Dy, consistent with the overall 

higher relaxation times in 1-Dy.  

Fixing the parameters for direct relaxation and quantum tunneling of the 

magnetization to the values given in Table 3 reduces the number of free parameters in 

equation (65). Furthermore, the Raman exponent nRaman can be fixed to the value derived for 

Kramers ions in the low temperature limit, i.e. to nRaman = 9.
38

 At this stage, the remaining 
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unknown parameters are the Raman coefficients CRaman, the attempt times 0 and the energy 

barriers E, which correspond to the energies of real intermediate crystal field states. Due to 

the strong curvature in the Arrhenius plot for the slow process in 1-Er, the magnetic data are 

not sufficient to unequivocally determine the energy of the crystal field state involved in the 

Orbach process. For 1-Dy, a preliminary linear fit yielded an effective energy barrier of 

Ueff = 30 cm
-1

 but since a reasonable fit can also be obtained by not including the Orbach 

process at all, this value might be wrong. Spectroscopic measurements are thus mandatory for 

determining the crystal field states of 1-Er and 1-Dy. As will be shown below, the first crystal 

field excited doublets are located at 52 cm
-1

 (1-Er) and 29 cm
-1

 (1-Dy). Using them as fixed 

values for E, the best-fit parameter values given in Table 4 were obtained. The 

corresponding simulations are shown in Figure 44.  

Altogether, the derived parameter values indicate the dominance of the Raman 

mechanism and the direct relaxation for the slow process in 1-Er in the studied temperature 

range. In contrast, the contribution of the Orbach mechanism for 1-Dy is much more 

pronounced although the energy barrier, i.e. the energy of the first excited Kramers doublet, 

seems to be lower. These results clearly demonstrate that SIM behavior cannot be solely 

explained by large crystal field splittings.  

 

Table 4: Best-fit parameters describing the thermally assisted magnetic relaxation in 1-Er and 1-Dy. 

 1-Er 1-Dy 

 fast process slow process  

E / cm
-1 - 52 29 

0 / s
-1

 - 1.2 ∙ 10
-12 

1.8 ∙ 10
-7 

CRaman / K
-9

 s
-1

  0.57 0.02 0.001 

 

 

4.2.3 Spectroscopic Results 

To determine the energies of the crystal field levels and to obtain more information 

about the composition of the eigenstates that are responsible for the static and dynamic 

magnetic properties, extensive spectroscopic studies on 1-Er and 1-Dy were carried out.  

With the help of Raphael Marx and Dr. María Dörfel (Institute of Physical Chemistry, 

University of Stuttgart), far-infrared (FIR) spectra at 9 and 10 K and at magnetic fields 



 86  Results and Discussion 

 

between 0 T and 6 T were recorded. Figure 46 shows the obtained transmission spectra as 

well as the normalized spectra obtained by dividing by the spectra at 6 T. For 1-Er, three 

crystal field excitations were observed, namely at 52, 84 and 105 cm
-1

. The splitting of the 

middle feature is attributed to the coupling of crystal field and vibrational transitions. Similar 

splittings were observed in the far-infrared spectra of the four-coordinate Co(II) complexes 

studied in the further course of this work (section 4.3.3), for which theoretical calculations 

confirmed the presence of spin-phonon couplings.
167

 Crystal field analysis for 1-Er (see 

below) confirmed that the level at 52 cm
-1

 corresponds to the first excited Kramers doublet 

and this value was therefore used as E for the simulation of the Arrhenius plot (Figure 44). 

The normalized FIR-spectrum of 1-Dy shows an intense feature at around 100 cm
-1 

that can 

be attributed to a crystal field excitation. Interestingly, there is no clear signal close to 30 cm
-1

 

as expected from the magnetic data. Further spectroscopic data are required to find out the 

reason for this discrepancy as well as the correct energetic position of the first excited crystal 

field state.  

 

 

Figure 46: Far-infrared spectra of 1-Er (left) and 1-Dy (right) recorded at 9 K and 10 K, respectively. Asterisks 

indicate signals that arise from crystal field excitations. The spectra were recorded with the help of Raphael 

Marx and Dr. María Dörfel. 
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Another useful method for gaining information about the Kramers doublets within the 

electronic ground term is luminescence spectroscopy. Thus, solid state luminescence spectra 

of 1-Er and 1-Dy at low temperatures were recorded at the University of Copenhagen with 

the help of Maren Gysler (Institute of Physical Chemistry, University of Stuttgart), 

Dr. Stergios Piligkos and Theis Brock-Nannestad (both Department of Chemistry, University 

of Copenhagen).  

Er(III) is mainly known for its NIR emission
102,168

 but some Er(III) compounds display 

luminescence in the visible range as well.
169-171

 Especially the transition from the excited 
4
S3/2 

multiplet to the 
4
I15/2 ground state has been shown to be very useful for the determination of 

the crystal field level structure of the electronic ground term.
170

 However, no Er(III) emission 

was observed in the luminescence spectra of 1-Er, neither in the visible nor in the NIR range. 

Instead of the expected Er(III)-based sharp luminescence signals a very broad feature was 

observed, exhibiting negative dips located at 355, 364, 379, 403, 442, 449, 485, 520 and 

541 nm. An example of a spectrum recorded at 20 K using an excitation wavelength of 

290 nm is shown in the appendix, section 8.3.6. The energies of the negative dips match the 

optical absorption bands (see below) and therefore might be attributed to resonant 

reabsorption of the ligand emission by the Er(III) center. Similar reabsorption phenomena 

have been already observed by others.
172-174

 According to the Dieke diagram
62

, the observed 

dips can be assigned to the following f-f-transitions of the Er(III) ion: 
4
I15/2  

2
G7/2, 

2
K15/2, 

4
G9/2 (335 and 364 nm), 

4
I15/2  

4
G11/2 (379 nm), 

4
I15/2  

2
H9/2 (403 nm), 

4
I15/2  

4
F3/2 

(442 nm), 
4
I15/2  

4
F5/2 (449 nm), 

4
I15/2  

4
F7/2 (485 nm), 

4
I15/2  

2
H11/2 (520 nm) and 

4
I15/2  

4
S3/2 (541 nm). Increasing the excitation wavelengths in order to avoid ligand 

excitation led to a weakening of the negative dips, but still no Er(III) luminescence was 

observed, indicating efficient quenching mechanisms, e.g. due to the surrounding water 

molecules. Luminescence spectroscopy thus turned out to be unsuitable for determining the 

ground state crystal field splittings of 1-Er. Instead, excited state splittings probed by 

electronic absorption and MCD-spectroscopy had to be used for indirectly obtaining more 

information about the ground state levels.  

In contrast, usable luminescence data were obtained for 1-Dy and signals arising from 

the transitions 
4
F9/2  

6
H15/2 and 

4
F9/2  

6
H13/2 were observed in the recorded low 

temperature luminescence spectra. As shown in Figure 47, the emission bands show splitting 

patterns due to the crystal field splitting of the respective final states and the 
4
F9/2  

6
H15/2 

emission thus yields information about the ground state level structure while the 
4
F9/2  

6
H13/2 

transition complements the absorption and MCD data. However, Figure 47 clearly shows that 
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the resolution is not sufficient to unequivocally determine the energies of all the crystal field 

levels involved and the observed patterns thus only allow their rough estimation. The low 

resolution might be due to overlapping vibronic transitions, which is a common problem in 

optical lanthanide spectra, or due to distributions in the crystal field parameters.
60

 Only the 

better resolved emission lines were thus initially included in the crystal field analysis for 1-Dy 

(section 4.2.4). Interestingly, the high-energy peak in the 
4
F9/2  

6
H15/2 emission spectrum 

shows a shoulder, for which Gaussian deconvolution yielded an energy separation of 29 cm
-1

. 

It is not fully clear at this stage if this energy separation corresponds to the energy of an 

excited Kramers doublet or if it is due to a vibronic transition. Strikingly, the value of 29 cm
-1

 

coincides well with the effective energy barrier derived from the ac susceptibility 

measurements and should thus be considered at least as an option for the energy of the first 

excited doublet in the crystal field analysis. If so, the luminescence spectrum hints at the 

second excited doublet lying at 94 cm
-1

, in reasonably good agreement with the observed 

signal in the FIR-spectrum.  

All in all, FIR and luminescence spectroscopy provided information about the energies 

of some single Kramers doublets but they did not allow the full determination of the ground 

state level structures, neither for 1-Er nor for 1-Dy. Even the observation of all eight expected 

transitions would not be sufficient for the unambiguous determination of the nine crystal field 

parameters required in C2v symmetry.  

 

 

Figure 47: Low temperature luminescence spectra of 1-Dy for the transitions from 
4
F9/2 to the ground multiplet 

6
H15/2 (left) and to the first excited multiplet 

6
H13/2 (right). Blue solid lines show the experimentally obtained 

spectra while green lines show the deconvolution into individual Gaussian bands (dashed lines) and their sums 

(solid lines). Black bars show the calculated transition energies based on the crystal field analysis. The spectra 

were recorded with the help of Maren Gysler, Dr. Stergios Piligkos and Theis Brock-Nannestad.  
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That means that spectroscopic methods which solely probe the ground multiplet of low-

symmetry compounds at best allow the determination of energies but not the determination of 

crystal field parameters that correctly describe the nature of the states. However, it is mainly 

the nature of the states that determines the dynamic magnetic properties.  

Electronic absorption and MCD-spectroscopy at low temperatures were thus used for 

determining as many energy levels as possible, including those that are most sensitive to the 

variation of certain crystal field parameters Bkq. For Er(III), these are the levels arising from 

the free ion terms 
4
S3/2, 

4
F3/2 (k = 2), 

4
F5/2, (k = 4) and 

4
I9/2 (k = 6) while for Dy(III) the levels 

arising from 
6
F3/2 (k = 2), 

6
F5/2 (k = 4) and 

6
F7/2, 

4
F9/2 (k = 6) are most sensitive to changes of 

the parameters with the k-values given in brackets.
60

 A wealth of high resolution 

UV/Vis/NIR-absorption and MCD-spectra of 1-Er and 1-Dy dispersed in transparent silicone 

grease were recorded and the observed signals were assigned to the corresponding free ion 

terms according to the Dieke diagram
62

. Some selected examples are shown in Figure 48 and 

Figure 49 while further spectra are shown in the appendix, section 8.3.7.  

 

 

Figure 48: Selected examples of electronic absorption and MCD-spectra of 1-Er recorded at 2 K and 3 T. 

Experimentally observed spectra are shown in blue while red lines show the deconvolution into individual 

Gaussian lines (dotted) and their sums (solid). Black bars depict the calculated transition energies based on the 

parameters obtained from crystal field analysis.  
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Figure 49: Selected examples of electronic absorption and MCD-spectra of 1-Dy recorded at 2 K and 3 T. 

Experimentally observed spectra are shown in blue while green lines show the deconvolution into individual 

Gaussian lines (dotted) and their sums (solid). Black bars depict the calculated transition energies based on the 

parameters obtained from crystal field analysis. 

 

The signals are clearly split due to the excited state crystal field splittings and the 

individual energetic positions were determined by careful deconvolution into sums of 

Gaussian lines. In some cases, the signal shapes were better reproduced by adding more 

Gaussian lines than expected according to the multiplicity of the final states. Similarly to the 

luminescence spectra, the additional peaks can be attributed to vibronic excitations since most 

f-f transitions are induced electric dipole transitions and might gain intensity by vibronic 

coupling to ungerade vibrational modes.
60

 The FIR-spectra already confirmed the existence of 

vibrational transitions in the same energy range as the crystal field splittings. This aspect was 

kept in mind during the subsequent crystal field analysis and in most cases the lower-energy 

component was used. However, structural imperfections, e.g. caused by the lattice water 

molecules in 1-Er and 1-Dy, might also have led to the observed satellite bands. From the 

FIR and optical spectra together, the energetic positions of no fewer than 48 crystal field 

levels of 1-Er and 55 levels of 1-Dy were determined, with the main contribution provided by 
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electronic absorption and MCD-spectroscopy. These energy levels provided the foundation 

for the subsequent crystal field analysis.  

The above-mentioned spectroscopic measurements were complemented by EPR-

spectroscopy since this method is exquisitely sensitive to the composition of the lowest 

Kramers doublet and can therefore be applied as a tool for verifying the correct description of 

the ground state by a set of empirically determined crystal field parameters. Low-temperature 

EPR-spectra of mulls of 1-Er and 1-Dy in fluorolube® were recorded at conventional X-band 

frequency (9.5 GHz) and at higher frequencies (90 – 400 GHz). The high-frequency EPR 

(HFEPR) spectra were recorded with the help of Raphael Marx and Dr.-Ing. Petr Neugebauer 

(both Institute of Physical Chemistry, University of Stuttgart). As shown in Figure 50, two 

clear and one weaker resonance line with effective g-values of g1 = 7.64, g2 = 4.85 and 

g3 = 1.94 are observed in the HFEPR-spectra of 1-Er.  

 

 

Figure 50: Low temperature multi-frequency EPR-spectra of 1-Er (left) and 1-Dy (right). Blue lines correspond 

to experimental spectra while dashed red (1-Er) or green (1-Dy) lines show the simulations based on the 

effective g-tensors obtained from the crystal field analysis. The HFEPR-spectra were recorded with the help of 

Raphael Marx and Dr.-Ing. Petr Neugebauer. 
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For 1-Dy, the situation looks more complicated: The EPR signals show complex 

structures and the determination of the principal g-values from the experimental spectra is not 

straightforward. Within the Seff = ½ model and neglecting the structure observed in the 

spectra, the best simulation is obtained using g1 = 12.5, g2 = 6.0 and g3 = 2.5 but the 

uncertainties are rather high. The reason for the observed structure is not fully clear. One 

possible explanation is the presence of very low-lying excited Kramers doublets that are 

populated at low temperatures and contribute to the observed signals. However, according to 

the results of the crystal field analysis (see below), this explanation can almost certainly be 

ruled out. Another, more probable explanation is the effect of structural distortions like 

impurities or disordered water molecules that lead to slight variations of the environment of 

the individual Dy(III) centers.
38

 Indeed, as evidenced by the crystallographic R-indices of 

4.73 % for 1-Er and 7.42 % for 1-Dy, the crystal quality of 1-Dy was worse compared to that 

of 1-Er, which further supports this explanation.  

 

4.2.4 Crystal Field Analysis and Electronic Structure 

Based on the combined results from FIR, optical and EPR-spectroscopy, crystal field 

parametrization was performed for complexes 1-Er and 1-Dy in order to find out the 

composition of their eigenfunctions. The employed Hamiltonian was introduced in section 2.2 

and consists of a free-ion part and a crystal field part:
55,56,60

 

 

ℋ𝑓𝑟𝑒𝑒 𝑖𝑜𝑛 = 𝐸𝐴𝑉𝐸 + ∑ 𝐹𝑘𝑓𝑘
𝑘=2,4,6

+ 𝜁4𝑓𝐴𝑆𝑂 +  𝛼𝐿(𝐿 + 1) + 𝛽𝐺(𝐺2) + 𝛾𝐺(𝑅7)

+ ∑ 𝑡𝑖𝑇
𝑖

𝑖=2,3,4,6,7,8

+ ∑ 𝑚𝑘𝑀
𝑘 + ∑ 𝑝𝑘𝑃

𝑘

𝑘=2,4,6𝑘=0,2,4

  

 

 

 

(10) 

 

𝑉𝐶𝐹(𝐶2𝑣) =  𝐵20𝐶0
(2)
+ 𝐵22(𝐶−2

(2)
+ 𝐶2

(2)
) + 𝐵40𝐶0

(4)
+ 𝐵42(𝐶−2

(4)
+ 𝐶2

(4)
)

+ 𝐵44(𝐶−4
(4)
+ 𝐶4

(4)
) + 𝐵60𝐶0

(6)
+ 𝐵62(𝐶−2

(6)
+ 𝐶2

(6)
)

+ 𝐵64(𝐶−4
(6)
+ 𝐶4

(6)
) + 𝐵66(𝐶−6

(6)
+ 𝐶6

(6)
)  

 

 

 

 

 

(21d) 

 

The free-ion parameters and the crystal field parameters were determined by least-squares 

fitting of calculated against experimental energy levels using the software package “f-shell 

empirical programs” developed by Prof. Dr. Michael F. Reid (Department of Physics and 

Astronomy, University of Canterbury)
175

. The calculations were performed in the full basis of 
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states arising from the respective 4f
 N

 configuration, i.e. 364 states for 1-Er and 2002 states 

for 1-Dy. Of the free ion parameters only EAVE, F
 2

, F
 4
, F

 6
 and  𝜁4𝑓 were varied. The 

remaining parameters have no significant influence on the crystal field splittings and were 

thus kept fixed to mean literature values.
60

 

The main difficulty during the fitting process arose from the presence of overlapping 

bands in the optical spectra and their assignment to crystal field or vibronic transitions. Thus, 

the following procedure was chosen: The spectroscopically determined energies were first 

ordered in ascending energy and preliminarily assigned. These preliminary assignments to 

crystal field or vibronic transitions were mainly based on the signal intensities and linewidths. 

After the actual least-squares fitting had taken place, some signals were reassigned and the 

fitting was repeated. Different sets of starting parameters were tried and once a reasonable 

agreement between experimental and calculated energy levels had been achieved, the quality 

of the obtained parameter set was checked by simulating the corresponding EPR-spectra and 

the static magnetic data. The effective g-tensors required for simulating the EPR-spectra were 

calculated with the help of the program pycf
176

, written by Sebastian Horvath (Department of 

Physics and Astronomy, University of Canterbury). The parameter set that described the 

spectroscopic and magnetic data in the most satisfactory way was finally fine-tuned by 

manually adjusting the crystal field parameters. The final parameter sets obtained for 1-Er 

and 1-Dy are listed in Table 5 while Table A 13 and Table A 14 in the appendix provide a 

comparison between experimental and calculated energy levels. The root mean squares (rms) 

deviations for 1-Er and 1-Dy are ca. 17 cm
-1

 and ca. 18 cm
-1

, respectively, confirming the 

quality of the fits. As a rule of thumb, parameter sets leading to rms values below 20 cm
-1

 are 

considered as reasonably describing the electronic structure.
60

  

 The crystal field parameters were transformed to lie in the standard range defined by 

0  B22/B20  (1/6)
1/2

. Standardization of crystal field parameters corresponds to 90 degree 

rotations of the coordinate frame and was proposed by Rudowicz et al. in order to facilitate 

the comparison of crystal field parameters for different compounds.
177,178

 Most of the 

parameters obtained for 1-Er and 1-Dy are reasonably similar but B40 and B60 differ 

significantly. However, Burdick et al. pointed out that crystal field standardization based 

exclusively upon rank 2 terms might be insufficient and they proposed to utilize crystal field 

strength parameters instead of standardized crystal field parameters for comparing the 

influence of the crystal field in different compounds.
179
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Table 5: Free-ion and crystal field parameters determined for 1-Er and 1-Dy. 

free-ion parameters / cm
-1

 crystal field parameters / cm
-1 

 1-Er 1-Dy  1-Er 1-Dy 

EAVE 35469  10 55944  60 B20 145  50 189  30  

F
 2
 95991  100 91778  240 B22 40  25 10  40 

F
 4
 69046  105 64782  260 B40 0  50 –460  100 

F
 6
 51686  170 50920  210 B42 930  30 828  40 

𝜁4𝑓 2355  2 1883  3 B44 –386  30 –510  90 

 (fixed) 15.86 17.86 B60 350  30 613  50 

 (fixed) -541 -628 B62 440  20 293  100 

 (fixed) 1572 1170 B64 620  15 540  70 

T
 2 

(fixed) 286 326 B66 330  50 400  30 

T
 3 

(fixed) 48 23    

T
 4 

(fixed) 14 83 crystal field strength parameters / cm
-1

 

T
 6 

(fixed) -319 -294  1-Er 1-Dy 

T
 7 

(fixed) 203 403 S
 2
 70  32 85  31 

T
 8 

(fixed) 333 340 S
 4
 475  37 483  94 

M
 0 

(fixed) 5.58 4.46 S
 6
 339  36 334  87 

M
 2 

(fixed) 3.12 2.50    

M
 4 

(fixed) 2.12 1.69    

P
 2 

(fixed) 730 610    

P
 4 

(fixed) 548 458    

P
 6 

(fixed) 365 305    
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The crystal field strength parameters are defined by
60

 

 

𝑆𝑐𝑓
𝑘 = √

1

2𝑘 + 1
[(𝐵𝑘0)2 + 2∑ |𝐵𝑘𝑞|²

𝑞>0

] 

 

 

(66) 

 

and are invariant under rotation of the coordinate frame. Indeed, the crystal field strength 

parameters obtained for 1-Er and 1-Dy are very similar (Table 5), as expected for 

isostructural compounds. Only the rank 2 parameters show some deviation, which might be 

ascribed to the parameter uncertainties. The parameter uncertainties given in Table 5 were 

estimated by taking the standard deviations given in the f-shell output and modifying them by 

considering the effect of parameter change on the EPR simulations.   

The simulations of the magnetic data and the EPR-spectra based on the final parameter 

sets are shown in Figure 40 and Figure 50 while black bars in Figure 48, Figure 49, Figure A 

11 and Figure A 12 indicate the calculated transition energies in the electronic absorption and 

MCD-spectra. Excellent agreement between experimental data and simulations was achieved 

for 1-Er, confirming the reliability of the obtained set of crystal field parameters. The energy 

of the first excited Kramers doublet was calculated to be 44 cm
-1

, showing that the signal in 

the FIR-spectra at 52 cm
-1

 corresponds to a transition to this state.  

An interesting point and important to mention is the fact that a rather different 

parameter set with a lower rms deviation (about 13 cm
-1

) was obtained for 1-Er when only the 

optically and FIR-spectroscopically determined energy levels were taken into account during 

the fitting procedure.
149

 However, this parameter set did not allow for satisfying simulations 

of the EPR-spectra and the magnetization curve, e.g. it does not correctly describe the 

composition of the lowest Kramers doublet. Thus, the important conclusion can be drawn that 

crystal field analyses exclusively based on optical data in some cases might be insufficient to 

find crystal field parameters that allow the explanation of the magnetic properties.  

For 1-Dy, the agreement between experiment and simulation is still reasonably good, 

but worse than for 1-Er. This can be explained by partially less defined signals in the optical 

spectra of 1-Dy and the obtained structure in the EPR-spectra, which complicated the accurate 

determination of the experimental g-values. The worse agreement is also reflected in higher 

parameter uncertainties (Table 5). Interestingly, the crystal field analysis for 1-Dy strongly 

hints at the first excited Kramers doublet lying at about 30 cm
-1

, in agreement with the energy 

barrier derived by a linear fit to the Arrhenius plot but in contrast to the FIR-spectrum. 

Attempts to find parameter sets which describe very low lying first excited Kramers doublets 
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or very high lying ones, explaining the absence of a signal at 30 cm
-1

 in the FIR-spectrum, 

were not successful. For such parameter sets either the simulation of the magnetization curve 

or the simulated EPR-spectra were unacceptable.  

This gives rise to the following questions: a) Is the best-fit parameter set obtained for 

1-Dy able to explain the missing signal in the FIR-spectrum and b) Do the crystal field 

parameters for both 1-Dy and 1-Er allow for the understanding of the dynamic properties, 

which is one of the main purposes of crystal field analysis in the field of molecular 

magnetism? To answer these questions, it is useful to look at the compositions of the 

eigenfunctions, which are provided in Table 6 and Table 7. For 1-Er, a strongly mixed ground 

doublet is obtained, containing not only contributions from low mJ values but also from both 

positive and negative mJ components within the same microstate. For instance, the first 

microstate of the ground doublet is described by: 

|KD1⟩ = ∑ ci|mJ⟩i = 0.50 |–
13

2
⟩ –0.50 |–

5

2
⟩+0.42 |

11

2
⟩ –0.36 |

3

2
⟩ –0.27 |

15

2
⟩ –0.27 |–

1

2
⟩ –0.20 |–

9

2
⟩. 

In a qualitative way, this already explains the observation of efficient under-barrier relaxation 

of the magnetization, making 1-Er a relatively poor single-ion magnet. The ground state in 1-

Dy also shows a mixed character but less than for 1-Er and with main contributions from 

mJ = 13/2 (68 %) and mJ = 9/2 (20 %), e.g. relatively high mJ values.  

 

Table 6: Calculated energy levels and composition of the wave functions for the ground multiplet 
4
I15/2 in 1-Er. 

KD E / cm
-1 

composition of the wave functions / % 

  1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 

1 0 7 13 25 2 4 17 25 7 

2 44 < 1 < 1 5 3 8 35 21 27 

3 91 29 18 < 1 31 8 < 1 5 8 

4 112 28 36 14 4 10 4 3 2 

5 280 31 3 13 29 5 10 9 < 1 

6 325 < 1 1 4 < 1 59 < 1 34 < 1 

7 437 3 28 36 12 6 10 2 3 

8 462 < 1 < 1 3 21 < 1 24 < 1 51 
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Table 7: Calculated energy levels and composition of the wave functions for the ground multiplet 
6
H15/2 in 1-Dy. 

KD E / cm
-1 

composition of the wave functions / % 

  1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 

1 0 3 < 1 2 2 20 4 68 < 1 

2 29 < 1 10 < 1 11 < 1 69 6 3 

3 105 38 4 30 < 1 21 < 1 6 < 1 

4 138 12 23 9 30 10 < 1 < 1 16 

5 182 6 20 2 9 9 3 1 50 

6 302 1 < 1 24 13 28 6 13 15 

7 348 2 11 12 29 10 17 4 15 

8 385 38 30 20 7 1 1 1 < 1 

 

 

Under-barrier relaxation is therefore expected to be less operative in 1-Dy than in 1-Er, 

consistent with the lower coefficients for quantum tunneling of magnetization, direct 

relaxation and the Raman process for 1-Dy than for 1-Er (compare section 4.2.2).  

A more quantitative consideration is possible by calculating the magnetic dipole 

strengths for the transitions between the microstates within the ground multiplets. The 

magnetic dipole strengths DMD are given by the squared magnetic dipole matrix elements
98

 

 

𝐷𝑀𝐷 = |⟨𝑙
𝑁𝛼𝑆𝐿𝐽𝑀|−

𝑒ℎ

4𝜋𝑚𝑒𝑐
(�̂� + 2�̂�)𝜌

(1)
|𝑙𝑁𝛼′𝑆′𝐿′𝐽′𝑀′⟩|

2

 
 

(67) 

 

where h is the Planck constant, me is the electron mass, c is the speed of light and all the other 

symbols have their usual meaning. The matrix elements can be easily evaluated by making 

use of the Wigner-Eckart theorem as described in ref
98

 and they are also part of the output of 

the f-shell program
175

. 

Figure 51 illustrates the magnetic dipole strengths calculated for transitions within and 

between the three lowest Kramers doublets for 1-Er and 1-Dy, respectively. For 1-Er, the 

highest value is obtained for the transition to the first excited Kramers doublet, which was 

observed as a well-defined signal at 52 cm
-1

 in the FIR-spectrum. The direct transition to the 

second lowest Kramers doublet at 84 cm
-1

 is much less allowed and might gain its intensity by 
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coupling to vibrations, consistent with the observed splitting of the corresponding signal. 

Rather high matrix elements, e.g. in the same range as for the transition to the first excited 

doublet were calculated for the intra-Kramers doublet transition within the ground doublet, 

confirming the efficiency of under-barrier relaxation processes for the relaxation of the 

magnetization. In contrast, the matrix elements for the diagonal transitions between the 

ground doublet and the first excited doublet are rather low, indicating that the Orbach process 

via the first excited state is not dominant. Instead, quantum tunneling via the first excited 

doublet is much more probable. As indicated by the rather high dipole strengths for the 

diagonal transition to the second excited Kramers doublet, an Orbach process via this doublet 

would be possible. However, the observation of this process would require higher 

temperatures where the competing Raman process with its much more pronounced 

temperature dependence becomes extremely efficient.  

Similarly to 1-Er, the matrix elements for the transitions to the first excited doublet in 

1-Dy are relatively large, meaning that their values cannot explain the missing signal in the 

FIR-spectrum around 30 cm
-1

. However, the matrix elements for the diagonal transitions are 

considerably higher, indicating a large contribution of the Orbach relaxation via the first 

excited state. According to the Heisenberg uncertainty principle
180

, fast relaxation leads to 

less defined energies and the corresponding signals can become rather broad. Signal-

broadening due to fast relaxation might therefore be the explanation for the experimental 

observations.  

 

Figure 51: Magnetic dipole strengths for the transitions between the microstates of the lowest three Kramers 

doublets in 1-Er (left) and 1-Dy (right). Black lines represent the Kramers doublets as a function of their mJ 

expectation value and arrows depict possible transitions between states. The numbers at the arrows correspond to 

the isotropic average of the dipole strengths, given in units of e² 10
-20

 cm
2
. 
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For the lowest intra-doublet transition, slightly lower matrix elements are found than for the 

inter-doublet transitions between the lowest two Kramers doublets, further confirming the 

dominance of the Orbach process. However, the intra-doublet matrix elements are still non-

zero and thus explain why no slow relaxation of the magnetization is observed at zero bias 

field and 1-Dy is only a field-induced single ion magnet.  

Summarizing this chapter, the in-depth investigation of the magnetic and spectroscopic 

properties of two novel lanthanide based single-ion magnets was presented. The combination 

of magnetometry and multiple spectroscopic techniques allowed the determination of their 

electronic structures and the analysis was progressing clearly beyond what is commonly done 

in the field of molecular magnetism. However, it was shown that it is exactly this combination 

of techniques that is required for obtaining reliable crystal field parameters for low-symmetry 

compounds. With the help of the experimentally determined sets of crystal field parameters, it 

was possible to determine the compositions of the ground states, which in turn allowed for a 

detailed understanding of the dynamic magnetic properties, e.g. the relaxation behavior. Thus, 

this work provides a substantial contribution to the understanding of the electronic structures 

of lanthanide single-ion magnets, which is essential for their rational design in the future.  

However, one important aspect to be considered is the general applicability of the recipe 

for electronic structure determination presented in this chapter. Since the presented method 

not only involves a rather large experimental effort but also a lengthy fitting procedure, it is 

not likely to become a standard method for the quick characterization of lanthanide-based 

single-molecule magnets in the future. Furthermore, the studied lanthanide tetra-carbonates 

represented an ideal case regarding the applicability of a range of experimental techniques, 

i.e. useful information were obtained by applying magnetometry, optical spectroscopy, far-

infrared and EPR-spectroscopy. For the characterization of other lanthanide single-ion 

magnets not all of these methods will be useful. For instance, optical detection of f-f-

transitions is only possible if the compounds do not exhibit strongly colored ligands where 

ligand-based transitions govern the spectra in the visible range. EPR-spectroscopy is only 

useful for compounds with ground states showing partial mJ =  ½ character. For purely axial 

ground states EPR transitions are forbidden; however, axial ground states are one of the main 

conditions for the good performance of single-molecule magnets. Actually, only 

magnetometry and far-infrared spectroscopy are always applicable. While magnetometry 

already belongs to the standard methods for studying SIMs, this is not true for far-infrared 

spectroscopy. Since the information obtained by far-infrared spectroscopy is of crucial 

importance, this spectroscopic method should be employed whenever possible. At this point, 
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also the method of inelastic neutron scattering should be mentioned, which can complement 

far-infrared spectroscopy.
97

  

Another aspect concerns the complexity of the investigated systems. With only one 

lanthanide center per molecule, the studied lanthanide tetra-carbonates exhibit rather simple 

structures. For compounds exhibiting more lanthanide ions with different low-symmetry 

environments, even the combined application of all the experimental techniques presented 

above might not be sufficient for a complete electronic structure determination. In such cases 

simplified models for describing the electronic structure have to be taken into account and 

also the results of ab initio calculations might be useful for obtaining rough ideas about the 

energy level structures. However, the full determination of the electronic structures for simple 

model complexes like the lanthanide tetra-carbonates can serve for the development of 

databases containing crystal field parameters for given ligands in given symmetries. Such 

databases could then be useful for the estimation of crystal field parameters of new and more 

complicated compounds.  
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4.3 Mononuclear Cobalt Complexes 

 

This section was part of a collaboration with the group of Prof. Dr. Biprajit Sarkar (Institute 

for Chemistry and Biochemistry, Freie Universität Berlin) who provided the compounds and 

the structural data. The syntheses were performed by Dr. Margarethe van der Meer. Part of 

the magnetic characterization of the samples was carried out as part of the MSc thesis of 

Frauke D. Breitgoff (September 2014 – March 2015) under my supervision.
181

 Work done by 

others is indicated in the text at the position where it appears for the first time.  

 

Part of the results presented below has already been published in Nature Communications, 

2016, 7, 10467.
167

 

 

4.3.1 Structures of the Mononuclear Co(II) Complexes 

The air-stable mononuclear cobalt complexes (HNEt3)2[Co
II
(L

1
)2] ((HNEt3)22) and 

(NMe4)2[Co
II
(L

1
)2] ((NMe4)22) were synthesized and structurally characterized by Dr. 

Margarethe van der Meer (Institute for Chemistry and Biochemistry, Freie Universität Berlin). 

As shown in Figure 52, both compounds consist of a central Co(II) ion ligated by the 

nitrogen donors of two doubly deprotonated 1,2-bis(methanesulfonamido)benzene ligands 

(H2L
1
), leading to fourfold coordination. The net charge of the complexes is thus –2 and 

charge balance is provided by two (HNEt3)
+
 counter ions in (HNEt3)22 and two (NMe4)

+
 

cations in (NMe4)22. The angles between the planes defined by the Co-NCCN metallacycles 

are 84.83° for (HNEt3)22 and 83.91° for (NMe4)22, i.e. the ligands are oriented almost 

perpendicular to each other. Strong axial distortion is revealed by the N-Co-N angles, which 

are 80.59° and 80.70° for (HNEt3)22 and 81.18° and 81.52°  for (NMe4)22, i.e. significantly 

smaller than the 109.5° for regular tetrahedrons. As outlined in section 2.3.2, this high axiality 

makes (HNEt3)22 and (NMe4)22 extraordinarily interesting systems for studying SIM 

behavior. The actual site symmetry is C1 but can be idealized to D2d with the S4 axis being the 

bisecting line of the N-Co-N angles. D2d point symmetry was used later on for the analysis of 

the spectroscopic data. 
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Figure 52: a) Molecular structure of (HNEt3)22. b) Molecular structure of (NMe4)22. Cobalt is shown in blue, 

oxygen in red, sulfur in yellow, nitrogen in violet, carbon in grey and hydrogen in light grey. For reasons of 

clarity, most of the hydrogens are omitted, except the ones forming hydrogen bonds. Hydrogen bonds are shown 

as black lines. The crystallographic data were provided by Dr. Margarethe van der Meer.  

 

Although the chemical formulae of (HNEt3)22 and (NMe4)22 differ only in their 

counter ions, different crystal systems are found: (HNEt3)22 crystallizes in the orthorhombic 

P 21 21 21 space group containing four symmetry-related molecules in the unit cell. H-bonds 

are formed between the ligands and the counter ions. (NMe4)22 crystallizes in the monoclinic 

space group P 21/n with eight symmetry-related molecules in its unit cell. No hydrogen bonds 

are found. Thus, not only the magnetic and spectroscopic properties of the individual 

complexes are interesting to study but also the comparison of both compounds might lead to a 

better understanding of the influence of small structural variations on the electronic structure 

and the magnetic behavior.  

 

4.3.2 Magnetic Properties 

The static and dynamic magnetic properties of (HNEt3)22 and (NMe4)22 were studied 

by means of dc and ac susceptibility and magnetization measurements.
181

 Figure 53 shows the 

observed temperature dependence of the product T of the dc magnetic susceptibility  and 

the temperature T. At 300 K, T adopts values of 3.14 cm
3
 mol

-1
 K ((HNEt3)22)) and 

3.10 cm
3
 mol

-1
 K ((NMe4)22). These values are higher than the spin-only value of 

T = 1.88 cm
3
 mol

-1
 K expected from Curie’s law for S = 3/2 systems with g = 2 but they lie 

in the typical range for fourfold coordinated Co(II) complexes with second-order spin-orbit 

coupling
86,87

.  
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Figure 53: Temperature dependence of the product of the magnetic susceptibility  and the temperature T for 

(HNEt3)22 (left) and (NMe4)22 (right). The insets show the magnetic field dependence of the magnetization 

recorded at 1.8 K. Solid lines correspond to the simulations using a spin Hamiltonian with the parameters given 

in the text. Dotted lines correspond to simulations assuming a completely axial system with an effective spin of 

Seff = ½ (see section 4.3.3). 

 

As outlined in sections 2.1.1 and 2.3.2, second-order spin-orbit coupling denotes the 

interaction of an orbitally non-degenerate ground state with orbitally degenerate excited 

states, leading to zero-field splitting. Below 150 K, T gradually decreases with decreasing 

temperature until at 1.8 K values of T = 2.34 cm
3
 mol

-1
 K ((HNEt3)22) and 

T  = 2.44 cm
3
 mol

-1
 K ((NMe4)22) are reached. The decrease is attributed to zero-field 

splitting and the depopulation of the corresponding excited microstates at low temperatures. 

The magnetic field dependence of the magnetization is shown as insets in Figure 53. At 1.8 K 

and 7 T, magnetization values of 2.56 µB for (HNEt3)22 and 2.26 µB for (NMe4)22 are 

obtained. Preliminary fits using a typical spin Hamiltonian as described by the combination of 

equations (4) and (5) and without taking into account any spectroscopic data yielded axial 

ZFS parameters of D = –95  20 cm
-1

 for (HNEt3)22 and D = –90  20 cm
-1

 for (NMe4)22 

(with E fixed to zero).
181

 However, as will be shown in section 4.3.3, spectroscopy revealed 

that the actual zero-field splittings are even higher, namely D = –115 cm
-1

 for (HNEt3)22 and 

D = –112.5 cm
-1

 for (NMe4)22. The static magnetic data were therefore simulated with the 

spectroscopically determined D-values and gx = gy = 2.20 and gz = 3.03 for (HNEt3)22 and 

gx = gy = 2.25 and gz = 2.95 for (NMe4)22. In both cases satisfactory simulations were 

obtained without including a rhombic ZFS parameter E, consistent with high axiality. The 

corresponding simulations are shown as solid lines in Figure 53. Compared to other pseudo-

tetrahedral Co(II) compounds, the obtained D values are extraordinarily large (Table 8) and in 
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combination with high axiality, they strongly hint at possible SIM properties of (HNEt3)22 

and (NMe4)22.  

Magnetization dynamics was therefore investigated by temperature and frequency 

dependent ac susceptibility measurements. The temperature dependence of the in-phase and 

out-of-phase components of the ac susceptibilities without applying a dc bias field are shown 

in Figure 54. The out-of-phase components ” show frequency dependent maxima, making 

(HNEt3)22 and (NMe4)22 two of the rare examples of pseudo-tetrahedral Co(II) complexes 

showing SIM properties in zero dc field.
11,28

 However, towards very low temperatures, an 

additional increase in ” is observed, indicating an additional process for magnetic relaxation, 

which is often attributed to quantum tunneling. Since applying a dc field permanently lifts the 

twofold degeneracy of the Kramers doublets and therefore limits the efficiency of QTM 

processes, the ac susceptibility measurements were repeated in the presence of a 1000 Oe dc 

field. Indeed, no increase of ” towards low temperatures is visible any longer (Figure 55). 

The relaxation times  for (HNEt3)22 and (NMe4)22 with and without an applied dc 

field were extracted by the generation of Argand diagrams and fitting to generalized Debye 

functions, as described by equation 56. Reliable fits were obtained for temperatures between 

ca. 6 K and 20 K, where a characteristic semi-circle shape is observed. The Argand diagrams 

together with the best fits are shown in Figure 56 while Table A 15 and Table A 16 in the 

appendix provide the corresponding best-fit parameters. 

 

Table 8: Fourfold coordinated Co(II) complexes exhibiting negative axial ZFS parameters with |D | > 50 cm
-1

 and 

their effective energy barriers derived by linear fits to the corresponding Arrhenius plots. 

Compound D / cm
-1

 Ueff / cm
-1 

Literature 

(Ph4P)2[Co(C3S5)2] –161 33.9 Fataftah et al.
86

 

(HNEt3)2[Co(L
1
)2] –115 118 this work 

(NMe4)2[Co(L
1
)2] –112.5 67 this work 

(Ph4P)2[Co(SePh)4] –83 19.1 Zadrozny et al.
87

 

[Co(AsPh3)2(I)2] –74.7 32.6 Saber et al.
88

 

(Ph4P)2[Co(SPh)4] –62 21.1 Zadrozny et al.
87

  

[Co{(NtBu)3SMe}2] –58 75 Carl et al.
89
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Figure 54: Temperature dependence of the ac susceptibilities for (HNEt3)22 (left) and (NMe4)22 (right) at 

various frequencies. No dc bias field was applied. Top: In-phase components; bottom: Out-of-phase components. 

Solid lines are guides for the eye.  

 

 

 

Figure 55: Temperature dependence of the out-of-phase ac susceptibilities for (HNEt3)22 (left) and (NMe4)22 

(right) at various frequencies and with an applied dc bias field of Hdc = 1000 Oe. Solid lines are guides for the 

eye. 
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Figure 56: Argand diagrams for (HNEt3)22 (left) and (NMe4)22 (right) at different temperatures. Top: Data 

obtained without an external dc bias field. Bottom: Data obtained with an external dc field of Hdc = 1000 Oe. 

Solid lines correspond to the best fits using generalized Debye equations.  

 

For both compounds, the distribution parameters of relaxation times  are smaller when an 

external dc field is applied, which is also reflected by the less distorted semi-circle shape of 

the Argand plots when applying a dc field. Under the assumption that the distribution of 

relaxation times is strongly influenced by the contribution of quantum tunneling, these 

observations confirm the suppressing of quantum tunneling of the magnetization by applying 

a dc field.  

Figure 57 shows the resulting Arrhenius plots, i.e. ln  as functions of the inverse 

temperature T 
–1

. In all cases, a more or less pronounced linear regime at higher temperatures 

is observed, suggesting a dominant contribution of Orbach relaxation in this temperature 

range. Preliminary linear fits yielded the effective energy barriers given in Table 9. These 

energy barriers are amongst the highest values reported for d-block ion based SIMs (Table 

8).
11,24,28

  However, according to the previously mentioned spectroscopically determined ZFS 

parameters (see below), even much higher energy barriers, namely E = |2D| = 230 cm
-1

 for 

(HNEt3)22 and E  = |2D |= 225 cm
-1

 for (NMe4)22 would be expected. 
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Figure 57: Arrhenius plots for (HNEt3)22 (left) and (NMe4)22 (right) with and without an applied dc field. Solid 

lines correspond to the best fits (see text).  

 

This finding indicates that in spite of the linear regimes not only the Orbach relaxation 

process dominates at high temperatures, but also the Raman process plays a significant role. 

The presence of quantum tunneling of the magnetization at low temperatures was already 

indicated by the increase of the out-of-phase ac susceptibilities towards low temperatures and 

the absence of this increase with an applied external dc field. However, when applying an 

external dc field, the direct process for spin reversal might play a role as well. Strictly 

speaking, the correct elucidation of the contributing relaxation mechanism from the shape of 

the Arrhenius plots requires taking into account all of the above-mentioned relaxation 

mechanisms, as described by equation (65) in section 4.2.2 for the lanthanide carbonates. 

However, in order to avoid over-parametrization, the simplest model was assumed for fitting 

the Arrhenius plots for (HNEt3)22 and (NMe4)22.  Since QTM and direct relaxation are much 

more important at very low temperatures but reliable fits to the Argand diagrams were 

obtained only for temperatures above 6 K (see above), these two low-temperature relaxation 

mechanisms were not included in the fit of the Arrhenius plots. Indeed, preliminary fitting 

attempts revealed that the inclusion of QTM and direct relaxation does not lead to improved 

fits. Equation (65) then reduces to 
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𝜏−1 = 𝐶𝑅𝑎𝑚𝑎𝑛 ∙ 𝑇
𝑛𝑅𝑎𝑚𝑎𝑛 + 𝜏0

−1exp ( −
∆𝐸

𝑘𝐵𝑇
) 

 

(68) 

Here, the energy barrier E was fixed to the spectroscopically determined ZFS, i.e. 

E = |2D| = 230 cm
-1

 for (HNEt3)22 and E = |2D| = 225 cm
-1

 for (NMe4)22. However, 

although a Raman exponent of nRaman = 9 was derived for Kramers ions with isolated ground 

states,
38

 nRaman was treated here as a free fit parameter since fitting attempts with nRaman = 9 

did not lead to satisfactory results. Thus, three parameters were varied during the fits, namely 

CRaman, nRaman and 0. The attempt times 0 were determined only from the data obtained 

without an applied dc field since relaxation times up to higher temperatures were accessible 

here and therefore more pronounced linear regimes are observed. The determined attempt 

times 0 were subsequently kept fixed for fitting the Arrhenius plots constructed from the data 

obtained in the presence of a dc bias field. The best fits are shown as solid lines in Figure 57 

while Table 9 provides the respective best-fit parameters.  

As expected for structurally similar compounds, the determined Raman coefficients 

for (HNEt3)22 and (NMe4)22 in the absence of a dc field lie in the same range, with 

CRaman = 0.088 K
-3.65

s
-1

 for (HNEt3)22 and CRaman = 0.103 K
-3.76

s
-1

 for (NMe4)22. Significantly 

smaller coefficients are found in the presence of a 1000 Oe dc field, namely 

CRaman = 0.0018 K
-4.97

s
-1

 ((HNEt3)22) and CRaman = 0.0056 K
-4.70

s
-1

 ((NMe4)22). However, the 

Raman exponents nRaman found for the data obtained with applied dc fields are higher, hinting 

at a magnetic field dependence of the Raman exponents due to the field-induced change of the 

electronic energy level structure. In all cases, the Raman exponents are significantly lower 

than nRaman = 9 derived for Kramers ions with isolated ground states. Similarly low values, i.e. 

nRaman = 2.8 – 5.0 have already been reported for several other Co(II) compounds
90,182-186

 and 

are commonly attributed to the contribution of the so-called optical/acoustic Raman relaxation 

mechanism
49

. While for the conventional Raman process only acoustic phonons are assumed 

to interact with the spin system, the optical/acoustic Raman mechanism also includes optical 

phonons. For example, absorption of an acoustic phonon can induce a transition to a virtual 

intermediate state and an optical phonon can subsequently be emitted or vice versa. It was 

shown that the combined participation of acoustic and optical phonons might lead to a 

lowering of the exponent appearing in the temperature dependence of the relaxation time with 

n = 1 - 6, depending on the electronic energy level structure of the system.
48,49

 It would be 

interesting to study the level structure and field-dependence of the Raman exponent in more 

detail; however, this is beyond the scope of this work.  
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Table 9: Best-fit parameters obtained for the Arrhenius plots for (HNEt3)22 and (NMe4)22 with and without an 

external dc field, respectively. 

 (HNEt3)22 (NMe4)22 

 Hdc = 0 Oe Hdc = 1000 Oe Hdc = 0 Oe Hdc = 1000 Oe 

linear fit
181

 

Ueff / cm
–1

 117.8 74.5 66.6 65.3 

0 / s 3.89 ∙ 10
-8

 1.08 ∙ 10
-8

 4.03 ∙ 10
-7

 4.78 ∙ 10
-7

 

Raman + Orbach 

E / cm
–1

 230  230  225  225  

0 / s 1.099 ∙ 10
-10 

1.099 ∙ 10
-10 

1.585 ∙ 10
-10 

1.585∙ 10
-10

 

CRaman / T
 –n

 s
–1

 0.088 0.0018 0.103 0.0056 

nRaman 3.65 4.93 3.55 4.67 

 

 

Summarizing the conclusions drawn from analyzing the ac susceptibility data and the 

corresponding Arrhenius plots, magnetic relaxation in (HNEt3)22 and (NMe4)22 is governed 

by a combination of quantum tunneling of the magnetization (low temperatures), 

optical/acoustic Raman mechanisms (intermediate temperatures) and Orbach processes (high 

temperatures). The direct process was shown to be negligible in the entire temperature range, 

hinting at high axiality of the systems. High axiality means that the rhombic ZFS parameters 

E are close to zero and therefore vanishingly small magnetic dipole transition matrix elements 

are obtained for direct transitions within the ground doublets. Due to the rather high zero-field 

splittings found for (HNEt3)22 and (NMe4)22, the Orbach relaxation is almost negligible at 

low temperatures, being one of the reasons for the observation of slow relaxation of the 

magnetization.   

The observation of slow relaxation of the magnetization even in the absence of an 

external dc field gives rise to the question whether (HNEt3)22 and (NMe4)22 show real 

magnetic bistability, one of the necessary conditions for progress towards practical 

application. The ultimate proof of magnetic bistability is coercivity. The coercive field is 

defined as the field required for complete demagnetization of the sample, i.e. the half width of 

the opening of the magnetic hysteresis loop at zero magnetization. SQUID magnetometric 

hysteresis loops at 1.8 K were therefore recorded for a sample of (HNEt3)22 dispersed in 
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fluorolube®. Figure 58 shows the observed hysteresis loops for field sweeping rates of 

100 Oe s
-1

, 200 Oe s
-1

 and 500 Oe s
-1

. For all of these scan rates, more or less butterfly-shaped 

hysteresis curves were observed, meaning that magnetic hysteresis occurs at low magnetic 

fields where saturation is not yet achieved, but without significant coercivity. At the highest 

applied scan rate of 500 Oe s
-1

, a small opening of the hysteresis curve with a coercive field of 

0.055 T is visible. However, due to the intrinsic hysteresis of superconducting magnets used 

in SQUID magnetometers and due to the comparatively long measurement time (1 s per data 

point) compared to the scan rate, this small coercive field should be regarded critically.  Thus, 

it can be assumed that no significant magnetic bistability is observed, explained by efficient 

quantum tunneling of the magnetization around zero field.  

Since QTM is favored by the presence of transverse magnetic fields and since 

magnetized neighboring molecules can be a source of such transverse magnetic fields, further 

hysteresis measurements were carried out on a diluted sample of (HNEt3)22. For this purpose, 

a diluted powder sample was prepared by dissolving (HNEt3)22 and the isostructural 

diamagnetic Zn complex (HNEt3)2Zn with a molar ratio of 1 : 9 in acetonitrile and 

subsequently removing the solvent by evaporation. The required Zn complex (HNEt3)2Zn 

was synthesized and structurally characterized by Dr. Margarethe van der Meer (Institute for 

Chemistry and Biochemistry, Freie Universität Berlin). The observed hysteresis curves for a 

pellet of the doped powder are shown on the right hand side of Figure 58. 

 

 

Figure 58: Magnetic hysteresis curves for (HNEt3)22 at 1.8 K and different scan rates, as indicated. Left: Data 

obtained for a sample of (HNEt3)22 dispersed in fluorolube®. Right: Data obtained for (HNEt3)22 doped into the 

analogous Zn(II) complex. 
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Although the hysteresis behavior at small fields is slightly different than for the sample 

dispersed in fluorolube®, no significant coercivity is observed as well. The coercive field at a 

scan rate of 500 Oe s
-1

 is 0.070 T, i.e. comparable to that obtained for the sample dispersed in 

fluorolube®. This finding indicates that magnetized neighboring molecules are not the only 

source for QTM in (HNEt3)22 and the responsible transverse interactions have a different 

origin. One aspect to be considered is for example the presence of nuclear spins with 

Inuc (
59

Co) = 7/2.  However, since 
59

Co is the only stable Co isotope, this is an unavoidable 

situation in cobalt based SIMs. 

Another important point to mention is the fact that the hysteresis curves were recorded 

on unoriented samples, although only the very few molecules with their easy axes of 

magnetization oriented parallel to the external magnetic field are expected to show magnetic 

bistability. One useful method for observing coercivity is therefore single crystal SQUID 

magnetometry using carefully oriented single crystals. However, the crystallographic unit cell 

of (HNEt3)22 does not allow the orientation of the crystals in a way that leads to parallel 

orientation of all the individual easy axes with respect to the magnetic field. Single crystal 

measurements were therefore not performed. As outlined in section 2.4.4, MCD detected 

hysteresis studies provide an alternative to single crystal measurements. The MCD detected 

hysteresis curves for (HNEt3)22 and (NMe4)22 will be presented as part of the spectroscopic 

results in section 4.3.3. 

 

4.3.3 Spectroscopic Results and Electronic Structure 

The magnetic studies performed on (HNEt3)22 and (NMe4)22 already hinted at highly 

axial ground states, i.e. largely negative axial ZFS parameters D and vanishingly small 

rhombic ZFS parameters E. However, magnetometry neither allows the unequivocal 

determination of the signs and exact magnitudes of D and E, nor explains the observations in 

terms of the electronic structures. Spectroscopic techniques including EPR-, FIR- and MCD-

spectroscopy were thus applied to obtain deeper insight. 

Low-temperature EPR-spectra were recorded at conventional X-band (9.47 GHz) and 

at higher frequencies between 100 and 720 GHz but no transitions were observed, neither for 

(HNEt3)22 nor for (NMe4)22. The absence of EPR lines matches the expectations since 

negative signs of D lead to ground states characterized by the highest mS values. In Co(II) 

complexes, a negative ZFS parameter D results in ground doublets with mS = 3/2 and EPR 

transitions within these ground doublets would correspond to magnetic dipole transitions with 
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mS = 3, which are not allowed. In the presence of significant rhombicity, i.e. a non-zero 

ZFS parameter E, state-mixing would occur, leading to relaxed selection rules and non-

vanishing EPR intensities. The EPR results for (HNEt3)22 and (NMe4)22 thus support the 

assumption of negative D parameters and negligibly small E parameters. Furthermore, D has 

to be rather large. Otherwise, inter-doublet transitions between the mS = 3/2 and mS =  1/2 

states would be expected to occur, but they were not observed. Since the highest applied 

frequency was 720 GHz, the EPR results suggest ZFS splittings of at least 24 cm
-1

, 

corresponding to minimum D values of –12 cm
-1

. 

On the one hand, it is gratifying to see that the EPR results support the conclusions 

drawn from the analysis of the magnetic data, but on the other hand, the absence of EPR lines 

precludes the accurate determination of g-values for (HNEt3)22 and (NMe4)22. The g-values 

derived from fitting the dc susceptibility curves should be considered only as estimates. One 

possibility for the accurate determination of the g-values of such large ZFS systems is the 

measurement of EPR-spectra at very high fields, e.g. up to 70 T and frequencies in the THz 

range, e.g. by using free-electron lasers. However, beam time for such experiments is rarely 

available and these measurements have therefore not yet been performed on (HNEt3)22 and 

(NMe4)22. They are planned for the near future.  

In order to obtain a better idea about the actual size of the ZFS in (HNEt3)22 and 

(NMe4)22, FIR-spectroscopy was applied. FIR-spectra at 4 K and magnetic fields between 0 

and 11 T were recorded by Dr. Milan Orlita and Michael Hakl (Laboratoire National des 

Champs Magnétiques Intenses, Grenoble). Figure 59 and Figure 60 show the obtained 

transmission spectra as well as the normalized spectra obtained by dividing the spectra by the 

spectrum at highest field. Clear field-dependent features are observed in the regions around 

230 cm
-1

 ((HNEt3)22) and 225 cm
-1

 ((NMe4)22). These features are attributed to allowed 

magnetic dipole transitions between the mS = 3/2 ground states and the mS = 1/2 excited 

states and therefore directly correspond to the zero field gaps given by |2D|. FIR-spectroscopy 

thus allowed the unequivocal experimental determination of very large axial ZFS parameters, 

namely D = –115 cm
-1

 for (HNEt3)22 and D = –112.5 cm
-1

 for (NMe4)22. As previously 

mentioned, these values were used for the final simulations of the dc susceptibility and 

magnetization data (Figure 53) as well as for analyzing the Arrhenius plots derived from the 

ac susceptibility data (Figure 57). 
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Figure 59: Left: FIR transmission spectra of (HNEt3)22 recorded at 4 K and various magnetic fields. Right: 

Normalized transmission spectra obtained by dividing by the spectrum at highest field. The image details at the 

bottom show zooms of the field-dependent features. The spectra were recorded by Dr. Milan Orlita and Michael 

Hakl.  

 

The field-dependent features in the FIR-spectra show splittings that cannot be 

explained by g-value anisotropy or rhombic distortion and therefore must be due to spin-

vibrational couplings. Theoretical calculations on (HNEt3)22 performed by Dr. Mihail 

Atanasov (Max Planck Institute for Chemical Energy Conversion, Mülheim a. d. R.) strongly 

support this assumption.
167

 Correlated calculations performed at the CASSCF/NEVPT2 level 

(CASSCF: Complete active space self-consistent field; NEVPT2: Second-order n-electron 

valence state perturbation theory) provided a calculated D value of –112 cm
-1

, in very good 

agreement with the experimental results. Furthermore, a very small E value of –1.1 cm
-1

 was 

calculated, confirming the axial nature of the electronic ground state. The effective g-values 

of the lowest mS = 3/2 Kramers doublet were calculated as gx = gy = 0.056 and gz = 9.43. 

Calculation of the vibrational far infrared spectrum based on a DFT optimized geometry 

(DFT: Density functional theory) showed that there are at least three vibrational excitations in 

the region of 230 cm
-1

 that have some metal-ligand stretching character. Such vibrations can 
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induce modulations of the crystal field and thus lead to spin-phonon coupling. Indeed, the 

eigenfunctions obtained by applying a simplified spin-vibronic Hamiltonian showed mixed 

spin/vibrational character, thus explaining the observed splitting in the experimental FIR-

spectra.
167

 The presence of spin-phonon coupling is consistent with the dominance of the 

optical/acoustic Raman mechanism for magnetic relaxation in the intermediate temperature 

range.  

The combination of magnetometry, EPR- and FIR-spectroscopy allowed for a 

relatively precise determination of the ZFS in (HNEt3)22 and (NMe4)22, but these methods do 

not provide any explanation for the origin of the very high values in terms of the electronic 

structures. Since MCD-spectroscopy is an outstanding tool for linking ground state with 

excited state properties, this method was applied for probing the electronic structures of 

(HNEt3)22 and (NMe4)22 beyond the electronic ground state. 

 

 

Figure 60: Left: FIR transmission spectra of (NMe4)22 recorded at 4 K and various magnetic fields. Right: 

Normalized transmission spectra obtained by dividing by the spectrum at highest field. The image details at the 

bottom show zooms of the field-dependent features. The spectra were recorded by Dr. Milan Orlita and Michael 

Hakl.  
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Figure 61 shows the low-temperature MCD-spectra recorded on mulls of (HNEt3)22 and 

(NMe4)22 in fluorolube®. Two sets of intense bands, namely around 7000 cm
-1

 and around 

18000 cm
-1

 are observed, which are typical for (pseudo-)tetrahedral Co(II) compounds.
75,187

 

Within the Td symmetry notation, they are attributed to spin-allowed transitions from the 

4
A2(

4
F) electronic ground state to the excited states 

4
T1(F) (7000 cm

-1
) and 

4
T1(P) 

(18000 cm
-1

). One more spin-allowed transition, namely the transition to the 
4
T2(F) state, is 

expected around 3500 cm
-1

 but is out of the spectral range accessible by our MCD-

spectrometer. In addition to the intense bands, several sharp but very weak signals are 

observed, which are attributed to spin-forbidden transitions. 

With the help of the corresponding Tanabe-Sugano diagram (Figure 13), the positions 

of the spin-allowed transitions were used to roughly estimate the respective cubic crystal field 

parameters Dq and the Racah parameters B. For (HNEt3)22, parameter values of 

Dq = 430 cm
-1

 and B = 880 cm
-1

 were obtained, while for (NMe4)22, values of 

Dq = 455 cm
-1

 and B = 855 cm
-1

 were derived. Due to the relatively high energies of the 

4
A2(

4
F)  

4
T1(

4
P) transition (18000 cm

-1
) compared to other tetrahedrally coordinated Co(II) 

compounds, the obtained parameter values lie in the upper part of the typical range
75

 and 

indicate rather large crystal field splittings. However, the cubic crystal field parameter values 

are not sufficient to explain the unique magnetic properties of (HNEt3)22 and (NMe4)22 since 

for cubic symmetry no ZFS is expected.  

 

 

Figure 61: MCD-spectra of (HNEt3)22 (left) and (NMe4)22 (right) recorded at 1.5 K and magnetic fields of 2 T 

and 1 T. Black bars illustrate calculated transition energies based on the derived crystal field parameters (see 

main text). Asterisks indicate artefacts due to detector change. 
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As described in section 2.3.2, symmetry-lowering from Td to D2d symmetry causes 

splitting of the 
4
T states into two components each, which is reflected by splittings in the 

experimentally observed MCD bands. However, the low-energy bands around 7000 cm
-1

 

appear to be split into three components rather than two and the size of the splittings seems to 

be too large to be explained by spin-orbit coupling or by further symmetry lowering to C2v. In 

fact, crystal field analysis (see below) revealed that the additional signals, i.e. the low-energy 

peaks at 6211 cm
-1

 ((HNEt3)22) and at 6671 cm
-1

 ((NMe4)22) do not arise from the 

4
A2(

4
F)  

4
T1(

4
F) transitions but belong to the 

4
E components of the largely split lower lying 

4
T2(F) states, indicating extraordinarily large axial distortions produced by the crystal field of 

the ligands.  

  The influence of the D2d crystal field on the electronic structures of (HNEt3)22 and 

(NMe4)22 was estimated in terms of the crystal field parameters Dq, Dt and Ds defined by 

Ballhausen.
76

 The corresponding energy calculations were performed in the SmSLm basis of 

states with the help of the Crystal Field Computer Package by Yeung and Rudowicz
80

 as well 

as with a self-written Matlab script. The previously estimated values for Dq and B (see above) 

were used as starting parameters and the tetragonal parameters Dt and Ds were introduced to 

reproduce the splittings observed in the MCD spectra. As nicely illustrated in a publication by 

Wildner,
77

 the splitting of the 
4
T1(

4
F) state is mainly affected by Dt and the corresponding 

MCD detected energies were therefore used for adjusting this parameter. Increasing the value 

of Dt not only results in an increased splitting of the 
4
T1(

4
F) state but also in an overall shift of 

its components to higher energies. Thus, increasing Dt required decreasing the value for Dq, 

consistent with the fact that Dq defined by Ballhausen contains tetragonal components.
79

 The 

sign of Dt was set negative because this corresponds to a splitting of the 
4
T2(

4
F) term with the 

resulting 
4
B2 component lower in energy than the 

4
E component, in agreement with a negative 

axial ZFS parameter D according to equation (49). Once the experimentally observed energies 

and splittings of the 
4
T1(

4
F) levels were reasonably well reproduced, the parameters Dq and 

Dt were kept fixed and the remaining tetragonal crystal field parameters Ds as well as the 

Racah parameters B were adjusted to reproduce the energies and the splittings of the higher 

lying 
4
T1(

4
P) terms. The Racah parameters C were fixed to C = 4.5 B. The final parameter sets 

derived for (HNEt3)22 and (NMe4)22 are listed in Table 10 while black bars in Figure 61 

illustrate the calculated transition energies based on these parameters. Table A 17 in the 

appendix provides a comparison between experimental and calculated energies. Rather high 

values for Dt and Ds are required for reproducing the experimentally observed energies and 

the high value of Dt explains the observed structure in the NIR region of the MCD-spectra: 
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Since the splitting of the lowest excited cubic term 
4
T2(

4
F) is even more affected by Dt than 

the 
4
T1(

4
F) state, the higher lying 

4
E component arising from 

4
T2(

4
F) is raised in energy to 

such an extent that the corresponding transition moves from the mid-infrared to the near-

infrared. In the MCD-spectra, the transitions 
4
B1  

4
E(

4
T2) are therefore observed close to the 

transitions 
4
B1  

4
E(

4
T1) and 

4
B1  

4
A2(

4
T1). A graphical illustration is provided in Figure 

62. The derived values for Dq seem to be rather low, but taking into account the relation 

between Dq defined by Griffith and Dq defined by Ballhausen (equation (40)), they agree 

well with the values obtained preliminarily with the help of the Tanabe-Sugano diagram (see 

Table 10).  

It is important to mention that the derived parameters for (HNEt3)22 and (NMe4)22 

should be considered as estimates rather than best-fit parameters since they were manually 

adjusted without applying a software-based fitting routine. The existence of better solutions 

cannot be excluded. The uncertainties given in Table 10 were estimated by checking the 

influence of parameter changes on the calculated transition energies. Furthermore, the 

calculations are based on a strongly simplified model, i.e. crystal field theory assuming ideal 

D2d symmetry and without including spin-orbit coupling. However, the parameter sets not 

only explain the observed structures in the MCD-spectra but they also provide a plausible 

explanation for the large zero-field splittings observed in (HNEt3)22 and (NMe4)22: Due to 

the low values for Dq (Dq in Ballhausen notation), the energy separations between the ground 

states 
4
B1(

4
A2) and the first excited states 

4
B2(

4
T2) are rather low, i.e. 10 Dq = 1300 cm

-1
 for 

(HNEt3)22 and 10 Dq = 1400 cm
-1

 for (NMe4)22, leading to increased second-order 

interactions between these states.   

 

Table 10: Crystal field and Racah parameters derived for (HNEt3)22 and (NMe4)22 assuming D2d symmetry.  

 (HNEt3)22 (NMe4)22 

Dq (Ballhausen) / cm
-1

 130  30 140  30 

Dq (Griffith) / cm
-1

 440  60 470  60 

Dt / cm
-1

 –530  50 –565  50 

Ds / cm
-1

 500  100 550  100 

B / cm
-1

 830  30 790  30 

C / cm
-1

 (fixed to 4.5 B) 3735 3555 
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Figure 62: Energy level diagrams derived for (HNEt3)22 (left) and (NMe4)22 (right) showing the splitting of the 

cubic quartet states under the influence of a strong axial distortion. For D2d symmetry, the shown energy levels 

are based on the calculations using the derived sets of crystal field and Racah parameters (see main text). Arrows 

depict the experimentally observed transitions.  

 

In contrast, the energy separation between the states 
4
B2(

4
T2) and 

4
E(

4
T2) is high and 

applying equation (49) 

 

𝐷 = 4𝜆² [
1

𝐸( 𝐸) 4
−

1

𝐸( 𝐵2) 
4

] 
 

(49) 

 

 with the spin-orbit coupling constant set to the free-ion value
78

 of  = –180 cm
-1

 gives 

D = -78 cm
-1

 for (HNEt3)22 and D = –72 cm
-1

 for (NMe4)22, in qualitative agreement with 

the D values determined by FIR-spectroscopy and magnetometry. Please note that equation 

(49) was derived by means of perturbation theory. Strictly speaking, equation (49) is thus only 

valid for small perturbations, i.e. large energy gaps between the ground state and the first 

excited state compared to spin-orbit coupling. 

Since the ground state 
4
B1 is a spin-degenerate state, the observed MCD transitions are 

expected to show C-term character, which makes MCD-spectroscopy not only a tool for 

probing excited state energy levels, but also for probing the ground state itself. VTVH-MCD 

experiments were thus carried out on (HNEt3)22, i.e. the MCD intensities at 18083 cm
-1

 and 

18657 cm
-1

 were recorded as functions of the field at temperatures between 1.5 and 20 K. In 

Figure 63, the normalized intensities are plotted against µBH/2kT. For both wavelengths, the 

recorded isotherms coincide well, which is indicative for large zero-field splittings, i.e. no 

excited mS states of the electronic ground state but only the ground Kramers doublet is 
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involved in the transitions. The system can thus be treated within the effective spin-1/2 

approximation and equation (63) can be used for fitting the curves. For purely axial Co(II) 

systems, the effective g-values are given by gz,eff = 3 gz and gx,eff = gy,eff = 0. Rather good fits 

are obtained using an effective polarization product of Mxy = 1 and effective g-values of 

gz,eff = 3 ∙ 3.03  9.1 and gx,eff = gy,eff = 0, in good agreement with the magnetic data and the 

theoretical calculations. Consistently, the magnetic field dependence of the molar 

magnetizations for (HNEt3)22 and (NMe4)22 can also be simulated using the respective 

effective g-values (dotted lines in Figure 53).  

The VTVH-MCD experiments thus provided a further confirmation of the axial nature 

of the ground state in (HNEt3)22. However, a much more important observation is related to 

the polarization of the studied transition: The VTVH-MCD curves were fitted with an 

effective polarization product of Mxy = 1 and perpendicular g-values equal to zero. According 

to equation (63), this means that only the molecules with their quantization axis oriented 

parallel to the magnetic field contribute to the intensity, making the studied transitions 

extraordinarily interesting for MCD detected hysteresis curves.  

MCD detected hysteresis studies on (HNEt3)22 and (NMe4)22 were performed by 

recording the field-dependence of the MCD intensities at 18083 cm
-1

. Figure 64 shows the 

hysteresis loops obtained at 1.5 K and magnetic field sweep rates of 0.5 T min
-1

, i.e. 83 Oe s
-1

. 

For both (HNEt3)22 and (NMe4)22, clear hysteresis with coercive fields of ca. 0.24 and 0.14 T 

is observed and to the best of my knowledge this is the first example of the observation of 

sizeable coercivity in Co(II) based single-ion magnets. 

 

 

Figure 63: VTVH-MCD data recorded on a mull of (HNEt3)22 at 553 nm (left) and at 536 nm (right). Data were 

obtained at 1.5, 5, 10 and 20 K with magnetic fields up to 10 T. Open symbols correspond to experimental data 

points while solid lines correspond to best fits within the Seff = ½ approximation (see main text). 
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Figure 64: MCD detected hysteresis curves recorded on mulls of (HNEt3)22 (left) and (NMe4)22 (right) by 

measuring the field-dependence of the MCD signals at 18083 cm
-1

. The measurements were performed at 1.5 K 

and a magnetic field scan rate of 0.5 T min
-1

. 

 

The previous highest coercive field was reported by Ruamps et al. for diluted single crystals 

of a pentacoordinate trigonal bipyramidal Co(II) complex, showing a coercive field of 5 mT at 

30 mK.
188

 As outlined above, the observation of MCD detected coercivity is attributed to the 

polarization of the transition, making MCD-spectroscopy an orientation selective method, in 

contrast to SQUID magnetometry on powder samples. It would be interesting to study further 

Co(II) complexes exhibiting similar molecular structures compared to (HNEt3)22 and 

(NMe4)22. If they exhibit crystallographic unit cells that allow for crystal orientations with all 

molecular quantization axes oriented parallel to an applied field, single crystal SQUID 

measurements could provide a nice complementation to MCD-spectroscopy. Further 

variations of the counter ions could provide the possibility to obtain suitable crystal structures.  

Comparing (HNEt3)22 and (NMe4)22, a lower coercive field is found for the latter, 

consistent with the lower zero-field splitting. However, the difference in the coercive fields 

seems to be too high to be explained solely by the only slightly smaller zero-field splitting in 

(NMe4)22 compared to (HNEt3)22. Further explanations might be the presence of small (and 

thus not measurable) rhombic ZFS, which is higher in (NMe4)22 than in (HNEt3)22, or 

different relative orientations of the molecules in the unit cells, leading to different dipolar 

interaction strengths. Of course also the measurement accuracy has to be taken into account. 

Slight field delays during the field sweeps result in small errors in the determined coercive 

fields.  
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Summarizing this chapter, the magnetic and spectroscopic investigation of the two 

novel Co(II) based single-ion magnets (HNEt3)22 and (NMe4)22 was presented. In contrast to 

most other cobalt complexes, they show slow magnetic relaxation in zero bias dc field, which 

is attributed to the highly axial nature of their ground states. By analyzing MCD-

spectroscopic data, it was possible to relate the high axial zero-field splittings to the electronic 

structures. It was shown that strong crystal fields combined with enormous axial distortion 

lead to relatively small energy gaps between the 
4
B1 ground states and the 

4
B2 first excited 

states, resulting in enhanced second-order interactions and thus large ZFS parameters D. The 

unique electronic structures are thus correlated to the molecular structures: The strong crystal 

fields can be explained by the ability of the bis(sulfonamide) ligand to act as both a - and -

donor while the axial distortion results from the geometric arrangement, i.e. the very acute N-

Co-N angles and the almost perpendicular orientations of the aromatic rings. The N-Co-N 

angles for (NMe4)22 are slightly larger than for (HNEt3)22, reflected by a slightly smaller 

zero-field gap.   

The conclusion that axial geometries lead to axial ground states has been reported 

before and a current trend in the field of single-ion magnets is therefore the design of rather 

exotic linear complexes,
29-31,72

 e.g. the linear iron(I) compound 

[K(crypt-222)][Fe(C(SiMe3)3)2]
29

 mentioned in section 2.1.3.  However, they are usually 

highly air- and moisture sensitive, precluding practical application. Furthermore, their 

performance as single-ion magnets is not necessarily better, e.g. quantum tunneling of 

magnetization in zero field still precludes the observation of sizeable coercivity. Thus, the 

presented pseudo-tetrahedral Co(II) complexes (HNEt3)22 and (NMe4)22 represent a good 

alternative for obtaining axial systems without too much synthetic effort. Regarding the 

design criteria of such complexes, it can be concluded that bidentate ligands leading to 

metallacycles with acute bite angles should be preferred. The donor atoms should be strong - 

and -donors. Furthermore, the ligand backbone should be rather rigid and symmetric, leading 

to perpendicular orientation of the ligands with respect to each other and thus symmetry 

beyond the directly coordinated donor atoms.  

However, although the ligand employed in (HNEt3)22 and (NMe4)22 fulfills these 

conditions and axial ground states are observed, the performance of the complexes as single-

ion magnets is still far from being suitable for practical application. Reasons are the presence 

of tunneling processes at low temperatures and Raman-like relaxation processes at higher 

temperatures. One possibility to achieve better performance could be the modification of the 

ligand, e.g. converting it into a tetradentate bridging ligand, leading to exchange-coupled 
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systems for which quantum tunneling is further suppressed. Since such ligands are also redox-

active, very strong exchange couplings could be achieved by employing the ligand in a radical 

form.
33
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4.4 Binuclear Cobalt Complexes 

 

This subproject was part of a collaboration with the group of Prof. Dr. Biprajit Sarkar 

(Institute for Chemistry and Biochemistry, Freie Universität Berlin), who provided the 

compounds and the structural data. Magnetic measurements and preliminary EPR studies on 

the symmetric compounds were carried out as part of the teacher thesis of Irina Peremykin 

(January – July 2013) under my supervision.
189

 Preliminary analyses of the magnetic data of 

the asymmetric compounds were carried out as part of the MSc thesis of Frauke D. Breitgoff 

(September 2014 – March 2015), also under my supervision.
181

 Work done by others is 

indicated in the text at the position where it appears for the first time.  

 

Part of the results presented below has already been published in: Chemistry – A European 

Journal, 2014, 20, 3475 – 3486.
32

 

 

4.4.1 Structures of the Cobalt Dimers 

The symmetrically bridged Co(II)-Co(II) dimers [{(tmpa)Co
II
}2(µ-L

2
)][BF4]2 (3[BF4]2) and 

[{(tmpa)Co
II
}2(µ-L

3
)][BPh4]2 (4[BPh4]2) (with H2L

2
 = 2,5-di-[2-(methoxy)-anilino]-1,4-

benzoquinone, H2L
3
 = 2,5-di-[2-(trifluoromethyl)-anilino]-1,4-benzoquinone and 

tmpa = tris(2-pyridylmethyl)amine were synthesized and structurally characterized by Dr. 

David Schweinfurth (Institute for Chemistry and Biochemistry, Freie Universität Berlin).
32

 In 

both complexes, the Co(II) centers are bridged by quinone-based bridging ligands, where two 

oxygen donors of 2,5-dihydroxy-1,4-benzoquinone are substituted by isoelectronic [NR] 

groups, leading to symmetrical bridging situations. In 3[BF4]2, R refers to 2-(methoxy)-

phenyl (R
2
 in Figure 65) while in 4[BPh4]2, R stands for 2-(trifluoromethyl)-phenyl (R

3
 in 

Figure 65). In both cases, tmpa serves as a co-ligand and the Co(II) centers are distorted 

octahedrally coordinated. For 4[BPh4]2, crystallographic data were available and the obtained 

molecular structure is illustrated in Figure 65. 

  4[BPh4]2 crystallizes in the triclinic P-1 space group with one molecule in the unit 

cell.  The Co-O and Co-N bond lengths from Co to the donors of the bridging ligand are 1.980 

and 2.162 Å, respectively, and thus in the same range as reported for related high-spin Co(II) 

complexes.
190

 The bond lengths within the bridging ligand, especially the C-O bond lengths 

(1.289 Å) being longer than those in the free ligand and the C-N bond lengths (1.301 Å) being 
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shorter than those in the free ligand, hint to negatively charged O donors and neutral imine-

type N donors.
32

 The O-Co-N bite angles are 78.14°, i.e. significantly smaller than the 90° 

expected for regular octahedrons. The Co-Co intra-dimer distance is 7.954 Å and the shortest 

inter-dimer Co-Co distance is 9.478 Å. 

3[BF4]2 was chemically oxidized and the one- and two-electron oxidized species 

3[BF4]3 and 3[BF4]4 were isolated in their pure forms.
32

 Single crystals were obtained for 

3[BF4]4 and X-ray crystallographic analysis revealed that it crystallizes in the tetragonal space 

group I41/a with 8 molecules per unit cell. The molecular structure is shown on the right hand 

side of Figure 65. The Co-O and Co-N bond lengths to the bridging ligand are 1.877 and 

1.946 Å, respectively, and thus shorter than the corresponding bond lengths in 4[BPh4]2. This 

indicates that the two-electron oxidation led to the formation of octahedrally coordinated low-

spin Co(III) centers. In octahedral LS-Co(III), the eg orbitals pointing towards the ligands are 

empty and due to reduced electrostatic repulsion the ligand donors can approach more closely. 

A more regular octahedron than in 4[BPh4]2 is formed, reflected by the O-Co-N bite angle of 

85.5°. The intra-ligand bond lengths are almost the same for both complexes, indicating the 

same bonding situation, i.e. negatively charged oxygen donors and imine-type nitrogen 

donors. The Co-Co intra-dimer distance in 3[BF4]4 is 7.638 Å. 

 

 

 

Figure 65: Molecular structures of 4
2+

 (left) and 3
4+

 (right). Cobalt is shown in blue, oxygen in red, fluorine in 

yellow, nitrogen in violet and carbon in grey. Hydrogens and counter ions are omitted for clarity. The samples as 

well as the crystallographic data were provided by Dr. David Schweinfurth. 
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An asymmetrically bridged Co(II)-Co(II) dimer, namely [{(tmpa)Co
II
}2(µ-L

4
)][OTf]2 

(5[OTf]2) with H2L
4
 = 2-[4-(isopropyl)-anilino]-5-hydroxy-1,4-benzoquinone as well as the 

corresponding oxidized species 5[OTf]3 and 5[OTf]2[BF4]2 were synthesized and 

characterized by Dr. Margarethe van der Meer (Institute for Chemistry and Biochemistry, 

Freie Universität Berlin). In these complexes, only one of the oxygen donors of 2,5-

dihydroxy-1,4-benzoquinone is substituted by a [NR] group, resulting in an asymmetric 

bridging situation with the cobalt centers in different surroundings. Here R refers to 4-

(isopropyl)-phenyl (R
4
 in Figure 66). The molecular structures of 5[OTf]2 and 5[OTf]3, 

obtained by X-ray crystallography, are shown in Figure 66. Both 5[OTf]2 and the one-

electron oxidized species 5[OTf]3 crystallize as dichloromethane solvates in the triclinic P-1 

space group with two formula units per unit cell. Except for the asymmetry, the coordination 

geometry of the bridging ligand is similar to those obtained for 4[BPh4]2 and 3[BF4]4, i.e. the 

negative charges are localized on the oxygen donors.  One of the cobalt centers (Co1) is 

coordinated by a negatively charged oxygen donor (O3) and by the neutral imine-type 

nitrogen donor (N1) of the bridge. The other cobalt center (Co2) is coordinated by a 

negatively charged oxygen donor (O1) and a neutral keto-type oxygen donor (O2) of the 

bridge. In 5[OTf]2, the Co1-N1 and Co1-O3 distances are 2.192 and 2.006 Å, respectively, 

while the Co2-O1 and Co2-O2 distances are 1.987 and 2.212 Å. The N1-Co1-O3 and O1-

Co2-O2 bite angles are 76.49° and 77.35°, both showing large deviations from ideal 

octahedral symmetry. 

 

 

Figure 66: Molecular structures of 5
2+

 (left) and 5
3+

 (right). Cobalt is shown in blue, oxygen in red, nitrogen in 

violet and carbon in grey. Hydrogens and counter ions are omitted for clarity. The samples as well as the 

crystallographic data were provided by Dr. Margarethe van der Meer. 
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In 5[OTf]3, the Co1-N1 and Co1-O3 bond lengths are 2.187 and 2.039 Å, respectively, 

and thus comparable to those in 5[OTf]2. However, with 1.888 and 1.913 Å, the Co2-O1 and 

Co2-O2 distances are significantly shorter, indicating that one-electron oxidation 

preferentially takes place at Co2, yielding a low-spin Co(III) center. Consistently, the bite 

angles are 76.36° (N1-Co1-O3) and 85.96° (O1-Co2-O2). 5[OTf]2 is thus best described as a 

cobalt dimer containing two six-coordinate high-spin Co(II) centers, while 5[OTf]3 contains 

one high-spin Co(II) (Co1) and one low-spin Co(III) center (Co2). The Co1-Co2 intra-dimer 

distances are 8.025 Å (5[OTf]2) and 7.765 Å (5[OTf]3) and the shortest inter-dimer Co-Co 

distances (Co2-Co2) are 6.576 and 8.130 Å, respectively. 

 

4.4.2 Magnetic Properties 

The magnetic properties of complexes 3[BF4]2, 3[BF4]3, 3[BF4]4, 4[BPh4]2, 5[OTf]2, 

5[OTf]3 and 5[OTf]2[BF4]2 were investigated by means of dc susceptibility and 

magnetization measurements and the obtained data were analyzed by means of different 

models. Due to the lack of unpaired electrons in LS-Co(III), complexes 3[BF4]4 and 

5[OTf]2[BF4]2 are diamagnetic and therefore not particularly interesting in the context of 

molecular magnetism. However, measuring their diamagnetic susceptibility allowed for the 

experimental determination of the diamagnetic corrections to the susceptibilities of the other 

complexes instead of estimating them by using Pascal’s constants. The measured field-

dependence of the magnetization of 3[BF4]4 is shown in Figure 67. Since there is no 

temperature dependence for diamagnetic susceptibilities while the effects of possible para- or 

ferromagnetic impurities are minimized at high temperatures, the measurement was 

performed at 300 K. The data points describe a straight line whose slope yields a diamagnetic 

susceptibility of dia = –1820 ∙ 10
-6

 cm
3 

mol
-1

. This value is much larger than the value 

estimated by using Pascal’s constants
93

 (dia = –768 ∙ 10
-6

 cm
3 

mol
-1

), showing that the direct 

determination of diamagnetic corrections should be preferred whenever a diamagnetic 

analogue of a paramagnetic compound is available. The experimentally determined 

diamagnetic correction also includes sample holder effects (ca. –6.9 ∙ 10
-9

 cm
3
). 

The diamagnetic corrections to the susceptibilities of complexes 3[BF4]2, 3[BF4]3, 

4[BPh4]2, and 5[OTf]3 were subsequently calculated by correcting the molar susceptibility of 

3[BF4]4 for the differing structural elements, i.e. the substituents R, the oxidation state of Co 

and the counter ions with the help of Pascal’s constants
93

. The obtained values are listed in 

Table 11.  
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Figure 67: Magnetic field dependence of the molar magnetization of 3[BF4]4 measured at 300 K. Open circles 

depict experimental data points while the solid line corresponds to the linear fit. 

 

Table 11: Diamagnetic corrections to the susceptibilities of the studied Co dimers. 

Compound dia / 10
-6

 cm
3
 mol

-1
 

3[BF4]2 –1750 

3[BF4]3 –1785 

3[BF4]4 –1820 

4[BPh4]2 –2118 

5[OTf]2 –672.6 

5[OTf]3 –1775 

 

 

In contrast, the diamagnetic correction for 5[OTf]2 was solely estimated using Pascal’s 

constants since its magnetic properties were investigated using another instrument. The 

magnetometer used for studying 5[OTf]2 had a negligible sample holder contribution, as 

shown by field-dependent magnetization measurements on the corresponding diamagnetic 

species 5[OTf]2[BF4]2 (data shown in the appendix, section 8.5.1). 

Figure 68 shows the temperature dependence of the products of the paramagnetic 

susceptibilities  and the temperature T for complexes 3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 
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and 5[OTf]3. The mixed valent dimers 3[BF4]3 and 5[OTf]3 show rather similar curves with 

room-temperature T values of 2.25 and 1.88 cm
3
 mol

-1
 K, respectively. The value for 

3[BF4]3 is larger than the spin-only value expected for an S = 3/2 system according to Curie’s 

law (1.88 cm
3
 mol

-1
 K) but lies in the typical range for sixfold coordinated Co(II) ions with 

incompletely quenched orbital angular momenta.
65

 No plateau is reached at high 

temperatures, indicative of temperature independent paramagnetism (TIP)
2
 arising from 

second-order Zeeman effects. The slope at high temperatures yields 

TIP = 985 ∙ 10
-6

 cm
3
 mol

-1
. For 5[OTf]3, no TIP is observed. Below 50 K, a rapid decrease of 

the T products is observed for both 3[BF4]3 and 5[OTf]3, which is attributed to the thermal 

depopulation of excited states. Depending on the degree of symmetry and the accordingly 

assumed model, these excited states result either from spin-orbit coupling induced splittings 

of the electronic 
4
T1g ground states (Oh symmetry) or from zero-field splittings of the 

4
A2g 

ground states in the presence of axial distortion (see section 2.3.1). At 1.8 K, T reaches 

values of 1.33 cm
3
 mol

-1
 K (3[BF4]3) and 1.36 cm

3
 mol

-1
 K (5[OTf]3). 

Interestingly, no valence tautomerism is observed. Valence tautomerism in the mixed-

valent compounds 3[BF4]3 and 5[OTf]3 would correspond to a temperature-dependent change 

from an S = 3/2 system with three unpaired electrons at the Co(II) center to an S = ½ system 

with one unpaired electron at the bridge, leading to steps in the T versus T curves.
191-193

 In 

the studied temperature range no steps were observed, showing that the redox-active and 

potentially non-innocent ligand essentially acts as innocent in the studied compounds.  

 

 

Figure 68: Temperature dependence of T (left) and magnetic field dependence of the magnetization at 1.8 K 

(right) for the compounds 3[BF4]3, 3[BF4]2, 4[BPh4]2, 5[OTf]3 and 5[OTf]2, as indicated. 
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Despite the different bridging situations, the T versus T plots for the Co(II)-Co(II) 

dimers 3[BF4]2 and 5[OTf]2 are also rather similar, showing room-temperature T values of 

4.97 cm
3
 mol

-1
 K and 4.89 cm

3
 mol

-1
 K, respectively. Positive slopes at high temperatures 

indicate temperature-independent paramagnetism with TIP = 1570 ∙ 10
-6

 cm
3
 mol

-1
 for 

3[BF4]2 and TIP = 1350 ∙ 10
-6

 cm
3
 mol

-1
 for 5[OTf]2. With decreasing temperature, T 

gradually decreases until at 50 K values of 4.28 and 4.34 cm
3
 mol

-1
 K are observed. Due to 

thermal depopulation of excited states, a rapid decrease of T is observed below 50 K, 

reaching values of 2.11 and 1.78 cm
3
 mol

-1
 K at 1.8 K. At high temperatures, the T values of 

the Co(II) dimers 3[BF4]2 and 5[OTf]2 are slightly higher than twice the values of the 

corresponding mixed-valent species 3[BF4]3 and 5[OTf]3, respectively, whereas at low 

temperatures (T  6 K), the T values are lower than twice the values of the mixed-valent 

forms. This behavior hints at weak antiferromagnetic couplings, resulting in effective coupled 

spins of Seff = 0 at low temperatures. 

Interestingly, a rather different temperature dependence of T is observed for the 

symmetrically bridged dimer 4[BPh4]2. With a room-temperature value of 

T = 4.74 cm
3
 mol

-1
 K, the behavior at high temperatures is still similar to that of 3[BF4]2 and 

5[OTf]2. However, with decreasing temperature, T decreases until at 8 K a minimum with 

T = 3.54 cm
3
 mol

-1
 K is reached. At lower temperatures, T increases again, reaching a value 

of 3.90 cm
3
 mol

-1
 K at 1.8 K. The increase at low temperatures hints at weak ferromagnetic 

coupling between the Co(II) centers, in contrast to the observations for 3[BF4]2 and 5[OTf]2. 

The magnetic field dependence of the molar magnetization at 1.8 K for compounds 

3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 and 5[OTf]3 is shown on the right hand side of Figure 

68. The curves show the same tendency as observed for the temperature dependence, i.e. the 

plots for the mixed-valent forms 3[BF4]3 and 5[OTf]3 as well as those for the Co(II) dimers 

3[BF4]2 and 5[OTf]2 are relatively similar while more pronounced deviations are observed for 

4[BPh4]2. The higher slope observed for 4[BPh4]2 is consistent with the ferromagnetic 

coupling found in the temperature dependent susceptibility measurements. At 7 T, the molar 

magnetization reaches values of 4.28 µB (3[BF4]2), 1.62 µB (3[BF4]3), 4.04 µB (4[BPh4]2), 

4.16 µB (5[OTf]2) and 1.77 µB (5[OTf]3).  

As described in section 2.3.1, incompletely quenched orbital angular momenta in 

octahedral Co(II) complexes might complicate the analysis of the magnetic data and a 

conventional spin Hamiltonian is only suitable for highly distorted octahedral environments, 

which lead to orbitally non-degenerate ground states. The magnetic data presented above were 

thus first analyzed by applying the Lines approach
81

, i.e. in terms of the parameters kr, SO, Jex 
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and z’J’. SO is the spin-orbit coupling coefficient while kr is the orbital reduction factor 

describing the reduction of the free-ion spin-orbit interaction in the complex. Jex is the 

exchange coupling constant between the Co(II) centers and z’J’ is an inter-dimer interaction 

parameter with z’ being the number of relevant neighbors. The obtained best fits to the 

susceptibility data of 3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 and 5[OTf]3 are illustrated in 

Figure 69 while Table 12 lists the corresponding parameter values. Visually, more or less 

acceptable agreement between experimental and calculated values seems to be observed; 

however, most of the agreement factors R defined by  

 

𝑅 =
∑[(𝜒𝑇)𝑒𝑥𝑝 − (𝜒𝑇)𝑐𝑎𝑙𝑐]²

∑[ (𝜒𝑇)𝑒𝑥𝑝]²
 

 

(69) 

 

are rather high. As a rule of thumb, good fits to susceptibility data are characterized by 

agreement factors in the order of 10
-4

 or lower.
82

 

The signs of the exchange coupling constants Jex indicate antiferromagnetic couplings 

for the dimers 3[BF4]2 and 5[OTf]2 and ferromagnetic coupling for 4[BPh4]2, as already 

concluded from the shape of the curves and the comparison with those of the one-electron 

oxidized species (see above). The small magnitudes of Jex hint at rather weak exchange 

couplings, a situation which is not uncommon in Co(II) species,
44

 also in view of the long 

bridge.  

 

Figure 69: Experimentally observed temperature-dependence of T for 3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 and 

5[OTf]3 (open symbols) and best fits obtained by applying the Lines approach (solid lines). 
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Table 12: Best-fit parameters obtained for the dc susceptibility data of 3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 and 

5[OTf]3 by applying the Lines model. 

 3[BF4]2 3[BF4]3 4[BPh4]2 5[OTf]2 5[OTf]3 

kr 0.49 0.31 0.46 0.48 0.10 

SO / cm
-1

 –119 –164 –118 –110 –203 

Jex / cm
-1 

–0.62 - 2.90 –0.76 - 

z’J’ / cm
-1

 –0.30 –0.14 –0.06 –0.34 –0.36 

R / 10
-4

 9.6 11 3.37 11 1.62 

 

 

However, most of the other best-fit parameter values are out of the expected range. One 

discrepancy concerns the values of the spin-orbit coupling coefficients SO. Compared to the 

free-ion value of –180 cm
-1

, the values determined for the Co(II) dimers 3[BF4]2, 4[BPh4]2 

and 5[OTf]2 are very low while those for the oxidized species 3[BF4]3 and 5[OTf]3 are 

higher. An opposite trend is observed for the orbital reduction parameters kr, i.e. lower values 

were obtained for the oxidized complexes than for the Co(II) dimers. Furthermore, all of the 

values for kr are significantly lower than usually expected for octahedrally coordinated Co(II) 

complexes (0.70  kr  0.95)
81,85

. Since it has been shown that strong deviations from 

octahedral symmetry lead to artificial (i.e. physically meaningless) lowering of the spin-orbit 

coupling constants,
82

 these findings indicate that the Lines model is not appropriate for 

analyzing the magnetic properties of the compounds studied here.   

As outlined in section 2.3.1, an empirical model taking into account axial distortion 

was developed by Lloret et al.
85

 and this model was subsequently applied for analyzing the 

susceptibility data of compounds  3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 and 5[OTf]3. Here, the 

fit parameters are the exchange coupling Jex, the orbital reduction factor r, the spin-orbit 

coupling constant SO and the axial distortion parameter ax, describing the splitting of the 

Co(II) 
4
T1g ground state due to axial distortion.  The orbital reduction factor r has a similar 

meaning as the parameter kr in the Lines model, but due to its slightly different definition, r 

typically adopts higher values (0.75  r  1.5)
85

. The obtained best fits applying this model 

are shown in Figure 70 while Table 13 lists the corresponding best-fit parameter values.  
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Figure 70: Experimentally observed temperature-dependence of T for 3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 and 

5[OTf]3 (open symbols) and best fits obtained by applying the empirical model developed by Lloret et al.
85

 

(solid lines). 

 

Table 13: Best-fit parameters obtained for the dc susceptibility data of 3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 and 

5[OTf]3 by applying the empirical model developed by Lloret et al
85

. The listed D values were estimated from 

the best-fit parameters by using equation 71 (see below). 

 3[BF4]2 3[BF4]3 4[BPh4]2 5[OTf]2 5[OTf]3 

r 1.03 1.03 0.96 1.05 1.05 

SO / cm
-1

 –160 –160 –191 –143 –143 

ax / cm
-1

 780 780 950 781 781 

Jex / cm
-1

 –0.467 - 1.24 –0.63 - 

z - 0.89 - - 0.84 

R / 10
-4 

0.45 1.67 0.34 0.15 21.55 

D / cm
-1

 35 35 36 29 29 

 

 

As evidenced by the overall lower agreement factors R, the qualities of the fits are better than 

those obtained with the Lines model and the parameters themselves also show more 

reasonable values, i.e. they lie in the range expected for six-coordinated Co(II) complexes. 

The data of the one-electron oxidized species were successfully simulated with the same 
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parameter sets as for the corresponding non-oxidized dimers after introducing an overall 

scaling factor z, which accounts for e.g. structural deviations or measurement uncertainties. 

Importantly, the axial distortion parameters ax are rather high and positive. According to 

equation 42 in section 2.3.1, this corresponds to tetragonal elongation of the octahedron. The 

4
T1g ground state splits into the components 

4
A2g and 

4
Eg with 

4
A2g becoming the ground state.  

Since 
4
A2g is an orbital singlet term, the magnetic data of 3[BF4]2, 3[BF4]3, 4[BPh4]2, 

5[OTf]2 and 5[OTf]3 can be treated within the spin-only formalism using S = 3/2 and a 

typical spin Hamiltonian as described by the combination of equations 3, 4 and 5: 

 

ℋ = −𝐽𝑒𝑥�̂�1�̂�2 +∑𝐷𝑖 [�̂�𝑧,𝑖
2 −

5

4
+
𝐸𝑖
𝐷𝑖
(�̂�𝑥,𝑖
2 − �̂�𝑦,𝑖

2 )]

2

𝑖=1

+∑𝑔𝑖𝜇𝐵�̂�𝑖�⃗� 

2

𝑖=1

 

 

(70) 

 

For strictly axially distorted octahedrons as assumed in the model by Lloret, the transverse 

ZFS parameter E is zero. The axial ZFS parameter D is related to the parameters r, SO and 

ax and for the case of strong axial distortion compared to spin-orbit coupling (ax >> |SO|), 

the value of D can be estimated by equation 71
194

: 

 

𝐷 =
𝛼𝑟
2𝜆𝑆𝑂
2

Δ𝑎𝑥
 

 

(71) 

 

The D values estimated for compounds 3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 and 5[OTf]3 

using equation 71 are listed in Table 13.  

Since for geometrically distorted compounds usually anisotropic g-values are observed 

and since exchange coupling constants might also show anisotropy, simulations based on a 

spin Hamiltonian easily lead to extremely over-parametrized situations. For the simulations of 

the magnetic data of the Co(II) compounds studied in this work therefore the simplest model, 

i.e. employing as few fit parameters as possible, was assumed.  

Satisfactory simulations of the temperature dependence of the susceptibility data were 

achieved by assuming isotropic g-values and exchange coupling constants (equation 70, 

Figure 71). The best agreements between experimental and calculated data were observed 

with the parameter values listed in Table 14.  For 3[BF4]2, the data were simulated with the 

same exchange coupling constant as determined before (Jex = –0.467 cm
-1

) while for the other 

complexes slightly lower, but still comparable values were necessary. Also the values for D 
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are comparable to those estimated from r, SO and ax, showing that the model by Lloret is 

well suited to obtain a first idea about the electronic ground state structure of sixfold 

coordinated Co(II) compounds. The D values for 5[OTf]2 and 5[OTf]3 were experimentally 

determined by far-infrared spectroscopy (see below).  

The corresponding simulations of the magnetic field dependence of the magnetization 

data are shown on the right hand side of Figure 71. Although still reasonably acceptable, the 

agreement between experimental data and simulations is worse than for the temperature 

dependence. This is attributed to the fact that the field dependence at low temperature is more 

sensitive to the nature of the ground state, e.g. g-anisotropy or state-mixing due to transverse 

anisotropy. However, the transverse ZFS parameters E were fixed to zero to avoid over-

parametrization. Also anisotropic exchange couplings might play a role, as shown by EPR-

spectroscopy (see below). 

 

 

Figure 71: Temperature dependence of T (left) and magnetic field dependence of the magnetization at 1.8 K 

(right) for the compounds 3[BF4]3, 3[BF4]2, 4[BPh4]2, 5[OTf]3 and 5[OTf]2, as indicated. Solid lines correspond 

to simulations based on the spin-only formalism, using isotropic g-values and coupling constants. 

 

Table 14: Simulation parameters for the dc susceptibility data of 3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 and 

5[OTf]3 by applying the spin Hamiltonian given in equation 70. 

 3[BF4]2 3[BF4]3 4[BPh4]2 5[OTf]2 5[OTf]3 

D / cm
-1 

43 43 37 23 23 

Jex / cm
-1

 –0.467 - 0.760 –0.520 - 

giso  2.300 2.170 2.248 2.220 2.070 
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Briefly summarizing this section, the magnetic properties of the cobalt dimers 3[BF4]2, 

3[BF4]3, 4[BPh4]2, 5[OTf]2 and 5[OTf]3 were analyzed by means of different models. It was 

shown that due to high deviations from octahedral symmetry the Lines model is not 

appropriate any longer. Instead, the empirical model developed by Lloret, taking into account 

axial distortion, provided reasonable parameter values. Importantly, for all of the studied 

compounds the axial distortion was shown to be positive and rather high, thus allowing the 

magnetic data to be interpreted in terms of a regular spin Hamiltonian. Concerning the 

exchange interaction, weak ferromagnetic coupling was found for the symmetrically bridged 

Co(II) dimer 4[BPh4]2, while weak antiferromagnetic couplings were observed for the 

symmetrically bridged dimer 3[BF4]2 as well as for the asymmetric dimer 3[OTf]2.  

 

4.4.3 Spectroscopic Results and Discussion 

In order to obtain more information about the anisotropy of the g-values and the 

influence of the bridging ligand on the exchange coupling constants for compounds 3[BF4]2, 

3[BF4]3, 4[BPh4]2, 5[OTf]2 and 5[OTf]3, low-temperature EPR-spectra were recorded. 

Furthermore, low-temperature far-infrared spectra were recorded for 5[OTf]2.  

The obtained FIR-spectra at different applied magnetic fields as well as the 

corresponding normalized spectra obtained by dividing the spectra by the spectrum at highest 

field are shown in Figure 72. The FIR experiments were carried out by Raphael Marx and Dr. 

María Dörfel (Institute of Physical Chemistry, University of Stuttgart). In the normalized FIR-

spectra, a field-dependent feature is visible around 47 cm
-1

, which is attributed to single-ion 

zero-field splitting, i.e. it arises from transitions between the mS = 1/2 and mS = 3/2 states of 

the Co(II) centers. In the absence of transverse anisotropy, this corresponds to an axial ZFS 

parameter of |D|  23 cm
-1

 and this value was therefore used for the simulations of the 

magnetic data (section 4.4.2) and the EPR data (see below) for both 5[OTf]2 and 5[OTf]3. 

Another field-dependent signal appears around 91 cm
-1

. The observation of such a second 

signal is attributed to the presence of two interacting Co(II) centers per molecule. According 

to the ZFS term in equation 70, the possible combinations of the quantum numbers mS = 1/2 

and mS = 3/2 of two S = 3/2 ions lead to energy levels with relative energies of 

E(1/2, 1/2) = 0, E(3/2, 1/2) = 2 D and E(3/2, 3/2)  = 4 D. Corresponding energy level 

diagrams are shown in the appendix, section 8.5.3 Simulations using D = 23 cm
-1

 and the g-

values and exchange coupling constants determined by EPR-spectroscopy (see below) are 

shown as dotted lines in Figure 72.  
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Figure 72: Left: Far-infrared transmission spectra (left) and normalized spectra (right) for 5[OTf]2 recorded at 

9 K and various magnetic fields, as indicated. The normalized spectra were obtained by dividing the spectra by 

the 6 T spectrum. Dotted lines correspond to scaled simulations with D = 23 cm
-1

 (see main text). The spectra 

were recorded by Raphael Marx and Dr. María Dörfel.  

 

According to these simulations, the signal corresponding to 4 D should be much weaker and 

scaling was necessary to make it visible in the plot. However, weak transitions can gain 

intensity by coupling to vibrational modes. The occurrence of vibrations in this energy range 

is clearly visible in the FIR transmission spectra on the left hand side of Figure 72.  

EPR spectra were recorded for all of the paramagnetic dimers; however, usable spectra 

were only obtained for 3[BF4]2, 3[BF4]3 and 5[OTf]2. No EPR lines were observed in the 

spectra of 4[BPh4]2, probably due to line-broadenings by fast relaxation processes that are 

rather common in weakly exchange-coupled dimers.
195

 Different spectroscopic behavior for 

4[BPh4]2 compared to the other dimers is consistent with the fact that 4[BPh4]2 is the only 

compound that shows ferromagnetic exchange coupling. Furthermore, the magnitude of the 

corresponding exchange coupling constant is higher than those of the antiferromagnetically 

coupled dimers.   

The X-Band (9.47 GHz) EPR-spectra of 5[OTf]3 (appendix, section 8.5.2) displayed 

unexpected splittings which are too large to be solely explained by hyperfine interactions or 

dipolar couplings. The corresponding g-values (for S = 3/2) range between 1.7 and 3.2, which 

seems to be rather unphysical and is in contrast to the simple X-Band EPR spectra obtained 

for 3[BF4]3 (see below). No clear transitions were observed in the HFEPR spectra. Possible 

explanations for this unexpected behavior include factors like structural variations, partial 

sample decomposition, baseline effects or impurities. The EPR experiments on 5[OTf]3 were 

carried out on a very small amount of sample that did not originate from the same batch as the 
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sample for the magnetic measurements. If required, the measurements should thus be repeated 

when a freshly synthesized and characterized sample is available. However, since the main 

focus of this subproject lies on the exchange coupling between the Co(II) centers, the EPR-

spectra of the oxidized species are of lesser interest.   

Figure 73a shows the solid-state X-band EPR-spectrum of 3[BF4]3, recorded at 5 K. A 

rather axial spectrum is observed, showing transitions at magnetic fields around 150 and 

320 mT. Within the S = 3/2 formalism, the best simulation is obtained using g-values of 

g = (2.07  0.02) and g = (2.33  0.04) and an axial ZFS parameter of D = 43 cm
-1

 as 

estimated by SQUID magnetometry. The perpendicular component g being larger than the 

parallel component g is consistent with a positive sign of D, i.e. easy-plane anisotropy.  The 

powder EPR-spectrum was complemented by measurements on a frozen solution in 

butyronitrile (Figure 73b) and as expected due to weaker dipolar interactions, the 

corresponding spectrum displays narrower lines. The signal corresponding to g exhibits a 

well-resolved structure arising from hyperfine coupling to the cobalt nuclear spin of 7/2. 

Apart from that, the spectrum is rather similar to the solid-state spectrum, indicating the 

absence of intermolecular exchange pathways in the powder. The best simulation was 

obtained with g = (2.066  0.005), g = (2.346  0.005), D = 43 cm
-1

 and a hyperfine 

coupling constant of A = (215  3) MHz. 

 

 

Figure 73: X-band EPR spectra of 3[BF4]3 recorded on a powder sample (a) and on a frozen solution in 

butyronitrile (b). The measurements were performed at 5 K. Black solid lines show the experimental data while 

orange dotted lines depict simulations based on the spin Hamiltonian approach (see text). 
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A much more complicated situation was found in the X-band EPR spectrum of the 

non-oxidized dimer 3[BF4]2 because the similar sizes of the exchange coupling and the 

Zeeman splittings lead to nested signals (Figure 74, left). The low-field signal seems to be 

split into several components and an additional signal appears at about 600 mT. Since at 

higher fields and frequencies g-value anisotropy is resolved better while splittings due to 

exchange interactions are much less affected, multi-frequency HFEPR-spectra were recorded 

for 3[BF4]2. The spectra were recorded with the help of Raphael Marx and Dr.-Ing. Petr 

Neugebauer (Institute of Physical Chemistry, University of Stuttgart) and are shown on the 

right hand side of Figure 74. At 310.5 GHz, three well-separated lines corresponding to 

different g-values are located at magnetic fields around 4.3, 5.4 and 10.5 T. The exchange 

coupling is visible as splittings or broadening of these lines. Good simulations were only 

obtained when assuming not only a rhombic g-tensor but also anisotropic exchange 

interaction. For reasons of simplicity, the corresponding matrices were assumed to share the 

same axis systems but it is important to mention that in reality this is not necessarily the 

case.
196

  

The best agreement between simulations and experimental spectra for all applied 

frequencies was achieved with the following set of parameters: D = 43 cm
-1

, 

gxx = (2.60  0.05), gyy = (2.05  0.02), gzz = (2.10  0.03), Jxx = (–0.077  0.003) cm
-1

, 

Jyy = (–0.215  0.003) and Jzz = (–1.14  0.02) cm
-1

.  

 

 

Figure 74: Solid-state EPR spectra of 3[BF4]2 recorded at 5 K. Left: X-band EPR-spectrum. Right: HFEPR-

spectra at different frequencies, as indicated. Black solid lines correspond to experimental spectra while red 

dotted lines show the simulations based on a spin Hamiltonian approach (see text). The HFEPR experiments 

were performed with the help of Raphael Marx and Dr.-Ing. Petr Neugebauer.  
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The individual g-values lie in the typical range observed for sixfold coordinated cobalt(II) 

centers
44

 and the average g-value of g = 2.25 is in good agreement with g = 2.30 found by 

magnetometry. Furthermore, the average value for the exchange coupling constant is 

Jex = -0.48 cm
-1

, in excellent agreement with the value derived from fitting the magnetic 

susceptibility data (Jex= –0.47 cm
-1

). 

The low-temperature X-band- and HFEPR-spectra of the asymmetrically bridged 

dimer 5[OTf]2 are shown on the left hand side in Figure 75. Due to the small exchange 

coupling, the X-Band EPR-spectrum is similarly complicated as observed for 3[BF4]2, 

showing broad and nested signals over a large magnetic field range. Simplified spectral 

patterns are obtained by applying higher microwave frequencies (Figure 75, right). In the 

300 GHz spectrum, the most intense peaks appear at magnetic fields of about 4.1, 5.8 and 9.5 

T and are attributed to three different g-values, as evidenced by different slopes in the 

frequency vs. field plot (Appendix, section 8.5.3). Additionally, several smaller peaks are 

observed that are due to transitions from slightly higher lying microstates of the exchange-

coupled system. As illustrated in the frequency vs. field plots (appendix, section 8.5.3), some 

of these signals show the same frequency dependence as the main peaks and thus belong to 

the same g-values. However, the asymmetrical bridging ligand in 5[OTf]2 complicates the 

simulation of the EPR data, since apart from anisotropic g- and J-tensors, the distinct Co(II) 

centers most likely show different sets of D, E and g-values in different axis systems, leading 

to an extremely over-parametrized situation.  

 

 

Figure 75: Left: Powder X-Band EPR-spectra of 5[OTf]2, recorded at 4.4 K. Right: HFEPR-spectra of a pellet of 

5[OTf]2 recorded at 5 K and various frequencies, as indicated. The HFEPR-spectra were recorded by Dr.-

Ing. Petr Neugebauer. Solid lines correspond to experimental spectra while dotted lines illustrate simulations 

based on the model described in the text.  
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The simulations were thus performed in terms of a rather simplified model, using the 

same parameters for both Co(II) centers. The ZFS parameters were fixed to D = 23 cm
-1

 and 

E = 0, according to the ZFS gap determined by FIR-spectroscopy.  The spectral main features 

as well as some of the smaller peaks in the HFEPR-spectra were best simulated with 

gxx = (2.58  0.12), gyy = (2.02  0.03), gzz = (2.14  0.05), Jxx = (–0.314  0.003) cm
-1

, 

Jyy = (–0.539  0.01) cm
-1

 and Jzz = (–0.687  0.005) cm
-1

. The simulations are illustrated as 

dotted lines in Figure 75 while the corresponding energy level diagrams including the 

transitions at 300 GHz are provided in the appendix, section 8.5.3. The average g-value is 

2.25 and the isotropic mean value of J is Jex = –0.51 cm
-1

, in nearly perfect agreement with 

the values derived by SQUID magnetometry (g = 2.22 and Jex = –0.52 cm
-1

).  

 

Summarizing this section, the SQUID magnetometric measurements on the cobalt 

dimers 3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 and 5[OTf]3 were complemented by EPR-

spectroscopic studies as well as by FIR-spectroscopy in the case of 5[OTf]2. Usable EPR-

spectra were obtained for samples of 3[BF4]2, 3[BF4]3 and 5[OTf]2 and they were 

successfully simulated using the D values derived from the magnetic data and anisotropic g- 

and J-tensors. In the case of 5[OTf]2, the value for D was directly determined by FIR-

spectroscopy. The EPR simulation parameters compared to the parameters derived from the 

magnetic susceptibility data are listed in Table 15. For 3[BF4]2 and 5[OTf]2, the average 

values of g and Jex determined by EPR compare well to the isotropic values obtained by 

simulating the susceptibility data. However, for 3[BF4]3, the EPR-spectroscopically 

determined average g-value is higher, demonstrating the well-known fact that SQUID 

magnetometry only allows the relatively rough estimation of g-values, e.g. due to its higher 

sensitivity to diamagnetic impurities.  

 

Table 15: Comparison of the average g-values and the mean values for the exchange coupling constants Jex used 

in the simulations of the magnetic data and the EPR-spectra of 3[BF4]2, 3[BF4]3, 4[BPh4]2, 5[OTf]2 and 5[OTf]3. 

 3[BF4]2 3[BF4]3 4[BPh4]2 5[OTf]2 5[OTf]3 

Jiso, SQUID  / cm
-1

 –0.47 - 0.76 –0.52 - 

Jmean,EPR / cm
-1 

–0.48 - - –0.51 - 

giso, SQUID  2.30 2.170 2.248 2.220 2.070 

gmean, EPR 2.25 2.25 - 2.250 - 
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Comparing the exchange-coupled dimers 3[BF4]2, 4[BPh4]2 and 5[OTf]2, an 

interesting trend is observed: While 4[BPh4]2 exhibits ferromagnetic coupling, 

antiferromagnetic exchange is observed for both 3[BF4]2 and 5[OTf]2. The strength of the 

exchange coupling decreases in the following order: 

|Jex|(4[BPh4]2) > |Jex|(5[OTf]2) > |Jex|(3[BF4]2). Intuitively, these observations are rather 

unexpected, since except for different substituting groups R, the bridging situations in 3[BF4]2 

and 4[BPh4]2 are rather similar while that in 5[OTf]2 is different due to an asymmetric 

bridging ligand. Thus it can be concluded that the sign and the magnitude of the exchange 

coupling are extraordinarily sensitive to the nature of the bridge, including factors influenced 

by the substituting groups R. As mentioned in section 2.1.1, the natures of exchange 

couplings can be qualitatively predicted by the so-called Goodenough-Kanamori rules
40-42

, 

taking into account the orbitals involved and the metal-ligand-metal angles. However, these 

rules were originally derived for rather simple bridging ligands like oxo-bridges and 

application to extended bridging ligands is not straightforward.  

In a simplified picture, the occurrence of antiferromagnetic coupling vs. ferromagnetic 

coupling in similar compounds can be explained by competing exchange paths along the 

bonds of the bridging ligands. As illustrated in Figure 76, the anti-parallel alignment of 

electron spins along the meta-path results in ferromagnetic coupling of the spins of the Co(II) 

centers, while anti-parallel electron spin alignment along the para-path leads to anti-

ferromagnetic coupling. In any case, the favored exchange path and therefore the nature of the 

coupling should be related to the relative geometric arrangement of the metal centers, which is 

mainly determined by the bridging ligands. Unfortunately, no crystal structure is available for 

3[BF4]2, which precludes its inclusion in the comparison of the geometric arrangements for 

the compounds studied in this work.  

 

 

 

Figure 76: Schematic illustration of competing exchange paths, leading to ferromagnetic coupling (left) or anti-

ferromagnetic coupling (right). Arrows depict the alignment of electron spins. 
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Regarding the structures of 4[BPh4]2 and 5[OTf]2, one aspect to be taken into account 

concerns the intra-dimer Co(II)-Co(II) distances. With 7.954 Å, this distance is shorter in 

4[BPh4]2 than in 5[OTf]2 (8.025 Å), providing one possible explanation for the stronger 

interactions in 4[BPh4]2, also including stronger dipolar interaction. However, the intra-dimer 

distances alone are not sufficient to explain the different signs of the exchange coupling 

parameters. Further aspects might include e.g. the relative orientation of metal-ligand bonds 

or competing inter-dimer dipolar interactions. Analyzing such aspects requires comparing 

much more than only two structurally similar compounds.  

The exchange interaction parameters found for 3[BF4]2, 4[BPh4]2 and 5[OTf]2 can 

also be compared in terms of the electron withdrawing or electron donating properties of the 

substituting groups R.  In 3[BF4]2, R
2
 refers to 2-(methoxy)-phenyl, in 4[BPh4]2, R

3
 stands for 

2-(trifluoromethyl)-phenyl and in 5[OTf]2, R
4
 denotes 4-(isopropyl)-phenyl (section 4.4.1). 

Thus, 4[BPh4]2 is the only compound exhibiting an electron withdrawing group R while in 

3[BF4]2 and 5[OTf]2, electron donating groups R are present, consistent with the determined 

signs of the exchange coupling constants. Comparing 3[BF4]2 and 5[OTf]2, slightly stronger 

antiferromagnetic exchange is found for 5[OTf]2 although the electron donating properties of 

isopropyl groups are weaker than those of methoxy groups. Here, the different bridging 

situations, i.e. a symmetrical bridge with two oxygen and two nitrogen donors in 3[BF4]2 

compared to an asymmetric bridge with three oxygen donors and only one nitrogen donor in 

5[OTf]2 might play a significant role.  In order to draw final conclusions about the influence 

of the substituting groups and the symmetry of the bridging ligand, the studied series of 

symmetrically and asymmetrically bridged Co(II)-Co(II) dimers should be expanded. 

Symmetric and asymmetric dimers should be synthesized with the same substituents R and 

the same counter ions, allowing direct comparison of the influence of the donor sets. 

Furthermore, the series should include complexes with very strongly electron donating or 

electron withdrawing groups, e.g. amine or nitrile groups. In the context of molecular 

magnetism, ferromagnetic exchange interaction is preferred and if the trend observed in this 

work turns out to be correct, symmetric bridges containing strongly electron withdrawing 

groups could lead to enhanced ferromagnetic couplings. Also, the investigation of complexes 

with bridges that contain only nitrogen donors could provide very interesting results.
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5 Summary and Conclusion 

Since the discovery of the first single-molecule magnet in 1993,
1
 the field of molecular 

magnetism
2,3

 has become a flourishing area of scientific research. As axial anisotropy was 

realized to be one of the key factors determining the energy barrier in magnetically bistable 

molecules, the synthesis and investigation of complexes with potentially largely anisotropic 

metal centers moved more and more into the focus of interest.
9,11,21-24,28

 The main questions to 

be answered concern for example the correlation between the molecular as well as the 

electronic structure and the corresponding magnetic properties, understanding aspects that 

control under-barrier relaxation and finally the development of rational design criteria for 

improved single-molecule magnets.  

In this context, the contribution of the work presented here lies in the comprehensive 

magnetic and spectroscopic investigation of selected lanthanide and cobalt complexes 

exhibiting large magnetic anisotropies. The compounds were studied not only by means of 

magnetometry, but also by applying a range of advanced spectroscopic techniques, including 

far-infrared (FIR) spectroscopy, multi-frequency EPR and optical methods. Importantly, one 

of the main tools for complete electronic structure determinations and thus unravelling the 

origin of the respective dynamic properties was magnetic circular dichroism (MCD) 

spectroscopy. However, since the MCD-spectrometer was not part of the scientific equipment 

at the University of Stuttgart before, its design, setup and characterization should be 

considered as the first part of this work.  

The MCD-spectrometer was successfully assembled by combining an Aviv Model 42 

CD-spectrometer and an Oxford Instruments SM-4000-10 optical split-coil cryomagnet. The 

superconducting magnet provides magnetic field strengths of up to 10 T. It is equipped with 

a variable temperature insert operating at temperatures between 1.5 and 300 K, allowing for 

VTVH MCD measurements that are useful for electronic ground state studies. The CD-

spectrometer contains a tungsten halogen lamp emitting in the near-UV, visible and near-IR 

regions of the electromagnet spectrum. The light source is followed by a Cary 14 double 

monochromator providing an excellent spectral resolution of up to 0.1 nm, which was later on 

made use of for the accurate determination of f-f-transition energies in lanthanide complexes.  

After the monochromator, the combination of a Rochon polarizer and a photoelastic 

modulator generates alternately left and right circularly polarized light, which is then focused 

onto the sample, using appropriate optics. The sample is placed in the center of the magnetic 
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field and a home-built sample cell allows for studying samples as frozen solutions, mulls or 

thin films. Detection is carried out using a photomultiplier tube for the UV and visible range 

and an indium gallium arsenide photodiode for the NIR range, covering a rather wide 

wavelength range from 200 to 2000 nm. It is worthwhile mentioning that in MCD-

spectroscopy such a large wavelength range has rarely been realized up to now, although 

especially high wavelengths are extremely useful for determining the energies of low-lying 

excited states, e.g. the levels arising from the 
4
T1(F) terms of four-coordinate Co(II) 

complexes. Wavelength calibration was performed with the help of the well-defined f-f-

transitions observed in a holmium oxide standard sample
129

 while CD intensity calibration 

was carried out making use of the well-known signal intensities of aqueous solutions of 

CSA
136

 and nickel tartrate
136

. The performance of the completely assembled MCD-

spectrometer was finally tested by recording MCD-spectra of a polymer film of K3[Fe(CN)6] 

and the obtained spectra agreed well with reported literature data
139-142

. One aspect of special 

interest concerned the sensitivity of the MCD-spectrometer, more precisely the possibility of 

monolayer detection. Indeed, preliminary measurements on Langmuir-Blodgett deposited 

monolayers of the single-ion magnet DyPc2
25

 showed rather promising results, including not 

only the observation of clear spectra but also MCD detected hysteresis curves. These findings 

strongly suggest that MCD-spectroscopy provides a convenient tool for studying orientation-

dependent properties of SMM monolayers, which currently requires much more sophisticated 

and less available techniques like synchrotron-based methods. Work in this direction is still 

ongoing, including e.g. studying the dependence of the hysteresis behavior on the number of 

stacked layers or the extension of MCD based monolayer detection to other compounds.  

In conclusion, the design and setup of a high-end MCD-spectrometer at the University 

of Stuttgart was rather successful, as also confirmed by the substantial contributions of MCD-

spectroscopy to the electronic structure elucidation of lanthanide- and cobalt-based SIMs in 

the further course of this work. However, since the spectrometer is not a so-called plug-and-

play instrument, there will always be room for improvement or the implementation of new 

ideas in the future. Possible improvements concern for example the optics employed. NIR 

baseline artefacts due to vibrational overtones of OH groups could be minimized by replacing 

as many optical parts as possible by OH free analogues. The employment of achromatic 

lenses could minimize the currently present wavelength dependency of the focal spots of the 

light. Furthermore, replacing the presently used PMT by a PMT operating at wavelengths up 

to 1200 nm could resolve the issue of baseline artefacts around 1000 nm. Currently, work is 

ongoing regarding the user-friendly change of the magnet between several applications, 
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including MCD- and FDMR-spectroscopy. Besides the possible improvements concerning the 

practical performance of the MCD-spectrometer, there are a lot of further ideas regarding the 

application of the spectrometer, e.g. MCD-spectroscopy on oriented single crystals, 

measurements on air-sensitive samples or optically detected EPR (ODEPR) spectroscopy. 

Measurements on single crystals could be realized rather soon, requiring only improved light 

focusing onto the sample and an adjustable aperture. For measurements on extremely air-

sensitive samples, a sealable sample cell has to be constructed, which allows preparing and 

transporting the sample under inert gas atmosphere. The implementation of ODEPR is a more 

challenging project since it requires microwave irradiation. However, due to the high 

sensitivity of the MCD-spectrometer, this is a rather interesting option for obtaining high-

quality EPR-spectra of thin films or strongly diluted samples. 

In the further course of this work, MCD-spectroscopy was employed as one of the 

essential tools for studying the electronic structures of selected lanthanide and cobalt 

complexes.  Except for possible SIM properties of erbium and dysprosium complexes in 

general, the studied molecular tetra-carbonates
26

 of dysprosium (1-Dy) and erbium (1-Er) 

were chosen mainly due to the colorlessness of the carbonate ligands, allowing for optical 

detection of f-f-transitions. After successful synthesis and structural characterization, the 

static and dynamic magnetic properties were probed by extraordinarily detailed susceptibility 

and magnetization measurements. Both 1-Dy and 1-Er are field-induced SIMs, as evidenced 

by clear frequency dependent maxima of the ac out-of-phase susceptibilities in the presence of 

an external dc bias field. Based on spectroscopic data, energy barriers of 52 cm
-1

 for 1-Er and 

29 cm
-1

 for 1-Dy were determined.  However, the determined magnetic relaxation behavior is 

rather different. While the Arrhenius plot for 1-Dy shows a pronounced linear regime towards 

high temperatures, which is indicative for Orbach relaxation, the Arrhenius plot for 1-Er is 

strongly curved. Further magnetic studies showed that for 1-Er, the contributions of the direct 

process and the Raman process to magnetic relaxation are much higher than for 1-Dy.  

The magnetic investigations were complemented by detailed spectroscopic studies, 

which are not yet commonly applied in the field of molecular magnetism, but are more and 

more called for in recent SIM related literature.
66,67

 The combination of low temperature FIR, 

MCD, electronic absorption and luminescence spectroscopy allowed for the experimental 

determination of no fewer than 48 energy levels for 1-Er and 55 levels for 1-Dy, which built 

the foundation for the subsequent crystal field parametrization. Importantly, most of these 

levels were determined by electronic absorption and MCD-spectroscopy. In addition, multi-

frequency EPR-spectroscopy was applied, since this method is extremely sensitive to the 
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nature of the lowest lying Kramers doublets and thus served as a tool for checking and fine-

tuning the respective sets of determined crystal field parameters. 

Crystal field analysis for 1-Dy and 1-Er was performed in terms of the combination of 

a common free-ion Hamiltonian and a crystal field Hamiltonian based on the approximate C2v 

point symmetry of the complexes. After an iterative fitting procedure, reliable sets of crystal 

field parameters were found that allowed for good simulations of all the experimental data. 

The compositions of the wave functions of the electronic ground states described by these 

crystal field parameters hint at strongly mixed Kramers doublets, thus explaining the 

relatively poor SIM performance of 1-Dy and 1-Er. More quantitatively, a detailed 

understanding of the relaxation pathways was obtained by calculating the magnetic dipole 

strengths for transitions between the ground state Kramers doublets. The calculated values 

confirm that Orbach relaxation is prominent in 1-Dy while under-barrier relaxation dominates 

in 1-Er.  

Concluding this subproject, the combination of magnetometry and advanced 

spectroscopic techniques allowed for the determination of the electronic structures as well as 

for a full understanding of the magnetic relaxation in the lanthanide-based SIMs 1-Dy and 

1-Er. Importantly, none of the applied methods is sufficient on its own for the determination 

of meaningful crystal field parameters for low symmetry compounds such as 1-Dy and 1-Er. 

While magnetometry on its own unequivocally leads to over-parametrized situations, also FIR 

and luminescence spectra usually do not provide enough energy levels required for the 

unambiguous determination of crystal field parameters. They have to be complemented by 

optical spectra. However, energies on their own do not yield any information about the 

composition of the states involved, making EPR-spectroscopy essential. Thus, this work not 

only provides a substantial contribution to the understanding of the electronic structures of 

lanthanide SIMs, but also a recipe for the experimental electronic structure determination 

itself. However, the presented method is a rather lengthy process, not only in terms of 

experimental effort but also concerning the subsequent data analysis and fitting procedures. 

For routine investigations or for the investigation of more complicated systems, the presented 

recipe needs to be adapted to the individual problem and the corresponding points of interest.  

Besides the lanthanide tetra-carbonates, two classes of cobalt compounds were 

studied, namely monometallic and bimetallic complexes. The monometallic complexes 

(HNEt3)22 and (NMe4)22 consist of a Co(II) central ion ligated by the nitrogen donors of two 

doubly deprotonated 1,2-bis(methanesulfonamido)benzene ligands, resulting in pseudo-

tetrahedral coordination. Rather acute N-Co-N bite angles indicate strong axial distortions 
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compared to regular tetrahedrons. The static magnetic properties hinted at high energy 

barriers for spin reversal and rather high values for the axial zero-field splitting parameters 

with D = –115 cm
-1

 for (HNEt3)22 and D = –112.5 cm
-1

 for (NMe4)22 were directly 

determined by FIR-spectroscopy. The corresponding energy barriers are amongst the highest 

ever reported for first-row transition metal complexes,
11,24,28

 making (HNEt3)22 and (NMe4)22 

extraordinarily interesting systems for studying SIM behavior. 

Their performance as SIMs was probed by temperature and frequency dependent ac 

susceptibility measurements and indeed, even in the absence of a static magnetic field, clear 

frequency dependent maxima of the out-of-phase susceptibilities were observed. (HNEt3)22 

and (NMe4)22 thus belong to the very rare examples for Co(II) based zero-field SIMs. The 

corresponding Arrhenius plots showed pronounced linear regimes towards high temperatures; 

however, the effective energy barriers derived from linear fits to these data were significantly 

lower than the energy barriers directly determined by FIR-spectroscopy. These findings 

clearly show that energy barriers derived solely from ac susceptibility data are not reliable. 

The unique magnetic properties of (HNEt3)22 and (NMe4)22 were successfully 

explained by the analysis of spectroscopic results. The recorded HFEPR-spectra showed no 

resonance lines, confirming the rather high values and negative signs of the zero-field 

splitting parameters D. Furthermore, the absence of EPR lines hints at rather axial electronic 

ground states with negligibly small transverse anisotropy, which would lead to relaxed EPR 

selection rules. The MCD-spectra showed intense signals arising from spin-allowed d-d-

transitions from the 
4
A2(F) ground state to the 

4
T2(F), 

4
T1(F) and 

4
T1(P) excited terms of 

Co(II). Subsequent crystal field analysis within the D2d symmetry approximation revealed that 

the strong axial crystal field produced by the ligands splits the first excited 
4
T2(F) state to such 

an extent that the lower 
4
B2 component arising from this state closely approaches the ground 

state. The resulting small energy gap between the electronic ground state and the first excited 

state leads to increased second-order spin-orbit interactions, explaining the rather high zero-

field splittings. The transitions to the 
4
T1(F) states were subjected to VTVH MCD 

measurements and the obtained curves were successfully simulated using axial g-tensors. 

Importantly, the corresponding signal intensities showed hysteresis with record coercive fields 

of 0.24 T ((HNEt3)22) and 0.14 T ((NMe4)22). (HNEt3)22 and (NMe4)22 thus show real 

magnetic bistability, caused by the strong axial ligand field generated by the bis(sulfonamide) 

ligands, which are able to act as both  and  donors.  The different coercive fields observed 

for (HNEt3)22 and (NMe4)22 hint at a strong influence of the respective counter ions and the 

corresponding crystal structure. For a better understanding it would be interesting to expand 
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the series of complexes with differing counter ions. Also, magnetic hysteresis measurements 

on suitable single crystals could be rather promising.  

The results obtained for (HNEt3)22 and (NMe4)22 show that highly axial ground states 

not necessarily require linear complexes, which are a current trend in the community of 

molecular magnetism.
29-31,72

 Instead, four-coordinate Co(II) chelate complexes exhibiting 

acute bite angles and symmetry beyond the directly coordinated donor atoms can also show 

magnetic bistability. It is worthwhile mentioning that the Co(II) complexes presented here are 

fully air and moisture stable and thus much closer to practical applications than the rather 

exotic linear complexes reported in literature. However, in spite of their high axiality, 

(HNEt3)22 and (NMe4)22 still show under-barrier processes for magnetic relaxation, 

preventing practical application. As it was reported that quantum tunneling of the 

magnetization can be suppressed in exchange coupled systems,
33

 one promising idea for the 

future concerns the conversion of the currently bidentate ligand into a tetradentate bridging 

ligand. Since such ligands are potentially redox active, rather strong exchange couplings 

could be achieved by employing the ligand in a radical form. Thus, the compounds (HNEt3)22 

and (NMe4)22 provide a promising starting point for proceeding towards improved SMMs. 

They offer manifold possible modifications, concerning for example the choice of the counter 

ions, the substituents at the ligand, the denticity of the ligand or its oxidation state. 

The second group of cobalt complexes studied in this work comprised dimers of 

distorted octahedrally coordinated Co(II) ions, bridged by quinone-based bridging ligands 

where one or two oxygen donors of 2,5-dihydroxy-1,4-benzoquinone are substituted by 

isoelectronic [NR] groups. The substitution of two oxygen donors led to the formation of the 

symmetrically bridged dimers 3[BF4]2 and 4[BPh4]2 with R referring to 2-(methoxy)-phenyl 

in 3[BF4]2 and 2-(trifluoromethyl)-phenyl in 4[BPh4]2. The substitution of only one oxygen 

donor led to the asymmetrically bridged dimer 5[OTf]2 where R stands for 4-(isopropyl)-

phenyl. In all dimers, tris(2-pyridylmethyl)amine served as a co-ligand. The main interest 

regarding these compounds concerned the nature and strength of the exchange coupling 

mediated by the bridges, i.e. the influence of the bridging symmetry and the substituents R. 

Due to the potential non-innocent behavior of the bridges, another interesting question 

concerned the observation of valence tautomerism in the corresponding one-electron oxidized 

species that could lead to switchable magnetic properties.  

The static magnetic properties were investigated by dc susceptibility and 

magnetization measurements and the obtained data indicated weak antiferromagnetic 

exchange interactions in 3[BF4]2 and 5[OTf]2, while 4[BPh4]2 showed ferromagnetic 
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exchange. No valence tautomerism was observed in the studied one-electron oxidized species 

3[BF4]3 and 5[OTf]3, showing that the potentially non-innocent bridges behave essentially 

innocently in these complexes. Since partially unquenched first-order orbital angular 

momenta in octahedral Co(II) complexes might preclude the application of a simple spin 

Hamiltonian, quantitative data interpretation was first performed in terms of the Lines 

model.
81

 However, since this model was originally developed for Co(II) ions in perfect 

octahedral symmetry, rather unreasonable fits to the susceptibility data were obtained. 

Instead, good agreement between calculated and experimental data as well as reasonable fit 

parameter values were obtained using an empirical model developed by Lloret et al.
85

 that 

takes into account axial distortion in terms of the parameter ax. Importantly, rather high and 

positive values for ax were found, hinting at an orbital singlet ground state for Co(II), for 

which the spin Hamiltonian approach is appropriate. Thus, the model by Lloret is a suitable 

tool for obtaining a first idea about the electronic structures of cobalt complexes based on 

magnetic data and it can help in the decision concerning the further strategy.  

Subsequently, the susceptibility data were successfully simulated using a simple spin 

Hamiltonian, i.e. in terms of axial ZFS parameters D, isotropic g-values and isotropic 

exchange coupling constants Jex, with Jex = –0.47 cm
-1

 for 3[BF4]2, Jex = +0.76 cm
-1

 for 

4[BPh4]2 and Jex = –0.52 cm
-1

 for 5[OTf2]. The magnetometric measurements were 

complemented by multi-frequency EPR-spectroscopic studies. Simulation of the EPR data 

required anisotropic g-tensors and exchange couplings; however, the obtained mean values 

agree rather well with the values derived from the magnetic data.  

Comparing the exchange coupling constants determined for 3[BF4]2, 4[BPh4]2 and 

5[OTf2], 4[BPh4]2 is the only compound showing ferromagnetic exchange. At first glance this 

observation is rather counter-intuitive because the only difference between 4[BPh4]2 and 

3[BF4]2 is the differing substituent R at the bridge. One possible explanation might lie in the 

electron withdrawing nature of the trifluoromethyl groups in 4[BPh4]2 compared to the 

electron donating substituents in 3[BF4]2 and 5[OTf2]. However, verifying this hypothesis 

requires expanding the series of studied complexes. Since in the context of molecular 

magnetism ferromagnetic exchange is preferred, the inclusion of bridges with strongly 

electron-withdrawing substituents like nitrile groups could be rather interesting.  Regarding 

the symmetry of the bridge, the asymmetrical bridge in 5[OTf]2 mediates a slightly stronger 

antiferromagnetic exchange coupling than the symmetric bridge in 3[BF4]2. However, 

asymmetric bridges are doubtlessly very interesting from a synthetic point of view. They 

potentially allow site-specific coordination to different metal centers, leading to hetero-
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bimetallic complexes. For instance, one of the next steps could be the synthesis and 

investigation of a Co-Fe dimer. The underlying idea consists in designing a molecule which 

can be switched between the Co(III)-Fe(II) and Co(II)-Fe(III) species. Many iron(II) 

complexes show thermally activated spin-crossover
119,197

 while Co(II) exhibits large 

anisotropy. Thus, the combination of cobalt and iron could lead to rather interesting 

switchable magnetic properties. 
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6 Experimental Part 

6.1  Film and Monolayer Preparation 

6.1.1 Films of K3[Fe(CN)6] in Poly(vinylalcohol)  

Films of K3[Fe(CN)6] in PVA were prepared according to a method described in 

literature
142

. 2.0123 g PVA (Applichem GmbH, Biochemica, MM ca. 72000 g mol
-1

) were 

added to 40 ml doubly distilled water and heated under reflux (80 °C) and stirring until a clear 

solution was obtained. 0.2499 g (0.759 mmol) K3[Fe(CN)6] (Sigma Aldrich) were dissolved 

in 20 ml doubly distilled water. The solutions were mixed in a volume ratio of 2 : 1 

(PVA : K3[Fe(CN)6]) and the resulting mixture was put onto glass slides. After drying in the 

dark for several days, the films were removed with the help of a razor blade.  

 

6.1.2 Synthesis of (NBu4)[Dy(Pc)2] for Film Preparation 

A sufficient amount of (NBu4)[Dy(Pc)2], which was used for preparing polymer films 

and monolayers, was synthesized by Dr. Michael Waters (School of Chemistry, University of 

Nottingham), according to a literature-known procedure. A detailed description can be found 

elsewhere.
146

 

 

6.1.3 Films of [Dy(Pc)2] in Polystyrene 

8.0323 g polystyrene (Aldrich Chemistry, average MM ca. 350000 g mol
-1

) were 

dissolved in 80 ml toluene and 20.5 mg (NBu4)[DyPc2] were dissolved in 40 ml ethanol. 

These stock solutions were mixed in various volume ratios and the resulting solutions were 

spread onto glass slides, using syringes. After drying for several days, the obtained films were 

peeled off. Subsequent electronic absorption and MCD measurements showed that the films 

almost quantitatively contained the neutral species [Dy(Pc)2]
0
. 

For the estimation of the effective thicknesses, i.e. the numbers of molecules along the 

axis perpendicular to the film plane, the films were first cut into 1.5 cm diameter circles and 

subsequently weighed.  The physical thicknesses were determined using a caliper. The 

effective thicknesses were then easily calculated by taking into account the respective film 

volumes and concentrations.  
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6.1.4 [Dy(Pc)2] Monolayers 

Monolayers of [Dy(Pc)2] on (fused) quartz were fabricated by Dr. Jiří Novák, Dr. 

Chennan Wang and Jakub Rozbořil at the Central European Institute of Technology 

(CEITEC) at the Masaryk University in Brno. Deposition was performed by applying the 

Langmuir-Blodgett method, using solutions of (NBu4)[DyPc2] in chloroform (1.78 mg mL
-1

) 

and surface pressures between 15 and 20 mN m
-2

.  Preliminary characterization by XRD 

measurements indicated effective layer thicknesses of 1-2 molecules. MCD-spectra of the 

layers showed that they consist of the neutral species [Dy(Pc)2]
0
. 

 

6.2 Synthesis and Structural Characterization 

6.2.1 Synthesis and Characterization of the Lanthanide Tetra-Carbonates  

The syntheses of 1-Er and 1-Dy were performed according to the method described by 

Goff et al.,
26

 with slight modifications. Thus, 9.016 g (50.0 mmol) guanidine carbonate 

(Aldrich Chemistry) were dissolved in 20 ml doubly-distilled water, giving a saturated 

solution. For the synthesis of 1-Er, a solution of 1.099 g (2.5 mmol) erbium(III) nitrate 

pentahydrate (Strem Chemicals) in 10 ml doubly-distilled water was added under stirring at 

room temperature. For 1-Dy, a solution of 1.030 g (2.3 mmol) dysprosium(III) nitrate 

hexahydrate (Strem Chemicals) in 10 ml doubly-distilled water was used instead. A white 

precipitate formed, which was filtered off using a 0.45 µm syringe filter and the resulting 

clear solution was stored at 5°C for crystallization. After several weeks, pale pink (1-Er) or 

colorless (1-Dy) crystals formed, which grew rather large. Alternatively, crystallization could 

be speeded up by adding some drops of doubly-distilled water after several days, which then 

led to crystallization within 24 hours.  

The easy loss of lattice water molecules complicates the elemental analyses of 

complexes 1-Er and 1-Dy. Some crystals were removed from the mother liqueur and 

carefully dried on filter paper in order to remove adherent solution, but avoiding the loss of 

lattice water. The subsequent elemental analyses performed by Barbara Förtsch (Institute of 

Inorganic Chemistry, University of Stuttgart) using a Perkin Elmer CHSN/O Analyzer yielded 

the following values: 

 

Elemental analysis for 1-Er: 

Found (calculated for C9H52ErN15O23) / %: C 11.97 (11.93), H 5.80 (5.79), N 23.12 (23.19). 
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Elemental analysis for 1-Dy: 

Found (calculated for C9H52DyN15O23) / %: C 12.09 (12.00), H 5.84 (5.82), N 23.20 (23.32). 

 

The elemental analyses were repeated after the crystals had been exposed to air for six 

days. The determined compositions indicated only three water molecules per molecular unit: 

 

Found (calculated for C9H36ErN15O15) / %: C 14.39 (14.19), H 4.68 (4.76), N 27.88 (27.58). 

Found (calculated for C9H36DyN15O15) / %: C 14.50 (14.28), H 4.61 (4.79), N 27.93 (27.76). 

 

Conventional room temperature infrared spectra of pellets of 1-Er and 1-Dy in KBr 

were recorded by Julia E. Fischer using a Bruker alpha-T spectrometer.  

 

IR (KBr) for 1-Er: 

𝜈 / cm
-1

: 668, 725, 862, 1008, 1368, 1505, 1695, 2500-3750, 3628. 

IR (KBr) for 1-Dy: 

𝜈 / cm
-1

: 667, 724, 862, 1007, 1368, 1517, 1652, 2550-3700. 

 

6.2.2 Single Crystal X-Ray Analysis for the Lanthanide Tetra-Carbonates  

X-Ray crystallographic analyses on single crystals of 1-Er and 1-Dy were performed 

by Dr. Wolfgang Frey (Institute of Organic Chemistry, University of Stuttgart). Large single 

crystals of 1-Er and 1-Dy were removed from the mother liqueur and cut into appropriate size 

immediately prior to the measurements. They were characterized by X-ray diffraction studies 

using a Bruker Kappa APEXII Duo diffractometer, equipped with a monochromatic Mo K 

X-ray source ( = 0.71073 Å). Data collection at 100(2) K, initial indexing and cell 

refinement were handled using the Bruker APEX II software suite. The structures were solved 

by direct methods and with the help of SHELXS-97
198

 and they were refined anisotropically 

(non H-atoms) by full-matrix least squares methods on F
2
. Only a part of the hydrogen atoms 

could be located at different fourier map, so they were refined with fixed individual 

displacement parameters, using a riding model with typical d(X-H) distances. Table 16 shows 

the important crystallographic parameters and details about the structure refinements. Crystal 

structures were visualized with the help of the Mercury 2.4 crystal structure visualization 

software.
199
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Table 16: Crystal data and details about strucure refinement for compounds 1-Er and 1-Dy. 

 [C(NH2)3]5[Er(CO3)4] ∙ 11 H2O 

(1-Er) 

[C(NH2)3]5[Dy(CO3)4] ∙ 11 H2O 

(1-Dy) 

formula weight / g mol
-1

 905.92 901.10 

temperature / K 100(2) 100(2) 

wavelength / Å 0.71073 0.71073 

crystal system monoclinic monoclinic 

space group P21/n P21/n 

a / Å 8.8284(6) 8.7616(6) 

b / Å 20.9625(14) 21.1384(16) 

c / Å 19.6598(13) 19.7207(13) 

 / deg 90.00 90.00 

 / deg 94.266(2) 94.254(2) 

 / deg 90.00 90.00 

volume / Å
3
 3628.3(4) 3642.3(4) 

Z 4 4 

calculated density / g cm
3
 1.658 1.603 

Absorption coefficient /mm
-1

 2.412 2.148 

F(000) 1852 1756 

crystal size / mm 0.62 x 0.21 x 0.15 0.59 x 0.49 x 0.27 

 range for data collection / ° 1.42 – 28.34 2.07 – 25.10 

index ranges -9 < h < 11 -10 < h < 10 

 -27 < k < 26 -25 < k < 24 

 -25 < l < 26 -23 < l < 22 

reflections collected 34153 33026 

independent reflections 8976 6439 

completeness to  = 28.34° 99.1 % 98.9 % 

refinement method                full-matrix least squares on F
2
 

data / restrains / parameters 8976 / 6 / 433 6439 / 138 / 498 
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 [C(NH2)3]5[Er(CO3)4] ∙ 11 H2O 

(1-Er) 

[C(NH2)3]5[Dy(CO3)4] ∙ 11 H2O 

(1-Dy) 

goodness-of-fit on F
2
 1.044 1.048 

final R indices [I > 2(I)] R1 = 0.0473; wR2 = 0.1311 R1 = 0.0742, wR2 = 0.1776 

R indices (all data) R1 = 0.0498; wR2 = 0.1319 R1 = 0.0765, wR2 = 0.1787 

Largest difference  

peak / hole / e Å
-3

 

 

2.502 / -1.546 

 

3.324 / -4.501 

 

 

6.2.3 X-Ray Powder Diffraction Studies on the Lanthanide Tetra-Carbonates  

Some smaller crystals of 1-Er and 1-Dy were ground together with some drops of the 

respective mother liqueur and filled into 0.70 mm glass capillaries, which were then sealed in 

order to avoid evaporation. The measurements were performed at room temperature by Dr. 

Pierre Eckold at the Institute of Inorganic Chemistry at the University of Stuttgart using a 

STOE STADI P diffractometer with Mo K1 radiation (50 kV, 40 mA), equipped with a 

Siemens ID 3003 generator, a Germanium (111) monochromator and a DECTRIS MYTHEN 

1K detector in reflection geometry. The diffractometer was operated utilizing WinXPOW 

software, which was also used for baseline corrections. Theoretical powder patterns were 

simulated with the help of the crystal structure visualization software Mercury 2.4.
199

  

 

6.2.4 Synthesis and Characterization of the Mononuclear Co(II) Complexes  

The mononuclear Co(II) complexes (HNEt3)22 and (NMe4)22 were synthesized and 

structurally characterized by Dr. Margarethe van der Meer and coworkers (Institute for 

Chemistry and Biochemistry, Freie Universität Berlin). Details concerning the synthesis of 

(HNEt3)22 and the corresponding structural data can be found in ref
167

. The molecular 

structures shown in section 4.3.1 were visualized with the help of the crystal structure 

visualization software Mercury 2.4.
199
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6.2.5 Synthesis and Characterization of the Cobalt Dimers 

The symmetrically bridged dimers 3[BF4]2, 3[BF4]3, 3[BF4]4 and 4[BPh4]2 were 

synthesized and structurally characterized by Dr. David Schweinfurth and coworkers 

(Institute for Chemistry and Biochemistry, Freie Universität Berlin). Details concerning the 

syntheses and the structural data can be found in ref
32

. 

The asymmetrically bridged dimers 5[OTf]2, 5[OTf]2 and 5[OTf]2[BF4]2 were 

synthesized, structurally characterized and provided by Dr. Margarethe van der Meer and 

coworkers (Institute for Chemistry and Biochemistry, Freie Universität Berlin). 

Crystal structures were visualized with the help of the Mercury 2.4 crystal structure 

visualization software.
199

 

 

 

6.3 Magnetic and Spectroscopic Measurements 

6.3.1 SQUID Magnetometry 

Magnetic measurements were performed using a MPMS 3 SQUID magnetometer (for 

compounds 5[OTf]2, 5[OTf]2[BF4]2, (HNEt3)22 and (NMe4)22) and a MPMS-XL7 SQUID 

magnetometer (for compounds 1-Er, 1-Dy, 3[BF4]2, 3[BF4]3, 3[BF4]4, 4[BPh4]2 and 

5[OTf]3), both from Quantum Design. Unless otherwise stated, samples were studied as 

slightly pressed, Teflon-wrapped powder pellets. 1-Er and 1-Dy were studied as mixtures 

with silicone grease (GE Bayer Silicones, Baysilone paste), also wrapped by Teflon tape. 

Temperature dependent susceptibility measurements were carried out applying static fields of 

1000 – 10000 Oe. Unless otherwise stated, magnetic data were corrected for diamagnetic 

contributions using Pascal’s constants
93

. 

 

6.3.2 Far-Infrared Spectroscopy 

Far-infrared spectra of 1-Er, 1-Dy and 5[OTf]2 at applied magnetic fields between 0 T 

and 6 T were recorded on a Bruker IFS 113v FTIR-spectrometer equipped with an Oxford 

Instruments Spectromag SM4000 optical cryomagnet and an Infrared Laboratories pumped Si 

bolometer. The measurements were performed with the help of Raphael Marx and Dr. María 

Dörfel (both Institute of Physical Chemistry, University of Stuttgart). 1-Er and 1-Dy were 

studied as mulls in silicone grease (GE Bayer Silicones, Baysilone paste), while 5[OTf]2 was 

studied as a pure powder pellet.  
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Far-infrared spectra of (HNEt3)22 and (NMe4)22 at magnetic fields between 0 T and 

11 T were recorded by Dr. Milan Orlita and Michael Hakl (both Laboratoire National des 

Champs Magnétiques Intenses, Grenoble). The measurements were performed on pressed 

powder pellets of (HNEt3)22 and (NMe4)22 dispersed in eicosane, using a Bruker IFS 66v/s 

FTIR spectrometer with a globar source. The samples were placed inside an 11 T solenoid 

magnet equipped with a composite bolometer detector element.  

 

6.3.3 Luminescence Spectroscopy 

Low temperature photoluminescence experiments on mulls of 1-Er and 1-Dy in 

silicone grease (GE Bayer Silicones, Baysilone paste) grease were carried out with the help of 

Maren Gysler (Institute of Physical Chemistry, University of Stuttgart), Stergios Piligkos and 

Theis Theis Brock-Nannestad (both Department of Chemistry, University of Copenhagen) at 

the University of Copenhagen. The spectra were recorded using a Horiba FluoroLog3 

luminescence spectrometer equipped with an Oxford Instruments helium flow optical cryostat 

and photomultiplier and InGaAs detectors.  

 

6.3.4 Low Temperature Electronic Absorption and Magnetic Circular Dichroism 

Magnetic circular dichroism spectra were recorded on an Aviv Model 42 CD 

spectrometer equipped with an Oxford Instruments SM-4000-10 optical cryomagnet. A 

detailed description of the experimental setup is given in section 4.1. Low temperature 

electronic absorption spectra were obtained by monitoring the PMT voltage keeping the 

photo-current constant. The baseline was corrected by means of the dynode voltage profile 

measured without a sample. Samples were studied either as mulls, polymer films or 

monolayers, as indicated in the corresponding sections.  

 

6.3.5 Electron Paramagnetic Resonance 

Conventional X-band (9.47 GHz) EPR-spectra were recorded using a Bruker EMX 

EPR spectrometer equipped with an Oxford Instruments continuous helium flow cryostat. The 

microwave power was adjusted to values that did not cause saturation effects. The samples 

were studied either as powders (5[OTf]2, 5[OTf]3, 3[BF4]2, 3[BF4]3, 4[BPh4]2, (HNEt3)22 

and (NMe4)22), frozen solutions in butyronitrile (3[BF4]3) or mulls in Baysilone vacuum 
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grease (1-Er, 1-Dy). The sample tubes containing the samples were evacuated immediately 

prior to the measurements. 

High-frequency EPR (HFEPR) spectra at frequencies between 90 and 720 GHz were 

recorded on a home-built spectrometer employing an Anritsu signal generator, a VDI 

amplifier-multiplier chain, a Thomas Keating quasi-optical bridge, an Oxford Instruments 

15/17 T solenoid cryomagnet and a QMC Instruments InSb hot electron bolometer. The 

measurements were performed with the help of Raphael Marx and Dr.-Ing. Petr Neugebauer 

(both Institute of Physical Chemistry, University of Stuttgart). Samples were studied as 

pressed powder pellets, either of pure substance or of mixtures with eicosane. Only 1-Er and 

1-Dy were studied as mulls in fluorolube®. 

 

6.4 Analysis and Calculations 

6.4.1 Simulation of Magnetic Data 

Simulations of dc susceptibility and magnetization curves based on a spin Hamiltonian 

approach were performed by using the easyspin
200

 toolbox for Matlab. Part of the required 

scripts was provided by Raphael Marx and Philipp Lutz (both Institute of Physical Chemistry, 

University of Stuttgart). Simulations based on crystal field parameters were performed using 

the simulation software CONDON
201

. Least-squares-fitting of susceptibility curves based on 

the Lines model
81

 or the empirical model by Lloret et al.
85

 was performed by means of self-

written Matlab programs. Analysis of dynamic magnetic properties, i.e. least-squares fitting of 

Argand plots was performed by means of self-written Matlab scripts as well. All graphs were 

generated with the help of Matlab. 

 

6.4.2 Simulation of Spectroscopic Data 

Simulations of far-infrared spectra based on a spin Hamiltonian approach were 

performed by means of the easyspin
200

 toolbox for Matlab. Part of the required scripts was 

provided by Raphael Marx and Philipp Lutz (both Institute of Physical Chemistry, University 

of Stuttgart).  

Simulations of EPR-spectra using a spin Hamiltonian approach or an effective 

spin-1/2 approximation were performed with easyspin
200

 as well. Effective g-values based on 

crystal field parameters were calculated using the program pycf
176

 written by Sebastian 

Horvath (Department of Physics and Astronomy, University of Canterbury).  
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VTVH-MCD curves were simulated based on the equations published by Neese and 

Solomon
108

 by means of self-written Matlab scripts. 

All plots showing experimental and simulated spectra or curves in this work were 

generated using Matlab. 

 

6.4.3 Crystal Field Analysis 

Crystal field analyses for the lanthanide compounds 1-Er and 1-Dy were performed by 

means of the f-shell program package
175

 written by Prof. Dr. Michael F. Reid (Department of 

Physics and Astronomy, University of Canterbury). Calculations were performed in the 

intermediate coupling scheme using the full bases of states arising from the respective 4f
 N

 

configurations. The reported parameter uncertainties were estimated by taking the standard 

deviations provided by the f-shell output and modifying them by considering the effect of 

parameter change on the corresponding EPR simulations.  

Crystal field analyses for the cobalt compounds (HNEt3)22 and (NMe4)22) were 

performed by means of the Crystal Field Computer Package by Yeung and Rudowicz
80

, using 

the SMSLM basis of states and by means of a self-written Matlab script. Parameter 

uncertainties were estimated by qualitatively considering the effect of parameter change on 

the agreement between experimental and calculated energies.  

All energy level diagrams shown in this work were generated using Matlab.  

 

6.4.4 Theoretical Calculations 

Theoretical calculations concerning the electronic structure and spin-phonon-couplings 

in (HNEt3)22 were performed by Dr. Mihail Atanasov (Max Planck Institute for Chemical 

Energy Conversion, Mülheim a. d. Ruhr and Institute of General and Inorganic Chemistry, 

Bulgarian Academy of Sciences, Sofia). Computational details as well as a detailed 

description of the results can be found in ref
167

. 
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8 Appendix 

8.1 Appendix A: Background  

8.1.1 Energy Level Calculations for Pr(III) 

 

 

Table A 1: Matrix elements for the Coulomb repulsion in Pr(III). F
 2
, F

 4
 and F

 6
 are adjustable free-ion 

parameters. 

LS term Energy 

3
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 – 0.0468 F
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Table A 2: Energy matrices for the combined Coulomb and spin-orbit interactions in Pr(III). E(
2S+1

L) refers to 

the energies given in Table A 1. 

J Energy matrix 

0 
(
𝐸( 𝑃) 

3 − 𝜁 −2√3𝜁

−2√3𝜁 𝐸( 𝑆 
1 )
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1 
(𝐸( 𝑃) 

3 −
1

2
𝜁) 

2 

(

 
 
𝐸( 𝑃) +

1

2
𝜁 

3
3

2
√2𝜁 0

3

2
√2𝜁 𝐸( 𝐷) 

1 −√6𝜁

0 −√6𝜁 𝐸( 𝐹) − 2𝜁 
3 )

 
 

 

3 
(𝐸( 𝐹) −

1

2
𝜁 

3 ) 

4 

(

 
 
 
 
𝐸( 𝐹 

3 ) +
3

2
𝜁

√33

3
𝜁 0

√33

3
𝜁 𝐸( 𝐺) 

1 −
√30

3
𝜁

0 −
√30

3
𝜁 𝐸( 𝐻) − 3𝜁 

3
)

 
 
 
 

 

5 
(𝐸( 𝐻) −

1

2
𝜁 

3 ) 

6 

(

 
 𝐸( 𝐻) +

5

2
𝜁 

3 √6

2
𝜁

√6

2
𝜁 𝐸( 𝐼) 

1

)
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Table A 3: Comparison of the eigenvalues and eigenvectors obtained for Pr(III) applying the Russel-Saunders 

coupling or the intermediate coupling scheme. Only the electrostatic and the spin-orbit perturbations were 

considered. The free-ion parameters were set to F
 2
= 68995 cm

-1
, F

 4
 = 56119 cm

-1
, F

 6
 = 38864 cm

-1
 and 

4f = 737 cm
-1

. The ground state energies were set to zero. 

Russell-Saunders coupling Intermediate coupling 

Eigenvector Energy / cm
-1 

Eigenvector Energy / cm
-1

 

| 𝐻 
3

4⟩
 0 −0.0282| 𝐹 

3
4⟩ + 0.1523| 𝐺 

1
4⟩ + 0.9879| 𝐻 

3
4⟩ 0 

| 𝐻 
3

5⟩ 1843 | 𝐻 
3

5⟩ 2044 

| 𝐻 
3

6⟩ 4054 0.9985| 𝐻 
3

6⟩ − 0.0540| 𝐼 
1
6⟩ 4206 

| 𝐹 
3
2⟩ 5027 0.0132| 𝑃 

3
2⟩ − 0.1444| 𝐷 

1
2⟩ − 0.9894| 𝐹 

3
2⟩ 4761 

| 𝐹 
3
3⟩ 5929 | 𝐹 

3
3⟩ 6129 

| 𝐹 
3
4⟩ 7403 −0.8634| 𝐹 

3
4⟩ + 0.4943| 𝐺 

1
4⟩ − 0.1009| 𝐻 

3
4⟩ 6796 

| 𝐺 
1
4⟩ 8785 0.5037| 𝐹 

3
4⟩ + 0.8558| 𝐺 

1
4⟩ − 0.1175| 𝐻 

3
4⟩ 10001 

| 𝐷 
1
2⟩ 17073 −0.3059| 𝑃 

3
2⟩ + 0.9415| 𝐷 

1
2⟩ − 0.1415| 𝐹 

3
2⟩ 17037 

| 𝑃 
3
0⟩ 20542 0.9964| 𝑃 

3
0⟩ + 0.0850| 𝑆 

1
0⟩ 20525 

| 𝐼 
1
6⟩ 20709 0.0540| 𝐻 

3
6⟩ + 0.9985| 𝐼 

1
6⟩ 20959 

| 𝑃 
3
1⟩ 20911 | 𝑃 

3
1⟩ 21111 

| 𝑃 
3
2⟩ 21648 0.9520| 𝑃 

3
2⟩ + 0.3046| 𝐷 

1
2⟩ − 0.0317| 𝐹 

3
2⟩ 22348 

| 𝑆 
1
0⟩

 50235 −0.0850| 𝑃 
3
0⟩ + 0.9964| 𝑆 

1
0⟩ 50653 
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8.1.2 Free Ion Terms of Co(II) 

 

Table A 4: Energies of the LS states of free Co(II) ions dependent on the Racah parameters B and C. The energy 

of the ground term was set to zero. The 
2
D terms are not included because state-mixing leads to off-diagonal 

matrix elements.
75,78

 

LS term Term energy  

4
F 0 

4
P 15B 

2
G 4B + 3C 

2
H 9B + 3C 

2
P 9B + 3C 

2
F 24B + 3C 

 

 

8.1.3 Lines Equations for Octahedral Co(II) Compounds 

The temperature dependent g value g(T) appearing in section 2.3.1, equation (37) can be 

evaluated by solving the equations below:
81,82

 

 

[𝑔(𝑇)]2 = 𝐺/𝑃 (A1) 

 

𝐺 = 𝐺1 + 𝐺2𝐸1 + 𝐺3𝐸2 (A2) 

 

𝑃 = 1 + 2𝐸1 + 3𝐸2 (A3) 

 

𝐺1 =
1

9
(10 + 3𝑘𝑟)(10 + 3𝑘𝑟 − 15𝑏) −

40

81
(
𝑘𝐵𝑇

𝑘𝑟𝜆𝑆𝑂
) (4 + 3𝑘𝑟)(4 + 3𝑘𝑟 − 6𝑎) 

 

(A4) 

 

𝐺2 =
2

45
(22 − 6𝑘𝑟)(22 − 6𝑘𝑟 − 33𝑎) +

352

2025
(
𝑘𝐵𝑇

𝑘𝑟𝜆𝑆𝑂
) (4 + 3𝑘𝑟)(4 + 3𝑘𝑟 − 6𝑎) 

 

(A5) 

 

𝐺3 =
7

5
(6 − 3𝑘𝑟)(6 − 3𝑘𝑟 − 9𝑎) +

8

25
(
𝑘𝐵𝑇

𝑘𝑟𝜆𝑆𝑂
) (4 + 3𝑘𝑟)(4 + 3𝑘𝑟 − 6𝑎) 

 

(A6) 
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𝐸1 = 𝑒
9𝑘𝑟𝜆𝑆𝑂
𝑘𝐵𝑇  

(A7) 

 

𝐸2 = 𝑒
6𝑘𝑟𝜆𝑆𝑂
𝑘𝐵𝑇  

(A8) 

 

𝑎 =
1

3
[(𝑚 − 1)𝐽 + 𝑚𝑧′𝐽′](〈�̂�𝑧〉/µ𝐵𝐻0) 

(A9) 

 

𝑏 =
1

3
𝑚𝑧′𝐽′(〈�̂�𝑧〉/µ𝐵𝐻0) 

(A10) 

 

(〈�̂�𝑧〉/µ𝐵𝐻0) = 𝑓(𝑇)𝑔(𝑇)𝐹𝑚(𝑇)/(𝑚𝑘𝐵𝑇) (A11) 

 

𝑓(𝑇)𝑔(𝑇) = 𝑄/𝑃 (A12) 

 

𝑄 = 𝑄1 + 𝑄2𝐸1 + 𝑄3𝐸2 (A13) 

 

𝑄1 =
5

9
(10 + 3𝑘𝑟 − 15𝑏) −

80

81
(
𝑘𝐵𝑇

𝑘𝑟𝜆𝑆𝑂
) (4 + 3𝑘𝑟 − 6𝑎) 

 

(A14) 

 

𝑄2 =
44

90
(22 − 6𝑘𝑟 − 33𝑎) +

704

2025
(
𝑘𝐵𝑇

𝑘𝑟𝜆𝑆𝑂
) (4 + 3𝑘𝑟 − 6𝑎) 

 

(A15) 

 

𝑄3 =
21

5
(6 − 3𝑘𝑟 − 9𝑎) +

16

25
(
𝑘𝐵𝑇

𝑘𝑟𝜆𝑆𝑂
) (4 + 3𝑘𝑟 − 6𝑎) 

 

(A16) 

 

where z’J’ is the inter-cluster interaction parameter and 〈Ŝz〉 is the ensemble average of the z 

component of the real spin. The remaining parameters have the meanings indicated in the 

main text.  
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8.1.4 Coefficients for the Empirical Function G(T) for Co(II) Compounds 

 

Table A 5: Coefficients for the empirical function G(T) for Co(II) ions with positive values for ax.
85

 

i j k Ai,j,k Bi,j,k i j k Ai,j,k Bi,j,k 

0 1 0 -31.4024 -36.9817 2 2 2 -0.00631052 -0.928186 

1 1 0 11.4908 41.6005 0 3 2 32205.9 -16265.5 

2 1 0 71.9869 35.7858 1 3 2 -335.544 170.975 

0 2 0 111.573 59.8737 2 3 2 -0.487717 0.189062 

1 2 0 11460.3 6119.7 0 1 3 1.02469 -0.207265 

2 2 0 -11.2863 -6.03483 1 1 3 -2.50702 0.460394 

0 3 0 -82967.2 -34354.1 2 1 3 0.956274 -0.175258 

1 3 0 440.416 474.428 0 2 3 -0.00665916 -0.00414581 

2 3 0 21.4078 13.5402 1 2 3 -324.118 -197.96 

0 1 1 -33.7561 -12.3045 2 2 3 0.803836 0.620907 

1 1 1 56.5288 22.6914 0 3 3 57884.3 -30611.1 

2 1 1 4.54432 -2.07764 1 3 3 111.254 214.729 

0 2 1 0.512707 0.0714365 2 3 3 0.0144809 0.852149 

1 2 1 -170.335 -404.422 0 1 4 0.91277 0.360746 

2 2 1 2.78275 4.82052 1 1 4 -0.525757 -0.263315 

0 3 1 -69056.8 -37392.1 2 1 4 0.0439463 0.0444235 

1 3 1 -1652.05 -986.141 0 2 4 0.00400556 0.002843 

2 3 1 15.1483 6.90786 1 2 4 226.742 158.056 

0 1 2 -7.51043 5.1506 2 2 4 0.0740832 0.0558193 

1 1 2 19.5103 -13.7685 0 3 4 6847.9 5865.39 

2 1 2 -6.42675 4.8863 1 3 4 54.8031 47.4865 

0 2 2 0.328464 0.2038 2 3 4 0.135804 0.117873 

1 2 2 2590.92 1937.83      
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Table A 6: Coefficients for the empirical function G(T) for Co(II) ions with negative values for ax.
85

 

i j k Ai,j,k Bi,j,k i j k Ai,j,k Bi,j,k 

0 1 0 -8.83931 -3.26017 2 2 2 0.909855 0.346467 

1 1 0 50.8544 12.3893 0 3 2 5289.88 -5812.68 

2 1 0 -58.9366 -7.26867 1 3 2 -312.294 40.1274 

0 2 0 19.9218 17.315 2 3 2 17.5616 -10.8844 

1 2 0 -5352.7 -721.601 0 1 3 -3.7011 0.611175 

2 2 0 -9.77682 1.15632 1 1 3 9.89952 -1.63939 

0 3 0 141620.0 -84735.8 2 1 3 -1.88878 0.435113 

1 3 0 3194.56 291.68 0 2 3 1.18422 1.04366 

2 3 0 15.1231 0.948339 1 2 3 -371.058 -333.315 

0 1 1 -8.4209 3.18606 2 2 3 0.0578633 0.339444 

1 1 1 51.1638 -12.8675 0 3 3 35221.5 -46048.2 

2 1 1 -60.5534 7.6182 1 3 3 -444.267 -111.534 

0 2 1 -20.1838 -16.7859 2 3 3 1.08479 -1.1117 

1 2 1 5438.06 831.944 0 1 4 1.19231 0.480371 

2 2 1 9.95306 -1.10216 1 1 4 -0.614334 -0.271946 

0 3 1 142707.0 92184.0 2 1 4 0.185207 0.0680986 

1 3 1 3236.8 -228.766 0 2 4 0.877155 0.622096 

2 3 1 15.3423 -0.633181 1 2 4 -251.966 -178.488 

0 1 2 -22.0928 14.6699 2 2 4 0.111552 0.0845378 

1 1 2 49.9673 -35.1699 0 3 4 17726.2 14307.9 

2 1 2 3.78754 1.97382 1 3 4 -27.8511 -15.6474 

0 2 2 11.3007 8.30419 2 3 4 -0.0345936 -0.0160334 

1 2 2 -3284.37 -2456.07      
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8.1.5 Energy Levels of Axially Distorted Tetrahedral Co(II) Compounds 

 

Table A 7: Energies of the S = 3/2 term energies in axially distorted tetrahedral Co(II) compounds relative to the 

tetrahedral terms as zero (exclusive of configurational interaction).
75

 

Term Term energy 

4
B1 (

4
F) +7 Dt 

4
B2 (

4
F) +7 Dt 

4
E (

4
F) – 7/4 Dt 

4
A2 (

4
F) – 4 Ds + 2 Dt 

4
E (

4
F) +2 Ds + ¾ Dt 

4
A2 (

4
P) +2 Ds – 8 Dt 

4
E (

4
P) –Ds – 3 Dt 

 

8.2 Appendix B: MCD Design and Setup 

 

8.2.1 Optical Layout and Spot Diagrams for the First Version of the MCD Setup 

 

 

Figure A 1: Simulated optical layout for the MCD-spectrometer using four plano-convex (PLX) lenses. Top: 

Light path from the spectrometer exit to the sample. Bottom: Light path from the sample to the detector. For 

reasons of clarity, only five rays corresponding to one field point (center) and one wavelength (1000 nm) are 

shown.  
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Figure A 2: Simulated full field spot diagrams corresponding to the optical layout shown in Figure A 1. Left: 

Sample surface. Right: Detector position. Different colors represent different wavelengths: 1000 nm (blue), 

1500 nm (green) and 2000 nm (red). 

 

 

8.2.2 CD Calibration Measurements on CSA 

 

Figure A 3: Room temperature CD-spectrum of an aqueous solution of CSA (1.006 g L
-1

) in a 1cm cuvette.  
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8.2.3 Electronic Absorption of [Dy(Pc)2] in Polystyrene 

 

Figure A 4: Room temperature electronic absorption spectrum of a film of [Dy(Pc)2] in polystyrene. 

 

8.3 Appendix C: Lanthanide Tetra-Carbonates 

8.3.1 Infrared Spectra  

 

Figure A 5: Room temperature IR-spectra of pellets of 1-Er and 1-Dy in KBr. The measurements were 

performed by Julia E. Fischer. 
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Table A 8: Assignment of the signals observed in the infrared spectra of 1-Er and 1-Dy.
27,150

 

energy / cm
-1

 assignment 

1-Er 1-Dy  

668 and 725 667 and 724 CO in-plane bending deformation 

862 862 CO out-of-plane bending deformation 

1008 1007 symmetric CO stretching 

1368 and 1505 1368 and 1517 asymmetric CO stretching 

1695 1652 NH2 and OH2 deformations 

2500 - 3750 2550 - 3700 NH/OH oscillations, CO/NH2/OH2 overtones 

3628 - OH oscillations of weaker bound H2O 

 

 

8.3.2 Ac Susceptibilities of Dried Samples  

 

Figure A 6: Temperature dependence of the out-of-phase ac susceptibilities of 1-Er and 1-Dy at an applied dc 

field of 1000 Oe. Left: Results obtained for a finely ground sample of 1-Er dried on filter paper. Right: Results 

for a vacuum-dried sample of 1-Dy.  
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8.3.3 Parameters Extracted from the Argand Plots  

 

Table A 9: Parameters obtained by least-squares fitting of the Argand plots of 1-Er at an applied dc field of 

1000 Oe and at various temperatures. 

T / K 2 / cm
3
 mol

-1
 1 / cm

3
 mol

-1
 0 /cm

3
 mol

-1
 fast / 10

-5
 s fast slow / 10

-5
 s slow 

1.8 2.13 1.28 0.0000 12.4 0.300 2722.6 0.032 

2.0 1.94 1.17 0.0000 10.6 0.274 2199.8 0.037 

2.2 1.77 1.06 0.0000 9.3 0.238 1727.2 0.040 

2.4 1.66 1.01 0.0000 7.5 0.219 1231.1 0.038 

2.6 1.53 0.96 0.0027 6.3 0.209 776.2 0.027 

2.8 1.43 0.90 0.0029 5.1 0.181 452.6 0.026 

3.0 1.35 0.87 0.0035 4.2 0.200 246.9 0.011 

3.2 1.28 0.80 0.0039 3.7 0.085 127.7 0.009 

3.4 1.23 0.74 - - - 66.9 0.032 

3.6 1.16 0.70 - - - 35.1 0.031 

3.8 1.11 0.67 - - - 19.4 0.017 

4.0 1.08 0.67 - - - 8.6 0.131 
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Table A 10: Parameters obtained by least-squares fitting of the Argand plots of 1-Dy at an applied dc field of 

1000 Oe and at various temperatures. 

T / K  / cm
3
 mol

-1 0 /cm
3
 mol

-1   / 10
-5

 s 

1.8 1.936 5.064 0.19244 6940.9 

2.0 1.8849 4.526 0.14927 5890.4 

2.2 1.7429 4.0714 0.11981 5217.8 

2.4 1.6977 3.7441 0.097531 4524.4 

2.6 1.6660  3.5030  0.079178 3834.5 

2.8 1.5481 3.2206 0.066748 3090.1 

3.0 1.4671 3.0016 0.057754 2310.7 

3.2 1.4128 2.8349 0.052499 1590.2 

3.4 1.3518 2.6781 0.04646 1026.3 

3.6 1.2835 2.5275 0.040387 636.9 

3.8 1.2295 2.4012 0.035953 388.0 

4.0 1.1796 2.2914 0.029503 239.0 

 4.17 1.1346 2.1926 0.023971 161.0 

4.5 1.0541 2.0351 0.018611 77.7 

4.75 1.0118 1.9395 0.012725 47.2 

5.0 0.96909 1.8539 0.011238 29.7 

5.25 0.94127 1.7805 0.0098202 19.2 

5.5 0.89477 1.7017 0.013054 12.6 

5.75 0.88594 1.6383 0.013608 8.9 

6.0 0.85106 1.5806 0.01039 6.2 

6.25 0.86884 1.5246 0.0070702 4.6 
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8.3.4 Arrhenius Plots  

 

Figure A 7: Left: Linear fit to the Arrhenius plot for 1-Dy, yielding an effective energy barrier of Ueff = 30 cm
-1

. 

Right: Simulation of the Arrhenius plot for 1-Dy without including any Orbach process. Dashed lines illustrate 

the contributions of the different relaxation mechanisms while the solid line corresponds to the sum of these 

contributions. The simulation is based on the following set of parameters: Adirect = 466 T
-2

 K
-1

 s
-1

, B1 = 9.82 s
-1

, 

B2 = 58.3 T
-2

 and CRaman = 0.0015 K
-9

 s
-1

.  

 

8.3.5 Dc Field Dependence of the Relaxation Rates  

 

Figure A 8: Argand diagrams generated for 1-Er (left) and 1-Dy (right) at 1.8 K and at various dc fields. Solid 

lines correspond to the best fits with the parameters given in Table A 11 and Table A 12.  
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Figure A 9: Frequency dependence of the ac susceptibilities of 1-Er (left) and 1-Dy (right) recorded at 1.8 K and 

various dc fields. Solid lines correspond to simulations obtained with the parameters given in Table A 11 and 

Table A 12. 
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Table A 11: Parameters obtained by least-squares fitting of the Argand plots obtained for 1-Er at 1.8 K and 

various dc fields. 

H / Oe 2/cm
3
 mol

-1
 1/cm

3
 mol

-1
 0/cm

3
 mol

-1
 fast/10

-5
 s fast slow/10

-5
 s slow 

250 2.19 1.73 0 2.3 0.422 4371.6 0.065 

500 2.14 1.45 0 8.8 0.329 4670.4 0.024 

750 2.14 1.35 0 11.8 0.300 4000.0 0.030 

1000 2.13 1.28 0 12.4 0.300 2722.6 0.032 

1250 2.10 1.15 0 12.9 0.270 2000.0 0.070 

1500 2.00 1.10 0 11.6 0.333 1337.4 0.063 

1750 2.06 0.99 0 10.5 0.339 1136.5 0.146 

2000 2.03 0.85 0 7.4 0.316 960.5 0.210 

2250 2.03 0.72 0 6.5 0.299 882.3 0.285 

2500 1.99 0.70 0 7.2 0.313 1008.5 0.289 

3000 2.00 0.40 0 5.2 0.170 1190.2 0.454 
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Table A 12: Parameters obtained by least-squares fitting of the Argand plots obtained for 1-Dy at 1.8 K and 

various dc fields. 

H  / Oe  / cm
3
 mol

-1 0 /cm
3
 mol

-1   / 10
-5

 s 

250 4.10 5.11 0.158 10112 

500 2.98 5.15 0.152 8966.8 

750 2.35 5.18 0.177 8789.3 

1000 1.95 5.05 0.192 6886.4 

1250 1.60 4.80 0.200 5052.3 

1500 1.34 4.57 0.209 4020.1 

1750 1.14 4.34 0.230 3456.3 

2000 0.95 4.14 0.263 3326.4 

2250 0.81 3.94 0.293 3381.1 

2500 0.73 3.79 0.324 3724.4 

2750 0.60 3.58 0.355 4216.0 

3000 0.56 3.42 0.386 4596.8 

3250 0.53 3.24 0.381 5411.2 

3500 0.49 3.07 0.395 6167.6 

3750 0.48 2.98 0.410 7420.8 

4000 0.43 2.78 0.415 8116.8 

4250 0.42 2.58 0.404 8552.5 
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8.3.6 Luminescence Spectroscopy 

 

Figure A 10: Example of a luminescence spectrum of 1-Er recorded at 20 K using an excitation wavelength of 

290 nm. Instead of the expected sharp and positive luminescence peaks, a rather broad feature exhibiting 

negative dips is observed. The dips are located at wavelengths that correspond to the absorption maxima of 1-Er. 

The spectra were recorded with the help of Maren Gysler, Dr. Stergios Piligkos and Theis Brock-Nannestad. 
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8.3.7 Electronic Absorption and MCD-Spectra  

 

Figure A 11: Further electronic absorption and MCD-spectra of 1-Er, recorded at 2 K and 3 T. Experimental 

spectra are shown in blue while red lines illustrate the deconvolution into individual Gaussians (dotted) and their 

sums (solid). Black bars indicate calculated transition energies based on the results of the crystal field analysis.  
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Figure A 12: Further electronic absorption and MCD-spectra of 1-Dy, recorded at 2 K and 3 T. Experimental 

spectra are shown in blue while green lines illustrate the deconvolution into individual Gaussians (dotted) and 

their sums (solid). Black bars indicate calculated transition energies based on the results of the crystal field 

analysis.  
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8.3.8 Energy Levels 

 

Table A 13: Experimentally observed and calculated transition energies for 1-Er. Regarding MCD, the 

calculated values correspond to the orientational mean values for the transitions from the lowest Zeeman state to 

the respective Zeeman sublevels of the excited states. 

2S+1
LJ Eexp/cm

-1
 (0 T) Ecalc/cm

-1
 (0 T) Eexp/cm

-1
 (3 T) Ecalc/cm

-1
 (3 T) 

4
I15/2 0 0 0 0 

 52 44 - 48 

 84 91 - 95 

 105 112 - 116 

 - 280 - 284 

 - 325 - 330 

 - 437 - 441 

 - 462 - 467 

4
I13/2 - 6583 6580 6588 

 - 6603 6608 6608 

 - 6640 - 6645 

 - 6689 6695 6694 

 - 6744 6749 6748 

 - 6775 6784 6780 

 - 6818 6818 6824 

4
I11/2 - 10249 - 10254 

 - 10263 - 10268 

 - 10303 - 10307 

 - 10316 - 10321 

 - 10337 - 10342 

 - 10358 - 10364 

4
I9/2 12362 12353 - 12357 

 12482 12481 - 12489 
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2S+1
LJ Eexp/cm

-1
 (0 T) Ecalc/cm

-1
 (0 T) Eexp/cm

-1
 (3 T) Ecalc/cm

-1
 (3 T) 

 12538 12510 - 12515 

 12651 12656 - 12661 

 12722 12719 - 12724 

4
F9/2 15294 15326 15314 15331 

 15348 15362 15362 15366 

 - 15370 15388 15376 

 15426 15433 15439 15437 

 15475 15485 15492 15490 

4
S3/2 18426 18432 - 18437 

 18475 18452 - 18457 

2
H11/2 19119 19142 19138 19146 

 19167 19169 19158 19174 

 19213 19204 19224 19209 

 - 19265 19249 19269 

 19278 19281 19289 19286 

 19337 19315 19328 19320 

4
F7/2 20532 20527 - 20533 

 20619 20601 - 20605 

 20650 20644 - 20649 

 20678 20672 - 20677 

4
F5/2 22234 22228  22233 

 22251 22246  22250 

 22265 22261  22266 

4
F3/2 22598 22598 - 22603 

 22615 22633 - 22638 

2
H9/2 24470 24466 - 24471 



Appendix C: Lanthanide Tetra-Carbonates  197

   

2S+1
LJ Eexp/cm

-1
 (0 T) Ecalc/cm

-1
 (0 T) Eexp/cm

-1
 (3 T) Ecalc/cm

-1
 (3 T) 

 
24561 24567 - 24572 

 
24595 24604 - 24509 

 
24705 24710 - 24715 

 
24774 24769 - 24775 

4
G11/2 26335 26325 26338 26330 

 
- 26368 26374 26372 

 
26399 26379 - 26384 

 
26480 26501 26493 26506 

 
26531 26528 26540 26532 

 
26583 26557 26595 26562 

rms / cm
-1

  16  18 
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Table A 14: Experimentally observed and calculated transition energies for 1-Dy. Regarding MCD, the 

calculated values correspond to the orientational mean values for the transitions from the lowest Zeeman state to 

the respective Zeeman sublevels of the excited states. 

2S+1
LJ Eexp/cm

-1
 (0 T) Ecalc/cm

-1
 (0 T) Eexp/cm

-1
 (3 T) Ecalc/cm

-1
 (3 T) 

6
H15/2 0 0 - 0 

 29 29 - 35 

 94 105 - 110 

 144 138 - 144 

 211 182 - 188 

 289 302 - 307 

 334 348 - 355 

 416 385 - 391 

6
H13/2 3522 3520 - 3526 

 3568 3556 - 3561 

 3586 3573 - 3579 

 3635 3617 - 3622 

 3647 3632 - 3638 

 3687 3677 - 3686 

 3726 3714 - 3720 

6
H11/2 - 5867 5875 5872 

 - 5910 5905 5915 

 - 5940 5940 5946 

 - 5957 5953 5964 

 - 5978 5978 5984 

 - 6009 6008 6015 

6
H11/2, 

6
H9/2 - 7587 7577 7592 

 - 7647 7645 7653 

 - 7693 7700 7699 
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2S+1
LJ Eexp/cm

-1
 (0 T) Ecalc/cm

-1
 (0 T) Eexp/cm

-1
 (3 T) Ecalc/cm

-1
 (3 T) 

 - 7744 7732 7749 

 - 7769 7764 7775 

 - 7814 7803 7820 

 - 7849 7840 7854 

 - 7870 7865 7877 

 - 7929 7938 7935 

 - 7960 - 7967 

 - 7998 - 8004 

6
H7/2, 

6
F9/2 - 8997 8970 9003 

 - 9014 9053 9019 

 - 9103 9105 9108 

 - 9122 9130 9128 

 - 9129 9165 9136 

 - 9236 9246 9242 

 - 9285 9290 9291 

 - 9337 - 9343 

 - 9417 - 9423 

6
H5/2 - 10226 - 10232 

 - 10294 - 10299 

 - 10380 - 10386 

6
F7/2 - 10996 - 11002 

 - 11043 - 11049 

 - 11101 - 11106 

 - 11114 - 11120 

6
F5/2 12404 12411 12397 12416 

 12442 12434 - 12440 
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2S+1
LJ Eexp/cm

-1
 (0 T) Ecalc/cm

-1
 (0 T) Eexp/cm

-1
 (3 T) Ecalc/cm

-1
 (3 T) 

 12486 12488 - 12494 

6
F3/2 13232 13240 13236 13245 

 
13249 13246 - 13252 

6
F1/2 - 13782 - 13788 

4
F9/2 20904 20886 - 20892 

 
21023 21020 - 21025 

 
21086 21062 - 21068 

 
21138 21153 - 21159 

 
21217 21251 - 21257 

4
I15/2 21997 21986 - 21991 

 
22037 22028 - 22034 

 
22060 22058 - 22064 

 
22126 22116 - 22122 

 
22185 22221 - 22226 

 
22230 22248 - 22252 

 
22262 22259 - 22266 

 
22352 22335 - 22342 

rms (all data) / cm
-1 

18  
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8.4 Appendix D: Mononuclear Cobalt Complexes 

8.4.1 Parameters Extracted from the Argand Plots  

 

Table A 15: Parameters obtained by least-squares fitting of the Argand plots for (HNEt3)22 with and without an 

external dc field and at various temperatures. 

 Hdc = 0 Oe Hdc = 1000 Oe 

T/K 0/cm
3
mol

-1
 /cm

3
mol

-1
  /10

-5
 s 0/cm

3
mol

-1
 /cm

3
mol

-1
  /10

-5
 s 

5.0 - - - - 0.575 0.141 0.000 26330.6 

5.5 0.650 0.050 0.529 1635.4 0.545 0.043 0.000 17674.2 

6.0 0.590 0.060 0.462 1575.3 0.531 0.039 0.000 10569.7 

6.5 0.540 0.055 0.419 1292.9 0.500 0.034 0.000 6422.5 

7.0 0.513 0.024 0.446 917.3 0.468 0.026 0.013 4000.7 

7.5 0.463 0.055 0.331 793.3 0.439 0.020 0.021 2626.2 

8.0 0.428 0.065 0.256 658.3 0.411 0.019 0.008 1819.8 

8.5 0.400 0.061 0.224 524.0 0.388 0.016 0.014 1288.3 

9.0 0.376 0.058 0.193 422.5 0.367 0.014 0.013 944.9 

9.5 0.357 0.055 0.177 341.5 0.349 0.014 0.008 716.9 

10.0 0.339 0.052 0.164 277.6 0.331 0.012 0.009 553.3 

10.5 0.325 0.047 0.168 224.7 0.317 0.013 0.008 435.9 

11.0 0.310 0.045 0.158 187.6 0.303 0.010 0.016 348.6 

11.5 0.297 0.041 0.154 156.9 0.290 0.010 0.018 282.2 

12.0 0.280 0.042 0.147 130.0 0.279 0.009 0.021 232.0 

12.5 0.270 0.039 0.145 110.0 0.269 0.008 0.028 192.9 

13.0 0.259 0.037 0.142 97.7 0.258 0.007 0.029 161.7 

13.5 0.249 0.033 0.139 84.5 0.248 0.005 0.038 136.4 

14.0 0.241 0.032 0.136 73.9 0.240 0.005 0.041 115.9 

14.5 0.232 0.030 0.132 64.7 0.231 0.005 0.040 100.2 

15.0 0.223 0.027 0.132 56.5 0.223 0.004 0.044 86.7 

15.5 0.216 0.027 0.126 50.3 0.217 0.003 0.053 75.1 

16.0 0.210 0.026 0.119 45.1 0.210 0.003 0.050 65.6 
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 Hdc = 0 Oe Hdc = 1000 Oe 

T/K 0/cm
3
mol

-1
 /cm

3
mol

-1
  /10

-5
 s 0/cm

3
mol

-1
 /cm

3
mol

-1
  /10

-5
 s 

16.5 0.205 0.025 0.119 39.8 0.203 0.003 0.051 57.7 

17.0 0.199 0.025 0.113 35.5 0.198 0.003 0.054 50.7 

17.5 0.193 0.025 0.109 31.9 0.192 0.003 0.055 44.6 

18.0 0.188 0.025 0.108 28.6 0.188 0.003 0.058 39.3 

18.5 0.182 0.024 0.101 25.6 0.182 0.003 0.060 34.5 

19.0 0.178 0.022 0.104 22.5 0.177 0.003 0.058 30.5 

19.5 0.173 0.023 0.104 20.0 0.173 0.004 0.057 27.2 

20.0 0.169 0.021 0.107 17.6 0.169 0.002 0.066 23.3 

20.5 0.165 0.017 0.111 15.1 0.165 0.002 0.070 20.3 

21.0 0.161 0.015 0.112 13.0 0.162 0.000 0.076 17.2 

21.5 0.158 0.012 0.115 11.1 - - - - 

22.0 0.154 0.004 0.124 8.9 - - - - 

22.5 0.152 0.003 0.138 7.2 - - - - 

23.0 0.149 0.001 0.143 6.1 - - - - 

23.5 0.144 0.001 0.090 5.2 - - - - 

24.0 0.142 0.000 0.090 4.8 - - - - 

24.5 0.138 0.001 0.075 3.8 - - - - 
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Table A 16: Parameters obtained by least-squares fitting of the Argand plots for (NMe4)22 with and without an 

external dc field and at various temperatures. 

 Hdc = 0 Oe Hdc = 1000 Oe 

T/K 0/cm
3
mol

-1
 /cm

3
mol

-1
  /10

-5
 s 0/cm

3
mol

-1
 /cm

3
mol

-1
  /10

-5
 s 

3.5 1.161 0.020 0.709 3526.1 0.225 0.048 0.000 17490 

4.0 0.979 0.106 0.654 3263.7 0.382 0.033 0.000 23490 

4.5 0.858 0.166 0.588 2851 0.575 0.045 0.000 21120 

5.0 0.728 0.225 0.444 2459 0.635 0.035 0.000 14040 

5.5 0.653 0.247 0.321 2000 0.610 0.034 0.000 8285 

6.0 0.594 0.228 0.254 1438 0.586 0.013 0.067 4709 

6.5 0.548 0.178 0.269 900.0 0.540 0.014 0.056 2933 

7.0 0.510 0.158 0.246 642.8 0.502 0.012 0.053 1933 

7.5 0.477 0.131 0.248 454.7 0.468 0.013 0.039 1339 

8.0 0.447 0.110 0.248 329.4 0.440 0.012 0.039 952.1 

8.5 0.418 0.110 0.201 281.4 0.413 0.014 0.029 704.0 

9.0 0.397 0.099 0.196 223.3 0.390 0.014 0.023 532.7 

9.5 0.375 0.098 0.162 192.2 0.370 0.012 0.024 412.4 

10.0 0.354 0.086 0.156 155.0 0.352 0.012 0.023 323.7 

10.5 0.339 0.086 0.136 134.3 0.335 0.011 0.023 259.1 

11.0 0.322 0.076 0.132 110.2 0.320 0.011 0.023 211.2 

11.5 0.310 0.078 0.111 97.1 0.306 0.011 0.021 174.0 

12.0 0.296 0.067 0.119 80.2 0.294 0.011 0.019 144.9 

12.5 0.284 0.061 0.119 67.1 0.282 0.011 0.019 121.9 

13.0 0.274 0.061 0.101 60.2 0.271 0.012 0.012 104.7 

13.5 0.264 0.060 0.090 53.4 0.261 0.011 0.016 88.50 

14.0 0.255 0.054 0.092 45.8 0.252 0.012 0.009 77.0 

14.5 0.246 0.053 0.085 40.8 0.244 0.013 0.009 66.5 

15.0 0.237 0.054 0.065 37.5 0.236 0.012 0.011 57.6· 

15.5 0.230 0.047 0.076 32.0 0.229 0.012 0.007 50.5 
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 Hdc = 0 Oe Hdc = 1000 Oe 

T/K 0/cm
3
mol

-1
 /cm

3
mol

-1
  /10

-5
 s 0/cm

3
mol

-1
 /cm

3
mol

-1
  /10

-5
 s 

16.0 0.223 0.048 0.065 29.2 0.221 0.012 0.004 44.6 

16.5 0.216 0.049 0.050 26.7 0.215 0.011 0.010 38.2 

17.0 0.210 0.050 0.032 24.7 0.209 0.010 0.012 33.2 

17.5 0.204 0.049 0.030 22.0 0.203 0.014 0.000 30.2 

18.0 0.198 0.052 0.012 20.6 0.197 0.014 0.000 26.1 

18.5 0.193 0.048 0.020 17.9 0.192 0.012 0.006 22.4 

19.0 0.188 0.047 0.014 16.0 0.188 0.015 0.000 19.8 

19.5 0.184 0.050 0.015 14.5 0.183 0.018 0.000 17.5 

20.0 0.179 0.049 0.000 13.1 0.178 0.019 0.000 15.1 

20.5 0.175 0.058 0.000 12.7 0.174 0.020 0.000 13.1 

21.0 0.171 0.051 0.005 10.4 0.170 0.022 0.000 11.2 

21.5 0.167 0.055 0.002 9.4 0.166 0.025 0.000 9.8 

22.0 0.163 0.052 0.000 8.1 0.162 0.036 0.000 9.1 

22.5 0.160 0.065 0.000 8.0 0.160 0.041 0.000 7.8 

23.0 0.157 0.066 0.000 7.1 0.155 0.049 0.012 7.0 

23.5 0.153 0.076 0.017 6.8 - - - - 

24.0 0.151 0.056 0.046 4.3 - - - - 

24.5 0.147 0.093 0.000 7.1 - - - - 
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8.4.2 Energies of Spin-Allowed Transitions  

 

Table A 17: Comparison between experimentally observed and calculated transition energies (D2d symmetry) for 

(HNEt3)22 and (NMe4)22. Only the spin-allowed transitions are taken into account. 

 (HNEt3)22 (NMe4)22 

 Eexp / cm
-1 

Ecalc / cm
-1

 Eexp / cm
-1

 Ecalc / cm
-1

 

 (
4
B1(

4
A2(

4
F))) 

 
0 0 0 0 

 (
4
B2(

4
T2(

4
F))) 

 
- 1300 - 1400 

 (
4
E(

4
T2(

4
F)))  6211 5914 6671 6323 

 (
4
E(

4
T1(

4
F))) 

 
7236 7016 7722 7491 

 (
4
A2(

4
T1(

4
F))) 8217 7882 8688 8116 

 (
4
A2(

4
T1(

4
P))) 

 
18083 18067 18083 18134 

 (
4
E(

4
T1(

4
P))) 

 
18622 18469 18450 18311 
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8.5 Appendix E: Cobalt Dimers 

8.5.1 Diamagnetic Susceptibility of 5[OTf]2[BF4]2 

 

Figure A 13: Magnetic field dependence of the molar magnetization of 5[OTf]2[BF4]2, measured at 300 K. Open 

circles depict experimental data points while the solid line corresponds to a linear fit. The experimentally 

determined diamagnetic susceptibility is dia = –852 ∙ 10
-6

 cm
3
 mol

-1
 and thus very close to the value estimated 

by means of the Pascal’s constants (dia = –742 ∙ 10
-6

 cm
3
 mol

-1
). 

 

8.5.2 X-Band EPR-Spectroscopy 

 

Figure A 14: Solid state X-Band EPR spectrum of 5[OTf]3 recorded at 4.4 K. 
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8.5.3 Analysis of HFEPR-Spectra 

 

Figure A 15: Left: HFEPR-spectra of 5[OTf]2, recorded at 5 K and various frequencies, as indicated. The spectra 

were recorded by Dr.-Ing. Petr Neugebauer. Right: Frequency vs. field plot extracted from the frequency 

dependence of the resonance fields for the individual peaks. Parallel lines correspond to transitions belonging to 

the same g-values.  

 

 

Figure A 16: Energy level diagram (x-direction) for 5[OTf]2, generated with the simulation parameters given in 

the main text. Green lines correspond to the magnetic field dependent energy levels while red vertical lines 

illustrate allowed EPR transitions at 300 GHz. 
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Figure A 17: Energy level diagram (y-direction) for 5[OTf]2, generated with the simulation parameters given in 

the main text. Green lines correspond to the magnetic field dependent energy levels while red vertical lines 

illustrate allowed EPR transitions at 300 GHz. 

 

 

Figure A 18:  Energy level diagram (z-direction) for 5[OTf]2, generated with the simulation parameters given in 

the main text. Green lines correspond to the magnetic field dependent energy levels while red vertical lines 

illustrate allowed EPR transitions at 300 GHz. 
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