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ZUSAMMENFASSUNG

Die Biotechnologie ist einer der am stärksten wachsenden Wirtschaftszweige des 21. Jahrhunderts

und ermöglicht die nachhaltige Produktion von industriell bedeutenden Verbindungen mit Hilfe von

Zellfabriken. Um mit klassischen chemischen Produktionsprozessen wirtschaftlich konkurrieren zu

können, müssen sowohl biologische Kenntnisse über beteiligte Sto�wechselwege, die Zellfabrik und

deren Populationsdynamik unter harschen Produktionsbedingungen, als auch Wissen aus Inge-

nieursdisziplinen, wie der Bioprozesstechnik und dem Bioreaktordesign, berücksichtigt werden.

Bis heute wird bei der Charakterisierung biologischer Prozesse ein uniformes Zellverhalten angenom-

men. In den letzten Jahren wurde jedoch bekannt, dass isogene mikrobielle Populationen aus Zellen

mit unterschiedlichen Phänotypen bestehen, die einerseits zu Leistungsverlust durch weniger pro-

duktive Subpopulation führen können, aber andererseits durch schnellere Anpassungsfähigkeit der

Population zur Robustheit des Prozesses beitragen. Um die Entstehung von Populationsheteroge-

nenitäten in Bioprozessen kontrollieren zu können, müssen die zugrunde liegenden Mechanismen

verstanden werden. Im ersten Teil der Arbeit wurde der Ein�uss des Zellzyklus und industriell

relevanter Stressbedingungen auf die Entstehung von Populationsdynamiken quanti�ziert.

Zunächst wurde die Abhängigkeit der Proteinzusammensetzung von Pseudomonas putida KT2440

Zellen in unterschiedlichen Zellzyklusphasen unter langsamen und schnellen Wachstumsbedingun-

gen untersucht. Überraschenderweise konnten keine signi�kanten Unterschiede in dem Proteom der

durch Flusszytometrie detektierten Zellzyklus-Subpopulationen festgestellt werden. Im Gegensatz

dazu verursachte die Veränderung der Wachstumsrate groÿe Unterschiede in der Proteinzusam-

mensetzung z.B. in Bezug auf Kohlensto�speicherung, Motilität und der Translationsmaschinerie.

Die Ergebnisse zeigen, dass der Zellzyklus selbst einen nur geringen Ein�uss auf die Entstehung

von Heterogenitäten auf Proteinebene unter den getesteten Wachstumsbedingungen hat, während

die Wachstumsrate die Proteinzusammensetzung klar bestimmt.



xvi Zusammenfassung

In groÿvolumigen Prozessen werden Zellen anspruchsvollen und sich ständig ändernden Mikroumge-

bungen ausgesetzt. Unter verringerter Eisen- und Sauersto�verfügbarkeit und Lösungsmittel-

exposition �typischen Stressbedingungen, denen P. putida Zellen in industriellen Anwendungen

begegnen� wurde eine Veränderung der Populationszusammensetzung entdeckt, die eine Anpassung

der Zellzyklusdynamik innerhalb der Population vermuten lieÿ. Daraufhin wurde ein datengetriebe-

ner Modellansatz verwendet, um eventuelle Unterschiede in den Zellzyklusphasen zu quanti�zieren:

Bei gleichbleibender Generationszeit verkürzten die Zellen ihre Replikationsphase unter allen getes-

teten Stressbedingungen. Dem entsprechend verlängerten sich die übrigen Phasen des Zellzyklus:

die Zeit zwischen Geburt der Zelle und Start der Replikation und die Zeit zwischen dem Ende der

Replikation und der Teilung der Zelle. Die Beschleunigung der Replikationsrate (bis zu 1.9fach) kor-

reliert hierbei mit der Stressbelastung. Transkriptomdaten untermauern die Beobachtungen und

zeigen eine Überexpression von Genen, die Komponenten der zellulären Replikationsmaschinerie

kodieren und die somit eine Erhöhung der Replikationsgeschwindigkeit erreichen könnten. Unsere

Ergebnisse zeigen, dass Zellen unter Stress die Replikation der genetischen Information beschleu-

nigen. Dieses Phänomen ist begleitet von einer ausgewogenen Veränderung der Dauer aller Zell-

zyklusphasen und dient der Aufrechterhaltung einer konstanten Wachstumsrate.

Im zweiten Teil dieser Arbeit wurde das Potential von gezielter Genomreduktion als Strategie

zur Stammoptimierung am Beispiel von P. putida Stämmen erörtert. Bei den zuvor entfernten

zellulären Funktionen handelte es sich zum Einen um die Flagellamotilität und zum Anderen um

Gene, die bei Deletion mit der Verbesserung geno- und phänotypischer Stabilität in Verbindung ge-

bracht werden. Die beiden Genom-reduzierten Mutanten wurden hinsichtlich industriell-relevanter

physiologischer Merkmale untersucht und übertrafen den Wildtyp KT2440 in allen untersuchten

Merkmalen: Energetische Parameter, wie die Energieladung und der Adenosintriphosphatgehalt

der Zellen, waren signi�kant erhöht. Zudem benötigten die Mutanten einen geringeren Anteil

der Substrataufnahmerate für Erhaltungssto�wechselprozesse. Desweiteren zeigten die Mutanten

verbesserte Biomasseerträge und erreichten höhere Wachstumsraten in Batch-Kultivierungen als

P. putida KT2440. Abschlieÿend wurde die Produktionskapazität von heterologen Proteinen am

Beispiel des grün �uoreszierenden Proteins bestimmt: Auch hier zeigten die Mutanten eine Er-

höhung der Ausbeute an rekombinantem Protein pro Biomasse von bis zu 40%. Die Ergebnisse

bestätigen, dass mit gezielter Genomreduktion eine Optimierung des Energiehaushaltes und der

Produktionskapazität von mikrobiellen Zellfabriken erreicht werden kann.

Zusammenfassend kann der nicht-pathogene Stamm P. putida KT2440 als Zellfabrik empfohlen

werden. Der Stamm besitzt viele vorteilhafte Eigenschaften für biotechnologische Anwendungen,

wie z.B. ein hohes Maÿ an Stressrobustheit und Sto�wechselvielfalt, eine relativ einfache geneti-

sche Manipulierbarkeit und einen GRAS-Status (generally recognized as safe). Eine Kombination

aus weiterführenden Optimierungen des Produktionsstammes und einem tieferen Verständnis der

zugrunde liegenden Mechanismen von Populationsdynamiken wird in Zukunft mit Sicherheit die

Produktionsleistung einer Vielzahl an biotechnologischen Prozesses erhöhen.
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SUMMARY

The �eld of biotechnology forms the foundation for one of the biggest growing industries in the

21st century. The exploitation of cell factories combines the production of valuable compounds

with core values, like environmental friendliness and sustainability. However, the feasibility of a

biotechnological process stands or falls with its ability to compete economically with the classical

chemical production process. In order to design a viable large-scale microbial production process,

biological knowledge about the metabolic pathways involved, the cell factory and its population

behavior in industrially relevant environmental conditions have to go hand in hand with classical

engineering disciplines comprising bioreactor design and bioprocess control. Here, we assessed

Pseudomonas putida KT2440 as a promising cell factory and focused on the elucidation of its

population dynamics as a key for process optimization.

While optimizing the biological process, uniform cell behavior is assumed, thus, leveling individual

to `averaged' cell properties. However, recent research manifested a more di�erentiated picture:

Isogenic microbial cultures comprise subpopulations with dissimilar phenotypes that on one hand

may cause performance loss due to less productive subpopulations, but on the other hand increase

the robustness of the process as a result of faster population adaptation to challenging environ-

ments. The ability to control and harness traits of heterogeneous cell populations relies on a deeper

understanding of the underlying mechanisms. Here, we quantify the impact of (1) the cell cycle

and (2) industrially-relevant stress conditions on population heterogeneity.

Cell cycling and cell cycle decisions are assumed to play a role in the development of population

heterogeneity within clonal populations. We investigated the dependency of the protein inventory

of subpopulations in di�erent cell cycle phases under slow and fast growth conditions, using a

combination of chemostat cultivations, �uorescence activated cell sorting and mass spectrometry

based proteomics. Surprisingly, the protein inventory of subpopulations growing at the same growth

rate was highly similar and therefore independent of the cell cycle phase. On the contrary, di�erent
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growth rates caused major di�erences in the proteome with respect to e.g. carbon storage, motility

and the translational machinery. The results give rise to the assumption that the cell cycle itself

has a minor impact on population heterogeneity under the conditions tested, while the growth rate

clearly determines the protein composition.

Industrial large-scale fermentations provide challenging and constantly changing environmental

conditions for the microbial cell population. Here, we deciphered population dynamics that result

from decreased iron or oxygen availability and solvent exposure �typical stress environments P.

putida strains are facing in industrial set-ups. While quantifying subpopulation distributions via

�ow cytometry under non-stressed and stressed conditions in chemostats, we observed adjustments

of cell cycle dynamics in the population. Data-driven modeling was applied to quantify changes

in the durations of the cell cycle phases. Under all stress conditions tested, the replication phase

was shortened, while the time from birth until initiation of replication and the time from end

of replication until cell division was prolonged accordingly. Thereby, the increase in replication

rate (up to 1.9 fold) was correlated to the severity of the stress imposed. Transcriptome data

hint towards overexpression of crucial genes related to the replication machinery to achieve the

replication speed up. It seems that fast replication of the genetic information is of high priority

under stress conditions, resulting in a balanced altering of the duration of all cell cycle phases as

a cellular mechanism to maintain constant growth rates.

In the second part of the thesis, we explored Pseudomonas putida KT2440 as a promising mi-

crobial cell factory. Production hosts can be designed by (1) rational pathway engineering or

(2) removing all elements deemed unnecessary for cellular functions other than replication and

self-maintenance in order to improve energy availability for production and genomic stability. Fol-

lowing the latter strategy, we evaluated the impact of targeted genome reduction �particularly

the deletion of �agellar motility and genes associated with improving genotypic and phenotypic

stability� on industrially-relevant physiological traits. The two P. putida derivative strains out-

competed the parental strain in every trait assessed: At �rst, energetic parameters were quanti�ed

at di�erent controlled growth rates in continuous cultivations and both strains showed a higher

adenosine triphosphate content, adenylate energy charge and decreased maintenance demands than

the wild-type strain KT2440. Second, the mutants grew faster and reached higher biomass yields

in batch cultivations. Finally, when the production capacity of the green �uorescent protein was

assessed in the mutants, an up to 40% increase of recombinant protein yield was observed.

Summarizing, we advocate the non-pathogenic P. putida KT2440 as a cell factory of choice, uniting

desirable traits for biotechnological application, such as a high level of stress robustness, metabolic

diversity, a relative ease of genetic manipulation and a GRAS status (generally recognized as safe).

Finally, a combination of a targeted optimization of the production host and a deeper mechanistic

understanding of population dynamics will certainly enhance the overall production performance

in diverse biotechnological processes.
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CHAPTER 1

MOTIVATION AND OBJECTIVES

The biotechnological industry is one of the biggest growing industries of the 21st century � more

than 22 million employees are contributing alone in Europe to its e1.5tn business (Gartland et al.,

2013). This rapidly advancing market is fueled by scienti�c and technological progress through-

out a wide spectrum of applications, ranging from medical over agricultural and environmental

to industrial biotechnology. The exploitation of cell factories to produce valuable compounds is

advancing to a key technology, promising environmental friendliness and sustainability (Sauer et

al., 2012). However, the feasibility of a biotechnological process stands or falls with its ability to

compete economically with the classical chemical production process (Lee et al., 2012).

In order to design a viable large-scale microbial production process, multiple layers of biological

and engineering knowledge needs to be gathered and considered comprehensively (Figure 1.1):

Biological knowledge of the molecular mechanisms and the metabolic networks involved, the choice

of an optimal cell factory and its population behavior have to go hand in hand with classical

engineering disciplines comprising bioreactor design and bioprocess control (Sauer et al., 2012).

The success of a microbial production process is dependent on interdisciplinary gain of knowledge

and optimization attempts. In this thesis, we focus on the central player within these diverse

contributions to a cost-e�ective production process: the cell factory. The choice and construction

of a robust microbial host as well as its population dynamics in industrially-relevant environments

will be elucidated.

This study was carried out during a three year period within the `European Research Area - In-

dustrial Biotechnology' project `Pseudomonas 2.0'. The innate potential of non-pathogenic Pseu-

domonas was exploited by a combination of systems analysis to provide a competitive and bene-

�cial alternative to commonly applied bacterial cell factories, such as Bacillus, Corynebacterium

glutamicum or Escherichia coli.
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Figure 1.1.: Summary of biological and technical factors contributing to a robust production process.
A viable biotechnological process is dependent on the choice of a robust microbial cell factory and its population
dynamics, which is governed by an interplay of biological and technical factors. In this thesis, we evaluated the
suitability of Pseudomonas putida KT2440 as an alternative production host and elucidated its population dynamics
in industrially-relevant environments.

Being part of this research consortium, we focused on two closely related research objectives: First,

we set out to quantify and investigate the advent and origin of population heterogeneity arising

in cultivations of the type strain P. putida KT2440 under industrially relevant environmental

conditions. Second, we evaluated P. putida KT2440 as an e�cient cell factory, examining and

comparing physiological traits of optimized derivative strains to their parental strain.

The following sections give a brief introduction into the research background and highlight the

outstanding questions motivating this thesis.

1.1. Heterogeneity in microbial cultivations

Optimization approaches of fermentation processes are traditionally assuming an uniform isogenic

microbial population, thus leveling individual to `averaged' cell properties. However, recent research

studies showed a more di�erentiated picture and revealed that even isogenic microbial cultures

comprise individuals that are by no means identical, but exhibit dissimilar phenotypes (Avery,

2006; Nikel et al., 2014c).

Several factors that play a role in the onset of population heterogeneity have been suggested:

`Internal' biological factors, such as mutations, gene expression noise or cell cycle decisions, but

also `external' technical factors, such as changing micro-environments due to de�cient mixing in

large scale production, might lead to or further amplify di�erences in microbial phenotypes (Müller

et al., 2010).
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On one hand, population heterogeneity is considered as highly unwanted in industrial bioprocesses,

because it putatively causes performance loss (Neumeyer et al., 2013). On the other hand, hetero-

geneity can be bene�cial for the robustness of the fermentation process, because it allows faster

adaptation of the microbial population to changing environments (Enfors et al., 2001; Hewitt et al.,

1999).

Controlling and harnessing traits of heterogeneous cell populations will certainly improve biological

production processes, but rely on a deeper understanding of the underlying mechanisms, which,

until now, are mostly unknown (Müller et al., 2010; Díaz et al., 2010). In this thesis, two suggested

key players in the onset and ampli�cation of population heterogeneity were investigated: the cell

cycle and the environmental condition.

The cell cycle as a driver of population heterogeneity

The �rst research objective covers the investigation of the cell cycle as a biological factor causing

population heterogeneity (chapter 6). Cell cycling and cell cycle decisions are assumed to play a

key role in the development of population heterogeneity within clonal populations (Avery, 2006;

Müller et al., 2010). In the �eld of applied microbiology, scientists argue whether speci�c cellular

processes occur only in dependency of the cell cycle phase (Mitchison, 1977): Energetic costly

processes, e.g. product synthesis, could be accomplished by the cell within the stochastic phases of

the cell cycle, where neither replication nor cell division occurs (Bley, 1990; Müller et al., 2010).

Well de�ned experimental studies are fundamental for investigating the origin of population het-

erogeneity (Lencastre Fernandes et al., 2011). Here, the following work packages were designed to

shed light on the role of the cell cycle as a driver of population heterogeneity:

• Set-up of a reproducible and controlled fermentation process using P. putida KT2440, in-

cluding the development of a seed-train

• De�nition of a suitable reference condition and the accomplishment of three characteristic

biological replicate cultivations

• Development and test of sampling and sample processing techniques for representative biomass

samples suitable for subpopulation and proteome analysis

• Statistical assessment and analysis of �ow cytometry datasets

• De�nition of a meaningful subpopulation separation variable

• Statistical assessment and analysis of subpopulation proteome datasets

• Comparison of the protein inventory of cell cycle subpopulations
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The environment as a driver of population heterogeneity

The second research objective is concerned with deducing the role of the environment as an external

factor triggering the advent of population heterogeneity (chapter 7). Besides the above mentioned

biological side, technical settings can also cause and amplify population heterogeneity. During large

scale industrial fermentations, cells are exposed to less ideal conditions as compared to laboratory

scale cultivations: Even though process parameters are tightly controlled, signi�cant local gradients

of e.g. dissolved oxygen availability cannot be avoided due to limited mixing and mass transfer

(Schweder et al., 1999). Cells circulating through the bioreactor are exposed to shifts in their

environment (Fritzsch et al., 2012) and need to continuously adjust their physiology to cope with

these �uctuating conditions (Enfors et al., 2001). Regarding the production process itself, it

was observed that industrial environments lead to undesired population physiologies including

subpopulations of reduced biomass yield and productivity (Lara et al., 2006; Enfors et al., 2001;

Carlquist et al., 2012).

Even though population heterogeneity is by now a widely accepted fact, it is rarely taken into

account in optimization strategies of bioprocesses (Müller et al., 2010). In order to integrate

the interplay of changing environments and subpopulation split-up, �rst, the underlying complex

biological mechanisms need to be understood and second, a data-based mathematical model de-

scribing population dynamics needs to be developed to bridge the gap from experimentally gained

knowledge to optimization and control of industrial bioprocesses (Lencastre Fernandes et al., 2011).

Here, the following work packages were designed in order to elucidate the role of environmental

conditions in population dynamics:

• Choice of relevant industrial stress conditions

• Design of an experimental set-up to monitor population dynamics as a response to changing

environmental conditions

• Accomplishment of three characteristic biological replicate cultivations for each stress condi-

tion

• Statistical assessment and analysis of �ow cytometry and `whole transcriptome shotgun se-

quencing' datasets

• De�nition of a meaningful subpopulation separation variable

• Quanti�cation of population dynamics as a response to alternating environmental conditions

• Formulation and implementation of a mathematical framework describing the observed pop-

ulation dynamics

• Combination of fermentation studies and a mathematical framework to decipher population

dynamics during altering stress/stress-free cultivation conditions
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1.2. P. putida KT2440 as a promising industrial production host

Selecting a suitable microorganism as a production chassis is a crucial step for the success of the

production process (Lee et al., 2012). Ideally, a microbial cell factory is equipped with a variety

of physiological and metabolic traits (Sauer et al., 2012): the platform strain should be robust,

genetically stable and metabolically diverse (Foley et al., 2010). For economic reasons, the cell

factory should also convert substrates into biomass and/or products e�ciently and predictably,

while showing simple culture media demands (Nikel et al., 2014a).

Albeit the evident need for a bacterial chassis uniting most of these desirable traits, only few hosts

(often E. coli strains (Chen et al., 2013; Gopal et al., 2013; Mizoguchi et al., 2007)) are currently

applied in industrial processes. Much of contemporary metabolic engineering approaches rely on

the use of only a few bacterial hosts as working platforms (Danchin, 2012; Singh, 2014). However,

organisms that are easiest to manipulate are often not the most suitable for speci�c industrial

applications. Therefore, the implementation of novel biotechnological platform cells for industrial

applications is currently the subject of intense research. In this thesis, P. putida KT2440 is explored

as a promising alternative microbial cell factory.

Optimizing microbial cell chassis by streamlining the genome

The third research objective of this thesis quanti�es the impact of streamlining the genome as a

strategy to optimize the energetic demands and production capacity of the cell factory P. putida

KT2440 (chapter 8). The concept of a suitable host for biotechnological applications is more or

less reminiscent to that of a minimal microbial cell. All elements that are considered unnecessary

for cellular functions other than replication and self-maintenance (e.g. prophages, �agellar genes,

cell-to-cell communication devices) should be removed in order to increase the energetic e�ciency

and metabolic predictability.

Genomic editing tools (Martínez-García et al., 2011a; Silva-Rocha et al., 2013) have facilitated

the construction of a number of reduced-genome variants derived from the wild-type strain P.

putida KT2440. Recently, Martinez-García et al. (2014b) reported the construction of a �agella-

less variant of P. putida KT2440 with attractive properties, such as an elevated NADPH/NADP+

redox ratio. Moreover, the physiological e�ects of erasing all viral DNA encoded in the P. putida

KT2440 chromosome were explored in several mutants (Martínez-García et al., 2014a). While

streamlining the bacterial genome gave rise to interesting physiological properties, the industrial

worth of reduced-genome P. putida strains have not been systematically explored hitherto.

Here, the following work packages were designed to evaluate two multiple-deletion P. putida strains

as cell factories for heterologous protein production and to compare their physiological character-

istics to the parental strain:
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• Transformation of the P. putida KT2440 derivative strains with a gfp expression plasmid

that serves as a model for heterologous protein production

• Set-up and accomplishment of controlled batch and continuous cultivations in bioreactors

(biological triplicates of all derivative strains, with and without carrying the production

plasmid)

• Determination and comparison of industrially-relevant physiological parameters, such as spe-

ci�c growth rates, biomass and product yield coe�cients and speci�c uptake- and production

rates

• Determination and quanti�cation of the maintenance demands of all derivative strains and

assessment of their energetic household
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CHAPTER 2

PSEUDOMONADS AS ORGANISMS OF INTEREST

The genus Pseudomonas comprises more than 200 species of Gram-negative gamma-proteobacteria

with a respiratory rather than a fermentative metabolism (Palleroni, 1984; Timmis, 2002). Pseu-

domonads were �rst described as non-sporulating, polar �agellated rods by Prof. Migula of the

Karlsruhe Institute in Germany at the end of the 19th century (Migula, 1894). The name is spec-

ulated to originate from the greek 'pseudes' (false) and 'monas' (single unit) (Palleroni, 1984).

Pseudomonads are found ubiquitously in the environment. Their extraordinary metabolic and ge-

netic versatility �some species can metabolize more than 100 di�erent sources of carbon and energy

(Timmis, 2002)� allows them to adapt to di�erent physicochemical and nutritional environments

and populate highly diverse ecological habitats, ranging from natural environments over insects

and plants to humans (Nikel et al., 2014a). Consequently, these bacteria are not only engaged

in numerous important environmental activities, including degradation and recycling of organic

compounds, but they also take part in food spoilage and parasitism and pathogenicity in plants,

animals and humans (Timmis, 2002; Nikel et al., 2014a).

Apart from an exceptional metabolic diversity, Pseudomonads are known to be remarkable stress

resistant, especially towards oxidative stresses (de Lorenzo, 2014). It was suggested that the

Entner-Doudoro� pathway, which is exclusively used for sugar catabolism as a result of the ab-

sence of 6-phosphofructokinase activity, enables this high oxidative stress tolerance (Chavarría et

al., 2013) by generating reducing equivalents at a high rate (Blank et al., 2008). Furthermore,

Pseudomonads caught industrial attention because of their natural ability to produce bioactive

compounds, such as antibiotics (Nikel et al., 2014a). Especially the non-pathogenic branch of P.

putida species was taken into spotlight as promising platform strains (Nikel et al., 2014a; Poblete-

Castro et al., 2012).
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2.1. P. putida as industrial production host

P. putida strains are traditionally known as laboratory workhorses for the study of environmental

bacteria because of their fast growth at simple nutrient demands and their complaisance towards

genetic manipulation (Timmis, 2002; Nikel et al., 2014a). Inheriting the same metabolic versatility

as all pseudomonads, P. putida strains are prominent for their resistance to antibiotics, disinfec-

tants, detergents and even some heavy metals, while being capable to utilize aliphatic and aromatic

hydrocarbons, which are toxic or hamper growth in most other microbial cell factories (Timmis,

2002; Schmid et al., 2001).

The starting point of the biotechnological career of P. putida was the discovery of its ability to de-

grade recalcitrant and inhibiting xenobiotics, such as toluene and xylenes, into central metabolites

(Nakazawa et al., 1973). A key feature of Pseudomonas' metabolic diversity is their suscepti-

bility towards transmissible plasmids and their rather relaxed-speci�city gene expression system

(Timmis, 2002). It does not come to a surprise, that only little time later more `exotic' plasmid-

encoded metabolic phenotypes, such as the capability to break down naphthalene (NAH7 plasmid

in P. putida PpG7 (Dunn et al., 1973)), phenol (pPGH1 plasmid in P. putida H (Herrmann et al.,

1987)) and 4-chloronitrobenzene (plasmid pZWL73 in P. putida ZWL73 (Zhen et al., 2006)) were

discovered. Nonetheless, P. putida strains inherit also a wide range of chromosomally encoded

catabolic degradation pathways and enzymes: In P. putida KT2440, alone >80 genes encoding

oxido-reductases, which are needed for the metabolization of organic substrates, are present (dos

Santos et al., 2004; Jiménez et al., 2002).

Pseudomonas putida KT2440 P. putida KT2440 is the plasmid-less derivative of the best-

characterized toluene degrading P. putida mt-2 strain, that was �rst isolated in Japan (Bagdasarian

et al., 1981; Nakazawa, 2002). In 1981 strain KT2440 was certi�ed as the �rst Host-Vector Biosafety

system for gene cloning in Gram-negative soil bacteria by the Recombinant DNA Advisory Com-

mittee of the U.S. National Institute of Health. Lacking any pathogenesis determinants, it was

also Generally Recognized as Safe (GRAS) by the U.S. Food and Drug Administration.

Being considered as one of the safest and most secure hosts for foreign gene cloning, P. putida

KT2440 emerged as the workhorse of soil bacteria/P. putida research. The advance of the genomic

sequence (Nelson et al., 2002) revealed various genetic determinants playing a role in biocataly-

sis and industrially relevant enzymes, such as the production of epoxides, substituted catechols,

enantiopure alcohols, and heterocyclic compounds (Wackett, 2003). In combination with genome-

wide pathway modeling (Puchaªka et al., 2008; Nogales et al., 2008; Sohn et al., 2010) the way

was paved for advanced engineering strategies and systems biology approaches (Reva et al., 2006).

System-wide analysis has been shown to be a powerful tool to provide a solid knowledge-base on



2.1. P. putida as industrial production host 9

metabolic and regulatory features. But, so far, the majority of available related studies focused on

degradation processes (Puchaªka et al., 2008).

Recently, research collaborations started to focus on biotechnological applications using metabolic

engineering or a combination of multi-omics studies and systems-wide metabolic modeling towards

increasing and promoting P. putida's performance as a cell factory of choice for white biotech-

nology (Verhoef et al., 2010). Unfavorable traits for industrial applications, such as the lack of

a fermentative metabolism and a rather high abundance of mobile genetic elements have been

tackled recently (Nikel et al., 2012; Martínez-García et al., 2014a). To date, strains of P. putida

have been engineered to produce biobased polymers and a wide range of chemicals such as phe-

nol and p-hydroxybenzoate (Wierckx et al., 2005; Meijnen et al., 2011). Furthermore, enzymes

from P. putida found industrial application in a variety of biocatalytic processes (Schmid et al.,

2001). However, most Pseudomonas-based applications are still in their infancy and industrial

key processes are still dominated by Bacillus, Corynebacterium glutamicum and Escherichia coli

(Puchaªka et al., 2008).
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CHAPTER 3

CHARACTERIZATION OF MICROBIAL POPULATIONS

Traditionally, isogenic microbial cultures are considered to be uniform: Only little morphological

and physiological diversity is assumed within individual cells of one population. However, recent

research discovered that individuals within a population are by no means identical (Müller et al.,

2010; Avery, 2006). Regarding industrial production cultures, a heterogeneous population might

contain poorly producing subpopulations, which will negatively impact the overall productivity.

Until now, the underlying mechanisms that are suspected to give rise to population split-up are

neither completely understood nor included when developing new bioprocess control strategies

or optimizing existing fermentation strategies (Lencastre Fernandes et al., 2011). Optimization

approaches are neglecting di�erences in phenotypes of single cells, leveling cell properties to aver-

ages. For example, the speci�c productivity that is observed in a biotechnological process could

result from di�erent population compositions. On one hand, the population could be uniform,

containing individuals that deviate from the mean. But on the other hand, the population could

also be composed of two or more subpopulations characterized by a speci�c productivity, each one

di�erent from the mean (Figure 3.1). Therefore, valuable information about population dynamics

is camou�aged and optimization approaches might be misled due to false assumptions about the

population state.

This chapter summarizes (i) the emergence and suggested origins of population heterogeneity and

(ii) experimental methods to assess individual cell behavior in microbial populations.
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Figure 3.1.: Schematic description of how average measurements mask real population states. Typi-
cally, an average value α of a quanti�able parameter describing the population state, e.g. the speci�c productivity,
is measured when monitoring a microbial population. Notably, the measured average value α can result from di�er-
ently composed cell populations, either from uniform populations, di�ering in deviation from the mean (a and b),
but also from di�erently distributed subpopulations (c and d). Therefore, average values of populations mask real
parameter distributions of single cells and might cause misleading optimization strategies of microbial cultivations
(adapted from Dhar and McKinney (2007)).

3.1. The origin of population heterogeneity in clonal bacterial

populations

Heterogeneity of clonal microbial cultures may result from several distinct sources, including man-

ifold biological, but also several technical factors (Müller et al., 2010) (Figure 3.2). Di�erences

in growth and cell cycle states, gene expression noise and asymmetric cell division are considered

as origins of heterogeneous populations. Further biological factors suggested to be implied in the

emergence of subpopulations are gene mutations or loss, variability in plasmid copy numbers and

epigenetic modi�cations (Müller et al., 2010; Fritzsch et al., 2012; Jahn et al., 2012). External

factors, such as �uctuating environmental conditions due to de�cient mixing in large-scale indus-

trial reactors play an additional role in the advent of population heterogeneity (Schweder et al.,

1999).

The impact of many of these factors are di�cult to address at the single cell level and their direct

quantitative in�uence on population heterogeneity remains rather unclear (Avery, 2006). Here, we

focus on the cell cycle as a biological factor and industrially-relevant stress environments as an

external technical factor promoting the advent of population heterogeneity.

The cell cycle as origin of population heterogeneity

In the context of this thesis, the impact of the cell cycle on population heterogeneity will be

quanti�ed. Cell cycle decisions and variations in the duration of di�erent cell cycle phases are
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Figure 3.2.: Overview of origins of population heterogeneity. Many biological and external factors are
considered to cause population heterogeneity (adapted from Jahn et al. 2012).

considered to play a key role in the advent of population heterogeneity (Müller et al., 2010).

The bacterial cell cycle consists of 4 distinct phases (described for Escherichia coli, Figure 3.3):

The �rst phase, the B phase, is de�ned as the time between division and start of replication. It is

followed by the replication phase (C phase), the pre-D phase �an interphase between the C and D

phase� and the division phase (D phase) (Cooper, 1991; Müller et al., 2003). The durations of the

replication and cell division phases (C and D phases) were found to be relatively independent of

the growth conditions and are therefore assumed to be constant (Cooper et al., 1968). Contrary,

the interphases of the cell cycle (B and pre-D phases) are subject to much variation (Müller,

2007). In E. coli the duration of the B period is coupled to a constant critical bacterial cell

mass (Donachie, 1968). This critical cell mass is already existing or rapidly reached by the cell

under nutrient-rich conditions, while more time is needed in nutrient poor media. The pre-D

phase speci�es the bacterial disability to divide after �nishing replication, obviously `waiting' for

permissive growth conditions (Müller, 2007). Consequently, the pre-D phase disappears under

optimal growth conditions similar to the B phase. Under nutrient-rich conditions some bacterial

species can accelerate proliferation and decrease their generation time below the sum of their C and

D phases: new rounds of DNA replication is initiated before a previous round has been completed

(Cooper et al., 1968).

In recent years it was discussed that metabolic activity might di�er in dependency of speci�c

cell cycle phases. Studies of Methylobacterium rhodesianum showed that products like polyhy-

droxyalkanoates (PHAs)only accumulate when cells harbor a speci�c amount of DNA equivalents,
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Figure 3.3.: Schematic overview of the bacterial cell cycle. The bacterial cell cycle can be divided into
B, C, pre-D and D phases. Under unlimited growth conditions, some bacterial species are capable of accelerating
proliferation by uncoupling DNA synthesis from division. As a result, a new round of DNA replication is initiated
before the completion of the previous round (Cooper, 1991; Müller et al., 2010).

re�ecting a speci�c cell cycle phase (Ackermann et al., 1995). This phenomenon was found to

occur at o�-cell-cycling stages and started the discussion, if e.g. product synthesis might only take

place during the stochastic B- and pre-D phases, when the cell is neither replicating nor dividing

(Bley, 1990; Müller et al., 2010). In chapter 6 we investigate the dependency of the cell's protein

inventory on cell cycle stages and how growth rates may in�uence both, protein composition and

cell cycling.

Heterogeneity enforced by environmental conditions

Additional to the biological side, technical settings can cause population heterogeneity. Growth

conditions in laboratory-scale bioreactor cultivations are usually designed to be ideal: well-mixed

and homogeneous. However, during large-scale industrial fermentations, which aim for high biomass

concentrations and/or high product yields, cells are often exposed to less ideal conditions. Mixing

times can rise to the order of minutes in viscous fermentation broths. Cells circulating through

a bioreactor are therefore exposed to di�erent local environments, e.g. zones of varying dissolved

oxygen availability (Gelves et al., 2014). Therefore, each individual cell `sees' di�erent environ-

ments during its generation time in the bioreactor. Continuously changing micro-environments

may cause repeated cycles of induction and relaxation of stress responses, adaptational processes

or metabolic adjustments. Physiological properties of the microbial population may alter during

the production process, resulting in subpopulations with reduced biomass yields and productiv-

ities (Schweder et al., 1999; Lara et al., 2006; Enfors et al., 2001; Lencastre Fernandes et al.,

2011; Carlquist et al., 2012). In chapter 7 we investigate and quantify the impact of challenging

industrially-relevant environmental conditions on population dynamics.
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3.2. Cultivation strategies and experimental methods for deciphering

population dynamics

Deciphering population dynamics and highlighting di�erences in cell behavior on the single cell

level is dependent on a reliable and carefully designed experimental and analytical set-up. The

following sections give an overview about cultivation strategies and di�erences in experimental and

analytical methods for the characterization of average populations and microbial heterogeneity.

3.2.1. The chemostat as a model system to decipher population dynamics

The key for deciphering and quantifying the impact of one driver of population dynamics is an

experimental set-up, which allows to speci�cally change one single parameter, keeping all other

cultivation parameters constant. Furthermore, in order to collect reproducible and reliable datasets,

cells have to be grown in a de�ned, constant and controllable set of physico-chemical conditions

(Hoskisson et al., 2005).

Bioreactor cultivations provide controlled environmental conditions. Several operating modes can

be realized: discontinuous `batch' and `fed-batch' or `continuous' cultivations. Discontinuous culti-

vation systems result in dynamic physico-chemical conditions. Datasets are therefore often complex

and di�cult or impossible to interpret when trying to dissect the in�uence of one speci�c parameter

(Hoskisson et al., 2005). For example, the typical microbial growth curve, consisting of di�erent

growth rates in lag, exponential and stationary phases, is not an inherent property of the organ-

ism but a result of its interaction with the constantly changing physico-chemical environment in

which it is growing in batch cultivation (Tempest, 1970). Contrary, the chemostat o�ers the great

advantage of uncoupling growth rate from the transient conditions encountered in batch culture

by providing constant cultivation conditions (Bull, 2010).

Introduced simultaneously by Novick and Szilard (1950) and Monod (1950), the chemostat is

the most commonly used experimental approach for investigations of physiology in steady-state

cultures (Bull, 2010).
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Feed

Aeration

Efflux

Flow rate F

Flow rate F

Outlet Air

Figure 3.4.: Schematic chemostat set-up. The in-
�ux of feed medium and the e�ux of cultivation broth is
constantly balanced (Fin = Fout, in Lh=1), keeping the
reaction volume constant.

In a chemostat, the feed of sterile medium from

a reservoir is balanced by the e�ux of spent

medium, living cells, cell debris and excreted

products (Figure 3.4). The �ow rate of medium

F (in Lh−1) into the vessel is related to its culti-

vation volume V (in L) and de�nes the dilution

rate D (in h=1):

D =
F

V
(3.1)

The chemostat device allows growth to occur

at an equilibrium, called steady state, where

growth of new cells (biomass X) is being bal-

anced by those washed out.

dX

dt
= µX −DX !

= 0 (3.2)

This means that the growth of new biomass is equal to the rate at which the culture is being

diluted. Hence, establishing steady-state conditions dX
dt = 0 result at equal growth rate µ and

dilution rate D.

The possibility to manipulate the speci�c growth rate of the organism externally by setting a

speci�c dilution rate is the key feature of the chemostat. It makes it a versatile tool to individually

change one culture parameter, while all other relevant physical and chemical culture parameters

are kept constant (composition of synthetic medium, pH, temperature, aeration, etc.) (Hoskisson

et al., 2005). The use of chemostat cultures in the �elds of basic physiology and biochemistry

led to milestones in our understanding of the basis of microbial processes ((Monod, 1949; Herbert

et al., 1956; Pirt, 1965) and many more). However, with the advent of molecular biology research,

employing chemostats as the cultivation mode of choice faded into the background. Only during

the last 10 years, focussing on global and systems level investigations of the organism, continuous

cultivation at steady state conditions made a comeback (Ferenci, 2006).

In conclusion, chemostat studies allow the targeted investigation of the impact of one speci�c pa-

rameter and advantages in environmental control (Hoskisson et al., 2005). For this study, chemostat

cultivations o�er the ideal system to investigate origins of population heterogeneity. The exper-

imental set-up provides an environment in which cell division is continuous but population size

is held constant. Under steady state conditions, it is possible to analyze and compare the com-

position of a population quantitatively, enabling the deciphering of the impact of e.g. cell cycle

and di�ering environmental conditions on population dynamics, one at a time. Additionally, the
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carefully controlled and de�ned physiological conditions obtainable in chemostat cultures allow the

acquisition of reproducible and reliable biological samples (Wu, 2004).

3.2.2. Experimental and analytical methods for describing cell populations and
distributions of cell properties

Understanding the functional structure and dynamics of a cell requires the investigation of its

biology at a systems level (Kitano, 2002). One of the essential properties of a cellular system is its

robustness (Csete et al., 2002). Mechanisms and principles that determine the robustness of the

cell �for instance adaptation during exposure to challenging environments� need to be investigated

for a systems understanding to ultimately guide the design of robust microbial cell factories. The

basis of systems-level analysis is the acquisition of a comprehensive set of quantitative data (Kitano,

2002).

‘Omics’ approaches Omics studies aim at the precise quanti�cation of pools of biological molecules

that translate into the structure, function and dynamics of the cell. The availability of genome

sequences paired with precise high-throughput measurements of e.g. proteins (proteomics), RNA

(transcriptomics) or metabolites (metabolomics), enables the collection of comprehensive data sets

on the performance of the cell and gaining information on the underlying mechanisms (Kitano,

2002). Among the di�erent levels of `omics' approaches, transcriptome analysis is the detection

and quanti�cation of an ideally complete set of transcripts in a cell at a speci�c time point and en-

vironmental condition. The transcriptome is a quantitative measure of the global expression level

of mRNA molecules and is therefore indicative of gene activity (Adams, 2008). The comparison of

di�erentially expressed genes at various environmental conditions can give insights into underlying

mechanisms of stress response and adaptation.

Another powerful `omics' approach is the quanti�cation of the protein content of the cell. Pro-

teome analysis gives a `snapshot' of the total cellular protein abundance at a given time point

and environmental condition. Analyzing the global protein content is a tool to measure cellular

functionality (Tyers et al., 2003). Protein pattern re�ect cell decisions and the analysis of the pro-

teomic inventory of a cell can unravel metabolic characteristics and responses to e.g. challenging

environments (Jahn et al., 2012).

However, these classic `omics' approaches only give insight into the mRNA expression levels or

protein abundance of the average population (Müller et al., 2010). Heterogeneity within a clonal

population is not considered and cannot be quanti�ed. In order to dissect di�erences on a single

cell level, two options are available: (i) limiting the analytical space to a dimension of a single cell

in a lab-on-a-chip device (Fritzsch et al., 2012) or (ii) analyzing speci�c parameters of cells in a

population one by one in high-throughput (Schmid et al., 2010).
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Flow cytometry Cytometry deals with the measurement of optical properties of single cells. Flow

cytometry examines particles, such as cells, in suspension instead of statically under the microscope

(Müller et al., 2010). The method, originally developed for the detection of aerosolic biological

weapons (Gucker et al., 1949), was further developed and applied the �rst time in the 1960's for

biological studies (Kamentsky et al., 1965; Dittrich et al., 1969).

Today, �ow cytometry and �ow cytometry-based cell sorting techniques have become indispensable

in cell and developmental biology. The methods allow us to obtain information about phenotypic

diversity of individual cells within a population. In combination with a sorting device, individual

cells can not only be characterized but additionally sorted according to speci�c parameters (Müller

et al., 2010).

Cell Suspension

Filters

Sheath
Fluid

Laser
(Excitation

Energy
Source)

Focal
Optics

Lens and FiltersDichroic Filter

Detector

Detector

Cell Sorter

Subpopulation 1 Subpopulation 2

Figure 3.5.: Schematic �ow cytometer set-up.

In the �ow cytometer, cells are transported in a

laminar �uid stream to a laser beam �one cell at

a time at high speed (Figure 3.5). Cell proper-

ties are interrogated in the �ow cell at the laser

intercept: one or multiple laser beams illumi-

nate the cells in order to measure their light

scattering properties and/or to excite �uores-

cent molecules. Light scattering data contains

information about the relative cell size (forward

scatter) and cell granularity or internal com-

plexity (side scatter) (Müller et al., 2003).

Additionally, suitable lasers can excite and give quantitative information on �uorescent molecules

either naturally occurring inside the cell or speci�cally employed to tag or stain cellular components.

A variety of dyes have been employed to study cellular parameters, such as intracellular pH,

membrane potential or the levels of cellular components, e.g. DNA (Müller et al., 2003). A

detailed overview of available dyes is beyond the scope of this section and is given elsewhere

(Nebe-von Caron et al., 2000; Shapiro, 2000; Lencastre Fernandes et al., 2011). The ability of

studying diverse parameters in a high-throughput manner at the same time enables statistically

robust analysis of parameter distributions throughout the cell population and forms the core of

the method (Lencastre Fernandes et al., 2011).

A �ow cytometer can be also equipped with a cell-sorting device for Fluorescence-Activated Cell

Sorting (FACS). Sorting decisions can be based on one or multiple cellular properties. The sorted

cells might, if the staining method allows, be cultured for further molecular or functional assays or

enrichment (Tracy et al., 2010).

Flow cytometry was proven to be a suitable tool to quantify the distribution of characteristics

of individual cells within a population (Skarstad et al., 1983; Srienc, 1999; Shapiro, 2000; Müller
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et al., 2003; Brehm-Stecher et al., 2004). Consequently, �ow cytometry data sets were used in this

thesis to derive experimental data on population dynamics.

However, �ow cytometry methods require an intact cell wall structure of the organism. Therefore,

these approaches do not allow access to holistic quantitative data on the cell's `interior' in contrast

to `omics' approaches (Müller et al., 2010). The contradiction between the unapproachability of

the e.g. global protein abundance within a cell by �ow cytometry and missing information on het-

erogeneity by `omics' approaches can be solved by a careful combination of these techniques: First,

cells are sorted into subpopulations according to a distinguishing parameter that was characterized

via �ow cytometry. Second, the protein inventory of the di�erent subpopulations is investigated,

using classical proteomic methods (Jehmlich et al., 2010).

Here, we combine carefully designed chemostat cultivations with �ow cytometry, cell sorting and

proteomics to investigate the impact of the cell cycle on the onset of population heterogeneity.
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CHAPTER 4

MODELING MICROBIAL POPULATIONS

During the last decades, a variety of mechanistic models di�ering in the degree of complexity have

been applied to describe cell populations and cultivations quantitatively. Fredrickson et al. (1967)

formulated a systematic framework for viewing cell populations, dividing mathematical descriptions

into `segregated' or `unsegregated' and `structured' or `unstructured' (Figure 4.1).

Brie�y, `segregated' models describe individual di�erences of cells within a population whereas

`unsegregated' models assume an uniform average cell population. Furthermore, `structured' mod-

els account for di�erences in chemical composition inside the cells, whereas `unstructured' models

describe cells as uniformly composed `black boxes'.

Unsegregated models Most commonly, unsegregated and unstructured models are applied for

quantifying biological cultivations (Nielsen et al., 1992). This type of model is the most idealized

view on biomass: `Average' cells are described, considering only external input and output variables,

such as substrate uptake and production, while intracellular kinetics are neglected.

Unsegregated structured models resolve biomass to a higher degree. Structure can be de�ned either

in a physical sense, such as division into organelles, shape or size of a cell, or in a biochemical

sense, where biomass is subdivided into its intracellular biochemical components (Gernaey et al.,

2010). These kind of models have been successfully applied to describe intracellular metabolism

or �lamentous growth (Gombert et al., 2000; Stelling, 2004).

Segregated models consider population heterogeneity by accounting for property distributions

of single cells (Fredrickson et al., 1970). Segregated unstructured models consider the co-existence
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Figure 4.1.: Classi�cation of mathematical models used to describe microbial cultivations. Mathemat-
ical frameworks di�er in the degree of complexity. Segregated models account for heterogeneity instead of assuming
averaged cell behavior, while structured models consider more than one cellular component in their population/cell
description (Adapted from Lencastre Fernandes et al. (2011)).

of subpopulations without describing details of their e.g. intracellular composition (Lencastre Fer-

nandes et al., 2011). Structure can be introduced by accounting for at least one distinction variable,

such as cell mass or age (Ramkrishna, 2000). The degree of complexity can be deepened to certain

extends in multivariate models. In case of chemically structured models, multiple metabolites are

accounted for as internal state variables (Bailey, 1998). Segregated and structured models are

therefore able to describe subpopulations that di�er in e.g. the phase of the cell cycle (Fredrickson,

2003) or production and non-production states (Mantzaris et al., 2002).

Various mathematical formulations have been proposed to describe distributed properties, among

them ordinary or delay di�erential equations and population balance models (PBMs) (Bley, 2011).

The most common types of PBMs are population balance equation models (PBE) and cell en-

semble models (Sidoli et al., 2004; Henson, 2003). The two modeling strategies di�er in depth of

intracellular description and number of cells included in the model: While PBEs allow modeling of

large populations, only a small number of variables �often a single variable, such as cell age (Sherer

et al., 2008) or mass (Hatzis et al., 2006)� can be used to characterize the intracellular state of the

cell. In contrast, cell ensemble models are limited in the cell number of the population, but are

constructed from more complex single cell models, allowing detailed description of the intracellular

state (Henson, 2003).

Mathematically, a PBE includes a dynamic cell balance, which is formulated as a nonlinear partial

di�erential equation (Fredrickson et al., 1967). A distribution function f(y, t) describes the distri-

bution of cells characterized by the internal state vector y at time t. The quantity of cells in the

population n(t) per property space Vy can therefore be calculated as follows:

n(t) =

∫
Vy

f(y, t)dy (4.1)
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In most cases, a single limiting substrate is considered and its mass balance allows the determina-

tion of n at steady state, considering the volumetric substrate consumption rate rs(y, s) as being

independent of the physiological state (Villadsen et al., 2011):

ds

dt
= D(s0 − s)−

∫
Vy

rs(y, s)f(y, t)dy (4.2)

n =
D(s0 − s)
rs(s)

(4.3)

A dynamic population balance equation for the cell distribution can be set up as follows (Villadsen

et al., 2011):

∂f(y, t)

∂t︸ ︷︷ ︸
accumulation

+∇y[r(y, t)f(y, t)]︸ ︷︷ ︸
single cell growth

= 2

∫
Vy

b(y∗, t)p(y,y∗, t)f(y∗, t)dy∗︸ ︷︷ ︸
birth

− b(y, t)f(y, t)︸ ︷︷ ︸
division

−Df(y, t)︸ ︷︷ ︸
dilution

(4.4)

The balance is coupled to mathematical formulations of (i) the single cell growth rate r(y, t), (ii)

the breakage function b(y, t) and (iii) the partitioning function p(y,y∗, t) (Srienc, 1999). These

three functions de�ne the dynamics of a cell type, where r(y, t) describes the rate of accumulation

of a property within a cell, b(y, t) represents the probability of cell division at the physiological

state y and p(y,y∗, t) speci�es the probability of a cell at state y∗ to divide into two daughter

cells with the physiological states y and y∗ − y (Stamatakis, 2010). D is the dilution rate of the

reactor. Here, we assume that no living cells enter the reactor with the feed medium and that the

reactor is a homogeneous environment.

Getting closer to reality The models introduced in the previous paragraphs assume homogeneous

growth environments of the cell population. In case of large-scale industrial cultivations, this

simpli�cation cannot be sustained. Spatial heterogeneity can be introduced by coupling metabolic

network modeling or even population balance modeling to computational �uid dynamics. Thereby,

it is possible to re�ect the interplay of intracellular and environmental variations, getting one step

closer to a realistic description of a bioreactor (Lapin et al., 2004).

The application of population balance modeling has increased exponentially during the last two

decades (Ramkrishna et al., 2014) and biotechnological relevant examples have been comprehen-

sively reviewed by Lencastre Fernandes et al. (2011). However, to date we are still far away from

using PBM approaches as a standard tool for bioprocess optimization due to several challenges

ahead: Besides formulation and solution of models with multidimensional state vectors, where

increased computing power and development of e�cient methods for discretization and numerical

solution are needed (Mantzaris et al., 2001a; Mantzaris et al., 2001b; Mantzaris et al., 2001c), the

biggest di�culty lies in the de�nition of the physiological state functions described above (Henson,
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2003). Single cell analysis, such as �ow cytometry, is needed to determine the single cell growth

rate and the division and partitioning function systematically in order to minimize the number of

assumptions introduced into the model (Lencastre Fernandes et al., 2011).

Selection of the mathematical model Clearly, a structured and segregated model accounting

for spatial heterogeneity would o�er the most realistic representation of a cell population in a

bioreactor. However, there are important trade-o�s to be made in terms of formulation time,

model complexity, and solution time when setting up the mathematical framework (Sidoli et al.,

2004).

The choice of a suitable mathematical framework out of the �zoo of mathematical models� available

(Bailey, 1998) is dependent on the purpose of the model. Considering the question �What is

the speci�c problem the model is supposed to solve?� prevents ending up with a mathematical

description reasonably re�ecting experimental data, but with no informational aspects or biological

conclusion (Casti, 1997). Furthermore, the governing principle is to keep the model as simple as

possible, while including all essential information to explain the observed phenomena (Villadsen

et al., 2011).

In this thesis, two di�erent kind of models were applied for two di�erent purposes. On one hand, the

question of how environmental factors in�uence population heterogeneity was addressed. Here, a

`segregated' view on the cell population is needed to account for di�erent subpopulations within one

cell population. Flow cytometry data was systematically used in a mechanistic model to describe

the relationship between environmental stress conditions and population heterogeneity. The major

advances made in single cell analysis during the recent years have so far not been translated to

the same extend into advances in modeling of population heterogeneity. Here, we take one step

in the direction of closing this gap by deciphering one mechanism of the environment as a driver

of cell heterogeneity. The mechanistic model together with the experimental �ow cytometry data

gathered can be seen as a basis for a set up of a corresponding population balance model, giving

valuable information on the calculation of the physiological functions as well as the state vector.

The model used to calculate the in�uence of environmental conditions on population heterogeneity

and its computational implementation is described in section 7.3.1.

On the other hand, in chapter 8, industrially relevant physiological parameters of genome-reduced

P. putida derivative strains needed to be assessed in order to compare their growth and production

performance to the wild type strain KT2440. Here, unstructured models, as simple as mass balances

applied to microbial growth and product formation, provide a simple but useful description of

growth kinetics and production capacity (Roels, 1980; Brass et al., 1997). The mathematical

framework used is explained in detail in section 5.6.
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CHAPTER 5

MATERIAL AND METHODS

This chapter gives an overview about materials and methods that have been used throughout this

thesis. Parts of this chapter have been submitted partially or in detail for publication. Cross-

references to the manuscripts (Appendices A - C) are provided.

5.1. Bacterial strains, media and cultivation systems

In this thesis, di�erent P. putida strains were used for speci�c research aims as listed:

• The wild-type strain P. putida KT2440 (ATCC47054, Bagdasarian et al., 1981), acquired

from the `Leibniz Institute DSMZ' (German Collection of Microorganisms and Cell Cultures),

was used as a model strain for the studies of population heterogeneity (chapters 6 and 7).

• A summary of the P. putida derivative strains and plasmids used in chapter 8 (`Optimizing

microbial cell chassis by streamlining the genome') is provided in Table C.1 in the appendix.

Here, the laboratory wild-type strain P. putida KT2440 that served as a basis for the deriva-

tive strains was kindly provided by Víctor de Lorenzo (CNB-CSIC, Madrid) and was used as

a reference in this speci�c study for consistency reasons.

Detailed information about pre- and main culture media compositions, as well as about seed train

procedures and process conditions can be found as follows:

• All pre- and main cultivations were carried out using minimal medium M12, as described in

section A.2 `Bacterial strains and cultivation conditions'.
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Figure 5.1.: Schematic working cell bank (WCB) procedure For every strain that was used in this thesis, a
WCB was established, derived from a single colony on a LB plate. Cells were grown, stepwise reducing the complex
medium content until grown in M12 minimal medium. Cells were harvested in mid-exponential phase and stored as
WCB at =70 ◦C in a 16% (v/v) glycerol stock

• To minimize population heterogeneity at the starting point of the pre-/main cultivation,

bioreactor batch and continuous cultivations were inoculated with a cryogenic working cell

bank, derived from a single colony on a LB plate, afterwards grown and harvested from

exponential phase cultures, stepwise reducing the complex medium content, until grown in

M12 minimal medium and stored as a working cryo-culture bank at =70 ◦C in a 16% (v/v)

glycerol stock (Figure 5.1).

• Batch and continuous cultivations were carried out in a 3.7 L scale bench-top reactor (KLF,

Bioengineering, Switzerland) at a working volume of 1.5 L. A schematic set-up of the bench-

top reactor as a chemostat can be found in Figure 5.2. In case of batch cultivations the

reactor set-up was used without feed and harvest installations. Detailed information about

process conditions can be found in the appendix in section C.2 `Bioreactor cultures'.

5.2. Nucleic acid manipulation and plasmid construction

DNA manipulations used for the construction of the gfp expressing P. putida recombinants in

chapter 8 followed well established protocols (Green et al., 2012). P. putida derivative strains

were transformed with the gfp expression plasmid pS234G by electroporation (Choi et al., 2006).

Detailed information about the construction of the expression plasmid pS234G can be found in the

appendix in section C.2 `Nucleic acid manipulation, plasmid construction, and plasmid stability

assay' and Table C.1.
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Figure 5.2.: Schematic 3.7 L bench-top reactor set-up. A 3.7 L bench-top reactor was run at a working
volume of 1.5 L as batch and continuous cultivation set-up. Continuous cultivation was controlled gravimetrically.
Medium was fed continuously into the bioreactor at a selected �ow rate and culture broth was harvested repeatedly
after a weight gain of 10 g was monitored. An additional feed of decanol was used in the solvent stress exposure
studies (chapter 7). Batch cultivations for the physiological characterization of the P. putida recombinants (chapter
8) were carried out in the same reactor system, but without any feed or harvesting devices. Optional settings,
e.g. an online �uorescence sensor, were used during cultivation of GFP expressing P. putida strains (chapter 8).
Speci�cations of sensors and other parts used can be found in the appendix in section C.2 `Bioreactor cultures'.
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5.3. Analytical methods

The cultivations carried out during this thesis were monitored in detail. Methods were applied

consistently throughout all cultivations as follows:

• Analytical methods applied in all cultivations included the determination of biomass cell dry

weight (CDW), optical density (OD600) and concentrations of organic acids and nucleotides

via high pressure liquid chromatography (HPLC). Detailed procedures are explained in the

appendix in section C.2 `General procedures' and `Analytical procedures'.

• The two-phase decanol/M12 medium cultivations carried out in chapter 7 required adjust-

ments of biomass determination. Emulsion forming prohibited a reliable determination of

the biomass by gravimetrical or spectrophotometrical methods. Therefore, biomass was de-

termined using a moisture analyzer MB35 by Ohaus Europe GmbH (Switzerland). 5mL of

biomass suspension was heated to 120 ◦C for 120min to remove all evaporable components.

A �ltrate sample was treated accordingly and the biomass was determined as weight di�er-

ence between the treated biomass and �ltrate samples. Additionally, the cell concentration

was determined via cell counting in a counting chamber under a microscope at 400x mag-

ni�cation after adequate dilution (1:10 - 1:100). Every sample was counted three times and

the arithmetic mean and standard deviation were calculated. To evaluate the reliability and

accuracy of the cell counting method, OD600 measurements and cell counts were correlated

under standard conditions (no decanol addition).

• GFP �uorescence was quanti�ed by spectro�uorimetry for the characterization of the P.

putida KT2440 derivative strains in chapter 8. Fluorescence in samples of biosuspension and

�ltrate was quanti�ed at 485 nm (excitation) and 535 nm (emission) in a �uorescence mi-

croplate analyzer (Synergy 2, BioTek Instruments, Inc., VT, USA) according to the protocol

described in detail in the appendix in section C.2 `GFP quanti�cation'.

5.4. Flow cytometry analysis, cell sorting and

subpopulation-proteomics

Samples for �ow cytometry analysis were taken throughout all cultivations. The �ow cytometry

measurements were carried out at the cooperation partner UfZ Leipzig using a MoFlo cell sorter

(Beckman-Coulter, USA), as described before (Jahn et al., 2013). Forward scatter, side scatter and

DAPI �uorescence were detected according to speci�cations given in the appendix in section A.2

`Sample preparation and staining for �ow cytometry' and ` Flow cytometry and cell sorting'.
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Flow cytometry data analysis The resulting data sets were analyzed as a part of this thesis

using the statistical software R Bioconductor (www.bioconductor.org). The `gating' process, which

excludes technical noise, cell debris and agglomerated cells from the data set and selects di�erent

subpopulations was carried out using the packages �owCore (version v.1.11.20 (Ellis et al., 2014)

and �owViz (version v.0.2.1 (Ellis et al., 2013)).

Fluorescence activated cell sorting and subpopulation proteome analysis Cell sorting and

proteome analysis were carried out for the investigation of the cell cycle as a driver of population

heterogeneity (chapter 6). Cell sorting and identi�cation of proteins by LC-MS-MS were carried

out at the UfZ Leipzig as explained in the appendix in section A.2 `Flow cytometry and Cell

sorting' and ` Identi�cation of proteins by LC-MS-MS'.

The software MaxQuant (v1.2.2.5, (Cox et al., 2008)) was used to analyze mass spectra for protein

identi�cation and label-free quanti�cation (LFQ) with the genome database of P. putida KT2440

(according to Jahn et al. 2013). LFQ values were analyzed with R Bioconductor. Here, the

arithmetic mean, standard deviation and relative protein abundance change in relation to the

reference were calculated. Student's t-test was performed for signi�cance testing (p < 0.05) of

single protein abundance changes.

Proteins were annotated according to the COG (clusters of orthologous groups) database (Tatusov

et al., 1997) and clustered in two hierarchical levels, namely `metabolism' and `pathway'. Groups

were visualized using a color-coded circular treemap (Jahn et al., 2013). Additional, protein clusters

were tested for signi�cant changes using the R Bioconductor packages GAGE (Luo et al., 2009)

and GlobalTest (Goeman et al., 2004), setting p ≤ 0.05 and a relative fold change (FC) of 1.5

(log2FC = 0.58) as thresholds. Detailed information on gene set analysis and reasons behind the

usage of GAGE and GlobalTest are given in the following section 5.5.

5.5. Transcriptome analysis

5.5.1. Sampling procedure and RNA next generation sequencing

A sample of 2mL cultivation broth was taken directly into 4mL of RNAprotect Bacteria Reagent

(Qiagen GmbH, Germany), vortexed and incubated at room temperature for 5min. Aliquots of

the solution containing approximately 109 cells were centrifuged at 7000 x g at 4 ◦C for 10 minutes,

before the supernatant was discarded and the cell pellet was shock frozen in liquid nitrogen and

stored at =70 ◦C until shipment. The samples of biological replicates were collectively shipped on

dry ice for a batch RNA next generation sequencing, carried out by MFT Services (Tübingen, Ger-

many). A detailed description about the sequencing procedure, equipment and sequence alignment

is given in the appendix in section B.2 `Transcriptome Analysis'.
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5.5.2. Statistical data analysis

After a statistical assessment of the data, the analysis of datasets from high-throughput omics-

technologies, such as transcriptomics and proteomics, ultimately yields a list of di�erentially ex-

pressed genes or proteins. The challenge of analyzing these sometimes long lists of di�erential

expression information lies in the extraction of meaningful and mechanistic insights to answer the

scienti�c question that was raised.

Statistical data analysis was performed as a part of this thesis with the Bioconductor package

`edgeR' (Robinson et al., 2010), which was especially developed for the analysis of digital gene

expression data (Robinson et al., 2007; Robinson et al., 2008).

Assessment of the list of differentially expressed genes To account for di�erences in sequencing

depth, the raw count data was �rst normalized based on `counts per million mapped counts' (CPM).

Discrete count data as obtained by RNA-Seq was shown to follow a negative binomial distribution

(McCarthy et al., 2012). Di�erential expression analysis was carried out following the protocol

by Anders et al. (2013) using edgeR. The resulting p-values were adjusted for multiple testing

according to Benjamini and Hochberg (1995) to calculate the false discovery rate (FDR). A cuto�

of FDR ≤ 0.05 was chosen to extract di�erentially expressed genes.

Gene set analysis Functional grouping of the individual genes into gene sets of related genes

has been proven to be a useful approach to extract information about mechanistic information on

the metabolic pathway level. Gene set analysis (GSA) allows a reduction of the complexity of the

analysis problem from thousands of di�erentially expressed genes to only hundreds of pathways.

The identi�cation of di�erentially expressed pathways has a higher power of giving coherent results

than a long list of not obviously related di�erentially expressed genes or proteins (Glazko et al.,

2009). Furthermore, it was shown that small coordinated changes within expression of a whole

pathway may have a signi�cant biological e�ect, even if the changes in expression of individual

genes may not be statistically signi�cant (Subramanian et al., 2005).

A pitfall of GSA is the dependency on public availability of the pathway knowledge. Depending

on the organism used, the information depth available varies substantially in repositories such as

the Gene Ontology Consortium (GO) or the Kyoto Encyclopaedia of Genes and Genomes (KEGG)

(Kanehisa et al., 2000).

Three approaches to gene set analysis have been de�ned: the over-representation analysis (ORA),

the functional class scoring (FCS) and the pathway topology based (TP) gene set analysis (Khatri

et al., 2012).
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ORA methods statistically correlate the signi�cant changes of a fraction of genes within a pathway

to the set of genes clustered in this pathway. The drawback of this approach is that only the

counted number of genes is used and therefore every gene is treated equally, not taking fold-

changes of statistical signi�cance into account (Khatri et al., 2002). Consequently, as every gene

is assumed to be independent of the other genes, the interaction of gene products in di�erent

pathways is not taken into account, and therefore the estimated signi�cance of a pathway may be

biased or in extreme cases incorrect.

FCS approaches address these three limitations by accounting also for weaker, statistically not

signi�cant individual, but coordinated changes in sets of genes assorted in pathways (Barry et

al., 2005). Hereby, not only numbers of genes, but also fold-change and statistical information

is included in the analysis, as well as dependencies of genes are taken into account when con-

sidering coordinated expression changes. A limitation of the method is the independent analysis

of pathways, which may lead to identi�cation of signi�cantly changed pathways due to multiple

annotations of individual genes in di�erent pathways (Khatri et al., 2012).

If additional information on interactions of pathways is available in repositories, such as activation

or inhibition, TP based methods can be applied to overcome the drawbacks of ORA and FCS. Un-

fortunately, this information, if available, is sparse in the case of P. putida KT2440. Consequently,

FCS methods were applied for the analysis of transcriptome and proteome datasets.

Within the FCS methods, the signi�cance of gene set di�erential expression can be calculated

either based on randomization of sample labels (e.g. GlobalTest (Goeman et al., 2004)) or on a

parametric gene randomization procedure, such as GAGE (Luo et al., 2009). As both tests evaluate

di�erent but related null hypothesis, a combination of the procedures achieves statistically more

robust results (Tian et al., 2005; Nam et al., 2008).

5.6. Quantification of cultivations

5.6.1. Bacterial growth kinetics

A microbial cell, grown in batch cultivation, proceeds through the typical growth curve consisting of

lag, acceleration, exponential, deceleration, stationary and death phases (Figure 5.3). The sequence

of the growth curve is not an inherent property of the organism, but a result of its interaction with

the constantly changing physico-chemical environment in which it is growing in batch cultivation

(Tempest, 1970). During the lag phase, the organism adjusts its gene expression and enzyme

production to its new environment. After this phase of only little or no growth, the growth rate

of the organism increases until it is proliferating at its maximum rate. In this phase, growth is

not limited by substrate availability and the cell population grows exponentially at a constant
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Figure 5.3.: Schematic overview of the bacterial growth curve. A microbial population typically passes
through 6 stages during batch cultivation: a lag phase (I), with little or no growth, where cells adapt to their new
environment and an acceleration phase (II), where the growth rate increases until the maximum growth rate is
reached in the exponential phase (III). The population grows at constant maximal growth rate until the substrate
becomes limiting and growth rate decelerates (IV) until the substrate is completely depleted and the population
enters the stationary phase (V), �nally entering the death phase (VI).

maximum growth rate µmax (in h=1). As soon as substrate concentration becomes limiting, growth

speed decelerates until the substrate is completely consumed in the stationary phase.

5.6.2. Mass balances

Mass balances o�er valuable information on reaction rates, such as biomass formation, substrate

uptake and product formation rates.

Reaction parameters in batch cultivation

Calculation of the specific growth rate µ In a closed batch cultivation system, the growth rate

µ can be derived from the biomass balance:

dmx

dt
= µ · cx · VR (5.1)

Here, mx is the biomass in g, cx the biomass density in g L=1 and VR the cultivation volume in L.

In a batch cultivation, the reaction volume VR is assumed to be constant. Therefore, the growth

rate equals

µ =
1

cx

dcx
dt

(5.2)



5.6. Quanti�cation of cultivations 33

The doubling time td (in h), which also resembles the generation time τ, can be directly derived

by integration of Eq. 5.2

τ =
ln2

µ
(5.3)

The growth rate of an organism is dependent on the nutrient availability, assuming one limiting

substrate, as formulated by Monod (1949):

µ = µmax ·
cs

cs +Ks
(5.4)

Here, cs is the substrate concentration of the limiting substrate in g L=1, µmax the maximum

speci�c growth rate in h=1 and Ks is the limiting substrate concentration at which the speci�c

growth rate is half its maximum value. Notably, the Ks value in the Monod model does not exactly

represent the saturation constant for substrate uptake, but only an overall saturation constant for

the whole growth process. However, Ks values mostly do not di�er signi�cantly from Km values

of the enzymes involved in substrate uptake, because substrate uptake is often closely connected

to the control of substrate metabolism (Villadsen et al., 2011).

During the exponential growth phase of a batch cultivation it can be assumed that Ks << cs. Even

though no speci�c data is available for P. putida KT2440, Ks values for glucose were found to be

in the range of 4 − 150mgL−1 for E. coli and Saccharomyces cerevisiae, respectively (Villadsen

et al., 2011). Therefore, during exponential growth the following equation is valid

µ = µmax (5.5)

The maximum speci�c growth rate was calculated as linear regression and least squares �tting of

ln(cx) over time during the exponential growth phase of the population (µ = µmax = const.).

Calculation of specific substrate uptake qs and production rates qp Massbalances for substrate

(s) and product (p) can be set up in the same way as described for biomass (x) (Eq. 5.1):

dms

dt
= −qs · cx · VR (5.6)

dmp

dt
= qp · cx · VR (5.7)

Here, ms and mp are the masses of the substrate and the product in g. qs and qp are the biomass

speci�c substrate and production rates in gg−1L−1.
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Reaction parameters in continuous cultivation

As introduced in section 3.2, at steady-state mode, the �ow rate into the reactor equals the �ow

rate out of the reactor (Fin = Fout). Therefore, the reaction volume is assumed to stay constant

(VR/dt = 0). The ratio of the �ow rate to the reaction volume is de�ned as dilution rate D:

D =
F

VR
(5.8)

Furthermore, at steady state, no net mass accumulation occurs. Consequently, the mass of the

compound produced by the reaction is equal to the di�erence in mass of the compound between

the liquid feed and the outlet of the reactor. Considering biomass, no biomass is present in the

liquid feed. The biomass balance can be derived as follows:

dmx

dt
= VR ·

dcx
dt

= µ · cx · VR − F · cx (5.9)

dcx
dt

= µ · cx −D · cx (5.10)

Equivalent to the biomass balance at steady state in a chemostat, mass balances for substrate and

products can be de�ned as:

dcs
dt

= D · (cs0 − cs)− qs · cx (5.11)

dcp
dt

= D · (cp0 − cp) + qp · cx (5.12)

Here, ci0 is the concentration of compound i in the liquid feed in g L=1.

Yield coeffiecients Scaling any particular rate qi with another rate qj is resulting in the yield

coe�ecient Yi/j :

Yi/j =
qi
qj

(5.13)

In this thesis, di�erent yield coe�cients were calculated, ranging from yield of biomass per substrate

(YX/S) to yield of product per biomass (YP/X).

Respiration rates and exhaust gas analysis With a gaseous substrate or product, the mass

balances need to be modi�ed by considering a rate of transfer from the gas phase to the liquid

medium.

The oxygen transfer rate (OTR, in molL−1h−1) is proportional to the mass transfer coe�cient kLa
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and the concentration driving force for mass transfer:

OTR = kLa(c
∗
O2
− cO2

) (5.14)

Here, c∗O2
(in molL−1) is the oxygen concentration in the liquid which is in equilibrium with the

gas phase (gas-liquid interphase), whereas cO2
(in molL−1) is the oxygen concentration in the bulk

liquid.

At steady state conditions, since no oxygen is accumulating, the OTR must equal the oxygen

uptake rate (OUR, in molL−1h−1):

dcO2

dt
= OTR−OUR = 0 (5.15)

The OUR is de�ned as the di�erence of the amount of oxygen of the inlet (nO2,in
, molh=1) and

exhaust gas �ow (nO2,out
, molh=1) per working volume VR:

OUR =
nO2,in

− nO2,out

VR
(5.16)

Connecting Eq. 5.16 with the ideal gas law (Eq. 5.17) and assuming a valid nitrogen intert gas

balance (Eq. 5.18) and isobaric and isothermal inlet and outlet air �ow conditions, the OUR can

be calculated according to Eq. 5.19:

pV̇g = ṅRT (5.17)

ṅN2,in = ṅN2,out (5.18)

OUR =
p

RT

V̇g,in
VR

(
yO2,in

− yO2,out

[
1− yO2,in

− yCO2,in

1− yO2,out
− yCO2,out

])
(5.19)

Here, V̇g (in Lh=1) is the volumetric gas �ow rate, R (in Jmol−1K−1) the universal gas constant, T

(in K) the absolute temperature , p (in Pa) the pressure and yi (in %) the volumetric gas fraction

of gas i.

The carbon dioxide evolution rate CER (in molL−1h=1) can be formulated accordingly:

CER =
p

RT

V̇g,in
VR

([
1− yO2,in

− yCO2,in

1− yO2,out
− yCO2,out

]
yCO2,out

− yCO2,in

)
(5.20)

The dimensionless respiratory quotient RQ can be derived by

RQ =
CER

OUR
(5.21)
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5.6.3. Carbon balancing

Carbon balances for all processes were set up considering biomass formation, CO2 evolution and

the concentration of residual glucose in the culture medium to check for obvious errors in analytical

measurements and for possible side-product formation. The average elementary cell composition

of bacteria CH1.8O0.5N0.2 (Villadsen et al., 2011) was used, as no elementary cell composition of

P. putida KT2440 under carbon limited conditions is available.

The carbon balances were calculated as follows:

a · CH2O − b · CH1.8O0.5 − c · CO2 − d · CH2Oresidual
!
= 0 (5.22)

(5.23)

The coe�cients a − d represent the measured concentration of the speci�c compound (in C-

molL−1).

5.6.4. Maintenance demands

Maintenance demands on glucose (ms, in gGLCg
−1
CDWh−1) were calculated by following the Pirt's

equation (Pirt, 1965):

qs = ms + µ/YX/Strue
(5.24)

where qS is the speci�c rate of glucose consumption (in gGLCg
−1
CDWh−1), µ is the speci�c growth

rate (in h=1), and YX/Strue
is the true yield of biomass on glucose (in gCDWg−1GLC). Detailed infor-

mation about the calculation procedure can be found in the appendix in section C.2 `Calculation

of maintenance demands'.

5.6.5. Propagation of uncertainties

Gaussian error propagation was used to calculate the standard deviation σf of parameters, that

were a function of at least two individually measured variables (f(x,y)). Assuming uncorrelated un-

certainties, σf was determined from the uncertainties of the variables (σx and σy) which propagate

to their combination in the function:

σf =

√(
∂f

∂x

)2

σ2x +

(
∂f

∂y

)2

σ2y (5.25)
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CHAPTER 6

THE CELL CYCLE AS ORIGIN OF POPULATION DYNAMICS

This chapter contains the results and the discussion of the investigation of the cell cycle as a

biological factor causing population heterogeneity. Parts of this chapter have been published as

`Subpopulation-proteomics reveal growth rate, but not cell cycling, as a major impact on protein

composition in Pseudomonas putida KT2440' 1

Physiological di�erences of individual cells within a clonal cell population are a commonly accepted

fact (Avery, 2006; Müller et al., 2010). Nevertheless, their appearance and impact on process per-

formance still remains rather unclear. Among many proposed factors (see section 3.1, Figure 3.2),

cell cycling is one of the suggested drivers of heterogeneity (Avery, 2006; Müller et al., 2010).

Fueled by the �nding of Ackermann et al. (1995) that PHA accumulated in dependency on the

chromosome content in Methylobacterium rhodesianum, it was discussed that the biosynthesis of

compounds of biotechnological interest might be dependent on the cell cycle phase (Müller et al.,

2010). Population heterogeneity caused by cell cycling could therefore have signi�cant impact on

the overall process performance (Lencastre Fernandes et al., 2011).

In this chapter, we investigated if the protein inventory of a cell is dependent on the cell cycle

phase. We focused on the question if subpopulations growing at the same growth rate, but being

in di�erent phases of the cell cycle, were di�erent from each other at the level of their protein

content. Furthermore, we wanted to know if the subpopulation composition di�ers dependent on

speci�c growth rates, e.g. whether slow growing cells with longer cell cycling phases might specialize

between proliferation and production phases, while subpopulations arising at faster growth rates

might invest into di�erent protein species.

1Sarah Lieder, Michael Jahn, Jana Seifert, Martin von Bergen, Susann Müller, Ralf Takors (2014) Applied Micro-
biology and Biotechnology Express 4:71 (Appendix A)
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Figure 6.1.: Physiological data of P. putida KT2440 continuous cultivations at di�erent growth
rates. The growth rate was stepwise increased until a wash-out of the population was monitored (a). The cell
dry weight (CDW, gL=1, black dots) and the residual glucose concentration (GLC, g L=1, black squares) were
measured after 5 residence times of one speci�c growth rate µ (h=1) at steady-state. The carbon dioxide emission
rate CER (mmol L−1h−1, black line) was monitored online. Error bars and lines (CER, grey dottet line) represent
the standard deviation of independent biological triplicates. Speci�c glucose uptake rates qs (gGLCg

−1
CDWh−1, black

bars), the adenylate energy charge (AEC, grey bars) and the biomass yield coe�cient YX/S (gCDWg−1
GLC, light grey

bars) were calculated for each speci�c growth rate (b).

6.1. Design of the experimental set-up

A careful choice of the experimental set-up is crucial for dissecting the impact of the cell cycle

from the variety of other parameters in�uencing population dynamics, which overlay, interact or

even amplify each other. Here, we applied continuous cultivations (chemostats). Contrary to batch

cultivations, in which cells are growing at di�ering growth rates due to constantly changing culti-

vation conditions (Unthan et al., 2014), chemostat cultivations provide a controlled environment at

a constant growth rate. Consequently, they allow the investigation of the in�uence of one speci�c

parameter, while all other cultivation parameters are kept constant.

As a �rst step, a chemostat was set up. The growth rate �set externally by selecting a de�ned

dilution rate� was step-wise increased until cells could not reproduce fast enough to keep the

population density constant and therefore, were washed out (Figure 6.1a). All samples were taken

under steady-state conditions after at least 5 residence times of one constant growth rate and a

stable carbon dioxide emission rate (CER).
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6.2. Physiological characterization of the average population

Physiological parameters and the energetic state of the averaged cell population were determined

in order to build a basis for the interpretation and comparison of subpopulation and proteome

investigations. Here, the biomass yield (YX/S), the biomass speci�c glucose uptake rate (qs) and

the adenylate energy charge (AEC) were calculated at slow to fast growth rates (0.1 < µ < 0.7 h−1,

Figure 6.1b). Between 0.1 < µ < 0.5 h−1 an increase of growth rate resulted in a gradual increase

of YX/S by 10%. Further acceleration of growth resulted in yield reductions, returning to the

initial YX/S of µ = 0.1 h−1 at µ = 0.7 h−1 (=10%). The energetic state of the cell population was

analyzed via the AEC, which indicates the relative saturation of high-energy phospho-anhydride

bonds available in the adenylate pool of the cell. The AEC remained constant with increasing

growth rate until µ = 0.5 h−1. Further increase of the growth rate resulted in a reduction of the

AEC level by =18% (p-value < 0.01). qs was increasing linearly with increasing growth rate.

6.3. Quantification of subpopulations via flow cytometry

(Sub-)Population dynamics were analyzed via �ow cytometry. A representative dataset of the

distribution of forward scatter (FSC) and DAPI �uorescence, plotted as histograms, can be found

in Figure 6.2 (2).

In a �rst analysis step, non-cell particles were excluded from the cell population via FSC gating.

Considering the FSC dataset, no clear subpopulations could be identi�ed. Nonetheless, it could

be observed that the average FSC signal increased with increasing growth rates.

In a second step, the distribution of DAPI �uorescence within the cell population was analyzed.

DAPI is a �uorescence marker that speci�cally labels A/T-rich regions of DNA. It was found to be

a highly selective and stable marker for quanti�cation of the DNA content of cells (Müller et al.,

2010). Contrary to the FSC signals, clear subpopulations exhibiting a certain amount of DAPI

�uorescence could be identi�ed. For example, the �rst peak of the DAPI �uorescence histogram can

be interpreted as the number of cells containing one chromosome equivalent (C1). Consequently, the

second peak consists of cells carrying a double chromosome equivalent content (C2). For P. putida

KT2440 grown under minimal media conditions, it was shown that the �rst DAPI peak actually

refers to a single chromosome content (Jahn et al., 2014). Therefore, it is possible to interpret

the chromosome content quantitatively, instead of only referring to `chromosome equivalents'. At

faster growth rates (Figure 6.2 (2), µ = 0.7 h−1), a third subpopulation of cells containing more

than two chromosomes (Cx) could be detected.

With the chromosome content in hand, it is possible to relate the subpopulations to the bacterial

cell cycle and to assign a cell cycle phase to each subpopulation (refer to Figure 3.3). Cells
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Figure 6.2.: DAPI �uorescence (DAPI) and forward scatter (FSC) as parameters for cell sorting. (1)
Schematic overview of the work�ow applied from continuous cultivation over cell sorting on �lter wells and tryptic
digestion to label-free mass spectrometry for subpopulation proteomics. (2) Fluorescence of DAPI (light blue) and
FSC (grey) of P. putida KT2440 were measured by �ow cytometry. (3) To detect changes in protein abundance
dependent on the cell cycle stage and the growth rate, cells harvested at steady state conditions at 3 di�erent growth
rates (µ = 0.1 h−1, µ = 0.2 h−1, µ = 0.7 h−1, in two biological replicate cultivations (R1, R2)), were sorted based
on �uorescence and forward scatter. Gates (red lines) were chosen to exclude technical noise and to sort cells into
three subpopulations C1, C2 and CX, depending on the strength of the DAPI �uorescence (adapted from Jahn et
al. (2013)).
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containing a single chromosome have just divided, but did not start replicating yet (B phase),

whereas cells with a double chromosome content just �nished replication, but did not divide yet

(pre-D/D phase). The Cx subpopulation can be interpreted as cells growing with an uncoupled

cell cycle, maintaining a fast growth rate.

The DNA content was identi�ed as the major di�erential parameter between subpopulations. DAPI

staining does not only allow a `yes' or `no' marker decision, but rather a quantitative subpopulation

determination, which can be precisely related to the cell cycle. The DAPI �uorescence signal was

chosen as a selection marker for subsequent proteome analysis.
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Figure 6.3.: Subpopulation distributions at dif-
ferent growth rates. The average forward scattering
(FSC, in arbitrary �uorescence units, log10FSC) and
the percentage of cells containing one (C1), two (C2)
or more than two (Cx) chromosomes, as determined by
�ow cytometry, are depicted as color-coded heatmap.

The population composition with respect to DNA

content was altered as a function of growth rates

(Figure 6.3). At µ = 0.1 h−1, the majority of

cells, 82.0± 0.3%, contained a single chromo-

some, while only 18.0± 0.2% contained a double

chromosome. No cells containing more than two

chromosomes could be detected. With increas-

ing growth rate the fraction of C1 decreased,

while the fraction of C2 increased, until at µ =

0.7 h−1 only 1.4± 0.8% of the population be-

longed to the C1 subpopulation, while 16.1± 0.1%

of cells contained a double chromosome content

and 82.5± 1.0% showed a more than double chro-

mosome content.

6.4. Subpopulation proteome analysis

The analysis of the protein content of cell cycle subpopulations required a controlled and reliable

work�ow (Jahn et al., 2013), which is summarized in Figure 6.2 (1). Cells were sorted at three

growth rates (0.1 h=1, 0.2 h=1 and 0.7 h=1) according to their chromosome content (C1, C2 and

Cx) and di�erences between the subpopulation proteome pro�les were assessed as a basis of their

phenotypes. Fold changes of protein abundance were calculated in relation to the reference pop-

ulation (µ = 0.2 h−1). The reference population was sorted in order to exclude in�uences of the

sorting procedure on the protein content and unsorted cells of the 0.2 h=1 grown population were

used as an una�ected control population.

In total, 677 unique proteins (annotated and hypothetical) could be detected, whereof 351 proteins

were found in at least one replicate of all subpopulations and 245 proteins were found across all

replicates. 707 di�erent functions of 677 unique proteins were annotated using the database of
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Figure 6.4.: Visualization of COG annotation. Proteins were grouped into 18 functional classes using COG
(Tatusov et al., 1997). The total number of assigned proteins functions and the number of unique proteins that are
annotated for the complete proteome of P. putida KT2440 (left) are contrasted with the subpopulation proteome
dataset (right).

clusters of orthologous groups (COG) (Tatusov et al., 1997). A comparison between the COG

annotation of P. putida KT2440 and the subpopulation proteome dataset can be found in Fig-

ure 6.4. All functional groups were represented in the subpopulation dataset. Furthermore, 98.2%

of the proteome of the control population could be found in the reference population proteome

without signi�cant changes, indicating only a small in�uence of cell sorting on protein recovery

and con�rming the quality of the analysis (data not shown).

Changes in protein abundance were declared to be signi�cant if they exceeded a 1.5 fold change

(FC) and showed statistical signi�cance (p-value < 0.05). Gene set analysis methods were used

to detect changes in metabolic pathways, applying the same signi�cance �lter as for individual

proteins (Luo et al., 2009; Goeman et al., 2004).

Comparing cell cycle subpopulations at the same growth rate, no changes in metabolic pathways

could be observed. Looking at the level of individual proteins, only little signi�cant changes were

observable (Figure 6.5a). At µ = 0.1 h−1 and µ = 0.7 h−1, only three out of all proteins detected

had signi�cantly altered levels, among them the cell division protein FtsZ. Its abundance was found

to be 3.6 fold lower in the C1 subpopulation as compared to the C2 subpopulation at µ = 0.1 h−1.

FtsZ is a bacterial tubulin homologue, self-assembling into a ring at mid-cell level and localizing

the bacterial divisome machinery (Adams et al., 2009; Weart et al., 2007). The other signi�cantly

changed proteins could not be directly linked to the cell cycle or connected to any other unique

functional group or metabolic pathway (details can be found in section A.3 in the appendix).

These marginal changes of the proteome in dependency of the cell cycle were surprising, since

cell cycle dependent periodic gene expression has been reported for many organisms (Wittenberg

et al., 2005; Rustici et al., 2004; Laub et al., 2000). Considering the protein coverage of more

than one third of the annotated proteins in the functional group `cell cycle' in our study, the lack

of abundance changes cannot only be attributed to protein coverage. Another assumption that
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could explain our results would be an activity regulation on a di�erent than a translational level,

e.g. on a posttranslational level. Recently, Waldbauer et al. (2012) reported similar �ndings of

only small proteome changes during the cell cycle of the cyanobacterium Prochlorococcus com-

pared to extensive changes in the transcriptome, strengthening the validity of our observations and

implications.

Comparing cell cycle subpopulations at di�erent growth rates, major changes in metabolic path-

ways could be detected (Figure 6.5b and c). Slow growing cells of both subpopulations, C1 and

C2, showed higher abundance of proteins annotated in the functional groups `cell motility', while

proteins involved in `cell cycle control, cell division and chromosome partitioning' (cell cycle) were

additionally highly abundant in subpopulation C2. Regarding `cell motility', four main chemo-

taxis signaling proteins (CheA (log2FC=2.2, PP_4338), CheB (log2FC=3.7, PP_4337), CheW

(log2FC=3, PP_4332) and CheV (log2FC=3.2, PP_2128)) and 6 methyl accepting chemotaxis

transducers were found in higher abundance, anticipating increased motility and chemotaxis re-

sponse at slow growth rates. Moreover, a signi�cant increase of poly(3-hydroxyalkanoate) syn-

thetases PhaA (log2FC=3, PP_5003) and PhaC (log2FC=4.5, PP_5005) could be detected, indi-

cating higher PHA production at slow compared to fast growth rates in the chemostat.

Chemotaxis and cellular motility are well known responses to nutrient-poor conditions in natural

environments (Harshey, 2003; Soutourina et al., 2003). The observations of our proteome analysis

of the slowly growing subpopulations are in agreement with �ndings of transcriptome studies in

`average populations' of other species. Nahku et al. (2010) showed in E. coli, that genes involved in

motility were over expressed at slower growth rates in direct comparison to faster growth conditions.

Moreover, in accordance to our �nding, chemostat studies in P. oleovorans reported a higher PHA

productivity at slow in comparison to faster growth rates (Preusting et al., 1993).

When looking at the fast growing population, both subpopulations, C2 and Cx, showed a high

abundance of proteins annotated in the pathway `Translation, ribosomal structure and biogenesis'

(Translation), while proteins of `Signal transduction mechanisms' (Signaling) and `Lipid trans-

port and metabolism' (Lipids) were signi�cantly less abundant. Re�ecting the accelerated protein

synthesis associated with faster growth, 11 tRNA synthetases and 25 ribosomal proteins showed

signi�cantly higher abundance (for details, refer to Figure A.5 in section A.3 in the appendix). The

observation, that cells at higher growth rates increasingly invest into translation machinery and

protein biosynthesis, is also in agreement with observations in eukaryotes like S. cerevisiae (Reb-

negger et al., 2014) and prokaryotes such as Salmonella typhimurium (Schaechter et al., 1958).

Moreover, proteins of typical carbon storage pathways e.g. PHA synthesis were found in lower

abundance in the fast growing subpopulations. Noteworthy, the seemingly lower abundance of

proteins connected to the `Cell Cycle' (C2 versus Cx) was mainly due to the single protein change

of the poorly characterized PP_3128 and was therefore neglected.

Surprisingly, an increase of growth rate was not mirrored by major changes among proteins involved
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Figure 6.5.: Circular treemaps visualizing di�erentially expressed functional protein categories. Pro-
teins detected by mass spectrometry were clustered according to their pathway annotation in COG covering two
levels of speci�city (Tatusov et al., 1997). The size of a sector is proportional to the number of proteins found in
one speci�c pathway in relation to the total protein number. The color code represents the log2 mean fold change
(log2 FC) of protein quantity in one pathway. The blue color indicates an under representation and the color red an
over representation of the proteins in a pathway compared to the reference population (RP, µ = 0.2 h−1). Pathways
with a fold change in the range log2FC < −0.58 and log2FC > 0.58 are labeled with the respective pathway name.
Pathways that were signi�cantly changed using GAGE (Luo et al., 2009) and Globaltest (Goeman et al., 2004) gene
set analysis are additionally marked (∗). A. Comparison of the subpopulations C1/C2 and C2/Cx at growth rates
0.1 h=1 and 0.7 h=1. B. Comparison of the subpopulations C1 and C2 at µ = 0.1 h−1 with RP. C. Comparison of
the subpopulations C2 and Cx at µ = 0.7 h−1 with RP. This �gure has been published in Lieder et al. (2014).
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in carbohydrate and energy metabolism, irrespective of the almost 6.5-fold increase of the speci�c

glucose uptake rate (Figure 6.1). When interpreting the subpopulation proteome dataset, one has

to keep in mind that relative changes of protein abundance and not absolute quantity changes

were measured. Growth rate dependent absolute changes of protein quantity for `average' cells

were �rst elucidated by Schaechter et al. (1958). This pioneering study revealed an exponential

dependency of protein, DNA and RNA contents and therefore, cell size, while increasing the growth

rate (Maaløe et al., 1966; Schaechter et al., 1958; Bremer et al., 2004). Here, we acquired relative

information on the cell size via the FSC signal. In accordance to various other studies, the FSC

increased with increasing growth rates (Skarstad et al., 1985; Hewitt et al., 1999; Neumeyer et

al., 2013) (Figure 6.3). Following the rational of Schaechter et al. (1958), increasing cell size

can be interpreted as an increase of protein content per cell. We assume that the glucose uptake

is proportional to the elevated production of proteins at high growth rates, thus increasing the

absolute protein quantity but leaving the relative quantity unchanged.

The abundance of proteins inside a cell cannot readily be translated into protein activity. The

additional assessment of `sub-metabolomes' could give deeper insights into the metabolic activity

of the cell in dependence on the cell cycle. However, measuring the metabolome in subpopula-

tions of prokaryotes is still coming of age (Zenobi, 2013). High turnover rates of metabolites are

directly connected to di�culties of a reliable �xation of the pools during sampling and the cell

sorting procedure. Here, sampling methods have to be especially developed that allow quenching,

minimization of metabolite leakage and to keep the cell walls intact for cell sorting. Improvements

of the analytical method are needed to lower detection limits, increase coverage and allow better

and faster identi�cation of metabolites while reducing the sorting time and problems related to

�xation. Therefore, until today, `sub-proteome' snapshots are the method of choice, with pro-

teins being stable and allowing insights into complex protein expression patterns that reveal deep

functional information.

In summary, the results of the subpopulation proteome analysis revealed almost identical protein

composition of cells di�ering in DNA content but with identical growth rate, whereas the proteome

of cells cultivated at di�erent growth rates showed signi�cant di�erences in speci�c pathways.

Investigating the impact of the cell cycle on population heterogeneity in the operation mode `chemo-

stat' allowed a view on subpopulation physiology without superimposition of impacts of the growth

rate and the cell cycle. To our surprise, the proteome data did not hint towards the physiologi-

cal specialization of cells in di�erent cell cycle stages. The discussed hypothesis of shared tasks

of subpopulations in B and pre-D/D phase for e.g. carbon storage or protein production/growth

could not be supported by proteome analysis. This result is surprising, since subpopulations sorted

according to their DNA content appear to be physiologically highly similar at same growth rates.

Surely, the proteome of subpopulations cannot be equated with single cell proteome compositions.

Nevertheless, the high resemblance of the subpopulation protein pattern, regardless of the growth
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rate investigated, points towards their nearly identical physiological behavior. The results give rise

to the assumption that the cell cycle itself has a minor impact on population heterogeneity under

the conditions tested.
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CHAPTER 7

THE ENVIRONMENTAL CONDITION AS ORIGIN OF POPULATION

DYNAMICS

This chapter contains the results and the discussion of the investigation of the environmental

condition as an external factor causing population heterogeneity. Parts of this chapter have been

published as `Environmental stress speeds up DNA replication in Pseudomonas putida in chemostat

cultivations.'1

Industrial fermentations provide challenging environmental conditions for the microbial cell popu-

lation (Schweder et al., 1999). Limited mass transfer and mixing in large scale cultivations cause

signi�cant local gradients of e.g. oxygen availability or substrates inside the bioreactor. A cell,

which is circulating through the bioreactor, is exposed to continuously changing environmental

conditions and consequently has to adjust its physiology constantly (Fritzsch et al., 2012; Enfors

et al., 2001). It was shown that challenging industrial growth conditions can lead to undesired

phenotypes, including subpopulations with reduced or even stopped product formation capacities

(Lara et al., 2006; Enfors et al., 2001; Lencastre Fernandes et al., 2011; Carlquist et al., 2012).

Until now, the underlying mechanisms of population split-up caused by industrially relevant stress

conditions remain mostly obscure. In this chapter we aim at investigating population dynamics

that result from stressful environmental conditions, typically occurring in large-scale fermentation

set-ups.

1Sarah Lieder, Michael Jahn, Joachim Koep�, Susann Müller, Ralf Takors (2016) Biotechnology Journal 11(1):155-
63 (Appendix B)
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7.1. Design of the experimental set-up

A thought-through experimental set-up is essential for the investigation of population dynamics,

as reasoned in section 6.1. Three di�erent examples of industrially-relevant stressful environments

were chosen: (i) decreased iron availability, a typical example of error-prone large-scale media com-

position and bio-availability, (ii) oxygen deprivation, a common problem in large-scale cultivations

due to limited mass transfer and of utmost importance regarding strictly aerobic P. putida strains

and (iii) solvent exposure, a stress factor occurring in two-phase biocatalytic cultivation systems,

which are typical industrial set-ups for P. putida based processes.

Continuous steady-state cultivations were used to speci�cally compare equally fast growing cells

under non-stressed and stressed conditions. As mentioned before, chemostat studies o�er the

inherent advantage to prevent superimposing signals on population distributions usually occurring

in batch experiments (for further information refer to section 3.2) (Skarstad et al., 1985; Wiacek

et al., 2006; Müller et al., 2003; Carlquist et al., 2012).

Under non-stressed cultivation conditions, all nutrients were supplied in excess, except glucose

(carbon limitation). The growth rate was stepwise increased until the maximum growth rate of P.

putida KT2440 was reached, resulting in the wash-out of the population (??a).

Under stressed cultivation conditions, cells were grown at a constant growth rate of µ = 0.2 h−1.

The cultivation was started under reference conditions (non-stressed). A stress-shift was introduced

after 5 residence times and the stress environment was kept constant until cells had adapted to the

new conditions (showing steady-state growth), notably at the same growth rate of µ = 0.2 h−1. In

the end of the cultivation, the cells were shifted back to reference conditions, in order to observe

whether the population showed identical physiological features as before (??b).

7.2. Quantification of subpopulations via flow cytometry

Samples for �ow cytometry analysis were taken at steady-state conditions and the forward scatter

(FSC), the side scatter (SSC) and the DNA content of the cells (DAPI) were analyzed. As already

observed in chapter 6, the DNA content analysis showed clearly distinguishable subpopulations,

also under stressed conditions (see ??). Three subgroups of cells were identi�ed and allocated to

the speci�c cell cycle phases, as already described in detail in section 6.3:

(i) subpopulation C1 with a single chromosome, representing cells in B phase that just divided

and did not start to replicate their DNA yet

(ii) subpopulation C2 containing two chromosomes, representing cells in pre-D or D phase that

�nished replication but did not divide yet
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Table 7.1.: Population composition at non-stressed and stressed conditions analyzed by �ow cytometry

Subpopulation C1 C2 CX

Reference cultivation - di�erent growth rates µ

0.1 h−1 82.0± 0.3 18.0± 0.2 −
0.2 h−1 61.8± 0.9 38.3± 0.9 −
0.3 h−1 47.7± 0.5 52.3± 0.7 −
0.4 h−1 23.0± 0.9 77.0± 1.1 −
0.5 h−1 2.2± 0.8 83.1± 1.0 14.7± 0.8

0.6 h−1 2.0± 1.1 64.3± 0.9 33.7± 1.1

0.7 h−1 1.4± 0.8 16.1± 0.1 82.5± 1.0

Stress condition - constant µ = 0.2 h−1

iron =50% w/v 60.3± 0.6 39.7± 0.3 −
pO2 5% 59.5± 0.7 40.5± 0.9 −
pO2 1.5% 52.3± 0.5 47.7± 0.5 −
decanol 5% v/v 45.3± 0.8 54.7± 0.6 −

(iii) subpopulation Cx with more than doubled chromosome content (found at fast growth rates),

representing cells performing multifork DNA replication

Under non-stressed conditions at slow to moderate growth rates (0.1 - 0.4 h=1), fractions of C1

decreased with increasing growth rate while fractions of C2 increased. At growth rates of µ >

0.4 h−1, subpopulation Cx appeared. Growth rate 0.4 h=1 can be de�ned as a threshold in P.

putida KT2440, as cells start to uncouple DNA replication from cell division at faster growth

rates. At higher growth rates than 0.4 h=1, only a negligible fraction of C1, a decreasing portion

of C2 and an increasing fraction of Cx were observed.

Under stressed conditions, the fraction of C1 cells decreased while more C2 cells were abundant

in comparison to the reference condition at the same constant growth rate µ = 0.2 h−1. This

surprising phenomenon was more pronounced, the more severe the stress condition (Table 7.1).

Figure 7.1.: Overview of the experimental set-up to investigate the impact of environmental stress
on population dynamics. Chemostats were carried out under non-stressed and stressed conditions. Under non-
stressed conditions, all nutrients except glucose were supplied in excess and the growth rate was stepwise increased
until wash-out occurred. Under stressed conditions, three di�erent stresses were applied in a shift like manner:
decreased iron availability, deprivation of oxygen and solvent exposure. Physiological data at non-stressed (a) and
at a representative stress condition (oxygen deprivation, b)) are shown in the �rst row. Biomass density (CDW,
black dots, g L=1) and residual glucose concentration (GLC, black squares, g L=1) were measured after �ve residence
times of one speci�c dilution rate at steady state. The carbon dioxide emission rate (CER, black line, mmolL−1h−1)
was monitored online. The error bars and lines represent the standard deviation of biological triplicates. A summary
of the �ow cytometry data is given in the second row. DNA histograms (DAPI, arbitrary �uorescence units A.F.U.)
are depicted for the non-stressed and the stressed experimental set-up.
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7.3. Quantification of stress impact on population dynamics using

mathematical modeling

Comparing the distribution of subpopulations with di�erent DNA content under stressed and non-

stressed conditions, a clear di�erence could be detected. Consequently, we assumed that the cell

cycle was a�ected under stress.

A cell using binary �ssion for proliferation passes through three stages during its cell cycle: a stage

from cell birth to initiation of replication (B phase), a replication phase (C phase) and a period

between termination of replication and cell division (pre-D/D phase). Di�erences in fractions of

subpopulations of di�erent DNA content hint towards di�erences in the duration of cell cycle phases

during stress exposure.

In order to answer whether and how stress imposed on bacterial growth a�ects the cell cycle

quantitatively, a model accounting for population heterogeneity was needed to connect the fractions

of subpopulations with the duration of the cell cycle phases.

7.3.1. Mathematical framework

We determined the duration of cell cycle phases by combining chemostat cultivation, �ow cytometry

data and mathematical simulation.

The mathematical model chosen for determining the durations of the cell cycle phases is based on

the Cooper-Helmstetter cell cycle model (Cooper et al., 1968). This model allows the calculation

of theoretical DNA distributions in a population having a certain generation time τ and known

cell cycle durations C and D. Considering the D phase, one has to keep in mind that no distinction

can be made between pre-D and D phase based on DAPI �uorescence data, because cells contain

a double chromosome content in both phases. Therefore, we de�ned a combined parameter D′

representing the time between end of replication and end of division.

The theoretical DNA distribution n(G) results from linking an age distribution of a population

n(a) to a cellular DNA accumulation function G(a).

The age distribution was implemented as a probability density function (n(a)):

n(a) = 2 · ln2 · e(−a·ln2) 0 ≤ a ≤ 1 (7.1)∫ 1

0
n(a)da = 1 0 ≤ a ≤ 1 (7.2)

a is the normalized age of a cell within one generation time τ : Newly divided cells are de�ned

to have an age a = 0 and cells that are dividing have the age a = 1 = τ . n(a) represents the



52 7. The environmental condition as origin of population dynamics

probability density of a single cell in a population to have a certain age a (Lindmo, 1982). As a

consequence of binary cell division, there has to be a double amount of new born cells in comparison

to dividing cells n(0) = 2n(1). The amount of cells in a speci�c age interval can be calculated

integrating the age distribution between two ages ai and aii.

Cooper et al. (1968) assumed that the movement of the replication fork along the chromosome is

constant. During one generation time, the rate of DNA synthesis was described mathematically

in a step function with two discontinuities: initiation and termination of DNA replication. The

speci�c ages a1 and a2, where initiation and termination take place, were calculated as follows:

a1 = (xτ − (C +D′))/τ (7.3)

a2 = (τ −D′)/τ (7.4)

Here, parameter x refers to multiples of generation times in which replication C and division D′

take place.

To derive the amount of DNA per cell at a speci�c age G(a), the division cycle was divided into

three periods, de�ned by the ages a1 and a2 at the discontinuities. The chromosome content was

calculated for each of these intervals as follows, considering that the chromosome content at division

is the double amount of the new born cell G(a = 1) = 2G(a = 0):

G(a) = k(F1a+ F3) + a1k(F1 − F2) + a2k(F2 − F3) 0 ≤ a ≤ a1 (7.5)

G(a) = k(F2a+ F3) + 2a1k(F1 − F2) + a2k(F2 − F3) a1 ≤ a ≤ a2 (7.6)

G(a) = kF3(a+ 1) + 2a1k(F1 − F2) + 2a2k(F2 − F3) a2 ≤ a ≤ 1 (7.7)

Here, F refers to the number of replication forks in the interval i. k is the constant rate of DNA

synthesis per replication fork, which can be derived by k = τ/2C.

The DNA distribution n(G) was derived by the combination of the derivation of the theoretical

chromosome content dG/da and the age distribution n(a).

n(G)/dG = n(a)/da (7.8)

A step-by-step illustration of the calculation of the theoretical DNA distributions can be found in

Figure 7.2.

7.3.2. Implementation of the mathematical model

To correlate �ow cytometry data of chemostat cultures with cell cycle dynamics, we implemented

the mathematical model of Cooper and Helmstetter (1968) as described above in MATLABR©.

Previously published modeling tools using the same mathematical framework were not used in this
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n(G) were calculated according to Cooper and Helmstetter (1968) for a slow growing (τ/C = 2) and a fast growing
population (τ/C = 0.6). The age distribution n(a), the DNA accumulation per cell G(a) and the theoretical DNA
histogram n(G) are illustrated for the slowly growing population (�rst column) and for the fast growing population
(second column). Considering the mechanism of binary �ssion, the number of cells that has just divided doubles
those that start to divide. Depending on how fast the cells are growing, the initiation and the termination of the
replication shift within the timeline of a standardized cell age a. In slowly growing cells there are phases without
active replication (B and D′) resulting in a constant DNA content. During the replication phase the DNA content
is increasing linearly with the constant rate of replication (line 2). In the case of fast growing cells, overlapping
replication cycles occur, resulting in active replication throughout the age of the cell. Replicating cells of di�erent
ages can therefore have di�erent total replication rates according to the number of replication forks at work. The
portion of cells for each DNA channel in a histogram can be calculated by combining the age distribution and the
DNA accumulation (n(G)/dG = n(a)/da, line 3).
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study, because of outdated versions of computing languages (Skarstad et al., 1985), limited appli-

cability (omitting multi-fork replication (Michelsen et al., 2003)), or because they solely allowed

simulation, instead of supporting data-based parameter identi�cation via non-linear regression

(Stokke et al., 2012).

In order to simulate more `realistic' DNA histograms than the theoretical histograms calculated

with the mathematical framework, biological and technical measurement variations were addition-

ally introduced, following the example of Skarstad et al. (1985):

Biological variation was simulated by slight variation of the generation time τ (coe�cient of vari-

ation CV=5%). The population was arti�cially divided into 30 subpopulations covering the total

range of variance. One resulting DNA distribution for the whole population was calculated con-

taining all 30 simulated 'subpopulations' .

Technical measurement variation was taken into account by assuming each DNA value in the DNA

histogram to be normally distributed. The mean coe�cient of variation was calculated as 5%.

Finally, the durations of the cell cycle phases were calculated via the following procedure: The

generation time τ and the experimentally derived DNA histogram n(Gexp) were used as inputs

for the simulation software. The cell cycle parameters C and D' were iterated until the best �t

between the experimental and theoretical DNA histogram was obtained (least-square �t Eq. 7.9),

resulting in the best estimates of the cell cycle parameters in our experiments (Ĉ and D̂′). During

the iteration, lower bounds of C and D' were set to 0, while the upper bounds were set to D′ = τ

and C = τ/0.45, respectively (Cooper et al., 1968). To evaluate our simulations we calculated the

deviation s using the formula presented by Skarstad et al. (1985):

s =

√√√√ m∑
i=1

(
√
n(Gexp)i −

√
n(G)i)

2

m− 1
(7.9)

7.3.3. Quantitative impact of stress on cell cycle phases

The simulated DNA distributions deviated only marginally from the experimentally derived DNA

distributions at all growth conditions applied (Table 7.2). This accuracy is taken as evidence that

the basic modeling assumptions of Cooper and Helmstetter (1968) and Skarstad (1985) can be

applied for P. putida KT2440 as well.
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Table 7.2.: Summary of the duration of cell cycle phases and goodness of �t of the simulation. Average
values of calculated B̂, Ĉ and D̂′ phases (h) of 3 biological replicates and their standard deviation were calculated
on the basis of the mathematical model of Cooper and Helmstetter (1968).

Experimental condition Ĉ (h) D̂ (h) B̂ (h) s1

Non-stressed cultivations - di�erent growth rates µ

0.1 h−1 3.48± 0.01 1.01± 0.17 2.41 0.55± 0.1

0.2 h−1 1.54± 0.04 0.94± 0.07 0.92 0.69± 0.35

0.3 h−1 1.38± 0.04 0.63± 0.06 0.29 0.49± 0.14

0.4 h−1 1.20± 0.03 0.59± 0.05 0 0.40± 0.18

0.5 h−1 1.04± 0.02 0.66± 0.01 0 0.38± 0.21

0.6 h−1 1.03± 0.02 0.57± 0.04 0 0.84± 0.26

Stress cultivations - constant µ = 0.2 h−1

iron - 50%2 1.07± 0.03 1.54± 0.04 0.79 0.44± 0.26

pO2 - 5% 1.05± 0.03 1.50± 0.05 0.85 0.38± 0.24

pO2 - 1.5% 0.94± 0.05 1.44± 0.05 1.02 0.48± 0.16

decanol - 5% (v/v) 0.80± 0.04 1.42± 0.05 1.18 0.36± 0.15

Cell cycle analysis of non-stressed steady-state cultures at different growth rates

Under non-stressed conditions, the time needed for replication (C phase) decreased with increasing

growth rate until a minimal duration of Cmin ≈ 62min (Table 7.2). The trajectory of the C phase

durations in dependency of the growth rate was very similar comparing P. putida KT2440 and E.

coli (previously published data (Helmstetter, 1996)): A goodness of �t of R2 = 0.95 was calculated

for the merged datasets when applying the exponential model of Keasling et al. (1995), which

describes the growth rate dependency of C phases for E.coli (Figure 7.3).

Durations of cell cycle phases have been shown to vary with growth conditions and nutrient avail-

ability, and therefore, also with growth rate (Bipatnath et al., 1998). The dependency of the C

phase duration on the growth rate for P. putida KT2440 is in agreement with observations of

Kubitschek et al. (1978) and Helmstetter et al. (1976) in E. coli strains. E. coli B/r reached a

minimum C phase duration of 42min at growth rates µ > 0.6 h−1. Here, we identi�ed a mini-

mum C length of about 62min for P. putida KT2440 at growth rates µ > 0.5 h−1 (Figure 7.3).

Compared to E. coli, P. putida needs to start multifork DNA replication already at slightly lower

growth rates.

Surprisingly, not only the C phase duration trajectories, but also the maximum replication rates

1The parameter s (Eq. 7.9) is the deviation of the simulated to the experimental number of cells measured by
�ow cytometry and presented as subpopulation distributions in DNA histograms. The formula was framed by
Skarstad et al. (1985).

2The cultivation medium contained half of the iron concentration compared to the reference condition.
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Figure 7.3.: Duration of the replication phase in dependence of the speci�c growth rate µ. The
duration of the replication phase C was calculated according to Cooper and Helmstetter (1968) and Skarstad et al.
(1985). Error bars show the standard deviation of the arithmetic mean of three biological replicates. The C phase
is decreasing with increasing growth rates until a minimum duration is reached. Black dots depict the C phase
durations under steady-state standard conditions of P. putida KT2440. Previously compiled data by Helmstetter et
al. (1996) is shown as dark grey squares (E. coli B/r A) and light grey diamonds (E. coli B/r K). All data points
could be reasonably well �tted (R2 = 0.95) by an exponential function (Keasling et al., 1995) (black line).

of P. putida KT2440 and E.coli were highly similar. A combination of Cmin = 62min with

the chromosome size of P. putida KT2440 (6.18 Mbp (Nelson et al., 2002)) results in a maximum

replication rate of rc ≈ 100 kbp/min (50 kpb/min per replication fork). For E. coli K-12, Michelsen

et al. (2003) reported a Cmin of 46min. Here, each replication fork travelled at a replication rate

rc = 50 kbp/min along the chromosome as well. The similarity between the maximal replication

speeds of P. putida KT2440 and E. coli is intriguing and suggests the possibility to further exploit

common properties of the replication machinery.

Cell cycle analysis of stressed steady-state cultures at constant growth rates

For the investigation of stress impact on cell cycle kinetics, chemostat cultivations were performed

at a constant growth rate (0.2 h=1). The duration of the cell cycle phases under reference conditions

(non-stressed) were compared to di�erent stress conditions, including reduced dissolved oxygen

(pO2) levels, exposure to the organic solvent decanol and decreased iron availability. Under all

stressful conditions tested, the duration of the replication phase was shortened, while B- and D'-

phases were prolonged (Figure 7.4).

A shortened C phase corresponds to an increased replication rate. At iron deprivation and low

oxygen partial pressure pO2 = 5%, the replication rate rose 1.5-fold from 67 to around 99 kbp/min,

equaling the maximum replication rate under non-stressed conditions at µ > 0.5 h−1. Surprisingly,
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Figure 7.4.: Duration of cell cycle phases in dependence of the speci�c stress condition. The replication
time (C phase, dark grey bar) is shown for all environmental conditions tested at a growth rate of µ = 0.2 h−1.
Compared to the standard conditions, the C phase decreased under all stress conditions, while D' and B phases
(grey and light grey bars) increased accordingly.

when increasing the severity of the stress condition (pO2=1.5% and decanol exposure (5% (v/v))),

the replication rate even increased above the maximum observed at standard conditions: Lower

dissolved oxygen levels of pO2=1.5% led to a 1.6-fold increase, while decanol exposure raised the

replication rate about 1.9 fold. Notably, the generation time τ stayed constant and therefore a

balanced altering of the individual contributions of B, C and D' phases was the result of the stress

conditions applied.

The B phase was already described to vary in dependency of nutrient availability (Helmstetter,

1996). It was suggested, that cells need to reach a critical cell mass before entering the C phase

(Donachie, 1968). This critical cell mass is either already present or rapidly reached by the cell

under nutrient-rich conditions, while more time is needed in nutrient poor media. In the case of

stress conditions, it is not surprising that the B phase covers part of the surplus cell cycling time.

Our results showed an extended duration between end of replication and division (pre-D / D phase).

In contrast, the classical cell cycle model of Cooper and Helmstetter (1968) suggested a �xed D

period. At this point, we cannot distinguish if the D phase itself is prolonged in our case, or if cells

start dividing after an intermediary pre-D phase. Earlier batch cultivation studies reported a gap

between end of replication and start of division in limiting conditions, leading to the introduction of

the pre-D phase into the bacterial cell cycle model (Müller et al., 2003). Additionally, an enlarged,

cell size generating period between end of replication and �nal division was found for some archaea

(Lindås et al., 2013; Hjort et al., 2001) and bacteria (Robert et al., 2014). However, a prolonged D

phase cannot be excluded. A delay could be a consequence of lower availability of resources which

were re-distributed by the cell in favor of DNA replication or a direct mechanical interference with

the divisome complex (in the case of decanol).
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Table 7.3.: Di�erentially expressed genes under decanol stress conditions, annotated in the functional
group `replication'. The COG database was used for functional annotation (Tatusov et al., 1997). The log2 fold
change (FC) is the logarithmic ratio of expression of decanol condition and reference condition. Statistical signi�cance
was de�ned at a cuto� of the false discovery rate FDR < 0.05 (Benjamini et al., 1995).

Gene ID Gene Product Name log2(FC)

PP_0979 DNA polymerase III subunit χ, HolC 1.26

PP_4141 DNA polymerase III subunit ε DnaQ 1.10

PP_4768 DNA polymerase III; subunit ε 1.02

PP_4796 DNA polymerase III subunit δ HolA 0.97

PP_4269 DNA polymerase III subunits γ and τ DnaX 0.94

PP_5310 ATP-dependent DNA helicase RecG 0.89

PP_4274 NAD-dependent DNA ligase LigA 0.67

PP_5088 Primosome assembly protein PriA 0.59

In summary, we observed a clear relationship between replication rate increase and challenging

environmental conditions. In addition to previously found alterations in the cell cycle under limiting

conditions, not only the time before start of replication (B phase) and the time after completion of

replication until division (pre-D/D phase) increased, but also the period for replication itself was

substantially altered.

Transcriptome analysis

The observation of a shortened C phase raised the question of how cells could achieve this replication

speed-up. In order to get mechanistic insights, we analyzed the genome-wide expression pro�le of

P. putida KT2440 via next generation sequencing and compared the mRNA levels of non-stressed

cells to cells exposed to the most prominent stress condition, decanol exposure.

In total 5421 transcripts were analyzed. Among these, 540 transcripts, including 386 with anno-

tated function, were signi�cantly a�ected by decanol exposure (log2 fold changes (FC) > 0.58).

The COG database (Tatusov et al., 1997) was used to identify 28 signi�cantly changed genes

with known or anticipated tasks in `replication, recombination and repair'. Thereof, 8 genes were

annotated in tasks connected to `replication' (Table 7.3). This group of genes showed not only a sig-

ni�cant overexpression upon decanol exposure (average log2 FC 0.98), but could also be identi�ed

as signi�cantly upregulated functional group using gene set analysis.

Especially genes that encode parts of the DNA polymerases showed elevated transcription levels

(ligA, holA, holC, dnaQ and dnaX). Interestingly, DnaQ was shown to turn the rather slow and

weakly processive polymerase III core into a fast and highly processive polymerase (Studwell et al.,

1990). Furthermore, HolA increases the polymerase speed by binding the β subunit of the DNA
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clamp to the polymerase core (Johnson et al., 2005), while HolC and DnaX increase the unwinding

rate of the helicase DnaB (Kim et al., 1996). Altogether, the most prominent transcriptional

upregulation was found for genes encoding basic enzymes that are essential for a fast, e�cient

and processive replication. Besides DNA replication, transcripts related to DNA repair, restart

of stalled replication forks and homologous recombination were upregulated as well under decanol

stress conditions (recB, recD, recG, ruvC, mutS and mutL, for details refer to section B.6,

`Supplemental dataset' in the appendix).

The cellular response to di�erent types of stress is the hallmark of the cell's strategy for sur-

vival. How organisms adjust their cell cycle dynamics to compensate for changes in environmental

conditions is an important outstanding question in bacterial physiology. Our data show a clear re-

lationship between acceleration of replication and stress exposure. We observed moderately higher

expression levels of genes responsible for both key processes that determine C period duration �the

velocity of the replication fork movement and the time needed for the restart of stalled replication

forks (Hill et al., 2012). Consequently, we propose that the speed up of DNA replication is an ac-

tively regulated process. Previous assumptions, that (i) replication might not proceed at maximum

velocity to assure stable and correct replication and that (ii) faster replication might be achieved

by a higher availability of replication processivity factors (Morigen et al., 2003; Atlung et al., 2002)

support our hypothesis.

Furthermore, the expression pro�le also hinted towards increased DNA repair and homologous

recombination activity. Under stress conditions, cells might repair stress-induced errors in DNA

as good as possible, while taking into account a higher frequency of recombination events. This

strategy might help a population to quickly adapt to challenging stress conditions.

Summarizing, our study demonstrated that fast replication of the genetic information was of utmost

priority under stress conditions. The shortened C phase was balanced by extending the duration of

the remaining cell cycle phases, B and pre-D/D phases, to maintain a constant growth rate under

stressed conditions.
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CHAPTER 8

OPTIMIZING MICROBIAL CELL CHASSIS BY STREAMLINING THE

GENOME

This chapter contains the results and the discussion of the characterization of streamlined-genome

Pseudomonas putida strains as microbial cell factories for heterologous protein production. Parts

of this chapter have been published as `Genome reduction boosts heterologous gene expression in

Pseudomonas putida'.1

Typically, metabolic engineering approaches are applied in only a few production hosts, often

Escherichia coli strains (Danchin, 2012; Singh, 2014). Despite their ease of genetic manipulation,

these working platforms often lack desirable characteristics that are important for industrial large-

scale applications (see chapter 2). In recent years, P. putida strains got into focus as promising

alternative or extension to the bacterial working platform line-up. Especially the non-pathogenic P.

putida strain KT2440 shows high potential, being equipped with a remarkable metabolic diversity,

amenability to genetic manipulation, and stress endurance along with carrying the GRAS (generally

regarded as safe) status (Kim et al., 2014; Poblete-Castro et al., 2012; Nogales et al., 2008; Nikel

et al., 2014b).

The aim of a metabolic engineer is to create novel or to improve already existing production

strains. On one hand, this can be done by rational pathway engineering (implementing new

metabolic pathways or deleting by-product pathways). On the other hand, clearing the microbial

host of all elements deemed unnecessary for cellular functions other than replication and self-

maintenance might improve energy availability for production and genomic stability. Following the

latter strategy of strain optimization, we analyzed kinetic and physiological parameters related to

cell performance of two genome-reduced P. putida strains: P. putida EM329, lacking �agella genes,

1Sarah Lieder#, Pablo I. Nikel#, Víctor de Lorenzo and Ralf Takors (2015) Microbial Cell Factories 14:23 #Ex

aequo contribution (Appendix C)
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Figure 8.1.: Design of reduced-genome P. putida KT2440 strains. Strain EM329 lacks �agellar genes
(Martínez-García et al., 2014b) while strain EM383 carries further mutations improving the strain's cell factory
characteristics (Martínez-García et al., submitted 2014). White arrowheads show the chromosomal location of the
�agellar genes. Black arrowheads indicate the genes and gene clusters additionally eliminated in strain EM383.
Furthermore, the extent of the deletion is noted (in percentage of the genome).

and P. putida EM383, carrying further mutations that were implemented to ensure genetic and

physiological stability (Figure 8.1, Table C.1). Furthermore, the two multiple-deletion strains were

evaluated as cell factories for heterologous protein production. We selected the green �uorescent

protein (GFP) from the jelly�sh Aequorea victoria as a model protein (Vizcaino-Caston et al.,

2012) to compare production kinetics and capacities of the two manufactured strains with their

parental strain.

8.1. Reaction parameters and energy profile of streamlined-genome

derivatives of P. putida KT2440

Glucose-limited continuous cultivations at three di�erent growth rates, µ = 0.1 h−1, µ = 0.3 h−1

and µ = 0.6 h−1, were set up to characterize reaction parameters such as biomass yield coe�cients

and maintenance demands, but also to assess the energy pro�le of the streamlined-genome (SG)

strains (for details refer to Figure C.6 in appendix C).

Biomass yield The biomass yield coe�cient re�ects the e�ciency of substrate conversion into

cell components. The yield of biomass out of glucose was calculated at steady-state conditions

within the range of the investigated growth rates (Figure 8.2).
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Figure 8.2.: Growth parameters of P. putida KT2440, EM329 and EM383 in glucose-limited chemo-
stat cultures. (a) shows the biomass yield coe�cient YX/S (gCDWg−1

GLC) and (b) the maintenance coe�cient mS

(gGLCg
−1
CDWh−1). The parameters were calculated based on three biological replicates. The bars represent the

arithmetic mean of the corresponding parameter ± standard deviations.

At all growth rates, yields were signi�cantly higher in the derivative strains compared to the

wild-type strain (p < 0.05). The biggest di�erence could be observed at the slow growth rate of

µ = 0.1 h−1. Here, EM383 showed a 12% higher yield of biomass on glucose than KT2440. Notably,

the di�erences between the two SG strains P. putida EM329 and EM383 were not statistically

signi�cant. Also, carbon emission rates (CER, mmolCO2
L−1h−1, Figure C.6 in appendix C), were

altered. Averaged over all growth rates, EM329 and EM383 produced 9% and 16% less CO2,

respectively, as compared to P. putida KT2440.

Maintenance coefficient The maintenance demand is an intrinsic characteristic of an organism.

It re�ects the amount of carbon (and ATP) needed to maintain minimal, non-growth related

functions within the cell. Consequently, it is a key parameter for the choice of a microbial cell

factory, since the lower the maintenance coe�cient of the speci�c organism, the higher the carbon

availability for catabolism (and biocatalysis).

The maintenance demand was calculated applying Pirt's equation (Eq. 5.24) based on the linear

relationship between the speci�c glucose uptake rate and di�erent growth rates (Figure 8.2 B). The

wild-type P. putida KT2440 showed a maintenance demand of ms = 0.052± 0.002 gGLCg
−1
CDWh−1.

Notably, by-product formation could be neglected. P. putida does not excrete any metabolites

under the conditions tested (Chavarría et al., 2013; del Castillo et al., 2007). Furthermore, all

carbon balances closed within a range of 100± 2%, only taking biomass formation, CO2 evolution

and residual glucose concentration into account (Figure C.7 in appendix C).

Interestingly, comparing EM329 and EM383 to their parental strain KT2440, we observed 17%

and 35% lower ms values, respectively (p < 0.01). The true biomass yield coe�cients, which

take the maintenance demands into account, were calculated to 0.47gCDWg−1GLC for strain KT2440,

and 0.49gCDWg−1GLC for EM329 and EM383. The di�erences in maintenance demands were only



64 8. Optimizing microbial cell chassis by streamlining the genome

signi�cant between the derivative and the wild-type strains, but not in between the two mutant

strains.

In order to estimate ATP expenses due to maintenance, we applied the following stoichiometric

calculation: P. putida channels glucose through the Entner-Doudoro� pathway towards the tri-

carboxylic acid (TCA) cycle, yielding 1 mole of ATP and 1 mole of NADH per mole of glucose

consumed. In the TCA cycle, additional 4 NADH and 1 FADH per acetyl-coenzyme A are formed,

which are for simpli�cation lumped into 5 NADH during this calculation. Summarizing, 1 glucose

molecule is converted into 1 ATP and ca. 11 NADH. Assuming a P/O ratio of 1.75 (Nogales et al.,

2008), 21 ATP are formed during oxidative phosphorylation per glucose molecule. Consequently,

mATP values (molATPg
−1
CDWh−1) can be calculated, resulting in 1.09± 0.06 for P. putida KT2440,

and 0.91± 0.02 and 0.71± 0.05 for strains EM329 and EM383, respectively.

Our calculated maintenance demands for P. putida KT2440 are comparable to previously published

data of van Duuren et al. (2013) under similar cultivation conditions. Maintenance coe�cients

of Gram-negative organisms grown in a de�ned glucose-containing medium varied from ca. 0.05

to 0.5 gGLCg
−1
CDWh−1 (Atkinson et al., 1967; Kooijman et al., 1992; Russell, 2007; Schulze et al.,

1964). Noteworthy, the calculated maintenance demands of P. putida and its derivatives are rather

low compared to other Gram-negative bacteria. For example, Nanchen et al. (2006) found a 28%

higher maintenance demand for the industrially well established host E. coli in a similar glucose

limited cultivation set up. Intriguingly, the deletion of cellular components and structures that

consume energy, resulted in a reduction of the maintenance demands of P. putida . We assume

that the ms decrease is correlated with the lack of the �agella. Energy, needed not only for the

synthesis and assembly of the �agellum, but also for its operation, is saved.

Energy status Production environments challenge cell factories with an increasing energy de-

mand. In order to assess the energetic capacity of a microbial cell, various physiological param-

eters, such as the ATP/ADP ratio, yield coe�cients quantifying the amount of ATP or amount

of total phosphorylated forms of adenine available per unit of biomass (YATP/X and YAXP/X, re-

spectively), or the adenylate energy charge (AEC), can be calculated. The AEC is preferred over

the ATP/ADP ratio as the parameter re�ecting the energy status of the cells, as it considers the

relative contribution of all three phosphorylated forms of adenine.

Both derivative strains showed a statistically signi�cant increase in all energy parameters at all

growth rates compared to KT2440 (p < 0.01), namely YATP/X (Figure 8.3 a), YAXP/X (Figure C.3)

and AEC (Figure 8.3 b). Especially under fast growth conditions, P. putida EM383 managed to

keep a higher level of intracellular ATP and AEC in contrast to the other two strains: The di�erence

in the ATP content between strain EM383 with respect to both EM329 and KT2440 was more than

doubled (Figure 8.3). These results are fully consistent with the decreased maintenance coe�cient

in the SG strains explained above.
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Figure 8.3.: Summary of energy parameters of P. putida KT2440, EM329 and EM383 in glucose-
limited continuous cultures. Shown are (a) the yield of ATP on biomass (YATP/X), and (b) the adenylate energy
charge (AEC) of the cells at three di�erent growth rates (µ). Bars represent the arithmetic mean of three biological
replicates ± standard deviations.

Summarizing, our characterization of the genome-reduced strains P. putida EM329 and EM383

stresses important physiological advantages for industrial application in terms of biomass yields,

maintenance demands and energy levels over the wild-type KT2440 strain. The results suggest

that saved resources to synthesize cellular components, such as �agella, lead to higher e�ciency

of substrate conversion into biomass, resulting in lower maintenance demands and higher energy

capacity. The lower CO2 production is an additionally interesting trait for bioprocesses depending

on biomass formation. In a next step, we evaluated these potentially advantageous traits in a

heterologous protein production scenario.

8.2. Heterologous protein synthesis in streamlined-genome derivatives

of P. putida KT2440

Growth kinetics, by-product formation and recombinant protein production capacities of the SG

derivatives were compared to the parental strain KT2440 in bench-top reactor batch cultivations

using citrate and glucose as carbon sources. The cultivation on both, a gluconeogenic and a

glycolytic carbon source, allowed a deeper analysis of the properties of these strains under di�erent

metabolic regimes.

Growth parameters In all batch cultivations, regardless of the carbon source used, the derivative

SG strains reached statistically signi�cant higher µmax values than the wild-type KT2440 strain

(Figure 8.4). Using glucose as sole carbon source, µmax increased about 7% and 10% for EM329

and EM383, respectively (Figure 8.4 a, p < 0.05), while growth on citrate resulted in a 4% and

11% faster growth of EM329 and EM383 (Figure 8.4 b, p < 0.05).
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Organic acids formation By-product secretion is an unwanted phenomenon in industrial fer-

mentation, because carbon and cofactors, such as ATP or NADPH, are diverted from the actual

production pathway. Consequently, by-product spillage reduces the production capacity of a mi-

crobial cell factory (Silva et al., 2012). As mentioned in section 8.1, P. putida is known for not

secreting metabolites as by-products at a high concentration. This trait makes P. putida cultiva-

tions preferable over for example E. coli fermentations, where acetate is often found as unwanted

by-product (Wong et al., 2008). However, using glucose as carbon source, P. putida oxidizes parts

of the glucose to gluconate via the glucose dehydrogenase activity in the cell periplasm (del Castillo

et al., 2007). From here, gluconate can leak out into the culture medium and is typically re-used

as substrate at a later stage of the batch cultivation.

We investigated gluconate secretion into the cultivation medium, emphasizing on the comparison

of the SG derivatives with the wild-type strain. Accumulation kinetics of gluconate during batch

cultivation were very similar among all strains �P. putida KT2440, EM329 and EM383�, peak-

ing in the mid-exponential growth phase. However, the gluconate found in the supernatant was

metabolized completely until the end of the exponential phase, where the gluconate concentra-

tion decreased below the detection limit. Comparing the maximum accumulation of the di�erent

strains, the SG derivatives accumulated generally less gluconate than the wild-type: In the cultiva-

tion supernatant of P. putida KT2440, a maximum of 18.5±3.1 mM (ca. 3.5 g L=1) gluconate was

found in contrast to 10.2± 1.4 and 9.3± 1.5 mM in EM329 and EM383 cultivations, respectively.

This signi�cant reduction of glucose oxidation to gluconate (45% and 50% in case of EM329 and

EM383, respectively) suggests, that more carbon is readily available for catabolism.

Recombinant protein production In order to compare the capacity of the strains to produce

recombinant proteins, we transformed all strains with the GFP expression plasmid pS234G. The

wild-type KT2440 was additionally transformed with the empty vector pSEVA234 as a further

control. Introducing the empty vector into KT2440 did not signi�cantly in�uence the growth

behavior (≈ 1.5%). Consequently, a physiological e�ect of transforming the cells with the empty

vector was neglected.

In contrast, expressing gfp from the plasmid pS234G led to a 6% lower µmax of KT2440. The deriva-

tive strains showed a di�erent growth behavior under gfp expression compared to their parental

strain: The growth rate did not decrease signi�cantly under heterologous protein expression con-

ditions. Furthermore, the trend of generally higher maximum growth rates of the SG strains under

normal growth conditions was also mirrored under protein expression conditions (Figure 8.4). This

e�ect was most pronounced when growing EM329/pS234G and EM383/pS234G on citrate as car-

bon source (32% faster µmax, Figure 8.4 b, p < 0.05).

In a next step, we monitored the GFP �uorescence during the cultivation to assess the GFP

production itself. As expected, �uorescence increased exponential during exponential growth of
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Figure 8.4.: Impact of gfp expression on the maximum speci�c growth rates of P. putida KT2440,
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the cells (Figure C.9 and Figure C.10 in appendix C). Notably, the SG strains were capable

of producing signi�cantly more GFP (Figure 8.5a). Using citrate as a carbon source, πmax in-

creased 43% and 48% in P. putida EM329/pS234G and EM383/pS234G compared to P. putida

KT2440/pS234G (p < 0.05). This trend could also be found calculating the GFP production yield

(Figure 8.5b): YGFP/X was 18% and 37% higher in the derivative strains P. putida EM329/pS234G

and EM383/pS234G, respectively, when grown on glucose. Again, this e�ect was strengthened

when the cells were grown on citrate. Here, cells were capable of producing 20% and 41% more

GFP per biomass as compared their parental strain.

Summarizing, the characterization of P. putida EM329/pS234G and EM383/pS234G showed sig-

ni�cantly improved heterologous protein production capacities of the genome-reduced strains in

comparison with the wild-type strain. In addition, the physiological advantages for industrial appli-

cations that were observed under non-producing conditions, such as faster growth, higher biomass

yields and energy levels, could be maintained under production conditions.

Ideally, cell factories should behave predictably, producing the desired product �and only the

desired product� with the expected yield within the expected time frame, while carrying a variety of

arti�cial genetic constructs. The idea of complete predictability goes hand in hand with organisms

containing only the minimal gene set necessary to sustain life. Many genome projects were started

in the mid-1980's in order to identify this minimum number of functions. By now, we learned that

the picture we had in mind was not as simple as we thought. We are still far away from complete

predictable cell behavior � one of the reasons being the lack of knowledge about functionality and

essentiality of a number of genes in a wide variety of environmental conditions. The minimum gene

set of the environmental bacterium P. putida for its survival in soil is most likely not the same
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minimum gene set for e�cient production of heterologous proteins in an industrial cultivation

setup.

The deletion of the �agellar operon in P. putida KT2440, which is obviously necessary for survival

in its natural habitat, resulted in clear physiological advantages in our production scenario. The

surplus of ATP and NADPH (Martínez-García et al., 2014b) was directly or indirectly available

in the heterologous production pathway. Adding the deletion of the proviral load, which enhances

stress tolerance in P. putida KT2440 (Martínez-García et al., 2014a), pronounced the physiological

advantages for growth and production in a bioreactor even more.

The extensive `genomic surgery' project of Blattner and collaborators in E. coli MG1655 enhanced

genetic stability in their multiple deletion strains for hosting and expressing heterologous genes

(Csörgo et al., 2012; Pósfai et al., 2006; Sharma et al., 2007; Umenho�er et al., 2010). However, the

signi�cant reductions of the E. coli MG1655 genome size cannot overcome the retaining genomic

and biochemical framework of a typical enterobacterium (Mizoguchi et al., 2007). Expression

of recombinant genes, or even whole pathways, cause stress and higher ATP and/or NAD(P)H

demands (Na et al., 2010; Nicolaou et al., 2010). These issues were successfully improved in the

derivative P. putida strain, exploiting and improving the natural capabilities of the soil bacterium

P. putida . Clearly, the side-by-side comparison of streamlined P. putida and E. coli as microbial

cell factories is beyond the scope of this work. But, our results show doubtlessly the potential of

derivative strains of P. putida as production host: The strains outcompeted the wild-type P. putida

KT2440 strain in all biotechnologically relevant parameters that were analyzed in this study.
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CHAPTER 9

CONCLUSIONS AND PERSPECTIVES

This chapter summarizes the results of this thesis on the basis of the work packages formulated in

chapter 1. Furthermore, it gives conclusions to the scienti�c questions raised and points out future

perspectives.

The cell cycle as origin of population dynamics In the �rst part of the thesis we investigated

the role of the cell cycle as an origin of population heterogeneity in dependence on the growth rate.

A number of cell performances, including product synthesis, are assumed to occur in dependency

of the cell cycle phase and therefore, heterogeneity resulting from cell cycling could ultimately lead

to performance loss in production processes (Jandt et al., 2014).

Proteins de�ne the cell's functionality and the abundance of proteins re�ect cell decisions. In order

to detect population heterogeneity as a consequence of cell cycling, we quanti�ed the dependency of

the protein inventory of cells on di�erent cell cycle phases under slow and fast growth conditions.

Chemostat cultivations were successfully set-up as the cultivation system of choice to ensure con-

stant growth conditions and to clearly separate the impact of the cell cycle on population hetero-

geneity from any interfering, overlaying or amplifying parameter as good as possible.

Investigating subpopulations at di�erent cell cycle stages, the parameter `DNA content', assessed

by �ow cytometry, showed the strongest di�erence between single cells within the population and

allowed to quantify the subpopulations and to directly link them to a cell cycle phase. Based

on their DNA content, subpopulations that (i) just divided, but did not start replication yet, (ii)

�nished replication, but did not divide yet and (iii) carried out multifork replication were sorted

via �uorescence activated cell sorting and the `sub-proteome' of the subpopulations was assessed

using label free mass spectrometry (UfZ Leipzig).
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Summarizing, the protein inventory of a cell was highly similar and therefore independent of the

cell cycle phase, regardless of the growth rate investigated. The hypothesis that cells in di�erent

cell cycle stages specialize into e.g. carbon storage or protein production/growth, especially in

B- and pre-D phases, could not be supported. This result is remarkable, as it gives rise to the

assumption that the cell cycle itself has a minor impact on population heterogeneity on the level

of proteome under the conditions tested.

Comparing the e�ect of the cell cycle phase and the growth rate on the cellular protein composition,

the growth rate played a superior role in determining the functional diversity of cells within a

population. Interestingly, no higher abundance of proteins related to energy or carbon metabolism

could be detected in dependence on the growth rate. Therefore, we assume that higher speci�c

glucose uptake rates at fast growth were only accompanied by higher absolute protein quantity,

resulting in no change of the relative quantity of proteins in these metabolic pathways.

As an extension of this study, it would be interesting to investigate the subpopulation proteome of a

P. putida KT2440 strain that produces the green �uorescent protein GFP heterologously. In order

to prevent biased heterogeneity information due to variability in plasmid copy numbers, it would

be important to construct a strain with a genomic gfp insertion. Applying the same experimental

work�ow as presented here, the cell sorting strategy based on `DNA content' could be extended by

`GFP �uorescence' and therefore, would give another layer of information on cell physiology under

production conditions in direct comparison with the results obtained in this study.

The environmental condition as origin of population dynamics Stress-shift chemostats were

combined with mathematical modeling to investigate the impact of industrial relevant stress con-

ditions on population heterogeneity. Oxygen deprivation, decreased iron availability and solvent

exposure were chosen as representative stress conditions occurring in industrial cultivations. The

stress-shift chemostat set up at a constant growth rate was developed and tested for the di�erent

stresses and successfully carried out in biological triplicates with a variation of less than 7%.

We quanti�ed the subpopulations that arose under stress conditions via �ow cytometry. The distri-

bution of cells with di�erent DNA content was clearly altered between the non-stressed reference

and the stress condition. To be able to translate this observation into a quanti�able biological

impact of stress on the population, a mathematical framework that correlates DNA content distri-

butions to cell cycle phase durations was chosen.

The mathematical framework (Cooper et al., 1968; Skarstad et al., 1985) was implemented into

MATLAB and the duration of the cell cycle phases C, D and B was successfully calculated. The sim-

ulated best-�t DNA histograms were highly similar to the experimentally derived DNA histograms,

con�rming that the mathematical model is also valid to use for P. putida KT2440 research.
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Furthermore, the standard deviation of the cell cycle phase duration in biological triplicates was less

than 5%, showing that the combination of chemostat cultivations, �ow cytometry and modeling

is a reliable and reproducible tool for the investigation of cell cycle phases.

Under non-stressed conditions, we found not only similar growth rate dependencies of the cell cycle

phases C and D comparing P. putida KT2440 with previously published data of E. coli B/r strains

(Helmstetter, 1996), but also highly similar maximum replication rates. We hypothesize that these

bacteria might share common principles of the replication machinery which ultimately lead to the

observation of similar maximum replication rates.

Under stress conditions, the cells altered their cell cycle substantially. Cells spent more time

in cell phases between division and start of replication (B phase) and between completion of

replication until division (pre-D / D phase), while the duration of replication itself (C phase) was

shortened. Consequently, the replication rate was accelerated. This phenomenon was enforced

with the severity of the stress imposed (up to 1.9 fold).

In order to shed light on the mechanism of replication speed up, we compared RNA levels of genes

annotated in the functional group `replication, recombination and repair' at standard conditions

with decanol stress conditions (`whole transcriptome shotgun sequencing'). Genes associated with

DNA replication and repair were signi�cantly upregulated under stress conditions (average log2 FC

0.98). Therefore, increased resources of replication machinery related proteins could be a reason

for the speed up of replication.

Regardless of the biological implications or exact mechanistic understanding, we found that fast

replication of the genetic information is of utmost priority under stress conditions. We hypothesize

that the higher expression of genes involved in DNA replication hints towards an actively regulated

acceleration of DNA replication under the environmental stress conditions tested. The biological

reason behind replication speed up as a survival response of P. putida KT2440 remains unclear.

Cells may try to circumvent environmental stress by repairing stress-induced errors in DNA as good

as possible and allowing recombination events to happen at a higher frequency, which may result

in a quicker evolutionary adaptation capacity of the population. However, a balanced altering of

not only B and pre-D phase, but also of the replication phase C itself, is the basis for a cellular

strategy to cope with stress and maintaining a constant growth rate.

We showed that a combination of carefully designed experiments and mathematical modeling gives

important mechanistic insights into the origin of population heterogeneity. This work is a valuable

contribution to model and predict realistic population behavior: Future implementation of this

mechanistic model into structured and segregated approaches, such as population balance equation

models (refer to chapter 4), will certainly shed light on the dynamic emergence of subpopulations

under industrially relevant cultivation conditions.



72 9. Conclusions and perspectives

With advancing single cell analytics, especially in combination with systems level 'omics technolo-

gies, the research community will get step by step closer to decipher population heterogeneity.

The transcriptome analysis carried out in chapter 7 allowed to gain insights into transcriptional

upregulation of the replication machinery under stressful conditions. Considering the shortened

replication time under stress, it would be intriguing to see, if overexpression of the respective genes

could lead to a shortened replication time also under non-stressed conditions, therefore, possi-

bly leading to shorter generation times of the organism �an interesting trait for biotechnological

application.

Combined assessment of transcriptome data and the proteome of subpopulations �allowing im-

plications on the actual physiological status of the cells� will lead to an even more comprehen-

sive understanding of the physiology of Pseudomonas and its population behavior. Thereby, not

only information on how to incorporate heterogeneity into the design and optimization of robust

biotechnological processes, but also systems-guided optimization strategies for a robust microbial

cell factory itself will be gained.

Optimizing P. putida as microbial cell factory by streamlining the genome We set up controlled

batch and chemostat cultivations in order to evaluate the worth of two genome reduced P. putida

strains as microbial cell factories in comparison to their parental strain KT2440. The �rst strain, P.

putida EM329, lacked genes of the �agella machinery (Martínez-García et al., 2014b), while the sec-

ond strain, P. putida EM383, carried further mutations regarding its prophages (Martínez-García

et al., submitted 2014). Biological triplicate cultivations for every strain under each cultivation

condition were successfully carried out with an averaged biological variation of less than 6%.

The streamlined-genome (SG) strains outcompeted the parental strain in all industrially relevant

physiological parameters that were investigated, P. putida EM383 being superior or equal to P.

putida EM329. Targeted genome reduction a�ected the physiology of the strain in favor of 'most

wanted' traits in industry: the maintenance demand decreased 35%, accompanied by higher con-

version of substrate into biomass, especially re�ected at low growth rates (12% increase of YX/S

in EM383). Consequently, also the CO2 production rate decreased (16%, averaged over all growth

rates, in EM383) �a valuable side e�ect for industrial application. Furthermore, the energy ca-

pacity of the SG strains improved: The energy charge and the ATP content per biomass YATP/X

increased at all growth rates. Outstandingly and in contrast to the parental strain, EM383 man-

aged to keep its energy level high at fast growth rates, resulting at a doubled YATP/X under these

growth conditions compared to KT2440.

Secondly, we assessed the potential of streamlining the genome as a strategy to optimize the

heterologous protein production capacity of the cell factory. All strains were transformed with

the gfp expression plasmid pS234G. KT2440 was additionally transformed with the empty vector

pSEVA234. While the introduction of the empty vector resulted in no signi�cant changes of
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growth physiology, the expression of gfp caused a signi�cant decrease of maximal growth rate

µmax in the wild-type strain. On the contrary, the SG strains were less a�ected by the burden of

heterologous protein production and even a maximum increase of 41% of GFP per biomass could

be achieved in EM383. Obviously, streamlining the genome of P. putida KT2440 and deleting

cellular components, such as �agella, resulted in physiological advantages for industrial application

purposes. Saved resources from the production, assembly and motion of the �agella resulted in a

direct surplus of ATP and NADPH (Martínez-García et al., 2014b). We assume that the saved

resources led to a higher substrate-to-biomass conversion e�ciency and could have been channeled

into heterologous protein production.

We showed that targeted streamlining of the genome can be successfully used to optimize the energy

household and production capacity of microbial cell factories. The derivative strains highlighted

the potential of P. putida strains as production hosts. In general, we promote the non-pathogenic

P. putida KT2440 as an optimal choice as a production platform. The strain unites important

characteristics for biotechnological application: a high level of stress robustness, metabolic diversity,

a relative ease of genetic manipulation and a GRAS status (generally regarded as safe). While our

results promote the streamlined genome P. putida EM329 and EM383 strains as individually sound

production hosts, they also constitute a promising basis for further insights on the minimal gene

set needed to maintain cell �tness and robustness and will enhance the art of tailoring production

hosts for industrial needs.

Finally, a combination of targeted genome reduction and classical process parameter optimization

will certainly enhance the overall production performance of P. putida strains in diverse biotech-

nological applications.
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APPENDICES

A. Manuscript I

Population heterogeneity occurring in industrial microbial bioprocesses is regarded as a putative

e�ector causing performance loss in large scale. While the existence of subpopulations is a com-

monly accepted fact, their appearance and impact on process performance still remains rather

unclear. During cell cycling, distinct subpopulations di�ering in cell division state and DNA con-

tent appear which contribute individually to the e�ciency of the bioprocess. To identify stressed or

impaired subpopulations, we analyzed the interplay of growth rate, cell cycle and phenotypic pro�le

of subpopulations by using �ow cytometry and cell sorting in conjunction with mass spectrometry

based global proteomics. Adjusting distinct growth rates in chemostats with the model strain P.

putida KT2440, cells were di�erentiated by DNA content re�ecting di�erent cell cycle stages. The

proteome of separated subpopulations at given growths rates was found to be highly similar, while

di�erent growth rates caused major changes of the protein inventory with respect to e.g. carbon

storage, motility, lipid metabolism and the translational machinery. In conclusion, cells in various

cell cycle stages at the same growth rate were found to have similar to identical proteome pro�les

showing no signi�cant population heterogeneity on the proteome level. In contrast, the growth

rate clearly determines the protein composition and therefore the metabolic strategy of the cells.

This chapter has been published as: Sarah Lieder, Michael Jahn, Jana Seifert, Martin von Bergen,
Susann Müller, Ralf Takors (2014) Subpopulation-proteomics reveal growth rate, but not cell cycling, as a
major impact on protein composition in Pseudomonas putida KT2440. Applied Microbiology and Biotechnology

Express 4:71
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Figure A.1.: Schematic overview of the bacterial cell cycle. The bacterial cell cycle can be divided into B,
C, pre-D and D phases constituting a de�ned order within one generation time. Under unlimited growth conditions,
some bacterial species are capable of accelerating proliferation by uncoupling DNA synthesis from division. As a
result, a new round of DNA replication is initiated before the completion of the previous round (Cooper, 1991;
Müller et al., 2010).

A.1. Introduction

Commonly applied assumptions consider microbial populations in bioreactors as uniform, thus lev-

eling individual properties of subpopulations to averages. However, it is increasingly accepted that

clonal microbial cultures comprise individuals that are not identical, di�ering in terms of DNA

content and cell physiology (Brehm-Stecher et al., 2004; Delvigne et al., 2014). Heterogeneity of

clonal microbial cultures may result from several distinct sources, either from internal biological

origins, such as mutations, cell cycle decisions and age distribution, or from `external' technical

factors (Avery, 2006; Müller et al., 2010). Notably, external factors interact with biological prop-

erties, yielding the superimposition of both impacts in the population. Here, we shed light on the

impact of two key players in the origin of population heterogeneity, the growth rate and the cell

cycle.

Traditionally, the cell cycle is suggested to play a role in the development of population hetero-

geneity within clonal populations (Müller et al., 2010). A short summary of the sequence of cell

cycle phases can be found in Figure A.1. The bacterial cell cycle was described for Escherichia coli

comprising the B-Phase, which is de�ned as the time between division and start of replication, the

replication phase (C-Phase), the pre-D-Phase (an interphase between the C-and D-Phase) and the

division phase (D-Phase) (Cooper, 1991; Müller et al., 2003). Furthermore, under optimal growth
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conditions accelerated proliferation (also called `multifork DNA-replication') can be monitored:

new rounds of DNA replication may be initiated before a previous round is completed, putatively

providing another source of heterogeneity (Bley, 1990; Müller, 2007).

It is suspected, that product-biosynthesis of biotechnological interesting compounds occurs in de-

pendency of the cell cycle, e.g. only within the stochastic B- and pre-D-phases, when cells are

neither replicating nor dividing (Müller et al., 2010). Ackermann et al. (1995) described for

Methylobacterium rhodesianum that products like polyhydroxyalkanoates (PHAs) accumulate only

when cells comprise a certain chromosome number. This phenomenon was found to occur at o�-

cell-cycling stages. In microbial biotechnology, heterogeneity caused by cell cycling may cause

ine�ciently producing subpopulations and could have signi�cant impact on the overall process

performance (Lencastre Fernandes et al., 2011). Here, we aim to investigate if the protein inven-

tory of a cell, which is related to its metabolic activity, is dependent on cell cycle stages and how

growth rates may in�uence both, protein composition and cell cycling.

P. putida KT2440 was used as a model organism owing to its numerous qualities as an expression

host, such as safety (Bagdasarian et al., 1981; Nakazawa et al., 1973), fast growth, a fully sequenced

genome (Nelson et al., 2002) and high stress tolerance (dos Santos et al., 2004). Together with

simple nutrient demand, the potential to regenerate redox cofactors at a high rate (Blank et al.,

2008) and its amenability to genetic manipulation, P. putida is an ideal host for heterologous gene

expression (Meijnen et al., 2008). With the advance of genome-wide pathway modeling (Puchaªka

et al., 2008) and `omics techniques, the way for systems-wide engineering strategies was paved to

turn P. putida into a �exible cell factory chassis (Yuste et al., 2006). Consequently, P. putida

is more and more explored and already successfully used for numerous industrial applications

(Poblete-Castro et al., 2012; Puchaªka et al., 2008).

In our study, we applied continuous cultivations under controlled growth conditions at de�ned

growth rates. While (fed-) batch approaches are characterized by steadily changing environmental

conditions such as media composition, steady-state modes of a chemostat, where cells are cultivated

with a pre-installed growth rate, are de�ned by environmental conditions that remain unchanged

(Carlquist et al., 2012). Notably, (fed-) batch cultures usually represent a mixture of cells growing

with di�erent speed as a consequence of changing cultivating conditions (Unthan et al., 2014).

Investigating a wide spectrum of growth rates with chemostat cultivation and sampling at steady

state conditions gave a speci�c and unmasked view on the in�uence of the growth rate on population

characteristics. Features like DNA content of the cells, protein composition and adenylate energy

charge measurements were included in the study. Additionally, subpopulations with di�erent DNA

content were sorted at growth rates 0.1 h−1, 0.2 h−1 and 0.7 h−1 and analyzed for their proteome

composition. Summarizing, we investigated if cell cycling subpopulations at the same growth

rate were independent and di�erent from each other on the level of the metabolic pathways, e.g.

whether slow growing cells with longer cell cycling phases might specialize between proliferation
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and production phases. In addition, we wanted to clarify if cells invest into di�erent protein species

under rising growth rates.

A.2. Materials and Methods

Bacterial strains and cultivation conditions

Chemicals were purchased from Fluka, St. Gallen, Switzerland. Experiments were performed

with P. putida KT2440 (ATCC 47054) cells originating from a single colony stored in a working

cell bank at =70 ◦C. Cells were cultivated in M12 minimal salt medium containing 2.2 g L=1

(NH4)2SO4, 0.4 g L=1 MgSO4 · 7H2O, 0.04 g L
=1 CaCl2 · H2O, 0.02 g L

=1 NaCl, 2 g L=1 KH2PO4

and trace elements (2mgL=1 ZnSO4 ·H2O, 1mgL=1 MnCl2 · 4H2O, 15mgL=1 Na3-citrate · 2H2O,

1mgL=1 CuSO4 ·5H2O, 0.02mgL=1 NiCl2 ·6H2O, 0.03mgL=1 NaMoO4 ·2H2O, 0.3mgL=1 H3BO3,

10mgL=1 FeSO4 · 7H2O).

A shake �ask preculture (150mL) was started from a minimal medium working cell bank (8.5mL)

with a glucose concentration of 5 g L=1. At mid-exponential growth phase, the preculture was used

to inoculate the bioreactor (KLF 3.7 L, Ser. No. 10819, Bioengineering AG, Wald, Switzerland)

to reach a �nal working volume of 1.5 L. Before inoculation, the cultivation conditions were set to

30 ◦C, a stirrer speed of 700 rpm, a pressure of 0.5 bar and an aeration of 2 Lmin−1 sterile �ltered

ambient air. The pH was set and maintained at pH 7 with 25% (v/v) NH4OH. Exhaust gas

composition (Blue Sense CO2 and O2, (DCP-CO2 DCP-O2, Blue Sense gas sensor GmbH, Herten,

Germany), dissolved oxygen and pH in the liquid phase (Ingold, Mettler Toledo GmbH, Giessen,

Germany) were monitored online. After glucose depletion, the batch cultivation was continued as

a chemostat. At steady state conditions, the dilution rate equals the speci�c growth rate µ in a

chemostat set up. Each steady state dilution rate (and therefore growth rate) and environmental

condition was kept for 5 residence times. The dilution rate was adjusted by feeding at a de�ned

�ow rate. Weight gain of the reactor was monitored and a harvest pump was started at a weight

gain of 10 g. Additionally, the dilution rate was checked manually by measuring the mass of the

harvest out�ow within a timespan of one hour before sampling. Steady state was evaluated online

via exhaust air analysis. Chemostat cultivations were performed in three individual biological

replicates.

Determination of the adenylate energy charge

The adenylate energy charge (AEC) value mirrors the cellular energy status (Atkinson et al., 1967)

and can be assessed as follows: Biocatalytic reactions inside the cells were stopped with 35% (w/v)

HClO4. 4mL biosuspension was taken directly into 1mL of precooled (=20 ◦C) HClO4 solution on

ice and mixed immediately (Theobald et al., 1997). The sample was shaken at 4 ◦C for 15min in an
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overhead rotation shaker. Afterwards, the solution was neutralized on ice by fast addition of 1mL

1 M K2HPO4 and 0.9mL 5 M KOH (Buchholz et al., 2001). The neutral solution was centrifuged

at 4 ◦C and 4,000 x g for 10min to remove cell debris, precipitated protein and potassium perchlo-

rate. The supernatant was kept at =20 ◦C for batch high pressure liquid chromatography (HPLC)

measurements. At each sampling time, the biosuspension sample and a �ltrated sample without

cells was treated according to the above described procedure. Nucleotide analysis was performed

by reversed phase ion pair HPLC (Theobald et al., 1997). The HPLC system (Agilent Technolo-

gies, Waldbronn, Germany) consisted of an Agilent 1200 series autosampler, an Agilent 1200 series

Binary Pump SL, an Agilent 1200 series thermostated column compartment, and an Agilent 1200

series diode array detector set at 260 and 340 nm. The nucleotides were separated and quanti�ed

on an RP-C-18 column that was combined with a guard column (Supelcosil LC-18-T; 15 cm x

4.6 mm, 3 µm packing and Supelguard LC-18-T replacement cartridges, 2 cm; Supelco, Bellefonte,

USA) at a �ow rate of 1 ml/min. A gradient elution method (Cserjan-Puschmann et al., 1999)

was adapted and performed with two mobile phases, bu�er A (0.1 M KH2PO4/K2HPO4, with 4

mM tetrabutylammonium sulfate and 0.5% (v/v) methanol, pH 6.0) and (ii) solvent B (70% (v/v)

bu�er A and 30% (v/v) methanol, pH 7.2). The following gradient programs were implemented:

100% (v/v) bu�er A from 0min to 3.5min, increased to 100% (v/v) B until 43.5min, remaining

at 100% (v/v) B until 51min, decreased to 100% (v/v) A until 56min and remaining at 100%

(v/v) A until 66min.

The AEC is calculated according to Atkinson et al. (1967):

AEC = ([ATP ] + 0.5 · [ADP ])/([AMP ] + [ADP ] + [ATP ])

Sample preparation and staining for flow Cytometry

Samples for �ow cytometry were washed with PBS, resuspended in cryo-protective solution (15%

(v/v) Glycerol in PBS according to Jahn et al. (2013)) and stored at =20 ◦C. Deep-frozen cell

samples were thawed on ice and centrifuged for 2min min at 8,000 x g and 4 ◦C to remove the

cryo-protective solution. The supernatant was discarded, the cells were resuspended in ice cold

PBS and adjusted to an optical density of OD600nm = 0.05 in 2mL volume. For DNA staining, the

cells were centrifuged, taken up in 1mL permeabilization bu�er (0.1 M citric acid, 5 g L=1 Tween

20), incubated for 10min on ice, centrifuged again and the supernatant was removed. Finally,

cells were resuspended in 2mL ice cold staining bu�er (0.68 µM DAPI, 0.1 M Na2HPO4), �ltered

through a Partec CellTrics mesh (Partec, Germany) with 30 µm pore size and stored on ice until

analysis.
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Flow cytometry and cell sorting

Flow cytometry was performed on biological duplicates. For each biological replicate two technical

replicates were investigated using a MoFlo cell sorter (Beckman-Coulter, USA) as described before

(Jahn et al., 2012; Jehmlich et al., 2010). Forward scatter (FSC) and side scatter signals (SSC)

were acquired using blue laser excitation (488 nm, 400 mW) and a bandpass �lter of 488/10 nm

together with a neutral density �lter of 2.0 for emission. The DAPI �uorescence was recorded

using a multi-line UV laser for excitation (333-365 nm, 100 mW) and a bandpass �lter of 450± 30

nm for emission. Cells were sorted at the most accurate mode (single cell, one drop) with a sorting

speed of 4,000 s−1 and a sample chamber cooled to 4 ◦C. For cell sorting a total number of 5 x 106

cells per replicate was directly sorted on a �lter well plate (LoProdyneTM membrane with 0.45µm

pore size, Nunc, Germany) and the residual bu�er was constantly drawn o� by an exhaust pump.

After sorting, the �lter membrane was washed three times with 200 µL PBS, air dried and stored

at =20 ◦C for further analysis.

Identification of proteins by LC-MS-MS

For quantitative proteomics, the �lter membrane was cut into smaller pieces and treated by trypsin

for whole cell proteolytic digestion as described in Jahn et al. (2013). The obtained peptide

solution was puri�ed using the ZipTip protocol (Millipore, USA), dried in a vacuum concentrator

at 30 ◦C and �nally taken up in 20 µL 0.1% (w/v) formic acid. The solution was separated by

nano-ultra performance liquid chromatography and measured by an LTQ Orbitrap XL (Thermo

Fisher Scienti�c, Germany) as described in Jahn et al. (2013).

Data analysis

Mass spectra were analyzed by MaxQuant v1.2.2.5 (Cox et al., 2008) for protein identi�cation and

label-free quanti�cation with the genome database of P. putida KT2440 and the settings given in

Jahn et al. (2013). The label-free quanti�cation (LFQ) values were used for further data analysis

and can be found in the supplementary dataset 1 (section A.6 `Supplemental material'). The

mean, standard deviation and relative quantity of replicates in relation to the reference population

(RP, µ = 0.2 h−1 , mean of two biological replicates) was calculated. The RP was sorted in order

to exclude in�uences of the sorting procedure on the proteomic content. Unsorted cells of the

0.2 h=1 grown population were used as an una�ected control population (CP). Student's t-test was

performed for signi�cance testing (p < 0.05) of single proteins. Proteins were annotated using

COG (clusters of orthologous groups) (Tatusov et al., 1997) and clustered in two hierarchical

levels of metabolic pathways (`metabolism', `pathway'). Protein clusters were tested for signi�cant

changes using the R Bioconductor (www.bioconductor.org) packages GAGE (Luo et al., 2009)
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Figure A.2.: Summary of the physiological state of the average population. The speci�c glucose uptake
rate (qS, gGLCgCDWh−1, black bars), the adenylate energy charge (AEC, dark grey bars) and the biomass yield
(YX/S, gCDWgGLC, light grey bars) were measured at steady state conditions for di�erent growth rates µ (h=1). The
growth rate was stepwise increased until a wash-out of the cells was monitored. Concentrations of cell dry weight
(CDW), glucose (GLC) and the AEC were measured o�ine, sampling after 5 residence times of one speci�c growth
rate (0.1 ≤ µ(h−1) ≤ 0.7). Error bars show the standard deviation between three biological replicate cultivations.

and GlobalTest (Goeman et al., 2004), setting p < 0.05 and a relative fold change (FC) of 1.5

(log2FC = 0.58) as thresholds. Hierarchical groups were visualized using a color-coded circular

treemap (Jahn et al., 2012).

A.3. Results

Subpopulation dynamics of P. putida KT2440 were analyzed in a wide range from slow growth

rates starting at µ = 0.1 h−1 to high growth rates of up to µ = 0.7 h−1. At growth rates higher

than µ = 0.7 h−1, wash out of the culture was observed, meaning that the maximal growth rate was

exceeded and cells could not reproduce fast enough to keep the population density constant. For

this reason, µ = 0.7 h−1 was the highest growth rate investigated in this study. The physiological

and the energetic state of the averaged cell population was analyzed by biomass/substrate yield

(YX/S), biomass speci�c substrate uptake rates (qS), and adenylate energy charge measurements

(AEC), each measured at steady state growth conditions (Figure A.2). Observed stable carbon

dioxide emission rates served as the criterion to qualify the achievement of steady-state cultivation

conditions.

The yield of biomass on glucose increased gradually by 10% from µ = 0.1 h−1 to µ = 0.5 h−1.

Further rise of the growth rate resulted in yield reductions, returning to the level at µ = 0.1 h−1
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Figure A.3.: Dot plots of DNA content (DAPI, in arbitrary �uorescence units (A.F.U.)) versus
forward scatter (FSC, in A.F.U.) at di�erent growth rates 0.1 h=1, 0.2 h=1 and 0.7 h=1. The dataset of
the biological replicate can be found in section A.6 `Supplementary material' (Figure A.6). The DNA content and
the forward scatter increased with increasing growth rate. The indicated gates (C1, C2, Cx) were used for sorting
5x106 cells per subpopulation for further mass spectrometric analysis.

(=10%). The energetic capacity of the cells can be estimated via AEC, taking the relative contri-

bution of all three phosphorylated forms of adenine into account. The AEC was found to be stable

with increasing growth rate until µ = 0.4 h−1. Further increasing the growth rate resulted in a

reduction of the AEC level by =18% (p-value < 0.01) which was almost the same at maximum

growth. The speci�c glucose uptake rate qs was increasing linearly with increasing growth rate.

To be able to distinguish between subpopulations, �ow cytometry was proven to be a suitable tool

shedding light on the dynamics of single cells within a heterogeneous microbial population (Cooper,

1991; Müller et al., 2003; Shapiro, 2000; Skarstad et al., 1985). Here, the DNA content was

monitored via �ow cytometry in addition to forward scattering (FSC) giving relative information

about cell size (Müller et al., 2010) (Figure A.3). The dataset of the biological replicate can be

found in section A.6 `Supplementary material' (Figure A.6). The subpopulation analysis revealed

that the major di�erential parameter was the alteration of DNA content as distinguished by �ow

cytometry. Three subpopulations could be identi�ed in total: cells containing a single chromosome

equivalent (C1), two chromosome equivalents (C2) and cells with more than two chromosome

equivalents (Cx) (Figure A.3). Population composition with respect to DNA content varied clearly

as a function of growth rates. At µ = 0.1 h−1, 82.0± 0.3% of cells contained a single chromosome

equivalent, while only 18.0± 0.2% contained a double chromosome equivalent content. No Cx

subpopulation could be detected. On the contrary, at the high growth rate of µ = 0.7 h−1 only

1.4± 0.8% of cells belonged to the C1 subpopulation, 16.1± 0.1% of cells contained a double

chromosome content and 82.5± 1.0% more than double.

To investigate whether subpopulations with di�erent DNA content show physiological di�erences

as well, we sorted the cell population at three growth rates (0.1 h=1, 0.2 h=1 and 0.7 h=1) into

subpopulations containing single (C1), double (C2) or more than double chromosome content (Cx)
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aiming to analyze their proteome pro�le as the basis of their phenotype. In total, 677 unique

proteins could be detected. 351 proteins were found in at least one replicate of all subpopulations

and 245 proteins were found across all replicates. 707 di�erent functions of 647 unique proteins

were annotated using the database of clusters of orthologous groups (COG) (Tatusov et al., 1997)

(see Figure A.7 in section A.6 `Supplementary material'). 95.2% of the control population (CP)

proteome could be found in the reference population (RP) proteome without signi�cant changes,

indicating only a small in�uence of cell sorting on protein recovery and con�rming the quality of

the analysis.

Signi�cant changes in protein quantity were de�ned by exceeding a threshold of more than 1.5

fold change (FC) in combination with a p-value < 0.05 (Student's t-test). Changes in metabolic

pathways were detected using GAGE and GlobalTest gene set analysis (Luo et al., 2009; Goeman

et al., 2004) applying the same signi�cance �lter as for the individual proteins. As a result, at

any given growth rate, the proteomic patterns of the subpopulations did not di�er signi�cantly

from each other (Figure A.4a). When looking at single proteins, only three were detected that

comprised signi�cantly di�erent levels between subpopulations at growth rate µ = 0.1 h−1 and

µ = 0.7 h−1, respectively. The abundance of cell division protein FtsZ was found to be 3.6 fold

lower in subpopulation C1 in contrast to C2. FtsZ is a bacterial tubulin homologue self-assembling

into a ring at mid-cell level and localizing the bacterial divisome machinery (Adams et al., 2009;

Weart et al., 2007). The two other proteins were the molecular chaperone GroEL (FC 1.7) and a P-

47-like protein (PP_2007, FC 2.4). Also at high growth rate of µ = 0.7 h−1, only three proteins, the

translocation protein TolB (FC 1.8), the NADH dehydrogenase subunit G (PP_4124, FC 1.51)

and a succinyldiaminopimelate transaminase (PP_1588, FC 0.26) showed signi�cant di�erences

between the subpopulations C2 and Cx. Surprisingly, no changes in metabolic pathways could be

found between subpopulations at any given growth rate.

Comparing the subpopulations of di�erent growth rates with RP, biologically signi�cant di�erences

were detectable as tested by gene set analysis (GAGE (Luo et al., 2009)) and Globaltest (Goeman

et al., 2004)) (Figure A.4b and c). At µ = 0.1 h−1, subpopulations C1 and C2 showed higher

abundance of proteins related to `cell motility', and proteins involved in `cell cycle control, cell

division and chromosome partitioning' (cell cycle) were additionally highly abundant in subpop-

ulation C2. Apart from COG annotated pathways, several proteins connected to carbon storage

were found to be signi�cantly changed (Figure A.5). Mirroring low qS at slow growth compared

to moderate growth, four main signaling proteins in chemotaxis (CheA, CheB, CheW, CheV) as

well as 6 methyl accepting chemotaxis transducers were signi�cantly increased. Furthermore, the

low abundance of glycogen synthesis proteins (GlgA, Pgm) and the high abundance of glycogen

hydrolysis proteins (GlgX, GlgP) could be seen together with an increase of proteins involved in

PHA production (PhaA, PhaC).

In contrast, subpopulations C2 and Cx of fast growing cells (µ = 0.7 h−1) revealed higher presence
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Figure A.4.: Circular treemaps visualizing di�erentially expressed functional protein categories.
Proteins detected by mass spectrometry were clustered according to their pathway annotation in COG covering
two levels of speci�city (Tatusov et al., 1997). The size of a sector is proportional to the number of proteins found
in one speci�c pathway in relation to the total protein number. The color code represents the log2 mean fold
change (log2 FC) of protein quantity in one pathway. The color blue codes for an underrepresentation, red for an
overrepresentation of the proteins in a pathway compared to the reference population (RP, µ = 0.2 h−1). Pathways
with a fold change in the range log2FC < −0.58 and log2FC > 0.58 are labeled with the respective pathway name.
Pathways that were signi�cantly changed using GAGE (Luo et al., 2009) and Globaltest (Goeman et al., 2004) gene
set analysis are additionally marked (*). A. Comparison of the subpopulations C1/C2 and C2/Cx at growth rates
0.1 h=1 and 0.7 h=1. B. Comparison of the subpopulations C1 and C2 at µ = 0.1 h−1 with RP. C. Comparison of
the subpopulations C2 and Cx at µ = 0.7 h−1 with RP.
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Figure A.5.: Heatmaps of metabolic pathways of special interest. The log2-fold changes of annotated
proteins are visualized ranging from blue (low abundance) to red (high abundance). A detailed annotation of the
protein names can be found in the supplementary material, additional �le 1. One line of the heatmap represents
the di�erent subpopulations (C1, C2 and Cx) at di�erent growth rates (µ = 0.1 h−1, µ = 0.7 h−1). Proteins of the
speci�c pathways are shown column-wise.

of proteins grouped in the pathway `Translation, ribosomal structure and biogenesis' (Transla-

tion), while proteins of `Signal transduction mechanisms' (Signaling) and `Lipid transport and

metabolism' (Lipids), were signi�cantly underrepresented. The faster growth was re�ected in pro-

teins related to translation and therefore protein production. Here, 11 tRNA synthetases and 25

ribosomal proteins showed signi�cantly higher abundance. In lipid metabolism, mostly enzymes

of beta-oxidation were found in lower presence at fast growth (Figure A.5). The supposed down

regulation of the `Cell Cycle' (C2 versus Cx) was mainly due to the single protein change of the

poorly characterized PP_3128.

In summary, the proteome of cells di�ering in DNA content but of identical growth rate was highly

similar, whereas the proteome of cells cultivated at di�erent growth rates was signi�cantly diverging

in particular pathways.
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A.4. Discussion

Considering the in�uence of di�erent growth rates on the population, proteome analysis revealed

that slow growth triggered starvation response, while fast growing cells revealed accelerated protein

synthesis and alleviated stress physiology. In slowly growing cells, proteins connected to PHA

synthesis and glycerol hydrolysis were ampli�ed, indicating higher PHA carbon storage activity.

Additionally, these cells showed protein patterns anticipating increased motility and chemotaxis

response. Notably, low qS values of slowly growing cells (µ = 0.1 h−1) were not re�ected on the

energetic state of the population. AEC values did not di�er signi�cantly between slow and moderate

growth rates of 0.1 h=1 and 0.4 h=1, respectively. Chemotaxis and cellular motility as a response

to carbon-poor conditions are well-known phenomena in natural environments (Harshey, 2003;

Soutourina et al., 2003). Our observations in slowly growing cells are in agreement with �ndings

of transcriptome studies in `average populations' of other species. For instance, studies in E. coli

showed higher expression of genes involved in motility at slower growth rates in direct comparison

to faster growth conditions (Nahku et al., 2010) and studies in Saccharomyces cerevisiae showed

signi�cant ampli�cation of carbon storage metabolism at slow growth (François et al., 2001).

Fast growing cells were obviously investing resources in proteins involved or related to the trans-

lation machinery. Multiple ribosomal proteins as well as tRNA synthetases were highly abundant

fostering protein/biomass production (Figure A.5). This �nding is also in agreement with observa-

tions in eukaryotes like S. cerevisiae (Rebnegger et al., 2014) and prokaryotes such as Salmonella

typhimurium (Schaechter et al., 1958). Additionally, proteins of typical carbon storage pathways

e.g. PHA synthesis were less abundant in P. putida KT2440. Proteins of lipid biosynthesis, es-

pecially involved in beta oxidation were also lowered in fast growing cells compared to RP. This

observation is in agreement with the lower abundance of the PHA synthesis proteins, as the beta

oxidation provides precursors (Aldor et al., 2003).

To our surprise, the almost 6.5-fold increase of the speci�c glucose uptake rate with increasing

growth rate (Figure A.2), was not mirrored by major changes among proteins involved in carbo-

hydrate and energy metabolism.

Notably, relative changes of protein quantity can be elucidated with the method applied here.

Absolute changes per cell, dependent on the growth rate were not measured with the applied

work�ow, as it was �rst shown for the sum of proteins by Schaechter et al. (1958). Their pioneering

studies described an exponential increase in protein, DNA and RNA contents and therefore, cell

size with increasing growth rates (Bremer et al., 2004; Maaløe et al., 1966; Schaechter et al., 1958).

In our study, the relative cell size estimation was acquired using FCS. In accordance to various

other cell cycle analyses, the FCS increased with increasing growth rates (Donachie, 1968; Hewitt

et al., 1999; Skarstad et al., 1983; Neumeyer et al., 2013) (Figure A.3). Following the rational of

Schaechter et al. (1958), this phenomenon re�ects increasing protein contents per cell. We presume
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that the increased amount of cellular glucose uptake is proportional to the elevated production of

proteins, thus increasing absolute protein quantity but leaving relative quantity unchanged.

Studying the putative impact of growth rate and cell cycle stage on the functional diversity of a

population, the growth rate is obviously a major determinant for cellular protein composition, as

found in our chemostat studies. Growth and cell cycle were clearly linked, but subpopulations

showing di�erent DNA content showed only small di�erences in cellular physiology at the same

growth rate. The detection of FtsZ in a signi�cant higher abundance in the C2 subpopulation,

which is preparing for division after �nishing replication, is in agreement with its assigned function

as a proposed di�usible factor (Teather et al., 1974) initiating cell division (Chien et al., 2012).

Despite this cell cycle related �nding, subpopulations showed almost identical protein patterns

irrespective of cell sizes, anticipated protein mass (Lindmo, 1982; Rønning et al., 1979) and DNA

content.

Surprisingly, no signs for a specialization of cells in di�erent cell stages for e.g. carbon storage or

protein production/growth could be observed that could support the hypothesis of shared tasks

of subpopulations in B- and pre-D/D-phases during the cell cycle. This result is remarkable:

subpopulations distinguished by DNA content appear to be physiologically highly similar provided

that the growth rate is the same.

Although we are aware that subpopulations do not mirror single cell proteome compositions the

high resemblance of the subpopulations proteome patterns at the various growth rates point to

their nearly identical physiological state.

One may argue whether this �nding was in�uenced by the operation mode `chemostat'. We iden-

ti�ed the high similarity among subpopulations by installing distinct growth rates, because su-

perimposing impacts in classical (fed-) batch fermentations would have prevented the unequivocal

growth-to-subpopulation analysis. However, the chemostat approach might have excluded the

detection of subpopulations with di�erent protein contents because this `growth rate �lter' was

installed. Assuming that cells aim to grow with the least energetic burden as possible, cellular pro-

tein compositions should be optimized at a given growth rate. Therefore, it could not be excluded,

that subpopulations showing di�erent protein patterns may have existed, but were washed-out

because they could not achieve the required growth rate. While the latter demands for further

in-depth analysis, the determining impact of growth on cell cycle and subpopulations is clearly

visible. It gives rise to the assumption that the cell cycle itself has a minor impact on population

heterogeneity under the conditions tested.
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A.6. Supplemental material

Additional file 1

Additional �le 1 contains the dataset of the label-free quanti�cation (LFQ) values that were used for

further analysis of di�erences in protein pattern. The �le can be downloaded on `http://www.amb-

express.com/content/4/1/71/additional'.

Additional file 2

Additional �le 2 contains the supplementary Figure A.6 and Figure A.7.
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Figure A.6.: Replicate dataset of dot plots of DNA content (DAPI, in arbitrary �uorescence units
(A.F.U.)) versus forward scatter (FSC, in A.F.U.) at di�erent growth rates 0.1 h=1, 0.2 h=1 and
0.7 h=1. The DNA content and the forward scatter increased with increasing growth rate. The indicated gates (C1,
C2, Cx) were used for sorting 5x106 cells per subpopulation for further mass spectrometric analysis.
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Figure A.7.: Overview of the total protein detection and protein annotation. Overall, 677 unique proteins
were identi�ed, 351 proteins were detected in at least one replicate of all subpopulations and 245 proteins were found
across all replicates. Functional annotation was carried out using the COG database (Tatusov et al., 1997). 707
di�erent functions of 647 unique proteins could be annotated into 17 categories. The total number of proteins of
Pseudomonas putida KT2440 annotated in one speci�c category (dark grey bars) is compared to the number of
proteins recovered in this study (light grey bars).



114 References

B. Manuscript II

Cellular response to di�erent types of stress is the hallmark of the cell's strategy for survival. How

organisms adjust their cell cycle dynamics to compensate for changes in environmental conditions

is an important unanswered question in bacterial physiology. A cell using binary �ssion for repro-

duction passes through three stages during its cell cycle: a stage from cell birth to initiation of

replication (B phase), a DNA replication phase (C phase) and a period of cell division (D phase).

We present a detailed analysis of durations of B, C, and D phases, investigating the cell cycle

dynamics under environmental stress conditions. Applying continuous steady state cultivations

(chemostats), the DNA content of a Pseudomonas putida KT2440 cell population was quanti�ed

with �ow cytometry at distinct growth rates. Data-driven modeling revealed that the maximum

replication rate of P. putida KT2440 is similar to Escherichia coli and to other organisms using

symmetric binary �ssion for reproduction. Under stress conditions, such as oxygen deprivation,

solvent exposure and decreased iron availability, DNA replication was accelerated signi�cantly,

correlated to the severity of the imposed stress (up to 1.9 fold). Transcriptome data underpin the

transcriptional upregulation of crucial genes of the replication machinery to achieve the replication

speed up.

We show that fast replication of the genetic information is of high priority under stress conditions

and that a balanced altering of the duration of cell cycle phases is a cellular strategy to maintain

constant growth rates under stress.

B.1. Introduction

Binary �ssion represents one of the most common ways of reproduction within the domain of

bacteria (Chien et al., 2012). It is dominated by two major mechanisms: DNA replication and cell

division. In terms of cell cycling, their order is classically represented by a three-sectional circuit,

consisting of a B, C and D period: The B period, which is de�ned as the time between cell birth

and initiation of replication, the C period in which the chromosome is replicated and the D period

representing the remaining time between termination of replication and end of cell division.

In their pioneering studies, Cooper and Helmstetter (1968) succeeded to model Escherichia coli 's

cell cycle. Their mathematical approach implemented two fundamental rules: The cell does not

start replicating its DNA unless a critical threshold is achieved and it does not divide unless two

genomes are present. Additionally, the concept of multifork replication was included.

This chapter has been published as: Sarah Lieder, Michael Jahn, Joachim Koep�, Susann Müller and
Ralf Takors (2015) Environmental stress speeds up DNA replication in Pseudomonas putida in chemostat
cultivations. Biotechnology Journal 11(1):155-63
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This model correlates the individual lengths of B, C and D periods with cell growth. The authors

found nearly constant C and D periods for well growing cells while the B period diminished with

increasing growth rate. The duration of the B period is coupled to a constant critical cell mass

in E. coli (Donachie, 1968). This critical cell mass is either already present or rapidly reached by

the cell under nutrient-rich conditions, while more time is needed in nutrient poor media. Further,

Helmstetter (1996) illustrated that C periods are longest at slow growth and decreased steadily to

constant values under alleviated growth conditions. The D period is also described to be relatively

constant and even determining the generation time when replication is uncoupled (Cooper et al.,

1968). Müller extended this model by introducing the pre-D phase that occurs under limiting,

even harsh growth conditions (Müller, 2007). The pre-D period speci�es the bacterial disability to

divide after �nishing replication, obviously waiting for improved growth conditions. Consequently,

the pre-D period disappears under optimal growth conditions similar to the B phase.

Summarizing, the work of Cooper and Helmstetter (1968) provided a mathematical model correlat-

ing successfully the basics of DNA replication and cell division. While their approach of modeling

the cell cycle as a single process could be well applied for E. coli, one may argue whether the

inherent link of DNA replication (C phase) and cell division (D phase) is too general, and the cell

cycle consists of coordinated but independent processes instead (Wang et al., 2009).

So far, experimental studies followed the classical motivation of investigating nutrient-rich versus

nutrient-poor growth conditions, thus correlating durations of B, C and D periods exclusively

with velocity of cell growth. The D period was already described to be prolonged under stressful

conditions (pre-D phase) (Müller, 2007). In this study, we argue that the duration of the C phase

might as well be not as strictly connected to the growth rate as presumed in the past, but that

an independent adjustment of cell cycle phase durations might be a possible strategy to survive

stressful conditions.

Since many years, �ow cytometry (FC) has proven to be an excellent and powerful tool for the

investigation of the cell cycle in a precise, robust and high throughput way by stoichiometric

�uorescent labelling of DNA (Müller et al., 2010; Srienc, 1999; Steen, 2001). The number of

subpopulations and the number of individuals comprising the subpopulations create a characteristic

pattern, providing insights into the duration of cell cycle phases when combined with the cell cycle

model of Cooper and Helmstetter (Cooper et al., 1968; Skarstad et al., 1985; Cooper, 1991).

This study deals with the question whether and how stress imposed on bacteria a�ects the interplay

of DNA replication and cell division mirrored by the duration of B, C and D periods. In contrast

to commonly used nutrient-rich/-poor experiments, we performed carbon limited chemostat cul-

tivation using P. putida KT2440, additionally applying stress conditions, such as limited oxygen

supply, organic solvent addition (5% v/v decanol) or decreased iron availability. The appearance

of distinct subpopulations in DNA content was analyzed via FC at a given growth rate. Notably,
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these continuous steady state conditions prevent the overlay of di�erent cell states usually occur-

ring in batch experiments (Skarstad et al., 1985; Wiacek et al., 2006). Instead, chemostats select

for equally fast growing cells, even when stress conditions are applied.

B.2. Material and Methods

Growth conditions

Chemicals were purchased from Fluka, St. Gallen, Switzerland. Experiments were performed with

cells originating from a single colony stored in a working cell bank at =70 ◦C. Cells were cultivated

in M12 minimal salt medium containing 2.2 g L=1 (NH4)2SO4, 0.4 g L=1 MgSO4 · 7H2O, 0.04 g L
=1

CaCl2 ·H2O, 0.02 g L
=1 NaCl, 2 g L=1 KH2PO4 and trace elements (2mgL=1 ZnSO4 ·H2O, 1mgL=1

MnCl2 · 4H2O, 15mgL=1 Na3-citrate · 2H2O, 1mgL=1 CuSO4 · 5H2O, 0.02mgL=1 NiCl2 · 6H2O,

0.03mgL=1 NaMoO4 · 2H2O, 0.3mgL=1 H3BO3, 10mgL=1 FeSO4 · 7H2O). The carbon source

glucose was supplied at a concentration of 5 g L=1 and 10 gL=1 in shake �ask and bioreactor

cultivations, respectively.

Bioreactor cultivations were inoculated with a 150mL mid-exponential shake �ask pre-culture (1 L

ba�ed shake �ask). The inoculum was transferred into a bioreactor (KLF 3.7 L, Ser. No. 10819,

Bioengineering AG, Wald, Switzerland) to reach a �nal working volume of 1.5 L. The environmental

conditions were set previous to inoculation to 30 ◦C, a stirrer speed of 700 rpm, a pressure of 0.5

bar and an aeration of 2 Lmin−1 sterile �ltered ambient air. The pH was set and maintained at

pH 7 with 25% (v/v) NH4OH. Exhaust gas composition (Blue Sense CO2 and O2, (DCP-CO2

DCP-O2, Blue Sense gas sensor GmbH, Herten, Germany), dissolved oxygen and pH in the liquid

phase (Ingold, Mettler Toledo GmbH, Giessen, Germany) were monitored online. The batch phase

was continued as chemostat when glucose was depleted.

The dilution rate was controlled by weight gain of the bioreactor: A medium feed of 10 g was

the control variable for the harvest pump to remove 10 g of biosuspension. The dilution rate, and

therefore, the growth rate, was crosschecked manually by measuring the mass of the harvest out�ow

within a timespan of one hour before sampling. Steady state was evaluated online via exhaust air

data. Detailed information about the theoretical background of a chemostat can be found in the

supplemental �le S1 in section B.6.

For standard cultivations, the growth rate was stepwise increased from µ = 0.1 h−1 to µ = 0.7 h−1

until a clear wash-out of cells could be detected.

For stress investigations, a constant growth rate of µ = 0.2 h−1 was maintained throughout the

cultivation. At �rst, the culture was grown under reference conditions (all nutrients were supplied

in excess, except glucose). After �ve residence times, the environmental condition was changed to

the stress condition and kept constant for additional �ve residence times. Finally, the culture was
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shifted back to reference conditions, to make sure, that cells revert to their original physiological

condition, and that the population composition was not changed e.g. by putative selection of mu-

tated strains. The stress conditions included decreased iron availability (50% reduction of the iron

source in the media composition), oxygen deprivation (pO2=5% and pO2=1.5%; A pO2=100%

was de�ned as the dissolved O2 level in the bioreactor under operating conditions, but without

biomass in suspension) and solvent exposure (5% v/v decanol).

Analytics

Residual glucose concentrations in the supernatant of the biosuspension were quanti�ed via a D-

glucose measurement kit according to the manufacturer's instructions (R biopharm AG, Darmstadt,

Germany). The cell dry weight (CDW) was measured for mass based calculations by taking a

suspension sample of 40mL; 10mL each were �lled into preliminary weighed glass tubes, centrifuged

at 5,500 x g and 4 ◦C for 10min and washed twice with 5mL 0.9% w/v NaCl. The pellet was

dried for 48 h in an 85 ◦C chamber before the mass gain of the glass tubes were measured.

Flow Cytometry

1mL of cultivation broth was taken directly into precooled 0.9% w/v NaCl solution, centrifuged

for 5min at 5,000 x g at 4 ◦C, washed with PBS, resuspended in cryo-protective solution (15%

glycerol in PBS according to Jahn et al. (2013) and stored at =20 ◦C.

Samples were thawed on ice and centrifuged for 2min at 8,000 x g and 4 ◦C to remove cryo-

protective solution. The supernatant was discarded, the cells were resuspended in ice cold PBS

and adjusted to an optical density of OD600nm=0.05 in 2mL volume. For DNA staining the cells

were harvested by centrifugation, taken up in 1mL permeabilization bu�er (0.1M citric acid,

5 g L=1 Tween 20), incubated for 10min on ice and harvested by centrifugation. Finally, cells were

resuspended in 2mL ice cold staining bu�er (0.68 µM DAPI, 0.1M Na2HPO4), �ltered through a

Partec CellTrics mesh with 30µm pore size and stored on ice until analysis.

Flow cytometry was performed using a MoFlo cell sorter (Beckman-Coulter, USA) as described

before (Jehmlich et al., 2010). The DAPI �uorescence was recorded using a multi-line UV laser for

excitation (333-365 nm, 100 mW) and a bandwidth �lter for emission (450±30 nm). The datasets

were annotated according to the miFlowCyt standard (Lee et al., 2008) and are publicly available

on the FlowRepository database (Spidlen et al., 2012).
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Mathematical modeling

The duration of the cell cycle phases C and D' were calculated iteratively, minimizing the distance

of the theoretical DNA content (calculated according to the mathematical model of Cooper and

Helmstetter (1968)), to the �ow cytometrically measured DNA distributions n(G)exp (Skarstad et

al., 1985). A detailed description of the implementation of the mathematical model can be found

in the supplemental �le S2 in section B.6.

Transcriptome Analysis

Sampling procedure A sample of 2mL cultivation broth was taken directly into 4mL of RNApro-

tect Bacteria Reagent (Qiagen GmbH, Germany), vortexed and incubated at room temperature

for 5min. Aliquots of the solution containing approximately 109 cells were centrifuged at 7000 x

g for 10min at 4 ◦C. The supernatant was discarded and the cell pellet was shock frozen in liquid

nitrogen and stored at =70 ◦C.

RNA next generation sequencing The samples were collectively shipped on dry ice for a batch

RNA next generation sequencing, carried out by MFT Services (Tübingen, Germany). Ribosomal

RNA species were removed from the sample RNA using the RiboZero rRNA Removal Kit (Epi-

center). Sequencing libraries were prepared with the TruSeqTM RNA Sample Preparation Kit v2

(Illumina, Inc., San Diego, CA, USA) according to the manufacturer's instruction and quanti�ed

with a QubitR© �uorometer (Life Technologies, Carlsbad, USA). Equimolar amounts were loaded

onto an Illumina GAIIx �ow cell (Illumina, Inc., San Diego, CA). Bound molecules were clonally

ampli�ed on a cBot instrument (Illumina, Inc., San Diego, CA). The quality controlled (Andrews,

2010) fastq sequences were aligned against the P. putida KT2440 genome (AE015451.1) using

bowtie v0.12.7 (Langmead et al., 2009). Reads mapping to rRNA loci were removed before the

quanti�cation step. HTSeq (Anders, 2010) was used to count reads. The statistical data analysis

was performed with the bioconductor package 'edgeR' (Robinson et al., 2010). Raw count data

were �rst normalized based on `counts per million mapped counts' (CPM), to account for di�erences

in sequencing depth. Discrete count data as obtained by RNA-Seq was shown to follow a negative

binomial (NB) distribution (McCarthy et al., 2012). Di�erential expression analysis was carried

out following the protocol by Anders et al. (2013) using edgeR (Robinson et al., 2010). p-values

were adjusted for multiple testing according to Benjamini and Hochberg (1995) to calculate the

false discovery rate (FDR). A cuto� of FDR ≤ 0.05 was chosen to extract di�erentially expressed

genes. Genes were categorized into functional groups using COG (clusters of orthologous groups)

(Tatusov et al., 1997).
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B.3. Results

Two di�erent experimental approaches were combined with data-based mathematical modeling to

investigate stress related in�uences on cell cycle dynamics (Figure B.1a and b).

Standard experiments were performed under carbon limited conditions in chemostats. The

growth rate was stepwise increased until the maximum growth rate of P. putida KT2440 (µ =

0.7 h−1) was reached, resulting in the wash-out of the population (Figure B.1c). The experimental

condition at growth rate µ = 0.2 h−1 is referred to as reference condition.

Stress experiments were performed at a constant growth rate of µ = 0.2 h−1. The stress-shift was

introduced and kept until cells had adapted to the new conditions showing steady state growth, no-

tably at the same growth rate of µ = 0.2 h−1. Afterwards, the culture was shifted back to reference

conditions (Figure B.1e). Comparing the population before and after the stress exposure, identical

physiological features were observed (carbon emission rate, cell dry weight) and the population

composition did not change regarding the parameters monitored by �ow cytometry.

Cell cycle analysis of standard steady state cultures

Flow cytometry revealed characteristic subpopulations with di�erent chromosome contents for each

growth rate (Figure B.1d). Four di�erent subgroups of cells could be identi�ed and allocated to

the speci�c cell cycle phases:

• A subpopulation with a single chromosome content representing cells in B phase that just

divided and did not start replication yet (subB)

• A subpopulation with a chromosome content between single and double, representing cells

in replication phase C (subC)

• A subpopulation containing the double chromosome content in pre-D or D phase, representing

cells that �nished replication but did not divide yet (subD'). As it is not possible to distinguish

between pre-D and D phase by DNA content, these two phases were merged and were referred

to as D' phase

• A subpopulation was found at high growth rates with more than doubled chromosome content

representing cells performing multifork DNA replication (subMF)

The analysis of DNA content of cells with slow to moderate growth (0.1 h=1 - 0.4 h=1) showed that

fractions of subB decreased with increasing growth rate while subD' increased. The growth rate

of µ = 0.4 h−1 can be quali�ed as an inherent threshold in P. putida KT2440, as cells started to

uncouple DNA replication from cell division with increasing growth: At higher growth rates than

µ = 0.4 h−1, no more cells were present in B phase (subB), and an increasing fraction of subMF

cells with uncoupled cell cycle and a decreasing portion of subD' was observed.
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Figure B.1.: Overview of the experimental set-up (a) and the work�ow of data-based modeling
(b).Chemostats were carried out under standard and stress conditions. At standard conditions, all nutrients except
glucose were supplied in excess and the growth rate was stepwise increased until wash-out occurred. Three di�erent
stress conditions were applied in a shift like manner: decreased iron availability, deprivation of oxygen and solvent
exposure. The model parameters, duration of C and D' phase, were �tted by non-linear regression using the �ow
cytometry data (n(G)exp) and the growth rate µ. Physiological data at standard and at a representative stress
condition (oxygen deprivation) are shown in c) and e), respectively. Biomass concentrations (CDW, black dots,
g L=1) and residual glucose concentrations (GLC, black squares, g L=1) were measured after 5 residence times of
one speci�c dilution rate at steady state. The carbon dioxide emission rate (CER, black line, mmolL−1h−1) was
monitored online. The error bars and lines represent the standard deviation of biological triplicates. A summary
of the �ow cytometry data is given in d) and f). DNA histograms (DAPI, arbitrary �uorescence units A.F.U.) at
di�erent growth rates (d) and di�erent environmental conditions (f) are depicted.
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Table B.1.: Summary of the duration of cell cycle phases and goodness of �t of the simulation. Average
values of calculated B̂, Ĉ and D̂′ phases (h) of 3 biological replicates and their standard deviation were calculated
on the basis of the mathematical model of Cooper and Helmstetter (1968). s is the deviation of the simulated to
the experimental number of cells measured by �ow cytometry and presented as subpopulation distributions in DNA
histograms. The formula was framed by Skarstad et al. (1985)

growth rate µ Ĉ (h) D̂ (h) B̂ (h) s

0.1 h−1 3.48± 0.01 1.01± 0.17 2.41 0.55± 0.1

0.2 h−1 1.54± 0.04 0.94± 0.07 0.92 0.69± 0.35

0.3 h−1 1.38± 0.04 0.63± 0.06 0.29 0.49± 0.14

0.4 h−1 1.20± 0.03 0.59± 0.05 0 0.40± 0.18

0.5 h−1 1.04± 0.02 0.66± 0.01 0 0.38± 0.21

0.6 h−1 1.03± 0.02 0.57± 0.04 0 0.84± 0.26

Using the implemented mathematical model (supplemental �le S2 in section B.6), the durations

of the cell cycle phases C and D' were calculated (Table B.1). Notably, the standard deviation

was less than 5%, underpinning the chemostat approach as a reliable and reproducible tool for the

investigation of cell cycle phases.

At standard conditions, the duration of replication phase C was decreasing with increasing growth

rate until a minimal length of Cmin = 62min was reached (Figure B.2). Strikingly, comparing the

calculated replication phase durations of P. putida KT2440 with previous results of E. coli B/r

strains (Helmstetter, 1996) very similar trajectories and replication times were found. To evaluate

the similarity of E. coli and P. putida replication rates (rc), the exponential model of Keasling et

al. (1995) was applied, which describes the dependency of C phase duration and growth rate in E.

coli. A reasonably high goodness of �t (R2=0.95) was found with the pooled data of E. coli and

P. putida , supporting the high similarity of the results between the two organisms. Combining

the minimum replication time Cmin = 62min with the chromosome size of P. putida KT2440 (6.18

Mb) (Nelson et al., 2002), a maximum replication rate of rc ≈ 100 kbp/min could be calculated at

standard conditions.

Cell cycle analysis of stressed steady state cultures

To investigate the impact of stress on cell cycle kinetics, chemostat cultivations were performed

at µ = 0.2 h−1 with additionally imposed respiration stress (reduction of dissolved O2 to 5% and

1.5% partial pressure pO2), environmental stress (presence of the organic solvent decanol (5%

v/v)) and decreased iron availability. As depicted in Figure B.3, the length of the replication

phase C decreased from 92min at the reference condition to 48-64min, depending on the severity

of the stress condition. Consequently, the replication rate increased. At low oxygen partial pressure

pO2=5%, the replication rate rose 1.5-fold from 67 to around 99 kbp/min, equaling the maximal
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Figure B.2.: Durations of the replication phase in dependence of the speci�c growth rate µ. The
replication time was calculated according to Cooper and Helmstetter (1968) as arithmetic mean of three biological
replicates. Error bars show the calculated standard deviation. The duration of the replication (C) is decreasing
with increasing growth rates until a minimum duration is reached. Black dots depict the C phase durations of P.
putida KT2440 under steady state standard conditions. Dark grey squares (E. coli B/r A) and light grey diamonds
(E. coli B/r K) show data compiled by Helmstetter et al. (1996). The pooled data could be reasonably well �tted
(R2=0.95) by an exponential function (black line) (Keasling et al., 1995).

replication rate found under standard conditions at µ = 0.7 h−1. Surprisingly, when harsher

conditions of pO2=1.5% or decanol exposure (5% v/v) were installed, the replication rate even

increased above the maximum of the standard conditions, namely 1.6-fold (110 kbp/min) and

1.9 fold (129 kbp/min), respectively. Note that all cells still showed stable steady state growth

of µ = 0.2 h−1, which means, that the generation time τ itself did not change but the individual

contributions of B, C and D' phases varied. Apart from the shortened C phase, a clear prolongation

of B and D' phases was observed (Figure B.3).

Expression profile of genes related to ‘replication, recombination and repair’ in stressed

steady state cultures

To get a deeper insight into the mechanism of replication speed-up, the genome-wide expression

pro�le of P. putida KT2440 was analyzed via next generation sequencing of the mRNA pools.

Therefore, pair-wise comparison of mRNA levels between the reference condition and the most

prominent stress condition -decanol exposure- was performed. Out of 5421 transcripts, which were

found in total, decanol exposure caused signi�cant changes (log2 fold changes (FC) > 0.58) in

the expression of 540 transcripts, including 154 open reading frames with unknown function (see

supplemental dataset 1 in section B.6). The 387 genes with annotated functions were categorized

into functional groups using the COG database (Tatusov et al., 1997). We found 27 signi�cantly
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Figure B.3.: Durations of cell cycle phases in dependence of the respective stress condition, i.e.
decreased iron and oxygen availability, as well as decanol exposure. The duration of the cell cycle phases
is shown for all conditions tested at a growth rate of µ = 0.2 h−1, corresponding to a generation time of 3.4 h. The
C phase was shortened under all stress conditions in comparison to the standard condition, while B and D' phases
were prolonged.

changed genes with known or anticipated tasks in `replication, recombination and repair' (see

supplemental dataset 1 in section B.6). Thereof, 8 genes were sorted into the functional group

`replication'. This group showed a signi�cant increase of expression upon decanol exposure (average

log2 FC 0.93, Table B.2).

Among the 8 signi�cantly changed genes, especially DNA polymerases showed elevated transcrip-

tion levels. DNA ligase LigA and DNA polymerase subunits δ, χ, ε and τ (HolA, HolC, DnaQ

and DnaX) are parts of the replication machinery. LigA catalyzes the formation of phosphodiester

bonds between 5'-phosphoryl and 3'-hydroxyl groups in double-stranded DNA. It is essential for

DNA replication and repair of damaged DNA. DnaQ holds the 3'-5'-proofreading exonuclease and

was shown to turn the rather slow and weakly processive polymerase III core into a fast and highly

processive polymerase (Studwell et al., 1990). HolA is binding the β-subunit of the DNA clamp.

Johnson et al. (2005) found, that the polymerase speed is increased when the polymerase core

is coupled to the β-clamp. HolC and DnaX are part of the clamp loader. HolC binds the single

stranded DNA binding protein, protecting single stranded DNA and melting hairpins. DnaX con-

nects the core polymerases to the central clamp loader and connects the replicase to the DnaB

helicase. The unwinding rate of DnaB was found to be increased when bound to DNA poly-

merase subunit τ (Kim et al., 1996). Altogether, the most prominent transcriptional upregulation

was found for genes encoding basic enzymes that are essential for a fast, e�cient and processive

replication.

Besides genes associated with DNA replication, 9 out of 11 signi�cantly changed genes grouped

into `DNA repair' were upregulated as well under decanol stress conditions. The proteins RecB and

RecD are part of a multifunctional enzyme recognizing blunt or near-blunt ends of duplex DNA,
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Table B.2.: Di�erentially expressed genes under decanol stress conditions, annotated in the functional
group `replication'. The COG database was used for functional annotation (Tatusov et al., 1997). The log2 fold
change (FC) is the logarithmic ratio of expression of decanol condition and reference condition. Statistical signi�cance
was de�ned at a cuto� of the false discovery rate FDR < 0.05 (Benjamini et al., 1995).

Gene ID Gene Product Name log2(FC)

PP_0979 DNA polymerase III subunit χ, HolC 1.26

PP_4141 DNA polymerase III subunit ε DnaQ 1.10

PP_4768 DNA polymerase III; subunit ε 1.02

PP_4796 DNA polymerase III subunit δ HolA 0.97

PP_4269 DNA polymerase III subunits γ and τ DnaX 0.94

PP_5310 ATP-dependent DNA helicase RecG 0.89

PP_4274 NAD-dependent DNA ligase LigA 0.67

PP_5088 Primosome assembly protein PriA 0.59

degrading ssDNA and dsDNA and additionally showing a DNA helicase activity (Kogoma, 1997).

The RecG protein is a Holliday-junction-speci�c DNA helicase which is thought to catalyze reverse

branch migration and was proposed to increase e�ciency for homologous recombination and DNA

repair (Whitby et al., 1994). The RuvC protein is a nuclease that resolves Holliday junctions in

the late stages of homologous recombination (West, 1996). MutS and MutL are part of a system

for recognizing and repairing errors in replication and homologous recombination. Together with

the exonucleases, these enzymes are associated mainly with DNA repair and restart of replication

at stalled replication forks (Kogoma, 1997).

The remaining transcripts that were a�ected by decanol stress were linked to the already known im-

pact of solvent stress on the physiology of P. putida species, such as altered membrane composition

and carbon, lipid and energy metabolism (see supplemental dataset 1 in section B.6) (Heipieper

et al., 2007).

B.4. Discussion

Cell cycle kinetics were investigated combining chemostat cultivation, �ow cytometry and mathe-

matical modeling. The chemostat approach allowed us to get an unbiased insight into the e�ects

of stress on the di�erent phases of cell cycling at a distinct growth rate. This approach allowed

high reproducibility, as mirrored by the biological variation of less than 5% between biological

triplicates (Table B.1).

Applying the basic modeling assumptions of Cooper and Helmstetter (Cooper et al., 1968; Skarstad

et al., 1985), cell cycle phases could be calculated successfully. We found the simulated DNA
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histograms matching well to the experimentally derived DNA histograms (Table B.1, supplemental

Table B.3), showing that their mathematical model can also be applied for P. putida KT2440.

Durations of cell cycle phases have been shown to vary with growth conditions and nutrient avail-

ability helmstetter1996. Our data for P. putida KT2440 are in agreement with observations of

Kubitschek et al. (1978) and Helmstetter et al. (1976) who detected a steady decrease of C phase

length with increasing growth rate of E. coli B/r strains. While E. coli B/r reached a minimum C

duration of about 42min at growth rates µ > 0.7 h−1 (generation time τ < 1.0 h−1), we identi�ed

a minimum C length of about 62min for P. putida KT2440 for µ > 0.6 h−1 (i.e. τ < 1.2 h−1)

(Figure B.2). Comparing the minimum C durations of E. coli and P. putida (42min and 62min,

respectively) with the generation time at high growth rates, multifork DNA replication needs to

start already at a lower growth rate in P. putida than in E. coli.

In general, we found similar maximal replication rates rc when comparing di�erent unimorph Gram-

negative organisms dividing symmetrically with binary �ssion. Michelsen et al. (2003) reported a

minimum duration of the C phase of 46min for E. coli K-12 and an rc of 100 kbp/min (Myllykallio

et al., 2000). Simulation of �ow cytometric data obtained by Wiacek et al. (2006) in Cupriavidus

necator resulted in a replication phase length of 83min, thus mirroring an rc of 102 kbp/min. For

P. putida KT2440 we report an rc of 100 kbp/min. Pooling these results, an average maximum

replication rate of ≈100 kbp/min can be deduced with a very small variance of 0.6% at standard

conditions. These bacteria might share common basic properties of the replication machinery which

results in similar maximum replication capacities. Noteworthy, this similarity of replication rates

could not be found for asymmetric dividing organisms, e.g. Caulobacter crescentus (42 kbp/min

(Myllykallio et al., 2000)), archaea, e.g. Pyrococcus abyssi (36 kbp/min (Myllykallio et al., 2000)),

or Mycoplasma capricolum (12 kbp/min (Seto et al., 1998)) (Rocha, 2004). Nevertheless, the

�nding of similar maximal replication speeds among this diverse group of bacteria is intriguing.

Our results show, that the cell cycle is altered substantially under stressed conditions. The time

for the replication of the chromosome was shortened and, accordingly, rc gradually increased with

the severity of the stress up to 1.9 fold. In addition to previously described alterations in the cell

cycle under limiting conditions (Müller, 2007; Cooper, 1991), we found that the time before start of

replication (B phase) and the time after completion of replication until division (pre-D / D phase)

extended on the expense of the duration of replication itself (C phase).

The B phase is already described to adjust to di�erent growth situations and even to vanish when

conditions are optimal (Helmstetter, 1996). Therefore, it is not surprising that the B phase covers

part of the surplus cell cycling time under stressful conditions at a constant µ of 0.2 h=1. Regarding

the cell division, the classical cell cycle model of Cooper and Helmstetter (1968) suggested that the

duration of the D period is �xed. This idea might be supported by the fact that the macromolecule

machinery of the divisome mechanically performs the separation of the daughter from the mother

cell; a process whose interruption can be fatal for the cell (Adams et al., 2009; Huang et al., 2013).
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However, our results suggest that the time between end of replication and �nal division (pre-D / D

period) is variable and extends under stress conditions. Di�erent explanations can be suggested for

that, which go hand in hand with the existence of a pre-D period: For example, the delayed division

could be a direct consequence of lower availability of resources which are re-distributed by the cell

in favor of DNA replication. Cells that do not divide under limiting conditions are a common

observation in batch experiments: A gap between end of replication and start of division was

already suggested for limiting conditions for several bacterial species, leading to the introduction

of the pre-D phase into the bacterial cell cycle model (Müller, 2007). In addition, for some archaea

(Lindås et al., 2013; Hjort et al., 2001) and bacteria (Robert et al., 2014) the need of an enlarged,

cell size generating period between end of replication and �nal division was demonstrated.

Our data show a clear relationship between acceleration of replication and general stress. We

propose, that this acceleration is an actively regulated process, as seen by the higher expression of

genes involved in DNA replication. This is supported by previous assumptions, that (i) replication

might not proceed at maximum velocity to assure stable and correct replication and that (ii) faster

replication might be achieved by a higher availability of replication processivity factors (Morigen

et al., 2003; Atlung et al., 2002).

Interestingly, the expression pro�le also showed an upregulation of genes connected to DNA repair,

many of them (recB, recD, ruvC ) being responsible for homologous recombination. Thus, the cells

might try to evade stress by a twofold strategy: To repair stress-induced errors in DNA as good

as possible, while taking into account a higher frequency of recombination events, that may help a

population to evolutionary adapt to challenging stress conditions more quickly.

Our study demonstrated that acceleration of DNA replication is an orchestrated cellular process

between the cell cycle phases B, C, pre-D and D. Fast replication of the genetic information turned

out to be of utmost priority under stress conditions. This process is balanced by extending the

duration of the B and pre-D phases, which seems to be a cellular strategy to cope with stress while

maintaining a constant growth rate.
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B.6. Supplemental material

Supplemental dataset 1

The supplemental dataset 1 contains the di�erentially expressed genes under decanol stress expo-

sure in comparison to the reference, non-stressed condition. The dataset can be found on the data

carrier, attached to this thesis (AppendixB_SupplementalDataset1.xlsx).

Supplemental file S1 – The chemostat

Introduced simultaneously by Novick and Szilard (1950) and Monod (1950) the chemostat is the

most commonly used experimental approach for investigations of physiology in steady state cultures

(Bull, 2010). The growth rate of an organism is dependent on the nutrient availability as formulated

by Monod (1949):

µ = µmax
S

KS + S

In 1956, Herbert published that keeping the substrate concentration at a certain level, one can

vary the growth rate of an organism externally. In chemostats the dilution rate D is a function of

the �ow rate F and the cultivation volume V as follows:

D =
F

V

In the bioreactor, biomass formation equals wash-out with a dilution rate D for steady state

condition (d/dt = 0):
dX

dt
= µX −DX !

= 0

Hence, establishing steady state conditions (dX/dt = 0) results at equal growth rate µ and dilu-

tion rate D. It is a key property of chemostats to limit cell growth for instance by the availability

of the carbon source (here: glucose) while leaving other operating parameters (such as pH, tem-

perature etc.) constant or at saturating levels (other media components). In consequence, it is

possible to evaluate speci�c parameter in�uences by �xing the growth rate and keeping all other

parameters constant (Winder et al., 2011). A putative drawback of the experimental set-up was

re-emphasized by Ferenci (2006): the nutrient-limited conditions could increase the selection for

mutations. Therefore, it is advisable to carefully monitor the population before and after the

environmentally changes for obvious di�erences.
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Supplemental file S2 – Mathematical model

The mathematical model for calculating the distribution of single cells with distinct DNA content

in a population is based on the Cooper-Helmstetter model (1968): The theoretical DNA histogram

n(G) results from linking an age distribution n(a) of a population with constant growth parameters

to a cellular DNA accumulation function.

The age distribution was implemented as a probability density function n(a):

n(a) = 2 · ln2 · e(−a·ln2) 0 ≤ a ≤ 1∫ 1

0
n(a)da = 1 0 ≤ a ≤ 1

Here, a is denoted as age and n(a) represents the probability density function of a single cell in a

population (Lindmo, 1982).

As a consequence of binary cell division, there has to be the double amount of new born cells in

comparison to dividing cells. Newly divided cells are de�ned to be at age a = 0, while dividing

ones possess age a = 1. The number of cells belonging to an age interval ai to aii can be calculated

by integrating n(a) within the limits ai and aii.

Cooper et al. (1968) assumed that the movement of the replication fork along the chromosome

is constant, which determines that DNA synthesis starting at a given replication point is also

constant irrespective of the cell cycle period. During the cell cycle of a single cell, the rate of DNA

synthesis is described mathematically in a step function with two discontinuities: the initiation

and termination of the DNA synthesis. The speci�c events when initiation and termination occur

(a1 and a2, respectively) are modeled as follows (Cooper et al., 1968):

a1 = (xτ − (C +D))/τ

a2 = (τ −D)/τ

Here, parameter x refers to multiples of generation time in which replication C and division D take

place. Parameter τ refers to the generation time. To derive the amount of DNA (G) per cell at a

speci�c age, the division cycle is divided into three periods, de�ned by the ages a1 and a2 at the

discontinuities. The chromosome content can be calculated for each of these intervals as follows,

considering G(a = 1) = 2G(a = 0):

G(a) = k(F1a+ F3) + a1k(F1 − F2) + a2k(F2 − F3) 0 ≤ a ≤ a1
G(a) = k(F2a+ F3) + 2a1k(F1 − F2) + a2k(F2 − F3) a1 ≤ a ≤ a2
G(a) = kF3(a+ 1) + 2a1k(F1 − F2) + 2a2k(F2 − F3) a2 ≤ a ≤ 1
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Here, F refers to the number of replication forks in the interval i. k is the constant rate of DNA

synthesis per replication fork, which can be derived by k = τ/2C. The DNA distribution n(G) is

derived by the combination of the derivation of theoretical chromosome content (dG/da) and the

age distribution n(a).

n(G)/dG = n(a)/da

A step-by-step illustration of the calculation of the DNA distributions can be found in Figure B.4.

Accounting for variation in generation time of individual cells and error in measurements. The

DNA histograms n(G) derived from the simulation routine re�ect an ideal population in which

every cell exhibits the same growth rate. However, experimental `noise' resulting at variations of

generation times needs to be taken into account as following:

Biological variation was simulated by slight variation of the generation time τ (coe�cient of varia-

tion CV=5%) which was mirrored by an arti�cial division of the population into 30 subpopulations

covering the total range of variance. The implementation was based on Skarstad et al. (1985).

One resulting DNA distribution for the whole population is calculated containing all 30 simulated

subpopulations.

Technical measurement variation was taken into account by assuming each DNA value in the DNA

histogram to be normally distributed. The mean coe�cient of variation was calculated as 5%.

Calculation of the duration of cell cycle phases. Inputs for the simulation software implemented

are the generation time τ and the experimentally derived DNA histograms (n(Gexp)). The output

values D′ and C (both in hours, h) are identi�ed via a least-square �t, minimizing the discrepancy

between simulated n(G) and measured n(Gexp) DNA histograms. Lower bounds were set to 0,

while the upper bounds were set to D = τ and C = τ/0.45, respectively (Cooper et al., 1968).

To evaluate our simulations we calculated the deviation s using the formula presented by Skarstad

et al. (1985):

s =

√√√√ m∑
i=1

(
√
n(Gexp)i −

√
n(G)i)

2

m− 1
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Figure B.4.: Illustration of the calculation of DNA histograms n(G). DNA histograms n(G) are exemplarily
calculated according to Cooper and Helmstetter (1968) for a slow growing (τ/C = 2) and a fast growing population
(τ/C = 0.6). The age distribution n(a), the DNA accumulation per cell G(a) and the theoretical DNA histogram
n(G) are illustrated in the �rst, second and third line, respectively. Considering the mechanism of binary �ssion,
the number of cells that has just divided doubles those that start to divide. Depending on how fast the cells are
growing, the initiation and the termination of the replication shift within the timeline of a standardized cell age a.
In slowly growing cells there are phases without active replication (B and D′) resulting in a constant DNA content.
During the replication phase the DNA content is increasing linearly with the constant rate of replication (line 2).
In the case of fast growing cells, overlapping replication cycles occur, resulting in active replication throughout the
age of the cell. Replicating cells of di�erent ages can therefore have di�erent total replication rates according to
the number of replication forks at work. The portion of cells for each DNA channel in a histogram n(G) can be
calculated by combining the age distribution n(a) and the DNA accumulation G(a) by equation n(G)/dG = n(a)/da
(line 3).
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Supplemental Table

Table B.3.: Summary of the duration of cell cycle phases and goodness of �t of the simulation. Average
values of calculated B̂, Ĉ and D̂′ phases (h) of 3 biological replicates and their standard deviation were calculated
on the basis of the mathematical model of Cooper and Helmstetter (1968). s is the deviation of the simulated to
the experimental number of cells measured by �ow cytometry and presented as subpopulation distributions in DNA
histograms. The formula was framed by Skarstad et al. (1985)

Stress cultivations - constant µ = 0.2 h−1

iron - 50% 1.07± 0.03 1.54± 0.04 0.79 0.44± 0.26

pO2 - 5% 1.05± 0.03 1.50± 0.05 0.85 0.38± 0.24

pO2 - 1.5% 0.94± 0.05 1.44± 0.05 1.02 0.48± 0.16

decanol - 5% (v/v) 0.80± 0.04 1.42± 0.05 1.18 0.36± 0.15

Supplemental Figure

Figure B.5.: Summary of the time course of the solvent stress chemostat. The dilution rate was kept
constant at µ = 0.2 h−1. The solvent stress was introduced puls-wise. After the stress condition, the culture was
shifted back to reference conditions. Samples were taken at steady state conditions. Biomass densities (black circles,
g L=1) and residual glucose concentrations (black squares, g L=1) were measured. The carbon dioxide emission rate
(CER, black line) was monitored online. Error bars and lines (CER, gray dotted line) represent the standard
deviation of independent biological triplicates. The relatively large error bar for CDW measurement in decanol
conditions was caused by superimposing e�ects of the organic solvent on the gravimetric biomass detection. Note
that this measurement was independently assured by cell counting.
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C. Manuscript III

The implementation of novel biotechnological platform cells for industrial applications is currently

the subject of intense research. Recent e�orts included the use of Pseudomonas putida KT2440

as the functional chassis for targeted genomic manipulations aimed at reducing its extant genome.

The excised functions included �agellar motility and a number of genes expected to enhance geno-

typic and phenotypic stability of the cells upon deletion. In this study, two multiple-deletion P.

putida strains were evaluated as cell factories for heterologous protein production and compared

to the parental bacterium in respect to several industrially-important physiological traits. Ener-

getic parameters were quanti�ed at di�erent controlled growth rates in continuous cultivations and

both strains had a higher adenosine triphosphate content and adenylate energy charge than the

wild-type strain KT2440. Under all the conditions tested, the mutants also grew faster and had

enhanced biomass yields. In addition to small scale shaken-�ask cultivations, the performance of

the genome-streamlined strains was evaluated in larger scale bioreactor batch cultivations taking

a step towards industrial growth conditions. When the production of the green �uorescent pro-

tein was assessed in these cultures, the mutants reached a recombinant protein yield on biomass

up to 40% higher than that of P. putida KT2440. Taken together, the results demonstrate that

these genome-streamlined derivative strains are not only robust microbial cell factories, but also a

promising foundation for further biotechnological applications.

C.1. Introduction

Much of contemporary metabolic engineering approaches, both at the laboratory scale and in in-

dustrial setups, mostly rely on the use of a few bacterial hosts as working platforms (Danchin, 2012;

Singh, 2014). However, the organisms that are easiest to manipulate are often not the most suitable

or the most appropriate for speci�c large-scale and industrial applications. Several physiological

and metabolic traits are desired in a robust production host (Almquist et al., 2014; Foley et al.,

2010; Sauer et al., 2012). In the �rst place, the platform cells must be hefty and able to endure

a suite of environmental and process-related stresses (Ho�mann et al., 2004). Whenever possible,

the cells should also exhibit decreased (and traceable) genetic drift, physically robust envelopes, ef-

�cient and as-simple-as-possible transcription and translation controls, and predictable metabolic

behavior (Foley et al., 2010). Furthermore, the concept of a suitable host for biotechnological

applications is reminiscent to that of a minimal microbial cell, in which all the elements deemed

unnecessary for cellular functions other than replication and self-maintenance (e.g., prophages,

�agellar genes, cell-to-cell communication devices) have been eliminated. In spite of the evident

This chapter has been published as: Sarah Lieder#, Pablo I. Nikel#, Víctor de Lorenzo and Ralf Takors
(2015) Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microbial Cell Factories

14:23 #Ex aequo contribution
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need for a bacterial chassis reuniting most of these desirable traits, only few hosts [typically Es-

cherichia coli strains (Chen et al., 2013; Gopal et al., 2013; Jana et al., 2005; Mizoguchi et al.,

2007; Ruiz et al., 2013)] are considered suitable as biocatalysts in relevant industrial endeavors,

such as the production of functional recombinant proteins.

Building on the concepts outlined above, we advocate the choice of Pseudomonas putida strains

as microbial platforms pre-endowed with metabolic and stress-endurance traits that are optimal

for biotechnological needs (Nikel et al., 2014a). In particular, the non-pathogenic P. putida strain

KT2440 shows a remarkable metabolic diversity, amenability to genetic manipulation, and stress

endurance, along with the welcome GRAS (generally regarded as safe) status (Nogales et al., 2008;

Poblete-Castro et al., 2012; Kim et al., 2014). Sequencing of the 6,181,863-bp long genome of P.

putida KT2440 brought forth a signi�cant advance in the potential applications of this bacterium

(Nelson et al., 2002; Weinel et al., 2002). In an e�ort to enable the analysis of strain KT2440 from

a systems biology perspective and to foster the development of its biotechnological applications,

multiple tools for genome editing have been devised and implemented (Martínez-García et al.,

2011a; Martínez-García et al., 2011b; Silva-Rocha et al., 2013). These tools have facilitated the

design of a number of streamlined-genome (SG) variants derived from the wild-type strain. For

instance, the construction and physiological characterization of a �agella-less variant of P. putida

KT2440 with some attractive emergent properties, such as an elevated NADPH/NADP+ redox

ratio, was recently reported by Martínez-García et al. (2014b). Likewise, the physiological e�ects

of freeing the bacterium of all the viral DNA encoded in its extant chromosome (represented by not

less than four prophages) was explored in several mutants (Martínez-García et al., 2014a). While

such genetic manipulations conferred interesting biotechnological properties to the bacterial chassis,

the industrial worth of a reduced genome P. putida strain has not been systematically explored

hitherto. As a matter of fact, the rational engineering of cell factories tailored for optimized

protein synthesis and process performance, low energy demands, and high production yield has

traditionally been focused on biochemical engineering aspects (i.e., bioreactor setup and control)

rather than improving the biocatalyst properly.

In this study, we have assessed the use of two heavily re-factored P. putida strains (one of them

lacking �agella, and the other one carrying multiple mutations implemented to ensure genetic and

physiological stability, see Figure C.1) as potential hosts for protein production in a bioreactor

setup. The well-known green �uorescent protein (GFP) from the jelly�sh Aequorea victoria was

selected as a model protein (Vizcaino-Caston et al., 2012), and kinetic and physiological parameters

related to cell performance were analyzed in both, batch and continuous cultures. The two re-

factored versions of P. putida KT2440 outcompeted their parental strain in every parameter tested,

showing improved resistance to stress and enhanced protein production.
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Figure C.1.: Rationale behind the design of reduced-genome derivatives of P. putida KT2440. Strains
EM329 and EM383 were constructed using the seamless deletion system described by Martínez-García and de
Lorenzo (2011a). Note that, while strain EM329 only lacks the genes encoding �agellar genes (Martínez-García
et al., 2014b), the multiple deletions in strain EM383 were designed to endow the bacterium with the properties
of a true microbial platform for a variety of applications. The relative physical location of the genes eliminated in
the chromosome of P. putida KT2440 are indicated with arrowheads and the percentage of the genome deleted is
shown in each case. The white arrowhead represents the chromosomal location of the �agellar genes (deleted in
strain EM329), while the black arrowheads indicate the genes and gene clusters eliminated in strain EM383.
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C.2. Material and Methods

Bacterial strains, culture media, and general procedures

Bacterial strains and plasmids used in this study are listed in Table C.1. E. coli and Pseudomonas

strains were routinely grown at 37 ◦C and 30 ◦C, respectively, in rich LB medium (Green et al., 2012)

under oxic conditions (i.e., in Erlenmeyer �asks containing medium up to one-tenth of their nominal

volume with agitation at 170 r.p.m.). E. coli DH5α was used for routine cloning procedures and

plasmid maintenance. The physiological characterization of P. putida recombinants was carried out

both in shaken-�ask and bioreactor cultures using M12 minimal medium, which contained 2.2 g L=1

(NH4)2SO4, 0.4 g L=1 MgSO4 · 7H2O, 0.04 g L
=1 CaCl2 · 2H2O, 0.02 g L

=1 NaCl, 2 g L=1 KH2PO4,

added with trace elements (2mgL=1 ZnSO4 ·H2O, 1mgL=1 MnCl2 ·4H2O, 15mgL=1 Na3-citrate ·
2H2O, 1mgL=1 CuSO4 ·5H2O, 0.02mgL=1 NiCl2 ·6H2O, 0.03mgL=1 Na2MoO4 ·2H2O, 0.3mgL=1

H3BO3, 10mgL=1 FeSO4 · 7H2O). All cultivations were started using cells from a single colony in

an LB plate, grown and harvested from exponential phase cultures in LB medium, and stored as a

working cryo-culture bank at =70 ◦C in a 20% (v/v) glycerol stock. Glucose or citrate were used

as representative glycolytic or gluconeogenic carbon sources, respectively, throughout this study.

The concentration of each carbon source in pre-cultures was 4 gL=1, while in batch cultivations

(both in shaken-�asks and bioreactors) it was increased up to 10 gL=1. All solid media used in

this work contained 15 gL=1 agar, and, whenever needed, kanamycin was added at 50mgL=1 as

a �lter-sterilized solution for plasmid maintenance. Isopropyl-β-D-thiogalactopyranoside (IPTG)

was added at 1mM to induce the expression of genes under the control of LacIQ/Ptrc. Growth

was estimated in a Ultrospec 3000 pro UV/Visible spectrophotometer (GE Healthcare Bio-Sciences

Corp., Piscataway, NJ, USA) by measuring the optical density at 600 nm (OD600) after diluting

the culture as necessary with 9 gL=1 NaCl. In bioreactor cultivations, the cell dry weight (CDW)

was measured in culture aliquots as appropriate for further mass-based calculations. CDW was

determined in 10mL culture samples by transferring the broth into previously-weighed glass tubes.

The suspension was centrifuged at 7,000 r.p.m. and 4 ◦C for 10min and washed twice with 5mL

of cold saline. The pellet fraction was �nally dried at 85 ◦C until constant weight (ca. 48 h). The

yield of biomass on substrate (YX/S , in gCDWg−1glucose) was derived from the CDW assessed in the

samples and the glucose consumption rates (see below).

Bioreactor cultures

All bioreactor cultures were carried out in an in-situ sterilizable KLF 3.7-liter fermentor (Bioengi-

neering AG, Wald, Switzerland). Exhaust gas composition (CO2 and O2), dissolved O2 concen-

tration, and pH in the liquid phase were monitored online using BCP-CO2 and BCP-O2 analyzers

(BlueSens GmbH, Herten, Germany) and O2 and pH probes (Mettler Toledo GmbH, Giessen, Ger-

many). The exhaust gas measurement of CO2 was used to calculate CO2 emission rates. The
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Table C.1.: Bacterial strains and plasmids used in this study

Relevant characteristicsa Source or reference

E. coli

DH5α Cloning host; F-λ-endA1 glnX44 (AS) thiE1

recA1 relA1 spoT1 gyrA96 (NalR) rfbC1

deoR nupG Φ80(lacZ∆M15 ) ∆( argF-lac)U169
hsdR17(rK −m+

K)

Hanahan et al., 1980

Pseudomonas putida

KT2440 Wild-type strain, spontaneous restriction-
de�cient derivative of strain mt-2 cured of the
TOL plasmid pWW0

Bagdasarian et al., 1981

EM329 Flagella-less derivative of KT2440; ∆PP4329-
PP4397 (�agellar operon)

Martínez-García et al., 2014a

EM383 Streamlined derivative of KT2440; ∆PP4329-
PP4397 (�agellar operon) ∆PP3849-PP3920
(prophage 1) ∆PP3026-PP3066 (prophage 2)
∆PP2266-PP2297 (prophage 3) ∆PP1532-PP1586
(prophage 4) ∆Tn7 ∆endA-1 ∆endA-2 ∆hsdRMS

∆�agellum ∆Tn4652

Martínez-García et al., sub-
mitted 2014

Plasmid

pSEVA234b Expression vector; oriV (pBBR1) lacIQ Ptrc
aphA, KmR

Silva-Rocha et al., 2013

pSEVA637b Cloning vector carrying the green �uorescent pro-
tein gene; oriV (pBBR1) aacC1, GmR

Silva-Rocha et al., 2013

pS234G Expression vector carrying the green �uorescent
protein gene under control of the inducible Ptrc
promoter; oriV (pBBR1) lacIQ Ptrc → gfp aphA,
KmR

This study

a Antibiotic markers: Gm, gentamicin; Km, kanamycin.
b Plasmids belonging to the SEVA (Standard European Vector Architecture) collection.
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dissolved O2 concentration was monitored to assure non-limiting aerobic conditions. In all culti-

vations, the dissolved O2 level was kept higher than pO2 = 70% (pO2 = 100% was de�ned as the

dissolved O2 level in the bioreactor under operating conditions, but without biomass in suspen-

sion). A pre-culture was prepared for each run by inoculating cells from a working cryo-culture

bank (8.5mL) in 150mL of M12 minimal medium contained in a 1.5-liter ba�ed Erlenmeyer �ask.

Cells were cultivated as explained above until the culture reached OD600 = 1.5 and used as the

inoculum as follows.

Batch cultivation

Bioreactor batch cultivations were inoculated aseptically with the mid-exponential, shaken-�ask

pre-culture to reach a �nal working volume of 1.5 liters. Previous to inoculating the bioreactor,

the operating conditions were set to 30 ◦C, a stirrer speed of 700 r.p.m., an over-pressure in the

vessel of 0.5 bar, and an aeration of 2 L min−1 �ltered-sterilized ambient air. The pH was set and

maintained at pH 7.0 by automatic addition of 25% (v/v) NH4OH.

Continuous cultivation

In the case of glucose-limited continuous cultivations, the batch cultivation was switched into

chemostat operation when glucose was depleted. The dilution rate (D) was increased stepwise

from D = 0.1 h=1 to 0.3 h=1, and �nally to 0.6 h=1. Each D value, determined by feeding medium

at a pre-de�ned �ow rate, was maintained for 5 residence times under steady-state conditions before

further increasing the growth rate. The weight gain of the bioreactor was constantly monitored,

and a harvest pump was started whenever the weight gain exceeded 10 g. Additionally, D values

were manually checked by weighing the mass of the harvest out�ow within a time-span of 1 h before

sampling.

Nucleic acid manipulation, plasmid construction, and plasmid stability assay

DNA manipulations followed well established protocols (Green et al., 2012). Plasmid pS234G

carries the green �uorescent protein gene under transcriptional control of the IPTG-inducible Ptrc

promoter. This expression vector was constructed as follows. Plasmid pSEVA637 was digested with

HindIII and SpeI, and the ca. 0.7-kb DNA fragment, spanning gfp preceded by a synthetic ribosome

binding site, was ligated into pSEVA234 restricted with the same enzymes. The ligation mixture

was transformed in E. coli DH5α, and positive clones were identi�ed in LB plates containing

kanamycin. Plasmid DNA was recovered from single clones and checked by automated sequencing.
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Plasmids were transferred into P. putida KT2440 and its derivatives by electroporation (Choi et al.,

2006).

Plasmid segregational stability in cells grown in shaken-�ask cultures was estimated as described by

Nikel and de Lorenzo (2014b). Brie�y, cultures were serially diluted in 10-fold steps in LB medium

containing no antibiotics. The dilution level was estimated based on OD600 measurements of the

samples, and 50µL of the �nal dilution was plated onto LB agar with and without kanamycin.

Colony forming units (CFUs) were counted after 24 h of growth at 30 ◦C in biological triplicates.

The segregational stability of pSEVA234 and pS234G was calculated by comparing CFUs in plates

with and without kanamycin.

Analytical procedures

GFP quantification

Determination of GFP �uorescence by �ow cytometry Cells sampled from shaken-�ask

cultures at the time points indicated in the text were immediately diluted with phosphate-bu�ered

saline to an OD600 of ca. 0.35 and �xed with 0.4% (v/v) formaldehyde. Flow cytometric analysis

of GFP �uorescence levels was performed in a GalliosTM �ow cytometer (Beckman Coulter Inc.,

Indianapolis, IN, USA) equipped with an argon ion laser of 15 mW at 488 nm as the excitation

source. Size-related forward scatter signals gathered by the cytometer were analyzed using the

Cy�ogicTM 1.2.1 software (CyFlo Ltd., Turku, Finland) to gate �uorescence data only from bacteria

in the stream. The green �uorescence emission was detected using a 530/30-nm band pass �lter

set. Data for > 15, 000 cells per experiment were collected, and the Cy�ogicTM 1.2.1 software was

used to calculate the geometric mean of �uorescence per bacterial cell (x-mean) in each sample.

Determination of GFP �uorescence by spectro�uorimetry Fluorescence in samples from

bioreactor cultures was determined by taking 200µL technical triplicates of the cell suspension and

the corresponding �ltrates into a 96-well microtiter plate. The �uorescence was quanti�ed at 485

nm (excitation) and 535 nm (emission) in a �uorescence microplate analyzer (Synergy 2, BioTek

Instruments, Inc., Winooski, VT, USA). The yield of GFP on biomass (YGFP/X, in arbitrary

�uorescence units (A.F.U.) g−1CDW) was derived from these measurements.

Kinetics of GFP accumulation in bioreactor cultures The trajectory of GFP increase was

analyzed throughout the growth curve in batch cultures. To eliminate the maturation time as a

possible error factor (e.g., due to varying growth rates and cultivation times), a factor, termed

πmax, was implemented to describe the increase of GFP over time. This factor is analogous to

π, the speci�c growth rate, which describes the increase of biomass over time during exponential

growth. The corresponding equation is:
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CP = C0
P · eπmax·t

where CP is the GFP concentration (in A.F.U L−1), C0
P is the GFP concentration at t = 0 h, πmax

is the maximum speci�c rate of GFP formation (in h=1), and t is time (in h).

Cell viability

We resorted to the propidium iodide (PI, a strong DNA intercalating agent) test, based on dye

exclusion, to estimate the cell viability in samples from shaken-�ask cultures. Cells having intact,

polarized membranes are able to interact with and to exclude charged molecules like PI, while dead

or seriously damaged bacteria become stained with the dye (Nikel and de Lorenzo, 2012). Flow

cytometry analysis was performed to evaluate the percentage of PI-stained cells as a measure of

cell viability. Measurements were performed in a GalliosTM �ow cytometer (Beckman Coulter Inc.),

using the argon ion laser at 488 nm as the excitation source. The characteristic PI �uorescence

emission at 617 nm was detected using a 620/30-nm band pass �lter array. PI (Life Technologies

Corp., Grand Island, NY, USA) was used from a freshly-prepared stock solution at 0.5 g L=1 in

water and added to a �nal concentration of 1.5mgL=1 to the cell suspension. Cells were stained

for 30 min in the dark, and measured thereafter.

Quantification of glucose and organic acids

The concentration of residual glucose and citrate in the supernatants was quanti�ed using com-

mercial kits according to the manufacturer's instructions (R-Biopharm AG, Darmstadt, Germany).

The evolution of gluconate was also followed using a similar procedure, using a kit from Megazyme

International Ireland (Bray, Ireland). In either case, control mock assays were conducted by spiking

M9 minimal medium with di�erent amounts of the carbon source under examination.

Determination of ATP/ADP ratios, ATP yields, and the adenylate energy charge

Biocatalytic reactions in the cells were stopped by promptly mixing the samples with 35% (w/v)

HClO4. A 4mL sample was taken with a fast sampling probe directly into 1mL of pre-cooled

(=20 ◦C) HClO4 solution on ice and mixed immediately. The sample was shaken at 4 ◦C for 15min

in an overhead rotation shaker. Afterwards, the solution was neutralized on ice by fast addition

of 1mL of 1 M K2HPO4 and 0.9mL of 5 M KOH. The neutralized solution was centrifuged at

4 ◦C and 22,000 r.p.m. for 10min to remove cell debris, and precipitated proteins and KClO4.

The supernatant was kept at =20 ◦C for batch high pressure liquid chromatography (HPLC) mea-

surements. At each sampling time, a broth sample containing cells and a �ltrated sample without

cells was treated according to this procedure. Nucleotide analysis was performed by reversed-phase
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ion-pair HPLC. The HPLC system (Agilent Technologies GmbH, Waldbronn, Germany) consisted

of an Agilent 1200 series auto-sampler, binary pump, thermostated column compartment, and a

diode array detector set at 260 and 340 nm. The nucleotides were separated and quanti�ed on a

reversed-phase C18 column combined with a security guard column (Supelcosil LC-18-T, 25 cm

x 4.6 mm, 3 µm particle size, equipped with 2 cm Supelguard LC-18-T replacement cartridges;

Supelco Inc., Bellefonte, USA) at a constant �ow rate of 1 ml min−1. The mobile phases were

[i] bu�er A [0.1 M KH2PO4/K2HPO4, with 4 mM tetrabutylammonium sulfate and 0.5% (v/v)

CH3OH, pH = 6.0] and [ii] solvent B [70% (v/v) bu�er A and 30% (v/v) CH3OH, pH = 7.2]. The

following gradient program was implemented to separate the nucleotides in the samples: 100%

bu�er A from 0 min to 3.5 min, increase to 100% solvent B until 43.5 min, remaining at 100%

solvent B until 51 min, decrease to 100% bu�er A until 56 min, and remaining at 100% bu�er A

until 66 min.

The adenylate energy charge (AEC) is a quantitative measure of the relative saturation of high-

energy phospho-anhydride bonds available in the adenylate pool of the cell (Atkinson and Walton,

1967; Chapman et al., 1971), and can be expressed according to the formula:

AEC = ([ATP] + 0.5 · [ADP])/([ATP] + [ADP] + [AMP])

The AEC values were derived from the experimental measurements of each adenine nucleotide in

the samples. The amount of ATP available per unit of biomass (YATP/X, in µmol ATP g−1CDW )

was also calculated.

Calculation of maintenance demands

Maintenance demands on glucose (mS , in gglucoseg
−1
CDWh−1) were calculated by following the Pirt's

equation (Pirt, 1965):

qS = mS + µ/YX/S,true

where qS is the speci�c rate of glucose consumption (in gglucoseg
−1
CDWh−1), µ is the speci�c growth

rate (in h=1), and YX/S,true is the true yield of biomass on glucose (in gCDWg−1glucose).

A linear regression was used to calculate mS values through a weighted least-squares regression.

This method allows to take into account the variance of each data point individually, instead of

assuming a constant variance. Weighted least-squares regression minimizes the error estimate (s)

according to the following equation:

s =
∑
i

ωi · (yi − ŷi)

where ωi is the i-th weight, and yi and ŷi are the measured data points and the data points derived

from regression, respectively. The weights determine how much each value in�uences the �nal
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parameter estimate (Fuller, 2009). Therefore, the �t is less in�uenced by data points of higher

variance (σ2i ) than sampling points with lower variance. The weights are calculated using the

following equation:

ωi = 1/σ2i

Statistical analysis

The reported experiments were independently repeated at least twice (as indicated in the text), and,

unless indicated otherwise, the mean value of the corresponding parameter ± standard deviation

is presented. All continuous cultivations were carried out in independent biological triplicates, and

each sample was additionally taken in technical triplicates. Di�erences in results were evaluated

via a two-tailed Student's t-test de�ning a P -value < 0.05 as signi�cant.

C.3. Results and Discussion

Streamlined-genome Pseudomonas putida KT2440 as a chassis for heterologous protein

production: design and construction of robust microbial cell factories

Recent e�orts in designing adequate microbial cell factories have focused mostly in the deletion or

insertion of a few genes that were deemed a priori candidates for manipulation. In this work, we

evaluated the properties of SG strains derived from P. putida KT2440 under conditions compatible

with both laboratory environments and industrial production. As part of a program of gene

reduction, most of the elements supposedly unnecessary for the core reactions within the cells were

sequentially eliminated. Figure C.1 and Table C.1 summarize the genomic deletions in each strain

and the localization of these elements. In particular, strain EM383 carries extended deletions that

would make it a strong candidate as a bacterial host for cloning and gene expression. While the

fundamental phenotypic traits gained by deleting the genomic segments at stake have been recently

documented (Martínez-García et al., submitted 2014), the pertinent question that prompted this

study has been how do these mutants behave under the growth conditions and physiological regimes

imposed by an industrial operation. And, importantly, can their emerging properties of the strains

be exploited for improving heterologous protein production?
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Enhanced process parameters and energy profile of streamlined-genome derivatives of P.

putida KT2440 in continuous cultures

Biomass yield, carbon balances, and maintenance coefficients

Figure C.2.: Summary of the growth parameters
for the di�erent strains under study in glucose-
limited chemostat cultures. Shown are (A) the
biomass yield coe�cient (YX/S), calculated at three dif-
ferent dilution rates (D), and (B) the maintenance coe�-
cient (mS). The growth parameters were calculated based
on three independent biological experiments conducted in
triplicate, and the bars represent the mean value of the
corresponding parameter ± standard deviations.

The starting point in the characterization of

the strains under study was the setup of con-

tinuous cultivations to explore the key kinetic

and process parameters of each strain at di�er-

ent growth rates (see section C.6 `Supplemental

material', Figure C.6). To this end, we started

by analyzing biomass yields, a measure re�ect-

ing the e�ciency of the substrate conversion

into cell components. Yield coe�cients were

calculated in glucose-limited continuous culti-

vations at steady-state conditions for various

D values (Figure C.2A). The mutant strains

showed a higher YX/S value (statistically sig-

ni�cant, P < 0.05) at all growth rates when

compared to the wild-type strain. The highest

di�erence (ca. 12%) was observed when com-

paring strain EM383 with wild-type KT2440 at

D = 0.1 h=1. The di�erences between P. putida

EM329 and EM383, on the contrary, were not

statistically signi�cant. The carbon emission

rates (i.e., CO2) di�ered signi�cantly between

the strains. Averaging over all the tested D

values, strains EM329 and EM383 had 9% and

16% lower CO2 evolution rates, respectively,

as compared to P. putida KT2440. This re-

sult suggests that the carbon substrate saved

by-passing the synthesis of some cellular com-

ponents (e.g., �agella) can be used for macro-

molecular biosynthesis, accompanied by a low

CO2 evolution, an interesting trait for biopro-

cesses that depend on biomass formation. The next relevant question was whether these di�erences

in biomass yields also correlate with energy maintenance in the cognate strains.

The maintenance demand of a speci�c microorganism is an intrinsic characteristic of utmost im-
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portance for industrial applications and for the e�cient design of production processes. As it

measures the amount of carbon source (and ATP) needed to maintain minimal functions within

the cell other than generation of more biomass (i.e., non-growth processes), the lower the mS

value is for a given strain and/or culture condition, the higher the carbon available to be used in

catabolism (and, consequently, in biocatalysis). We explored this trait in the SG strains in the

aforementioned glucose-limited continuous cultivations (Figure C.2B). Maintenance was calculated

via the speci�c rate of glucose uptake at di�erent D values. The linear relationship between qS and

the respective growth rate was monitored over the range of D values comprised between 0.1 and

0.6 h=1. Expectedly, as D increased, so did the qS values for each strain. By applying the Pirt's

equation, an mS of 0.052±0.002 gglucoseg
−1
CDWh−1 (corresponding to 0.29mmolglucoseg

−1
CDWh−1) was

calculated for the wild-type P. putida strain. Note that no by-product formation needs to be taken

into account for the strains considered, as P. putida does not produce any excretion metabolite

under these conditions (Chavarría et al., 2013; del Castillo et al., 2007). In fact, the carbon bal-

ances for all three strains showed an excellent closure (within the range 100± 2%) just by taking

into account the formation of biomass, CO2 evolution, and the concentration of residual glucose in

the culture medium (see section C.6 `Supplemental material', Figure C.7).

The mS calculated from our experimental data is in the range of the mS values reported by van

Duuren et al. (2013) for wild-type strain KT2440 in a similar chemostat setup. Vallon et al.

(2013) also found mS values in the range of those reported here when studying a P. putida based

whole-cell biocatalysis process. The authors also pointed out that low mS values seem to be typical

for Pseudomonas species. For the sake of comparison with a well established bacterial host used in

industrial applications, the mS calculated for P. putida KT2440 in this study was ca. 28% lower

than that reported by Nanchen et al. (2006) for wild-type E. coli MG1655 in a similar glucose-

limited continuous culture. Interestingly, the two SG counterparts of P. putida KT2440 had lower

mS values than their parental strain. Speci�cally, strains EM329 and EM383 showed a reduction

in their characteristic mS values of 17% and 35%, respectively, when compared to the wild-type

KT2440 strain (P < 0.01). The corresponding YX/S,true values were 0.47 gCDWg−1glucose for strain

KT2440, and 0.49 gCDWg−1glucose for both EM329 and EM383. While the changes observed between

the mutants and the wild-type strain were statistically signi�cant, the di�erence when comparing

the two SG variants was not.

In general, and according to the data available in the literature, maintenance coe�cients of Gram-

negative organisms grown in a de�ned glucose-containing medium vary from ca. 0.05 to 0.5

gglucoseg
−1
CDWh−1 (Atkinson et al., 1967; Kooijman et al., 1992; Russell, 2007; Schulze et al., 1964).

From this point of view, the calculated maintenance demands of P. putida and its derivatives lie

within the lower end of the cited range of known mS values. The emerging picture is that the dele-

tion of cellular components and structures that spend energy (e.g., �agella assembly and motility)

resulted in a reduction in maintenance demands in P. putida , therefore making the SG strains

appealing production hosts. The mS values can also be transformed into ATP demands to directly
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visualize energy expenditures related to maintenance by taking into account some stoichiometric

considerations. The Entner-Doudoro� pathway in P. putida yields 1 mole of ATP and 1 mole of

NADH per mole of glucose consumed. Additionally, the tricarboxylic acid cycle forms 4 NADH

and 1 FADH per each acetyl-coenzyme A, which, for the sake of simplicity in the calculations, can

be lumped into 5 NADH. In consequence, 1 glucose molecule yields 1 ATP and ca. 11 NADH. As-

suming a P/O ratio of 1.75, 21 ATP per glucose are formed via oxidative phosphorylation. Under

these assumptions, the mATP values (in molATPg
−1
CDWh−1) were 1.09± 0.06 for P. putida KT2440,

and 0.91 ± 0.02 and 0.71 ± 0.05 for strains EM329 and EM383, respectively, thereby mirroring

the trend observed in the mS values among the strains. According to these �gures, EM329 and

EM383 had a reduction of 17% and 35%, respectively, in the ATP needed for non-growth processes

as compared to the parental strain. In all, these �gures are likely to correlate with the reduced

energy requirements due to the lack of �agella. This trait, in turn, encompasses two aspects: [i]

reduced energy needs to synthesize and assemble �agellar proteins, and [ii] low energy requirements

associated with �agellar operation and motility.

Energy status

During industrial production conditions, bacterial cells are constantly challenged with increased

energy demands. The energetic capacity of the cells can be estimated via several physiological

parameters, such as [i] the ATP/ADP ratio, [ii] the amount of ATP and the amount of total

phosphorylated forms of adenine available per unit of biomass (YATP/X and YAXP/X, respectively),

and [iii] the AEC. The AEC usually gives a deeper insight into the energy state of the cells than

the ATP/ADP ratio does, because it considers the relative contribution of all three phosphorylated

forms of adenine. The energy capacity of the strains under study was addressed in glucose-limited

continuous cultivations at di�erent D values (Figure C.3). At all the D values tested, strain

EM383 consistently had a statistically signi�cant increase in the ATP content and a higher AEC

compared to both EM329 and KT2440 (P < 0.01) (Figure C.3A and C). The total amount of

the three possible phosphorylated forms of adenine was also high in the mutants, and particularly

in strain EM383 at D = 0.6 h=1 (Figure C.3B). The same phenomenon holds true when strains

EM329 and KT2440 were compared side-by-side; the mutant having higher YATP/X and AEC

values than the wild-type strain (P < 0.01). Notably, under fast growth conditions, the di�erence

in the ATP availability between strain EM383 with respect to both EM329 and KT2440 was more

than doubled (Figure C.3A). The general trend, evidenced in either reduced genome strain, was

to have a higher YATP/X and an increased AEC at mid-range growth rates (D = 0.3 h=1) than at

low (D = 0.1 h=1) or high (D = 0.6 h=1) growth rates. At the highest D, the AEC value dropped

in all the strains, yet P. putida EM383 managed to keep a higher level of intracellular ATP even

under these fast growth conditions, in clear contrast to the other two strains. These results are
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Figure C.3.: Characterization of energy param-
eters for the di�erent strains under study in
glucose-limited chemostat cultures. Shown are (A)
the yield of ATP on biomass (YATP/X), (B) the yield of to-
tal nucleosides phosphates on biomass (YAXP/X), and (C)
the adenylate energy charge (AEC) of the cells at three
di�erent dilution rates (D). The availability of phospho-
rylated adenine forms inside the cell and the AEC calcu-
lations are based on three independent biological experi-
ments conducted in triplicate, and the bars represent the
mean value of the corresponding parameter ± standard
deviations.

fully consistent with the decreased mainte-

nances in the SG strains explained above, both

at the substrate and ATP demands.

Taken together, the results obtained in the

glucose-limited continuous cultivations above

suggested that both P. putida EM329 and

EM383 have a number of physiological advan-

tages over the wild-type KT2440 strain that

could be potentially exploited for industrial

purposes - such as expressing foraneous DNA.

The systematic evaluation of these physiolog-

ical traits on the background of heterologous

protein production is explained in the next sec-

tions by adopting a model system which mimics

industrial conditions.

Evaluation of streamlined-genome strains

EM329 and EM383 as hosts for heterologous

protein synthesis in batch cultures

Shaken-�ask cultivation was selected as the �rst

step in the characterization of the strains as mi-

crobial cell factories. Growth and physiological

parameters as well as recombinant protein pro-

duction were evaluated for each strain as ex-

plained below.

Growth parameters and kinetics of GFP accu-

mulation

GFP was selected as the model protein to study

heterologous protein synthesis in the di�erent

strains used in this study. A standardized ver-

sion of gfp, derived from plasmid pSEVA637

(Silva-Rocha et al., 2013), was cloned into a

vector in which the gene transcription is under

control of an IPTG-inducible expression system

(i.e., a LacIQ/Ptrc element). The resulting plas-

mid, termed pS234G (Table C.1, Figure C.4A),
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Table C.2.: Growth and protein synthesis parameters in shaken-�ask cultures of di�erent recombinant
P. putida strainsa.

Strain Plasmidb Growth parameters Protein synthesis

µcmax (h
=1) CDWd (g L=1) πcmax (h

=1) Yc
GFP/X (A.F.U. g−1CDW)

KT2440 None 0.38± 0.01 2.6± 0.9 - -

pSEVA234 0.35± 0.02 2.1± 0.3 - -

pS234G 0.28± 0.03 1.7± 0.5 0.32± 0.06 2, 125± 182

EM329 None 0.47± 0.02 2.9± 0.1 - -

pSEVA234 0.45± 0.01 2.9± 0.4 - -

pS234G 0.42± 0.04 2.7± 0.3 0.41± 0.02 2, 613± 107

EM383 None 0.53± 0.01 3.4± 0.2 - -

pSEVA234 0.48± 0.02 3.1± 0.5 - -

pS234G 0.46± 0.03 2.9± 0.4 0.45± 0.01 3, 047± 115

aCells were grown batchwise in M12 minimal medium containing 10 gL=1 glucose as the sole
carbon source and 1 mM IPTG was added in the cultures of the recombinant strains as indicated
in Materials and methods. Results represent the mean value of the corresponding parameter ±
standard deviation of triplicate measurements from at least two independent biological replicates.
b Plasmid pS234G, a derivative of vector pSEVA234, carries gfp under control of an inducible
LacIQ/Ptrc element.
c Kinetic parameters were determined during exponential growth. µmax, maximum speci�c
growth rate; πmax, maximum speci�c rate of GFP formation; YGFP/X, yield of GFP on biomass;
A.F.U., arbitrary �uorescence units; -, not applicable.
d Final biomass concentration at 24 h. CDW, cell dry weight.

was introduced in P. putida KT2440 and its SG derivatives, and their behavior in shaken-�ask

cultures was evaluated. The impact of introducing plasmid pS234G in these strains depended on

the bacterial host, as both mutants had a lower reduction in their µmax values than the wild-type

did (Table C.2). In strain KT2440, introduction of the gfp-expressing plasmid lowered µmax in

ca. 26% when compared to the plasmid-less counterpart. In the SG derivatives, this reduction

never surpassed half that value (ca. 12%), demonstrating that the metabolic burden caused by

plasmid maintenance and heterologous protein production had a low impact in strains EM329 and

EM383. Both strains attained not only higher cell densities at the end of the 24-h cultivation

period than KT2440, but they also grew faster irrespective of the plasmid they were transformed

with. For instance, P. putida EM383/pS234G had an 1.6-fold increase in µmax with respect to

KT2440/pS234G, and it also reached an 1.7-fold higher �nal CDW concentration.

Another evident di�erence was that GFP had a better induction pro�le in strains EM329 and

EM383 than in wild-type KT2440 (Figure C.4). In fact, the di�erence between the induced versus

the non-induced state in the mutants was twice as much as that observed in the parental P. putida
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Figure C.4.: Flow cytometry analysis of the green �uorescent protein accumulation in the strains
under study. (A) Schematic representation of plasmid pS234G, carrying gfp under the transcriptional control of
the IPTG-inducible Ptrc promoter. The activity of Ptrc is controlled by the transcriptional regulator LacIQ. The
transcriptional terminators included in the plasmid backbone are depicted as T0 and T1. The elements in this
outline are not drawn to scale. P. putida KT2440 (B), EM329 (C), and EM383 (D) carrying pS234G were grown on
M12 minimal medium containing glucose and harvested in mid-exponential phase. Gray and green peaks represent
non-induced and induced cells, respectively. The vertical dashed line indicates the background �uorescence of the
corresponding strain carrying the empty pSEVA234 plasmid, used as a negative control. The results shown are from
a representative experiment, and the fold change in �uorescence upon induction is indicated in each case. A.F.U.,
arbitrary �uorescence units.

strain (Figure C.4B). The compactness of the Gaussian curves in �ow cytometry experiments of

both EM329 (Figure C.4C) and EM383 (Figure C.4D) also re�ects a more homogenous induction

of individual cells than in the wild-type strain, for which the curve in the cell counts versus

GFP �uorescence plot was wider. When the trajectory of GFP formation was followed in batch

cultures along the time, relevant di�erences were also observed (Table C.2). As previously noted,

recombinant protein production is known to be proportional to growth the substrate is not limiting

the growth rate. Accordingly, the maximum speci�c rates of GFP formation more or less paralleled

µmax values in each strain, with the expected result of fast GFP accumulation in the SG strains

(e.g., in P. putida EM383, µmax was 1.4-fold higher than in strain KT2440). In order to eliminate

the maturation time as a possible error factor due to varying lag phases, µmax and cultivation times,

the cell density of the culture was correlated to the GFP �uorescence emitted. A linear regression

during the exponential growth phase resulted in a correlation factor of GFP �uorescence per unit

of CDW, which allowed calculating the yield of recombinant protein (YGFP/X). When biomass

formation was also taken into account to calculate the corresponding YGFP/X values, EM329 and

EM383 also outcompeted P. putida KT2440 in 20% and 39%, respectively.

Enhanced cell viability of the streamlined-genome strains expressing gfp

The slight decrease in µmax and in the �nal cell density of the recombinant strains expressing gfp
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(Table C.2) suggested that the metabolic burden imposed by protein accumulation could a�ect

�nal yields and the overall process performance. We asked the question of whether cell viability

could be a�ected as well (Díaz Ricci et al., 2000), and we resorted to the PI exclusion test to

explore this possibility (see section C.6 `Supplemental material', Figure C.8). While P. putida

KT2440 showed a decrease in cell viability in the presence of pS234G as compared to the same

strain with an empty plasmid, neither EM329 nor EM383 showed di�erences in the PI staining

pro�le. Moreover, the percentage of PI-stained cells was lower for both SG strains than for the

parental host, irrespective of the plasmid they carry. Among the strains tested, P. putida EM383

showed the highest cell viability. Notably, when the strains bearing plasmids were compared with

their plasmid-free counterparts, no decrease in cell viability was observed in strains EM329 and

EM383 (data not shown). When the same comparison was established for KT2440, a signi�cant

increase (ca. 25%) of the PI-positive population was detected in the strains carrying plasmid DNA

as compared to the plasmid-free host, a �gure in agreement with the results of Table C.2. These

results suggest that the SG P. putida strains have not only a high ability of carrying and replicating

heterologous plasmid DNA (see below), but also that they tolerate the metabolic burden commonly

associated with plasmid replication better than wild-type P. putida KT2440.

Plasmid stability

All the recombinant cells were able to maintain the recombinant plasmid after 24 h of cultivation,

with no signi�cant di�erences among the three strains. However, when the percentage of plasmid-

bearing cells was estimated after 48 h of cultivation, a signi�cant di�erence in the segregational

stability of pS234G could be observed. While P. putida KT2440 and EM329 cells retained the

plasmid up to 81% ± 1% and 85% ± 4% of the total bacterial population, strain EM383 had a

percentage of recombinants that reached 100%± 2% (P < 0.05, when compared to the other two

strains). In other words, strain EM383 did not show any signi�cant plasmid loss after prolonged

cultivation, re�ecting a higher stability of extra-chromosomal DNA. This phenomenon is consis-

tent with the absence of some recombinogenic features in this strain (e.g., the Tn7 and Tn4652

transposases) that are known to bring forth genetic instability (Hõrak et al., 1998; Schneider et al.,

2004). Deletion of these elements results in signi�cant genome and plasmid stabilization, which

in turns is bene�cial in industrial processes with long fermentation runs (Díaz Ricci et al., 2000;

Soriano et al., 1999).

Kinetics of GFP formation in bioreactor batch cultures: influence of controlled aeration and

carbon source on growth and profile of protein synthesis

Judging by the process parameters measured in shaken-�ask cultures, the viability pro�le of the

recombinants under these conditions, and the genetic stability of the cells, both SG strains seem
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Figure C.5.: Characterization of growth parameters and protein production kinetics for the di�erent
strains under study in batch bioreactor cultures. Shown are the speci�c growth rate (µmax) for cells grown
on (A) glucose and (B) citrate, as well as the e�ect of plasmid maintenance and heterologous protein production
under these growth conditions. The accumulation of the green �uorescent protein (GFP) in cultures of the strains
carrying pS234G was assessed during exponential growth on M12 minimal medium containing either glucose or
citrate through (C) the maximum speci�c rate of GFP formation (µmax) and (D) the yield of GFP on biomass
(YGFP/X). The growth parameters and protein production kinetics were calculated based on three independent
biological experiments conducted in triplicate, and the bars represent the mean value of the corresponding parameter
± standard deviations.

to be preferable over strain KT2440 as bacterial hosts for protein synthesis. We decided to fur-

ther evaluate their capabilities as microbial cell factories in the well-controlled environment of a

bioreactor to exploit their biotechnological potential under conditions compatible with industrial

production. A detailed physiological characterization was carried out in a 3.7-liter scale bioreactor

with a working volume of 1.5 liter. Growth parameters and recombinant protein production capac-

ities were calculated for the SG strain and thoroughly compared to the wild-type counterpart.

Growth parameters

The derivative SG strains reached statistically signi�cant higher µmax values than the wild-type

KT2440 strain in all the cultivations performed (Figure C.5). When grown on glucose as the sole

carbon source, EM329 showed a 7% and EM383 a 10% increase in µmax (Figure C.5A, P < 0.05).

When using citrate as the carbon source, EM329 showed a 4% and EM383 a 11% faster growth
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(Figure C.5B, P < 0.05). When comparing the two SG strains, mutant EM383 also reached a

statistically signi�cant higher µmax compared to strain EM329. Besides, both EM329 and EM383

attained higher �nal CDW concentrations when grown on glucose as the sole carbon source (9% and

13%, respectively when compared to P. putida KT2440; P < 0.05) (see section C.6 `Supplemental

material', Figure C.9), mirroring the results already observed in shaken-�ask cultures (Table C.2).

This di�erence was not observed on citrate, as all the strains reached a similar �nal biomass density

(see section C.6 `Supplemental material', Figure C.10). In all, these results show the importance

of adequate aeration and mixing within the bioreactor. In the �rst place, all the strains attained

higher µmax values and �nal cell densities in bioreactor cultivations as compared to the same traits

in shaken-�ask cultures. On the other hand, as both P. putida EM329 and EM383 are devoid of the

�agellar machinery that would enable the cells to explore di�erent microenvironments within the

bioreactor, they tend to sediment and, if not properly stirred, the cells will likely become limited

in O2, as previously hinted by Martínez-García et al. (2014a). The same stirring speed and air

bubbling applied to the bioreactor to grow P. putida KT2440 enabled a much better growth pro�le

of the SG strains.

All the strains were transformed with the expression plasmid pS234G, carrying gfp, to investigate

recombinant protein production capacity. As a further control, the wild-type strain was also

transformed with the empty vector pSEVA234. Interestingly, the introduction of the empty vector

in KT2440 did not result in a signi�cant decrease in growth (1.5% in average), as it was also

quanti�ed in shaken-�ask cultures (Table C.2). On the basis of these results, the in�uence of the

control vector on the physiology of the cells was deemed negligible. Expression of gfp from plasmid

pS234G, on the contrary, caused an average 6% decrease in the µmax value for the wild-type strain.

On the other hand, expression of gfp in the SG strains did not lead to a signi�cant decrease of

µmax. The general trend of an increase in µmax for the derivative strains previously observed in

all the growth conditions analyzed could also be observed under recombinant protein expression

conditions, particularly when using citrate as the sole carbon source. In fact, when growing on

citrate, P. putida EM329/pS234G and EM383/pS234G reached signi�cantly higher growth rates

(ca. 32% for both strains) than P. putida KT2440/pS234G (Figure C.5A and Figure C.5B, P <

0.05). No signi�cant di�erences, however, were observed within the two derivative strains, as they

grew very similarly and attained very comparable �nal cell densities.

Recombinant protein expression

During exponential growth of the cells, the trajectory of �uorescence increase due to GFP accu-

mulation was found to be exponential as well (see section C.6 `Supplemental material', Figure C.9

and Figure C.10). Under these production conditions, the µmax values were higher in the reduced

genome strains as compared to the wild-type, in an almost carbon source-independent fashion
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(Figure C.5C). The highest di�erences were detected using citrate as the carbon source; under

these conditions, P. putida EM329/pS234G and EM383/pS234G showed an increase of 43% and

48% in µmax, respectively, when compared to the same parameter in P. putida KT2440/pS234G

(P < 0.05). Both derivative strains also had a signi�cantly higher YGFP/X compared to the wild-

type strain (Figure C.5D, P < 0.05), and this trend was again more or less independent of the

carbon source used. For instance, when growing the cells on glucose, EM329 reached 18% higher

yield, whereas EM383 was capable of attaining a 37% higher yield than strain KT2440. On cit-

rate, the di�erences between the YGFP/X values for strains EM329 and EM383 were 20% and 41%,

respectively, as compared to wild-type KT2440. In the exponential growth phase, the volumetric

productivity of GFP was estimated to be 3, 470±9 A.F.U. L−1h−1 for strain EM383/pS234G when

growing on citrate, the highest among the strains and growth conditions tested in this study.

Organic acids formation

One important aspect of industrial fermentations is the spillage of by-products that divert carbon

(and, most often, also cofactors such as ATP or NADPH) needed for the synthesis of the desired

product (Silva et al., 2012). As mentioned in above, P. putida does not secrete metabolites at

a high concentration, as it is the case, for example, of acetate in E. coli fermentations (Wong

et al., 2008). However, when glucose is used as the carbon source, part of the substrate is usually

oxidized by P. putida to gluconate in the cell periplasm by the activity of a glucose dehydrogenase

(del Castillo et al., 2007). Gluconate can leak out of the cell into the culture medium and re-used

as substrate as growth proceeds. When the accumulation of gluconate in the culture medium was

evaluated in the bioreactor cultures, a sharp peak for P. putida KT2440 was observed around

5-6 h of cultivation, reaching 18.5± 3.1 mM (i.e., ca. 3.5 g L=1). In contrast, both SG derivatives

produced less gluconate during the growth phase, its concentration reaching 10.2±1.4 and 9.3±1.5
mM, respectively. These �gures are comparable to those obtained when gluconate formation was

evaluated in cultures of the strains carrying pS234G (data not shown). The kinetics of gluconate

accumulation was very similar among all the strains, and this metabolite altogether disappeared

from the culture supernatants after ca. 8 h as it was likely used by the cells as substrate. As a

consequence of this signi�cant reduction in the oxidation of glucose in the mutants, it is likely that

more carbon is readily available for catabolism, in agreement with the high YX/S values and CDW

concentrations observed in the cultures of both P. putida EM329 and EM383.

C.4. Conclusion

Determinants of successful recombinant protein production, such as the rate and duration of pro-

duction and quality or stability of the product, strongly depend on the physiology of the producer

cell (de Marco, 2013). These traits can be manipulated by metabolic engineering of the host cell,

by genetic engineering of the expression vector, and also by means of process engineering (Rosano
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et al., 2014; Waegeman et al., 2011). However, the vast majority of metabolic engineering e�orts

so far have dealt with the manipulation of genetic parts implanted in a bacterial host, optimization

of the process parameters, and less so with the microbial chassis itself.

At the onset of the many genome projects starting in the mid-1980s, the prevailing idea we had

was that the functions required to sustain life were properly and unequivocally identi�ed. It was

therefore possible to establish a list of the minimum number of functions that would be necessary,

if perhaps not su�cient, to account for the properties of living systems. Cells used to produce

recombinant products are expected to accommodate arti�cial constructs and to behave in the

predicted manner, producing the right products, with the right yield, at the right time. The

emerging picture consistently shows how far we are of such ideal scenario. One of the reasons

for this behavior is our current lack of knowledge about the functionality (and essentiality) of a

number of genes in a wide variety of environmental conditions. In the case of the environmental

bacterium P. putida , the set of genes strictly needed for survival in soil is most likely not the gene

complement appropriate for the e�cient production of heterologous proteins in an industrial setup.

In particular, the deletion of the �agellar operon clearly resulted in a physiological advantage in

our experimental setup, in which motility is not a required feature - and it is even a detrimental

one. Bacteria had evolved �ne-tuned transcriptional control mechanisms to ensure the temporal

production of subsets of �agellar proteins needed for the proper �agellar biosynthesis (Chevance

et al., 2008; Kazmierczak et al., 2013). The elimination of �agella in P. putida KT2440 determines

a surplus of ATP and NADPH (Martínez-García et al., 2014b) that can be potentially funneled

into a heterologous pathway. On top of the absence of the �agellar machinery, the elimination

of the proviral load has been demonstrated to enhance the stress tolerance of P. putida KT2440

(Martínez-García et al., 2014a). In this work, the additive nature of these deletions has been

exposed by exploiting the resulting bacterial chassis in a setup compatible with the industrial

production of heterologous proteins.

The most prominent program of rational `genomic surgery' so far has been carried out by Blattner

and collaborators in the wild-type E. coli strain MG1655, resulting in a series of MDS derivatives

(MDS standing for multiple deletion strain) that acquired advantages (mostly in terms of genetic

stability) for hosting and expressing heterologous genes (Csörgo et al., 2012; Pósfai et al., 2006;

Sharma et al., 2007; Umenho�er et al., 2010). However, while signi�cant reductions of the E. coli

MG1655 genome size have been achieved thus far (Mizoguchi et al., 2007), these strains unavoidably

retain the genomic and biochemical frame of a typical enterobacterium. This is a signi�cant issue

for expression of recombinant genes or pathways that cause stress or demand a high ATP and/or

NAD(P)H availability to achieve full functionality (Na et al., 2010; Nicolaou et al., 2010), as it

is the case with the streamlined P. putida variants examined in this article. Although the side-

by-side comparison of streamlined E. coli and streamlined P. putida as microbial cell factories is

beyond the scope of this work, the results presented above showed without a doubt that the two

SG derivatives of P. putida KT2440 outcompeted the parental strain in every biotechnologically-
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relevant parameter assessed among all the culture conditions tested, particularly in a bioreactor

setup.

As shown above, P. putida EM329 and EM383 are not only sound microbial cell factories on

their own, but they also provide a solid foundation for further targeted manipulations of their

genomes. These forthcoming operations will not only result in enhanced bacterial chassis tailored

for industrial protein synthesis, but they will also shed light on the relevant question about what

is the minimal gene set needed to maintain cell functioning, �tness, and robustness. Moreover,

the combination of these genomic surgery strategies along with the optimization of industrial

cultivation parameters (e.g., by analyzing protein production in fed-batch cultures) will certainly

result in signi�cant improvements of the overall process performance in a variety of biotechnological

applications.
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C.6. Supplemental material

FIG. S1

Figure C.6.: Physiological characterization of (A) P. putida KT2440, (B) P. putida EM329, and (C)
P. putida EM383 in glucose-limited chemostat cultures at di�erent dilution rates (D). Each cultivation
was performed in biological triplicates. D was increased step-wise from D = 0.1 to 0.3 and 0.6 h=1 after �ve residence
times at each D value when a steady state was achieved. Steady states were monitored by the stable carbon emission
rate (CER, black line) and stable optical density measurements (data not shown). Cell dry weight (CDW, black
dots), residual glucose concentration (GLC, red squares), and the adenylate energy charge (EC, blue diamonds)
were measured at steady state conditions after 5 residence times of one speci�c dilution rate. Error bars represent
standard deviations of the biological triplicates.

FIG. S2

Figure C.7.: Carbon balance of glucose-limited chemostat cultures of P. putida KT2440, P. putida

EM329, and P. putida EM383. The carbon provided by glucose served as the 100% carbon input into the
cultivation. Carbon recovery (%) was calculated considering residual glucose concentrations (dark grey), cell dry
weight concentrations (grey), and CO2 emission (light grey). Error bars represent standard deviations of the
biological triplicates.
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FIG. S3
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Figure C.8.: Propidium iodide (PI) exclusion was used to estimate cell viability in P. putida KT2440,
P. putida EM329, and P. putida EM383 with the empty and the recombinant plasmid. Appropriate
dilutions of cell suspensions grown on M12 minimal medium with 10 gL=1 glucose were stained with PI and the
percentage of PI-positive cells was determined by �ow cytometry as detailed in the Material and Methods section.
Box plots represent the median value and the 1st and 3rd quartiles of the geometric mean values of quadruplicate
determinations from three independent cultures, and the asterisks identify signi�cant di�erences at the P < 0.05
level as assessed with the Mann-Whitney U test.
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FIG. S4

Figure C.9.: Physiological characterization in bioreactor batch cultivations of the di�erent strains
carrying plasmids. Batch cultivations were carried out with glucose as sole carbon source in a working volume
of 1.5 liter in biological triplicates. The time course of the cultivations was monitored via biomass concentration
(CDW; black, grey, and light grey dots) and in the case of the strains carrying GFP on the plasmid (pSEVA234G),
the GFP �uorescence [GFP, measured in arbitrary �ourescence units (A.F.U.), dark green, green, and light green
dots] was measured throughout the cultivation.
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FIG. S5

Figure C.10.: Physiological characterization in bioreactor batch cultivations of the di�erent strains
carrying plasmids. Batch cultivations were carried out with citrate as sole carbon source in a working volume
of 1.5 liter in biological triplicates. The time course of the cultivations was monitored via biomass concentration
(CDW; black, grey, and light grey dots) and in the case of the strains carrying GFP on the plasmid (pSEVA234G),
the GFP �uorescence [GFP, measured in arbitrary �ourescence units (A.F.U.), dark green, green, and light green
dots] was measured throughout the cultivation.
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