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Notations and Symbols 

 
Symbols 
 
  Unit 

 �   mm  Half of the crack length ��  mm  Initial crack length (of the specimen) σ   MPa  Stress σ�   MPa   Critical cleavage stress σ��  MPa  Stress tensor σ�	  MPa   Von Mises equivalent stress σ
   MPa   Material constant of the Rousselier model σ�   MPa  Mean (hydrostatic) stress ��   MPa  Yield stress Δa  mm  Crack extension ΔD  mm  Cross section reduction K�  MPa√m Stress intensity factor f  -  Void volume fraction f�  -  Initial void volume fraction f�  -  Critical void volume fraction in the Rousselier model 

-  Void volume fraction of void coalescence in the GTN model f�  -  Final void volume fraction (in the GTN model) f�∗   -  f ∗ in the GTN model (f = f�)  l�  mm  main distance between two neighbouring voids T�  MPa  Cohesive strength r  mm  Void radius G  J/m2  Energy release rate π  -  Pi q , q!, q"  -  Model parameters affecting the GTN yield surface W  Pa  Strain energy density ε%  -  Mean strain when void nucleation happens s'  -  Standard deviation 
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ε��  -  Strain tensor η  -  Stress triaxiality (η = σ�/σ�	) k   -  Damage acceleration factor in the GTN-model 

θ   Degree Laminographic angle +  -  Poisson's ratio δ   mm  Separation of the cohesive element δ�   mm  Critical displacement at failure in the cohesive model  δ�%�-  mm  Displacement when void initiation happens in the cohesive zone  

model 

 

Capital symbols 
 A   -  Strain at rupture  A/  -  Uniform strain  K%%  N/mm3 Cohesive stiffness (0 =01'12) 
W   mm  Width of fracture mechanics specimen Γ�  N/mm  Cohesive energy 

E  MPa  Young’s modulus 

F   N  Force 

F*  -  Revised factor for initial void volume fraction  

J   N/mm  J-integral 

J0.1  N/mm  J-value when ∆a=0.1 mm 

Ji   N/mm  J-value when the first finite element is damaged 

JR    Fracture resistance  

 

 

Abbreviations 
 
2D   Two Dimensional 

3D   Three Dimensional 

ASTM  American Society for Testing and Materials 

B  Thickness of the specimen  

Bcc   Body-centered cubic 

BM   Base material 

Bn   Net thickness of the specimen 
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C  Compliance of the C(T)-specimen 

CCD  Charge coupled device  

CMOD Crack mouth opening displacement 

COD   Crack opening displacement 

CTOD  Crack tip opening displacement 

C(T)   Compact tension  

D   Damage variable in cohesive zone model  

EBW   Electron beam welding 

EDM   Electrical discharge machining 

EDX  Energy-dispersive X-ray spectroscopy 

FEM   Finite Element Method 

FZ   Fusion zone 

GTN   Gurson-Tvergaard-Needleman (model) 

HEDB  High energy density beam 

HAZ   Heat affected zone 

HV   Vickers hardness 

M(T)   Middle cracked tension (specimen)  

SEM  Scanning electron microscope 

SENB  Single Edge Notched Bend  

SRCL   Synchrotron radiation-computed laminography 

SRCT  Synchrotron radiation-computed tomography  

TSL  Traction separation law 
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1 

Abstract 

 

 

Welding techniques are widely applied in many industry fields. As the damage behavior of 

the weldment influences the service life of the component, strong attention is drawn to the 

weldment. This thesis focuses on the fracture behavior of an S355 electron beam welded 

joint. Three different models are adopted to describe the damage behavior of the welded 

joints, namely the Rousselier model, the Gurson-Tvergaard-Needleman (GTN) model and 

the Cohesive zone model (CZM). Although differences exist between these models, they 

successfully describe the damage behavior of the weldment and are able to predict the 

crack propagation of C(T)-specimens obtained from S355 electron beam welded joints. 

Simulation results are shown in the form of force vs. crack opening displacement (COD) 

and fracture resistance JR-curves. The cohesive zone model is considered to be the best 

model for the investigation of the fracture behavior of S355 electron beam welded joints as 

it can simulate both ductile and brittle fracture. Compared to the GTN model, the Rousselier 

model for ductile fracture simulations shows its superiority because of simplicity and 

reduced model parameters. 

 

In order to visualize the crack propagation at the surface of the material, C(T)-specimens 

extracted from the S355 base material are tensile tested together with the ARAMIS system 

monitoring the material deformation and crack growth behavior in the notched area. Images 

in the notched region and the equivalent strain distribution calculated from the ARAMIS 

system are shown. 2D and 3D GTN models are used to investigate the fracture behavior of 

a C(T)-specimen under tensile test process monitored with the ARAMIS system. To 

understand the damage mechanisms of the S355 base material and to show the real crack 

propagation within the material during the deformation process, Synchrotron radiation- 

computed laminography (SRCL) is performed on a thin sheet specimen from S355 base 

material for the first time. Reconstructed 2D laminography images from the middle section 

and from the section where the main crack is observed in the sheet specimen are shown in 

this work. Additionally, 2D cross-sections at the through thickness plane at two positions 

located ahead of the initial notch are shown. A shear band is observed between two 

neighbouring cracks before crack advancement at CMOD=1.25 mm. 3D reconstruction of 

the laminography scanning data confirms the damage evolution through void initiation, 

growth and coalescence originating from non-metallic inclusions being the main reason for 
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a flat fracture happening before the slant fracture. Shear fracture connecting two 

neighbouring flat cracks to form the main crack is observed in 3D laminography images. 

The 3D Rousselier model is adopted to predict the flat fracture of the thin sheet specimen. 

The material in front of the initial notch is divided into many partitions of which the true f�-

values are obtained. According to the positions of the partitions, the Rousselier elements in 

front of the initial notch are divided into many sets where the corresponding true f�-values 

are used in the simulations. With the true f� -values, the longest 2D cracks (T-L) in an 

analyzed specimen are located at a cross section which is around 200 µm apart from the 

middle section of the sheet specimen which coincides with the laminographic image. The 

Rousselier model is able to predict the fracture surface of the sheet specimen before the 

occurrence of the shear fracture. 



 

 

3 

Zusammenfassung 

 

 

Schweißtechniken werden in der Industrie in vielen Anwedungen eingesetzt. Da die 

Schweißverbindung die Lebensdauer eines Bauteils wesentlich beeinflusst, ist das 

Schädingungsverhalten der Schweißverbindung von besonderem Interesse. Diese Arbeit 

befasst sich mit dem Bruchverhalten einer S355- Elektronenstrahlschweißverbindung. Das 

Schädigungsverhalten der Schweißverbindungen wird mit drei verschiedenen Modellen, 

dem Rousselier-Modell, dem Gurson-Tvergaard-Needleman (GTN)-Modell und dem 

Kohäsivzonenmodell (CZM) beschrieben. Obwohl Unterschiede in diesen Modellen 

bestehen, können sie das Schädigungsverhalten der Schweißverbindung sehr gut 

beschreiben und können die Rissausbreitung in C(T)-Proben von S355-

Elektronenstrahlschweißverbindungen vor-aussagen. Die Simulationsergebnisse werden in 

Form von Diagrammen dargestellt, die die Kraft über der Rissöffnung (COD) sowie die 

Bruchwiderstandskurven JR-zeigen. Das Kohäsivzonenmodell zeigte sich als das am 

besten geeignete Modell zur Untersuchung des Bruchverhaltens von S355 Elektronenstrahl 

Schweißverbindungen, da es die Modellierung von duktilem und sprödem Bruchverhalten 

ermöglicht. Im Vergleich zum GTN-Modell zeigt das Rousselier-Modell bei Simulationen 

des duktilen Bruchverhaltens seine Stärken, da es vereinfachte und reduzierte 

Modellparameter besitzt. 

 

Um die Rissausbreitung an der Oberfläche des Materials zu untersuchen, wird ein 

Zugversuch mit C(T)-Proben aus dem S355-Basismaterial mit dem ARAMIS-System 

durchgeführt, wobei die Materialdeformation und das Rissausbreitungsverhalten im Bereich 

der Kerbe betrachtet wird. Bilder der Kerbregion, sowie die äquivalente Dehnungsverteilung 

(berechnet mit dem ARAMIS-System), werden gezeigt. 2D und 3D GTN-Modelle werden 

verwendet, um das Bruchverhalten einer C(T) Probe in einem durch ARAMIS beobachteten 

Zugversuch zu beschreiben. Mit dem Ziel, die Schädigungsmechanismen des S355-

Basismaterials zu verstehen und die Rissausbreitung innerhalb des Materials während der 

Materialverformung zu zeigen, wird erstmalig Synchrotron Radiation-Computed 

Laminography (SRCL) an einer Probe aus einer dünnen Folie des S355-Basismaterials 

durchgeführt. Rekonstruierte 2D Laminographiebilder der Folienprobe des Mittelteils sowie 

aus dem Bereich vor dem Hauptriss werden in dieser Arbeit vorgestellt. Zudem wurden 2D-
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Schnitte durch die Probe senkrecht zur Folienebene an zwei verschiedenen Stellen in 

Rissausbreitungsrichtung erstellt. Um CMOD=1.25 mm wird vor weiterem Rissfortschritt die 

Bildung eines Scherbandes zwischen zwei benachbarten Rissen beobachtet. Die 3D-

Rekonstruktion des S355-Basismaterials aus Laminographie-Scandaten bestätigt die 

Schädigungsentwicklung im Werkstoff durch Hohlraumbildung, Hohlraumwachstum und 

Hohlraumkoaleszenz bedingt durch nichtmetallische Einschlüsse. Diese sind die 

Hauptursache für das Auftreten von Längsrissen vor Scherbruch. Der Scherbruch, welcher 

zwischen zwei benachbarten Längsrissen auftritt, und damit den Hauptriss bildet wird in 2D 

Laminographiebildern beobachtet. Das 3D Rousselier-Modell wird verwendet, um den 

Längsriss einer Probe vorherzusagen. Vor der Anfangskerbe wird der Werkstoff in 

verschiedene Partitionen unterteilt, in denen die wahren f0-Werte ermittelt werden. Die 

Rousselier Elemente vor der Anfangskerbe sind ebenso wie die Positionen der Partitionen 

unterteilt in viele Sets, in denen die korrespondierenden wahren f0-Werte für die 

Simulationen ermittelt werden. Mit den wahren f0-Werten zeigt sich der längste 2D Riss (T-L) 

in einer Schnittebene, die etwa 200 µm vom mittleren Bereich der flachen Probe entfernt ist. 

Dies stimmt mit den Laminographie-Aufnahmen überein. Das Rousselier-Modell kann die 

Bruchfläche der dünnen Probe vor Eintritt des Scherbruchs vorhersagen. 
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1. Introduction 

1.1 Motivation  

Steel, an ancient metal, is assumed to be produced and used since around 4000 years. 

Since the industrial revolution in the 18th century, with the high requirement of machines, 

modern steels have found many applications in different industry fields, e.g., railway 

construction, house and ship building. Since then, material scientists have been 

investigating the material behavior of different steels and the corresponding fracture 

behavior of components. The riveting technique was adopted widely to connect different 

components of structures. With the requirement of lighter structures, welding techniques 

have been used instead of riveting. As the fracture behavior of a structural component 

influences the service life of machines, in order to increase the lifetime of a machine, 

scientists have been trying to answer why structural components fail. Nowadays, electron 

beam welded joints are used widely in automotive and aircraft industries. These 

applications require appropriate crack growth resistance since crack growth and fracture 

are unavoidable in service of engineering materials which affect the service life and safety 

of components in certain key applications. Since the development of damage models, 

numerical simulations of crack propagation in homogenous and inhomogeneous structures 

are possible. One motivation of the thesis is that a lot of money and research time from 

experiments can be saved and the numerical simulation can predict the crack propagation 

of the welded joints. Another motivation is to visualize the damage evolution during material 

deformation and to show how the cracks propagate on the surface of the tested specimen 

and within the material during the material deformation process. 

 

1.2 Outline  

The present work is structured into 11 chapters and summarized as follows: 

 

Chapter 2 provides the introduction of the electron beam welding process. The fundamental 

concepts of fracture mechanics are also shown. The development of the constitutive 

damage models and typical damage models, e.g., the GTN model and the Rousselier 

model are introduced in this chapter as well. The concept of the cohesive zone model and 
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its application is presented. Finally, applications of the ARAMIS system and of the 

synchrotron radiation-computed laminography (SRCL) are presented.  

 

Chapter 3 shows some experimental investigations performed on the S355 welded joints. 

They are hardness measurement, tensile tests of flat specimens, smooth round and 

notched round specimens. Optical microscopy measurements on the different welded 

regions are also discussed in this chapter. Fracture toughness tests were performed on the 

C(T)-specimens extracted from different weld regions and the SEM results on the fracture 

surfaces of these C(T)-specimens are presented. These experimental data provide usefully 

information for the following finite element models.  

 

Chapter 4 summarizes the simulation results obtained from the Rousselier model. Firstly, 

the parameter studies are performed in order to show the influence of the Rousselier 

parameters on the tensile test results of notched round specimens and C(T)-specimens. 

The Rousselier parameters are calibrated on the notched round specimens. Then the same 

Rousselier parameter set is used to investigate the crack propagation of C(T)-BM and C(T)-

HAZ  specimens extracted from different weld regions.  

 

Chapter 5 shows the applications of the GTN model investigating the fracture behavior of 

the S355 welded joints. As the GTN model has more parameters in comparison to that of 

the Rousselier model, a more detailed parameter study is presented which shows the 

influences of the GTN parameter on the tensile test results of the notched round specimens 

and the C(T)-specimens. Using the parameter set obtained from the notched round 

specimen, the GTN model is adopted to predict the crack propagation of C(T)-BM and C(T)-

HAZ specimens.  

 

Chapter 6 discusses the influence of the cohesive parameters and other factors (cohesive 

element, shape of TSL, etc.) on the F-COD-curve. Exponential and tabular TSLs are 

adopted to investigate the fracture behavior of C(T)-BM and C(T)-HAZ. A linear softening 

TSL is used to predict the fracture of the C(T)-FZ. 

 

Chapter 7 presents the images from the camera and the strain distribution results 

calculated from the ARAMIS system for the notched region of a C(T)-BM under monotonic 
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loading process. 2D and 3D GTN models are adopted to describe the damage evolution of 

a C(T)-BM specimen under monotonic loading condition monitored by the ARAMIS system.  

 

Chapter 8 discusses the experimental results obtained from the SRCL scanning. 2D (T-L) 

laminography images from the middle section and from the section where the longest crack 

observed are shown. 2D images through the thickness plane (T-S) at two positions ahead 

of the initial notch are shown. Reconstructed 3D images of the bulk material at different 

loading steps are presented. A 3D Rousselier model is adopted to predict the fracture 

surface of the C(T)-specimen before the slant fracture happens. 

 

Chapter 9 summarizes the main achievements of the dissertation. The outlook for possible 

future works is discussed. 

 

Chapter 10 summarizes the publications achieved during the PhD period and chapter 11 

shows the literature cited in this thesis.  
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2.  Scientific background 

 

Fracture is a problem which troubles structural engineers for centuries. People have been 

trying to answer when, where, and why the structures fail. Scientists have been trying to 

investigate the fracture mechanisms of complex components, e.g., the weldment, as the 

fracture behaviour of weldments influences the crack growth in structures which affects the 

lifetime and safety of the components. With the rapid development of the finite element 

method, it is possible to investigate the fracture mechanisms and to predict numerically 

crack propagation in the materials under investigation. Recently, some scientific activities 

were performed to investigate the fracture behavior of advanced weldments, for instance, 

the electron beam welded joints. In the following subchapters, the experimental 

investigations and numerical simulation activities are presented for the electron beam 

welded joints. Before explaining the scientific activities, background information is 

introduced in this chapter to help the reader to acquire the necessary knowledge.   

 

2.1 Electron beam welding 

Electron beam welding (EBW) is the welding process in which the material is melted and 

jointed by a high-velocity electron beam, as depicted in Fig. 2.1(a). During the welding 

process, a keyhole can be formed because high density electron beam melting the metal, 

as described in Fig. 2.1(b). The welding speed and the beam current used during the 

welding process are the major parameters which influence the quality of the welded joints. 

The EBW is one of the components in High Energy Density Beam (HEDB) welding 

techniques. Compared to traditional welding processes, like arc welding process, the EBW 

possesses many benefits. For example, thick joints can be electron beam welded with a 

single pass whereas multiple passes for the welding process are needed for the arc welding 

technique. Narrow heat affected zones, little distortion and less residual stresses can be 

obtained after the welding process due to the high power density during the EBW. Of 

course, the electron beam welding also provides some drawbacks: the equipment cost for 

EBW is very high and the requirement of X-ray shielding is inconvenient and time 

consuming [Kou, 2002]. 
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Fig. 2.1: Electron beam welding: (a) process and (b) a keyhole formed during the welding 

process [Kou, 2002]. 

 

2.2 Fracture mechanics 

2.2.1 The fracture mechanics approach 

 

There are two different judgment ways for the facture analysis: the energy criterion and the 

stress intensity approach. The energy approach assumes that crack propagation happens 

when the energy available for the crack is high enough to overcome the fracture resistance 

of the material.  Griffith [Griffith, 1920] was the first who proposed an energy criterion for 

fracture, while Irwin [Irwin, 1957] is responsible for developing the approach in the current 

state. For a crack of length 2a in an infinite plate subject to a remote tensile stress (see Fig. 

2.2) [Anderson, 2005], the energy release rate which is the driving force for the fracture can 

be expressed as follows:  

 G = 45678                    (2.1) 

 

where E is Young’s modulus, G is the energy release rate, σ is the remotely applied stress 

and � is half of the crack length.  
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Fig. 2.2: Crack in an infinite plate subject to a remote tensile stress [Anderson, 2005]. 

 

The other approach for the fracture analysis is the stress intensity method. Fig. 2.3 shows 

one element near the tip of a crack in an elastic material and the in-plane stresses on this 

element is shown [Anderson, 2005]. Fracture happens at the critical value of  K�, where the 

entire stress distribution at the crack tip can be calculated with the equations in Fig. 2.3.  

 

For the infinite plate subject to a remote stress shown in Fig. 2.2, the stress intensity factor 

can be written as follows: 

 K� = σ√πa                        (2.2) 
 

Combining equation (2.1) and equation (2.2), the relationship between K� and G is derived 

as follows: 

 

G = 9:68                     (2.3) 
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Fig. 2.3: Stresses near the tip of a crack in an elastic material [Anderson, 2005]. 

 

2.2.2 The Brittle fracture 

 

There are two types of fracture mechanism: ductile and brittle. Ductile fracture applies when 

the material sustains large plastic strain or deformation before the final fracture. Brittle 

fracture occurs when a relative small or negligible amount of plastic strain is observed 

before fracture. Brittle failure results usually from cleavage where separation along specific 

crystallographic planes is found. At low temperatures, body-centered cubic (Bcc) metals fail 

by cleavage when the plastic flow is restricted by a limited number of active slip systems 

[Anderson, 2005]. When the maximum principal stress reaches the critical one (so called 

critical cleavage stress σ�), cleavage fracture will occur [Beremin, 1983]. Bcc metals, e.g., 

mild steels will become brittle at low temperatures. For Bcc metals, the force needed to 

move dislocations is strongly dependent on the temperature and the movement of the 

dislocations becomes difficult at low temperature. If the maximum principal stress is high 

enough brittle fracture will happen, otherwise fracture will only happen when a sufficient 

level of the principle stress is reached [Beremin, 1983]. According to the discussion of 

Griffiths [Griffiths et al., 1971], the critical cleavage stress is independent of temperature 

and can be obtained from notched bend specimens.   

 

The mechanics of fracture progressed from being a scientific curiosity to an engineering 

discipline, primarily due to what happened to the liberty ships during World War II [Irwin, 

1957]. Many liberty ships built in the early days of World War II ruptured suddenly in 1940s. 

One of the main reasons is due to the weld, which was produced by a semi-skilled work 
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force and which contained crack-like flaws [Anderson, 2005]. The weld with initial defects 

always ruptures suddenly, showing brittle fracture. With the development of weld quality 

control standards, high quality weldments without initial defects are obtained nowadays. 

 

2.2.3 The J-integral 

 

The J-integral is a contour integral which was introduced by Rice [Rice, 1969] as a fracture 

parameter in a nonlinear elastic material. The mathematical expression of the J-integral is 

given as follows: 

 J = < =Wdy @ T� A�BAC dsDГ                  (2.4) 

 

where the strain energy density reads as W = < σ��ε��FBG� , T� = σ��n� is the traction vector, u� 
are the displacement vector component, and ds is a length increment along the contour Г, n 

is the unit vector normal to Г, while  σ�� and ε�� are stress and strain tensors, respectively 

(Fig. 2.4). 

 

Fig. 2.4: Arbitrary J-integral contour around the tip of a crack [Anderson, 2005]. 

 

As what has been demonstrated by Rice [Rice, 1969], for a nonlinear material which 

contains a crack, J is a path independent integral and equal to the energy release rate K. 

The J-value was measured firstly experimentally by Landes and Begley [Begley et al., 1972; 

Landes et al., 1972]. According to their method, the same specimens with different initial 

crack lengths were tensile tested. The force vs. displacement curves are shown in Fig. 

2.5(a). The area under a given curve is equal to U, which is the energy absorbed by the 

specimen. The U vs. crack length curves at different displacements are shown in Fig. 2.5(b) 

and the J-values vs. displacement at various crack lengths are presented in Fig. 2.5(c) 
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[Anderson, 2005]. The J-integral can be calculated as a function of the area under the force 

vs. displacement curve when an edge cracked specimen is adopted:  

 J = @  L =AMA7D                      (2.5) 

 

where B is the thickness of the specimen and U is the energy absorbed by the specimen. 

(a)   (b)  

(c)  

Fig. 2.5: Schematic of experimental measurements of J [Begley et al., 1972; Landers et al., 

1972].  

 

For linear elastic material behavior, the relation between the crack tip opening displacement 

(CTOD) δ and J is given as follows: 

 

 J = mσ�δ                   (2.6)

          

where m is a material dependent constant which is influenced by the stress state and σ� is 

the yield stress. 
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2.3 Constitutive damage models 

Ductile damage in crystalline solids originates from the nucleation, growth, and coalescence 

of microvoids [Tvergaard, 1989]. The voids nucleate mainly at second phase particles 

[Tvergaard, 1989]. In the early study of void growth in ductile materials, various models 

exist focusing on the description of void growth alone. The surrounding material is taken to 

be rigid perfectly plastic and a state of plane strain is assumed with a prescribed strain rate.  

 

2.3.1 The Rice and Tracey model 

 

Rice and Tracey [Rice et al., 1969] performed micromechanical studies which focused on 

the growth of a single void in an infinite elastic-plastic solid. The rate of variation of void 

radius can be expressed as follows:  

 

 
PQQ = 0.283exp ="5Z!5[ D dε�	\]

                  (2.7) 

where r is the radius of the void, σ� is the mean stress, σ� is the yield stress and ε�	\]  is the 

equivalent plastic strain of a perfectly plastic matrix material. This model does not consider 

the interaction between neighbouring cavities.  

For a strain hardening material, the σ� value in equation (2.7) can be replaced by the von 

Mises equivalent stress ��	, and the revised equation (2.8) is as follows: 

 

PQQ = 0.283exp ^"5Z!5_`a dε�	\]
                     (2.8) 

 

Huang [Huang et al., 1991] assumes that the growth rate of a spherical void in an infinite 

perfectly plastic matrix is underestimated by equation (2.8) and they introduced a new 

equation to explain the variation of the void radius: 

 

PQQ = b0.427eηfghexp ="! ηD dε�	\] ,           " ≤ η ≤ 1  0.427exp ="! ηD dε�	\] ,                           η > 1               (2.9) 
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where η = 5Z5_` represents the stress triaxiality. The equation does not consider the influence 

of void coalescence. Moreover, material softening due to damage has not been considered 

in the Rice and Tracey model.  

 

2.3.2 The Rousselier model 

 

Within a thermodynamic framework, Rousselier [Rousselier, 1987; Rousselier, 2001] 

developed a damage model. In the Rousselier model, damage is defined by a variation of 

the void volume fraction originating from second phase particles under tensile loading 

conditions. The general yield condition of the Rousselier model is as follows:  

 Φ = 5_` m� n Dfσ
 exp = 5Z5oe m�fD @ Repf = 0                                 (2.10) 

 

where σ�	  is the von Mises equivalent stress, σ�  is the hydrostatic stress, f is the void 

volume fraction (initial value f�), σ
 and D are material constants, p is the cumulated plastic 

strain and R(p) is true stress-true plastic strain curve of the material. The von Mises yield 

surface and the yield surface modified by the Rousselier equation (2.10) can be found in 

Fig. 2.6 [Seebich, 2007].  

 

(a)  (b)  

Fig. 2.6: (a) Von Mises yield surface and (b) Rousselier yield surface [Rousselier, 1987; 

Seebich, 2007]. 

 

From cavity growth measurements [Rousselier, 1987; Rousselier, 2001] and theoretical 

considerations, the parameter D is considered as a material independent parameter. For 
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most materials this value can be set to D = 2. The initial void volume fraction, f�, depends 

on the volume fraction of all inclusions in the material (voids plus non-metallic particles). 

The f� is suggested to be determined from metallographic investigations on the polished 

material surface. For steel, if the metallographic experiment is not available, f�  can be 

estimated from the chemical composition thanks to Franklin‘s equation [Franklin, 1969] in 

which the manganese (Mn), sulphide (S), and oxide (O) inclusions are considered as 

inclusions: 

 

f� = 0.054 r%Sewtf @  �wx%y%ez-f{ n 0.055%Oewtf                      (2.11) 

 

According to the discussion of Rousselier [Rousselier, 2001], the first try for σ
 is set equal 

to the value of two thirds of the equivalent stress (σ�	) for the smooth round specimen 

under tensile test when the final fracture happens. Based on the previous experiences at 

MPA [Seidenfuss, 1992], σ
 is assumed to be 445 MPa for the current investigated steels 

(10MnMoNi55, S355NL, et al.). When the critical void volume fraction f�  is reached, the 

stress carrying ability of the material will be loosed completely. Damage mechanical studies 

of tensile tests have shown that f�=0.05 is a reasonable value [Seidenfuss, 1992; Mohanta, 

2003; Weber et al., 2007]. The Rousselier model was used successfully to study the ductile 

fracture behaviour of homogenous materials [Kussmaul et al., 1995; Uhlmann et al., 1999; 

Schmauder et al., 2002, 2009] and inhomogeneous electron beam welded steel joints [Tu 

et al., 2011, 2013] at IMWF/MPA Stuttgart. 

 

The ductile crack propagation in precracked specimens (compact tension (C(T)) depends 

on the element size lc, element type, symmetries, mesh geometry, etc. [Rousselier, 2001]. 

Before the numerical application, the lc-value should be calibrated first. The parameter lc is 

calibrated on notched round specimens, then the same lc-value is adopted to study the 

crack propagation of C(T)-specimens. This is the so called mesh dependence of the 

Rousselier model, where the numerical simulation result is affected by the element size lc. 

The classical Rousselier model is called the local Rousselier model where the material 

damage process at a certain point has a close relationship with the stress and strain field at 

the same point. Samal developed a nonlocal damage law trying to overcome the drawbacks 

of the local Roussellier model [Samal et al., 2008, 2009] where the damage growth law is 

defined in terms of the local void volume fraction but keeping a local definition for strain. 

This is the new trend for the Rousselier model as well as for the GTN model. However, a 
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large amount of debugging time is needed to develop the user defined code and to derive 

results calculated from the non-local Rousselier model which is limiting the application of 

the non-local damage model.    

 

2.3.3 The Gurson-Tvergaard-Needleman (GTN) model 

 

Like Bishop and Hill [Bishop and Hill, 1951], the widely well-known porous ductile material 

model is that developed by Gurson [Gurson，1977]. The material simulated by the Gurson 

model behaves as a continuum since the voids appear through their influence on the global 

flow behaviour. The yield condition of the Gurson model is written as: 

 

Φ = =5}~5 D! n 2����ℎ =5�!5 D @ 1 @ �! = 0                                      (2.12) 

 

where σ�	 is the von Mises equivalent stress, σ is the flow stress for the matrix material of 

the cell, f is the void volume fraction and σ� is the mean stress. The implication of this 

analysis is that the voids are assumed to be randomly distributed, so that the macroscopic 

response is isotropic.  

 

The original yield condition of the Gurson model was modified by Tvergaard [Tvergaard, 

1982a] and Needleman [Tvergaard and Needleman, 1984] and the equation of the so 

called Gurson-Tvergaard-Needleman (GTN) model is as follows: 

 

Φ = =5_`5 D! n 2q f ∗cosh =	65Z!5 D @ 1 @ q"f ∗! = 0                      (2.13) 

 

where q , q!  and q"  are parameters introduced by Tvergaard which can improve the 

accuracy of the predictions of the Gurson model [Tvergaard, 1982b]. The function f ∗ is a 

function of f as shown in Fig. 2.7 which represents the accelerated damage originated from 

the void coalescence when a critical volume fraction f� [Tvergaard et al., 1984] is reached: 

 

f ∗ =
���
��f                                                  f < f�                           f� n kef @ f�f                    f� < f < f�,       k = ��∗ m����m��  f�∗                                                f ≥ f�                                          

                     (2.14) 
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According to this model, a crack appears when the current f value reaches the final void 

volume fraction, f�. That means the material loses its stress carrying ability completely when 

the ultimate void volume fraction f�∗  is reached, where f�∗ = 1/q . Zhang thought the value f� can be determined from unit cell modeling results (Zhang et al., 2000). 

 

Fig. 2.7: The function of the modified void volume fraction f ∗eff. 

 

It is assumed that the rate of the void volume fraction consists of the growth of existing 

voids and the nucleation of new voids, as explained by Needleman [Needleman et al., 1978] 

and Chu [Chu et al., 1980]: 

 f� = f�/Q�z-� n f�%��]�7-��%                         (2.15) 

 

The void growth is given according to the following equation:  

 f�/Q�z-� = e1 @ ffε�

\]
                                      (2.16)  

 

where ε�

\]
 is the plastic volume dilatation rate and the matrix is assumed behaving 

plastically incompressible.  

The nucleation of new voids is given as follows: 

 f�%��]�7-��% = Aε�

\] n Beσ� � n  " σ� 

f                         (2.17) 

 

The influence of the void nucleation is either strain controlled (B=0) or stress controlled 

(A=0). The void nucleation rate for the strain controlled nucleation situation, as suggested 

by Chu [Chu et al., 1980] is as follows: 
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f�%��]�7-��% = Aε�

\] ,   A = ����√!4 exp �@  ! �F_`�� mF��� �!�                      (2.18) 

 

where f% is the void volume fraction of the void-nucleating particles, ε% is the mean strain 

when void nucleation occurs and s%  is the corresponding standard deviation of the 

nucleation strain, which follows a Gaussian distribution. 

 

For stress controlled void nucleation, the void nucleation rate is shown in the equation as 

follows:  

 

f�%��]�7-��% = Beσ� � n  " σ� 

f,  B = ����√!4 exp �@  ! �5Z�gx5oow���� �!�                     (2.19) 

 

where σ� n  " σ��  is an approximate value of the maximum normal stress acting on the 

particle/matrix interface [Needleman, 1987; Xia, 1996], σ� is the mean stress for nucleation. 

 

With the development of computer power, the GTN model is used to investigate the fracture 

behavior of homogeneous materials, e.g., steel StE690 [Springmann et al., 2005a, 2005b], 

X100 pipeline steel [Tanguy et al., 2008], X70 ferritic–pearlitic steel [Rivalin et al., 2001a, 

2001b] and Al2024 sheets [Chabanet et al., 2003]. The GTN model was also used to study 

the fracture bahaviour of inhomogeneous structures [Østby et al., 2007a, 2007b]. In recent 

years, the GTN model has found wide application in the fracture analysis of welded joints. 

The GTN model was used by Needleman [Needleman et al., 1999] and Tvergaard 

[Tvergaard et al., 2000, 2004] in studies of conventional fusion welded joints. After the initial 

study of the fracture behaviour of a laser welded joint [Çam et al., 1999; Santos et al., 2000], 

the GTN model was adopted to study the ductile fracture behaviour of a laser welded joint 

at the Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research [Nègre et 

al., 2003, 2004; Cambrésy, 2006]. The GTN model was used to predict crack propagation 

when different initial crack positions were considered. It has been proved that the GTN 

model can be successfully used to study the fracture mechanisms of an inhomogeneous 

laser welded joint [Nonn et al., 2008]. Meanwhile, the GTN model was used to study the 

ductile fracture behaviour of friction stir welded AA2024 joints by Nielsen [Nielsen et al., 

2008]. Nielsen focuses on studying the ductile damage development in an FS-welded 

aluminium joint under tensile loading normal to the weld line. A study of the effect of varying 
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the distribution of the volume fraction of second phase particles, from which voids are 

assumed to nucleate, was carried out as well.  

 

2.4 Cohesive zone model (CZM) 

The concept of a cohesive zone model was introduced by Dugdale [Dugdale, 1960] and 

Barenblatt [Barenblatt, 1962]. Dugdale and Barenblatt assume that the crack consists of 

two parts: the stress-free part and the parts loaded by cohesive stresses. In 1960, Dugdale 

introduced a strip-yield model where he assumed that the cohesive stress is equal to the 

yield stress and the material is supposed to perform as elastic-ideally plastic [Schwalbe et 

al., 2009], as shown in Fig. 2.8. The model presented by Barenblatt adopted a cohesive law 

to describe the decohesion of atomic lattices [Schwalbe et al., 2009] where the stresses in 

the ligament of the crack follows a prescribed distribution σ(x) which is related to the 

material, as shown in Fig. 2.9. The special zone where damage occurs is called the 

cohesive zone. As shown in Fig. 2.10, under loading conditions, the void initiation, growth 

and coalescence process of a ductile material is described by the damage of the cohesive 

element. The damage of the cohesive element is described by a traction-separation law 

(TSL) which consists of three cohesive parameters: the cohesive strength T0, the critical 

separation length δ� and the cohesive energy Γ�. The cohesive strength T� is the maximum 

stress obtained when the crack initiates and the cohesive energy Γ� is the energy for the 

total separation of a unit area of the material. When the cohesive strength T�  and the 

cohesive energy are known, the third parameter δ�  can be calculated with the following 

equation:   

 Γ� = < Teδf [  dδ                            (2.20) 

 

Therefore, there are only two independent cohesive parameters: the cohesive strength T� 

and the cohesive energy Γ� . For mode I loading, when the normal component of the 

separation reaches δ�, the cohesive element fails completely where the stresses become 

zero. The cohesive energy can be calculated by equation 2.20 and is assumed equal to the 

J-integral value at initiation of ductile crack extension (Ji) as discussed by Brocks [Brocks et 

al., 2004]. 
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Fig. 2.8: The Dugdale model [Dugdale, 1960]. 

 

Fig. 2.9: The Barenblatt model [Barenblatt,1962]. 

 

 

 

Fig. 2.10: Depiction of the ductile failure process by a cohesive zone model [Cornec et al., 

2003]. 

 

Following this idea of the cohesive zone model, different TSLs were proposed in the past to 

investigate the ductile and the brittle fracture behaviour of a number of materials. The first 

application of the cohesive model in the FE simulation was performed by Hillerborg 

[Hillerborg, 1976] to describe the brittle fracture behavior of a concrete beam. The linear 

decreasing TSL introduced by Hillerborg is shown in Fig. 2.11(a). The equation of the linear 

decreasing TSL is as follows: 

 Teδf = T� =1 @   [D                                    (2.21) 

 

This kind of TSL is normally adopted to study the behavior of brittle material. 

Real 

Idealization 

crack 

crack 
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Needleman introduced two TSLs to describe the decohesion behavior of a ductile material. 

The polynomial and the exponential TSLs are shown in Fig. 2.11(b-c). A polynomial shaped 

TSL [Needleman, 1987] can be found in Fig. 2.11(b), where the equation of T(δ) is given as: 

 

Teδf = !¡¢ T�   [ =1 @   [D!
                         (2.22) 

 

The function T(δ) with an exponentially shaped TSL [Needleman, 1990] can be depicted as 

follows: 

 

                      Teδf = T�ez   [ exp =@z   [D                                                                            (2.23)

                                                    

where e = exp e1f and z = 16e/9.  

 

For materials which show a more ductile behavior, Tvergaard and Hutchinson [Tvergaard, 

1992] proposed a trapezoidal shaped TSL to describe the fracture behavior which is shown 

in Fig. 2.11(d). They introduced two additional parameters, δ1 and δ2 in the equation, the 

initial cohesive stiffness Knn=T0/ δ1 is constant before T(δ) reaches T0 and the formulation of 

T(δ) is explained in the equation as follows:  

 

                    Teδf = T� ���
��=   gD                                                       δ < δ    1                                                  δ < δ < δ!    =  [m  [m 6D                                      δ! < δ < δ�                                       (2.24) 

 

This TSL was later modified by Scheider [Scheider, 2001] where the initial cohesive 

stiffness varies. This TSL proposed by Scheider was used to study the fracture behavior of 

laser weldments of which the TSL function is as follows:  

 

                   Teδf = T� ���
��2 =   gD @ =   gD"                                            δ < δ   1                                                          δ < δ < δ!   2 =  m 6 [m 6D" @ 3 =  m 6 [m 6D! n 1        δ! < δ < δ�                        (2.25) 
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Fig. 2.11: Shape of traction separation laws according to: (a) Hillerborg [Hillerborg, 1976], 

(b) Needleman [Needleman, 1987], (c) Needleman [Needleman, 1990], (d) Tvergaard and 

Hutchinson [Tvergaard et al., 1992], and (e) Scheider [Scheider, 2001]. 

 

The shape influence of the TSL on the damage behavior of a material has not been 

reported uniformly so far. Some authors concluded the shape of the TSL has only tiny 

influence [Yuan et al., 1991; Tvergaard et al., 1992] on the fracture behavior of the material. 

However, in recent publications [Scheider et al., 2003b], the shape of the TSL has been 

found having a severe influence on the damage behaviour. 

 

After the successful application of the cohesive zone model in different homogeneous 

structures [Siegmund et al., 2000; Chen et al., 2003, Lin, 1998a; Li, 2002], the cohesive 

zone model has been applied to investigate the fracture behavior of complex structures, 

e.g., welded joints [Anvari et al., 2006; Lin et al., 1998b, 1999; Scheider, 2001, Tu et al., 

2013]. This proves that the cohesive model is able to describe the damage behaviour of 

homogeneous structures and inhomogeneous welded joints. 

 

2.5 ARAMIS system 

ARAMIS is an optical 3D deformation analysis system which is based on an image 

evaluation technique to capture the surface deformation of a sample under load. The 

ARAMIS system can be used to analyze, calculate and document the surface 
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displacements and surface strains at each deformation step [ARAMIS, 2008]. Some 

applications of the ARAMIS system monitoring the deformation of tested samples are 

shown as follows. For example, the ARAMIS system was used to record the true stress-

strain behavior of flat specimens of PA6/elastomer composites [Huang et al., 2011]. During 

the tensile test process, the effective length and diameter change (∆l and ∆d) is recorded 

by the ARAMIS system; see Fig. 2.12(a). The sample is viewed by two CCD cameras which 

record the surface deformation (see Fig. 2.12(b)). The ARAMIS system recorded the 

deformation process of flat specimens and middle cracked tension (M(T)) specimens 

extracted from Al6013-T6 laser beam welded and friction stir welded joints at the 

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research [Seib, 2006]. 

The strain distribution of steel adhesive joints is shown, e.g., by Sadowski [Sadowski et al., 

2011]. As shown on the website of GOM company [GOM, 2014], the ARAMIS system is 

also able to monitor the crack propagation of Single Edge Notched Bend (SENB) 

specimens. The crack propagation during three point bending tests on the clay brick panel 

was shown by Graziani [Graziani et al., 2014]. These works have confirmed that the 

ARAMIS facility is qualified for 3D deformation measurements and the applications in the 

fracture mechanics field.  

 

(a)  (b)  

Fig. 2.12: (a) Measurement of the effective length (∆l) and diameter changes (∆d); (b) 

sketch of the tensile test combined with the ARAMIS system [Huang et al., 2011]. 

 

2.6 Synchrotron Radiation-Computed Laminography (SRCL)  

With the development of phase contrast methods [Nugent et al., 1996; Cloeten et al., 1999, 

2002; Paganin et al., 2002], 3D imaging with Synchrotron radiation-computed tomography 

(SRCT) became possible. The SRCT technique can help to understand the structure within 
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the material in a non-destructive way. However, SRCT is particularly suitable for the 

investigation of the damage evolution of bulk materials with the thickness of 1 mm, it is 

difficult to image the local microstructure when the sample size significantly exceeds the 

field of view (1.5 mm) of the detector, such as in the case of a flat specimen [Shen et al., 

2013]. Synchrotron radiation-computed laminography (SRCL) has been developed as a 

non-destructive three dimensional (3D) imaging method for flat specimens [Helfen et al., 

2005]. In comparison to the SRCT, SRCL provides better scanning results [Helfen et al. 

2011] resulting from the change of the laminographic angle (θ = 900 for SRCT, θ<900 for 

SRCL), which is the angle between the rotation axis and the incident of the X-ray beam. Fig. 

2.13 shows the comparison of the schematic views of a typical SRCT setup (Fig. 2.13(a)) 

and SRCL setup (Fig. 2.13(b)). The SRCT is particularly used to scan and image the stick-

like samples (Fig. 2.13(a)) where the SRCL is developed to image the laterally extended 

specimen, like the flat specimen, as shown in Fig. 2.13(b). 

 

With the development of the SRCL technique at ANKA (Synchrotron Radiation Facility at 

the Karlsruhe Institute of Technology (KIT)), an increasing number of scientific publications 

are found in literature. The SRCL technique was adopted to investigate the crack initiation 

of Al2139 [Morgeneyer et al., 2009, 2013], the crack initiation and propagation in Al6061 

aluminum alloy sheets [Shen et al., 2013] and the damage evolution in a polymer 

composite [Xu et al., 2010; Laiarinandrasana et al., 2012; Cheng et al., 2013b]. These 

scientific investigations confirm that the SRCL technique is qualified for 3D imaging of the 

damage evolution of different materials. 

 

Fig. 2.13: Schematic views of a typical (a) SRCT setup in comparison to the (b) SRCL setup 

[Morgeneyer et al., 2013].  
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3. Characterization of steel S355 electron beam 

welded (EBW) joints 

 

A low-alloyed structural steel S355 is chosen as the base material (BM) to produce electron 

beam welded butt joints. During the electron beam welding process, the welding 

parameters were adjusted in order to get sound welded joints without surface pores or 

microcrack defects. The welding parameters chosen are: welding speed 2 mm/s and beam 

current 230 mA. After the electron beam welding process, a butt joint is obtained from two 

S355 plates with the thickness of 60 mm. In order to investigate the mechanical properties, 

the fracture mechanism and crack propagation for S355 electron beam welded butt joints, 

and some related experimental works are presented below. 

 

First, a spectrometric analysis was carried out on the base material in order to obtain the 

chemical composition. After the laser welding process, one block including the weld seam 

was extracted from the welded joint. In order to define the initial void volume fractions (f�) 

and the mean void distances (lc) for the BM, FZ and HAZ, optical microscopy investigations 

were made on these regions. After surface etching, microstructures of different weld joints 

were obtained. The welded joints were hardness tested in order to define the dimensions of 

different weld regions. Due to the narrowness of the fusion zone and the heat affected zone, 

it is impossible to extract round specimens from these regions. As a consequence, flat 

specimens extracted from different weld regions were tested to achieve the local 

mechanical properties, such as stress-strain curves. Unnotched round tensile specimens 

and flat specimens obtained from the BM were compared in order to check whether flat 

specimens can provide the same stress-strain curves as round tensile specimens. Notched 

round specimens from the base material and notched round specimens with the HAZ 

located in the middle of the specimens were tested experimentally in order to provide 

standards for the calibration of parameters of the Rousselier model, the GTN model and the 

cohesive zone model later. Further details of the methodology are summarized as follows. 
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3.1 Chemical composition  

The chemical composition of S355 was measured by spectrometric analysis at five random 

points on the BM. The chemical components of S355 are shown in table 3.1. According to 

the suggestion of Rousselier [Rousselier 2001], for steel, the initial void volume fraction f� 

can be estimated from the chemical component thanks to Franklin’s formula if manganese, 

sulphide and oxide are the reasons of non-metallic inclusions: 

 f� = 0.054 r%Sewtf @  �wx%y%ez-f{ n 0.055%Oewtf              (3.1) 

 

The f�-value for the steel S355 obtained according to Franklin’s formula is 0.7×10-3. 

 

Table 3.1: Chemical composition of the steel S355, mass contents (wt) in % 

Steel C Si Mn P S Cr Mo Ni Al Co O 

S355 0.198 0.260 1.386 0.026 0.013 0.020 <0.005 <0.005 0.013 0.006 0 

 

3.2 Microstructures of steel S355 EBW joints 

The microstructures of steel S355 EBW joints were investigated by optical microscopy and 

scanning electron microscopy separately. In order to identify the volume fraction of non-

metallic inclusions and the average distance between two neighbouring inclusions, optical 

microscopy investigations on polished surfaces of the specimens were performed, for the 

BM, the FZ and the HAZ. Typical microscopy pictures of different weld regions can be 

found in Fig. 3.1(a)-(c). It can be seen that the inclusions are not equally distributed in the 

material but localized or clustered in some regions. The volume fraction of non-metallic 

inclusions was measured with the software Image J by applying the binary method. The 

optical separation of the particles and matrix was obtained by processing the normal optical 

microscope picture to the binary picture where the black regions are particles and the 

matrix are white regions. By calculating the ratio of the black regions to the whole 

measurement region, the initial volume fraction of the particles (f�) is obtained. Quantitative 

analyses of microscope pictures from different weld regions were made in order to quantify 

these experimental values. From these analyses, the volume fraction of all inclusions for 

the BM, the FZ and the HAZ are 0.0009, 0.0018 and 0.0016, respectively. The f�-values 
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measured from microscope pictures is slightly higher than the value calculated from 

Franklin’s equation because the particles are not randomly distributed but localized at some 

regions. During the measurement of optical micrographs, only the regions with visible 

particles are considered, this overestimates the f�-value slightly. Five particles are randomly 

chosen and the distances between these particles are measured. The mean distance 

between neighboring inclusions for the BM, the FZ and the HAZ is found to be 100 µm, 80 

µm and 120 µm, respectively. 

(a)  (b)  

(c)  

Fig. 3.1: Typical microscope pictures of different weld regions of an S355 EBW joint: (a) 

base material (BM), (b) fusion zone (FZ) and (c) heat affected zone (HAZ). 

 

In order to get the microstructures of different weld regions, one block of material was cut 

across the welded joint. After surface etching with 3% HNO3, the microstructures of different 

weld regions are obtained and presented in Fig. 3.2. The microstructure of the BM of the 

top face and the right surface of the block are shown in Fig. 3.2(a)-(b). As shown in Fig. 

3.2(c), the BM shows the typical microstructure of steel, which is comprised of Ferrite and 

Perlite. The typical Ferrite and Pearlite is marked in Fig. 3.2(c), in which the white region is 

Ferrite and the black region is Pearlite. The microstructure of the HAZ consisting of Ferrite, 
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Pearlite and Martensite as shown in Fig. 3.2(d), which is a transitional region between the 

BM and the FZ. In Fig. 3.2(e), acicular Martensite structures can be found in the FZ.  

 

Fig. 3.2: Microstructures of different weld regions of an S355 EBW joint: (a) base material 

(BM) from marked region on the top face, (b) base material (BM) from marked region on the 

side face (c) base material (BM) from marked region on the front face (d) heat affected 

zone (HAZ) and (e) fusion zone (FZ). 

 

3.3 Mechanical properties of S355 EBW  

3.3.1 Hardness measurement 

 

For the purpose of identifying different weld regions, especially the FZ and the HAZ, the 

hardness was measured across the welded joint. The hardness measurements were 

performed across the weld regions at three different test locations, namely at the weld root, 

the middle-section and the top part of the joints, as shown in Fig. 3.3. For the hardness 

measurement, Vickers hardness tests were adopted. During the hardness measurement, 5 

kp (ca. 50 N) test load was performed with an indenter. Every 1 mm a measurement was 
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performed in order to define the Vickers hardness values of different weld regions. The 

hardness profile across the welded joint is shown in Fig. 3.4. From Fig. 3.4, the fusion zone 

possesses the highest hardness value (HV=258-283), whereas the base material attains 

the lowest hardness value around HV170 (HV=162-176). The hardness values of the HAZ 

increase near the FZ. This can be explained from microstructures of respective weld 

regions, which are shown in Fig. 3.2. The FZ is comprised of pin-structural martensite which 

is harder than perlite and ferrite which are the main components for the BM. From the 

macrograph picture as shown in Fig. 3.3 and the hardness test profile cross the welded joint 

(Fig. 3.4), the dimensions of FZ and HAZ are found to be 2.8 mm and 3.1 mm, respectively.  

 
 

Fig. 3.3: Hardness test positions across the weld joint. 

 
Fig. 3.4: Hardness profile across the electron beam welded joint. 

 

3.3.2 Tensile behaviour of different tensile specimens 

1. Smooth round specimens 

Standard smooth round specimens were extracted from the BM with a computer controlled 

turning machine (TRAUB TNB160). Tensile tests were performed at room temperature with 

Top
ü 

Middle 

Root 
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the MTS Sintech 65/G universal testing machine. Four round specimens named RB1-RB4 

with the diameter of 10 mm and a gauge length of 50 mm were extracted from the BM in 

which the loading direction is the same as the rolling direction, as shown in Fig. 3.5. The 

engineering stress vs. strain curves of round specimens (RB1-RB4) are shown in Fig. 3.6. 

Yield plateaus are found at the stress vs. strain curves. After averaging the tensile test 

results, the mechanical properties can be obtained. Table 3.2 shows the mechanical 

properties of the base material containing Young’s modulus E, yield stress �� , tensile 

strength σ�, uniform strain A/ and strain at rupture A.  

 

        

 

 
Fig. 3.5: Sketch of standard tensile round bar in which the loading direction is the same as 

the rolling direction. 
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Fig. 3.6: Engineering stress-strain curves of round specimens extracted from the base 

material (BM) (RB1-RB4). 

 

Table 3.2: Mechanical properties of the S355 BM 

 

 

 

 

E-Modulus (MPa) σ�Ly (MPa) σ�Ly (MPa) A/Ly ALy 

207750 353 533 0.151 0.246 

Rolling direction 
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Three round specimens named A1-A3 with the diameter of 8 mm and a gauge length of 30 

mm were extracted from the BM in which the loading direction is perpendicular to the rolling 

direction, as shown in Fig. 3.7. The engineering stress vs. strain curves of round specimens 

(A1-A3) are shown in Fig. 3.8. After averaging the tensile test results, the mechanical 

properties are derived in table. 3.3. Table 3.3 shows the mechanical properties of the base 

material containing E-modulus, yield stress σ�, tensile strength σ�, uniform strain A/ and 

strain at rupture A. A comparison of the engineering stress versus strain curves obtained 

from these two types of round specimens extracted from the different positions of the base 

material (BM) can be found in Fig. 3.9. The curves confirm that for S355 BM the rolling 

direction has almost no influence on the mechanical properties of the base material. 

 

 

 
Fig. 3.7: Sketch of standard tensile round bar in which the loading direction is perpendicular 

to the rolling direction. 

 

 
Fig. 3.8: Engineering stress-strain curves of round specimens extracted from base material 

(A1-A3). 

 

Table 3.3: Mechanical properties of different weld regions of S355 EBW joint 
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Fig. 3.9: Comparison of engineering stress-strain curves obtained from two different types 

of round specimens extracted from the S355 BM. 

 

2. Flat specimens    

As explained in the previous section, after the electron beam welding process, narrow FZ 

(FZ=2.8 mm) and HAZ (HAZ=3.1 mm) regions were obtained. Thus, it is impossible to 

extract smooth round specimens from the respective areas. Flat specimens were 

manufactured and tested from these areas in order to get the mechanical properties of 

different weld areas. Local mechanical properties of different weld areas of S355 EBW 

joints are obtained from flat specimens where the length direction is the same as the 

welding direction, as shown in Fig. 3.10.  In this work, flat specimens were manufactured by 

an electrical discharge machining (EDM) technique to avoid residual stresses results from 

the saw cutting for the tensile specimens. The first thin manufactured sheet (0.5 mm 

thickness) was extracted from a position which has 0.5 mm distance from the center of the 

FZ, as shown in Fig. 3.11. The second manufactured sheet was extracted from the position 

2.5 as shown in Fig. 3.11. The third manufactured sheet was extracted from a position at a 

1 mm distance from the second block (position 3.5 in Fig. 3.11). Every new manufactured 

sheet was obtained from the new position at a 1 mm distance from the old manufacture 

position, as shown in Fig. 3.11. Manufactured sheets were extracted from different positions 

in order to get stress-strain curves of different weld regions. Two 0.5 mm thick flat 

specimens were cut off from a manufacture sheet, as shown in Fig. 3.11. The specimens 

were surface grinded before tensile testing in order to avoid stress concentrations around 

the imperfections which are introduced by production. Microcracks on the surface of the flat 

specimen as shown in Fig. 3.12 should be avoided after polishing which affect the accuracy 

of tensile test results. 
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Fig. 3.10: Sketch of laser weld joint and extraction of flat specimens at different regions. 

 

 

Fig. 3.11: Sketch of extraction positions of manufacture blocks and the dimension of the flat 

specimens.  

 

 

Fig. 3.12: Microcracks appear on the surface of flat specimen after polishing. 
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Flat specimens obtained from the BM, from the FZ and from the HAZ were tensile tested at 

room temperature. After the tensile process, engineering stress-strain curves of different 

weld regions of S355 EBW joints are obtained from flat specimens with a gauge length of 

50 mm, as shown in Fig. 3.13. Table 3.4 shows the mechanical properties of the welded 

joints. The stress-strain curve of the BM derived from unnotched round bars were 

compared with that of flat specimens in order to verify whether flat specimens produce the 

same stress-strain curves as smooth round bars. Good comparison is obtained between 

the stress-strain curves obtained from flat and round specimen, showing that the flat 

specimens can provide a similar stress-strain curve as smooth round specimens, as shown 

in Fig. 3.14. These stress-strain curves will be used as model input data. 

 

 
Fig. 3.13: Engineering stress-strain curves obtained from tensile test results of flat 

specimens extracted from different weld regions of S355 electron beam welded joints. 

 

Table 3.4: Mechanical properties of different weld regions of S355 EBW joint 
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Fig. 3.14: Comparison between the stress-strain curves obtained from flat and round 

specimens extracted from S355 base material. 

 

3. Notched cylindrical tensile specimens 

Notched cylindrical specimens were extracted from the BM and from the HAZ, of which the 

length direction is perpendicular to the weld line. For the HAZ, notched specimens in which 

the HAZ is located in the middle of the notched area were manufactured. The sketch of a 

notched specimen with 4 mm notch radius is shown in Fig. 3.15. Tensile tests were 

performed at room temperature, in which the gauge length is 20 mm. During the tensile test 

process, force vs. cross section reduction curves and force vs. elongation curves were 

recorded. For the notched round specimens (NB1-NB3) extracted from the BM, the 

experimental force vs. elongation curves match well each other as shown in Fig. 3.16, 

although there exists some scatter between the force vs. cross section reduction curves as 

shown in Fig. 3.17. For the notched round specimens (TN1-TN4) where the HAZ is located 

in the center of the notched area, force vs. cross section reduction curves were obtained 

and are shown in Fig. 3.18. Some scatter of the fracture moment of the notched round 

specimens obtained from the HAZ is found which is due to the influence of the HAZ. The 

experimental findings will be used for the calibration of the Rousselier and the GTN model 

and also the cohesive parameters for the BM and HAZ as shown later. 

 
Fig. 3.15:  Sketch of 4 mm notched round bar.  
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Fig. 3.16: Experimental force vs. elongation curves of the notched round specimens 

extracted from BM.   
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Fig. 3.17: Experimental force vs. cross section reduction curves of the notched round 

specimens where the HAZ is located in the center of the notched area.   
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Fig. 3.18: Experimental force vs. cross section reduction curves of the notched round 

specimens extracted from HAZ.   
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4. Transverse flat tensile specimens  

Transverse flat tensile specimens (T3-T6) where the weld seam is located exactly in the 

middle of the specimen were extracted across the joined plates. A sketch of the transverse 

flat specimen where the gauge length is 20 mm is shown in Fig. 3.19. After surface grinding, 

transverse flat specimens were tensile tested and the engineering stress vs. strain curves 

were recorded.  A view of the specimens before and after tensile testing can be found in 

Figs. 3.20(a)-(b). The final fracture position locates in the BM, as shown in Fig. 3.20(b), 

showing the FZ is stronger than the BM which coincides with the information in Fig. 3.13. 

During the tensile process, the engineering stress vs. strain curves of the flat specimens 

where the FZ located in the center can be found in Fig. 3.21. After comparison of stress-

strain curves from the BM and from the welded joint (Fig. 3.14 vs. Fig. 3.21), higher tensile 

strength and a complete different hardening obtained from the welded joint shows the 

superiority of the welded joint, as shown in Fig. 3.22. 

 

 
Fig. 3.19: Sketch of transverse flat specimen where the weld seam is located in the center 

of the specimen. 
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(b) 

Fig. 3.20: Tensile test of transverse flat specimen (a) before tensile test, (b) after tensile test.  

 

 
Fig. 3.21: Engineering stress vs. strain curves obtained from transverse flat specimens (T3-

T6) where the weld seam is located in the center of the specimens. 

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

100

200

300

400

500

600

BM

 

 

S
tr

e
s
s
 (

M
P

a
)

Strain

 flat specimen from the welded joint

 flat specimen from S355 BM

 

welded joint

 
Fig. 3.22: Comparison between stress vs. strain curves obtained from the S355 BM and 

welded joint where the weld seam is located in the center of the specimen. 
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3.3.3 Fracture surface of notched specimens 

 

After the tensile test of notched round specimens which were extracted from the BM, 

scanning electron microscope investigations were performed for the fracture surfaces. Figs. 

3.23(a)-(g) show the fracture surfaces of notched specimens under different magnifications. 

Fig. 3.23(a) is the overview picture of the fracture surface. In order to derive detailed 

information of fracture surfaces, two marked regions shown in Fig. 3.23(a) were 

investigated. Figs. 3.23(b)-(d) are enlarged pictures with different magnifications obtained 

from the marked region I in Fig. 3.23(a). Figs. 3.23(e)-(g) are enlarged pictures with 

different magnifications obtained from the marked region II in Fig. 3.23(a). For S355 BM, 

the large voids are connected with neighboring smaller voids, showing typical ductile 

fracture behaviour, confirming that void initiation, growth and coalescence is the main 

reason for fracture. 

 

(a)  (b)  

(c)   (d)  

ǀ 

ǁ 
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(e)  (f)  

(g)  

Fig. 3.23: SEM pictures of the fracture surface of a notched round specimen extracted from 

S355 BM shown at different magnifications: (a) overview of fracture surface, (b) enlarged 

image of marked region I of picture (a), (c) enlarged image of marked regions of picture (b), 

(d) enlarged image of marked region of picture (c), (e) enlarged image of marked region II 

of picture (a), (f) enlarged image of marked regions of picture (e), and (g) enlarged image of 

marked region of picture (f). 

 

3.4 Fracture behaviour of S355 EBW joints 

3.4.1 Fracture toughness tests 

 

Fracture toughness tests of S355 electron beam welded joints were performed with 

compact tension (C(T)25) specimens. Specimens were manufactured and tensile tested 

according to ASTM standard [ASTM E1820, 2003] which have a thickness of B=25 mm, a 

net thickness of Bn=20 mm due to 20% side grooves, and a width of the specimens of 

W=50 mm. A sketch of the C(T)-specimens can be found in Fig. 3.24. In order to investigate 

large void 

 

small voids 
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crack propagation at different weld regions, C(T)-specimens were manufactured with 

different configurations, i. e.,  the initial crack was located in the BM (C(T)-BM), in the 

middle of the FZ (C(T)-FZ) and in the HAZ where the crack is situated at the interface 

between the FZ and the HAZ (C(T)-HAZ), separately, as shown in Figs. 3.25(a)-(c). In order 

to create the desired crack length a0, a notch was first machined with the Electron 

Discharge Machining (EDM) up to a length of 0.44W, then the specimen was fatigue loaded 

until the initial crack length a0 (for C(T)-BM: a0=0.535W, C(T)-FZ: a0=0.48W, C(T)-HAZ: 

a0=0.569W was recorded).  

 

During the test process, loading was controlled by quasi-static displacements perpendicular 

to the initial crack and the force vs. Crack Opening Displacement (COD) curve was 

recorded. As explained by Anderson [Anderson, 2005], the unloading compliance method, 

as shown in Fig. 3.26, was adopted in order to get the compliance (C) of the specimen. The 

unloading compliance method which can save experimental costs is used instead of the 

multiple specimen technique where a series of identical specimens are loaded to different 

crack lengths. The crack propagation ∆a is computed at regular intervals according to 

ASTM standard [ASTM, 2003] which has a relation to the compliance of the specimen. 

After the C(T) test, the experimental results are shown in terms of force vs. Crack Opening 

Displacement (COD) as well as fracture resistance JR-curves. The F-COD-curves of 

compact tension (C(T)) specimens with the initial crack located in different weld regions of 

S355 electron beam welded joints can be found in Fig. 3.27. As the FZ shows a higher 

tensile strength compared to that of the BM (see Fig. 3.13) and the initial crack length a0 for 

the C(T)-FZ is less than that of the C(T)-BM, a C(T)-FZ specimen shows higher forces in 

the F-COD-curve compared to the BM as shown in Fig. 3.27. For a C(T)-FZ, the specimen 

suddenly ruptures, showing a more brittle fracture behaviour. The C(T)-FZ specimen breaks 

suddenly before stable crack propagation happens, therefore, no fracture resistance JR-

curve was obtained during the test process. JR-curves for C(T)-BM and C(T)-HAZ 

specimens are shown in Fig. 3.28. The J-value from the C(T)-HAZ is slightly higher than 

that of the C(T)-BM at the early stage of the JR-curve, see  Fig. 3.28. This is because at the 

early stage of the tensile test, a slightly higher force in the F-COD-curve is obtained in the 

C(T)-HAZ due to higher stresses at certain strain obtained from the FZ and the HAZ in 

comparison to the BM, as shown in Fig. 3.13. After some crack propagation (round ∆a=0.4 

mm), a lower JR-curve is obtained for the C(T)-HAZ because a lower force in the F-COD-



44                                             Characterization of steel S355 electron beam welded (EBW) joints   

 

 

 

curve arises from less ductility of the HAZ, as indicated in Fig. 3.28 and Fig. 3.13 

respectively.  

 

Fig. 3.24: Sketch of the compact tension specimen ((C(T)25) with 20% side groove. 

 

(a) (b) (c)  

 

Fig. 3.25: Standard compact tension (C(T)25) specimens with the initial crack located at  

different positions: (a) in the BM (C(T)-BM), (b) in the center of the FZ (C(T)-FZ) and (c) in 

the HAZ where the crack is situated at the interface between the FZ and the HAZ (C(T)-

HAZ). 

 

 

Fig. 3.26:  The unloading compliance method for monitoring crack growth [Anderson, 2005]. 
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Fig. 3.27: Force vs. Crack Opening Displacement (COD) curves of compact tension (C(T)) 

specimens with the initial crack located in the BM, in the center of the FZ and in the HAZ 

where the crack is situated at the interface between the FZ and the HAZ, respectively. 

 
Fig. 3.28: Fracture resistance JR-curves obtained from C(T)-specimens when the initial 

crack is located in the BM and in the HAZ where the crack is located at the interface 

between the BM and the HAZ. 

 

3.4.2 Fracture surface analysis of C(T)-specimens 

 

After the designed stable crack propagation was achieved during the fracture toughness 

test, C(T) specimens were firstly heated up to 280 ℃, then maintained for around 30 

minutes, later on cooled naturally (heat tinting process), both for the C(T)-BM and the C(T)-

HAZ specimens. After the heat tinting, the specimens were cooled with liquid nitrogen, then 

broken finally with the test machine. For the case of the C(T)-FZ, as the specimen ruptures 
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suddenly before the stable crack starts, no heat tinting was performed on the C(T)-FZ 

specimen. The metallographic analyses were performed for the fracture surface using SEM 

investigations under different magnifications. The overview of the fracture surface of a C(T)-

specimen extracted from the BM can be found in Fig. 3.29. It can be seen that the whole 

fracture surface can be divided into the fatigue crack region, the stretched zone region, the 

stable crack growth region and the brittle fracture region. The SEM picture of the marked 

position 1 in the fatigue region is depicted in Fig. 3.30(a). Fig. 3.30(b) is the enlarged image 

of the marked region in Fig. 3.30(a). The marked region in the stretched zone region is 

shown in Fig. 3.30(c). The marked region in the stable crack region shows typical dimple 

structures as observed in Fig. 3.30(d)-(e). Fig. 3.30(e) is the enlarged image of the marked 

region in Fig. 3.30(d). The fracture surfaces show typical ductile fracture characteristics, 

large dimples with sizes of 20-30 µm are surrounded by smaller dimples with the sizes of 3-

4 µm. In Fig. 3.30(e), large dimples are connected with smaller dimples; broken particles 

are visible at the bottom of large dimples. These dimples are a consequence of void 

coalescences. Due to the influence of cooling with liquid nitrogen, the C(T) specimen shows 

a brittle fracture behavior. The marked region 4 in the brittle fracture region is presented in 

Fig. 3.30(f) and the enlarged image of the marked region in Fig. 3.30(f) is shown in Fig. 

3.30(g).  

 

 

Fig. 3.29: Overview of the fracture surface of a C(T)-BM.  
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 (a)  (b)  

(c)  (d)   

(e)  (f)   

(g)  

Fig. 3.30: Fracture surface of S355 BM (a) marked region 1 in the fatigue region, (b) 

enlarged image of marked region 1 in (a), (c) marked region 2 in the stretched zone region, 
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(d) marked region 3 in the stable crack growth region, (e) enlarged image of the marked 

region in figure (d), (f) marked region 4 in the brittle fracture region and (g) enlarged image 

of marked region 4 in picture (f). 

 

The overview of the fracture surface of a C(T)-specimen for which the initial crack is located 

in the center of the FZ is presented in Fig. 3.31. The whole fracture surface is observed to 

be divided into the fatigue crack region, the stretched zone region, the stable crack growth 

region and the brittle fracture region. The SEM picture of the marked position 1 in the 

fatigue region is shown in Fig. 3.32(a). Fig. 3.32(b) is the enlarged image of the marked 

region in Fig. 3.32(a). The marked region in the stretched zone region is presented in Fig. 

3.32(c). Fig. 3.32(e) is the enlarged image of the marked region in Fig. 3.32(d). Similar 

dimple fracture structures are also observed in the stable crack growth region as shown in 

Fig. 3.32(d)-(e), with big dimples of sizes of 8-10 µm being surrounded by smaller dimples 

with sizes of 1-2 µm. However, compare that for the BM (Fig. 3.29), smaller ductile crack 

growth regions (Fig. 3.31) and smaller dimple sizes at the same magnification (see Fig. 

3.32(e)) are found on the fracture surface. Furthermore, besides the dimple areas, some 

flat regions (marked regions in Fig. 3.32(e)) can be observed on the fracture surface, which 

are due to the unstable fracture of the FZ. This leads to less ductile or even some brittle 

behaviour of the C(T)-FZ specimen as the C(T)-FZ specimen were broken suddenly during 

the test (see Fig. 3.27). The marked region in the region 4 of brittle fracture region is shown 

in Fig. 3.32(f) and the enlarged image of the marked region in Fig. 3.32(f) is presenting in 

Fig. 3.32(g). 

 

 

Fig. 3.31: Overview of fracture surface of a C(T)-FZ. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  

Fig. 3.32: Fracture surface of S355 FZ (a) marked region 1 in the fatigue region, (b) 

enlarged image of marked region 1 in figure (a), (c) marked region 2 in the stretched zone 
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region, (d) marked region 3 in the stable crack growth region, (e) enlarged image of the 

marked regions in figure (d), (f) marked region 4 in the brittle fracture regions and (g) 

enlarged image of marked region in figure (f). 

  

The overview of the fracture surface of a C(T)-specimen with the initial crack located at the 

interface between the BM and the HAZ is shown in Fig. 3.33. It can be again seen (as for 

the BM) that the fracture surface can be divided into the fatigue crack region, the stretched 

zone region, the stable crack growth region and the brittle fracture region. The SEM picture 

of the marked position 1 in the fatigue region is presented in Fig. 3.34(a). Fig. 3.34(b) is the 

enlarged image of the marked region in Fig. 3.34(a). The marked region 2 in the stretched 

zone region is depicted in Fig. 3.34(c). Fig. 3.34(e) is the enlarged image of the marked 

region in Fig. 3.34(d). For the HAZ, similar stable crack regions as for the BM can be found 

in Fig. 3.34(e). Large voids are connected with smaller voids; this indicates that the fracture 

of the HAZ is also controlled by void nucleation, growth and void coalescence during 

deformation. The marked region in the brittle region can be found in Fig. 3.34(f) and the 

enlarge image of the marked region in Fig. 3.34(f) can be found in Fig. 3.34(g). 

 

 

Fig. 3.33: Overview of fracture surface of a C(T)-HAZ. 
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(a)  (b)  

(c)  (d)  

(e)  (f)   

(g)  

Fig. 3.34: Fracture surface of S355 HAZ (a) marked region 1 in the fatigue region, (b) 

enlarged image of marked region 1 in figure (a), (c) marked region 2 in stretched zone 
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region, (d) marked region 3 in stable crack growth region, (e) enlarged image of marked 

region in figure (d), (f) image of marked region 4 in brittle fracture region and (g) enlarged 

image of marked region 4 in picture (f). 

 

3.5 Summary and conclusions 

Experimental investigations were performed on the S355 EBW joints. Based on chemical 

composition of the S355 base material, the volume fraction of non-metallic inclusions is 

obtained from Franklin’s formula (0.7×10-3) firstly. The dimensions of different weld regions 

are defined by the hardness test across the welded joint. This hardness profile provides the 

dimensions of different weld regions in the finite element model. Optical microscopy 

investigations were performed on different weld regions. The volume fraction of non-

metallic inclusions and the mean distance between neighboring inclusions for the BM, the 

FZ and the HAZ are defined. After surface etching, the microstructures of different weld 

regions are obtained in which the BM is comprised of Ferrite and Pearlite, while the FZ is 

comprised of acicular martensite structures and the HAZ is the transitional area between 

the FZ and the BM. Smooth round specimens extracted from the BM and flat specimens 

from the BM, the FZ and the HAZ are tensile tested and the respective stress-strain curves 

are used as model input in the following chapters. Notched round specimens from the BM 

and from the HAZ are tensile tested. The tensile results are shown in the form of F-∆L- and 

F-∆D-curves. The experimental F-∆D-curves are used for later numerical calibration of the 

Rousselier parameters and the GTN parameters. Fracture toughness tests of S355 electron 

beam welded joints were performed with compact tension (C(T) with 20% side groove) 

specimens. C(T)-BM, C(T)-FZ and C(T)-HAZ specimens were tensile tested and the results 

are shown in the form of F-COD- and fracture resistance JR-curves. Fracture surface 

analyses of C(T)-specimens were made on the mentioned C(T)-specimens. Both C(T)-BM 

and C(T)-HAZ show typical ductile fracture behavior with large stable crack growth regions 

are obtained. C(T)-FZ specimen ruptures suddenly before stable crack propagation and 

shows a more brittle fracture behavior. The damage models (Rousselier model and GTN 

model) which describe the evolution of void initiation, growth and coalescence are adopted 

to investigate the crack propagation of C(T)-BM and C(T)-HAZ in chapter 4 and chapter 5. 

The cohesive zone model will be used to describe the ductile fracture behavior of C(T)-BM 

and C(T)-HAZ together with quasi-brittle fracture behavior of C(T)-FZ in chapter 6. 
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4. The Rousselier model 

 

In the following chapter, the Rousselier model is applied to study numerically the crack 

propagation in S355 electron beam welded joints. As explained in chapter 3, crack 

propagation in C(T)-specimens (C(T)25 with 20% side groove) with different initial crack 

positions, i.e., the initial crack located in the BM, in the center of the FZ or at the interface 

between the FZ and the HAZ were tested. As the FZ shows less ductile or some brittle 

behaviour, the Rousselier model is used to investigate the homogenous BM and the 

inhomogeneous welded joint only. In order to identify the influence of the Rousselier 

parameters on the fracture behavior of S355 additionally, parametric studies are performed 

for the notched round specimen and for the C(T)-specimens. After the calibration of the 

Rousselier parameters on the notched round specimen, the same parameter set is used to 

fit the crack propagation in C(T)-specimens. The numerical simulation results are compared 

with the experimental ones in terms of the F-COD- and JR-curves. 

 

4.1 Parameter study using the Rousselier model 

The general equation of the yield surface for the Rousselier model is as follows:  

 Φ = 5_` m� n Dfσ
 exp = 5Z5oe m�fD @ Repf = 0                         (4.1) 

 

where σ�	 is the von Mises equivalent stress, σ� is the mean (hydrostatic) stress, f is the 

void volume fraction (initial value f�), D is material constant (D=2, see [Rousselier, 1987]), σ
 is a material dependent parameter, p is the cumulated plastic strain and R(p) is the true 

stress-true plastic strain curve of the material. From the previous explanations in chapter 2, f� and σ
 are Rousselier parameters to be adjusted. The numerical parameter (lc) which 

stands for the average distance between neighboring particles should be calibrated before 

the application. 

 

For ductile fracture, within the framework of damage models, it is assumed that a crack 

propagates from void to void. This can be simulated by the finite element model that a crack 
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propagates from integration point to integration point. As square finite elements with 4 

integration points are used for the calculation, the main distance between voids (lc) is equal 

to half of the element size (2* lc). Based on the experimental investigation summarized in 

chapter 3.2 and the information from literature [Schmauder et al., 2002], some typical 

material parameters are used for the parameter study, which is shown in table 4.1. The 

method is to change one parameter at one time while keeping the rest of the parameters 

fixed during the simulation. In this section, the parameter study will show how the 

Rousselier parameters influence the simulation results. The influences of parameters on the 

force vs. cross section reduction curves of notched round specimens, on the F-COD- and 

JR-curves of C(T)-specimens are shown in the following. 

 

 Table 4.1: Basic parameters used in the parameter study of the Rousselier model 

f� f� σ
 lc 

0.001 0.05 445 MPa 0.05 mm 

 

4.1.1 Influence of ¬ 

 

The initial void volume fraction f� is taken as the volume fraction of all possible inclusions. 

For steel, f� depends on the volume fraction of non-metallic inclusions, like sulphides and 

oxides, as explained by Seidenfuss [Seidenfuss, 1992] and Schmauder [Schmauder et al., 

2002]. For the notched round specimen, as the geometry and loading are axisymmetric and 

symmetric with respect to the cross section, only one quarter of the structure was used for 

the modeling and isoparametric 8 node quadratic elements (suitable for modeling the 

complicated geometry, e.g., notched round specimen and C(T)-specimen) with reduced 

integration points are chosen. The finite element mesh of the notched round specimen and 

the detailed mesh can be found in Fig. 4.1. As can be seen in Fig. 4.2, the f� -values 

influence the sudden drop positions of the F-∆D-curves of notched round specimens. When 

the material is under external deformation, higher f�-values let the material deform more 

easily and results in an earlier void coalescence stage when micro cracks emerge on the 

surface of the material. Higher f� let the final fracture happen earlier while the slope of the 

curves after the final fracture point is not affected by the f�-values. In Fig. 4.3, higher f�-

values mean the material contains more voids which can more easily coalesce microcracks 

during material deformation, results in lower forces for the F-COD-curve of the C(T)-

specimens. Although the J-value at the initial crack stage is not affected much by the f�-
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values, f�-values result in a significant influence on the slope of the fracture resistance JR-

curve. A higher f�-value stands for that less energy is needed for fracture, resulting in a 

more flat JR-curve, as shown in Fig. 4.4. 

     (a) (b)  
 
Fig. 4.1: (a) Axisymmetric finite element mesh and boundary conditions of the notched 

round specimen and (b) detailed mesh. 
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Fig. 4.2: Influence of f�  on the F-∆D-curve of notched round specimens extracted from 

S355 base material when f�=0.05, σ
 =445 MPa and lc=0.05 mm. 
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Fig. 4.3: Influence of f�  on the F-COD-curve of a compact tension (C(T)) specimen 

extracted from S355 base material when f�=0.05, σ
 =445 MPa and lc=0.05 mm.  

 

 
Fig. 4.4: Influence of f� on the JR-curve of a compact tension (C(T)) specimen extracted 

from S355 base material when f�=0.05, σ
 =445 MPa and lc=0.05 mm. 

 

4.1.2 Influence of ¬® 

 

The critical void volume fraction is the volume fraction when the material loses its stress 

carrying ability completely. It is not a parameter of the Rousselier model but a numerical 

parameter which helps to accelerate the void growth and overall damage of the material. A 

lower f�-value means the damage of the material happens earlier, resulting in a steeper 

slope after the drop point, as shown in Fig. 4.5. 
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Fig. 4.5: Influence of f� on the F-∆D-curve of notched round specimens extracted from S355 

base material when f�=0.001, σ
 =445 MPa and lc=0.05 mm. 

 

4.1.3 Influence of ¯° 

 

Here, σ
 is the material constant parameter as explained by Rousselier [Roussselier, 1987; 

Rousselier, 2001]. The first approach for σ
 is the value of  
!" σ�  when the final fracture 

happens for the smooth round specimen. For S355, the first estimation for σ
 is 355 MPa 

which is estimated according to σ� shown in table 3.2. However, this is an underestimated 

value which is lower than the real one. In this chapter, according to the investigations on 

Rousselier model performed at MPA [Seidenfuss, 1992; Schmauder, 2002] and the 

suggestions of Rousselier [Rousselier, 2001], for most of the so far investigated steels, σ
=445 MPa is found to be a reasonable value. Parameter studies are performed with 

different values (around ±10%) around σ
=445 MPa. As shown in Fig. 4.6, σ
 has a strong 

influence on F-∆D-curve of notched round specimen; however the slope after the fracture 

point of the F-∆D-curve is not affected. A higher σ
-value results in later fracture stage. For 

C(T)-specimen, higher σ
 results in a higher force of the F-COD-curve, as shown in Fig. 4.7. 

Although the J-value at the initial crack stage is not much affected by the σ
-value, a higher σ
-value results in a more significant influence on the slope of the fracture resistance JR-

curve. Higher σ
-values result in a steeper JR-curve, as shown in Fig. 4.8. According to the 

discussion of Rousselier [Rousselier, 1987], σ
 is a parameter translating the resistance of 

material to the growth and coalescence of voids. Besides that, σ
 has a close relation with 

the flow stress of the material. Higher σ
 mean the material reaches the void coalescence 

moment at a later stage, resulting in a later fracture position on the F-∆D-curve for notched 
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specimens and a higher F-COD-curve together with steeper JR-curves for the C(T)-

specimen.  
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Fig. 4.6: Influence of σ
 on the F-∆D-curve of notched round specimens extracted from 

S355 base material when f�=0.001 and f�=0.05 and lc=0.05 mm. 

 

  
Fig. 4.7: Influence of σ
 on F-COD-curves of compact tension (C(T)) specimen extracted 

from S355 base material when f�=0.001 and f�=0.05 and lc=0.05 mm. 
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Fig. 4.8: Influence of σ
 on fracture resistance curves of compact tension (C(T)) specimen 

extracted from S355 base material when f�=0.001 and f�=0.05, lc=0.05 mm. 

 

4.1.4 Influence of lc 

 

The lc-value is the average distance between voids (neighboring non-metallic inclusions). In 

the 2D finite element model, square finite elements with 4 integration points are used for the 

calculation; the lc-value is equal to half of the element size. Based on the optical 

microscope pictures (lc=0.1 mm for S355 BM), typical lc-values are used for the parameter 

study. As can be found in Fig. 4.9, the lc-value does not influence the fracture position on 

the F-∆D-curve for notched round specimens but influences the slope of the curve after the 

drop point. Higher lc-values lead to flatter curves after fracture of the notched round 

specimen because it is more difficult to damage larger elements which stand for longer 

distance between the neighboring particles in the microstructure. A longer particle distance 

stands for a higher lc-value, means more energy is needed to drive the crack propagation 

from one particle to the other. Higher lc-values lead to a higher force when the crack 

initiation happens and higher forces of the F-COD-curve and steeper JR-curves, as shown 

in Fig. 4.10 and Fig. 4.11, respectively. This is because more force and energy is required 

to damage larger elements which stand for more material.  
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Fig. 4.9: Influence of lc on the F-∆D-curve of notched round specimens extracted from S355 

base material when f�=0.001, f�=0.05 and σ
=445 MPa. 
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Fig. 4.10: Influence of lc on F-COD-curve of compact tension (C(T)) specimens extracted 

from S355 base material when f�=0.001, f�=0.05 and σ
=445 MPa. 

 

 

Fig. 4.11: Influence of lc on fracture resistance curves of compact tension (C(T)) specimens 

extracted from S355 base material when f�=0.001, f�=0.05 and σ
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The influences of f�, f�, σ
 and lc on the tensile test results of notched round specimens and 

the compact tension (C(T)) specimens are summarized in Fig. 4.12. For notched round 

specimens, higher f� -values or lower σ
 -values lead to earlier breakpoint of a rapid 

decrease of force of F-∆D-curves. After the breakpoint of rapid decrease of force, a steeper 

slop of the F-∆D-curve is obtained when lower  f� and smaller lc are used in the Rousselier 

model. For C(T)-specimens, the f�- and σ
-values does not influence the force of the F-

COD and the corresponding numerical J-value when the crack initiation happens, as shown 

in Fig. 4.12(c) and Fig. 4.12(e). However, higher forces for the F-COD-curve and higher Ji-

values are obtained when lower f�-values or larger lc-values are used, as displayed in Fig. 

4.12(d) and Fig. 4.12(f). After the crack initiation, higher force of the F-COD-curve and 

steeper JR-curves are obtained when lower f�-values or larger lc and σ
-values are used. In 

the next subchapter, the experiences obtained in the parameter study will be used for the 

numerical calibration of the Rousselier parameters.  

 

(a)  (b)  

 

 (c)  (d)  
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(e) (f)  

 

Fig. 4.12: Schematic influence of Rousselier parameters f�, σ
, and lc on the F-∆D-curves of 

the notched specimens and on the F-COD- and JR-curves of C(T)-specimens extracted 

from S355 base material. 

 

4.2 Crack propagation in the homogeneous base material 

From previous explanations, σ
=445 MPa is adopted for S355 BM and f�=0.05 is adopted 

for all the simulations. The initial void volume fraction f� and the average distance between 

voids lc are the Rousselier model parameters to be fixed. These Rousselier parameters can 

be obtained from the optical microscope pictures. From the optical microscope pictures of 

the BM and the HAZ, see Fig. 3.1, the voids are not equally distributed but localized at 

some regions. Before adopted in the Rousselier model directly, these experimental values 

should be calibrated numerically. For the BM, numerical calibrations are performed based 

on force vs. diametral reduction curves of notched round specimens. Based on the 

metallographic investigations (lc=0.1 mm), two additional lc-values (lc=0.07 mm and lc=0.05 

mm) were used for the calibration of f�. For notched round specimens with 4 mm notch 

radius, good agreement can be obtained when f� is between 0.001-0.0012 for lc=0.1 mm, 

see Fig. 4.13(a). Good agreement can also be achieved when f� is between 0.0008-0.001 

for lc=0.07 mm and when f� is between 0.0008-0.001 for lc=0.05 mm, separately, see Figs. 

4.13(b)-(c). The comparisons between the experimental and numerical force vs. elongation 

curves of the notched round specimens extracted from the BM are shown in Fig. 4.14(a)-(c). 

It is confirmed that the best agreement can be obtained when f is around 0.001 with lc=0.1 

mm, lc=0.07 mm and lc=0.05 mm, separately. These comparisons show that f�=0.001 is a 

good numerical value for all the calibrations. This numerical f�-value is very close to the 

experimental value (f�=0.0009), showing that if the numerical calibration of the Rousselier 

Numerical Ji-value Numerical Ji-value 
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parameter is not available the correct f� -value can be inversely obtained from the 

experimental investigations.  

 

(a)    

(b)  

(c)  

Fig. 4.13: Comparison of experimental and numerical force vs. cross section reduction 

curves when (a) lc=0.1 mm, (b) lc=0.07 mm, and (c) lc=0.05 mm for notched round 

specimens extracted from the BM. 
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(a)  

(b)  

(c)  

Fig. 4.14: Comparison of experimental and numerical force vs. elongation curves when (a) 

lc=0.1 mm, (b) lc=0.07 mm, and (c) lc=0.05 mm for notched round specimens extracted from 

the BM. 
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specimens extracted from the BM, because the structure shows symmetry with respect to 

the crack plane, only half of the C(T)-specimen is modeled, loading is defined on the 

loading point by external displacements, the finite element mesh and boundary conditions 

are shown in Fig. 4.15. Fig. 4.16 shows the detailed mesh around the initial crack tip. The 

element size around the initial crack tip is defined by the lc-value. Fig. 4.17 shows how the 

predicted F-COD-curves of C(T)-specimens varied with different f�-values when choosing 

lc=0.1 mm, lc=0.07 mm and lc=0.05 mm, separately. For all the simulation results in Fig. 

4.17(a), the Rousselier model predicts too high forces at the crack initiation stage, showing 

that the lc-value obtained from experiments is too high for the numerical simulation. When 

lc=0.07 mm is chosen for the calculation, the predicted forces of the F-COD-curves at crack 

initiation and the F-COD-curves after crack initiation are still higher than the experimental 

one, showing that lc=0.07 mm is still not appropriate. When lc=0.05 mm was chosen for the 

calculation, the Rousselier model can provide good predictions when f� is varied, as shown 

in Fig. 4.17(c). The comparison between the experimental and numerical fracture 

resistance curves when changing the f�-values for lc=0.1 mm, lc=0.07 mm and lc=0.05 mm 

can be found in Fig. 4.18(a)-(c). It seems that when lc=0.1 mm and lc=0.07 mm, the 

Rousselier model predicts a too high Ji-value at crack initiation and a higher JR-curve after 

the first crack compared to the experimental value which is due to higher predicted F-COD-

curves as shown in Figs. 4.18(a)-(b). A good match of the numerical J-value when the first 

element is damaged can be obtained when lc=0.05 mm is chosen for the calculation as 

shown in Fig. 4.18(c). 

 

The best fitted F-COD- and JR-curves for C(T)-specimens obtained from the BM compared 

to the experiment can be found in Fig. 4.19. In Fig. 4.19(a), the calculated elastic plastic 

material behaviour provides good agreement to the experiment until the crack initiates. 

However, as no damage is considered during the deformation, the elastic plastic behaviour 

overestimates the force after the crack appears. The Rousselier model can reliably predict 

F-COD-curves of C(T)-specimens with the initial crack located in the BM when lc=0.05 mm 

and f�=0.001. It seems that the experimental lc-value (lc=0.1 mm) is not a good one for the 

Rousselier model to predict the crack propagation of C(T)-BM. Thus, a smaller finite 

element mesh (lc=0.05 mm) is chosen for the Rousselier model. The reason is because in 

reality, the crack prefers to propagate from one particle to the nearest neighboring particle 

in particle-localized regions where the distance between these particles is smaller than the 

average particle distance.   
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Fig. 4.15: Finite element mesh and boundary conditions of the C(T)-specimen. 

 

 
     

Fig. 4.16: Detailed 2D finite element mesh around the initial crack tip position. 
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 (b)  

 

 (c)  

Fig. 4.17: Comparison of experimental and numerical force vs. Crack Opening 

Displacement (COD) curves when (a) lc=0.1 mm, (b) lc=0.07 mm, and (c) lc=0.05 mm. 
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 (b)  

 (c)  

Fig. 4.18: Comparison of experimental and numerical crack resistance JR-curves when (a) 

lc=0.1 mm, (b) lc=0.07 mm, and (c) lc=0.05 mm. 
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(b)  

Fig. 4.19: Comparison of experimental and numerical (a) force vs. Crack Opening 

Displacement (COD) curves and (b) fracture resistance curves for C(T)-specimen with the 

initial crack located in the BM (lc=0.05 mm). 

 

During the calculation of the Rousselier model, when one Rousselier element is considered 

as damaged, the symmetry boundary condition of this element is released for later 

calculation steps, as shown in Fig. 4.20. The von Mises equivalent stress distribution of the 

C(T)-specimen at the end of the calculation is given in Fig. 4.20. The stress concentration 

area is mostly observed in the layer of Rousselier elements which is ahead of the current 

crack tip. The virtual crack propagation at the end of the calculation is depicted in Fig. 4.21. 

The failure indicator of the Rousselier model UMAT in ABAQUS (SDV3) indicates the failure 

of the element when the current volume fraction f ≥ f� =0.05. When the failure indicator 

SDV3=1, this means the element is damaged. For 8-noded quadratic elements with 

reduced integration points (CPE8R), when the current f-value in two Gauss points of the 

Rousselier element reaches the f� -value, the elements are assumed losing their stress 

carrying ability completely. 
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Fig. 4.20: The Von Mises equivalent stress distribution at the end of calculation time 

(COD=2.81 mm in F-COD-curve, ∆a =2.45 mm in JR-curve). 

 

 
Fig. 4.21: Crack propagation for a C(T)-BM specimen at the end of the calculation (SDV3 is 

the user defined failure indicator of Rousselier model in ABAQUS, when f ≥ f�, SDV3=1). 

 

4.3 Crack propagation in an inhomogeneous region  

In this section, the Rousselier model is used to study the crack propagation in 

inhomogeneous welded joints. The Rousselier parameters are calibrated on the notched 

round specimen extracted from the HAZ firstly. Then the same Rousselier parameter set is 

adopted to investigate the fracture behavior of C(T)-HAZ. As the experimental lc-value for 

the HAZ (lc=0.12 mm) is higher than that of the BM (lc=0.1 mm), a higher numerical lc-value 

is used in the calculation. A notched round specimen with 4 mm notch radius is used for the 

calibration of Rousselier parameters and the same model as shown in Fig. 4.1 is used. For 

the notched round specimen, the experimental F-∆D-curve is compared with the numerical 

calculations when f� is between 0.0014-0.0016 when lc=0.1 mm, as shown in Fig. 4.22.  
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Fig. 4.22: Comparison of experimental and numerical force vs. cross section reduction (F-

∆D) curves for notched round specimens extracted from the HAZ. 

 

Good matches can be obtained when f�=0.0014-0.0015. The same lc-value is adopted to 

investigate the crack propagation of C(T)-HAZ. For the C(T)-HAZ, the elastic plastic 

material behaviour of the welded joints predict good F-COD-curve in comparison to the 

experiments until the crack initiates. As the high degree of plane-strain constraint achieved 

in the side groove specimen is obvious [Larsen et al., 1993], a straight crack front was 

observed in the C(T)-HAZ where the crack only propagates in the HAZ. In the finite element 

simulations, the mechanical properties of the FZ and the BM are defined as non-damaging 

elastic plastic. The HAZ is divided into three tiny layer regions which can reflect different 

material behaviour, as shown in Fig. 4.23. The stress-strain curves for the HAZ (HAZ1, 2, 3) 

are obtained from flat specimens extracted from different regions of the HAZ. The true 

stress vs. plastic strain curves of HAZ1-HAZ3 (Specimen HAZ1 is obtained from the 

position of 2.5 mm from the center of the FZ, Specimen HAZ2 is 3.5 mm from the center of 

the FZ, HAZ3 is 4.5 mm from the center of the FZ) used in the Rousselier model are shown 

in Fig. 4.24. Good agreement can be found between the numerical and the experimental F-

COD-curves and crack resistance JR-curves when the lc-value is 0.1 mm and f� equals to 

0.0015 (close to the experimental value f�=0.0016), as shown in Fig. 4.25. This shows that 

the Rousselier model can predict the crack propagation of inhomogeneous materials well. 

After calculation, the von Mises equivalent stress distribution of the C(T)-HAZ specimen is 

derived and can be found in Fig. 4.26.  
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Fig. 4.23: Detailed finite element mesh used for the C(T)-specimens with the initial crack 

located in the HAZ which is situated at the interface between the FZ and the HAZ. 

 

 
Fig. 4.24: True stress vs. plastic strain for different weld regions.   
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(b)  

Fig. 4.25: Comparison of the experimental and numerical (a) Force vs. Crack Opening 

Displacement (COD) curves and (b) fracture resistance curves for C(T)-HAZ specimens 

(lc=0.1 mm).  

 

 
Fig. 4.26: The von Misses equivalent stress distribution in ABAQUS which was obtained 

from the Rousselier model calculation (COD=2.45 mm in F-COD-curve, ∆a =3.6 mm in JR-

curve). 

 

The stress carrying ability of one element decreases dramatically when it is considered as 

‘damaged’. The damaged elements are marked in red color and the virtual crack 

propagation in the C(T)-specimen can be seen in Fig. 4.27. In order to avoid convergence 

problem emerged during the application of the Rousselier model on C(T)-HAZ situation, 

linear elements with full integration points (CPE4) are adopted. When the current f-value in 
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Martensite). A longer calculation time is needed to damage all four Gauss points of the 

Rousselier element than to damage two Gauss points of the Rousselier element defined in 

the BM. All Rousselier parameters used for different structures are summarized in table 4.2. 

For notched round specimens extracted from the BM, three different lc-values (lc=0.05 mm, 

lc=0.07 mm, lc=0.1 mm with variation of f�  between 0.0006-0.0013) are used for the 

calibration of the Rousselier parameters. The same Rousselier parameter set as obtained 

from the notched round specimens is adopted to investigate the fracture behavior of the 

C(T)-BM. The Rousselier parameters for the HAZ are also calibrated on the notched 

specimens extracted from the HAZ. Good agreement can be obtained when lc=0.1 mm, f�=0.0015 are adopted for the C(T)-HAZ. 

 

 
 

Fig. 4.27: Crack propagation in the C(T)-HAZ obtained from the Rousselier model (SDV3 is 

the user defined failure indicator of the Rousselier model in ABAQUS, when f ≥ fc, SDV3=1). 

 

Table 4.2: The Rousselier parameters of different calculations and structures. 
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4.4 Discussion and Conclusions  

Crack propagation was studied for S355 electron beam welded joints using the Rousselier 

model. C(T)-specimens with the initial crack located at different positions were investigated. 

In order to define the influence of the Rousselier parameters, a parameter study was 

performed on notched round specimens and on C(T)-specimens. As what can be found in 

Fig. 4.2, for a notched round specimen, a lower initial void volume fraction f�-value leads to 

a later drop point of the F-∆D-curve while the slope of the curves after the final fracture 

point is not affected by the f�-value. For C(T)-specimens, a lower f�-value results in higher 

forces of the F-COD-curve which can be found in Fig. 4.3. In Fig. 4.4, f�-value results in a 

significant influence of the slope of the fracture resistance JR-curves. Lower f�-values result 

in a steeper JR-curve because crack coalescence can be reached later with lower f�-values, 

which means more energy is required for crack propagation. As found in Fig. 4.6, a higher 

Rousselier parameter σ
 lets to a later breakpoint of rapid decrease of the force. Higher σ
-

values result in higher forces of the F-COD-curve and a higher J-value, which is shown in 

Fig. 4.7. The lc-value is typically chosen as the average distance between particles. A 

higher lc-value results in a flatter slope after the fracture stage of the notched round 

specimens, which is shown in Fig. 4.8. As presented in Fig. 4.9 and Fig. 4.10, a higher lc-

value results in higher F-COD-curves and lead to a steeper JR-curve, this is because a 

higher lc-value stands for a larger element size, requiring more energy for damage. 

Knowing how different Rousselier parameters influencing the calculation results (F-∆D-

curve for notched round specimen and F-COD-curve for the C(T)-specimen) is beneficial to 

find the right parameter set in the later calculation work.  

 

As observed in Fig. 3.1, the voids cluster in some regions. Before applying the experimental 

data as the Rousselier model input directly, numerical calibration was performed on 

notched round specimens in order to define the ‘true’ Rousselier parameters. As depicted in 

Fig. 4.13, when f�=0.001, good agreement can be obtained when lc=0.1 mm, lc=0.07 mm 

and lc=0.05 mm, separately. The calibrated f�-value is very close to the experimental one 

(f�=0.0009), showing the metallographic investigation on f�  is reliable, but not for the lc-

value (lc=0.1 mm for S355 BM). This is because of particles localizing at some regions, as 

shown in Fig. 3.1. The same f�-values with different lc-values were used to predict crack 

propagation for C(T)-specimens extracted from the BM, as shown in Fig. 4.17. Good 

agreement can be obtained in the form of the force vs. crack opening displacement and 
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fracture resistance JR-curves, when lc=0.05 mm and f�=0.001. This confirms the Rousselier 

model can predict the crack propagation of the homogeneous base material well.  

 

The Rousslier parameters for the HAZ are calibrated on notched round specimens from the 

HAZ. Because the optical microscopy picture obtained from the HAZ is higher than that of 

the BM, the value lc=0.1 mm is applied for the calculation. Experimental F-∆D-curves are 

compared with numerical ones when f� is between 0.0014-0.0016 for lc=0.1 mm (Fig. 4.22). 

Good agreement is obtained when f�=0.0015. The same Rousselier parameter set (lc=0.1, f� =0.0015) is used to investigate the crack propagation of the C(T)-HAZ. Local mechanical 

properties obtained from flat specimens extracted from these regions were used as model 

input. The HAZ is a transition zone; there exists big scatter of the material behaviour within 

this region, see Fig. 3.13. For this reason, the HAZ is divided into three tiny regions which 

can reflect different material behaviour as shown in Fig. 4.23. Good agreement can also be 

achieved when lc=0.1 mm and f�=0.0015, which is very close to the experimental values 

(lc=0.12 mm, f�=0.0016). All in all, good simulation results for C(T)-specimens with the initial 

crack located in the BM and HAZ confirm that the Rousselier model can predict crack 

propagation of homogenous BM and inhomogeneous welded joints well.  

 

 

  



 

 

77 

5. The Gurson-Tvergaard-Needleman (GTN) model 

 

In the following chapter, the GTN model is applied to study the crack propagation in S355 

welded joints. As the FZ shows quasi-brittle behavior, the GTN model which is normally 

used describing the void initiation, growth and coalescence evolution in a ductile material is 

used to investigate the homogenous BM and the inhomogeneous welded joints only. In 

order to identify the influence of GTN parameters on the fracture behavior of test specimens, 

a parameter study is performed on notched round specimens and on C(T)-specimens 

(C(T)25 with 20% side groove). After the calibration of the GTN parameters on the notched 

round specimen, the same parameter set is used to predict the crack propagation in C(T)-

specimens. Numerical simulation results are compared with the experimental ones in terms 

of F-COD- and JR-curves. 

 

5.1 Parameter study using the GTN model 

From the explanations in chapter 2, it can be derived that there exist nine GTN parameters 

to be defined before the GTN damage model can be applied in the simulation. As discussed 

by Steglich [Steglich, 2004], the parameters (ε% , f% , sn) are used to describe the void 

nucleation, the parameters (f�, f�, f�) are used to describe the procedure of damage from 

void initiation to void coalescence until final failure and the parameters (q , q! , q" ) are 

model parameters which were introduced by Tvergaard [Tvergaard, 1981; Tvergaard, 

1982b] to improve the accuracy of predictions of the Gurson model. As described by 

Steglich, the initial void volume fraction f� interacts with the critical void volume fraction f� 

which is the volume fraction when void coalescence happens and fn which stands for the 

volume fraction of void nucleating particles. It is difficult to judge which parameter plays the 

major role with respect to the simulation results. Thus, the combined influence of these 

parameters is investigated in this chapter. Moreover, additional parameter studies have 

been undertaken and are described below. The q , q! and q"values are chosen as 1.5, 1 

and 2.25 (for most steels), respectively, which were suggested by Tvergaard [Tvergaard, 

1981; Tvergaard, 1982b] and later discussed by Perrin for the case of perfect plasticity 

[Perrin et al., 1990]. According to the previous study on S355 laser welded steel joints 

[Nonn, 2008], the micromechanical modeling of weldments with the GTN model [Chhibber, 
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2011] and the previous investigation on S355 electron beam welded joints with the GTN 

model [Tu, 2012], the material parameter set shown in table 5.1 is used for the parameter 

study. The applied method is to change one parameter at one time while keeping the rest of 

the parameters constant during the simulation. In this section, the parameter study will 

show how the GTN parameters influence the simulation results. The influence of 

parameters on the fracture position and the final slope of the force vs. cross section 

reduction curves of notched round specimens and the F-COD and the slope of the JR-

curves of C(T)-specimens are discussed in the following. 

 

Table 5.1: Parameters used in the parameter study with the GTN model 

f� f� f% f� ε% s% q  q! q" lc 

0.0001 0.05 0.01 0.2 0.2 0.1 1.5 1 2.25 0.05 mm 

 

5.1.1 Influence of ¬ 

 

The initial void volume fraction f� is taken as the initial volume fraction of main inclusions. 

As the void nucleation is considered in steel S355, void nucleation weakens the influence of 

void initiation, making the void initiation in the GTN model is not as important as that of the 

Rousselier model. Therefore, the f�-value used in the GTN model is less than the f�-value 

adopted in the Rousselier model. Smaller f�-values than the values used in chapter 4.1.1 

are used for the parameter study. As shown in Fig. 5.1, higher f�-values result in an earlier 

drop point of the F-∆D-curve of the notched round specimens while the slope of the curve 

after the final fracture point is not affected. This is because higher f�  provide that the f-value reaches the f�-values at earlier deformation stages. For the C(T)-specimen, a higher f� results in an earlier force decrease of the F-COD-curve which is shown in Fig. 5.2. In Fig. 

5.3, the f�-value does not influence the numerical Ji-value for the crack initiation significantly. 

This is because a similar energy is needed to drive the first crack under a different f�-value 

(f� is tiny for most steels). However, a higher f�-values results in a lower JR-curve and a 

significant decrease of the slope of the fracture resistance JR-curve. Higher f�-values result 

in a more flat JR-curve because crack coalescence can be reached earlier with higher f�-

values, which means less energy is required for crack propagation.  
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Fig. 5.1: Influence of f�  on the F-∆D-curve of notched round specimens extracted from 

S355 base material when f�=0.05, f% =0.01, f�=0.2, ɛ%=0.2 and lc=0.05 mm. 

 

 
Fig. 5.2: Influence of f�  on the F-COD-curve of a compact tension (C(T)) specimen 

extracted from S355 base material when f�=0.05, f%=0.01, f�=0.2, ɛ%=0.2 and lc=0.05 mm. 

 

 
Fig. 5.3: Influence of f� on the JR-curve of a compact tension (C(T)) specimen extracted 

from S355 base material when f�=0.05, f%=0.01, f�=0.2, ɛ%=0.2 and lc=0.05 mm. 
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5.1.2 Influence of ¬® 

 

The f� -value defined in the GTN model is the volume fraction when void coalescence 

occurs. The f�  adopted in the GTN model is different from the f� -value defined in the 

Rousselier model (the f�-value in the Rousselier model stands for the critical void volume 

fraction when the material loses its stress carrying ability completely). In literatures [Nègre 

et al., 2003, 2004; Springmann et al., 2005], f�-values are found between 0.01-0.05.  As can 

be seen in Fig. 5.4, the f� -value influences the fracture position of the F-∆D-curves of 

notched round specimens. Higher f� -values let the final fracture happen later while the 

slopes of the curves after the final fracture point are not affected. This is because for 

notched round specimens, the material starts to lose its stress carrying ability later when 

void coalescence f� increases. Higher f�-values let to a higher force of the F-COD-curve 

and higher numerical Ji-value when first crack in the simulation happens together with 

steeper JR-curves of the C(T)-specimen, as shown in Fig. 5.5 and Fig. 5.6, respectively. A 

higher f�-value means the threshold for void coalescence is higher; higher force and more 

energy is required to drive every crack propagation, resulting in a higher force in the F-

COD-curve and a higher J-value in the JR-curves. That means the void is not as sensitive 

when higher f�-value is chosen, as shown in Fig. 5.5. When the f�-value varies between 

0.02-0.04, convergence problems happen during calculation, resulting in shorter crack 

propagation, as shown in Fig. 5.6.  
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Fig. 5.4: Influence of f� on the F-∆D-curve of notched round specimens extracted from S355 

base material when f�=0.0001, f%=0.01, f�=0.2, ɛ%=0.2 and lc=0.05 mm. 



The Gurson-Tvergaard-Needleman (GTN) model 81  

 

 

 

 
Fig. 5.5: Influence of f�  on the F-COD-curve of a compact tension (C(T)) specimen 

extracted from S355 base material when f�=0.0001, f%=0.01, f�=0.2, ɛ%=0.2 and lc=0.05 mm. 

 

 

Fig. 5.6: Influence of f� on the JR-curve of a compact tension (C(T)) specimen extracted 

from S355 base material when f�=0.0001, f%=0.01, f�=0.2, ɛ%=0.2 and lc=0.05 mm. 

 

5.1.3 Influence of ¬¬ 
 

The final void volume fraction f� is the volume fraction when the material loses its stress 

carrying ability completely. The f� -value plays the same role as that of critical volume 

fraction (f�) defined in the Rousselier model. In the GTN model, when the void coalescence 

value is reached, void growth will be accelerated until the void reaches the f�-value. A lower f�-value means the final fracture moment of the material happens earlier. As can be seen in 

Fig. 5.7, the f�-value has almost no influence on the breakpoint of rapid decrease of force of 

the F-∆D-curve obtained from notched round specimens. However, it influences the slope 
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of the curve after the drop point; a steeper slope can be obtained with a lower f�-value. That 

means the time interval between the f� and f� is shorter when a lower f�-value and a fixed f�-

value is adopted, resulting in a steeper slope for the F-∆D-curve. The f�-value does not 

influence the force of the F-COD-curve dramatically, which is presented in Fig. 5.8. 

Although a higher f�-value leads to a higher numerical Ji-value when the first element is 

damaged, the JR-curve after the first crack propagation is very similar; all JR-curves are 

parallel, as shown in Fig. 5.9. This is because after crack coalescence, a higher f�-value 

means more energy is needed to drive the final fracture, which results in a higher J-value. 

 

 
Fig. 5.7: Influence of f� on the F-∆D-curve of notched round specimens extracted from S355 

base material when f�=0.0001, f�=0.05, f%=0.01, ɛ%=0.2 and lc=0.05 mm. 

 

 
Fig. 5.8: Influence of ff on the F-COD-curve of a compact tension (C(T)) specimen extracted 

from S355 base material when f�=0.0001, f�=0.05, f%=0.01, ɛ%=0.2 and lc=0.05 mm. 
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Fig. 5.9: Influence of ff on the JR-curve of a compact tension (C(T)) specimen extracted from 

S355 base material when f�=0.0001, f�=0.05, f%=0.01, ɛ%=0.2 and lc=0.05 mm. 

 

5.1.4 Influence of ¬² 

 

The f% stands for the volume fraction when voids nucleate during the material deformation 

process. New voids nucleate from small particles or second phases at elevated strains ɛ%. 

During the material deformation process, more new voids let the material fail earlier. As 

shown in Fig. 5.10, the f%-value influences the sudden drop position of the F-∆D- curve of 

notched round specimens. Higher f%-values lead to earlier failure of the specimen while the 

slope of all the curves after the final fracture point is constant because with the appearance 

of new voids, the current void volume fraction can reach the f�-value faster. The f%-value 

does not influence the height of the F-COD-curve severely, as shown in Fig. 5.11. This is 

because the effect of f% on the F-COD-curve is interrelated with the effect of ɛ%. For the JR-

curve, the f%-value has almost no influence on the numerical Ji-value when the first element 

is damaged, all the JR-curves increase almost linearly after the first crack propagation, 

higher f%-values let to slightly lower J-values, which can be seen in Fig. 5.12. Numerical 

calculations stop earlier when ɛ%  is between 0.012-0.014, less crack propagations were 

observed because of earlier convergence happened in the simulation in comparison to the 

situation of f%=0.01. 
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Fig. 5.10: Influence of f% on the F-∆D-curve of notched round specimens extracted from 

S355 base material when f�=0.0001, f� =0.05, f�=0.2, ɛ%=0.2 and lc=0.05 mm. 
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Fig. 5.11: Influence of f%  on the F-COD-curve of a compact tension (C(T)) specimen 

extracted from S355 base material when f�=0.0001, f�=0.05, f�=0.2, ɛ%=0.2 and lc=0.05 mm. 
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Fig. 5.12: Influence of f% on the JR-curve of a compact tension (C(T)) specimen extracted 

from S355 base material when f�=0.0001, f�=0.05, f�=0.2, ɛ%=0.2 and lc=0.05 mm. 
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5.1.5 Influence of ɛ² 

 

The ɛ%-value is the mean strain when void nucleation happens. The influence of the ɛ%-

value is interrelated with the influence of f%. For the notched round specimen, as can be 

seen in Fig. 5.13, higher ɛ%-values result in a later fracture position of the F-∆D-curves, 

while the slope of the curve after fracture is the same. As depicted in Fig. 5.14, the ɛ%-value 

has a strong influence on the F-COD-curve, a higher ɛ% results in a higher F-COD-curve. 

The influence of ɛ% on the JR-curves can be found in Fig. 5.15. Although the ɛ%-value does 

not provide a large influence on the numerical Ji-value when the first crack appears, higher ɛ%-values result in a higher fracture resistance JR-curve. This is because higher ɛ% means 

void nucleation arises at higher local strains, thus more energy is needed to drive the crack, 

resulting in higher force and less COD of the F-COD-curve and a steeper JR-curve and less 

crack propagation for the C(T)-specimen. The value of ɛ% has an opposite influence on the 

tensile specimen compared to the influence of f%. 

 

 
Fig. 5.13: Influence of ɛ% on the F-∆D-curve of notched round specimens extracted from 

S355 base material when f�=0.0001, f�=0.05, f�=0.2, f%=0.01 and lc=0.05 mm. 
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Fig. 5.14: Influence of ɛ% on the F-COD-curve of a compact tension (C(T)) specimen 

extracted from S355 base material when f�=0.0001, f� =0.05, f�=0.2, f%=0.01 and lc=0.05 

mm. 

 

Fig. 5.15: Influence of ɛ% on the JR-curve of a compact tension (C(T)) specimen extracted 

from S355 base material when f�=0.0001, f�=0.05, f�=0.2, f%=0.01 and lc=0.05 mm.  
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5.18(c)-(d). The f�-,f%-, and ɛ%-values do not influence the numerical Ji-value when the first 

crack initiates, as shown in Fig. 5.18(a) and Fig. 5.18(c). However, higher f� or higher f� 
lead to higher numerical Ji-values from the calculation, as shown in Fig. 5.18(b) and Fig. 

5.18(d). This is because a higher f�-value stands for a higher threshold for void coalescence 

and a higher f�-value leads to an later final fracture moment of material happens, higher 

energy is required to drive the first crack. As discussed by Steglich [Steglich, 2004], for 

structure with thick thickness (e.g., standard C(T)-specimen), q!  is set equal to 1. The 

commonly suggested values for q =1.5 and q" =q !  [Tvergaard, 1992] are adopted here. 

When the standard deviation sn=0.1 is adopted [Tvergaard, 1981, 1982b, 1992; Steglich, 

2004], so only five GTN parameters are needed in the following calculations. In the next 

chapter, the GTN model parameters are calibrated on the notched round specimens and 

the same parameters set is used to predict the crack propagation in C(T)-specimens 

extracted from different weld regions.  

 

In comparison to the Rousselier model, the GTN model requires more model parameters (f�, f�, f%) controlling the damage evolution of void initiation, growth and coalescence. The initial 

void volume fraction f� (volume fraction of inclusions) correlates with void nucleation (f%) in 

the GTN model demonstrating the influence of the f� the GTN model is not as important as 

that of the Rousselier model. The f� -value used in the GTN model (volume fraction of 

inclusions) is smaller than the f�-value adopted in the Rousselier model (volume fraction of 

all inclusions). The f� in the Rousselier model stands for the critical void volume fraction 

when the material loses its stress carrying ability (the same function as the ff-value in the 

GTN model) where the f� -value adopted in the GTN model is void fraction when void 

coalescence happens. In the numerical simulation, the crack propagates from integration 

point to integration point in the square element (2D) for both the GTN model and the 

Rousselier model. When both the Rousselier and the GTN model are adopted to investigate 

the fracture behavior of the same material, the numerical lc-value is the same for both 

models.  
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(a)   (b)  

Fig. 5.16: Influence of GTN parameters f� , f� , f% , f� , ɛ%  on the Force vs. cross section 

reduction curves. 

 

Fig. 5.17: Influence of parameters f�, f�, ɛ% on the Force vs. Crack Opening Displacement 

(COD) curves. 

(a) (b)  

(c) (d)  

Fig. 5.18: Influence of parameters f�, f�, f%, f�, ɛ% on the fracture resistance curves. 
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5.2 Crack propagation in the homogeneous base material 

After the parameter study, the influence of the GTN parameters on the tensile test results of 

notched round specimens and compact tension specimens are investigated. According to 

the previous numerical study of the Rousselier model, lc-values of lc=0.05 mm for the BM 

and lc=0.1 mm for the HAZ are adopted for the calculation. The GTN parameters are 

calibrated on notched round specimens. As the consequence of the parameter study 

discussed in subchapter 5.1 and according to the information in the literature [Nonn et al., 

2008], the parameter set given in table 5.1 is adopted for the first numerical calibration. The 

parameter set given in table. 5.1 with varying f�-values are used for the further calibration. 

As shown in Fig. 5.19, the simulated F-∆D-curves are compared with the experimental ones 

when f�=0.05, f�=0.04 and f�=0.03, respectively. For the homogeneous BM, when f�=0.05 is 

chosen, good agreement can be achieved between the numerical and the experimental F-

COD-curves, which is shown in Fig. 5.20(a). However, the GTN model predicts much higher 

numerical Ji-value and J-values at the early stage of the JR-curve, as shown in Fig. 5.20(b). 

This shows that more energy is needed to damage a Rousselier element and the f�-value 

used is too high for the simulation according to influence of f� on the JR-curve shown in Fig. 

5.18(b). In order to obtain a reasonable JR-curve in comparison to the experimental data, 

lower fc values (f�=0.04, f�=0.03) with the other parameters kept the same (as shown in 

table 5.1) are used for the adjustment. When f� =0.04 is chosen, good agreement is 

achieved between the numerical and the experimental F-COD-curves when COD<1.3 mm, 

a lower force is obtained when COD>1.3 mm, as shown in Fig. 5.21(a). The GTN model 

predicts still higher Ji-values and J-values at the early stage of the JR-curve (∆a <1.0 mm), 

as shown in Fig. 5.21(b), depicting the current fc-value being still high for the simulation. As 

shown in Fig. 5.22(a), the numerical simulation provides good agreement in comparison 

with the experiments until the crack initiates when elastic plastic material behavior is 

adopted. When considering the influence of damage, the GTN model can fit Force vs. 

Crack Opening Displacement curves as well as fracture resistance curves well when f� is 

reduced to 0.03, which is shown in Fig. 5.22(b).  
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Fig. 5.19: Comparison of experimental and numerical Force vs. cross section reduction 

curves for notched round specimens extracted from the BM when f� =0.03, fc=0.04 and 

fc=0.05 is used. 
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Fig. 5.20: Comparison of experimental and numerical (a) Force vs. Crack Opening 

Displacement  (F-COD) curves, and (b) fracture resistance curves for C(T)-BM specimens 

(lc=0.05 mm, f�=0.05). 
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Fig. 5.21: Comparison of experimental and numerical (a) Force vs. Crack Opening 

Displacement  (F-COD) curves, and (b) fracture resistance curves for C(T)-BM specimens 

(lc=0.05 mm, f�=0.04). 
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Fig. 5.22: Comparison of experimental and numerical (a) Force vs. Crack Opening 

Displacement  (F-COD) curves, and (b) fracture resistance curves for C(T)-BM specimens 

(lc=0.05 mm, f�=0.03). 

 

The von Mises equivalent stress distributions of the C(T)-BM specimens obtained from the 

GTN calculation (when f�=0.03, the other GTN parameters is the same as table 5.1) at the 

end of the calculation (The moment of COD=2.33 mm in FCOD curve, ∆a =2.05 mm in JR-

curve) is shown in Fig. 5.23. When the element is considered as damaged, the stress 

carrying ability of the element decreases quickly. The damage elements near the boundary 

are marked in dark blue color, as shown in Fig. 5.23.  The virtual crack propagation is 

shown in Fig. 5.24. In Fig. 5.24, the user defined failure indicator of GTN model in ABAQUS 

(SDV6) indicates the damage of the element for the GTN model. When the current volume 

fraction �∗≥�³∗, the GTN elements are assumed totally damaged where the failure indicator 

reads the value SDV6=1.  
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Fig. 5.23: The von Mises equivalent stress distribution of C(T)-specimen extracted from BM 

at the end of the calculation (COD=2.33 mm in the F-COD-curve and ∆a =2.05 mm in JR-

curve).  

 

 

                              
Fig. 5.24: Crack propagation in C(T)-specimens extracted from the BM (SDV6 is the user 

defined failure indicator of GTN model in ABAQUS, elements are considered as damaged 

when SDV6=1). 

 

5.3 Crack propagation in an inhomogeneous material  

In this section, the GTN model is used to study the crack propagation in C(T) where the 

initial crack located in the HAZ region which is at the interface between the FZ and the HAZ 

(C(T)-HAZ). The value lc=0.1 mm is adopted in the calculations for the HAZ and is derived 

from the previous investigations of the Rousselier model. The GTN parameters are 

calibrated on the notched round specimen extracted from the HAZ, as shown in Fig. 5.25. 

Reasonably simulated F-∆D-curves are obtained when f�=0.013, f� =0.03, f%=0.01, f� =0.2 

and ɛ%=0.2. The same GTN parameter set is used to predict crack propagation of C(T)-HAZ. 
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In the finite element simulations, the mechanical properties of the FZ and the BM are now 

defined as non-damaging elastic-plastic because of the experimental observation where 

cracks propagate in the HAZ only. The HAZ is divided into three thin layer regions which 

can reflect different material behaviour, as already shown in Fig. 4.23. For the C(T)-HAZ, 

the elastic plastic material behaviour is also in good agreement with the experimental one 

until the crack initiates. However, as no damage is considered during the deformation, the 

elastic plastic behaviour overestimates the force after the crack appears. As shown in Fig. 

5.26(a), the GTN model simulates good F-COD-curves compared to the experimental data 

before COD=1.5 mm. After that, the predicted force is slightly higher that the experimental 

one, the maximum error is acceptable (around 8%). This can explain why the predicted JR-

curve is found to be slightly higher than the experimental curve, as displayed in Fig. 5.26(b). 

The GTN parameters for the HAZ are summarized in table 5.2. The von Mises equivalent 

stress distribution from the GTN calculation for the C(T)-HAZ specimen is shown in Fig. 

5.27. The von Mises stresses of the GTN elements (blue color) along the middle section of 

the whole C(T)-specimen are very small as they are considered damaged, as shown in Fig. 

5.27. The virtual crack propagation from a GTN calculation can be found in Fig. 5.28. As 

shown in Fig. 5.28, the crack propagates straightly in the HAZ, which coincides with the 

experimental observation.  
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Fig. 5.25: Comparison of experimental and numerical force vs. cross section reduction 

curves for notched round specimens extracted from the HAZ. 
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Fig. 5.26: Comparison of experimental and numerical (a) Force vs. Crack Opening 

Displacement (F-COD) curves, and (b) fracture resistance curves for C(T)-HAZ. 

 

 

Fig. 5.27: The von Mises equivalent stress distribution of C(T)-HAZ at the end of calculation 

(COD=2.33 mm in the F-COD-curve and ∆a =2.05 mm in the JR-curve).  
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Fig. 5.28: Crack propagation in C(T)-HAZ (SDV6 is the user defined failure indicator of GTN 

model in ABAQUS, when f ∗≥ fM∗ , SDV6=1). 

 

Table 5.2: The GTN parameters of different calculations and structures. 

 

Specimen shape Calculation type f� f� f% f� ɛ% sn q  q� lc 

Notched round 

specimen (BM), 

R=4 mm 

Axisymmetric 0.0001 0.03 0.01 0.2 0.2 0.1 1.5 1 0.05 mm 

 

C(T)-BM 

2D/plane strain 0.0001 0.03 0.01 0.2 0.2 0.1 1.5 1 0.05 mm 

Notched round 

specimen (HAZ), 

R=4 mm 

Axisymmetric 0.0013 0.03 0.01 0.2 0.2 0.1 1.5 1 0.1 mm 

 

C(T)-HAZ 

2D/plane strain 0.0013 0.03 0.01 0.2 0.2 0.1 1.5 1 0.1 mm 

 

5.4 Discussion and Conclusions 

Crack propagation was studied for the steel S355 EBW using the Gurson-Tvergaard-

Needleman (GTN) model. Two different C(T)-specimens with the initial crack located in the 

base material (BM) and in the HAZ situated at the interface between the fusion zone (FZ) 

and the heat affect zone (HAZ) were investigated. In order to define the influence of the 

GTN parameters, a parameter study was performed for notched round specimens and for 

C(T)-specimens. For notched round specimens, the f�, f�, f%, ɛ% influence the final fracture 

positions of the F-∆D-curves in the calculations. Higher f� , f%  result in earlier fracture, 

however lower f�  and ɛ%  produce earlier fracture positions for notched round specimens. 
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During the deformation of all materials, higher f�-, f%-values result in that the current void 

volume fraction reaches the f� threshold earlier, leading to an earlier fracture position on the 

F-∆D-curves. Lower f�-values mean that void coalescence arises earlier. Lower ɛ%-values 

mean that void nucleation occurs earlier, and results in that the current void volume fraction 

reaches the f� limit earlier. The f�-value does not influence the position of the fracture point 

on notched round specimens but influences the slope of the F-∆D-curve after the fracture 

point. Lower f� -values produce a smaller slope after the fracture point. After void 

coalescence, the material stress carrying ability becomes weaker. When the current void 

volume fraction f reaches the final void volume fraction at failure f�, the material looses its 

stiffness totally. A lower f� means its stress carrying ability will decrease faster after void 

coalescence, leading to a smaller slope of the F-∆D-curve after facture initiation of notched 

round specimens. For the C(T)-specimens, the numerical Ji-value for the crack initiation is 

influenced severely by f� - and f� -values whereas f� -, f% - and ɛ% -values have almost no 

influence on the Ji-value. Higher f� and f� lead to higher Ji-value. The fracture resistance JR-

curve is strongly influenced by the f�- and f�-values. Lower f�-values or higher f�-values can 

produce steeper JR-curves and higher J-values. The f�, f% and ɛ% do not influence the JR-

curve dramatically but shift the JR-curve in a parallel manner. Higher f�- and εn-values or 

lower f%-values produce higher JR-curves. The summary how the GTN parameters influence 

the numerical F-∆D-, F-COD- and JR-curves will help the author finding out the right 

parameter set during the calibration of the GTN parameters later.   

 

The numerical calibration of the GTN parameters was performed on the notched round 

specimens with the parameter set as shown in table 5.1 firstly. Then the same parameter 

set is adopted to predict the crack propagation of the C(T)-specimen. For C(T)-specimens 

with the initial crack in the BM, according to the previous investigation of the Rousselier 

model, the value lc=0.05 mm is adopted for the numerical calculation. The GTN model 

simulates reasonable F-COD-curves in comparison with the experimental data when the 

parameter set shown in table 5.1 is used. However, the J-value obtained from the GTN 

model at the crack initiation stage is much higher than the experimental one, which is 

shown in Fig. 5.20(b). Since the f�-value has a huge influence on the numerical Ji-value and 

JR-curve as shown in Fig. 5.18(b), lower f�-values should be used in order to obtain better 

calculated JR-curve. After reduction of the f�-value (fc=0.03), the GTN model can produce 

good simulation results compared to experiments in the form of F-COD as well as JR-curves 

with the parameter set which are summarized in table 5.2. For the specimen extracted from 
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the HAZ, the GTN parameters are calibrated on the notched round specimen obtained from 

the HAZ, also. For C(T)-HAZ, the value lc=0.1 mm value is adopted for the calculation. The 

HAZ is divided into three tiny regions which can reflect different material behaviour as 

shown in Fig. 4.23. Local mechanical properties obtained from flat specimens extracted 

from these regions were used as model input. Good agreement can also be achieved in 

terms of F-COD- and JR-curves when the parameter set shown in table 5.2 is used. In 

summary, good simulation results for C(T)-specimens with the initial crack located in the 

BM and at the HAZ confirm that the GTN model can predict the crack propagation of 

homogenous BM and welded joints well. In comparison to the Rousselier model, the GTN 

model possesses more parameters (nine parameters) which is more complex to the user. 

Good match between the simulated and experimental F-COD- and JR-curves are obtained 

for the C(T)-BM and C(T)-HAZ when using a good model parameter set. The F-COD- and 

JR-curves obtained from the Rousselier model match the experiments a bit better than that 

of the GTN model. This shows that using simple assumption in the Rousselier model is 

successful (without considering the influence of void nucleation and the acceleration of 

damage after void coalescence). As the damage is accelerated after void coalescence in 

steels, it is necessary to adopt the GTN model considering the damage acceleration in the 

calculation. These explanations show both the Rousselier model and the GTN model can 

be used to describe the damage evolution of the ductile behavior very well. However, the 

Rousselier model and the GTN model have their disadvantages, i.e., both models cannot 

be used to investigate brittle fracture behavior of materials. In the following chapter, one 

superior model - the cohesive model will be introduced to investigate the ductile and brittle 

fracture behavior of C(T)-specimens extracted from the different positions of the electron 

beam welded joints. 
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6. The Cohesive zone model  

 

According to what has been summarized in the previous chapters, simulations are 

performed with the Rousselier and the Gurson-Tvergaard-Needleman (GTN) models 

predicting the crack propagation of the C(T)-specimens with different initial crack positions, 

i.e., the initial crack located in the BM, in the centre of the FZ and at the interface between 

the FZ and the HAZ. As explained in the previous chapters, the phenomenological model - 

the cohesive model - is able to describe ductile and brittle fracture behaviour of materials 

when the proper traction-separation law is adopted. In this chapter, the dimensions and the 

mechanical properties of different weld regions are derived from the previous chapters. 

Compact tension specimens (C(T)25 with 20% side groove) are investigated with the 

cohesive model. The numerical simulation results are compared with the experimental one 

in terms of the F-COD- and JR-curves.  

 

6.1 Parameter study using the cohesive model 

As what has been illustrated in chapter 2.5, there are two independent cohesive parameters: 

the cohesive strength T0 and the cohesive energy Γ0. The cohesive strength is the maximal 

stress obtained at the moment of crack initiation and the cohesive energy is the energy for 

the separation of a unit material. The parameter 0 represents the separation of the cohesive 

element which can be calculated with the equation as follows: 

  

  Γ� = < ´e0fµ[µ ¶0                  (6.1) 

 

In ABAQUS standard/explicit, there are three typical traction-separation laws (TSL) which 

are shown in Figs. 6.1 - 6.3. The TSL with triangular softening is described in Fig. 6.1. The 

stress on the cohesive element increases with the slope of cohesive stiffness K%% until the 

stress reaches the critical stress (cohesive strength T0), then damage evolution happens 

until the cohesive element loses its stress carrying ability completely where the separation 

is equal to δ0. The cohesive stiffness K%% can be found from the equation:  

 

  K%% = T�/δ�%�-                  (6.2) 
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In ABAQUS, for a pure mode I loading situation, the damage evolution is described by the 

damage variable D and the strength reduction can be calculated with the equation:  

 

T = · e1 @ DfT%, T% ≥ 0T%,         otherwise eno damage to compressive stiffnessf             (6.3) 

 

For the cohesive law with triangular softening behaviour, the damage variable D was 

proposed by Camanho and Davila [Camanho et al., 2002]: 

 

 D =  [e Z»¼m B�B½f Z»¼e [m B�B½f                  (6.4) 

 

where 0�¾¿  is the maximum value of effective displacement of the cohesive element 

attained during the loading history.  

 

For the cohesive law with exponential softening, see Fig. 6.2, the damage variable D is 

given as follows: 

 

D = 1 @ À  B�B½ Z»¼Á Â1 @  m�C\Ãm∝�ÅZ»¼wÅB�B½Å[wÅB�B½ �Æ
 m�C\ em∝f Ç              (6.5) 

 

where, 0� is again the critical displacement at failure, 01'12 is the displacement when void 

initiation happens, 0�¾¿ is the maximum displacement during the loading history, and α is a 

non-dimensional material parameter that defines the rate of damage evolution.  

 

For the cohesive law with user defined softening behavior, see Fig. 6.3, the damage 

variable D can be defined directly in the tabular way which D is specified as function of the 

effective displacement relative to the effective displacement at crack initiation [ABAQUS, 

2008]. 
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Fig. 6.1: Traction separation law (TSL) with linear softening behavior. 

 

 

Fig. 6.2: Traction separation law (TSL) with exponential softening behavior. 

 

 

Fig. 6.3: Traction separation law (TSL) with user defined softening behavior (Trapezoidal 

shaped TSL). 

 

In this section, parameter studies are performed on the C(T)-BM under the exponential 

shape of the TSL which is available in ABAQUS (as shown in Fig. 6.2). 2D plane strain 

continuum elements in combination with 2D cohesive elements are used to predict the 

crack propagation of C(T)-specimens. Due to symmetry reasons, only half of the structure is 

used for the calculation. The cohesive element width is the same as that of the neighboring 

continuum element. The detailed finite element mesh around the symmetry plane is shown 

in Fig. 6.4. The material properties adopted in the calculations of parameter studies are 

shown in Fig. 3.13. T0 values which are around 3.1��¦§ (1100 MPa) according to the 

suggestion of Schwalbe [Schwalbe et al., 2009] and the cohesive energy which is around 

20 N/mm are used for the parameter study, as shown in table 6.1. 
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Fig. 6.4: Finite element mesh around the initial crack position. 

 

 

Table 6.1: Parameters used in the parameter study with the cohesive model 

T0 Γ0 Cohesive element width (w) Cohesive element height (h) 

1100 MPa 20 N/mm 0.1 mm 0.02 mm 

 

 

6.1.1 Influence of cohesive strength T0 and cohesive energy Γ0 

 

As shown in Fig. 6.5 and Fig. 6.6, a higher cohesive strength T0 leads to a higher F-COD-

curve and a higher JR-curve but the influence is small here. Compared to the influence of T0, 

the cohesive energy Γ0 possesses a more severe influence on the F-COD- and JR-curves. A 

higher cohesive energy Γ0 leads to higher F-COD- and steeper JR-curves, as shown in Fig. 

6.7 and Fig. 6.8, separately. Each minor decrease moment of the force in the F-COD-curve 

stands for the damage of one cohesive element. The reason for the serious influence of the 

cohesive energy Γ0 on the F-COD- and JR-curves is because the cohesive energy is a more 

direct impact factor on the damage of the cohesive element which is shown in equation 6.1. 

The influence of T0 is affected by other cohesive parameter as well, i.e., the separation δ0.  

Cohesive element 

layer 
Symmetry plane Crack tip 
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Fig. 6.5: Force vs. (COD) curves with different cohesive strength. 

 
Fig. 6.6: Influence of cohesive strength T0 on fracture resistance JR-curves. 

 
Fig. 6.7: Force vs. (COD) curves with different cohesive energy Γ0. 
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Fig. 6.8: Influence of cohesive energy Γ0 on fracture resistance JR-curves. 

 

 

6.1.2 Influence of the cohesive element 

 

Crack propagations for the C(T)-specimen from the BM are studied with different sizes of 

the cohesive elements. Two cohesive element widths (w) are analyzed: w=0.02 mm and 

w=0.1 mm (same element size as that of the Rousselier model). A smaller width of 

cohesive elements means the distance between neighboring voids is smaller in reality, with 

the consequence that less energy is needed to drive one crack prapagation. Higher widths 

of the cohesive elements result in a higher F-COD-curve and a higher J-value as well as 

strong crack extension in the fracture resistance curve, as can be seen in Fig. 6.9 and Fig. 

6.10, separately. This can explain the lower F-COD- and lower JR-curves, as depicted in Fig. 

6.9 and Fig. 6.10. In this chapter, a 0.1 mm cohesive element width is adopted, which is 

derived from experimental investigations shown in Fig. 3.1. The 0.1 mm cohesive element 

width is the same as that of the element adopted in the Rousselier and GTN model 

calculations. As shown in Fig. 6.11, the thickness of the cohesive element (h) has a 

negligible influence on the F-COD-curve of the C(T)-specimen, a smaller element height (h) 

leads to a higher F-COD-curve. However, for the fracture resistance curve, the influence of 

the thickness of cohesive elements is obvious; a smaller element thickness leads to a 

higher J-value which is displayed in Fig. 6.12. As shown in Fig. 6.12, numerical calculations 

stop earlier because of convergence problems when 0.002 mm and 0.01 mm of the 

thickness of cohesive element (h) is adopted, respectively. Best convergence and stable 

calculation is obtained when 0.02 mm thickness of cohesive element is used. In the 

following simulations, the 0.02*0.1 mm2 cohesive element dimension is chosen for the 

calculation of the BM. As symmetry condition is adopted to simulate C(T)-BM, the true 
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thickness of the cohesive element is twice of the current value (0.04 mm) when the whole 

C(T) structure is used for the simulation. The fracture process zone described by one 

cohesive element should be similar to the damaged region a continuous damage element 

defines (Rousselier & GTN model). Normally, the fracture process zone defined with one 

continuous element is determined by the damage variation of two upper Gauss points in 

one element, thus the damage zone defined by half of the continuous element is equal to 

the damaged region described by one of the cohesive elements. Therefore, the thickness of 

the cohesive element is assumed as around half of the size of a continuous element, where 

the height of the cohesive element for the BM, the FZ and the HAZ is 0.04 mm. This can 

explain why the thickness of the cohesive element (h) adopted in this chapter is around half 

of the height of the Rousselier (GTN) element used in chapter 4 and chapter 5.  
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Fig. 6.9: Influence of the width of cohesive element on force vs. (COD) curves. 

 

 
Fig. 6.10: Influence of the width of the cohesive element on fracture resistance JR-curves. 
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Fig. 6.11: Influence of the height of the cohesive element on force vs. (COD) curves. 
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Fig. 6.12: Influence of the height of the cohesive element on fracture resistance JR-curves. 

 

 

6.1.3 Influence of the shape of the TSL 

 

As discussed in chapter 2.5, there are different TSLs which can be used to study the ductile 

behavior of a material. As depicted in Fig. 6.13, the exponential softening TSL leads to 

slightly lower forces at the early stage (COD<1.5 mm) of the F-COD-curve and higher 

forces of the F-COD-curve later. Each minor wave moment in the F-COD-curve stands for 

the damage of a cohesive element. The numerical crack initiation moment obtained from 

the cohesive calculation with the exponential softening TSL is earlier than that of the 

trapezoidal TSL. The time interval between two damaged elements in the F-COD-curve 

obtained from the exponential softening TSL is shorter than that of the trapezoidal softening. 

This can explain why the numerical Ji-value calculated with exponential softening is lower 

than that obtained from trapozodial TSL and lower J-values are obtained from the 
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exponential softening TSL when the crack propagation is less than 0.9 mm, as shown in Fig. 

6.14.  
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Fig. 6.13: Influence of the shape of the TSL on Force vs. (COD) curves. 

 

 

Fig. 6.14: Influence of the shape of the TSL on fracture resistance JR-curves. 
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equal to the maximal stress over the cross section (of a notched round specimen) when the 

experimental force-cross section reduction curve drops. For the BM, a notched round 

specimen with a 4 mm notch radius is adopted for the determination of T0, with the 

geometry as shown in Fig. 6.15. From the tensile test, the external force vs. cross section 

reduction curve is measured. As the geometry and loading are axisymmetric and symmetric 

to the cross section, only one quarter of the structure is modeled for the calculation. The 

finite element mesh of the notched round specimen and the detailed mesh are shown in Fig. 

6.16 where the element size along the symmetry plane is the same as that for the 

Rousselier model. A comparison of the axial stress versus the cross section reduction curve 

from the FE simulation and the experiment as well as the maximum true axial stress in the 

center of the specimen is depicted in Fig. 6.17. The simulated axial stress versus the cross 

section reduction curve coincides with the experimental one until crack initiation happens 

where the experimental curve drops suddenly. At this point, the maximum stress over the 

cross section of the notched round specimen is determined from the simulation and is set 

equal to the cohesive stress T0. After comparison of simulation and experimental results for 

the BM, the value T0=1180 MPa is derived (Fig. 6.17).  

 

In order to determine the cohesive energy, compact tension specimens are used. For the 

C(T)-specimens extracted from the BM, (as the structure shows symmetry with respect to 

the crack plane, only one half of the C(T)-specimen is modeled), the finite element mesh 

and boundary conditions are shown in Fig. 6.18. Fig. 6.19 shows the detailed mesh around 

the initial crack tip. The cohesive element size around the initial crack tip is 0.02*0.1 mm2 

which is in accordance to the discussion in 6.1.2.  

 

 

Fig. 6.15: Sketch of 4mm notched round bar. 
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 (a) (b)  

Fig. 6.16: (a) Finite element mesh and boundary conditions of the notched round specimen 

and (b) detailed mesh. 
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Fig. 6.17: Determination of the cohesive stress T0: comparison of axial stress versus the 

cross section reduction curve from FE simulation and the experiments as well as the 

maximum true axial stress in the center of the notched specimen. 

 

  

Fig. 6.18: Finite element mesh and boundary conditions of the C(T)-specimen. 
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Fig. 6.19: Detailed finite element mesh around the initial crack position. 

 

Firstly, the exponential TSL shown in Fig. 6.2 is used to study the fracture behavior of the 

C(T)-BM specimen. For the cohesive strength T0=1180 MPa, numerical simulations are 

performed with different cohesive energy values. The comparison between the numerical 

and experimental F-COD- and JR-curves can be found in Fig. 6.20 and Fig. 6.21. Good 

agreement between the numerical and experimental results can be obtained in terms of F-

COD- and JR-curves when T0=1180 MPa and Г0=18.5 N/mm are applied, see Fig. 6.22 (a-

b). As shown in Fig. 6.22(a), partial unloading is simulated with the cohesive zone model 

when crack initiation happens (damage of the first cohesive element). Numerical crack 

initiation happens when COD=0.52 mm and the corresponding numerical Ji-value (Ji=59 

N/mm) is calculated with the domain integral method in ABAQUS [Brocks et al., 2001].    

  

Alternatively, the trapezoidal shaped TSL depicted in Fig. 6.3 is adopted to study the 

fracture behavior of the C(T)-BM specimen. After calculation, good agreement between the 

numerical and experimental results can be obtained in terms of F-COD- and JR-curves 

when T0=1180 MPa and Г0=23.8 N/mm is used, as shown in Figs. 6.23(a)-(b). As shown in 

Fig. 6.23(a), partial unloading is also simulated with the cohesive zone model adopting the 

trapezoidal shaped TSL. Numerical crack initiation happens when the COD=0.68 mm which 

is larger than that from exponential softening (COD=0.52 mm). This can explain why a 

higher numerical Ji-value (Ji=90 N/mm) is obtained from the trapezoidal shaped TSL (Fig. 

6.23(b)) than that obtained from exponential softening (Ji=59 N/mm) (Fig. 6.22(b)). As 

summarized in the MPA report [Eisele et al., 2006], the width of the stretched zone for most 

steels varies within 0.03-0.1 mm. The experimental Ji-value calculated based on the width 

of the stretched zone [Roos et al., 1988] is usually smaller than the experimental J0.1-value 

Crack tip Cohesive element layer Symmetry plane 
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(when ∆a=0.1 mm, J0.1=67.9 N/mm) obtained according to ASTM. The numerical Ji-value 

(J-value when ∆a=0.1 mm in current cohesive element width) obtained from the exponential 

TSL shape is similar to the experimental J0.1-value (when ∆a=0.1 mm), showing the 

numerical Ji-value obtained from the exponential TSL is reasonable and the relative 

cohesive energy Γ0 is a more precise one than the one obtained from the trapezoidal 

shaped TSL. Both an exponential and a trapezoidal shaped traction separation law can fit 

the crack propagation of C(T)-specimens obtained from the BM well although different 

cohesive energies have to be chosen.  

 

 
Fig. 6.20: Comparison of the simulated and experimental F-COD-curves with different 

cohesive energies with the exponential TSL. 

 

 
Fig. 6.21: Comparison of the simulated and experimental JR-curves with different cohesive 

energies with the exponential TSL. 
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Fig. 6.22: Comparison of experimental and numerical (a) Force vs. Crack Opening 

Displacement (COD) curves, and (b) fracture resistance curves for C(T)-BM specimens 

when an exponential shape of the traction-separation law is adopted. 

 

 (a) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

10

20

30

40

50
Trapezoidial softening (TSL)

COD (mm)

 experiment--S355 BM

 without damage

 Cohesive--Τ
0
=1180 MPa, Γ

0
=23.8 N/mm

 

 

F
 (

k
N

)

Numerical unloading

Numerical crack initiation

   



The Cohesive zone model 113  

 

 

 

(b)  

Fig. 6.23: Comparison of experimental and numerical (a) Force vs. Crack Opening 

Displacement (COD) curves, and (b) fracture resistance curves for C(T)-BM specimens 

when a trapezoidal shaped traction separation law (TSL) is adopted. 

 

6.2.2 Identification of the shape of the TSL 

 

Since good fitted F-COD- and JR-curves in comparison with the experiments can be 

obtained with the exponential softening TSL and trapezoidal shaped TSL under different 

cohesive parameters, the question arises: which shape of the TSL and the corresponding 

parameters is more realistic? As discussed by Schwalbe [Schwalbe et al., 2009], for ductile 

fracture, the cohesive model can describe the process of void nucleation, growth and 

coalescence. The shape of the TSL can be derived from micro-mechanical modeling of a 

one element Gurson model. For the S355 BM, the Gurson parameters adopted for the 

micro-mechanical modeling with such a one element Gurson model are summarized in 

table 5.2. As discussed in chapter 5, the best fitted results are obtained with the GTN model 

with theses parameters. For the C(T)-BM situation, the shape of the TSL obtained from one 

element Gurson model is shown in Fig. 6.24 where the horizontal axis of the diagram is the 

relative separation of the element (separation δ vs. height of the element h), the vertical 

axis of the curve is the relative stress (current axial stress σ vs. the yield stress ��). This 

curve can be adjusted to the common used shape in the finite element code, i.e., in 

ABAQUS. The shape obtained in Fig. 6.24 with the one element Gurson model is similar to 

the exponential softening TSL, which can be defined by the user directly in ABAQUS. This 

means for the S355 BM, the exponential softening TSL is the most appropriate traction-

separation law, the T0=1180 MPa and Г0=18.5 N/mm is the suitable cohesive element 

parameter set. 
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Fig. 6.24: Relative stress vs. relative separation curve from a one element Gurson 

simulation for the determination of the shape of the traction-separation law of the cohesive 

zone model. 

 

6.3 Crack propagation in S355 fusion zone (FZ) 

For the C(T)-FZ, the initial crack is created in the center of the FZ as observed in Fig. 3.25. 

The material properties of the FZ and the HAZ can be found in Fig. 4.24. Due to the 

symmetric geometry with respect to the center line of the C(T), only half of the C(T) 

structure is modeled. The size of the continuous element and the cohesive element is the 

same as what is used in the C(T)-BM structure, which can be found in Fig. 6.18 and Fig. 

6.19, respectively. The fracture toughness test was performed according to ASTM1820 

standard [ASTM, 2003], the F-COD-curve for the C(T)-FZ was observed to be broken 

suddenly, showing the brittle behavior of the C(T)-FZ, as described in Fig. 3.27. Therefore, 

a linear decreasing softening TSL which describes the brittle material behavior (as shown in 

Fig. 6.1) is used for the simulation. Because the tensile test of the notched round specimen 

from the FZ is not available in experiment, according to the discussion of Brocks [Brocks et 

al., 2002], the cohesive strength T0 can be roughly estimated as three times of the yield 

stress �� which is a rough estimation for steel, values are also reported between 2.5 �� and 

5 �� [Schwalbe et al., 2009]. In the calculations, as the yield stress of the FZ is 513 MPa, 

T0=1693 MPa (3.3��) [Brocks et al., 2014] is adopted. The numerical F-COD-curve matches 

the experimental one well when T0=1693 MPa and Г0=70 N/mm is chosen, showing that the 

cohesive model can predict the brittle fracture behavior of the C(T)-FZ specimen, as 

depicted in Fig. 6.25. Higher cohesive energy is obtained for the C(T)-FZ than that of the 
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C(T)-BM showing more energy is needed to drive the crack propagation in C(T)-FZ. This is 

because the material behavior obtained from the FZ is stronger than that of the BM, as 

shown in Fig. 3.13. 
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Fig. 6.25: Comparison of experimental and numerical Force vs. Crack Opening 

Displacement (COD) curves for C(T)-specimen with the initial crack located in the center of 

the FZ.  

 

6.4 Crack propagation at the interface between the FZ and the 

HAZ 

In the present section, the cohesive model is used to study the crack propagation in 

inhomogeneous welded joints. Simulations are performed for C(T)-specimens with the initial 

cracks located at the interface between the FZ and the HAZ. Due to the inhomogeneous 

material behavior with respect to the crack plane of the C(T)-specimen, the whole C(T) 

structure is used for the simulation (cohesive element length is 0.1 mm, cohesive element 

thickness=0.04 mm). A detailed finite element mesh around the initial crack tip is shown in 

Fig. 6.26. The height of the cohesive element is twice that in the BM situation because the 

whole C(T) structure is adopted for the simulation. As depicted in Fig. 6.26, one cohesive 

element layer is designed between the FZ and the HAZ, which is used to describe the 

damage of the material. This is arisen from the experimental investigation that the crack 

propagation tunnel is straight because of the plane-strain constraint achieved in the side 

grooved specimen. The material properties of the BM, the FZ and the HAZ is elastic-plastic 

during deformation.  
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For the C(T)-HAZ specimen, firstly, an exponential traction-separation law is chosen for the 

cohesive model which is easy to use. As discussed before, the notched round specimen 

with the HAZ located in the center of the notched region is used for the determination of the 

cohesive strength T0. The comparison of axial stress versus the cross section reduction 

curve from FE simulation and the experiments and the maximum true axial stress in the 

center of the specimen is presented in Fig. 6.27. In Fig. 6.27, the maximal axial stress in the 

center of the notched specimen can be fixed as T0=1350 MPa (2.9 ��). After the numerical 

calculation with the cohesive model (when COD≤1.5 mm, ∆a≤0.7 mm), good agreement 

between the numerical and experimental results can be obtained in terms of F-COD- and 

JR-curves when T0=1350 MPa and Г0=16.5 N/mm is used, as shown in Fig. 6.28.  

 

Alternatively, the trapezoidal shaped TSL depicted in Fig. 6.3 is adopted to study the 

fracture behavior of the C(T)-HAZ. Good agreement between the numerical and 

experimental results can be obtained in terms of F-COD- and JR-curves when T0=1350 MPa 

and Г0=22.5 N/mm is used, which are shown in Figs. 6.29(a)-(b). The TSL for the heat 

affected zone is again obtained from a one element Gurson model as depicted in Fig. 6.30. 

This shape is very close to the trapezoidal shaped TSL used in ABAQUS. Therefore, the 

trapezoidal shaped TSL is chosen as the more appropriated traction-separation law for the 

HAZ situation with T0=1350 MPa and Г0=22.5 N/mm being a suitable correct cohesive 

element parameter set for the HAZ. 

 

 

Fig. 6.26: Detailed finite element mesh used for the C(T)-specimens with the initial crack 

located in the HAZ which is situated at the interface between the FZ and the HAZ. 
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Fig. 6.27: Determination of the cohesive stress T0: comparison of axial stress versus the 

cross section reduction curve from FE simulation and the experiments as well as the 

maximum true axial stress in the center of the specimen. 

(a) (b)  

Fig. 6.28: Comparison of experimental and numerical (a) force vs. Crack Opening 

Displacement (COD) curves, and (b) fracture resistance curves for C(T)-specimens with the 

initial crack located at the interface between the FZ and the HAZ when an exponential 

traction separation law (TSL) is adopted. 

(a)  (b)  

Fig. 6.29: Comparison of experimental and numerical (a) force vs. Crack Opening 

Displacement (COD) curves, and (b) fracture resistance curves for C(T)-HAZ when the 

trapezoidal softening traction separation law (TSL) is adopted. 
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Fig. 6.30: Relative stress vs. relative separation curve from a one element Gurson model 

for the determination of the shape of the traction-separation law of the cohesive model. 

 

6.5 Discussion and Conclusions 

In this chapter, the cohesive model is used to study the fracture behavior of the S355 EBW 

joints. Crack propagation was investigated in three different C(T)-specimens with the initial 

crack located in the base material, in the center of the fusion zone and at the interface 

between the fusion zone and the heat affected zone. As discussed above, there exist only 

two independent cohesive parameters, i.e., the cohesive strength T0 and the cohesive 

energy Γ0. The shape of the TSL has a minor influence on the F-COD-curve at the early 

crack propagation (see Fig. 6.13) and a strong influence on the numerical Ji-value at the 

crack initiation stage, as shown in Fig. 6.14. In order to define the influence of these 

cohesive parameters, a parameter study was performed for C(T)-specimens. Compared to 

the influence of the T0-value, the cohesive energy Γ0 possesses a strong influence on the 

numerical F-COD- and JR-curves obtained from the cohesive zone model because the 

energy is a direct factor influencing the fracture process. The width of the cohesive element 

is the same as that of the neighboring continuum elements which is obtained from 

experimental investigations in chapter 3. The fracture process zone described by one 

cohesive element is similar to half of one continuous element defines (Rousselier & GTN 

model), thus the thickness of cohesive element is assume as around half of size of 

continuous element, where the thickness of the cohesive element for the BM, the FZ and 

the HAZ is 0.04 mm. 
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According to the discussion of Scheider [Scheider, 2003a] for ductile fracture behavior, the 

cohesive strength T0 can be determined from notched round specimen tests. At the moment 

of fracture, the maximal axial stress over the cross section of a notched round specimen is 

set equal to the cohesive strength T0. The T0-value for the BM and the HAZ is found to be 

1180 MPa and 1350 MPa respectively, as shown in Fig. 6.17 and Fig. 6.27. For the ductile 

fracture behavior of C(T)-BM and C(T)-HAZ, TSLs with exponential softening or user 

defined softening (trapezoidal shape) were used for the simulations. Compared to 

experiments, for the C(T)-BM situation, well fitted F-COD- and JR-curves are obtained when 

T0=1180 MPa and Γ0=18.5 N/mm were used for exponential softening and when T0=1180 

MPa and Γ0=23.8 N/mm were applied for the trapezoidal shaped TSL. Partial unloading is 

simulated with the cohesive zone model adopting different TSLs and the numerical Ji-

values are calculated with the domain integral method in ABAQUS [Brocks et al., 2001]. 

The experimental Ji-value calculated based on the width of the stretched zone [Roos et al., 

1988] is usually smaller than the experimental J0.1-value. The numerical Ji-value (∆a=0.1 

mm) obtained from the cohesive model with an exponential softening TSL is close to the 

experimental J0.1-value (∆a=0.1 mm), showing the exponential softening TSL is a suitable 

shape and the corresponding cohesive energy obtained from the simulation is a more 

precise value for steel S355 than the value obtained from the trapezoidal shaped TSL. For 

the C(T)-FZ, a TSL with linear softening is used for the numerical simulations because of 

the brittle behavior of the FZ. As the tensile test result of notched round specimen extracted 

from the FZ is not available, the cohesive strength is roughly assumed around three times 

of the yield stress for FZ (T0=1693 MPa) as suggested by Brocks [Brocks et al., 2002]. The 

predicted F-COD- and JR-curves agree well with the experiment when T0=1693 MPa and 

Γ0=70 N/mm are used. For the C(T)-HAZ structure, compared to experiments, well fitted F-

COD- and JR-curves are obtained when T0=1350 MPa, Γ0=16.5 N/mm for exponential 

softening and when T0=1350 MPa and Γ0=22.5 N/mm for the trapezoidal shape TSL are 

used. These numerical simulations confirm that the cohesive zone model is able to predict 

the crack propagation of welded joints when the appropriate TSLs with corresponding 

parameters are adopted.  

 

In order to select the more suitable TSL shape, one single element Gurson model was 

adopted, which was discussed by Schwalbe [Schwalbe et al., 2009]. The Gurson material 

parameters for the simulation are derived from table 5.2. The shapes of the TSLs for the 

S355 BM and for the S355 HAZ are obtained from the calculation of one single element 
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Gurson model, are shown in Fig.  6.24 and Fig. 6.30, separately. For S355 C(T)-BM, the 

relative stress vs. relative separation curve obtained from a one element Gurson model 

simulation is similar to the shape of exponential softening TSL and the numerical Ji-value 

(∆a=0.1 mm) obtained from the cohesive model with an exponential softening TSL is close 

to the experimental J0.1-value (∆a=0.1 mm), the exponential softening TSL is assumed as a 

suitable shape and T0=1180 MPa, Γ0=18.5 N/mm is believed as the good cohesive 

parameters. For S355 C(T)-HAZ, the TSL obtained from a one element Gurson model is 

very close to the trapezoidal shaped TSL, T0=1350 MPa, Γ0=22.5 N/mm is thus believed to 

describe well the fracture behavior of the S355 HAZ situation. All in all, good simulation 

results on C(T)-specimens for the initial crack located in the BM, in the center of the FZ and 

at the interface between the FZ and the HAZ confirm that the cohesive zone model can 

predict the crack propagation of electron beam welded joints very well. Compared to the 

previously applied Rousselier and GTN model, the cohesive zone model for fracture 

simulations shows its superiority because of simplicity and reduced model parameters. 

Additionally, the cohesive zone model is considered as a phenomenological model and can 

be used to study arbitrary fracture (ductile and brittle fracture). It is concluded that the 

cohesive zone model is the best suited for the investigation of the fracture behavior of S355 

electron beam welded joints as it can simulate both ductile and brittle fracture. As discussed 

in this chapter, good simulation results can be obtained under different TSLs with different 

cohesive parameters. From the simulation result of a one element Gurson model, the 

cohesion-decohesion curve [Broberg, 1997] which relates the separation of the element to 

the average stress in the loading direction is produced. This curve is considered as the TSL 

of the cohesive zone model. From these explanations, the connection between the 

cohesive model and one damage model (i.e., the GTN model) is found. Before adopt the 

advanced model (the cohesive zone model) investigating the fracture behavior of S355 

welded joints, many simulation works finished with the damage model (e.g., the GTN model) 

is important and worthy.   
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7. Optical measurement of crack propagation with the 

ARAMIS system 

 

As explained in chapter 2, the ARAMIS system is able to capture the surface deformation of 

the material and monitor the crack propagation on the surface of e.g., the C(T)-specimen. In 

this chapter, fracture toughness tests of S355 base material are performed on C(T)-

specimens with an RMC 100 universal test machine. During the tensile test process of the 

C(T)-specimen, the ARAMIS system captures the live crack propagation on the surface of 

the C(T)-specimen. The sketch of a C(T)-specimen tested with the universal test machine in 

combination with the ARAMIS system is shown in Fig. 7.1. During the test of C(T)-

specimens, pictures of the notch area on the surface of C(T)-specimens are obtained from 

both cameras and saved in the computer. The ARAMIS system will be used to analyze and 

calculate the crack propagation of C(T)-specimen. 

 

 

Fig. 7.1: Sketch of the test of a C(T)-specimen in combination with the ARAMIS system. 

 

7.1 Specimen preparation 

In order to use the ARAMIS system capturing the material deformation and crack 

propagation in the notched region on the surface of a sample, a pattern on the surface of 
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the C(T) is needed. After surface cleaning of the specimen, a white paint (TiO2) was 

sprayed on the surface, firstly. Then a black dot pattern was applied using spray paint in 

order to create a high contrast random pattern, as shown in Fig. 7.2. This will provide a 

surface pattern from which the deformation measurement can be made using the ARAMIS 

system.  

 
Fig. 7.2: Side grooved C(T)-specimen extracted from S355 BM with a surface pattern. 

 

7.2 Experimental results obtained with ARAMIS 

Three side grooved standard C(T)-specimens which are the same as the C(T)-BM 

specimens tested in chapter 3 are used for the present ARAMIS testing. The C(T)-

specimens are produced from S355 base material. The initial crack length a0 values are 

obtained with cyclic fatigue loading. In order to monitor the crack propagations on the 

surface of the notched area in C(T)-specimens, the C(T)-specimens are monotonically 

loaded (instead of the unloading compliance test process) using a RMC 100 universal test 

machine. The idea is to adopt a new test procedure instead of the ASTM standard obtaining 

the fracture toughness of the C(T)-specimen and to capture the crack propagation in the 

C(T)-specimen with the ARAMIS system. In the unloading compliance test process, loading 

was controlled by quasi-static displacements perpendicular to the initial crack and the force 

vs. Crack Opening Displacement (COD) curve was recorded. The crack length is computed 

at regular intervals during the test by partially unloading the specimen and measuring the 

compliance (C). This is an indirect measurement of the crack length. In combination with 

the ARAMIS system, the actual crack length of the C(T)-specimen is directly monitored 

during the tensile test process. The deformation of the notched area of the C(T)-specimen 

is monitored with the ARAMIS system during the test process. As the limitation of the 

storage ability of the current ARAMIS system (max. 500 pictures), one picture per 0.4 

second is used during the test process of the C(T)-specimens. After the test of C(T)-

10 mm 

monitor area 
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specimens, the experimental results are shown in terms of force vs. Crack Opening 

Displacement (COD) which is presented in Fig. 7.3. The peak value of the F-COD-curve 

might be influenced by the initial crack length, where smaller a0 values lead to higher forces 

of the F-COD-curve. When the COD value is larger than 2.3 mm (Meeting point of the three 

tested curves), a sudden drop of the F-COD-curves is obtained, especially for specimens 

C(T)25-2 and C(T)25-3. This is due to the fact that the crack might meet localized particles. 

In order to show the crack propagation for one C(T)-specimen (C(T)25-1, a0=27.45 mm) 

during deformation, the output results from the ARAMIS system are shown in Fig. 7.4-7.9. 

 

 

Fig. 7.3: Experimental force vs. Crack Opening Displacement (COD) curves obtained from 

the test of C(T)-specimens.   

 

Fig. 7.4(a) shows the image of the notched region of the C(T)-specimen which is captured 

from the left camera of the ARAMIS system and the equivalent strain distribution around the 

notched area at the initial status is displayed in Fig. 7.4(b). Since there is no material 

deformation before loading, the equivalent strain at the observed region is zero, which is 

marked in blue color. Fig. 7.5 shows the optical presentation obtained from the left camera 

of the ARAMIS system at the early stage of the test process when COD=0.1262 mm, no 

crack propagation is observed except the initial fatigue notch. The initial fatigue crack notch 

length measured from Fig. 7.5(a) is ∆a=3.92 mm where the initial fatigue length calculated 

from ARAMIS system is 3.55 mm, as shown in Fig. 7.5(b). Fig. 7.6(a) shows the crack 

propagation in the C(T)-specimen before reaching the maximal force where obvious crack 

propagation is observed and the corresponding equivalent strain distribution is shown in Fig. 

7.6(b). The current crack length including the initial notch is ∆a=9.19 mm which is 

measured from Fig. 7.6(a) where the crack length obtained from ARAMIS system is 

∆a=8.62 mm, as shown in Fig. 7.6(b). The regions with the equivalent strain higher than 20% 
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are shown in red color and some broken regions are wrongly assumed as non-damaged 

areas in ARAMIS system, as displayed in Fig. 7.6(b).  

 

(a)   (b)  

Fig. 7.4: (a) The image from the left camera and (b) the equivalent strain distribution 

calculated from the ARAMIS system at the initial status. 

(a)  (b)   

Fig. 7.5: (a) The image from the left camera and (b) the equivalent strain distribution 

calculated from the ARAMIS system for COD=0.1262 mm, F=13.600 kN. 

(a)  (b)  

Fig. 7.6: (a) The image from the left camera of and (b) the equivalent strain distribution 

calculated from the ARAMIS system for COD=0.770 mm and F=34.597 kN. 

 

Fig. 7.7(a) shows the crack propagation of the C(T)-specimen after the peak load during the 

test where the corresponding equivalent strain distribution are shown in Fig. 7.7(b). The 
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current crack length obtained from Fig. 7.7(a) is ∆a=10 mm and the crack length obtained 

from Fig. 7.7(b) is ∆a=9.83 mm. The crack propagation obtained from Fig. 7.8(a) is 

∆a=11.08 mm and the calculated crack propagation from ARAMIS system is ∆a=11.9 mm, 

as shown in Fig. 7.8(b). Fig. 7.9 shows the image of final crack occurs and the equivalent 

strain distribution of the C(T)-specimen calculated from the ARAMIS system at the end of 

the test. The current crack length obtained from Fig. 7.9(a) is ∆a=12.85 mm and the 

calculated value from ARAMIS output is ∆a=13.79 mm, as shown in Fig. 7.9(b). It seems 

that the current ARAMIS system cannot calculate the accurate crack propagation lengths 

on the surface of the side grooved C(T)-specimen at each loading moment during the test 

progress. The reason for the longer crack length obtained from ARAMIS system in 

comparison to the image obtained from the camera is that some non-destroyed regions are 

assumed as damaged (The losses of spray points in the notched region of the C(T) due to 

serious deformation) in ARAMIS system. The reason for the less crack length obtained from 

ARAMIS software is that some damaged materials are assumed as non-damaged ones 

where in reality they are damaged.  

(a)  (b)  

Fig. 7.7: (a) The image from the left camera and (b) the equivalent strain distribution 

calculated from the ARAMIS system for COD=1.092 mm and F=34.296 kN. 

(a)  (b)  

Fig. 7.8: The image from the left camera and (b) the equivalent strain distribution calculated 

from the ARAMIS system for COD=2.7053 mm and F=18.671 kN. 
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(a)  (b)  

Fig. 7.9 (a) The image from the left camera and (b) the equivalent strain distribution 

calculated from the ARAMIS system for COD= 4.144 mm and F=7.591 kN. 

 

In comparison to the unloading compliance method, the ARAMIS test method has its 

advantages. During the test process of the C(T)-specimen, the F-COD-curve is obtained 

from the output of the universal test machine and the corresponding crack propagation is 

obtained from the CCD camera of the ARAMIS system. For the unloading compliance 

method, the crack length is computed at regular intervals during the test by partially 

unloading the specimen and measuring the compliance (C). Many calculations are required 

for obtaining the crack length, showing the inconvenience of the ASTM method. The crack 

propagation is obtained directly from the ARAMIS system during the test and the F-∆a-

curve is shown in Fig. 7.10. This shows the ARAMIS technique is a direct method of the 

crack propagation during the test. Meanwhile, the strain variations around the notch region 

during the test of the C(T)-specimen can also be obtained from the ARAMIS software, 

which is not available in the unloading compliance method. These advantages confirm it is 

worth to adopt the ARAMIS system monitoring the test process of the C(T)-specimen.  

 

 

Fig. 7.10: F vs. ∆a curve for a C(T)-BM specimen tested together with the ARAMIS system. 
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7.3 Comparison of experiment with simulation results 

obtained with the GTN model 

In order to describe the damage behavior of the C(T)-specimen extracted from the BM, the 

GTN model is adopted. As the geometry of the C(T)-specimen shows symmetry with 

respect to the crack plane, only half of the C(T)-specimen is considered for the case of two-

dimensional modeling. Loading is defined on the loading point by displacements, the finite 

element mesh and boundary conditions are shown in Fig. 4.15. The comparison between 

the F-COD-curves obtained from the C(T)-specimens tested in combination with the 

ARAMIS system and with the unloading compliance technique is shown in Fig. 7.11(a). A 

weaker F-COD-curve is obtained from the C(T)-BM specimen tested in combination with 

ARAMIS system. The results showed anisotropic fracture behaviour due to the influence of 

the elongated microstructure where lower fracture toughness along the rolling direction is 

obtained. Good simulated F-COD-curve is obtained with the GTN model for the C(T)-

specimen tested according to ASTM when the parameter set summarized in table 5.2 is 

used, as shown in Fig. 7.11(b). Since a weaker F-COD-curve is obtained for the C(T)-

specimen tested in combination with ARAMIS system (Fig. 7.11(a)) and the extraction 

position is different from the C(T)-specimen tested with the unloading compliance technique 

(see Fig. 7.12, L is the rolling direction, T is the loading direction for the C(T) specimen 

tested in combination with the ARAMIS system and S is the thickness direction), the volume 

fractions of particles in these C(T)-specimens are assumed being different. A higher void 

volume fraction (than the f� -value for the C(T)-specimen tested according to ASTM) is 

assumed for the C(T)-specimen tested in combination with ARAMIS system. A higher f�-

value (f�=0.002) is adopted in the GTN model, making the predicted F-COD-curve more 

reasonable, as shown in Fig. 7.11(c). As we have found in chapter 3, elongated particles 

are found in the S355 base material. The schematic geometry of one non-metallic particles 

is shown in Fig. 7.13, where the longest dimension of the particle is named as dx (the 

direction of the major axis of the particle coincides with the crack propagation direction), the 

shortest dimension of the particle is dz (the direction of the minor axis is parallel to the 

loading direction T). According to literature [Weber, 2006], if the maximal measurement in 

the major axis direction and minimal measurement of the minor axis of the particle is 

defined as dx, and dz, respectively, the revised factor F* for the volume fraction of one 

particle F* = (dx/dz) 2. The revised volume fraction of particles is assumed as f�*=f�  × F*. 

Since the dx/dz is 4.5 which is obtained for the S355 base material, the revised factor F* is 
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defined as 20.25. This can explain why the current f�=0.002 value is 20 times of f�=0.0001 

value which was used in the GTN calculation in chapter 5.2. Detailed information about the 

revised factor of the volume fraction of particles can be found in the literature [Weber, 2006]. 

For this C(T)-specimen, higher volume fraction of particles are assumed in front of the initial 

crack than for the C(T)-specimen used in chapter 3 (Fig. 3.27), showing a lower fracture 

toughness. In comparison to the C(T)-specimen tested according to the ASTM standard 

(Fig. 7.14(a)), a wider and longer stable crack growth region is found on the fracture surface 

of the C(T)-specimen monotonically loaded in combination with the ARAMIS system as 

shown in Fig. 7.14(b).  
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Fig. 7.11: Comparison of Force vs. Crack Opening Displacement (F-COD) curves (a) for 

C(T)-BM specimens tested according to ASTM and with the ARAMIS system (b) for the 

C(T)- specimen tested according to ASTM together with the GTN simulation and (c) for the 

C(T)-specimen tested together with the ARAMIS system and the GTN simulation.  
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Fig. 7.12: Sketch of extraction positions for compact tension (C(T)) specimens and thin 

sheet specimens from the S355 welded joints. 

 

 

 

 

 

 

Fig. 7.13: Schematic geometry of the non-metallic inclusions and the loading direction. 

 

(a)  (b)  

Fig. 7.14: Comparison of fracture surfaces from C(T)-BM specimens tested (a) with ASTM 

standard and (b) under monotonic loading condition. 
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In order to simulate the crack shape on the fracture surface of a C(T)-specimen, one 

quarter of the C(T)-specimen is used for the 3D GTN model because of symmetry. The load 

is defined on the loading line by external displacements, the finite element mesh and boun-

dary conditions are shown in Fig. 7.15. The GTN parameter set summarized in table 5.2 

and the GTN parameter set but with f� =0.002 (instead of f� =0.0001) are used for the 

calculations. As can be found in Fig. 7.16(a), when the GTN parameter set summarized in 

table 5.2 is adopted (f�=0.0001), the 3D GTN model can predict a similar shape of the 

fracture surface where the crack propagation is longer in the center but shorter on the 

surface of the specimen and possesses a similar crack length (maximal crack length in the 

center of the specimen is 2 mm due to 2 elements is damaged (red)). However, the 

maximal predicted crack length from the 3D GTN calculation (f�=0.002) is 6 mm which is 

less than the experimental observation of the C(T)-BM tested with monotonic tensile 

loading (Fig. 7.14). This is because in a monotonic loading process of the C(T)-specimen, 

beside the flat crack, other fracture mechanisms (slant fracture) (judged from the rugged 

shape of the stable crack growth region as shown in Fig. 7.14(b)) also contribute to the final 

fracture, making the maximal crack length on the fracture surface of the C(T) being longer 

than the simulation result.   

 

 
 

 

Fig. 7.15: Finite element mesh and boundary conditions of one side grooved C(T)-specimen. 
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(a)             (b)  

Fig. 7.16: 3D Simulation of fracture surfaces from GTN model when (a) f�=0.0001 and (b) f�=0.002. 

 

7.4 Discussion and Conclusions 

The ARAMIS system is used to monitor the crack propagation at the side groove of a C(T)-

specimen. During the monotonic loading process of C(T) specimens in combination with the 

ARAMIS system, some technical problems should be noticed or be solved. Firstly, in order 

to have high quality pictures captured by the ARAMIS camera, a pattern with a sharp 

contrast should be prepared on the surface of the C(T)-specimen, especially in the notched 

area where the crack propagation will occur. Low contrast patterns or poor patterns cannot 

be recognized by the ARAMIS system which will affect the monitoring of the crack 

propagation. Secondly, the camera should be adjusted to the right place in front of the 

specimen, where the proper notched region of the C(T) can be viewed from left and right 

cameras. The notched region should be small enough to capture the tiny variation of crack 

propagation. However, a too small observation area may miss some crack propagation 

since the observation areas may jump outside the view. Thirdly, in order to quantitatively 

analyze the crack propagation of the C(T), small frame rate of the ARAMIS system as 

possible should be adopted. However, one picture per 0.4 seconds is used for the current 

test as the limitation of the storage ability of the existing ARAMIS system (max. storage 

amount to around 500 pictures in one test). A low frame rate results in missing important 

crack propagation information during the monotonic loading process of the C(T) specimen. 

An advanced ARAMIS system with higher picture storage ability during one test is required. 

This suggest to increase the monitoring frame rate to store more pictures during the 

crack propagation  
direction  

initial fatigue 
crack front  

crack propagation  
direction 
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experiment and to provide more exact information of crack propagation, making a 

quantitative analysis possible. Although the current ARAMIS machine cannot quantitatively 

analyze the crack propagation of the side grooved C(T)-specimen, the ARAMIS system 

shows the ability monitoring the crack propagation at the notched region of the C(T)-

specimen during the test process. Some damaged materials are assumed as non-damaged 

ones because of the existing spray points on the broken surfaces where in reality they are 

damaged. Some un-destructive regions are assumed as damaged ones because of the 

losses of the spray points on the material surface due to serious deformation. The 

unexpected loss of the adherences of spray paints on the monitored region results in the 

wrong calculation of the ARAMIS software and can explain why the current ARAMIS 

system cannot calculate the correct crack lengths on the surface of the C(T) at each loading 

moments. When these technical problems during the tensile test of the C(T) are solved, the 

test procedure in combination with ARAMIS system may supplement the ASTM standard 

for testing the fracture toughness of the C(T)-specimens and provides optical images of the 

crack propagation on the surface of the C(T)-specimens which is required in order to 

evaluation the damage evolution of specimens.  

 

Since the C(T)-25 specimen tested under monotonic loading condition shows a lower 

fracture toughness and larger stable crack regions at the fracture surface of the C(T)-

specimens than that of the C(T)-specimens tested in the chapter 3 according to ASTM 

standard [ASTM E1820, 2003], more particles were assumed to be located in front of the 

initial crack. This assumption is confirmed by the extraction positions of the C(T)-specimens 

from the welded joints where elongated particles localize in front of the initial fatigue notch 

of the C(T)-specimens due to the influence of rolling, as shown in Fig. 7.12.  

 

In order to predict the F-COD-curve of the C(T)-specimen, a 2D GTN model was adopted 

firstly. For the C(T)-specimen tested according to ASTM standard, good agreement 

between the experimental and numerical F-COD-curves is obtained when the Gurson 

parameter set shown in table 5.2 is used. For the C(T)-specimen tested in combination with 

the ARAMIS system, good agreement between the experimental and numerical F-COD-

curves is also obtained when the Gurson parameter set shown in table 5.2 except higher f� 

(f�=0.002) were used for the calculation, showing the GTN model can fit well the fracture 

behavior of the C(T)-BM. The particles are found as of elongated shape due to the rolling 

influence, a revised factor F*=20.25 is introduced which the revised void volume fraction 
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f�*=f�  × F*. This can explain why the current f�=0.002 value is 20 times of f�=0.0001 value 

which was used in previous GTN calculation.  

 

The 3D GTN model is used in order to predict the fracture surface of one side grooved 

C(T)-specimen. Similar shapes and crack length (about 2 mm) on the fracture surface of the 

side grooved C(T)-specimen is obtained when the GTN parameter set summarized in table 

5.2 is adopted (f�=0.0001). However, the 3D GTN model predicts a smaller crack length 

than the experimental observation when the GTN parameter set summarized in table 5.2 

with higher f�-value is adopted. This is because in monotonic loading process of the C(T)-

specimen, both the flat crack and the slant fracture mechanism lead to the final shape of 

the fracture surface. The slant fracture is not considered in the GTN model calculation, 

making the calculated crack length on the stable crack region being smaller than the 

experimental observation.   
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8. In situ laminography investigation of damage 

evolution in S355 base material 

 

The ARAMIS system introduced in the previous chapter has been used monitoring the 

crack propagation for the C(T)-specimen extracted from the S355 base material. The 

ARAMIS system allows only observing crack propagation at the surface of the object, the 

evolution of void initiation, growth and coalescence inside the material remains unknown. In 

order to understand the 3D damage evolution and to show the nature of crack propagation 

during the material deformation process, it is necessary to adopt a technique to display the 

imaging of the damage. Without touching the integrity of the entire material, synchrotron 

radiation-computed laminography (SRCL) allows for capturing a small region of interest out 

of a relatively large body, which is not accessible by other techniques [Helfen et al., 2005, 

Cheng, 2013a]. In this chapter, the SRCL technique is adopted to reveal the damage 

evolution of the S355 BM for the first time. After the reconstruction of the scanning data, 3D 

visualized laminographic images of the bulk material are shown. The damage evolution and 

crack propagation in an S355 sheet specimen will be shown and analyzed. 

 

8.1 Laminography 

Laminographic imaging was performed on the laminography instrument from the Karlsruhe 

Institute of Technology (KIT) installed at the high-energy beamline ID15A [Helfen et al., 

2005] of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France 

[Morgeneyer et al., 2014]. The X-ray transmission over the entire scanning region is 

performed during the scanning process where reliable projection data are acquired. Using a 

filtered back-projection algorithm [Helfen et al., 2011], a 3D image of the scanned specimen 

is reconstructed from 2D projections. Figure 8.1(a) depicts the laminography instrument 

installed at beamline ID15A of ESRF. In order to prevent the sample from severe buckling 

and out of plane movement during the test process, an anti-buckling device is adopted, as 

shown in Fig. 8.1(b). The thin sheet specimen together with the loading device is shown in 

Fig. 8.1(c) where the CMOD is obtained from the opening of two wedging rigs [Morgeneyer 

et al., 2011; 2013].  
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Fig. 8.1: The laminography instrument installed at beamline ID15A of ESRF (a-b) and (c) 

the thin sheet (1 mm) specimen together with the loading device [Morgeneyer et al., 2011]. 

 

In order to reveal the damage evolution of S355 base material, in situ laminography 

imaging was performed on a 1 mm thick sheet specimen, of which the geometry is shown in 

Fig. 8.2. The sheet specimen was prepared by Electrical Discharge Machining (EDM) with a 

width of 60 mm and a height of 60 mm. The notch was manufactured via EDM cutting, 

where the notch radius is around 0.15 mm which is close to the wire radius. The initial notch 

length is 36 mm. The loading was performed via a two-screw displacement-controlled 

wedging rig that controls the specimen crack mouth opening displacement (CMOD) 

[Morgeneyer et al., 2014]. Stepwise monotonic loading was applied between different 

laminography scans. A scan was performed before every loading step and the total number 

of scans is 5. Further details of the mechanical testing are summarized by Morgeneyer 

[Morgeneyer et al., 2011; 2013]. 
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Fig. 8.2: Sketch of the thin sheet (1 mm) specimen used for in situ laminography study with 

the dimensions of 60 x 60 x 1 mm3. 

 

8.2 In situ observation of damage evolution by laminography 

reconstruction 

The laminographic reconstruction is performed together with the KIT in house developed 

reconstruction program [Helfen et al., 2011]. After the reconstruction, the scanning data is 

saved as ‘.raw’ files which can be processed by the image process and analysis software 

Image J [Image J, 2012]. The 2D section of 3D laminography data in the middle section of 

the sheet specimen is shown in Fig. 8.3(a)-(f).  
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Fig. 8.3: The reconstructed 2D cross-sections (T-L) imaging of the middle section of a sheet 

specimen at (a) initial status and imaging of region of interest (ROI) at: (b) initial status (c) 

CMOD=0.625 mm (start of void nucleation) (d) CMOD=1.25 mm (e) CMOD=1.56 mm (f) 

CMOD=1.875 mm. 

 

The 2D reconstructed imaging of the scanning region before the tensile test is shown in Fig. 

8.3(a), which contains the resolution of 1600 x 1600 pixels. Since the effective pixel size is 

about 1.095 µm, the corresponding size of the scanned region of interest is 1.752 x 1.752 

mm2. The region of interest (ROI) in the marked region contains 960 x 1200 pixels which 

correspond to an area of 1.051 x 1.314 mm2, as shown in Fig. 8.3(b). As can be observed 

in Fig. 8.3(b), MnS particles (based on EDX analysis) which nucleate voids during the 

material deformation process can be found to be localized in front of the initial notch. The 

loading test was performed in the T-L configuration, where T is the loading direction, L is 

the rolling direction which coincides with the crack propagation direction (S is the thickness 

direction). 

 

After the first stepwise loading (CMOD=0.625 mm), voids originate around the particles, as 

shown in Fig. 8.3(c). During the material deformation process, microcracks are found 
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forming around particles due to the evolution of void initiation, growth and coalescence, as 

shown in Fig. 8.3(d). These microcracks are of elongated flat shape due to the influence of 

the elongated localized particles. The evidence of the emergence of the microcracks is that 

black flat regions are surrounded by white edges, showing obvious phase contrast (details 

are presented later in Fig. 8.4). As shown in Fig. 8.3(e), microcracks grow and combine with 

each other thus, leading to the appearance of obvious cracks. At the final loading step, 

existing cracks open widely and neighboring cracks are trying to form the large crack with 

slant crack propagation, as displayed in Fig. 8.3(f). No cracks are observed in front of the 

initial notch tip where the stress is maximal. This shows that less energy is required to 

nucleate a void around one particle than for the pure matrix material, showing the particles 

give the main contribution to the void nucleation.  

 

Fig. 8.4 shows a zoom out of the rectangular region (marked red in Fig. 8.3(b)) at a 

distance of 200 µm ahead of the initial notch. As can be found in Fig. 8.4(a), elongated MnS 

particles with particle sizes of 8-14 µm localize at some regions of the material. MnS 

particles start to nucleate voids firstly for CMOD=0.625 mm that the particles become 

darker and are surrounded by a white edge, as shown in Fig. 8.4(b).The sudden 

emergence of black areas surrounded by the white edges is the hint of the debonding of 

particles from the matrix. The evidence of voids nucleation from particles is also mentioned 

by other scientist: when a void nucleates around a particle, the interface between the void 

and the particle or the void and the matrix leads to strong phase contrast in the used 

imaging mode [Shen et al., 2013]. Normally the existing initial void is spherical and is 

surrounded by the white edges before loading. This is different from the void nucleate from 

elongated particles where the voids are also elongated. After the second loading steps 

(CMOD=1.25 mm), obvious cracks are found which due to the void coalescence around 

particles and the combination process of neighboring microcracks, as shown in Fig. 8.4(c). 

The process of void nucleation, growth and coalescence happens at almost every particle. 

Existing cracks forming from previous loading steps open widely and neighboring cracks 

connect each other, forming the obvious big cracks, which are shown in Fig. 8.4(d). After 

the last loading step (CMOD=1.875 mm), several large cracks are found in front of the initial 

notch, as shown in Fig. 8.4(e). Although the material deformation between these large 

cracks are high, no microcracks are found between these main cracks, showing the voids 

are mainly originating from particles and give the main contribution to cracks during the 

damage evolution.   
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Fig. 8.4: Zoom of the rectangular region of middle section (in red color) in Fig. 8.3(b) at (a) 

initial status (b) CMOD=0.625 mm (c) CMOD=1.25 mm (d) CMOD=1.56 mm (e) 

CMOD=1.875 mm. 

 

Reconstructed 2D laminography imaging of the scanning layer around 200 µm away from 

the middle section of the 1 mm thin sheet specimen is shown in Fig. 8.5(a)-(f) where the 

longest 2D crack is observed. The 2D imaging of the scanning region and the 

corresponding ROI before the stepwise loading is shown in Fig. 8.5(a)-(b). The particles are 

observed localize in front of the initial notch which is marked in Fig. 8.5(b). After the first 

loading step (CMOD=0.625 mm), microcracks are found ahead of the notch where the local 
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stresses are assumed maximum, see Fig. 8.5(c). After the second loading step 

(CMOD=1.25 mm), the microcracks ahead of the notch connect with the neighboring 

elongated crack, forming the first main crack, which is shown in Fig. 8.5(d). The second 

large crack is observed in front of the first big crack. Between these two major cracks, there 

exist some small cracks originated from particles during material deformation. The two 

major cracks open wider and small cracks between the two major cracks grow at 

CMOD=1.56 mm, as shown in Fig. 8.5(e). After the last loading step (CMOD=1.875 mm), 

the main crack propagates towards the second crack in order to form the final main crack of 

the thin sheet specimen, see Fig. 8.5(f). Void sheet mechanisms [Garrison et al., 1987] are 

expected to happen between these two cracks in the later material deformation stage due 

to the formation of shear band between these two cracks. 

 

 

               

200 µm 
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Fig. 8.5: Imaging of 2D cross-sections (T-L) at the scan layer which is about 200 µm from 

the middle section of the sheet specimen at (a) the initial status and the image of region of 

interest (ROI) at: (b) the initial status, (c) CMOD=0.625 mm,(d) CMOD=1.25 mm, (e) 

CMOD=1.56 mm,  and (f) CMOD=1.875 mm. 
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Fig. 8.6: Zoom of the rectangular region (in red color) in Fig. 8.5(b) (200 µm from the middle 

section) during the damage evolution of the thin sheet specimen at: (a) initial state, (b) 

CMOD=0.625 mm, (c) CMOD=1.25 mm, (d) CMOD=1.56 mm, and (e) CMOD=1.875 mm. 

 

Fig. 8.6(a)-(e) show the zoom out of the rectangular region (marked red in Fig. 8.5(b)) with 

a distance of 15 µm ahead of the initial notch root. As can be seen from Fig. 8.6(a), 

elongated MnS particles localize at some regions. MnS particles start to nucleate voids 

firstly after the first loading step (CMOD=0.625 mm), as shown in Fig. 8.6(b). This can be 

seen by the particles becoming darker and being surrounded by a white edge. As these 

particles mainly localize in front of the initial notch, void coalescence and the combination of 

neighboring microcracks happens quickly. Therefore, obvious cracks connect with initial 

notch, forming the main big crack, as displayed in Fig. 8.6(c). Another large crack is formed 

which is about 100 µm ahead of the first big crack. Between these two large obvious cracks, 

some small cracks are found due to the void initiation, growth and coalescence. After the 

third loading step (CMOD=1.56 mm), the existing long cracks open widely, trying to connect 

with each other as shown in Fig. 8.6(d). The second main cracks are formed ahead of the 

first main crack due to the combination of cracks and their neighboring minor cracks after 

the previous loading step. These two main cracks expand and propagate along the loading 

(T) direction, and are expect to connect with each other in the subsequent loading, as 

shown in Fig. 8.6(e) 

 

The comparison between laminographic results from T-L cross sections of the sheet 

specimen, i.e., the middle section (Fig. 8.3) and the section where the longest 2D cracks 

are located (Fig. 8.5) is addressed here. At the material initial status, particles localize at 

some regions in front of the initial notch for both cross sections. For the center section of 

the specimen, particles cluster in some regions which are far away from the initial notch, as 
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shown in Fig. 8.3(b). No cracks are found connected with the initial notch when 

CMOD=1.25 mm, obvious cracks localize at some regions far from the initial notch, as 

displayed in Fig. 8.3(d). For the cross section which is 200 µm from the middle section, as 

the particles cluster in regions near the initial notch, an obvious large crack connects with 

the initial notch, forming the main crack after the second loading step (CMOD=1.25 mm), as 

shown in Fig. 8.5(d). The main cracks are observed at the cross section (Fig. 8.5) which is 

200 µm from the middle section (Fig. 8.3) showing the particles are prominent in creating 

voids during the material deformation process and this is a more important factor than local 

stresses. 

 

It is interesting to see in details the damage evolution through the thickness direction (T-S). 

The first cutting through thickness is 100 µm ahead of the initial notch, which is shown in 

Fig. 8.7(a). As shown in Fig. 8.7(b), both left and right material boundaries are observable 

and parallel to the T direction before loading. After the first loading step (CMOD=0.625 mm), 

mirocracks together with small cracks are found along the S direction and some cracks 

locate on the right boundary, as shown in Fig. 8.7(c). The material boundaries begin to 

shrink after the first loading step. After the second loading step (CMOD=1.25 mm), due to 

the combination of neighboring microcracks, two large cracks are found located at different 

positions along the T direction and both cracks are around 1/3 position from the left 

boundary of material. A shear band where the orientation of the band is about 45˚ from the 

thickness direction (S direction) is visible between the two neighboring cracks and the 

cracks located at the right surface boundary become larger, as shown in Fig. 8.7(d). When 

the material deformation continues, the material boundary continues shrinking, more shear 

bands are found between neighboring cracks (Fig. 8.7(e)), leading to the variation of the 

crack tunnel along the thickness (S) direction and emergence of a slant crack propagating 

after the last loading step (CMOD=1.875 mm), as depicted in Fig. 8.7(f). Two different types 

of crack mechanisms are found during the damage evolution process. The first one is flat 

cracking due to void initiation, growth and coalescence. In the second mechanism, shear 

bands are forming around cavities or between two neighboring cracks, forming shear 

cracks during the material deformation process. Shear crack propagation changes the 

crack tunnels formed during the flat crack propagation. Before the appearance of shear 

cracks, several discontinuous cracks along the S direction are found. This shows that the 

cracks propagate not only mainly along the L direction but also along the thickness direction 

during the damage evolution. Moreover, shear cracks appearing at the 2D T-S cross 
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section are also observed, showing the complexity of the real damage evolution of the thin 

sheet specimen. The nature of the damage evolution of the sheet specimen shows the 

current 2D model cannot accurately describe the damage evolution of the 3D material as 

well as the crack propagation both along the L direction and also along the thickness 

direction. It is, thus, necessary to establish a 3D damage mode prediction the 3D crack 

propagation. 
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Fig. 8.7: 2D cross-sections at the through thickness (T-S) plane which is 100 µm from the 

initial notch shown with increasing crack mouth opening displacement (CMOD): (a) The 

through thickness position and damage evolution at: (b) initial status, (c) CMOD=0.625 mm, 

(d) CMOD=1.25 mm, (e) CMOD=1.56 mm and (f) CMOD=1.875 mm. 

 

The second through thickness scanning is performed 400 µm ahead of the initial notch tip, 

which is shown in Fig. 8.8(a). As shown in Fig. 8.8(b), no obvious void or microcrack is 

observed before loading. One obvious particle is found at the material surface, as shown in 

Fig. 8.8(b). After the first loading step, some microcracks and cracks are observed, as 

shown in Fig. 8.8(c). In comparison to cutting position one (100 µm ahead of the notch tip), 

less elongated cracks are found along the thickness direction. Some cracks (less than what 

is observed in position one) arise at the material surface, as shown in Fig. 8.8(d). This is 

because the material in the position two (400 µm ahead of the notch tip) is far from the 

initial notch root. The material deformations in position two (400 µm) is smaller than that of 

position one (100 µm) and the corresponding local stresses are smaller, leading to less void 

initiation, growth and coalescence. Some obvious cracks are found in Fig. 8.6(d) due to the 

combination of existing small cracks shown in Fig. 8.6(c). The length of the cracks and the 

number of cracks observed in Fig. 8.6 in position two is shorter and smaller than in position 

one. The material boundaries begin to shrink after the last loading step, cracks can be 

found at the surface and a shear band is observed between two cracks, as displayed in Fig. 

8.8(f). The delayed appearance of shear bands when CMOD=1.875 mm (the shear band 

appears in position one at CMOD=1.25 mm) in position two is mostly influenced by lower 

material deformation and lower stresses than in position one (100 µm).   
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Fig. 8.8: 2D cross-sections at the through thickness (T-S) plane which is 400 µm from the 

initial notch shown with increasing crack mouth opening displacement (CMOD): (a) The 

through thickness position and damage evolution at: (b) initial status, (c) CMOD=0.625 mm, 

(d) CMOD=1.25 mm, (e) CMOD=1.56 mm, and (f) CMOD=1.875 mm. 
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Laminographic images are processed to binary pictures with the Image J software [Image J, 

2012]. The optical separation of the particles and matrix are made where the initial voids 

and particles are marked as one color and the matrix are another. In order to build 3D 

laminographic imaging, all binary images are combined using the commercial 3D 

visualization software Amira which is a powerful 3D visualization viewing and analysis tool 

[Amira, 2009].  

 

The initial status of the S355 base material is shown in Fig. 8.9. The initial notch is shown in 

green color and the boundary of the notch is dark green. Elongated MnS particles and 

spherical voids are also shown in green color while the matrix is in white. The initial voids 

are smaller than the particles and randomly distributed in the bulk material. MnS particles 

localize at some regions, especially in marked layers inside the 3D cubic bulk, see Fig. 8.9. 

The reason for the occurrence of flat laminated particles is due to the rolling influence 

during the production of the material. After the first loading step (CMOD=0.625 mm), as the 

stress ahead of the initial notch is high in comparison to other regions and due to the 

existence of particles, many new green laminated layers are found which represent the 

formation of voids or mirocracks, as shown in Fig. 8.10. After the second loading step 

(CMOD=1.25 mm), due to the combination of neighboring microcracks ahead of the initial 

notch, two main cracks are formed in front of the initial notch and some voids are trying to 

connect with the initial notch (green color in front of notch), as shown in Fig. 8.11. It is 

expected that the main crack will emerge in front of the initial notch during the further 

deformation process. Some initial voids are found at other regions which are far from the 

initial notch and the volume fraction is small. During the material deformation process, 

almost no void coalescence happens in material regions far from the notch because the 

stresses are not sufficient to drive the damage evolution of void initiation, growth and 

coalescence. After the third loading step (CMOD=1.56 mm), neighboring microcracks 

connect with each other in front of the initial notch, forming obvious cracks (dark green 

color), as shown in Fig. 8.12. The main two cracks are close, a shear band is found 

between these cracks and shear cracks connecting the neighboring cracks are expected in 

the next loading step. The cracks propagate and deviate quickly in front of the initial notch 

where the local stress is the highest and the final big crack is depicted in Fig. 8.13. 

Meanwhile, more microcracks are found at other positions in front of the initial notch. In 

order to visualize the 3D flat cracks in the laminographic imaging, the scanning data 

contained in the laminographic image at CMOD=1.25 mm is subtracted from the information 
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contained in the laminographic image at the initial status, then the flat crack propagation is 

displayed in Fig. 8.14 (dark purple). The cracks are observed localizing in front of the initial 

notch. The crack shape due to the emergence of shear cracks can also be visualized in the 

laminographic imaging. The scanning data contained in the laminographic image at 

CMOD=1.875 mm is subtracted from the information contained in the laminographic image 

at CMOD=1.25 mm, the crack propagation between CMOD=1.25 mm and CMOD=1.875 

mm is presented in Fig. 8.15 (dark purple). The cracks propagate not only along the rolling 

direction (L) but also along the loading direction (T) and through the thickness direction (S). 

 

The 3D laminographic images show that the elongated particles localize at some regions in 

the bulk material before loading. This information of clustered particles coincides with the 

metallographic investigations of S355 base material as shown in chapter 3.2. The volume 

fraction of all inclusions (initial voids plus MnS particles) for the thin sheet specimen is 

0.0015 which is calculated from the Image J software. Due to huge expense and time 

consuming of the laminographic scanning, it is suggested to get the volume fraction of 

inclusions ( f� ) from metallographic investigations if the laminographic analysis is not 

available. This value obtained from metallographic investigation is reliable for the 

calculation with the 2D Rousselier model as discussed in chapter 4 but not exactly for the 

3D calculation. What is more, slant cracks which originate from the shear coalescence 

between the neighboring microcracks are found after some loading steps of the sheet 

specimen tested in the laminographic experiment. This fracture mechanism is different from 

the situation of a standard C(T)25 specimen with side grooves tensile tested as described 

in chapter 3 where crack propagation is straight. This shear fracture mechanism has not 

been explained and simulated in the current GTN model and the Rousselier model where 

the damage evolution is primarily influenced by the hydrostatic stresses due to the basic 

equations of the GTN model and the Rousselier model [Bleck et al., 2009]. 
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Fig. 8.9: 3D laminographic imaging (L x T x S=1200 x 960 x 600 µm3) at the initial status. 

The green color shows the presence of MnS precipitates and initial voids. 

 

 

Fig. 8.10: 3D laminographic imaging (L x T x S=1200 x 960 x 600 µm3) when CMOD=0.625 

mm. 
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Fig. 8.11: 3D laminographic imaging (L x T x S=1200 x 960 x 600 µm3) when CMOD=1.25 

mm. 

 

 

Fig. 8.12: 3D laminographic imaging (L x T x S=1200 x 960 x 600 µm3) when CMOD=1.56 

mm. 
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Fig. 8.13: 3D laminographic imaging (L x T x S=1200 x 960x 600 µm3) when CMOD=1.875 

mm. 

 

 
 

Fig. 8.14: 3D laminographic imaging (L x T x S=1200 x 960x 600 µm3) showing the crack 

propagation (dark purple) when CMOD=1.25 mm. 
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Fig. 8.15: 3D laminographic imaging (L x T x S=1200 x 960x 600 µm3) showing the crack 

propagation (dark purple) between CMOD=1.25 mm and CMOD=1.875 mm. 

 

In order to simulate the flat crack propagation in 1 mm thick sheet specimens, a 3D finite 

element model is built in ABAQUS. To simplify the geometry of the finite element model, the 

real shape of the notch is approximate by a sharp crack tip in the meshed structure. As the 

distribution of the particles do not have obvious influence on the damage behavior of the 

sheet specimen (e.g., F-CMOD curve, details is shown later), only half of the sheet 

specimen is modeled, loading is defined on the loading line by external displacements, the 

finite element mesh and boundary conditions are shown in Fig. 8.16. The detailed finite 

element mesh around the initial notch is shown in Fig. 8.17. The size of the cubic elements 

along the symmetry line is 50 x 50 x 50 x µm3 which is according to literature [Shen et al., 

2012, Ueda et al., 2014]. The crack mouth opening displacement (CMOD) is obtained from 

the CMOD line which is marked in Fig. 8.16. The volume fraction of all particles (initial voids 

plus non-metallic inclusions) obtained from the thin sheet specimen is 0.0015 which is 

calculated from the Image J software. The Rousselier parameter set (f�=0.0015, σk=445 

MPa) is used for the calculation and the critical region around the initial notch where crack 

propagation may appear are defined as Rousselier elements where a user defined material 

behavior is adopted for the calculation, which is shown in Fig. 8.18. As the stress triaxiality 

is high in the center of the specimen, the maximal numerical crack is expected locating at 

the middle section of the specimen in front of the initial notch. After the calculation, when 

CMOD is 1.25 mm, 17 elements are damaged (red elements in Fig. 8.19) at the middle 
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section of the specimen and the corresponding maximal crack length is 850 µm. This value 

is larger than that of the crack length (454.5 µm) observed in Fig. 8.5(d) (sum of lengths of 

several flat cracks). This is because the damage is overestimated in the Rousselier model 

where the first few elements being damaged when numerically CMOD=0.55 mm which is 

earlier than the appearance of microcracks in experimental observation (CMOD=0.625 mm). 

The laminographic imaging shows the longest 2D crack located at the cross section which 

is 200 µm from the middle section of the specimen, showing the non-metallic inclusions 

play a dominant role in creating voids. Defining the Rousselier parameter ( f� ) at all 

elements in front of the initial notch the same is not proper.  

 

  
 

 
Fig. 8.16: Finite element mesh and boundary conditions of one sheet specimen used for the 

laminographic test.  

 

 

Fig. 8.17: Detailed finite element mesh around initial notch for the one sheet specimen.  
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Fig. 8.18: Rousselier elements (blue color) around the initial notch front are defined in the 

center of the specimen. 

 

Fig. 8.19: Simulated damaged elements (red color) on the fracture surface of the sheet 

specimen (SDV3 is the user defined failure indicator of Rousselier model in ABAQUS, when 

current f ≥ fc=0.05, SDV3=1). 

 

In order to predict the crack propagation on the fracture surface of the thin sheet specimen, 

especially the crack propagation on the cross section where the longest crack appears, the 

elements around the initial notch are divided into three different regions which stand for 

three different volume fractions of inclusions in the material. As shown in Fig. 8.20, the high f�-value (f�=0.00714) region (highlighted in red color) stands for the f�-value in this region is 

higher than the average f�-value (f�=0.0015). The low f�-value region (f�=0.00046) covers 

all the six rows of elements in the center of the specimen (yellow) and the f�-value in this 

region is lower than the average f� -value. The f� -value defined in the average f� -value 

region (blue elements regions) is equal to the experimental one. When CMOD=1.25 mm, 

the simulated crack shape obtained on the fracture surface of the specimen is shown in Fig. 
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8.21 where the maximal crack length is observed at the cross section which is 150 µm apart 

from the middle section of the specimen. The simulation result shows that the Rousselier 

model is able to predict the position of the main crack when defining the f�-values at the 

different regions in front of the initial notch being different. However, when CMOD=1.25 mm, 

the simulated crack propagation length is 600 µm which is longer than the experimental 

observation (454.5 µm). This is because the damage is overestimated in the Rousselier 

model and the first crack appears when numerically CMOD=0.4 mm is reached which is 

earlier than the appearance of microcracks in laminographic imaging (CMOD=0.625 mm). 

Voids originate from MnS particles easily under small material deformation (Fig. 8.3(c)), no 

cracks are found in the matrixes locating in front of the notch even after the last loading 

step (Fig. 8.3(f)), showing the non-metallic inclusions play a critical role in creating voids. 

From the laminographic imaging, flat crack propagation is observed at different crack 

planes in front of the initial notch (Fig. 8.11).  

 

 

Fig. 8.20: Rousselier elements around the initial notch front are defined with different f�-

value (high f�=0.00714, low f�=0.00046, average f�=0.0015). 
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Fig. 8.21: Simulated damaged elements (red color) on the fracture surface of the sheet 

specimen where the longest crack appears at the cross section which is 200 µm from the 

middle section of the specimen.  

 

In order to simulate the flat crack propagation on the different crack planes in front of the 

initial notch, it is necessary to adopt the real f�-values for the 3D Rousselier model. As 

shown in Fig. 8.22, the regions in front of the initial notch are divided into 18 areas (each 

150 x 150 µm2). For each area (named 1-1, 1-2, 1-3, etc. as shown in Fig. 8.22), the 3D 

region is divided into 4 partitions through the thickness (S) direction (named 1-1-1, 1-1-2, 1-

1-3, 1-1-4). Partition 1-1-1 stands for the laminographic data in area 1-1 within 1-150 µm (S 

direction). Partition 1-1-2 stands for the laminographic data within area 1-1 within 151-300 

µm (S direction). Partition 1-1-3 stands for the laminographic data within area 1-1 within 

301-450 µm (S direction). Partition 1-1-4 stands for the laminographic data within area 1-1 

within 451-600 µm (S direction). The dimension of each partition is 150 µm3. By this way, 

the sheet regions in front of the initial notch are partitioned into 72 partitions where the f�-

value of each partition region is calculated with the Image J software. The f�-values of 

partitions ahead of the initial notch are summarized in table. 8.1. The partitions with higher f�-values (f�>0.0015) are marked in red and the partition with average f�-value (f�=0.0015) 

is marked in green. Fig 8.23 shows how the f�-values vary according to the positions of 

partitions. The f�-values of the 72 partitions are shown with colored balls where the colors 

vary with f�-values. The rough f�-value order for one partition can be estimated according to 

the color of the ball. A solid ball with a larger diameter stands for the f�-value in this partition 

is higher than in the region with a smaller ball. The elements ahead of the initial notch are 

partitioned into 72 Rousselier element sets (each set contains 3 x 3 x 3 elements), the f�-

values from each partition as summarized in table 8.1 are used for the Rousselier elements 
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set (150 x 150 x 150 µm3) located at the respective location, as shown in Fig. 8.24. After 

calculation, when numerical CMOD=1.25 mm, the predicted crack propagation is shown in 

Fig. 8.25 where cracks propagate not only along the x-direction (crack propagation direction) 

but also along the z-direction (thickness direction) and the maximal crack length is 

observed at the sections which are 50-200 µm from the middle section of the specimen. 

The damaged elements extracted from Fig. 8.25 where the longest flat cracks are located 

at other cross sections which are 50-200 µm apart from the middle section of the specimen 

are shown in Fig. 8.26. However, when CMOD=1.25 mm, the simulated crack propagation 

length is 600 µm which is longer than the experimental observation (454.5 µm). This might 

be due to the fact that the f�-value in the region near the initial notch is higher than the 

exact experimental value, leading to the first crack appearing numerically at CMOD=0.43 

mm which is earlier than the appearance of microcracks during laminographic imaging 

(CMOD=0.625 mm). When numerical CMOD=1.875 mm, the predicted crack propagation 

on the fracture surface is shown in Fig. 8.27. The longest crack propagation is found at the 

section which is 50-100 µm apart from the middle section of the specimen. Some 

undamaged elements are surrounded by damaged elements. This is the evidence showing 

the void volume fraction possesses a strong influence on the damage.  

 

   

 

Fig. 8.22: The region in front of the initial notch is divided into 18 areas and 72 partitions 

where the real f�-value is calculated. 
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Table 8.1: Statistic analysis of void volume fraction (f�) contained in partitions. 

Partition 
position 

f� Partition 
position 

f� Partition 
position 

f� 

1-1-1 0.002571 2-1-1 0.000350 3-1-1 0.000799 
1-1-2 0.000622 2-1-2 0.000005 3-1-2 0.001830 
1-1-3 0.000888 2-1-3 0.000043 3-1-3 0.000353 
1-1-4 0.001050 2-1-4 0.000257 3-1-4 0.001418 
1-2-1 0.002953 2-2-1 0.000204 3-2-1 0.001596 
1-2-2 0.000332 2-2-2 0.000185 3-2-2 0.002972 
1-2-3 0.000144 2-2-3 0.000059 3-2-3 0.001661 
1-2-4 0.002518 2-2-4 0.000306 3-2-4 0.002054 
1-3-1 0.000316 2-3-1 0.000060 3-3-1 0.000873 
1-3-2 0.001521 2-3-2 0.000084 3-3-2 0.004362 
1-3-3 0.001501 2-3-3 0.000131 3-3-3 0.005592 
1-3-4 0.001673 2-3-4 0.000466 3-3-4 0.001518 
1-4-1 0.000034 2-4-1 0.000018 3-4-1 0.004158 
1-4-2 0.000132 2-4-2 0.000036 3-4-2 0.005463 
1-4-3 0.002978 2-4-3 0.000023 3-4-3 0.002250 
1-4-4 0.002135 2-4-4 0.000539 3-4-4 0.002556 
1-5-1 0.000938 2-5-1 0.000110 3-5-1 0.006090 
1-5-2 0.000576 2-5-2 0.000034 3-5-2 0.004404 
1-5-3 0.000829 2-5-3 0.000661 3-5-3 0.003313 
1-5-4 0.002127 2-5-4 0.000183 3-5-4 0.006381 
1-6-1 0.000215 2-6-1 0.000065 3-6-1 0.001326 
1-6-2 0.001032 2-6-2 0.000375 3-6-2 0.007234 
1-6-3 0.000055 2-6-3 0.000449 3-6-3 0.002977 
1-6-4 0.000304 2-6-4 0.000261 3-6-4 0.004602 

Mark red: partitions with higher f�-value, Mark black: partitions with lower f�-value, Mark 

green: partition with average f�-value. 

  

Fig. 8.23: The f�-values for different partitions where a larger diameter of the ball stands for 

the f�-value in this partition is higher than in the region with a smaller ball.  
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Fig. 8.24: Rousselier elements around the initial notch front are defined with the real f�-

values. 

 

  
 

Fig. 8.25: Simulated damaged elements (red color) at CMOD=1.25 mm with definition of 

real f�-values for 150 µm3 partitions.   

 

 

Fig. 8.26: Simulated damaged elements (red color) as in Fig. 8.24 on the fracture surface of 

the sheet specimen.  
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Fig. 8.27: Simulated damaged elements (red color) at CMOD=1.875 mm with definition of 

true f�-values for 150 µm3 partitions.   

 

Simulations are also performed when using a doubled partition area (300 x 300 x 300 µm3) 

and the corresponding Rousselier element set in the simulation containing 6 x 6 x 6 

elements. After calculation, when numerical CMOD=1.25 mm, the predicted crack 

propagation is shown in Fig. 8.28 where the maximal crack length is observed at sections 

which are 50-200 µm apart from the middle section of the specimen. When numerical 

CMOD=1.875 mm, the predicted crack propagation is shown in Fig. 8.29 where the 

maximal crack length is observed at the sections which are 100-200 µm apart from the 

middle section of the specimen.  

 

In order to reduce the numbers of partitions, the elements around the initial notch are 

divided into three regions which stand for different volume fractions of inclusions in the 

material, the elements highlighted in red color stand for the material regions with higher 

Rousselier parameter (f�=0.00714), the f�-values (f� =0.00046) in the blue elements are 

smaller than the experimental f�-value (f�=0.0015) obtained from Image J, as shown in Fig. 

8.30. After the calculation, when numerical CMOD=1.25 mm, the predicted crack 

propagation are shown in Fig. 8.31 and Fig. 8.32 where cracks propagate not only along 

the x-direction (crack propagation direction) but also along the y-direction (loading direction) 

together with the thickness direction (z-direction) and the maximal crack length is observed 

at the cross section which is 200 µm apart from the middle section of the specimen. The 

damaged elements extracted from Fig. 8.31 are shown in Fig. 8.33 where the longest flat 

cracks located at the cross section which is 200 µm from the middle section of the 

specimen is shown. This simulation result is the same to the laminographic imaging where 
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the cracks propagate also in the same two directions in reality (Fig. 8.14). The simulated 

crack propagation length is 450 µm (9 damaged elements) which is very close to the 

experimental observation (454.5 µm). The comparison between the simulated crack shape 

and the 2D laminographic imaging where the longest crack is observed are shown in Fig. 

8.33. The simulation result compares very well with the laminographic observations (T-L) 

where the flat cracks comprise two main cracks. This shows, by adopting different f�-values 

for different material regions in front of the initial notch, the Rousselier model can fit the 

position of the longest flat crack well.  

 

 

Fig. 8.28: Simulated damaged elements (red color) at CMOD=1.25 mm with definition of 

true f�-values for 300 µm3 partitions.   

 

 

Fig. 8.29: Simulated damaged elements (red color) at CMOD=1.875 mm with definition of 

true f�-values for 300 µm3 partitions.   
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Fig. 8.30: Rousselier elements around the initial notch front are defined with different f�-

value (high f�=0.00714, low f�=0.00046, average f�=0.0015). 

 

 
 

Fig. 8.31: Simulated damaged elements (red color) on the fracture surface of the sheet 

specimen where the longest crack appears at the cross section which is 200 µm from the 

middle section of the specimen.  

 

 

Fig. 8.32: Simulated damaged elements (red color) as in Fig. 8.31 on the fracture surface of 

the sheet specimen are shown. 
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Fig. 8.33: Comparison between the simulation and the laminographic imaging of 2D cross-

section (T-L) where the longest cracks are observed. 

 

Simulated F-CMOD-curves obtained with the Rousselier model with different f�-values is 

shown in Fig. 8.34. The simulated F-CMOD-curve when defining for all the Rousselier 

elements the same f�-value (f�=0.0015) leads to the highest F-CMOD-curve compared to 

the case when using the real f�-values in the Rousselier model. This is because when 

defining different partitions the real f�-values, crack initiation appears easier and earlier at 

particle localized regions (f� >0.0015) in the present case at the middle section of the 

specimen during the simulation, resulting in a lower F-CMOD-curve as shown in Fig. 8.34. 

The simulated F-CMOD-curves obtained from the Rousselier models using real f�-valus for 

150 x 150 x 150 µm3 partitions, 300 x 300 x 300 µm3 partitions and three main regions are 

very close. This can explain although some differences (Fig. 8.21 vs. Fig. 8.25 vs. Fig. 8.28 

vs. Fig. 8.31) exist on the fracture surfaces with different definition of f� -values in the 

Rousselier model, if the real f�-values are used for the partitions, the size of the partitions 

do not have obvious influences on the F-CMOD-curves. The simulated F-∆a-curves at the 

middle section of the sheet specimen with different definition of f�-values is shown in Fig. 

8.35. When ∆a ≥ 0.55 mm, the simulated force obtained with the average f� -values   

definition in the Rousselier model has higher force in comparison to other definition of f�-

values. This coincides with the F-CMOD curve when CMOD>1.1 mm as shown in Fig. 8.34.  
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Fig. 8.34: Simulated F-CMOD-curves obtained from the Rousselier models with different 

definition of f�-values in the model.  
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Fig. 8.35: Simulated F-∆a-curves obtained from the Rousselier models with different 

definition of f�-values in the model.  

 

8.3 Discussion and Conclusions 

The 3D initial status and the crack progress of a 1 mm thickness sheet specimen loaded 

under different loading steps from S355 base material are successfully obtained with 

synchrotron radiation-computed laminography technique for the first time. Reconstructed 

2D (T-L) laminography images of the middle section and the section where the longest 

crack located are shown in Fig. 8.3 and Fig. 8.5 separately. MnS particles are found 

localized at some regions which coincide with the metallographic investigations (Fig. 3.1) 

and cracks originate from these particles during material deformation. The volume fraction 

of the inclusions (initial voids plus MnS particles) is 0.0015 which is obtained from the 

Image J software. This value is used for the calculation of the 3D Rousselier model. 
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Although the stress triaxility from the calculation is high in the center of the sheet specimen, 

the main crack is found located at another scan section, showing the MnS particles are the 

dominant factor for damage. The laminography images at two different cutting positions 

through the thickness (T-S) are shown where a shear band is found between two 

neighboring cracks at the loading step when CMOD=1.25 mm. The laminographic images 

of the T-S section shows that cracks propagate not only along the crack propagation 

direction (L) but also through the thickness (S). The laminographic imaging of 2D cross 

sections (T-L) and the imaging through the thickness (T-S) show the complexity of the real 

damage evolution of the thin sheet specimen.  

 

3D laminographic imagines were built with the Amira software. The spherical initial voids 

are randomly distributed in the bulk material. In comparison to the voids, MnS particles are 

flat shaped and localize at some regions, e.g., in front of the initial notch. The elongated 

MnS particles are due to the influence of rolling during material production. This observation 

information from laminographic imaging (Fig. 8.9) coincides with the experimental data of 

optical microscope pictures which is shown in Fig. 3.1. During the material deformation 

process, void nucleation, growth and coalescence happen from these particles at early 

strain stages. Microcracks originate mostly from localized particles (Fig. 8.10) in front of the 

initial notch where the local stress is very high. Neighboring microcracks propagate and 

connect each other not only along the crack propagation L direction but also along the 

thickness (S direction) direction, forming obvious cracks in front of the notch, as shown in 

Fig. 8.11. A shear band is observed between the two main cracks (Fig. 8.12) and the final 

main crack is formed when the shear crack connecting these two main cracks. The damage 

evolution comprising the flat and the slant fracture mechanisms is observed for the first time 

with the assistance of SRCL. In order to describe the real damage evolution before shear 

cracks arise, 3D model is required to predict the crack propagation not only along the L 

direction but also along the loading (T) direction and through the thickness (S) direction. 

 

The Rousselier model which describes the damage evolution of void initiation, growth and 

coalescence is adopted to predict the crack propagation of a sheet specimen before the 

shear cracks happen. The first calculation is made where the Rousselier parameter (f�) is 

defined the same for the all materials around the initial notch. After the calculation, the 

longest simulated crack is found in the center of the specimen where the stress triaxility is 

high. However, the simulated crack front on the fracture surface of the C(T) shows the 
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longest crack situated in the center of the specimen which is different from laminographic 

imaging where the longest crack is found at the cross section which is 200 µm from the 

middle section of the specimen. In order to simulate the flat crack propagation on the 

different crack planes in front of the initial notch, the regions in front of the initial notch are 

divided into 72 partitions (150 x 150 x 150 µm3). The true f�-values obtained from the Image 

J software are used for the respective Rousselier element set (3 x 3 x 3 elements) in front 

of the initial notch. After the calculation (CMOD=1.25 mm), cracks propagate not only along 

the x-direction (crack propagation direction) but also along the z-direction (thickness 

direction) in the model and the maximal crack length is found located at other cross 

sections which are 50-200 µm from the middle section of the specimen, as shown in Fig. 

8.25. The simulated maximal crack length on the fracture surface of the sheet specimen 

(600 µm) is larger than the laminographic imaging (454.5 µm) at a 2D cross section (T-L) 

when CMOD is 1.25 mm. Simulations are also performed when using a doubled partition 

area (300 x 300 x 300 µm3) and the corresponding Rousselier element set in the simulation 

containing 6 x 6 x 6 elements. After calculation, when numerical CMOD=1.25 mm, the 

predicted crack propagation is shown in Fig. 8.28 where the maximal crack length is 

observed at sections which are 50-200 µm apart from the middle section of the specimen. 

The simulated crack length on the fracture surface of the sheet specimen (600 µm) is also 

larger than the laminographic imaging (454.5 µm) at a 2D cross section (T-L) when CMOD 

is 1.25 mm. In order to reduce the number of partitions, the elements around the initial 

notch are divided into three regions which stand for different volume fraction of inclusions in 

the material. After calculation, the longest flat crack is located at the cross section which is 

200 µm from the middle section of the specimen when CMOD=1.25 mm. This simulation 

result is the same as the laminographic imaging as shown in Fig. 8.33. The simulated crack 

propagation length is 450 µm which is very close to the experimental observation (454.5 

µm). This shows the 3D Rousselier model can predict the fracture surface of the sheet 

specimen well before the shear cracks happen. 

 

The final crack propagation is not predicted with the Rousslier model as the shear 

coalescence fracture mechanism has not been considered in the current model, indicating 

the requirement for a better coalescence model. A modified GTN model which considers 

the shear fracture mechanism is given in the literature [Nahshon and Hutchinson, 2008], the 

modified Rousselier model which consider the damage progress of shear cracks during the 

damage evolution is needed in the future work.  
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9. Summary and Outlook 

9.1 Summary 

This work is motivated by the demands of the safety assessment of structural weldments 

and the demand to predict crack propagation in the weldment. The main focus concentrates 

on fracture mechanisms and crack propagation of an S355 electron beam welded joint. The 

thesis consists of two main parts, the experimental investigations and the numerical works 

performed on the welded joints.   

 

The chemical composition of S355 base material was measured by spectrometric analysis. 

MnS particles are non-metallic inclusions which are assumed as to nucleate voids during 

material deformation. In order to define the different weld regions, hardness measurements 

were performed across the welded joint at three different locations, namely at the weld root, 

the middle-section and the top part of the joints. The dimensions of the weld regions are 

obtained from Vickers hardness values across the S355 welded joints. In order to know the 

volume fraction of MnS particles and the average distances between particles, optical 

microscopy analyses are performed on the BM, the FZ and the HAZ, separately. It can be 

observed from the microscope pictures that the particles are not equally distributed in the 

material but localized in some regions. The volume fraction of all inclusions for the BM, the 

FZ and the HAZ are 0.0009, 0.0018 and 0.0016, respectively. The mean distance between 

neighboring inclusions for the BM, the FZ and the HAZ is found to be 0.10 mm, 0.08 mm 

and 0.12 mm, respectively. After surface etching, microstructures of different weld regions 

are obtained and presented. The BM shows a typical microstructure of steel, which is 

comprised of Ferrite and Perlite. Acicular martensite structures can be found in the FZ. The 

microstructure of the HAZ consisting of Ferrite, Pearlite and Martensite is a transitional 

region between the BM and the FZ. Smooth round specimens extracted from the BM and 

flat specimens obtained from the BM, the FZ and the HAZ are tensile tested. The 

comparison of engineering stress-strain curves obtained from a smooth round specimen 

and from a flat specimen extracted from the BM is made. Good match between these two 

curves shows that the flat specimen produces the same stress-strain curves as the smooth 

round specimen. Stress-strain curves of different weld regions are shown which are used 

as the finite element model input. Notched cylindrical specimens with 4 mm notch radius 

were extracted from the BM and from the HAZ, of which the length direction is 
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perpendicular to the weld line. The experimental results are shown in the form of F-∆L- and 

F-∆D-curves. Transverse flat tensile specimens where the weld seam is located in the 

middle of the specimen were tensile tested. Final fracture is found being located in the BM, 

showing the FZ is stronger than the BM and the electron beam welded steel joint is strong 

enough for the application in structural components in industry. Fracture toughness tests 

are performed on the C(T)-specimens extracted from different positions of weldment, i.e., 

the initial crack was located in the BM, in the middle of the FZ as well as at the interface 

between the FZ and the HAZ. The unloading compliance method was adopted in order to 

capture the crack growth. The experimental data are shown in the form of F-COD-curves 

together with the fracture resistance JR-curves. After the investigation of the fracture 

surfaces of C(T)-specimens (obtained from SEM), both C(T)-BM and C(T)-HAZ show 

typical ductile fracture behavior where large dimples are connected by small voids. The 

C(T)-FZ shows quasi-brittle behavior. 

 

As the BM and the HAZ show ductile fracture behavior, the Rousselier model and the GTN 

model which describe the evolution of void nucleation, growth and coalescence are adopted 

to investigate the fracture behavior of C(T)-BM and C(T)-HAZ specimens. A parameter 

study of the Rousselier model and the GTN model is performed on a notched round 

specimen and a C(T)-specimen extracted from the BM. The influence of the Rousselier and 

GTN parameters on the F-∆D-, F-COD- and JR-curves are shown. Based on metallographic 

investigations on the BM and the HAZ, the Rousselier and GTN parameters are calibrated 

on notched round specimens, both for the BM and for the HAZ. The same Rousselier and 

GTN parameter set is used to predict the crack propagation of C(T)-BM and C(T)-HAZ. 

Good match between the experimental data and numerical simulations results are obtained 

in forms of F-COD-curves and fracture resistance JR-curves, showing the Rousselier and 

GTN models can predict crack propagation in the homogeneous base material and in 

inhomogeneous welded joints well.  

 

In comparison to the damage models (Rousselier model and GTN model), a 

phenomenological model – the cohesive zone model is adopted to investigate crack 

propagation in an electron beam welded joint. A parameter study was performed on the 

C(T)-BM under the TSL with exponential softening. The influences of the cohesive strength 

(T0), the cohesive energy (Г0), the size of the cohesive element and the shape of the TSL 

on the F-COD- and JR-curves were derived. An exponential and a trapezoidal shaped 
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traction separation law (TSL) are adopted to investigate the damage behaviour of C(T)-BM 

and C(T)-HAZ. Good predicted F-COD- and JR-curves are obtained when different 

appropriate cohesive parameter sets with different TSLs are chosen. With exponential and 

trapezoidal shaped TSL, the partial unloading process of the F-COD-curve from a C(T)-BM 

specimen is simulated with the cohesive zone model. The numerical Ji-values are 

calculated with the domain integral method. The shapes of the cohesive models for C(T)-

BM and C(T)-HAZ are derived from a one element Gurson model simulation. For the C(T)-

BM, the relative stress vs. relative separation curve obtained from a one element Gurson 

model simulation is similar to the shape of exponential softening TSL and the numerical Ji-

value (∆a=0.1 mm) obtained from the cohesive model with an exponential softening TSL is 

close to the experimental J0.1-value (∆a=0.1 mm), the exponential softening TSL is 

assumed as a suitable shape and the corresponding cohesive energy obtained from the 

simulation is a more precise value. For the C(T)-FZ,  a well simulated F-COD-curve is 

obtained when a TSL with linear softening is used. For the C(T)-HAZ, since the relative 

stress vs. relative separation curve from a one element Gurson model is very close to the 

trapezoidal shape, the trapezoidal shaped TSL is assumed as reasonable. The 

corresponding cohesive parameter set obtained with the trapezoidal shaped TSL is 

assumed to be realistic. No matter whether the fracture behavior of the material behavior is 

ductile or brittle, the cohesive zone model is able to simulate the crack propagation of the 

C(T) extracted from S355 welded joint, showing its superiority. 

 

C(T)-specimens obtained from the S355 base material are monotonic tensile tested in 

combination with the ARAMIS system. The ARAMIS system monitored the crack 

propagation on the surface of the C(T)-specimen. Damage evolution on the surface of the 

C(T)-specimens are captured by the cameras and the photos are shown at different loading 

time during the experiment. The equivalent strain distributions calculated from the ARAMIS 

system at different load moments were obtained. In comparison to the values obtained from 

the images of the ARAMIS camera, the crack length obtained from the output of the 

ARAMIS software is not accurate. Some damaged materials are assumed as non-damaged 

ones or some non-damaged regions are assumed as damaged ones because of the losses 

of the spray points on the surface of the undamaged material. The unexpected loss of the 

adherences of spray paints on the monitored region is the reason why the current ARAMIS 

system cannot give the correct crack lengths on the surface of the C(T) at each loading 

instant. However, the crack propagation on the surface of the C(T)-specimen is monitored 
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during the test of C(T) and the force vs. crack propagation curve is made which cannot be 

obtained directly from the unloading compliance method and the ASTM standard. This test 

procedure in combination with ARAMIS may supplement the ASTM standard for testing the 

fracture toughness of the C(T)-specimens after solving these technical problems during the 

tensile test of the C(T). The 2D and 3D GTN models are adopted to predict the crack 

propagations of one side grooved C(T)-specimen tensile tested under monotonic loading 

condition. Simulated F-COD-curves from the 2D GTN model fit the experimental ones well. 

The 3D GTN model can simulate a similar fracture surface of side grooved C(T)-specimens 

when the GTN parameter set summarized in table 5.2 is used. However, less crack 

extension areas and shorter crack lengths are obtained when the GTN parameter set 

summarized in table 5.2 but with f�=0.002 is used. This is because in the monotonic tensile 

test of the C(T)-specimen, both flat fracture and slant fracture (confirmed by the rugged 

region in the stable crack growth region in Fig. 7.14(b)) give contributions to the final 

fracture. Whereas, only the flat crack due to the void initiation, growth and coalescence is 

considered in the GTN calculation, leading to the maximal crack length on the fracture 

surface of the C(T) being smaller than the experimental observation. 

 

The damage evolution of S355 base material under load is obtained with a 

synchrotron radiation-computed laminography (SRCL) technique for the first time. 

Reconstructed 2D (T-L) laminography images of the middle section and the section where 

the main crack were observed are derived. Although the stress triaxility is high in the middle 

section of the sheet specimen, the main crack is found located at another scan section (200 

µm from the middle section of the sheet specimen), showing the MnS particles are the 

dominant factor for the damage evolution. The laminographic images of the T-S section 

show that cracks propagate not only along the L direction but also through the thickness (S). 

The laminographic imaging of 2D cross sections (T-L) and through the thickness (T-S) show 

the complexity in the real damage evolution in thin sheet specimens. After the 

reconstruction of the scanning data, void initiation, growth and coalescence from 

elongated and localized particles are visualized in 3D pictures.  

 

Microcracks are found localized at some regions, e.g., in front of the initial notch where 

cracks can easily be formed at the early strain stage. A shear band is observed between 

the two main cracks and the final main crack is formed when the shear crack connects 

these two main cracks. This complex damage evolution of the S355 base material 
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comprising the flat and slant crack is observed with the assistance of SRCL. As the crack 

propagates both along the L direction and thickness (S) direction during the monotonic 

loading, the 3D Rousselier model is adopted to predict the fracture shape of the C(T)-

specimen before shear cracks arise. The material in front of the initial notch is divided 

into many partitions of which the true f�-values are obtained. According to the positions of 

the partitions, the Rousselier elements in front of the initial notch are divided into many sets 

where the corresponding true f�-values are used in the simulations. The maximal simulated 

crack length (CMOD=1.25 mm) is found located at the T-L cross section which is the similar 

as the experimental one (200 µm from the center section of the specimen). However, when 

150 x 150 x 150 µm3 and 300 x 300 x 300 µm3 Rousselier element sets are used separately, 

simulated crack lengths (600 µm) on the fracture surface of the sheet specimen are longer 

than laminographic image (454.5 µm) at a 2D cross section (T-L) when CMOD is 1.25 mm. 

The damage is overestimated in the Rousselier model where the first crack occurs at a 

numerical CMOD=0.43 mm which is earlier than the appearance of microcracks in the 

experimental observation (CMOD=0.625 mm). When the Rousselier elements around the 

initial notch are divided into three regions as shown in Fig. 8.30, the Rousselier model can 

simulate the fracture surface well where the longest flat cracks are located at the cross 

section which is 200 µm from the middle section of the specimen at CMOD=1.25 mm. This 

simulation result is the same as the laminographic imaging as shown in Fig. 8.33 and the 

simulated crack propagation length is 450 µm which is very close to the experimental 

observation (454.5 µm) showing the Rousselier model can simulate the crack propagation 

of the sheet specimen well before the shear cracks appearance. 

 

9.2  Outlook 

Improvements are still possible about the experimental investigation and simulation work on 

S355 electron beam welded joints. Some possible improvements are listed as follows: 

 

As what has been discussed in chapter 7, the current ARAMIS machine at MPA cannot 

quantitatively analyze the crack propagation of the C(T)-specimen. Future tests in 

combination with an advanced ARAMIS system which can store more images should be 

made. It is expected that the F-COD- and F-∆a-curves will be obtained in these future tests 

when advanced ARAMIS systems are adopted.  
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Due to the limitation of the current beamline, energy absorption of the voids and particles 

during laminography scanning is very similar. After the reconstruction of the scanning data, 

it is not possible to separate initial voids and non-metallic particles with the current 

experimental data. A new technique should be adopted in future laminography experiments 

on the S355 sheet specimens where the particles and initial voids can be distinguished.  

 

Current damage models have not considered the shear crack coalescence mechanism 

which is observed in the laminographic scanning. In order to describe such fracture 

mechanism, an improved damage model (e.g., the modified Rousselier model) considering 

the shear crack coalescence mechanism is needed in the future work. 
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Appendix 

 

Sketches of different tested specimens used in the thesis are shown. 

 

 

 

A. 1: Sketch of standard tensile round bar (M16). 

 

 

 

A. 2: Sketch of standard tensile round bar (M8). 

 

 

A. 3:  Sketch of 4 mm notched round bar.  
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A. 4: Sketch of extraction positions of manufacture blocks and the dimension of the flat 

specimens.  

 

 

A. 5: Sketch of transverse flat specimen where the weld seam is located in the center of the 

specimen. 

 

A. 6: Sketch of the compact tension specimen ((C(T)25) with 20% side groove. 

BM FZ 

HAZ HAZ 



Appendix 177  

 

 

 

 
 

A. 7: Sketch of the thin sheet (1 mm) specimen used for in situ laminography study with the 

dimensions of 60 x 60 x 1 mm3. 
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