
Institut für
Höchstleistungsrechnen

Adrian Reber

PROCESS MIGRATION
IN A PARALLEL ENVIRONMENT

 FORSCHUNGS- UND ENTWICKLUNGSBERICHTE

ISSN 0941 - 4665 May 2016 HLRS-16

PROCESS MIGRATION
IN A PARALLEL ENVIRONMENT

Höchstleistungsrechenzentrum
Universität Stuttgart
Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Prof. E.h. M. M. Resch
Nobelstrasse 19 - 70569 Stuttgart
Institut für Höchstleistungsrechnen

von der Fakultät Energie-, Verfahrens- und Biotechnik
der Universität Stuttgart zur Erlangung der Würde eines
Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Adrian Reber
aus Esslingen

Hauptberichter: Prof. Dr.- Ing. Dr. h.c. Dr. h.c. Prof. E.h.
 Michael M. Resch
Mitberichter: Prof. rer. nat. Peter Väterlein
 Prof. Dr.-Ing. Stefan Wesner
Tag der mündlichen Prüfung: 03.12.2015
CR-Klassifikation: I.3.2, I.6.6

ISSN 0941 - 4665 May 2016 HLRS-16

D93

Contents

1 Introduction 21

1.1 Motivation . 21

1.2 Goals . 22

1.3 Structure of this work . 22

2 State of the Art 25

2.1 Hypervisor . 28

2.2 Para-Virtualization and Container Based 29

2.3 I/O Accesses . 29

2.4 Process Migration . 30

3 Process Migration 33

3.1 The Process . 33

3.1.1 Process Management . 34

3.1.2 Memory Management . 35

3.1.3 File Management . 36

3.2 Memory Transfer Methods . 37

3.2.1 Memory Transfer During Migration 38

3.2.2 Memory Transfer After Migration 39

3.2.3 Memory Transfer Before Migration 40

3.3 Preemptive Migration . 41

3.3.1 Single System Image . 43

3.4 Checkpoint/Restore Migration 43

3.4.1 Berkeley Lab Checkpoint/Restart 46

5

6 Contents

3.4.2 Distributed MultiThreaded Checkpointing 47

3.4.3 Kernel-Space-Based . 48

3.4.4 User-Space-Based . 50

3.5 Post-Copy Migration vs. Pre-Copy Migration 53

3.6 Process Migration . 54

4 Parallel Process Migration 57

4.1 Related Work . 57

4.2 Parallel Process Migration . 59

4.3 Open MPI . 62

5 Results 65

5.1 Approaches and Implementation 66

5.1.1 Requirements - Constraints - Limitation 66

5.1.2 Kernel-Space-Based Process Migration 69

5.1.3 User-Space-Based Process Migration 70

5.1.4 Process Identifier . 72

5.1.5 Environment Variables 73

5.1.6 Security . 74

5.1.7 Implementation within Open MPI 75

5.1.8 Re-Parenting . 77

5.1.9 Output Redirection . 78

5.2 Test and Validation Methods 79

5.3 UDP Ping Pong - udpp . 80

5.4 memhog . 81

5.4.1 Via Ethernet with a local SSD 82

5.4.2 Via InfiniBand with a local SSD 84

5.4.3 Via Ethernet with a local RAM drive 85

5.4.4 Via InfiniBand with a local RAM drive 87

5.4.5 Test Case Summary with memhog 87

5.5 FENFLOSS . 89

6 Conclusion and Outlook 97

6.1 Conclusion . 97

Contents 7

6.2 Outlook . 102

Bibliography 105

8 Contents

Glossary

AIX Advanced Interactive eXecutive. 45

BLCR Berkeley Lab Checkpoint/Restart. 46–49, 58

BTL Byte Transport Layer. 63

C/R checkpointing and restoring. 38, 40, 43–52, 55, 57–59, 62, 63, 66, 67,

69–72, 75, 98–103

CLI command-line interface. 73

compute cluster (or cluster) is the combination of all components which are

part of a compute cluster. 11, 22

computer simulation is used to simulate a system with the help of programs

running on one or multiple computers. 21

CPU Central Processing Unit. 22, 23, 25, 28–30, 32–35, 39, 41, 55, 67, 69, 79,

98, 100, 102, 103

CRIU Checkpoint/Restore in Userspace. 51, 52, 70, 71, 76–79, 98, 99, 101

CRS Checkpoint/Restart Service. 75, 76

DMTCP Distributed MultiThreaded Checkpointing. 47, 48, 72, 100

FENFLOSS Finite Element based Numerical Flow Simulation System. 89, 90,

92, 93, 95, 101

9

10 Glossary

FPU Floating Point Unit. 69

guest is one of (possible) many virtual machines running on a host which is

providing a platform for virtualization with the help of a hypervisor. 10

HNP Head Node Process. 78

host (or physical host) is the actual hardware on which multiple virtualized

guest systems are running. 10, 25

HPC High Performance Computing. 21–23, 28–30, 32, 37, 38, 43, 45–47, 57,

59, 65, 67, 69, 73–75, 97–103

I/O Input/Output. 30, 58, 76, 103

IP Internet Protocol. 31, 80, 81

ISA Instruction Set Architecture. 31, 66, 67, 69, 100, 101

iSCSI Internet Small Computer Systems Interface. 27

KVM Kernel-based Virtual Machine. 27, 53, 54

LAN Local Area Network. 31

MCA Modular Component Architecture. 75

MPI Message Passing Interface. 22, 23, 32, 57–63, 90, 98, 101, 102

NAS Network-Attached Storage. 27

NFS Network File System. 79

node is a generic term referring to a single computer in compute cluster. 21

ORTE Open Run-Time Environment. 62, 77

Glossary 11

OSPF Open Shortest Path First. 31

PID Process Identifier. 35, 48, 72–74, 78, 99, 100

QDR Quad Data Rate. 79

RAM Random-access memory. 35, 68, 69, 71, 79, 82, 85, 90

RPC Remote Procedure Call. 77

SAN Storage Area Network. 27

SMTBF system mean time between failure. 58, 59

SR-IOV Single Root I/O Virtualization and Sharing. 30

SSD Solid-state drive. 68, 69, 71, 79, 82, 84, 85, 89

SSH Secure Shell. 75

SSI single-system image. 43, 57

SUPER-UX Operating system running on NEC SX architecture supercom-

puters. 45

system see compute cluster. 22

UDP User Datagram Protocol. 65, 80, 81

VLAN Virtual Local Area Network. 31

WAN Wide Area Network. 31

12 Glossary

List of Figures

3.1 Process Table . 34

3.2 Virtual Memory - ”page table” 36

3.3 Memory Transfer During Migration 38

3.4 Memory Transfer After Migration 39

3.5 Memory Transfer Before Migration 40

3.6 Preemptive Migration . 42

4.1 MPI migration starting point 59

4.2 MPI migration complete node 60

4.3 MPI migration load balancing 61

4.4 Open MPI layers . 62

4.5 Open MPI process tree . 63

5.1 Direct vs. Indirect Migration . 68

5.2 Open MPI process tree . 75

5.3 Open MPI initiate checkpoint 76

5.4 Open MPI initiate restart . 77

5.5 Open MPI spawn opal-restart 77

5.6 Open MPI calls CRIU for restore 78

5.7 Open MPI process tree after restore 78

5.8 udpp migration . 81

5.9 Comparison of migration time via Ethernet using SSDs with and

without pre-copy . 84

13

14 List of Figures

5.10 Comparison of migration time via InfiniBand using SSDs with

and without pre-copy . 85

5.11 Comparison of migration time via Ethernet using a RAM drive

with and without pre-copy . 87

5.12 Comparison of migration time via InfiniBand using a RAM drive

with and without pre-copy . 88

5.13 Comparison of migration time using pre-copy 90

5.14 Comparison of migration time without pre-copy 91

5.15 FENFLOSS memory transferred during migration with and with-

out pre-copy . 92

5.16 FENFLOSS migration duration with and without pre-copy . . . 94

List of Tables

3.1 Checkpoint/Restart implementations overview 52

5.1 Memory bandwidth measured using the STREAM benchmark . 79

5.2 Comparison of migration time via Ethernet using SSDs with and

without pre-copy . 83

5.3 Comparison of migration time via InfiniBand using SSDs with

and without pre-copy . 86

5.4 Comparison of migration time via Ethernet using a RAM drive

with and without pre-copy . 86

5.5 Comparison of migration time via InfiniBand using a RAM drive

with and without pre-copy . 89

5.6 FENFLOSS memory transferred during migration with and with-

out pre-copy . 93

5.7 FENFLOSS migration duration details with and without pre-copy 95

5.8 FENFLOSS migration duration overview with and without pre-

copy . 95

15

16 List of Tables

Zusammenfassung

Um die immer steigenden Anforderungen an Rechenressourcen im High Perfor-

mance Computing zu erfüllen werden die eingesetzten Systeme immer größer.

Die Werkzeuge, mit denen Wartungsarbeiten durchgeführt werden, passen sich

nur langsam an die wachsende Größe dieser neuen Systeme an. Virtualisierung

stellt Konzepte zur Verfügung, welche Systemverwaltungsaufgaben durch höhere

Flexibilität vereinfachen. Mit Hilfe der Migration virtueller Maschinen können

Systemverwaltungsaufgaben zu einem frei wählbaren Zeitpunkt durchgeführt

werden und hängen nicht mehr von der Nutzung der physikalischen Systeme

ab. Die auf der virtuellen Maschine ausgeführte Applikation kann somit ohne

Unterbrechung weiterlaufen.

Trotz der vielen Vorteile wird Virtualisierung in den meisten High Performance

Computing Systemen noch nicht eingesetzt, dadurch Rechenzeit verloren geht

und höhere Antwortzeiten beim Zugriff auf Hardware auftreten. Obwohl die

Effektivität der Virtualisierungsumgebungen steigt, werden Ansätze wie Para-

Virtualisierung oder Container -basierte Virtualisierung untersucht bei denen

noch weniger Rechenzeit verloren geht. Da die CPU eine der zentralen Ressour-

cen im High Performance Computing ist wird im Rahmen dieser Arbeit der

Ansatz verfolgt anstatt virtueller Maschinen nur einzelne Prozesse zu migrieren

und dadurch den Verlust an Rechenzeit zu vermeiden.

Prozess Migration kann einerseits als eine Erweiterung des präemptive Multitas-

king über Systemgrenzen, andererseits auch als eine Sonderform des Checkpoin-

ting und Restarting angesehen werden. Im Rahmen dieser Arbeit wird Prozess

Migration auf der Basis von Checkpointing und Restarting durchgeführt, da es

eine bereits etablierte Technologie im Umfeld der Fehlertoleranz ist. Die am

besten für Prozess Migration im Rahmen dieser Arbeit geeignete Checkpoin-

ting und Restarting Implementierung wurde ausgewählt. Eines der wichtigsten

Kriterien bei der Auswahl der Checkpointing und Restarting Implementierung

ist die Transparenz. Nur mit einer möglichst transparenten Implementierung

sind die Anforderungen an die zu migrierenden Prozesse gering und keinerlei

Einschränkungen wie das Neu-Übersetzen oder eine speziell präparierte Lauf-

zeitumgebung sind nötig.

Mit einer auf Checkpointing und Restarting basierenden Prozess Migration ist

der nächste Schritt parallele Prozess Migration für den Einsatz im High Perfor-

mance Computing. MPI ist einer der gängigen Wege eine Applikation zu paral-

lelisieren und deshalb muss Prozess Migration auch in eine MPI Implementation

integriert werden. Die vorhergehend ausgewählte Checkpointing und Restarting

Implementierung wird in einer MPI Implementierung integriert, um auf diese

Weise Migration von parallelen Prozessen zu bieten.

Mit Hilfe verschiedener Testfälle wurde die im Rahmen dieser Arbeit entwickelte

Prozess Migration analysiert. Schwerpunkte waren dabei die Zeit, die benötigt

wird um einen Prozess zu migrieren und wie sich Optimierungen zur Verkürzung

der Migrationszeit auswirken.

Abstract

To satisfy the ever increasing demand for computational resources, high per-

formance computing systems are becoming larger and larger. Unfortunately,

the tools supporting system management tasks are only slowly adapting to the

increase in components in computational clusters. Virtualization provides con-

cepts which make system management tasks easier to implement by providing

more flexibility for system administrators. With the help of virtual machine mi-

gration, the point in time for certain system management tasks like hardware or

software upgrades no longer depends on the usage of the physical hardware. The

flexibility to migrate a running virtual machine without significant interruption

to the provided service makes it possible to perform system management tasks

at the optimal point in time.

In most high performance computing systems, however, virtualization is still

not implemented. The reason for avoiding virtualization in high performance

computing is that there is still an overhead accessing the CPU and I/O devices.

This overhead continually decreases and there are different kind of virtualization

techniques like para-virtualization and container-based virtualization which min-

imize this overhead further. With the CPU being one of the primary resources

in high performance computing, this work proposes to migrate processes instead

of virtual machines thus avoiding any overhead.

Process migration can either be seen as an extension to pre-emptive multitask-

ing over system boundaries or as a special form of checkpointing and restart-

ing. In the scope of this work process migration is based on checkpointing and

restarting as it is already an established technique in the field of fault toler-

ance. From the existing checkpointing and restarting implementations, the best

suited implementation for process migration purposes was selected. One of the

important requirements of the checkpointing and restarting implementation is

transparency. Providing transparent process migration is important enable the

migration of any process without prerequisites like re-compilation or running in

a specially prepared environment.

With process migration based on checkpointing and restarting, the next step

towards providing process migration in a high performance computing environ-

ment is to support the migration of parallel processes. Using MPI is a common

method of parallelizing applications and therefore process migration has to be

integrated with an MPI implementation. The previously selected checkpointing

and restarting implementation was integrated in an MPI implementation, and

thus enabling the migration of parallel processes.

With the help of different test cases the implemented process migration was

analyzed, especially in regards to the time required to migrated a process and the

advantages of optimizations to reduce the process’ downtime during migration.

Chapter 1

Introduction

Today’s availability of High Performance Computing (HPC) resources and its

integration into the product development cycle can lead to a shorter time to

market and a more predictable product quality by employing computer simula-

tion at different stages of the product development cycle. The need for computer

simulations at multiple stages of the product development cycle as well as the

desire to increase complexity and/or granularity, leads to a higher demand for

HPC resources. This demand is usually satisfied by increasing the number of

nodes which leads to new problems.

1.1 Motivation

One of the problems connected with an increasing number of nodes in an HPC

environment is that system management becomes more complex. Existing tools

and practices are no longer feasible and driven by the larger number of nodes

and other components like power supplies, interconnect and cooling, new system

management approaches are needed which include new intelligent management

and monitoring tools as well as new underlying technologies which offer much

more flexibility.

21

22 Chapter 1. Introduction

1.2 Goals

The primary focus of this work is the ability to migrate processes while they are

running, without interrupting or even affecting the running processes. This offers

new possibilities and flexibilities for system management tasks like updating a

system, replacing hardware which has shown defects or distributing the load

more evenly. It should be possible to perform all of these tasks independently of

the usage of the affected component (node, power supply, interconnect, cooling).

It should no longer be necessary to wait for tasks to finish before said system

management operations can be performed.

In addition to easing system management tasks, process migration makes it

possible to distribute load more evenly. It can be used to migrate processes

from a single node which is running out of resources like available memory or

Central Processing Unit (CPU) cycles. It can also be used to migrate processes

to another part of the compute cluster to free up resources like the interconnect

or to distribute the cooling more evenly throughout the whole system. Not only

should it be possible to migrate the process inside the cluster, it should also be

possible to migrate processes to on-demand spun up instances in the cloud.

To complete the usefulness of process migration in an HPC environment it must

be possible to migrate one or more processes of a parallel calculation which is

running on multiple nodes, to other nodes in the cluster. In the scope of this

work this means to support parallel calculations which are parallelized with the

help of a Message Passing Interface (MPI) implementation.

1.3 Structure of this work

After establishing the necessity of the existence of process migration in the

current chapter, Chapter 2 (page 25) proposes the migration of single processes

(or process groups1) instead of virtual machines to reduce virtualization induced

1a process and its child processes

1.3 Structure of this work 23

overheads in CPU and communication. With the help of process migration it is

possible to use enhanced system management techniques like migration, without

the need to introduce virtualization which is undesirable in an HPC environment

due to overheads connected with virtualization.

Chapter 3 (page 33) introduces the general concepts of a process and what needs

to be considered, to enable process migration. Different methods to transfer the

memory of the process to be migrated are discussed as well as different ap-

proaches to migrating the whole process. After ruling out the pre-emptive mi-

gration approach, different checkpoint/restart based approaches are discussed,

as well as which of the existing checkpoint/restart implementations is the most

promising for use as a basis for process migration.

Chapter 4 (page 57) focuses on process migration in a parallel MPI environ-

ment. Basing process migration and thus parallel process migration on check-

point/restart has the additional advantage that parallel process migration can

use the results of existing fault tolerance related studies.

Chapter 5 (page 65) presents the actual implementations and the results gained

by the implementation.

Chapter 6 (page 97) summarizes this work and provides an outlook identifying

which aspects may become the subject of further studies.

24 Chapter 1. Introduction

Chapter 2

State of the Art

Techniques like virtual memory and preemptive multitasking have made vir-

tualization a core concept of computer sciences for decades. During the last

decade the concept of virtualization has gained considerable attention due to

the availability of different hypervisor providing operating system level virtual-

ization functionality and virtualization has become one of the primary platforms

providing services in a data center. Applications1 no longer run on physical hard-

ware but are increasingly moved to virtual hardware2. With the help of different

hypervisors virtual machines are running on top of those hypervisors and this

model has many advantages compared to using the physical hardware directly.

Each virtual machine can be used to run almost any desired operating system as

the virtual machines behave just like a physical machines would. Modern CPUs

have special abilities to directly support hypervisors, thus enabling hypervisors

to run many operating systems inside many virtual machines on a single host.

Running applications in a virtualized environment has many advantages:

• Consolidation - Running in a virtualized environment provides the pos-

sibility to consolidate many applications on a single physical hardware.

1In this context application is a synonym for any kind of process or service running in the
data center

2or virtual machines

25

26 Chapter 2. State of the Art

Instead of trying to buy multiple servers which attempt to offer exactly

the right amount of resources, it is possible with the help of virtualization

to buy less hardware which is more powerful. Thus decreasing the num-

ber of physical systems which in turn decreases the cost of running those

systems. But instead of running all applications on the same physical ma-

chine and the same operating system, virtualization is used to separate

the applications.

• Separation/Isolation - Running in a virtualized environment provides

separation between the application. With virtualization one can easily

control how many resources each virtual machine receives which in turn

also controls the resources available to targeted application running inside

the virtual machine. But separation is not only helpful for dividing existing

resources, it is also a form of security, as one vulnerable application which

has been compromised does not automatically endanger all applications

running on the same physical hardware3.

• Utilization - Running in a virtualized environment enables better uti-

lization of the physical hardware. The utilization of the resources can be

optimized by dynamically deciding how many virtual machines are running

on one physical machine.

• Administration - On the one hand providing a virtual machine for each

application increases the number of virtual machines and on the other hand

it makes the administration of those virtual machines easier. Running a

dedicated virtual machine for each application makes management tasks

like updating the operating system or updating the application running

inside the operating system much easier as there are no internal dependen-

cies between the running applications since each application is running in

its own virtual machine. Running in a virtualized environment also means

that storage resources are shared. Instead of accessing a physical disk di-

rectly, it is common in virtualized environments to use storage backends

which provide the hard disk from the view of the virtual machine. The

3assuming there are no known vulnerabilities in the hypervisor used

27

hard disk can be a simple file representing the virtual machines hard disk.

The virtual machines hard disk can, however, also be provided by Storage

Area Network (SAN), Network-Attached Storage (NAS), Internet Small

Computer Systems Interface (iSCSI) or object based storage systems.

With the help of snapshotting, fast copies of the virtual disk can be cre-

ated as backups. These snapshots can then be used to easily restore an

application running in a virtual machine after a failure. It can also be

used for testing new features more easily, without the need to reinstall the

whole system in the case of something going wrong.

• Deployment - Using virtual machines, new services can be made available

in a very short time. There is no need to buy new hardware and in the

optimal case new deployment happens automatically.

• Availability - Running in a virtualized environment can also provide

higher availability for the virtual machines than for the physical hardware.

Most virtual environments make it possible to migrate virtual machines

between the existing physical machines running a hypervisor. This en-

ables an automatic or manual reaction to imbalanced use of the existing

resources, or the replacement of defect hardware in one of the physical

machines. All without interrupting the running applications.

All those advantages are available from most of today’s hypervisors and espe-

cially from virtual machine migration. This makes it possible to perform system

management tasks independent of the applications currently running as those

applications can be distributed and balanced over the existing physical hardware

without interrupting those applications. Examples for easy-to-use off-the-shelf

solutions which support virtual machine migration are the hypervisor implemen-

tations from VMware[1] and Kernel-based Virtual Machine (KVM)[2].

28 Chapter 2. State of the Art

2.1 Hypervisor

Hypervisors provide virtual machine migration in different scenarios. Virtual

machine migration in its simplest form has all physical hosts in the same net-

work and all physical hosts are using a shared storage system. In the case a

virtual machine has to be migrated only the state and the memory of the vir-

tual machine have to be migrated. In scenarios where there is no shared storage

system hypervisors also support virtual machine migration in combination with

storage migration. This offers the possibility to migrate virtual machines over

larger distances as not all physical hosts have to access the same storage sys-

tem. Virtual machine migration in combination with storage migration requires

a larger amount of time for the migration as more data has to be migrated.

Another form of virtual machine migration can be used for hot standby scenar-

ios. During the whole runtime of a virtual machine, a second virtual machine

on another physical host is continuously synchronized with the first virtual ma-

chine. This scenario provides very fast migration in the case migration becomes

necessary as most of the data is already transferred to the destination system.

It also provides fault tolerance as the second virtual machine can be activated

as soon as the first virtual machine has a failure.

Comparing an application which is running in a virtualized environment to

an application running on physical hardware leads to the question of whether

resources are wasted in a virtualized environment by the hypervisor which is

controlling the virtualized environment. In any hypervisor implementation there

will be an overhead which requires resources and these resources are not available

to the application which is now running in the virtualized environment (see [3],

[4] and [5] for attempts to quantify the virtualization overhead). Unfortunately

it is not possible to meaningful quantify the overhead as it will vary with the

used virtualization technique as well as with the running workload.

In an HPC environment the primary resource in most of the cases is the CPU

and therefore it is important to know how many CPU cycles are wasted by the

hypervisor. Although the virtual machine performance penalty is minimal, re-

search to optimize the usage of the resources is ongoing and a common approach

2.2 Para-Virtualization and Container Based 29

in an HPC environment is to use para-virtualization[6] or even container based

virtualization[7][8] to reduce the overhead of the virtualization.

Attempts to reduce the virtualization overhead by using simpler virtualiza-

tion techniques like para-virtualization and container based virtualization are

a strong indicator that, no matter how small the overhead is, every CPU cycle

is important and if possible should not be wasted.

2.2 Para-Virtualization and Container Based

Para-virtualization is a virtualization techniques that reduces the hypervisor

overhead with simplified interfaces to the guest operating system. This means

that the guest operating systems needs to be adapted to run in the para-

virtualized environment which at the same time means that the hypervisor is

not required to emulate real hardware. The guest operating system is aware that

it is running in a para-virtualized environment. Container-based virtualization

which is also called operating system-level virtualization is a virtualization tech-

niques with minimal overhead. It does not emulate an operating system but pro-

vides mechanisms to separate the processes running in the container instances.

Just like hypervisor based virtualization container-based virtualization provides

the opportunity to limit the resource usage of each container. Most container-

based virtualization implementations, however, do not provide the possibility to

migrate the containers.

2.3 I/O Accesses

Although the virtualization penalty for the CPU is nowadays relatively small it

is important to also consider other hardware resources besides the CPU. The

CPUs which are used in today’s HPC environments usually have the necessary

hardware extensions to support virtualization with low overheads. These tech-

nical advancements are unfortunately not yet widely available in communication

30 Chapter 2. State of the Art

and Input/Output (I/O) hardware components. The fact that communication

and I/O hardware has much higher latencies and lower bandwidths than the

CPU makes those components the bottleneck even in the non-virtualized case

and this bottleneck intensifies even more in the virtualized case[9][10]. Especially

in virtualization scenarios where multiple accesses to those components have to

be multiplexed without hardware support, the virtualization overhead will in-

crease further and performance prediction will become non-trivial if multiple

virtualized environments are running on the same hardware[11].

In contrast to the common approach in virtualization which emulates commu-

nication and I/O hardware components in software, there is Single Root I/O

Virtualization and Sharing (SR-IOV). With the help of SR-IOV those compo-

nents provide a virtual interface (function) which provides a dedicated virtual

device and for the virtual machine the component appears as a device which is

dedicated to one virtual machine. This has the advantage that the functional-

ity does not need to be replicated in the hypervisor’s emulation and latencies

will be much lower than in the emulated case. Although this technology has

mainly been implemented by communication hardware like Ethernet adapters

it can now also be found in InfiniBand hardware[12] which makes it more at-

tractive in an HPC environment. Unfortunately it does not yet provide the full

performance for all use cases[12][13].

Sadly using SR-IOV has the disadvantage that physical components cannot be

paused and the state cannot be transferred during migration, which still requires

operating system support for a successful virtual machine migration.

2.4 Process Migration

To avoid the disadvantages of virtualization like hypervisor overhead which

wastes CPU cycles, high latency communication due to emulation of commu-

nication hardware components, or state loss during migration with SR-IOV,

2.4 Process Migration 31

this work proposes to migrate single processes or process groups4. To migrate

just a process continues the trend of minimizing the virtualization overhead with

the help of simpler virtualization techniques like para-virtualization or container

based virtualization. Operating systems have continued to develop and now also

provide features for separation and isolation which used to require virtualization.

Another advantage of migrating processes and not complete virtual machines is

that it requires a smaller amount of memory to be transferred during migration

as only the process affected has to be transferred and not the complete operat-

ing system. Only migrating a single process makes migration over data center

boundaries easier as less memory has to be transferred and the destination is

independent of the underlying technology used. Process migration is indepen-

dent of running on a virtual machine or a physical machine, independent of

the underlying hypervisor and independent of the storage backend (no shared

storage or storage migration required). As long as the source and destination of

the migration share the same Instruction Set Architecture (ISA) and operating

system (see 5.1.1 (page 66)), a process can be migrated. This independence of

the underlying technology also provides the opportunity to migrate non-parallel

jobs of an overloaded compute cluster to on demand provisioned systems in a

compute cloud.

Although the migration of virtual machines within the same Internet Protocol

(IP) subnet is easy and supported by most hypervisors, migration of virtual

machines over the boundaries of a Virtual Local Area Network (VLAN) or even

over a Wide Area Network (WAN) and larger distances can also be solved by

directly routing to the virtual machines (for example with Open Shortest Path

First (OSPF)). But this usually is a more complicated setup and requires ad-

ditional work compared to the solution provided by existing hypervisors out of

the box. Process migration however is independent of the migration destination

and can be used for migration inside a Local Area Network (LAN) as well as

over a WAN.

In addition to the previous points there is another scenario in which process

4a process with all its child processes

32 Chapter 2. State of the Art

migration is not just better than virtual machine migration but also the only

possible solution. If there are multiple processes running on a single machine in

an HPC environment and if these processes do not all place the same require-

ments on existing resources like memory and CPU, thus creating an imbalance

in the usage of those resources, process migration can help to restore a more

balanced usage of the existing resources by migrating the processes to other sys-

tems. This way a starvation of the processes due to the lack of a resource can

be avoided and the processes can be balanced on the existing resources. With

virtual machine migration, every process needs to run in its own virtual machine

if it ever needs to be migrated. With process migration it is not necessary to

decide in advance what should be possible to migrate. With process migration

any process can be migrated at any time.

To efficiently use process migration in an HPC environment it has to support

some kind of parallelization. With MPI being one of the primary approaches for

parallelizing a computational task over multiple nodes and cores, any kind of

process migration has to support MPI parallelized application. If the MPI en-

vironment can handle process migration it becomes easier to migrate processes

as the knowledge of the underlying communication technology is no longer nec-

essary to the instance triggering the migration.

This chapter proposes to migrate single processes (or process groups) instead of

virtual machines to reduce virtualization induced overheads in CPU and com-

munication. Process migration also requires less data to be transferred during

the migration and reduces the requirements on the source and destination sys-

tem of the migration. With the help of process migration, it is possible to use

enhanced system management techniques like migration without the need to

introduce virtualization which is undesirable in an HPC environment due to

overheads connected with virtualization.

Chapter 3

Process Migration

To migrate a process it is important to understand what a process is and which

approaches and optimization can be used to effectively migrate a process. This

chapter provides an overview of the fundamental concepts of processes and pro-

cess migration.

3.1 The Process

A process is a container or instance of an application or program which is cur-

rently being executed. A UNIX based operating system provides an environment

in which multiple processes are running in a time-sharing configuration. In a

time-sharing configuration the operating system process scheduler schedules the

processes to and from the CPU (context switch) to give each process its share

of the CPU(s).

According to [14, 89] a process consists of an entry in the process table ”with one

entry per process”. Each entry in the process table (see Figure 3.1 (page 34))

includes all the information about the process and the resources which have

been allocated to it.

To be able to provide a time-sharing configuration, modern operating systems

33

34 Chapter 3. Process Migration

Registers

PID

Memory

Files

Registers

PID

Memory

Files

Process 1

Process 2

Process 3

Process ...

Process n

Process Table

Registers

PID

Memory

Files

Figure 3.1: Process Table

which are of interest in the scope of this work already provide abstraction layers

between the process and the hardware. These abstraction layers can already be

seen as some kind of virtualization. The scheduling which is performed by the

operating system can, to some extent, already be seen as a method of migrating

the processes to and from the CPU(s).

In the context of migrating a process from one system to another the following

parts of a process have to be taken in account which will be discussed in the

following sections.

• Process management

• Memory management

• File management

3.1.1 Process Management

Using the process table, it is possible to access vital process data which contains

information on where the operating system has stored the data containing the

3.1 The Process 35

Process Identifier (PID), stack pointer, program counter and content of the

registers. This part also contains the information on the current scheduling

state and pending signals.

As the operating system schedules each process to and from the CPU, depending

on its scheduling state, information like the content of the registers is already

stored in a format that is copied to and from the CPU as needed.

To migrate a process, all those memory structures need be exported from the

operating system the process is currently running on and imported into the

operating system the process should be migrated to. As each process already

uses the abstraction provided by the operating system, it should be possible to

extract this data in order to migrate a process to another system just as the

operating system schedules different processes on a single system.

3.1.2 Memory Management

With the process’ entry in the process table the memory management informa-

tion can be retrieved. This includes the location of the executable code, the

stack and the heap. As only modern operating systems are of interest in the

context of this work, it can be assumed that the memory management uses vir-

tual memory which also provides another abstraction for the memory accesses

just as the operating system does with the time-sharing configuration of the

CPU.

Virtual memory provides its own address space for each application and vir-

tualizes the address space so that the process does not need to know which

kind of physical memory (Random-access memory (RAM) or secondary storage

(e.g., disk)) backs each memory address and wether the memory is contiguous

(see Figure 3.2 (page 36)). The operating system can decide wether the virtual

memory address is backed by actual physical memory or if the virtual memory

address has not been used, it can be paged out. Through the usage of virtual

memory the process has no direct knowledge of the physical memory addresses

actually used, which means that the memory access is virtualized (like already

36 Chapter 3. Process Migration

0x00000000

0x00001000

0x00002000

0x ...

0xnnnnnnnn

Physical
Memory

Physical
Memory

Physical
Memory

Physical
Memory

Secondary
Storage

Secondary
Storage

Physical Address Space
”pageframes”

Virtual Address Space
”pages”

Figure 3.2: Virtual Memory - ”page table”

implied by the name ”virtual memory”). Virtual memory is also used to pro-

tect/restrict the access to each process’ memory as each process can only access

memory mapped through the page table. So just like in the case of process

management, the process is running in a virtualized environment which pro-

vides an abstraction layer for all accesses to memory addresses. As the address

space is virtualized and the operating system already knows how to write the

used memory pages to disk (paging), it should be also possible to page all of the

memory out to another system to which the process should be migrated.

3.1.3 File Management

In the process table there is also an entry concerning the file management for

each process (the file descriptor table). It provides information on the working

directory, root directory and all file descriptors. The file descriptor contains the

details about the files which are in use and for UNIX based operating systems,

which are of interest in the context of this work, a file descriptor can refer to

any file type like a regular file, directory, socket, named pipe or character and

3.2 Memory Transfer Methods 37

block device file. The process gets an identifier with which the file descriptor

can be accessed in the file descriptor table. To migrate a process these memory

structures (file descriptor table and file descriptors) need to be transferred to

the destination system and can then be used to open the files with the same

identifier and at the same position they used to be on the source system. It is

important to remember this only includes the location of the file and its position

and not the actual content of the file. Either the file needs to be transferred

additionally to the destination system or the systems involved in the migration

need to use shared storage system. There are multiple shared file-systems which

can be used to fulfill this constraint and especially in an HPC environment it is

common to use a shared file-system which all systems included in the process

migration can access.

3.2 Memory Transfer Methods

After looking at what needs to be transferred to migrate a process, it is im-

portant to know how the data can be transferred. The largest portion is the

actual memory used by the process. The data structures from the process table

containing the information defining the process require, compared to processes’

memory, only a minimal amount of memory. Therefore it is important to choose

the right method to transfer the memory efficiently.

In the scope of this work three different methods of transferring the memory

to the destination system have been studied. The methods differ in the point

in time at which the memory is transferred. In all cases the process needs to

be suspended for a certain amount of time during which it is migrated. The

memory can now either be transferred before, during or after the process has

been suspended. The process’ information from the process table is transferred

during the suspension in each of those scenarios as it is, compared to whole

amount of memory used, negligibly small. This way it can also be ensured that

the information from the process table does not change during the transfer.

38 Chapter 3. Process Migration

3.2.1 Memory Transfer During Migration

memory
process
table
entrySource

System

Destination
System

Initiate
Migration

Quiesce
Process

transfer
transfer

Finish
Migration

Resume
Process

Time

Migration Duration

Process Downtime

memory
process
table
entry

Figure 3.3: Memory Transfer During Migration

Leaving any optimization aside to reduce the time in which the process is sus-

pended provides the most simple memory transfer method. To migrate a process,

the process is quiesced and then all necessary parts of the process are transferred

to the destination system including the process’ memory and the entries from

the process table. On the destination system the information transferred is in-

cluded in the operating system and the process is then resumed (see Figure 3.3

(page 38)). This method is straight forward and requires no additional effort as

there is no optimization. It has, however, the longest downtime of the migrated

process which can be, depending on the used memory and the interconnect used

to transfer the data, of significant duration (over 600 seconds for 50GB of mem-

ory (see Figure 5.9 (page 84) and 5.10 (page 85))). This is especially important

in an HPC environment where this downtime has to multiplied by the number of

processes involved. This memory transfer method is very similar to the concepts

used by checkpointing and restoring (C/R). The information of the process is

extracted from the operating system and can be stored on a disk for classic C/R

or it can be transferred to another system in order to migrate the process, as it

will be suggested below.

3.2 Memory Transfer Methods 39

memory

memory
process
table
entrySource

System

Destination
System

Initiate
Migration

Quiesce
Process

transfer
transfers on page fault

Resume
Process

Time

process
table
entry

Migration Duration

Process
Downtime

Finish
Migration

Figure 3.4: Memory Transfer After Migration

3.2.2 Memory Transfer After Migration

A possible optimization of the previous method involves transferring the mem-

ory at the moment it is actually accessed. Instead of requiring a downtime of the

process during which all related data are migrated to the destination system, the

downtime is much shorter and only the process table entries are transferred to

the destination system. After the migration, the process is resumed and the pro-

cess’ memory is transferred on-demand whenever it is actually accessed. This

method is very similar to the approach of an operating system which sched-

ules a process on the CPU. If the newly scheduled process accesses memory

which has been paged out, this generates a page fault and the operating system

transfers the missing pages into main memory. The same method can be used

for process migration between systems. If the migrated processes tries to ac-

cess non-migrated memory, this generates a page fault and the memory is then

transferred at this very moment (see Figure 3.4 (page 39)). This significantly

reduces the process’ downtime during the migration but introduces high laten-

cies every time a non-migrated page is accessed. As this method for process

migration (post-copy migration) applies existing practices, which are found in

many operating systems, it seems like a good candidate for avoiding long process

downtime during migration.

40 Chapter 3. Process Migration

3.2.3 Memory Transfer Before Migration

memory
process
table
entrySource

System

Destination
System

Initiate
Migration

Quiesce
Process

transfer

Resume
Process

Time

memory
process
table
entry

Migration Duration

Process
Downtime

Finish
Migration

Figure 3.5: Memory Transfer Before Migration

Instead of transferring the memory on-demand on a page fault, it is also possible

to transfer the memory before the process is quiesced and the process table entry

is migrated (see Figure 3.5 (page 40)). This method has the advantage that it

does not introduce the possibility of high latencies on every page fault as the

memory has to be transferred from the system the process has been migrated

from. This method has similar short process downtimes to the previous method

because the process can keep running during the memory transfer, but once

the process table entry has been transferred, all the memory is already on the

destination system and the process can continue running with no additional

delays due to missing memory pages. This makes this memory transfer method

much more predictable in its behavior. The disadvantage is that the memory

used by the process still running will change meaning some pages need to be

transferred again. At this point additional effort is required to re-transfer only

those pages which have changed during the previous memory transfer. This

method (pre-copy migration) is again closer to C/R than the previous method

(post-copy migration) which was very similar to the process scheduler of an

operating system.

3.3 Preemptive Migration 41

3.3 Preemptive Migration

Process migration can be seen as a special case of regular scheduling as it is

performed by every preemptive multitasking operating system with the differ-

ence being that the process can be scheduled to a different physical (or virtual)

system instead of scheduling the process on a local CPU. However process mi-

gration can also be seen as a specialized form of checkpointing and restarting

(see 3.4 (page 43)) where the checkpointing is not used to write a process im-

age on disk but instead is directly transferred to the memory of the destination

system.

Basing process migration upon the preemptive multitasking of the operating

system is one possible approach to supporting process migration. The process

scheduler of the operating system could be extended to schedule, and thus mi-

grate, the processes to another node instead of scheduling processes only on the

local operating system.

Figure 3.6 (page 42) shows a diagram with the possible steps required during

the migration.

Once the decision to migrate a process has been made, the process to be migrated

has to be quiesced and the migration starts with the transfer of the process table

entry. The process scheduler running in the kernel space requests the transfer

of the process table entry by calling a program in user space. This program

then carries out the actual transfer of the process table entry to the destination

system’s user space. From the user space the process is then transferred to the

kernel space where the process scheduler integrates it in the process table of the

destination system. Once the process is continued on the destination system and

it attempts to access its memory, a page fault occurs which results in a request

for that memory page on the source system. The request has to be passed to

the user space which then transfers the request over the network to the source

system. From the source system’s user space it is forwarded to the kernel space.

Now the requested memory page is transferred to the destination system in the

same way the process table entry previously.

42 Chapter 3. Process Migration

Initiate
Migration

Source
System

kernel
space

user
space

kernel
space

Destination
System

user
space

Network
Connection

request
transfer

network
transfer

Page
Faultrequest

page

network
transferrequest

page

request
transfer

transfer
page

Figure 3.6: Preemptive Migration

This design has many kernel space - user space transition, which make it very

complex and error-prone. Another approach would be to omit the many kernel

space - user space transitions. This other approach unfortunately has further

drawbacks. All methods and programs which are available in user space and

which provide means of data transportation, data security and data integrity

would have to be re-implemented in kernel space. Re-implementation of exist-

ing functionality would require a lot of time and introduce many errors which

have already been solved in the user space implementations. Running the data

transfer in kernel space introduces many possible functional and security related

errors. If such errors are exploited while running in kernel space, such an er-

ror can compromise not only the program running the transfer, but the whole

operating system.

3.4 Checkpoint/Restore Migration 43

So both approaches (completely in kernel space, kernel space - user space transi-

tions) have their drawbacks and would add a lot of complexity to a central part

of the operating system like the process scheduler. Changes to such a central

part of the operating system would drastically decrease the acceptance in an

HPC production environment as the risk of unintentional side effects would be

very high.

3.3.1 Single System Image

Preemptive multitasking over system boundaries is similar to the functionality

provided by single-system image (SSI). SSI provides an abstraction with which

multiple systems and their distributed resources can be accessed as a single sys-

tem. The SSI implementation migrates/distributes the processes between the

existing hosts and provides a single interface to access the resources. There are

different SSI implementations like OpenMosix, OpenSSI and Kerrighed[15]. Un-

fortunately the SSI approach is not very useful in an HPC environment because

the programs used in an HPC environment are usually aware that they will be

running on many nodes and SSI was therefore not studied further.

3.4 Checkpoint/Restore Migration

Checkpoint/Restore, which is also known as Checkpoint/Restart, is known pri-

marily as an approach for providing fault tolerance. All the necessary informa-

tion defining a process or a group of processes is collected and stored (periodi-

cally) in one or multiple files (checkpointing). In the case of fault tolerance this

checkpointed information is used to restore/restart the process after the cause

of the fault has been remedied. By employing C/R only the results since the

last checkpoint are lost and not since the beginning of the entire calculation.

C/R can be used on different levels. It ranges from application level C/R to

fully transparent operating system level C/R. Periodically saving the results can

be seen as the simplest form of application level checkpointing. The application

44 Chapter 3. Process Migration

writes its results since the last checkpoint to a form of of permanent storage and

it also knows how to restore this data in case of a restart. This application level

checkpointing is easy to implement because it is specially tailored for its appli-

cation. The disadvantage is that it has to be re-designed and re-implemented

for every application and thus it can be seen as the opposite of fully transparent.

Trying to be more transparent leads to a variant of application level check-

pointing which is provided by an external library. This is designed to support

checkpointing of as many different applications as possible but it still requires

massive changes to the actual program to be checkpointed. It does not require as

much work to implement as application level checkpointing provided by the ap-

plication, but it still requires a significant number of code changes. The increase

in transparency also leads to higher complexity in the C/R library used. To

be useful in many different applications, it needs to provide more functionality

than the self implemented application level C/R.

The next step in providing a more transparent checkpoint solution is to re-

move the requirement to modify the existing code. A user-space based C/R

solution could require certain libraries to be pre-loaded to intercept operating

system calls, in order to be able to checkpoint and restore the targeted appli-

cation. Again, this increases the complexity of the C/R implementation while

at the same time the checkpointing becomes more transparent. At this level no

more changes are required to actual application which opens C/R for programs

without access to the source code as re-compilation is no longer required. The

environment still needs to be correctly set up so that, for example, certain li-

braries which are intercepting calls from the application to the operating system

are pre-loaded.

Every C/R technique presented came closer to being fully transparent and the

last step is to provide this kind of transparency by implementing C/R on the

operating system level. Thus the application which needs to be checkpointed

has neither to be modified on the source code level, recompiled nor started in a

specially prepared environment.

3.4 Checkpoint/Restore Migration 45

The C/R implementation on the operating system level has the highest com-

plexity but at the same time provides highest transparency and flexibility.

Although having the highest level of complexity, the fully transparent operating

system level C/R implementation is the one with the greatest chance of actually

being used[16]. Every other C/R implementation mentioned has the drawback

that it requires additional work for the application developer or HPC system

administrator and is therefore less likely to actually being employed.

A fully transparent operating system level C/R implementation can also be the

basis of a process migration implementation. Instead of periodically storing the

data of the process on a storage system, the data are transferred directly from

the main memory of the source node to the main memory of the destination

node, thus migrating the process by employing C/R techniques.

As there are multiple existing C/R implementations the most promising candi-

dates have been studied in more detail to be able to decide which C/R imple-

mentation is most suitable as the basis for migrating processes. There are not

just multiple existing C/R implementations but also multiple operating systems

like IBM’s Advanced Interactive eXecutive (AIX) or NEC’s SUPER-UX that

support C/R[17]. In the scope of this work only Linux based C/R implementa-

tions have taken into account. According to the TOP500 list of supercomputer

sites, Linux is used on over 90% of the worlds fastest systems[18]. In addition

to its wide adoption in supercomputing the open nature of Linux makes it a

perfect basis for this work.

To successfully support process migration, the Linux based C/R implementation

needs to be as transparent as possible to support as many different programs as

possible. Transparent C/R is important to avoid re-compilation or running the

program in a special environment (e.g., library pre-loading). The requirement

to re-compile a program and to a lesser extent the requirement to pre-load a

library to re-route system calls, hinders the usage of C/R, especially if the source

code of the program to be C/R is not available. Although the pre-loading of a

library is a good solution to prove a concept, it is not desirable for a production

environment as it adds an additional layer which will decrease the performance

46 Chapter 3. Process Migration

even if the penalty is only minimal. It also requires additional maintenance as

the system call library might be changed for security reasons or to fix bugs, which

then requires an update of the wrapper library which, depending on the mode

of operation, will take much longer than fixing the system call library. Thus the

system will be unusable for an unknown time until the wrapper library has been

fixed.

In the following, four operating system level C/R implementations, providing

transparent C/R, will be evaluated to identify the most promising as basis for

process migration.

3.4.1 Berkeley Lab Checkpoint/Restart

One of the more prominent C/R implementations is Berkeley Lab Checkpoint/

Restart (BLCR)[19] which has now been in existence for about ten years. It was

originally developed as a project which was not part of the official Linux kernel

tree and has been adopted in many HPC environments. Being developed outside

of the official Linux kernel tree has the advantage that its design does not have

to be accepted by the Linux community. On the other hand this development

model has the disadvantage that its development lags behind the official Linux

tree versions and upgrading to a new Linux version always depends on the

availability of a new BLCR release. Another drawback of BLCR’s development

model is that not all Linux distributions include externally (outside of the official

Linux kernel) developed code as its unavailability might block an important

security update. But not being included in Linux distributions used in HPC

requires additional work for the cluster maintenance and it is also not part of

any test suites involving a release of a Linux distribution being covered by its

vendor.

BLCR’s kernel based functionality is located in Linux kernel modules[20]. This

approach makes it easier to maintain the code outside of the official Linux with

its fast changing interfaces. This design also makes it easier to install BLCR

on a system, as the operating system kernel does not require changes and re-

3.4 Checkpoint/Restore Migration 47

compilation. If the BLCR modules can be compiled against the kernel to which

the system has just been upgraded, this makes maintenance easier. The ap-

proach of locating all kernel required functionality in one place has, however,

the drawback that it reduces BLCR’s transparency and the successful use of

BLCR requires the application to be checkpointed have to either be re-compiled

or certain libraries pre-loaded.

The lack of full transparency and the additional steps during cluster software

upgrade were the reasons BLCR was not selected as the basis for C/R based

process migration. Not being part of the official Linux kernel requires additional

work during cluster maintenance and it also increases the risk of not being able

to upgrade due to uncertainty as to whether BLCR will work with the newly

installed kernel.

This leads to an additional requirement of the C/R implementation. It has

either to be included in the official Linux kernel, or it has to be implemented

only in user-space, making it independent of the Linux kernel version and its

changing internal interfaces.

3.4.2 Distributed MultiThreaded Checkpointing

Distributed MultiThreaded Checkpointing (DMTCP) ”is a transparent user-

level checkpointing package for distributed applications”[21] which is imple-

mented completely in user-space. It targets Linux and requires no changes to

the Linux kernel and therefore it fulfilled the requirements of transparency and

running in user-space.

To successfully checkpoint a process, the targeted process needs to be started

in a special environment which preloads certain libraries providing wrappers for

different system calls. By completely running in user-space most of the problems

connected with BLCR concerning its kernel modules do not exist. There is, how-

ever, the disadvantage that every system call needs to go through the pre-loaded

wrappers which probably only means a minimal performance penalty for HPC

programs as the compute intensive parts do not usually use many system calls.

48 Chapter 3. Process Migration

Unfortunately this still introduces an overhead and as previously mentioned,

the goal is to avoid overheads wherever possible. Use of the wrapper DMTCP

also tries to solve the problem of PID collisions (see 5.1.4) by intercepting the

related system calls and providing a virtual PID. On the one hand this provides

a solution to problems connected with PID collisions but on the other hand it

introduces an incompatibility with existing interfaces. A process trying to read

information about its state or its files by accessing the /proc file-system will fail

due to the virtual PID.

With the requirement to pre-load a wrapper library DMTCP is not as transpar-

ent as possible and will always depend on the wrapper library and which system

calls it proxies. This implementation has advantages (independent of the Linux

version) over BLCR but still requires a special setup to pre-load its wrapper

library.

3.4.3 Kernel-Space-Based

Both C/R approaches (BLCR and DMTCP) studied so far still have drawbacks.

By design they are both not completely transparent and require re-compilation

and/or libraries to be pre-loaded. For a completely transparent C/R solution

another design is required. A user-space implementation like DMTCP always

needs to pre-load libraries to intercept system calls. To provide a transparent

C/R solution, a kernel-based approach is needed. BLCR’s decision to locate the

required functionality in kernel modules makes it easy to maintain the code out-

side of the official Linux kernel although it limits its functionality. To develop a

transparent kernel-based C/R solution it has to be much more integrated into

the kernel. Such a tightly integrated C/R solution will be difficult to develop

outside of the official Linux kernel. This leads to a new requirement for the

C/R implementation to be used. In addition to the previously mentioned re-

quirement, that the C/R implementation has to be as transparent as possible, it

also needs upstream inclusion. For a transparent C/R implementation the code

has to be integrated at different places of the Linux kernel and the development

of such functionality can only work if it is part of the official Linux kernel and

3.4 Checkpoint/Restore Migration 49

accepted by the Linux community. Trying to develop C/R functionality outside

of the official Linux kernel would increase the development effort dramatically

due to the fast development model of Linux and its often changing internal in-

terfaces. Another advantage of upstream inclusion is that C/R will more likely

be picked up by Linux distributions which will increase the adoption of C/R in

many different areas.

Because of precisely of these reasons another C/R approach was developed by

Ladaan and Hallyn[22]. As this approach tries to implement C/R as part of the

Linux kernel, it will be called kernel-based-C/R. This kernel based approach was

started in 2008[23]. To avoid the same problems as BLCR and other attempts

to add support for C/R into the kernel, the kernel-based approach tried to work

with the Linux community from the start. One goal was that the changes for

C/R had to go upstream and be part of the official Linux kernel tree. To achieve

this the authors published their work as soon as possible and always worked with

the Linux community and their feedback. The development stalled somewhere

around the beginning of 2011 with the release of Linux 2.6.37.

This was also the time this work started and as the kernel-based approach

was developed in collaboration with the Linux community and was targeted for

upstream adoption it seemed to be a good starting point for process migration.

As the project appeared to have been abandoned by the original developers the

code was ported, as a part of this work, to the latest (at that time (January

2012)) Linux kernel release version 3.2. As there have been four releases of Linux

between 2.6.37 and 3.2 (2.6.38, 2.6.39, 3.0, 3.1) and as the Linux kernel changes

fast, it took some time to port the over one hundred changes from Linux version

2.6.37 to 3.2.

Once all those patches had been adapted to the then latest Linux version 3.2

it was possible to use the kernel-based approach with the then latest kernel for

C/R. On top of those patches, process migration was successfully implemented

and it was possible to move a running process from one system to another

without any requirements on the running program (see 5.1.2 (page 69)).

50 Chapter 3. Process Migration

Although the kernel-based approach was developed with upstream inclusion in

mind it had, unfortunately, no chance of being included. The number of patches

became too large and they were touching too many Linux kernel subsystems.

Although the kernel-based C/R approach started with only nine patches it grew

during its initial development to over 100 patches. For such a big and invasive

change to be accepted by the Linux community, a well-known person, group or

company is required to prove that he, or it, will continue to maintain the newly

introduced changes. As the code was abandoned by the original developers who

moved on to work on other projects it seems that the Linux kernel community

made the right decision.

Although the kernel-based approach, which was the third approach studied in

greater detail, provided transparent C/R without the need to re-compile pro-

grams or pre-load libraries it was not selected as the basis for process migration

in this work. The main reason was, that although is was developed with up-

stream inclusion in mind, it was not accepted by the Linux kernel community

and that would mean that no stable C/R would be available. In particular, the

future of this C/R approach was unclear as no further active development was

taking place.

This led to a new requirement for the C/R approach to be used. The goals

transparency and upstream inclusion are not enough. The new additional re-

quirement is that the C/R approach cannot be too invasive as is the case with

the kernel-based approach. This in particular when looking at the integration

in the Linux kernel. A successful C/R implementation should use existing in-

terfaces as far as possible and only add new interfaces to the Linux kernel if the

problem cannot be solved in another way. This new requirement to use existing

interfaces led to the next C/R approach.

3.4.4 User-Space-Based

Seeing all the shortcomings and failures of the previously studied C/R imple-

mentations it became clear that a new C/R approach was needed. At the

3.4 Checkpoint/Restore Migration 51

Linux Plumbers Conference 2011 a new approach was presented[24] by Pavel

Emelyanov and Kir Kolyshkin which tries to avoid the failures of the other

attempts to get a working C/R implementation:

• transparent: it should be possible to checkpoint and restart as many

applications as possible without re-compilation or library pre-loading.

• not too invasive: the changes for a working C/R to the Linux kernel

have to be as minimal as possible. Reusing existing interfaces instead of

creating new ones is one way to achieve this.

• upstream inclusion: a C/R implementation should be included in the

official Linux kernel to achieve transparency and wide adoption.

With these problems (transparent, not too invasive, upstream inclusion) in mind

the new C/R approach was presented. The goals were to use existing kernel

interfaces as far as possible and to do as much as possible in user-space in-

stead of kernel-space. The project was named Checkpoint/Restore in Userspace

(CRIU)[25].

With most of its functionality and logic in user-space, it was possible to en-

hance the Linux kernel interfaces in such a way as to reveal all the necessary

information for a successful C/R. With this approach, only minimal changes

to existing interfaces, and no functional changes, it was possible to get the

changes accepted by the Linux kernel community and provide a C/R solution

which can work out of the box on any Linux system with just the installation

of the necessary user-space tools and a kernel with the added interfaces. The

C/R functionality offered by CRIU is therefore included in official Linux kernel

(upstream for the different Linux distributions (downstream)) as only minimal

changes are required, it is not too invasive to the Linux kernel, again as only

minimal changes are required and has been designed to be as transparent as

possible for the programs which have to be C/R’ed.

CRIU fulfills all the requirements for a C/R implementation to be accepted by

the Linux kernel community. In August 2012 the first release of the user-space

tools (crtools (has later been renamed to criu) version 0.1) was made with

52 Chapter 3. Process Migration

the necessary changes to the Linux kernel (version 3.5). With this combina-

tion of this version of the Linux kernel (and later) and user-space tools, it was

possible to transparently C/R programs without applying additional patches or

installing additional kernel modules. To prove that downstream integration of

this new C/R approach is possible, CRIU was integrated in the Linux distri-

bution Fedora[26]. Starting with Fedora version 19 it is possible to use C/R

by only using elements provided by that Linux distribution[27]. No external

software, patches or kernel modules are required and C/R is possible out of the

box.

Providing transparency, not requiring invasive code changes, and thus being

accepted by the Linux kernel community led to the decision, to use CRIU as

the C/R implementation on which process migration should be based (also see

Table 3.1 (page 52) for an overview). This also means that process migration in

the scope of this work will not be based on the preemptive migration approach

discussed in section 3.3 (page 41) but on checkpoint/restore. With the addi-

tional inclusion of CRIU in the Linux distribution Fedora, it was shown that

upstream inclusion is important for downstream acceptance of a new function-

ality. With the availability of C/R in Linux distributions it is much easier to

use process migration for system management tasks as there is no additional

overhead to employ C/R on a system providing it as an integral part of that

Linux distribution.

C/R
Transparency Upstream Inclusion

Implementation
variant Architecture

BLCR
pre-load

no
kernel

re-compilation module
DMTCP pre-load N/A user-space

Kernel-space
yes N/A kernel-space

based
User-space

yes yes
kernel-space

based user-space

Table 3.1: Checkpoint/Restart implementations overview

3.5 Post-Copy Migration vs. Pre-Copy Migration 53

3.5 Post-Copy Migration vs. Pre-Copy Migra-

tion

To optimize process migration and especially the time during which the pro-

cess is not running, different memory transfer methods (see 3.2 (page 37)) have

been studied. As previously mentioned, process migration is similar to vir-

tual machine migration, but when trying to omit the hypervisor overhead it is

important to understand existing virtual machine migration approaches. The

following gives an overview of post-copy migration and pre-copy migration.

• Pre-copy migration is at least implemented for virtual machines which

are running on VMware’s hypervisor [1] as well as on KVM based vir-

tualization [2]. Pre-copy migration works in such a way (see Figure 3.5

(page 40)) that after the migration has been initiated, the memory of

the virtual machine is transferred from the source system to the desti-

nation system. This is done with limited speed to reduce the impact on

the performance of the virtual machine. During this phase dirty memory

pages are traced and after the initial transfer of the whole memory, dirty

pages are iteratively transferred. After most memory pages have been

transferred the virtual machine is quiesced for a short moment and the

remaining dirty memory pages and the content of the virtual CPU regis-

ters are transferred as quickly as possible. After migrating the network

and storage connections, the virtual machine can be resumed on the des-

tination system. To work with minimal downtime it is required that some

kind of shared storage backend is in use.

• Post-copy migration has been implemented as a prototype for at least

KVM based virtualization and is subject to research [28]. Post-copy mi-

gration works in such a way that after the migration has been initiated, the

virtual machine is quiesced and the content of the virtual CPU registers

is copied to the destination system. The virtual machine is resumed as

soon as possible without any memory pages transferred to the destination

system.

54 Chapter 3. Process Migration

On each page fault accessing non-transferred memory pages, the virtual

machine is momentarily quiesced and resumed after those pages have been

transferred.

Although there are research results which indicate that post-copy migration

might be more efficient [28], virtual machines running on VMware’s hypervisor

or on KVM based virtualization still use pre-copy live migration. Especially

for virtual machines with many memory changes during runtime, pre-copy live

migration can take much longer because after every cycle of transferring dirty

pages, many pages have to be re-transferred. With post-copy migration ev-

ery page is transferred exactly once on demand. The drawback of post-copy

migration is that transferring pages requires more communication between the

destination and source system which makes the migration setup more compli-

cated and more error prone.

In the case of process migration it becomes even more complicated as the page

fault needs to be trapped in the host operating system at the destination, which

then needs to wait until the missing page has been transferred from the source

system to the destination system instead of the page fault having to be trapped

in the hypervisor, as is the case with virtual machine migration. In KVM based

virtualization each virtual machine runs in a user-space process which simplifies

post-copy migration as it does not require changes to the host operating system.

3.6 Process Migration

This chapter presented which parts define a process (see 3.1 (page 33)), with

which methods these parts can be transfered (see 3.2 (page 37)), which technol-

ogy is available as a basis to migrate those processes (see 3.3 (page 41) and 3.4

(page 43)) and which migration approach virtual machines are using (see 3.5

(page 53)).

Process migration in this work will not be based on the existing preemptive

multitasking many of today’s operating systems are performing. The operating

3.6 Process Migration 55

system used in the scope of this work is Linux (see 3.4 (page 43)) and the

license and source-code availability of Linux would provide the opportunity to

extend the process scheduler to schedule processes to non-local CPUs. The

decision, however, to provide a C/R based process migration is motivated by

the desire to minimize the risk of introducing instabilities in the operating system

(see 3.3 (page 41). Making changes to such a fundamental part of the operating

system as the process schedulers, introduces higher risks of instabilities and race

conditions which are difficult to detect and would therefore impact all processes

even if process migration was not used. Basing process migration on C/R has

the additional advantage that there are multiple existing C/R implementations

which (depending on the implementation, see 3.4 (page 43)) have a limited

impact on the operating system. Another reason to base process migration on

C/R and not on preemptive multitasking are the virtual machine migration

mechanisms. Post-copy migration has been studied only in research projects

(see 3.5 (page 53)) and until now production level hypervisors continue to use

pre-copy migration.

From the multiple available C/R implementations and the ones discussed above,

the most transparent implementations were used. At first, process migration was

implemented based on the kernel-based approach (see 3.4 (page 43)). Seeing

that the future of the kernel-space-based implementation was unclear, the C/R

implementation used in this work was then changed to the user-space-based

implementation (see Chapter 5 (page 65)).

56 Chapter 3. Process Migration

Chapter 4

Parallel Process Migration

To achieve faster results, increase complexity and granularity of computer simu-

lations it is common to use many nodes of a compute cluster in parallel. Multiple

processes running in parallel usually mean that there are data dependencies be-

tween the processes and communication to exchange data between the processes

is required. In many cases the parallelization is not provided by a SSIs and have

been therefore not further studied (see 3.3.1 (page 43)).

A common approach to provide parallelization over multiple nodes is MPI[29]

and to make process migration useful in an HPC environment it has to support

MPI parallelized jobs.

4.1 Related Work

There are different implementations of the MPI standard. Among the popular

free software implementations are Open MPI[30] and MPICH[31][32]. In combi-

nation with these implementations or their predecessor, many different studies

haven been conducted on the subject of C/R and process migration.

Traditionally C/R is used to improve fault tolerance and has been a research

subject for many years. There have been predictions that with the increasing

57

58 Chapter 4. Parallel Process Migration

size of compute clusters and the corresponding increase of components (nodes,

interconnect, power, cooling) the combined system mean time between failure

(SMTBF) will be in the range of hours[33][34]. The prediction was that calcula-

tions using such a large number of cores will therefore be aborted, due to failing

components after only a few hours runtime and the data will be lost.

C/R and its integration into the MPI implementations have been a possible so-

lution to avoid data loss due to component failures. There have been efforts to

create a special MPI implementation targeted on fault tolerance (FT-MPI[35])

and BLCR[19] has been integrated into LAM/MPI[36] to support C/R for par-

allel applications.

In addition to the then newly created Open MPI, C/R has been a topic and

has also been implemented as a generic fault tolerance framework[37] which also

supports BLCR.

To successfully use C/R for fault tolerance in a parallel application, either co-

ordinated checkpointing or message logging is required[38]. Coordinated check-

pointing tries to synchronize all applications to checkpoint at the same moment

which requires a high level of coordination and requires lots of resources. A

combination of message logging and coordinated checkpointing can reduce the

overhead[39].

One drawback of C/R of parallel applications is that for a large number of

nodes more than half of the computation time can be wasted waiting for the

checkpoints to be written[40]. One solution to avoid waiting for I/O to finish is

instead of writing the checkpoint images to a storage system is pro-active fault

tolerance by migrating the processes directly from one node to another[41].

One drawback of migrating processes for fault tolerance is that it is not always

possible to precisely predict failures. Such pro-active fault tolerance can be

improved by analyzing different environmental data which can then be used to

predict failures, however not all failures can be safely predicted. This means

additional methods of fault tolerance still have to be employed. In combination

with no standard C/R provider in Linux (see 3.4 (page 43)) neither system level

4.2 Parallel Process Migration 59

C/R nor process migration is available in the default configuration of many MPI

implementations.

In addition to the problems concerning C/R and process migration mentioned,

the prediction for SMTBFs in the range of hours has not become reality. Due to

the increased reliability of the used components, the SMTBF of larger systems

is much better than predicted (HLRS, personal communication, July 2014).

4.2 Parallel Process Migration

Node 1

Rank 1

Rank 2

Node 2

Rank 3

Rank 4

MPI World

Figure 4.1: MPI migration starting point

To make process migration useful in an HPC environment it is necessary to en-

able process migration for an MPI parallelized application. With the possibility

of moving one MPI rank from one node to another or moving all MPI ranks

to another node during the application’s runtime, process migration becomes

useful in an HPC environment. This way it is actually possible to migrate parts

of a MPI application to another node to distribute the load or to migrate all

ranks from one node to another node to free the node for upcoming system

management tasks.

60 Chapter 4. Parallel Process Migration

After starting a multi-node MPI application, the runtime on each node starts

the local ranks which form together the MPI COMM WORLD (see Figure 4.1

(page 59)). Each rank can now communicate with another rank using point-to-

point communication or collective operations.

Node 3

Rank 1

Rank 2

Node 2

Rank 3

Rank 4

MPI World

Node 1

Rank 1

Rank 2

Figure 4.2: MPI migration complete node

In the case of system management tasks which require a certain node which is

still in use, all the ranks from one node can be migrated to another node (see

Figure 4.2 (page 60)). To start the migration, the first step is to add the new

node (Node 3 in Figure 4.2 (page 60)) to the MPI world so that all ranks are

aware that a new node has joined. After the new node has been integrated into

the world, the ranks can be migrated from the old node, which is about to be

maintained (Node 1), to the new node (Node 3). At the start of the migration

of each rank, the communication between this rank and other ranks has to be

quiesced. Messages which are still in-flight have to be delivered but no new com-

munication should be initiated. For point-to-point communication this means

that any rank communicating with the rank being migrated has to wait until the

migration has finished. The same is valid for collective operations; every rank

included in the collective operation is stalled until the migration has finished and

the rank currently migrating starts to communicate again with other ranks in

the MPI world. This means that during the migration all ranks communicating

with the rank being migrated have to wait until the migration has finished. The

4.2 Parallel Process Migration 61

time required for the migration is thus not only lost as computation time for the

rank being migrated, but it is also multiplied by the number of ranks involved in

communication with the migrated rank. After all the ranks have been migrated

(off Node 1) the node has to be removed from the MPI COMM WORLD and

is then free to be updated or rebooted.

MPI World

Node 3

Rank 2

Node 2

Rank 3

Rank 4

Node 1

Rank 1

Figure 4.3: MPI migration load balancing

In the case of migration for load balancing, the steps are similar to the sys-

tem management scenario. Instead of migrating all ranks from one node to

another, only certain ranks are migrated to distribute the load on more nodes

(see Figure 4.3 (page 61)). The MPI COMM WORLD would then be extended

to include new nodes (Node 3) which can then be used to migrate ranks from

an overloaded node (Node 1) to the node newly integrated in the world. Again,

as mentioned in the previous system management scenario, all ranks commu-

nicating with the rank being migrated have to wait during the migration time.

At the end of the migration process all ranks should continue to run with the

benefit of having more resources available without interrupting the job.

Load balancing is a scenario which is particularly mentioned in the MPI Stan-

dard[29, 374]: ”MPI COMM SPAWN starts MPI processes and establishes com-

munication with them, returning an intercommunicator.” According to [29, 376]

up to MPI UNIVERSE SIZE processes can be started and when ”a process

spawns a child process, it may optionally use an info argument to tell the

runtime environment where or how to start the process.”

62 Chapter 4. Parallel Process Migration

4.3 Open MPI

To verify the migration scenarios described in section 4.2 (page 59), Open

MPI[30] is used as a sample implementation of the MPI standard. The decision

to use Open MPI is based on multiple aspects of Open MPI. The openness of

the development model in combination with its open license make it very easy

to enhance Open MPI. Additionally, earlier versions of Open MPI included a

framework to support C/R[37] with different C/R implementations.

Application

MPI

PML

BML

BTL BTL BTL BTL

mpirun

Figure 4.4: Open MPI layers

In Open MPI the Open Run-Time Environment (ORTE) starts up the number

of processes (or ranks) which the user has requested (see Figure 4.5 (page 63))

and the applications which have been developed against the MPI layer as imple-

mented by Open MPI are unaware of the actual communication method between

the ranks (see Figure 4.4 (page 62)).

4.3 Open MPI 63

mpirun

application

application

application

Figure 4.5: Open MPI process tree

Open MPI tries to select the best communication method available and the

applications never know which Byte Transport Layer (BTL) is actually used.

With this layering in place, ranks can be migrated to another node even if dif-

ferent communication hardware is used for future communication. The existing

layering makes it possible for process migration inside a MPI process to be han-

dled completely transparently for the application as the application only uses

the MPI layer. This also means that the communication library (in this case

Open MPI) needs to handle the migration of the communication channel, which

means that the used C/R implementation does not need to handle inter-node

communication.

64 Chapter 4. Parallel Process Migration

Chapter 5

Results

This chapter presents the implementation specific details for migrating processes

and demonstrates different programs which are migrated from one node to an-

other. Some of the test cases are synthetic and especially developed in the

scope of this work to demonstrate a specific feature and/or behavior while other

test cases are based on programs actually used in an HPC environment. The

following test cases are discussed in this chapter:

• UDP Ping Pong - A synthetic client/server test case using User Datagram

Protocol (UDP) which is used to show the possibilities of continuing net-

work communication with processes which have been migrated (see 5.3

(page 80)).

• memhog - Another synthetic test case used to find and demonstrate the

minimal time required to migrate a process. This test cases allocates the

desired amount of memory without changing the allocated memory (see 5.4

(page 81)).

65

66 Chapter 5. Results

• FENFLOSS - An application to compute laminar and turbulent, steady

and unsteady incompressible flows. This application is in contrast to the

other two test cases not synthetic test case. Process migration has to be

useful not only in synthetic test cases but also with real workloads (see 5.5

(page 89)).

5.1 Approaches and Implementation

Before the actual implementation details are described, the first step is to define

the requirements and constraints of the actual process migration implemented

and used in the scope of this work.

5.1.1 Requirements - Constraints - Limitation

The requirement for the process migration is to be as transparent as possible

and the decision to base process migration on C/R (see Chapter 3 (page 33))

means that the used C/R implementation needs to be as transparent as possible.

During the process of deciding which C/R implementation process migration

should be based on, the additional requirements upstream inclusion and not

being too invasive emerged (see Chapter 3, section 3.4 (page 43)). This means

the previously defined requirements are also used in the actual implementation.

To be able to focus on the essential parts of process migration and to avoid the

necessity of having to study every corner case of process migration, which would

be beyond the scope of this work, the following constraints are defined.

The first constraint is that process migration is only supported on systems shar-

ing the same ISA. Different ISAs would not support the goal of being as transpar-

ent as possible. The only way to support process migration over ISA boundaries

is to insert an additional layer between the process to be migrated and the ac-

tual hardware. This would lead to a kind of virtual machine which would at

least require re-compilation of the source code and would be far from being as

5.1 Approaches and Implementation 67

transparent as possible. Following the constraint that the ISA has to be the

same on all systems included in the process migration, comes the requirement

that the version of the operating system has to be exactly the same on all in-

volved systems. This includes all executables and libraries which are part of

the process migration. Especially important is the availability and exact same

version of shared libraries, because they will not be migrated but are expected

to be on the destination system of the process migration. In addition to the

same version, the executables and libraries have to be available under the same

path.

It is also required that input or output files which are read or written are on a

shared file system and available to all systems involved in the process migration.

This way file descriptors do not need to be modified during the migration.

All these constraints seem to be contradictory to the previously stated goal of

being as transparent as possible (see 3.4.4 (page 50)). For the targeted HPC

environment all these constraints to not pose a real problem as the environment

in a compute cluster is usually pretty homogeneous. Either due to the fact

that a compute cluster usually consists of a large number of similar machines

which provide the user with the same environment on all nodes of the compute

cluster or the fact that, from an administrator’s standpoint, a homogeneous

environment is desirable to make it possible to manage such a large number of

nodes. This means that there is a shared file system available on all nodes which

provides executables, libraries and storage space for input and output files. The

constraint of the same ISA is usually even desired as the compiler optimization

for a certain CPU type can have negative effects on other similar CPUs ranging

from degraded performance to not working at all (e.g., crashing).

In addition to the requirements and constraints mentioned the actual implemen-

tations have the limitation that the migrated process is not directly transferred

from the source system’s memory to the destination system’s memory (direct

migration see Figure 5.1 (page 68)). To simplify the implementation the pro-

cess’ data, which is extracted via C/R from the operating system, is not directly

transferred to the destination system but first stored locally (indirect migration

68 Chapter 5. Results

see Figure 5.1 (page 68)). This limits the minimum migration time as it requires

multiple copies of the process’ data from the source system’s memory directly

to the destination system’s memory, instead of a single copy.

Direct
Migration

Source
System

main
memory

local
storage

locall
storage

Destination
System

main
memory

Network
Connection

Migration
Finished

single
transfer

first
transfer

second
transfer

Indirect
Migration

third
transfer

Migration
Finished

Figure 5.1: Direct vs. Indirect Migration

To reduce the time necessary to perform the required multiple copies for process

migration, the process’ data is stored on main memory based storage (e.g., a

RAM drive based on tmpfs [42]) and on fast local Solid-state drives (SSDs). This

way the implementation can be simplified by omitting the direct transfer from

main memory to main memory and thus focusing more on the results than on

an overly complex implementation. By using fast local storage, the limitations

of the actual implementation are minimized.

Within the scope of this work process migration is bound by the following re-

quirements, constraints and limitations:

• transparent - to use process migration with as many programs as possible

• upstream inclusion - to use process migration on many Linux distributions

without additional requirements or software installation

5.1 Approaches and Implementation 69

• not too invasive - upstream inclusion is only possible with an approach

which is not too invasive and thus easily accepted by the Linux community

• same ISA - to support process migration with different ISAs on the source

and destination system would require an additional layer which would be

able to intercept and translate instructions which do not exist on the des-

tination system. Running in an HPC environment usually means similar

systems and CPUs and thus systems with the same ISA.

• same operating system, binaries, libraries - again a constraint which is

easy to accomplish in an HPC environment and most of the time already

given.

• shared file system for input and output - see operating system

• RAM drive or SSD as fast local storage - this limits the time required to

migrate a process but simplifies the implementation considerably.

5.1.2 Kernel-Space-Based Process Migration

The first attempt1 to implement process migration was using the kernel-space-

based (see 3.4.3 (page 48)) C/R. At that point in time the kernel-space-based

C/R implementation had already not been maintained for over a year. It had

seen its last update for the Linux kernel version 2.6.37 and was therefore, in

the scope of this work, ported to Linux kernel version 3.2 which was the latest

release at that time2. After porting the kernel-space-based C/R implementation

to Linux kernel version 3.2 it was enhanced to support process migration[43].

For the proof-of-concept, a process doing calculations using the Floating Point

Unit (FPU) as well as writing the results to a file was migrated.

The reason for these two functions (FPU and writing to a file) was to make sure

that not only the registers of the CPU are migrated but also the registers of the

FPU. Writing to a file was carried out for two reasons: first to make sure that

1late 2011, early 2012
2Linux kernel version 3.2 was released on 2012-01-04

70 Chapter 5. Results

the file-descriptors were correctly opened and re-opened and secondly to have

an easy way to verify the results of the calculation after the migration.

This process migration proof-of-concept was writing the checkpoint image to a

network socket instead of writing it to a local file. On the receiving side, the

part to restore the checkpointed process was able to listen on a network socket.

With these changes it was possible to migrate a process from one system to

another without using any storage system in between (direct migration see Fig-

ure 5.1 (page 68)). It proved that processes can be migrated by transferring the

process directly from the source system’s memory to the destination system’s

memory. It also proved that the concepts developed in this work up to this point

can actually be implemented and that basing process migration on C/R is not

only a theoretical possibility.

The proof-of-concept based on kernel-space-based C/R did not include any op-

timizations to reduce the time required to transfer the memory from the source

to the destination system (as described in 3.2 (page 37)).

Unfortunately during the time of the successful proof-of-concept it became clear

that, although the kernel-space-based C/R approach was feasible and could be

enhanced to also support process migration, it would not be accepted by the

Linux kernel community. The number of required changes had become too

large and too complex to be accepted by the Linux kernel community (see 3.4.3

(page 48)).

The unclear future of the kernel-space-based process migration approach was

the reason why this approach was not further followed and was replaced by the

user-space-based process migration approach.

5.1.3 User-Space-Based Process Migration

As mentioned in Chapter 3 (page 33) the user-space-based C/R implementation

CRIU has been selected as the most promising implementation. After the first

successful attempts with kernel-space-based process migration early in this work,

5.1 Approaches and Implementation 71

it became clear that kernel-space-based process migration can be implemented,

however this would have meant investing further effort in an approach which has

not much chance of being further developed. At that point in time another C/R

approach was discussed in the Linux kernel community (see 3.4.4 (page 50)).

CRIU had, at that point in time, a good chance of being accepted by the Linux

kernel community and parts of CRIU have already been accepted upstream.

This was the reason that the C/R implementation used as the basis for process

migration in the scope of this work switched from the kernel-space-based C/R

to the new user-space-based approach. In the context of this work CRIU was

also enhanced to support process migration just like with the kernel-based C/R

approach.

After an initial attempt to directly transfer the process image from the source

system’s memory to the destination system’s memory, a less complex memory

transfer method was selected. A working process migration was deemed more

important than an early optimization. So instead of transferring the process

image directly from the source system’s memory to the destination system’s

memory, local storage of some kind is required to temporarily save the process

image before it is transferred to its destination (indirect migration see Figure 5.1

(page 68)). Depending on the size of the process to be migrated and the memory

available this could be a memory based storage (e.g., a RAM drive based on

tmpfs [42]). For processes which require more memory so that using a RAM

drive is not feasible (e.g., a process requires more than half of the available

memory) another local storage is required. This work’s implementation was

performed using a fast local SSD as well as a RAM drive to temporarily store

the process image before transferring it to the destination system.

CRIU based process migration makes it possible to use pre-copy (as discussed in

Chapter 3, section 3.2.3 (page 40) and section 3.5 (page 53)). The Linux kernel

offers an interface to mark all pages of a process as clean and the Linux kernel

tracks which pages have been modified[44]. On subsequent runs of CRIU only

dirty pages need to be transferred.

72 Chapter 5. Results

5.1.4 Process Identifier

Another problem with checkpointing and restoring processes or process groups

is the PID. Restoring a process requires the checkpointed process to have the

same PID that it had when checkpointed. This is necessary for processes which

are part of a process group with parent-child relationships. The child processes

are usually not aware of the PID of the parent process. In the case of starting

child processes with fork() the child PID is returned to the parent process

from fork(). It can then either ignore it or it can store it in any program

structure it wants. This makes it impossible to restore the processes with a

different PID if the goal of transparent C/R is to be fulfilled. If the program

code of the application to be checkpointed were instrumented and recompiled,

it should be possible to intercept everything related to the PID and restore the

process or process group with a different PID. As the goal of this work is to offer

a C/R implementation which is as transparent as possible, changing the PID

during restore is out of scope. C/R based on DMTCP (see 3.4.2 (page 47)) for

example uses a concept called virtual PID[21] which intercepts child creation by

a pre-loaded library which is then used to resolve PID conflicts on restore.

Restoring a process on the same machine just after it has been checkpointed

will probably work most of the time as the default PID space on Linux is 32768.

Most of the time the required PID will be available and the restore will work

flawlessly. For the case of migrating a process from one system to another the

probability is still pretty low that a PID collision will occur.

If, however, the goal is to migrate hundreds of processes from one set of systems

to another set of systems, the probability of one of the many migrations failing

due to a PID collision increases. To make sure this kind of migration does not

fail in the middle of the migration it needs to be verified that all PIDs needed

are available on the target systems.

Another way to decrease the probability of a PID collision on Linux is to increase

the number of available PIDs3.

3The default value of 32768 can currently be increased by the factor of 128.

5.1 Approaches and Implementation 73

A simple solution is to reboot the destination system of the desired migration

which frees all previously used PIDs. In a homogeneous environment as is often

found in HPC, each system will use the same PIDs during boot. This means

that all newly started applications will use the PIDs above the ones required to

boot a system and these PIDs will therefore be free on a newly booted system.

Another option is to pre-allocate a certain range of PIDs for each application.

The Linux kernel offers an interface with which it is possible to specify which

value the next PID should have[45]. With the help of this interface the resource

manager can then influence each node which is part of the application currently

running, with which PID all processes on all related nodes will be started. In

the case of a migration, this kind of pre-allocation can then also be applied to

the destination node of the migration.

Seeing that PID collisions could present a serious limitation to migrating pro-

cesses in a production environment, there are still multiple options which can

be used to resolve this problem:

• Increase number of available PIDs

• Reboot destination system to bring PID usage to a well defined status

• Pre-allocation with the help of the resource manager to guarantee same

start PID on all related systems

5.1.5 Environment Variables

Every process started has certain environment variables which define the en-

vironment a process is running in. These variables are defined by the parent

process creating the target process. In most cases the parent process creat-

ing the target process, is a command shell providing a command-line interface

(CLI) to start a process. This shell defines a certain set of variables which can

be queried by the process started to obtain information about the environment

it is running in. Depending on the shell used, the environment variables define

information like:

74 Chapter 5. Results

• HOME - path of the user’s home directory

• USER - the user name

• PATH - defines a list of directories used to search for commands to execute

• MAIL - path to the user’s mail

Looking at environment variables especially in an HPC environment it is ex-

pected that most of the variables on all systems belonging to a compute cluster

are the same (see 5.1.1 (page 66)). Therefore most of the existing environment

variables do not pose a problem. If there are, however, variables which are host

specific like the variable HOSTNAME, it poses a problem similar as with the PID.

The environment variables of the process to be migrated could be changed by the

tool executing the migration, but, just as with the PID (see 5.1.4 (page 72)),

the target process could have read the variable and stored it anywhere in its

memory. This makes changing host specific variables redundant as it cannot be

ensured that the variable is not already stored somewhere in the target process’

memory and therefore it will have no consequences whether or not the variable

is changed.

To provide a clear solution to the problem of host specific environment variables

this work requires the process or process groups to be migrated to not use host

specific environment variables. In the case of HOSTNAME this can easily be solved

programmatically by using gethostname(2).

5.1.6 Security

An important but easily overlooked subject concerning process migration is

security. On systems which have process migration enabled this could easily be

misused to migrate an unwanted process to such a system. In addition it is also

important that not only processes from authorized systems are accepted, but

that the process’s data can not be intercepted during the transfer. It should not

be possible to modify the process’s data during the migration and it also must

5.1 Approaches and Implementation 75

be guaranteed that the process’s data can only be read by an authorized entity

(e.g., the destination system).

If, in the scope of this work, process migration were to have been implemented

using direct migration from the source’s memory to the destination’s memory

(see Figure 5.1 (page 68)) it would have required the provision of authentica-

tion/authorization. For the indirect migration used it was possible to fall back

on existing technology.

By using Secure Shell (SSH)[46] to transfer the migration data, a well known ser-

vice is used which also has a good reputation concerning security. SSH provides

a well audited authentication/authorization framework which is widely used and

therefore well suited for a production environment where it is important that

security issues are fixed in a timely manner without exposing the environment

to known vulnerabilities. Another advantage of SSH is that it is usually already

available in an HPC environment and used for most authentication/authoriza-

tion tasks.

5.1.7 Implementation within Open MPI

The parallel process migration implementation is based on Open MPI (see 4.3

(page 62)). Open MPI has C/R mechanisms which are provided by the Mod-

ular Component Architecture (MCA) component Checkpoint/Restart Service

(CRS)[47]. CRS provides interfaces for different C/R implementations to be

used as the basis for fault tolerance.

mpirun

my-process

my-process

my-process

Figure 5.2: Open MPI process tree

76 Chapter 5. Results

Using CRS it is possible so signal an Open MPI process tree (see Figure 5.2

(page 75)) with orte-checkpoint that its processes should be checkpointed (see Fig-

ure 5.3 (page 76)).

mpirun

my-process

my-process

my-process

orte-checkpoint
initiate checkpoint

Figure 5.3: Open MPI initiate checkpoint

Depending on the configuration, the processes running under the control of

mpirun are paused, checkpointed and will then continue or the processes will

abort after being checkpointed. The counterpart to orte-checkpoint is orte-

restart which can then be used to restart the processes under the control of

mpirun later from one of the previously written checkpoints.

Open MPI’s fault tolerance efforts were started in 2007[37]. Unfortunately there

have been no development activities, according to the revision control system,

concerning fault tolerance since 2010[48].

Starting in late 2013, in the scope of this work, the fault tolerance code paths in

Open MPI were re-enabled and converted to use the new and changed interfaces

of Open MPI which have not been adapted in the fault tolerance code paths.

The most significant changes required were due to complete removal of blocking

I/O operations in Open MPI. After switching to non-blocking I/O operations at

all necessary locations and updating the fault tolerance code paths to compile

and function again, a new CRS component was added which supports fault

tolerance mechanisms using CRIU.

Based on CRIU it is now possible to implement process migration in a parallel

environment using Open MPI.

5.1 Approaches and Implementation 77

5.1.8 Re-Parenting

mpirunorte-restart
start

Figure 5.4: Open MPI initiate restart

Restarting a process with Open MPI is done with the command orte-restart

(see Figure 5.4 (page 77)) which reads the checkpoint metadata. Using the

metadata, orte-restart will start a new ORTE using mpirun which will start the

corresponding number of processes previously dumped using orte-checkpoint.

For each process checkpointed mpirun will spawn an opal-restart (see Figure 5.5

(page 77)) which sets up the environment and should then be replaced with the

restarted process (like exec()).

mpirun

opal-restart

opal-restart

opal-restart

Figure 5.5: Open MPI spawn opal-restart

The problem with CRIU is that although it provides a library which has been

integrated into Open MPI, this library is only a wrapper for Remote Procedure

Call (RPC) to the CRIU daemon. This means that the restore will be performed

from a process which is completely detached from the process initiating the

restore and it also does not replace opal-restart. The newly restored process

should be a child of the mpirun initiating the restore, however it is detached.

Unfortunately there is, right now, no way to re-parent a process to another

process in Linux which makes the CRIU restore functionality through the library

call criu restore() unsuitable for use in Open MPI.

The solution is to use the command line version of CRIU instead of the library to

restore the checkpointed process. orte-restart starts the correct number of opal-

restart child processes. These child processes restore the checkpointed process

78 Chapter 5. Results

mpirun

opal-restart

opal-restart

opal-restart

criu restore

criu restore

criu restore

Figure 5.6: Open MPI calls CRIU for restore

using exec() to start CRIU which restores the processes with the desired PID

(see Figure 5.6 (page 78)). Thus the restored process are child processes to the

mpirun under whose control the restored process should be running.

Now the restored process tree should be the same as during checkpointing

(see Figure 5.7 (page 78)).

mpirun

my-process

my-process

my-process

(new)

(restarted)

(restarted)

(restarted)

Figure 5.7: Open MPI process tree after restore

5.1.9 Output Redirection

CRIU tries to restore checkpointed process as close to the original state as possi-

ble. This also includes the treatment of the input and output channels. Running

a process under Open MPI’s control, however, requires special treatment of the

input and output channels.

Open MPI redirects all output (and input) to the Head Node Process (HNP)

so that the user sees all output from all involved processes. This is done by

replacing the file descriptors for stdin, stdout and stderr with pipes and this

way all output is proxied through mpirun so that the user has a single point to

5.2 Test and Validation Methods 79

get all the output from all involved processes. CRIU checkpoints those pipes

in the exact state in which they were set up by Open MPI and expects that

those pipes also exist during restore. The newly started mpirun (see Figure 5.4

(page 77)), however, will create new pipes to its spawned child processes which

will have different identifiers to those in the checkpointed processes. This means

that CRIU will fail during restart. To resolve the problems with output and

input redirection, the information on the mpirun’s pipes is exported and CRIU

can use this information with the help of a plugin which supports restore in an

Open MPI environment.

5.2 Test and Validation Methods

Many of the following tests were performed on systems which are part of the

compute cluster at the University of Applied Sciences in Esslingen. The systems

boot via the network without a disk. The filesystem is provided via Network File

System (NFS) (read-only) and a local SSD is available as fast local storage. The

systems are equipped with 64GB of RAM and connected to a Gigabit Ethernet

as well as to a Quad Data Rate (QDR) InfiniBand network.

The systems are equipped with Intel Xeon E5-2650 CPUs which have a memory

bandwidth of 51.2 GB/s[49]. See Table 5.1 (page 79) for the memory bandwidth

actually measured using the STREAM benchmark[50].

Number of Cores Memory Bandwidth Used Command

1 10 GB/s OMP NUM THREADS=1 ./stream

2 20 GB/s OMP NUM THREADS=2 ./stream

4 31 GB/s OMP NUM THREADS=4 ./stream

8 48 GB/s OMP NUM THREADS=8 ./stream

16 55 GB/s OMP NUM THREADS=16 ./stream

32 50 GB/s OMP NUM THREADS=32 ./stream

Table 5.1: Memory bandwidth measured using the STREAM
benchmark

80 Chapter 5. Results

For reference the possible transfer rates, using IP, via Gigabit Ethernet and

InfiniBand have been measured:

• Gigabit Ethernet: 942 Mbits/s (117.75 MB/s)

• InfiniBand: 15.2 Gbits/s (1.9 GB/s)

This means that all migrations will be bound by network transfer rates and not

by memory bandwidth:

timemigration = max(timememory, timenetwork)

With the implementation used in the scope of this work (see 5.1.1 (page 66) and

Figure 5.1 (page 68)) the time required for the migration is higher as it requires

multiple copies:

timemigration = timememory + timenetwork + timememory

5.3 UDP Ping Pong - udpp

The first attempts to migrate a process were done using a test program doing a

simple UDP communication. The goal of this test case was to make sure that

process migration actually works even with a process doing network communi-

cation during the migration.

The test program is called UDP Ping Pong - udpp and does nothing more than

send a UDP message to the specified host on which udpp has to be running

in server mode. udpp in server mode writes the IP address of the udpp client

on stdout and sends an answer back to the udpp client which also prints out

the information about the communication with the udpp server (see listing 5.1

(page 81)).

The test setup is to run the udpp server on one system and start udpp in client

mode on a second system (see Figure 5.8 (page 81) - step 1). During the com-

munication between the server and the client system, the client is migrated to

a third system (see Figure 5.8 (page 81) - step 2). After the client process has

5.4 memhog 81

Sending ping packet 1

Received pong packet from 172 . 30 . 200 . 251 : 34792
Data : This i s pong packet 1

Listing 5.1: udpp client output

been migrated the client process on the third host continues to communicate

with the udpp server (see Figure 5.8 (page 81) - step 3).

udpp server

udpp client

udpp client

communication

udpp server

udpp client

udpp client

migration

udpp server

udpp client

udpp client

communication

step 1
before migration

step 2
migration

step 3
after migration

Figure 5.8: udpp migration

On the system where udpp is running in server mode the client’s change of the

IP address can be seen in the server’s output (see listing 5.2 (page 82)).

Thus this simple test case demonstrates that it is possible to migrate a process

during its UDP communication with another system to a third system without

disrupting the communication.

5.4 memhog

Another simple test case for process migration was the program memhog. The

program’s only function is to acquire a certain amount of memory using malloc()

and locking it using mlock(). This test case was designed with benchmarking

82 Chapter 5. Results

Received ping packet from 172 . 30 . 200 . 252 : 58286
Data : This i s ping packet 6

Sending pong packet 6
<−−
−−>

Received ping packet from 172 . 30 . 200 . 205 : 58286
Data : This i s ping packet 7

Sending pong packet 7

Listing 5.2: udpp server output

migration time in mind. It only allocates a certain amount of memory and does

nothing else. Using a simple program like memhog makes it possible to study the

required time to migrate a process of a certain size without any additional in-

fluences on the benchmark result. Using memhog the time to migrate processes

with different memory usages was measured:

5.4.1 Via Ethernet with a local SSD

The first test setup was using memhog which was migrated from one system to

another. This test setup was using following memory sizes on a system with

64GB RAM: 1GB, 2GB, 4GB, 8GB, 16GB, 24GB, 48GB.

The systems were both connected with Gigabit Ethernet to the same switch.

The data to be migrated was temporarily stored on a local SSD and transferred

using Gigabit Ethernet from the SSD of the first system to the SSD of the

second system. From the SSD of the second system the data was then read to

restore the memhog process. In addition to the pure time required for the whole

migration the time required for a pre-copy (see 3.5 (page 53)) migration was also

measured. Figure 5.9 (page 84) and Table 5.2 (page 83) show the time required

to migrate a process (6 measurements). Two different times were measured:

• Migration time without pre-copy - this is the complete time required for

migrating a process from the source to the destination system.

5.4 memhog 83

• Migration time with pre-copy - this is the time the process is quiesced

during pre-copy migration and not actually running.

All following figures include a line called Theoretical optimum and Implementa-

tion optimum as a comparison to the measured values with the following mean-

ing:

• The Theoretical optimum is the time required to migrate a process using

direct migration: timemigration = max(timememory, timenetwork)

• The Implementation optimum is the time required using the implemented

indirect migration: timemigration = timememory + timenetwork + timememory

Both optimums do not take any optimization (e.g., pre-copy) into account and

will therefore always be slower than the pre-copy migration method also pre-

sented. They are valuable as they provide a source of comparison for the results

and it is also interesting to see how close those two optimums are, which is

related to the fact that the migration time is always bound by the network

bandwidth.

Test Setup / GB 1 2 4 8 16 24 48

Migration time 11 23 44 90 181 278 702
w/o precopy (s)
Migration time 1 2 2 3 6 8 37
w/ precopy (s)

Theoretical 8.49 16.99 33.97 67.94 135.88 203.82 407.64
optimum (s)

Implementation 8.69 17.39 34.77 69.54 139.08 208.62 417.24
optimum (s)

Table 5.2: Comparison of migration time via Ethernet using
SSDs with and without pre-copy

Figure 5.9 (page 84) shows that the pre-copy migration is much faster than

migration without pre-copy. Especially for programs requiring a large amount

of memory (24GB and 48GB) the pre-copy migration is over 20 times faster. It

is important to mention that the memhog test case is only a synthetic test case

which does not modify its memory, but it demonstrates the benefits of pre-copy

migration. The gradient change in the migration time for processes larger than

84 Chapter 5. Results

0 10 20 30 40 50

Size in GB of migrated process

0

100

200

300

400

500

600

700

800

M
ig

ra
ti

on
ti

m
e

in
se

co
nd

s

Migration time without pre-copy
Migration time with pre-copy
Theoretical optimun
Implementation optimum

Figure 5.9: Comparison of migration time via Ethernet using
SSDs with and without pre-copy

24GB is due to file caching effects in the operating system. Although the data

to restore the process is stored on a local SSD, the operating system caches the

file accesses, and for processes up to 24GB there is enough memory to cache all

related files.

5.4.2 Via InfiniBand with a local SSD

This is the same test setup as in 5.4.1 (page 82). Instead of using Gigabit

Ethernet to transfer the data, InfiniBand is used. The different data rates, as

described in 5.2 (page 79), are the main reason for lower migration times with

and without pre-copy (see Figure 5.10 (page 85) and Table 5.3 (page 86)). The

pre-copy migration is faster by the same order of magnitude as the migration

5.4 memhog 85

without pre-copy.

0 10 20 30 40 50

Size in GB of migrated process

0

100

200

300

400

500

600

700

M
ig

ra
ti

on
ti

m
e

in
se

co
nd

s

Migration time without pre-copy
Migration time with pre-copy
Theoretical optimun
Implementation optimum

Figure 5.10: Comparison of migration time via InfiniBand
using SSDs with and without pre-copy

5.4.3 Via Ethernet with a local RAM drive

This test setup using memhog is also communicating via Gigabit Ethernet but

instead of a locally connected SSD, the migration data is stored on a RAM

drive. The system has the same amount of memory as in the previous test setup

(64GB) and using a RAM drive reduces the possible test case size to: 1GB,

2GB, 4GB, 8GB, 16GB, 24GB. For each test case, 6 measurements were made.

The results of the measurements can be seen in Figure 5.11 (page 87) and

Table 5.4 (page 86). Just like in the previous test setups the pre-copy migration

for this kind of application is many times faster.

86 Chapter 5. Results

Test Setup / GB 1 2 4 8 16 24 48

Migration time 9 18 34 69 140 218 632
w/o precopy (s)
Migration time 1 2 2 3 6 9 30
w/ precopy (s)

Theoretical 0.53 1.05 2.11 4.21 8.42 12.63 25.26
optimum (s)

Implementation 0.73 1.45 2.91 5.81 11.62 17.43 34.86
optimum (s)

Table 5.3: Comparison of migration time via InfiniBand using
SSDs with and without pre-copy

Test Setup / GB 1 2 4 8 16 24

Migration time 11 21 41 82 164 249
w/o precopy (s)
Migration time 1 2 2 2 5 8
w/ precopy (s)

Theoretical 8.49 16.99 33.97 67.94 135.88 203.82
optimum (s)

Implementation 8.69 17.39 34.77 69.54 139.08 208.62
optimum (s)

Table 5.4: Comparison of migration time via Ethernet using a
RAM drive with and without pre-copy

5.4 memhog 87

0 5 10 15 20 25

Size in GB of migrated process

0

50

100

150

200

250
M

ig
ra

ti
on

ti
m

e
in

se
co

nd
s

Migration time without pre-copy
Migration time with pre-copy
Theoretical optimun
Implementation optimum

Figure 5.11: Comparison of migration time via Ethernet
using a RAM drive with and without pre-copy

5.4.4 Via InfiniBand with a local RAM drive

The only difference between this test setup and the previous test setup is that

now the data is transmitted via InfiniBand instead of Gigabit Ethernet. The test

setup has used following test case sizes: 1GB, 2GB, 4GB, 8GB, 16GB, 24GB.

For each test case, 6 measurements were made.

Using InfiniBand to transfer the migration data makes the migration even faster.

5.4.5 Test Case Summary with memhog

It is important to remember that memhog is a synthetic test case as it only

allocates memory and the memory does not change during the program’s life-

88 Chapter 5. Results

0 5 10 15 20 25

Size in GB of migrated process

0

20

40

60

80

100

120

140

160

180

M
ig

ra
ti

on
ti

m
e

in
se

co
nd

s

Migration time without pre-copy
Migration time with pre-copy
Theoretical optimun
Implementation optimum

Figure 5.12: Comparison of migration time via InfiniBand
using a RAM drive with and without pre-copy

time. On the other hand it is a good test case for demonstrating the best values

possible for migrating a process and for comparing these values to the theoreti-

cal limits. Knowing these values helps to interpret the migration times for real

applications.

In Figure 5.13 (page 90) the different measurements for pre-copy migrations

are combined in one figure and it can be seen that the underlying storage and

network technology make no big difference in the time required to migrate a pro-

cess. Even supposedly faster storage and network technology make no noticeable

differences which is due to the coarse resolution of the time measurement (sec-

onds). For the process migrated with 48GB the difference between InfiniBand

and Gigabit Ethernet is more clearly visible and exactly what has been expected

(see 5.2 (page 79)).

5.5 FENFLOSS 89

Test Setup / GB 1 2 4 8 16 24

Migration time 8 14 28 54 111 168
w/o precopy (s)
Migration time 1 2 1 3 5 8
w/ precopy (s)

Theoretical 0.53 1.05 2.11 4.21 8.42 12.63
optimum (s)

Implementation 0.73 1.45 2.91 5.81 11.62 17.43
optimum (s)

Table 5.5: Comparison of migration time via InfiniBand using
a RAM drive with and without pre-copy

In Figure 5.14 (page 91) the results from all migrations without pre-copy are

displayed. All the results scale linear up to a migration size of 24GB. The time

required to migrate 48GB, using a SSD as temporary storage, does not scale

linear, compared to previous results, because of file system cache effects.

Both results, with and without pre-copy, are valuable as the minimum time

required to migrate a process in comparison to the theoretical values (see 5.2

(page 79)).

5.5 FENFLOSS

To demonstrate the usefulness of process migration not only in synthetic test

cases like udpp (see 5.3 (page 80)) and memhog (see 5.4 (page 81)) but also

in a real world scenario the application Finite Element based Numerical Flow

Simulation System (FENFLOSS)[51] was used.

”The numerical flow simulation software FENFLOSS (Finite Element based

Numerical Flow Simulation System) is being developed at the IHS[52] since

the early 80s. It is used to compute laminar and turbulent, steady and un-

steady incompressible flows. Complex geometries may be meshed easily with

unstructured meshes due to the highly flexible Finite Element approach. Scale

and mesh adaptive turbulence models enable it to reproduce unsteady turbu-

lent flow behaviour and associated pressure fluctuations very accurately. [...]

90 Chapter 5. Results

0 10 20 30 40 50

Size in GB of migrated process

0

5

10

15

20

25

30

35

40

M
ig

ra
ti

on
ti

m
e

in
se

co
nd

s

SSD backed migration (IB)
RAM drive backed migration
RAM drive backed migration (IB)
SSD backed migration

Figure 5.13: Comparison of migration time using pre-copy

FENFLOSS is used to simulate any kind of incompressible flows, especially in

hydraulic machinery.”[53]

FENFLOSS can be run in a serial mode using only one core and with the help

of MPI also in a parallel mode using multiple systems and cores.

The following results are based on FENFLOSS running in serial mode. FEN-

FLOSS was migrated, using a RAM drive and InfiniBand, at different states of

its runtime. These different states can be classified as:

• Initialization - During application startup FENFLOSS reads the simu-

lation’s geometry from its configuration files and sets up the internal data

structures in the memory.These memory structures will later be used for

the actual simulation.

5.5 FENFLOSS 91

0 10 20 30 40 50

Size in GB of migrated process

0

100

200

300

400

500

600

700

800
M

ig
ra

ti
on

ti
m

e
in

se
co

nd
s

SSD backed migration (IB)
RAM drive backed migration
RAM drive backed migration (IB)
SSD backed migration

Figure 5.14: Comparison of migration time without pre-copy

During this phase of the application’s runtime the content of the memory

changes heavily which means that optimizations like pre-copy increase the

time required to migrate the application.

• Stabilization - The next state in the application’s runtime is after the

initial creation of the data structures in the memory. These data structures

are now optimized for the actual simulation. During this phase the content

of the memory changes moderately and process migration with or without

optimizations requires approximately the same time.

• Calculation - This is the last state which has been identified. After the

initial setup and optimization of the internal data structures the actual cal-

culation is running. During this phase the content of the memory changes

only lightly and process migration with optimization requires noticeable

less time than unoptimized process migration.

92 Chapter 5. Results

To clearly show that the optimization at the wrong point in time can lead to

worse results FENFLOSS was migrated at each of the mentioned application

states (Initialization, Stabilization, Calculation).

Figure 5.15 (page 92) and Table5.6 (page 93) display the different amounts

of memory which have been transferred during process migration for each ap-

plication state previously described. On the left there is the amount of data

transferred without pre-copy optimization (Transfer size without pre-copy). On

the right, for each application state, is the amount of data transferred using

pre-copy optimization (Second transfer).

Initialization Stabilization Calculation
State of application

0

5

10

15

20

T
ra

ns
fe

rr
ed

m
em

or
y

in
G

B

5.2GB

7.5GB

9.7GB

7.5GB 7.5GB

2.8GB

5.2GB

7.5GB

9.7GB

Transfer size without pre-copy
Second transfer
Transfer size pre-copy

Figure 5.15: FENFLOSS memory transferred during
migration with and without pre-copy

These two representations of the transferred memory are displayed using solid

lines as these two transfers are also relevant for the time measurement. The

amount of memory displayed using the dotted lines (Transfer size pre-copy) is

5.5 FENFLOSS 93

Application Transfer size Transfer size Second
State without pre-copy pre-copy transfer

Initialization 5.2GB 5.2GB 7.5GB
Stabilization 7.5GB 7.5GB 7.5GB
Calculation 9.7GB 9.7GB 2.8GB

Table 5.6: FENFLOSS memory transferred during migration
with and without pre-copy

only shown for comparison. The unoptimized transfer and the transfer of pre-

copy data have been started at the same point in time. The Second transfer has

been started after the pre-copy transfer has finished. During pre-copy transfer

the application continues to run.

During the application state Initialization pre-copy optimization requires more

time to migrate the application than without optimization. The initial amount

of memory transferred using pre-copy optimization is the same as for the whole

unoptimized migration. After the pre-copy operation the actual migration takes

place and the memory has significantly changed so that more time is required

using the pre-copy optimization.

In the Stabilization phase unoptimized and pre-copy optimized process migration

takes the same time. Memory changes at a slower pace but still considerably, so

that during the Second transfer the same amount of data has to be transferred.

Migration times are the same but pre-copy optimization still requires more data

to be transferred.

The last application state (Calculation) demonstrates the benefits of pre-copy

optimization. FENFLOSS now requires almost 10GB of memory and during

the Second transfer of the pre-copy optimization only a fraction of the process’

whole memory has to be transferred and thus pre-copy optimization decreases

process downtime significantly.

Corresponding to the amount of memory transferred Figure 5.16 (page 94) and

Table 5.7 (page 95) as well as Table 5.8 (page 95) display the time during which

the application has to be suspended. In the unoptimized case this is the same

as the migration time.

94 Chapter 5. Results

Initialization Stabilization Calculation
State of application

0

10

20

30

40

50

60

M
ig

ra
ti

on
ti

m
e

in
se

co
nd

s

3s 4s 5s

22s

33s

42s

2s

3s

4s

4s 4s

33s 33s

12s

3s 3s

3s 4s 5s

23s

33s

42s

Migration time without pre-copy
Migration time after pre-copy
Pre-copy duration

Figure 5.16: FENFLOSS migration duration with and
without pre-copy

Using pre-copy optimization the application can continue to run during a certain

phase of the migration.

The results for migration duration are very similar to the results of the amount

of memory which had to be transferred. The figure displays the required mi-

gration time for the three identified application states (Initialization, Stabiliza-

tion, Calculation). For each state the unoptimized migration duration is shown

(Migration time without pre-copy) as well as the pre-copy optimized migration

duration (Migration time after pre-copy). For comparison the time required

for the Pre-copy duration is shown with a dotted line as during this time the

application continues to run.

To better distinguish which phase of the migration requires which amount of

time the different phases are represented in Figure 5.16 (page 94) and Table 5.7

5.5 FENFLOSS 95

Migration time Migration time Pre-copy
Application without pre-copy after precopy duration

State pre dump restart pre dump restart pre dump

Initialization 3s 22s 2s 4s 33s 3s 3s 23s
Stabilization 4s 33s 3s 4s 33s 3s 4s 33s
Calculation 5s 42s 4s 1s 12s 1s 5s 42s

Table 5.7: FENFLOSS migration duration details with and
without pre-copy

(page 95). The first time measured (bottom) is the time which is required to

checkpoint (dump) the running application to the local storage. The second

time measured (middle) is the time which is required to transfer the application

from the source system to the destination system. The last time measured (top)

is the time required to restart the application on the destination system. Even

using InfiniBand this also demonstrates that the transfer from the source to the

destination system requires the most time compared to the time required to

copy the process’ data from the kernel-space to the user-space.

Depending on the application’s state pre-copy optimization can increase the

time required to migrate a process as seen in the state Initialization. On the

other hand pre-copy optimization can also have enormous advantages as seen

in the state Calculation where the time during which FENFLOSS is suspended

significantly shorter using pre-copy optimization.

Application Migration time Migration time Pre-copy
State without pre-copy after precopy duration

Initialization 27s 40s 26s
Stabilization 40s 40s 37s
Calculation 51s 14s 47s

Table 5.8: FENFLOSS migration duration overview with and
without pre-copy

96 Chapter 5. Results

Chapter 6

Conclusion and Outlook

6.1 Conclusion

A common approach to satisfying the ever increasing demand for computational

resources is to increase the number of compute nodes in a cluster. Tools to sup-

port system management tasks have unfortunately not kept pace with the ever

increasing number of components and new approaches to system management

are required to better support systems with such a large number of components.

Unfortunately, existing tools for the efficient handling of such a large number

of components cannot be used in an HPC environment. These tools are usually

based on virtualized environments and one of the main advantages of virtualiza-

tion is the ability to migrate running virtual machines from one virtualization

host to another without interrupting the virtual machine and the application

running inside it. Despite having many advantages, virtualization is still not

widely used in HPC environments. There are, especially in cloud computing en-

vironments, virtualized HPC systems but virtualization is still not very common

in locally maintained compute clusters. This is also connected to the fact that

virtualization in combination with specialized low latency interconnects (e.g.,

InfiniBand) still do not offer all the benefits which are provided by virtualiza-

tion. This and the fact that there are still overheads in virtualization, motivated

97

98 Chapter 6. Conclusion and Outlook

studies to use thinner virtualization layers like para-virtualization and container

based virtualization.

Continuing the trend towards thinner virtualization techniques leads to the com-

plete avoidance of any hypervisor while still employing virtualization advantages.

Process migration is one possible approach which provides the flexibility of vir-

tual machine migration without the penalties. Instead of migrating a whole

virtual machine with a complete operating system only the affected processes

are migrated. So instead of migrating a whole operating system, only the re-

quired parts are migrated which also means that the amount of memory to be

migrated is less. Being in an HPC environment also means that a parallel pro-

cess usually uses existing libraries to communicate between the processes (e.g.,

MPI). As a result this makes it possible to handle the communication migration

in this library and removes a direct dependency on the communication hardware

and possible connected problems concerning communication migration.

This means that process migration should provide the advantages of virtualiza-

tion without the hypervisor induced overhead. System management tasks like

migrating application off a cluster node to be maintained are not limited by

the application’s run-time and can be performed any time necessary without

interrupting the running application. Process migration also makes it possible

to dynamically balance the load more efficiently in order to improve the utiliza-

tion of the existing resources. This concerns not only CPU resources, but also

resources like communication hardware, power and cooling. Process migration

has also the benefit that the amount of data to be migrated is much less as only

the parts actually affected have to be migrated.

To provide process migration in an HPC environment this work uses C/R based

process migration. Different existing C/R implementations were studied and

CRIU was selected as the most promising implementation. In addition to be-

ing as transparent as possible, it is also already included in the official Linux

kernel. With the acceptance of the Linux kernel community it was possible

to include this C/R implementation in an existing Linux distribution (Fedora

19[27]). The inclusion in a Linux distribution is important in that it provides

6.1 Conclusion 99

the opportunity to be available in Linux distributions with enterprise features

(stable software and interfaces, long term support) which are actually used in

many HPC production environments. This presents the prospect of C/R being

available in HPC in the near future systems without the requirement to install

additional core functionality like C/R, which might not be supported by the

operating system vendor and which also might introduce instabilities.

With the help dirty pages tracking[44], process migration based on CRIU can use

pre-copy optimization to decrease the time during which the process is suspended

in order to be migrated.

The process migration used in the scope of this work is an indirect migration

instead of copying the process’ memory directly from the source system to the

memory of the destination system. This means that rather than copying the

data once, it has to copied three times (kernel-space to user-space, from the

user-space via the network to destination’s system user-space and once more

from user-space to kernel-space). This does not mean that the migration time

is tripled due to the fact that the kernel-space-to-user-space and user-space-to-

kernel-space copies take much less time compared to the network transfer time.

In addition, since the migration time is not tripled, a much simpler implemen-

tation is possible. This makes it possible to use existing tools to perform the

actual data transfer (including authentication and encryption). Implementing

direct migration would have meant integrating network transfer, authentication

and encryption in kernel-space which would have meant a much more invasive

change to the operating system. This would have made community acceptance

much harder and could have introduced instabilities in the operating system.

For this reason the simpler approach of indirect migration has been selected.

The avoidance of unnecessary instabilities in the operating system was also one

of the reasons why C/R based process migration has been further studied and

not preemptive multitasking based process migration.

Process migration as described in this work has a few limitations. The first

limitation is related to the PID. Due to the fact that not only single processes can

be migrated but whole process groups with parent-child relations, the restored

100 Chapter 6. Conclusion and Outlook

processes need to have the same PID. The main reason is that the parent process

can potentially store the child process PID anywhere in its memory and therefore

it cannot be controlled by the C/R environment. One method (like implemented

by DMTCP) is to intercept system calls like fork() and provide the process with

a virtual PID. This would, however, contradict the goal of being as transparent

as possible. Requiring the same PID on restart also means that the migration

can fail if the PID is already in use on the destination system. Fortunately this

limitation can be worked around by increasing the number of available PIDs or

by influencing which PIDs will be used for the newly started processes (reboot,

pre-allocation[45]).

Another limitation of the presented solution is related to environment variables.

If an application reads an environment variable on startup and stores its value

in the application’s memory, the checkpointing implementation can no longer

influence this value. This is especially problematic for host specific environment

variables like HOSTNAME which will change after the process has been migrated. A

requirement is therefore it is required that processes which want to be migrated

do not store host specific environment variables in their local memory. In the

case of the environment variables HOSTNAME an easy work-around is to use the

function gethostname() instead.

In addition to the PID and the environment variables related limitations, pro-

cesses can only be migrated if they are running on similar set up systems. The

ISA needs to be the same and this also means that the CPUs will be very simi-

lar. Supporting different ISAs would require an abstraction layer or some kind of

virtual machine which can translate or replace instructions which are not avail-

able on the CPU of migration destination. This would contradict the goal of

this work to further reduce overheads and cause wasted CPU cycles to translate

or replace non-existing instructions. Working with HPC systems which usually

provide a homogeneous environment the requirement for the same ISA is eas-

ily fulfilled. In addition to the same ISA, the systems involved in the process

migration need to have the same version of the operating system as well as the

same version of all loaded libraries. Only the actual application is migrated and

it still expects all loaded libraries at the same place in exactly the same version.

6.1 Conclusion 101

This again is a requirement which is fulfilled by most HPC systems. In addition

to the same ISA and operating system version, a shared file system is required

to provide input and output files in the same location on all systems involved

in the process migration.

To support migration of parallel applications, the decision was made to support

MPI parallelized applications. The MPI standard offers the required functional-

ity to spawn additional processes and MPI parallelization is a common approach

for parallelizing applications in an HPC environment. Open MPI was chosen

as the most suited MPI implementation because of its open development model

and license. Another advantage of Open MPI is that it used to have a modular

fault tolerance framework which could be used as the basis for process migration

of parallel jobs. The fault tolerance framework no longer working was re-enabled

and extended to support CRIU based checkpointing and restarting. Unfortu-

nately, due to time constraints it was not possible to provide process migration

of parallel applications. However with CRIU as a C/R implementation inte-

grated into Open MPI, important steps towards parallel process migration have

been achieved. These initial steps performed in the scope of this work make

it possible to support process migration in Open MPI and thus enable the in-

tegration of this functionality in resource schedulers. With the integration of

process migration functionality in resource schedulers and intelligent manage-

ment frameworks, system management tasks like software upgrades or hardware

maintenance can be performed at any time, since the processes running on the

affected systems can be migrated to another system at any time. With the

integration of process migration and intelligent management frameworks[54] it

should also be possible to predict failures and pro-actively migrate processes off

the faulting components.

Using different application the non-parallel process migration approaches pre-

sented were implemented and tested. With two synthetic test cases it was possi-

ble to test and demonstrate concepts while using a real application (FENFLOSS)

it was shown that process migration works with production level applications.

In contrast to the synthetic test cases it became clear that the optimization used

can lead to worse results in some cases. Furthermore it can enormously speed

102 Chapter 6. Conclusion and Outlook

up the migration of processes in other constellations.

6.2 Outlook

With the result that process migration can offer functionality in HPC environ-

ments which until now did not exist, multiple questions emerge which have not

been approached in the scope of this work. One of the goals was to reduce

the overhead caused by hypervisors or virtualization in general. With process

migration in a homogeneous environment there is no need for an overhead but

it is not clear how a parallel application reacts if one or several of its processes

are suspended for a certain time and then resume on another system. Even

if the downtime of the process to be migrated is relatively short it means, in

most cases, that all other processes have to wait. Every communication with

the suspended process is blocked until the migrated process resumes. As the

application has probably not been designed to handle communication timeouts,

it could be the case that the parallel application aborts if the migration takes

too long. So the application and the MPI implementation have to know how to

handle migration related timeouts. The effect of process migration on an appli-

cation which is parallelized over thousands of cores also needs further study. If

a single process of such an application is migrated this can mean that thousands

of CPU cores have to wait until the migration is finished and this can mean that

not only the time of the CPUs involved in the actual migration is lost, but this

lost time has to be multiplied by the cores waiting for the process migration to

finish. This can lead to situations where process migration leads to enormous

amounts of wasted CPU cycles and this needs to be clear before initiating the

migration.

Process migration as implemented in the scope of this work is indirect and C/R

based. This implementation has been selected to avoid unnecessary instabili-

ties of the operating system related to changes to very central operating system

components like the process scheduler. An interesting study, however, would

be how process migration based on preemptive multitasking concepts compares

6.2 Outlook 103

to C/R based process migration. Even if the theoretical duration difference

between direct and indirect process migration is minimal, it would be interest-

ing to compare direct process migration without the additional copies between

kernel-space and user-space to indirect process migration.

With the opportunity to migrate parts of a parallel process, process migration

can also be used in combination with an intelligent monitoring system[54] to

detect failures and pro-actively migrate processes off systems which are about

to fail.

Especially in an HPC environment which often employs C/R as a means of

fault tolerance, C/R has significant drawbacks. The biggest disadvantage in

connection with C/R is that up to 50% of the available CPU cycles can be lost.

A checkpoint is usually written to a centralized storage system which is acces-

sible by all cluster nodes and during the time all these nodes are storing their

checkpoint image, the CPUs are idling and those CPU cycles are lost. The larger

the corresponding calculation is, the more nodes try to simultaneously save their

checkpoint image to the same storage system. This leads to a very high I/O

load on the storage system which means that all nodes related to the calculation

have to wait even longer until the checkpoint operation finishes. This is related

to the fact that although the size of the storage systems has kept pace with the

available memory, the bandwidth unfortunately has not[55].

With storage systems comparably slow to main memory in combination with

the wrong interval at which checkpoints are taken[56], up to 50% of the available

CPU cycles can be lost waiting for checkpoint operations to finish[40].

The existing drawbacks concerning C/R have been identified previously[57] and

one of the commonly suggested solutions is pro-active process migration[41]

instead of checkpointing with re-active restarting. Process migration, however,

cannot be the only fault tolerance mechanism as it does not protect from data

loss if the fault cannot be predicted.

104 Chapter 6. Conclusion and Outlook

Bibliography

[1] Inc. VMware. VMware vSphere vMotion Architecture, Performance and

Best Practices in VMware vSphere 5. Technical report, 2011.

[2] KVM - Kernel-based Virtual Machine. Migration - kvm. http://www.

linux-kvm.org/page/Migration, 2012.

[3] Todd Deshane, Zachary Shepherd, J Matthews, Muli Ben-Yehuda, Amit

Shah, and Balaji Rao. Quantitative comparison of Xen and KVM. Xen

Summit, Boston, MA, USA, pages 1–2, 2008.

[4] Jianhua Che, Yong Yu, Congcong Shi, and Weimin Lin. A synthetical

performance evaluation of openvz, xen and kvm. In Services Computing

Conference (APSCC), 2010 IEEE Asia-Pacific, pages 587–594. IEEE, 2010.

[5] Andrea Bastoni, Daniel P Bovet, Marco Cesati, and Paolo Palana. Discov-

ering hypervisor overheads using micro and macrobenchmarks.

[6] Lamia Youseff, Rich Wolski, Brent Gorda, and Chandra Krintz. Paravir-

tualization for HPC systems. In Frontiers of High Performance Computing

and Networking–ISPA 2006 Workshops, pages 474–486. Springer, 2006.

[7] Miguel G Xavier, Marcelo V Neves, Fabio D Rossi, Tiago C Ferreto, Tim-

oteo Lange, and Cesar AF De Rose. Performance evaluation of container-

based virtualization for high performance computing environments. In Par-

allel, Distributed and Network-Based Processing (PDP), 2013 21st Euromi-

cro International Conference on, pages 233–240. IEEE, 2013.

105

http://www.linux-kvm.org/page/Migration
http://www.linux-kvm.org/page/Migration

106 Bibliography

[8] V Chaudhary, Minsuk Cha, JP Walters, S Guercio, and Steve Gallo. A

comparison of virtualization technologies for HPC. In Advanced Informa-

tion Networking and Applications, 2008. AINA 2008. 22nd International

Conference on, pages 861–868. IEEE, 2008.

[9] Roberto R Expósito, Guillermo L Taboada, Sabela Ramos, Juan Touriño,

and Ramón Doallo. Performance analysis of HPC applications in the cloud.

Future Generation Computer Systems, 29(1):218–229, 2013.

[10] Abhishek Gupta, Laxmikant V Kale, Filippo Gioachin, Verdi March,

Chun Hui Suen, Bu-Sung Lee, Paolo Faraboschi, Richard Kaufmann, and

Dejan Milojicic. The Who, What, Why and How of High Performance

Computing Applications in the Cloud. Technical report, HP Labs, Tech.

Rep., 2013.[Online]. Available: http://www.hpl.hp.com/techreports/

2013/HPL-2013-49.html, 2013.

[11] Fabian Brosig, Fabian Gorsler, Nikolaus Huber, and Samuel Kounev. Evalu-

ating Approaches for Performance Prediction in Virtualized Environments.

In Proceedings of the 2013 IEEE 21st International Symposium on Mod-

elling, Analysis & Simulation of Computer and Telecommunication Sys-

tems, pages 404–408. IEEE Computer Society, 2013.

[12] Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Chaitanya Kandalla,

Mark Daniel Arnold, and Dhabaleswar K Panda. SR-IOV Support for

Virtualization on InfiniBand Clusters: Early Experience. In Cluster, Cloud

and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Sym-

posium on, pages 385–392. IEEE, 2013.

[13] Malek Musleh, Vijay Pai, John Paul Walters, Andrew Younge, and

Stephen P Crago. Bridging the Virtualization Performance Gap for HPC

Using SR-IOV for InfiniBand.

[14] Andrew S. Tanenbaum. Modern operating systems. Prentice-Hall, Upper

Saddle River, NJ, 3. ed., internat. ed. [nachdr.] edition, 2010.

http://www.hpl.hp.com/techreports/2013/HPL-2013-49.html
http://www.hpl.hp.com/techreports/2013/HPL-2013-49.html

Bibliography 107

[15] Renaud Lottiaux, Benoit Boissinot, Pascal Gallard, Geoffroy Vallée, Chris-

tine Morin, et al. OpenMosix, OpenSSI and Kerrighed: a comparative

study. 2004.

[16] Oren Laadan, Dan Phung, and Jason Nieh. Transparent checkpoint-restart

of distributed applications on commodity clusters. In Cluster Computing,

2005. IEEE International, pages 1–13. IEEE, 2005.

[17] Parallel Environment Runtime Edition for AIX. http://publibfp.dhe.

ibm.com/epubs/pdf/c2367811.pdf, April 2012.

[18] TOP500 Release. http://top500.org/, September 2014.

[19] Jason Duell. The design and implementation of Berkeley Labs Linux Check-

point/Restart. Technical report, 2003.

[20] Does BLCR require a kernel patch? https://upc-bugs.lbl.gov/blcr/

doc/html/FAQ.html#patch, December 2014.

[21] Jason Ansel, Kapil Arya, and Gene Cooperman. DMTCP: Transparent

Checkpointing for Cluster Computations and the Desktop. In 23rd IEEE

International Parallel and Distributed Processing Symposium, Rome, Italy,

May 2009.

[22] Oren Ladaan and Serge E. Hallyn. Linux-CR: Transparent Application

Checkpoint-Restart in Linux. In The Linux Symposium 2010, Ottawa, July

2010, 2010.

[23] Kernel based checkpoint/restart. http://lwn.net/Articles/298887/,

December 2014.

[24] Checkpoint/restart in the userspace. http://www.linuxplumbersconf.

org/2011/ocw/sessions/831, December 2014.

[25] Checkpoint/Restore in Userspace. http://criu.org/, April 2012.

[26] Fedora. https://fedoraproject.org/, December 2014.

http://publibfp.dhe.ibm.com/epubs/pdf/c2367811.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/c2367811.pdf
http://top500.org/
https://upc-bugs.lbl.gov/blcr/doc/html/FAQ.html#patch
https://upc-bugs.lbl.gov/blcr/doc/html/FAQ.html#patch
http://lwn.net/Articles/298887/
http://www.linuxplumbersconf.org/2011/ocw/sessions/831
http://www.linuxplumbersconf.org/2011/ocw/sessions/831
http://criu.org/
https://fedoraproject.org/

108 Bibliography

[27] Features/Checkpoint Restore. https://fedoraproject.org/wiki/

Features/Checkpoint_Restore, December 2014.

[28] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi. Enabling Instanta-

neous Relocation of Virtual Machines with a Lightweight VMM Extension.

In Proceedings of the 2010 10th IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing, pages 73–83. IEEE Computer Society,

2010.

[29] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-

dard, Version 3.0, 2012.

[30] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.

Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian

Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.

Graham, and Timothy S. Woodall. Open MPI: Goals, Concept, and De-

sign of a Next Generation MPI Implementation. In Proceedings, 11th Euro-

pean PVM/MPI Users’ Group Meeting, pages 97–104, Budapest, Hungary,

September 2004.

[31] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,

portable implementation of the MPI message passing interface standard,

September 1996.

[32] William D. Gropp and Ewing Lusk. User’s Guide for mpich, a Portable

Implementation of MPI. Mathematics and Computer Science Division, Ar-

gonne National Laboratory, 1996. ANL-96/6.

[33] Bianca Schroeder and Garth A Gibson. Understanding failures in petascale

computers. Journal of Physics: Conference Series, 78(1):012022, 2007.

[34] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in

high-performance computing systems. In Proceedings of the International

Conference on Dependable Systems and Networks, pages 249–258, Wash-

ington, DC, USA, 2006. IEEE Computer Society.

https://fedoraproject.org/wiki/Features/Checkpoint_Restore
https://fedoraproject.org/wiki/Features/Checkpoint_Restore

Bibliography 109

[35] Graham E Fagg and Jack J Dongarra. FT-MPI: Fault tolerant MPI, sup-

porting dynamic applications in a dynamic world. In Recent advances

in parallel virtual machine and message passing interface, pages 346–353.

Springer, 2000.

[36] Sriram Sankaran, Jeffrey M Squyres, Brian Barrett, Vishal Sahay, Andrew

Lumsdaine, Jason Duell, Paul Hargrove, and Eric Roman. The LAM/MPI

checkpoint/restart framework: System-initiated checkpointing. Interna-

tional Journal of High Performance Computing Applications, 19(4):479–

493, 2005.

[37] Joshua Hursey, Jeffrey M. Squyres, Timothy I. Mattox, and Andrew Lums-

daine. The Design and Implementation of Checkpoint/Restart Process

Fault Tolerance for Open MPI. In Proceedings of the 21st IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS). IEEE

Computer Society, 03 2007.

[38] B. Bouteiller, P. Lemarinier, K. Krawezik, and F. Capello. Coordinated

checkpoint versus message log for fault tolerant MPI. In Cluster Computing,

2003. Proceedings. 2003 IEEE International Conference on, pages 242–250,

2003.

[39] Justin CY Ho, Cho-Li Wang, and Francis CM Lau. Scalable group-based

checkpoint/restart for large-scale message-passing systems. In Parallel and

Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium

on, pages 1–12. IEEE, 2008.

[40] Kurt Ferreira, Rolf Riesen, Ron Oldfield, Jon Stearley, James Laros, Kevin

Pedretti, Ron Brightwell, and Todd Kordenbrock. Increasing fault resiliency

in a message-passing environment. Technical report SAND2009-6753, San-

dia National Laboratories, October 2009.

[41] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L Scott.

Proactive process-level live migration in HPC environments. In Proceed-

ings of the 2008 ACM/IEEE conference on Supercomputing, page 43. IEEE

Press, 2008.

110 Bibliography

[42] tmpfs. http://www.kernel.org/doc/Documentation/filesystems/

tmpfs.txt, December 2014.

[43] Adrian Reber and Peter Väterlein. PoS (ISGC 2012) 031 Live process

migration for load balancing and/or fault tolerance. In The International

Symposium on Grids and Clouds (ISGC), volume 2012, 2012.

[44] SOFT-DIRTY PTEs. https://www.kernel.org/doc/Documentation/

vm/soft-dirty.txt, December 2014.

[45] /proc/sys/kernel/*. https://www.kernel.org/doc/Documentation/

sysctl/kernel.txt, December 2014.

[46] SSH. http://en.wikipedia.org/w/index.php?title=Secure_Shell&

oldid=545050666, December 2014.

[47] Joshua Hursey, Jeffrey M. Squyres, and Andrew Lumsdaine. A Checkpoint

and Restart Service Specification for Open MPI. Technical Report TR635,

Indiana University, Bloomington, Indiana, USA, July 2006.

[48] Open MPI CRS commits. https://github.com/open-mpi/ompi/commit/

e12ca48cd9a34b1f41b11f267bddf91f05dae5be, December 2014.

[49] Processor E5-2650. http://ark.intel.com/products/64590/, December

2014.

[50] John D. McCalpin. Memory Bandwidth and Machine Balance in Current

High Performance Computers. IEEE Computer Society Technical Commit-

tee on Computer Architecture (TCCA) Newsletter, pages 19–25, December

1995.

[51] Albert Ruprecht. Finite Elemente zur Berechnung dreidimensionaler,

turbulenter Strömungen in komplexen Geometrien. Hochschulschrift,

Stuttgart, 1989.

[52] Institut fr Strömungsmechanik und Hydraulische Strömungsmaschinen.

http://www.ihs.uni-stuttgart.de/, December 2014.

http://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
http://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt
https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
http://en.wikipedia.org/w/index.php?title=Secure_Shell&oldid=545050666
http://en.wikipedia.org/w/index.php?title=Secure_Shell&oldid=545050666
https://github.com/open-mpi/ompi/commit/e12ca48cd9a34b1f41b11f267bddf91f05dae5be
https://github.com/open-mpi/ompi/commit/e12ca48cd9a34b1f41b11f267bddf91f05dae5be
http://ark.intel.com/products/64590/
http://www.ihs.uni-stuttgart.de/

Bibliography 111

[53] FENFLOSS. http://www.ihs.uni-stuttgart.de/116.html, December

2014.

[54] Eugen Volk, Jochen Buchholz, Stefan Wesner, Daniela Koudela, Matthias

Schmidt, Niels Fallenbeck, Roland Schwarzkopf, Bernd Freisleben, Götz

Isenmann, Jürgen Schwitalla, et al. Towards Intelligent Management of

Very Large Computing Systems. Competence in High Performance Com-

puting 2010, pages 191–204, 2012.

[55] Nathan DeBardeleben, James Laros, John T. Daly, Stephen L. Scott, Chris-

tian Engelmann, and Bill Harrod. High-End Computing Resilience: Anal-

ysis of Issues Facing the HEC Community and Path-Forward for Research

and Development. Whitepaper, December 2009.

[56] William M. Jones, John T. Daly, and Nathan DeBardeleben. Impact of

sub-optimal checkpoint intervals on application efficiency in computational

clusters. In Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing, HPDC ’10, pages 276–279, New York,

NY, USA, 2010. ACM.

[57] Franck Cappello, Henri Casanova, and Yves Robert. Checkpointing vs.

Migration for Post-Petascale Supercomputers. In Proceedings of the 2010

39th International Conference on Parallel Processing, ICPP ’10, pages 168–

177, Washington, DC, USA, 2010. IEEE Computer Society.

http://www.ihs.uni-stuttgart.de/116.html

	Introduction
	Motivation
	Goals
	Structure of this work

	State of the Art
	Hypervisor
	Para-Virtualization and Container Based
	I/O Accesses
	Process Migration

	Process Migration
	The Process
	Process Management
	Memory Management
	File Management

	Memory Transfer Methods
	Memory Transfer During Migration
	Memory Transfer After Migration
	Memory Transfer Before Migration

	Preemptive Migration
	Single System Image

	Checkpoint/Restore Migration
	Berkeley Lab Checkpoint/Restart
	Distributed MultiThreaded Checkpointing
	Kernel-Space-Based
	User-Space-Based

	Post-Copy Migration vs. Pre-Copy Migration
	Process Migration

	Parallel Process Migration
	Related Work
	Parallel Process Migration
	Open MPI

	Results
	Approaches and Implementation
	Requirements - Constraints - Limitation
	Kernel-Space-Based Process Migration
	User-Space-Based Process Migration
	Process Identifier
	Environment Variables
	Security
	Implementation within Open MPI
	Re-Parenting
	Output Redirection

	Test and Validation Methods
	UDP Ping Pong - udpp
	memhog
	Via Ethernet with a local SSD
	Via InfiniBand with a local SSD
	Via Ethernet with a local RAM drive
	Via InfiniBand with a local RAM drive
	Test Case Summary with memhog

	FENFLOSS

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography

