
Max-Planck-Institut für Metallforschung 
Stuttgart

The effect of capillary forces on adhesion of biological 
and artificial attachment devices 

Emerson Jose de Souza 

Dissertation
an der 
Universität Stuttgart 

Bericht Nr. 202 
September 2007





___________________________________________________________________________

1

The effect of capillary forces on adhesion of biological and 

artificial attachment devices 

Von der Fakultät für Chemie der Universität Stuttgart 
zur Erlangung der Würde eines Doktors der 

Naturwissenschaften (Dr. rer. nat) genehmigte Abhandlung 

Vorgelegt von 
Dipl. Phys. Emerson Jose de Souza 

aus Sao Paulo, Brasilien 

 Hauptberichter:    Prof. Dr. phil. Eduard Arzt 
 Mitberichter:    Prof. Dr. rer. nat. Joachim P. Spatz 
 Tag der mündlichen Prüfung  06.09.2007 

Institut für Metallkunde der Universität Stuttgart 
und

Max Planck-Institut für Metallforschung Stuttgart 

Stuttgart, September 2007 



___________________________________________________________________________

2



___________________________________________________________________________

3

He has made everything beautiful in its time. He has also set eternity in the 

hearts of men; yet they cannot fathom what God has done from beginning to 

end. I know that there is nothing better for men than to be happy and do good 

while they live. 
                   (Ecclesiastes, 3:11-12)
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Modern science cannot answer as many questions as we would like, 

but it can extend our  eagerness for knowledge 

and show us how strange and exciting nature can be 

just below the surface of observable things. 
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Abstract

The presence of a liquid meniscus can cause far greater adhesion between a particle and a 

surface than occurs under dry conditions. Recent studies on biological attachment systems 

have highlighted the unique and important effect of liquid capillarity at the micro- and 

nanometer scale.  The results demonstrate that macroscopic considerations of the classic 

meniscus theory must be modified to take into account new scaling laws and geometric 

relationships. A general description of wetting and capillary condensation as it applies to 

interfaces of small scales and to arbitrary substrates is clearly desirable but remains an 

unsolved challenge.

In this work, I have performed numerical simulations of wet adhesion under less restrictive 

conditions then has been done before. In particular, I calculated the capillary force as a 

function of the distance between two substrates for the general case of different properties 

and different geometries of the substrates. The results are in excellent agreement with 

analytical results and with measurements of the capillary force. They allow us to propose a 

novel, effective method to evaluate the contact angle hysteresis of a liquid bridge between 

arbitrary substrates. The numerical calculations also include the effect of contact splitting 

which has proven to be a powerful mechanism in many biological attachment systems that 

are based on dry adhesion. Our results show that this mechanism does in principle also apply 
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to wet adhesion and that splitting of one large bridge into many smaller ones enhances the 

capillary forces for all possible contact angles. This results in new scaling laws of the 

capillary force as a function of the number of liquid bridges. They predict, for example, an 

unexpected maximal force for moderately hydrophilic surfaces (i.e. contact angles around 70 

degrees) and a maximal force per contact area for cylindrical bridges.  These novel scaling 

laws lead to a deeper basic understanding of wet adhesion and can also serve as an important 

guideline as to how artificial attachment devices can be engineered to have specific 

properties.
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Abstract

Eine flüssige Brücke kann zwischen einem Teilchen und einer Oberfläche eine weitaus 

größere Haftkraft vermitteln als dies in trockenem Zustand der Fall ist. Arbeiten über 

biologische Haftsysteme haben die wichtige Rolle dieser Kapillarkraft in Mikro- und 

Nanometer großen Dimensionen hervorgehoben. Die Ergebnisse machen deutlich, dass das 

makroskopische Bild der klassischen Theorie flüssiger Menisci modifiziert werden muss und 

neue Skalierungsgesetze sowie Geometrieeffekte einschließen muss. Eine allgemeine 

Beschreibung von Benetzungsphänomenen und Kapillarität, die auch in kleinen Dimensionen 

und für beliebige Substratoberflächen Gültigkeit hat, ist zwar sehr wünschenswert aber noch 

nicht realisierbar. 

In der vorliegenden Arbeit präsentiere ich numerische Simulationen der Haftung basierend 

auf  Kapillarität für allgemeinere Bedingungen als dies bisher getan worden ist. Dazu gehört, 

dass die Kapillarkraft als Funktion des Abstandes zwischen zwei Substraten für den 

allgemeinen Fall berechnet wurde, dass die Substrate unterschiedliche Eigenschaften und 

unterschiedliche Geometrien besitzen. Die Resultate stimmen hervorragend mit analytischen 

Ergebnissen überein und mit Messungen der Kapillarkraft. Sie gestatten uns, eine neue, 

effektive Methode vorzuschlagen, um die Hysterese der Kontaktwinkel einer flüssigen 

Brücke zwischen beliebigen Substraten zu bestimmen. In den Simulationen wird auch das 
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Phänomen des Aufspaltens eines Kontaktes (contact splitting) in mehrere untersucht, das als 

wichtiger Haftmechanismus in vielen trockenen biologischen Systemen identifiziert worden 

ist. Unsere Ergebnisse zeigen, dass dieser Mechanismus prinzipiell auch in kapillargestützter 

Haftung auftritt und dass die Aufspaltung einer flüssigen Brücke in mehrere kleinere zu einer 

Erhöhung der Kapillarkraft für alle möglichen Kontaktwinkel führt. Daraus resultieren neue 

Skalierungsgesetzte der Kapillarkraft als Funktion der Anzahl der flüssigen Menisci. Sie 

sagen z.B. voraus, dass die Kraft ein unerwartetes Maximum für schwach hydrophile 

Substrate (d.h. Kontaktwinkel ungefähr 70°) aufweist und die Kraft pro Kontaktfläche 

maximal ist für zylindrische Brücken. Diese neuen Skalierungsgesetze führen zu einem 

tieferen Verständnis der Haftung basierend auf kapillaren Effekten, und sie können auch als 

Grundlage benutzt werden, um künstliche Haftsysteme so zu konstruieren, dass sie bestimmte 

Eigenschaften besitzen. 
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Symbols and Abbreviations 

Symbols:

lv  Surface tension energy between liquid and vapor phases   [N/m2]

ls  Surface tension energy between liquid and solid phases   [N/m2]

sv  Surface tension energy between solid and vapor phases   [N/m2]

Alv  Area between the liquid-vapor phases    [m2]

Als  Area between the liquid-solid phases    [m2]

Asv  Area between the solid-vapor phases     [m2]

E  Absolute total interfacial energy     [N/m2]

F  Absolute total force       [N] 

D  Absolute distance       [m] 

V Volume of the liquid bridge      [m3]

s   Length scale set by the radius of a liquid sphere of volume V [m]

  Contact angle of a droplet on a solid surface    [Deg] 

R1 , R2 Principal radii of curvatures of the liquid bridge   [m] 

H  Mean curvature       [1/m] 

P   Laplace pressure       [1/m] 

Rsub  Liquid-solid contact radius on the flat substrate   [m] 

Rsph  Liquid-solid contact radius on the sphere    [m] 

R  Radius of a sphere        [m] 

y(x) Parameterization of the surface profile  

lcap Capillary length       [m] 

  Difference between the liquid and vapor densities   [Kg/m3]

n  Number of liquid bridges 
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1 Introduction

1.1 Biological Motivation 

Biomimetic concepts and their transfer to technical applications have become an increasingly 

important field of research during recent years. If it is possible to understand how functional 

mechanisms operate in nature and which design principles they employ, it may also be 

possible to replicate these principles in artificially made constructions. 

Biological attachment systems constitute one example, among many others, of a natural 

functional system that is intensely studied in an attempt to copy its functional mechanisms in 

order to design and fabricate highly adhesive technological surfaces. The fact that different 

kinds of animals stick to a large variety of different surfaces requires optimized attachment 

organs that allow these animals not only to attach but also to detach fast and efficiently. To 

understand how this is accomplished is a very interdisciplinary field of research 1, 2 that 

involves different types of interactions between the organs and the substrates that act at 

different length and time scales. The study of these interactions has already triggered many 

subsequent investigations such as for example the patterning of functional polymeric surfaces 

or the study of smart polymeric structures. 

Several recent studies have highlighted the contribution of capillarity, i.e. of wet adhesion, to 

the adhesion performance of some animals. Examples comprise the mm-sized adhesion pads 

of tree frogs 3-5, the µm-large attachment organs of flies 6-8 and the nm-scale hair-like spatulae 

with which geckos adhere to surfaces 9, 10. Even though geckos are able to stick to 

hydrophobic surfaces, their attachment performance has been shown to be influenced by air 

humidity 11. This finding suggests that a few monolayers of water that are always present on 

natural surfaces are sufficient to initiate the formation of liquid menisci between the animals’ 

attachment organs and the substrate. To what extend these menisci contribute to the total 
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adhesion force of the animals is, however, unknown. Although well established models of dry 

molecular adhesion exist 12, a coherent description of capillarity and wetting phenomena at 

the nanometer scale is still missing. Such a description is necessary, however, to fully 

understand – and possibly mimic - the attachment mechanisms in animals and plants.  

In this work, I combine numerical and experimental investigations of the capillary force to 

modify and enlarge the classical macroscopic picture of the theory of liquid menisci. 

Particular emphasis is put on the role of size effects and geometric conditions in capillarity 

since these are believed to be important parameters in natural adhesive systems. The results 

of my studies suggest new scaling laws of the capillary force and also comprise a novel 

experimental technique to measure, and thus to verify, the theoretical findings. In view of 

natural attachment systems, the results allow to make some interesting predictions about their 

functional mechanisms.  

1.2 Literature review and missing investigations 

1.2.1 Literature review 

Because of the large body of literature on capillarity the following paragraph on literature is 

subdivided into several sections. The first one contains a short chronological overview over 

the development of research on capillarity and discusses some fundamental aspects of 

pioneering studies. Subsequent sections focus on the role of different geometrical 

configurations of the substrates that are related to our studies presented in chapters 2 to 5. 

Chronological overview 

Capillary phenomena are known for a long time and are a multidisciplinary field of research. 

The mathematician Brook Taylor 13 first described the ascension of water between two glass 
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plates and gave an approximation of its shape in terms of hyperbolic functions. Later, Segner 

14 introduced the notion of surface tension to explain the shape of a liquid interface. Laplace 

15 created a quantitative basis for these ideas and related the mean curvature of a liquid-air 

interface to the pressure difference between the adjacent phases. In the absence of gravity, the 

liquid-air interface has a constant mean curvature. A second equilibrium condition is due to 

Young 16 and Dupre: The tangential components of all surface tensions acting on a three-

phase contact line (between liquid, solid and air) have to balance in mechanical equilibrium. 

As a consequence, the liquid-air interface has to form a certain contact angle with the 

substrate which is fixed by the relative values of the respective surface tensions.  

Gauss 17 first characterized the shape of a mechanically equilibrated liquid-air interface as 

having a minimal area determined by the interfacial and gravitational energies. Stable 

equilibrium configurations are identified with local minima of the total energy, which 

provides the basis for robust numerical schemes to compute equilibrium shapes of a liquid 

interface.  It can be shown by use of variational calculus that any minimum-energy 

configuration of a liquid interface satisfies the condition of Laplace and Young-Dupre. 

Statements about the stability of a configuration, however, cannot be inferred from the 

conditions of mechanical equilibrium by Laplace and Young-Dupre. It may happen that a 

liquid shape is mechanically stable but represents a saddle point in the energy landscape. The 

stability of such a configuration has to be determined by further criteria, for instance, by use 

of the second variation of the energy.

Delaunay 18 first constructed the complete set of surfaces of revolution bearing a constant 

mean curvature. The generating curves have been termed unduloids and nodoids according to 

their wavy, and curly self-intersecting shapes, respectively. Undoloid and nodoid surfaces 

make up the family of Delaunay surfaces which contain the catenoid, the cylinder, and the 
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sphere as special limiting shapes. All these shapes can be employed to describe liquid bridges 

between parallel and chemically homogeneous plates in the absence of gravity. Plateau 19, 20

confirmed experimentally that shapes of a liquid bridge between two rings correspond 

qualitatively to those proposed by Delaunay and showed that the maximum length of a stable 

uniform cylinder of liquid roughly equals three diameters.  

The literature on capillarity increased dramatically after these fundamental works. Besides    

constructing possible equilibrium shapes of liquid droplets and computing the Laplace 

pressure as function of the liquid volume, many scientists became interested in the force 

exerted between two substrates by means of a liquid bridge. These capillary forces have been 

investigated extensively for a variety of situations. The non-linearity of the capillary equation 

in combination with the variety of substrate geometries leads to a large number of particular 

solutions. In the following review, we will focus solely on literature dealing with theoretical 

calculations of liquid bridges between two solid plates with free contact lines characterized 

by the equilibrium contact angles between the liquid and the plates. We also discuss some 

experimental works to compare standard models with realistic results.  

Models for plate-plate geometries 

Concus and Finn21-24 performed the first rigorous mathematical study of the capillary 

equation for   neutrally buoyant conditions and provided a proof for the existence of certain 

classes of solutions. In particular, they proofed the existence of a rotationally symmetric 

solution with an isolated singularity and discussed the procedure for constructing such a 

solution and an asymptotic power expansion for it. They mention that unduloids, which may 

describe the surface profile of a stretched liquid bridge, can be generated by rolling an ellipse 

without slip along an axis and rotating the resultant curve around this axis.
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Vogel 25-27 and Langbein 28-30 formulated criteria for the stability of rotationally symmetric 

liquid bridges for arbitrary contact angles. A more detailed description of their studies is 

given in chapter 3. Lowry 31-33 gave a complete scheme to classify the local stability of 

solution branches from the corresponding curves in the pressure-volume plane. Local stability 

at fixed liquid volume, for instance, is lost or gained when passing a turning point in the 

pressure-volume diagram. All of the mathematical analyses mentioned above had 

fundamental impact on future work, but they are difficult to apply to experiments.  

The stability of liquid bridges between coaxial circular disks was extensively investigated for 

boundary conditions with prescribed contact radii 34-38. In this case, the equilibrium contact 

angle is not determined by surface tensions. Later investigations made by Fortes 39 and Carter 

40 considered a free contact line on homogeneous and parallel substrates and obtained force-

displacement curves for arbitrary but identical contact angles. Later, Zhou 41, 42 extended the 

results of Finn and Vogel showing that a unique stable liquid bridge exists between two 

plates of given separation for any value of the contact angles and for any liquid volume 

greater than or equal to a critical volume. Besides, she proved that Carter’s stability criterion 

is also true for the general case in which the two contact angles are different.

Models for sphere-sphere and plate-sphere geometries 

Calculations of the capillary force have also been carried out for a liquid bridge between two 

spheres 43-46 and between a sphere and a plate 12, 47-69. These geometries were frequently used 

in experimental studies since they are easier to design than perfectly flat and parallel plates. 

Solutions were obtained by applying different approximations and only few exact solutions of 

the capillary equation can be found in the literature, for instance in 70, 71 for sphere-sphere-

configurations and in 72-74 for sphere-plate configurations. These results are either expressed 

in terms of elliptical integrals or dimensionless parameters, which is not convenient for the 
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analysis of experimental data. Consequently, most authors prefer to present their own 

calculation, which has led to a large variety of different approximations that often refer to 

special cases and conditions only. 

Based on the investigations of McFarlane and Tabor 47 and O’ Brien and Hermann 75

numerous research groups studied the effect of capillarity in the context of humidity-

dependent forces 48-50, 54, 76 and measurements of capillary adhesion and friction by atomic 

force microscopy 64, 77-83. Further expressions were proposed based on the circular 

approximation of the curvature of the liquid-vapor interface 60-62, 84-88 and on numerical 

computations of the curvature 72-74, 89. The circular approximation was shown to be valid for 

small liquid bridges 72-74, 89. Furthermore, the sphere-plane geometry was also frequently used 

to model capillary forces on rough surfaces 63, 90-97.

Experimental investigations 

After the experiments of Plateau 19, 20, capillarity gained attention in studies of adhesion 

between two bodies, which is a subject of large technological and industrial importance. 

Derjaguin 43-45 belongs to those who initialized orderly investigations of adhesion and 

calculated the meniscus force for two elliptical bodies, and in particular for two spheres with 

arbitrary contact angles between the spheres and the meniscus. At the same time, Stone 98

measured the influence of humidity on the adhesion between glass beads and suggested that 

the adhesion force depends on the surface tension of a thin liquid film between the beads, but 

he did not explicitly mention the formation of a liquid meniscus. Based on these ideas, 

McFarlane and Tabor 47 approximated the adhesion force between a sphere and a flat surface 

by F= 4 lv·Rcos , where R is the radius of the sphere, lv is the surface tension of the liquid-

vapor interface and  is the contact angle between the liquid and the substrates. Although the 

authors stressed that this equation applies strictly only if the thickness of the liquid film and 

the contact angle are very small, it became a standard formula that is widely referenced and 
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used in many different studies 12, 48, 49. Israelachvili et al. 48, for example, used a surface force 

apparatus and observed that the formula by McFarlane and Tabor holds for a meniscus of 

cyclohexane in a relative humidity RH > 0.1 while for water it only holds for RH > 0.9.

Besides the investigations of condensation, Maeda and Israelachvili 51, 52 also used the surface 

force apparatus to investigate the evaporation of hexadecane and dodecane and discussed the 

thermodynamic and mechanical stability of liquid bridges as well as the applicability of 

Kelvin’s equation 99 of thermodynamic stability to very small liquid menisci. They compared 

their experiments to the numerical solutions of the capillary equation proposed by Willet 46

for liquid bridges between two spheres and found good agreement for the calculated and 

measured rupture distances.

The experiments made in 48, 49 were later reexamined by Christenson 50 who observed that the 

formula by McFarlane und Tabor only holds for RH > 0.7 and that at lower vapor pressures 

the adhesion force decreases gradually to its lower limit of dry adhesion which is given by 

F= 4 lv·R.  This finding was also supported by Rabinovich 53. Christenson carried out 

additional investigations 54, 55, 100 of capillary condensation of different solvents, investigated 

the kinetics of condensation 56 and performed several analyses of condensation for other 

solvents and mixtures of solvents 57-59. Many experimental investigations have been 

performed in the context of different geometries 43-46, 68, 70-74, environmental conditions 47-59, 67, 

101, and materials 60-64, 66, 69.

1.2.2 Missing investigations 

Different models have been proposed to evaluate the force of one liquid bridge, but little 

attention has been paid to the case of multiple liquid bridges. The reason seems to be that the 

force of many bridges is intuitively assumed to be a multiple of the force of one bridge. 

However, the surface properties of the substrates have to be taken into account and it is not 
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clear how they affect the force exerted by multiple bridges. In this work I have therefore for 

the first time numerically calculated the capillary force as a function of the number of liquid 

bridges, their size and the contact angles that they form at the substrates. The dominant 

question to be answered is: is there a size effect in wet adhesive systems similar to the one 

that has been evaluated both theoretically 102 and experimentally 103 in dry adhesive systems? 

The results are presented in chapter 2.  

Frequently, liquid bridges are assumed to exist between identical substrates. Consequently, 

most of the calculations and experimental studies were performed under the condition of 

equal contact angles at both substrates. But in natural and also in artificial systems this is 

rarely the case and a general understanding of how the capillary force is influenced by the 

chemistry of different substrates is lacking. I address the problem of asymmetric 

configurations in chapter 3 and evaluate the force between a very hydrophilic and a very 

hydrophobic substrate and the stability of the connecting liquid bridge. The answer to such 

questions helps to understand realistic cases and to assess the validity of models based on 

idealized assumptions. 

Another aspect that is often neglected in the literature is the fact that contact angles can 

change depending on whether a liquid bridge is stretched or compressed, which is designated 

by the terms “dynamic contact angles” or “contact angle hysteresis”. This phenomenon plays 

a fundamental role in experiments, because it implies that the capillary force between two 

substrates can also depend on the direction of the relative motion of the substrates with 

respect to each other. Conversely, measurement of the capillary force for different relative 

motions of the substrates can be used as a means to determine in what way the surface 

properties change depending on whether the liquid meniscus is stretched or compressed. In a 

collaboration with Prof. A. Crosby from the University of Massachusetts/ Amherst, I 
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designed an experiment to measure the contact angle hysteresis for different substrates as 

well as the capillary force of  a liquid bridge between plates. The experiment and the results 

and their comparison to the numerical force calculations are presented in chapter 4.

Another very important parameter affecting the capillary force is the geometry of the 

substrates. Although configurations of a liquid bridge between a plate and a sphere have been 

studied extensively, it is not known, for example, for which radius of the sphere, relative to 

the volume of the liquid bridge, the force-distance curve of a plate-sphere configuration 

corresponds to that of a plate-plate configuration. In chapter 5 I therefore present a 

quantitative analysis of this correspondence that provides insight into how large the 

geometric effect of a curved substrate is. I also study the effect of multiple bridges and 

compare the results to the situation of multiple bridges between two plates. This comparison 

allows to make novel and interesting suggestions concerning the adhesion on rough surfaces.

1.3 Basic concepts of capillarity 

Two mathematically equivalent concepts can be used for describing and solving Problems 

related to capillarity: I) the older one is based on the surface tension as formulated by 

Laplace, Young and Dupre and II) the second one is Gauss’es concept of a liquid surface with 

a minimum energy for a given, fixed liquid volume. Therefore, a mechanically stable liquid 

bridge can be constructed  either from a local equilibrium of forces acting on the liquid-vapor 

interface or by a direct minimization of the total interfacial free energy. This minimum of the 

total free energy is equivalent to a balance of forces under the condition that no irreversible 

energy losses occur such as losses due to the viscosity of the liquid, for example. 

Furthermore, the energy minimization requires the constraint of a constant volume. The 

equivalence of both methods, which we will briefly describe below, holds for all phenomena 

in capillarity.  
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The surface tension 

The capillary force can be expressed by the balance of forces on each element of the liquid-

vapor interface. Each such element experiences a fluid-static pressure and a surface tension 

along its perimeter. The condition for a local mechanical equilibrium leads to the frequently 

used capillary equation 23, 104, 105 given by: 
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where P is the Laplace pressure that corresponds to the difference between the pressure in 

the vapor and in the liquid, lv is the surface tension of the liquid-vapor interface, 1/R1 and 

1/R2 are the principal curvatures of the liquid bridge describing the curvatures along the 

circumference and along the meridian of the bridge, respectively and y(x) is the 

parameterization of the surface profile of the liquid bridge along its meridian. For a constant 

mean curvature, (1/R1+1/R2), the pressure difference does not depend on local properties of 

the liquid-vapor interface and for a given contour y(x) of the bridge, the principal radii can 

also be expressed analytically 104. As can be seen from Eqn. (1.1), the mean curvature of a 

rotationally symmetric bridge is given by a nonlinear partial differential equation of second 

order that describes the mechanical equilibrium between the bulk phases and the liquid-vapor 

interface in the absence of gravitational forces. 

The curvature of a liquid-vapor interface is positive if the interface is convex when viewed 

from within the liquid. In the case of liquid spheres or liquid bridges between hydrophobic 

substrates, both curvatures, 1/R1 and 1/R2, are positive. The curvature is negative for concave 

surfaces. This situation occurs in pores, where 1/R1 and 1/R2 are negative while for liquid 

bridges between hydrophilic substrates only 1/R2 is negative. While the surface tension tries 

to reduce the curvatures, the Laplace pressure counteracts this tendency. Note that at a saddle 
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point on the interface the mean curvature and consequently also the Laplace pressure are 

zero. However, this occurs only at a particular separation between the substrates and for a 

suitable choice of the contact angles. If the length scale s=(3V/4 )
1/3, set by the radius of a 

sphere of the same volume V as the liquid bridge, is small compared to the capillary length 

lcap=( lv/g )
1/2 (where g is the acceleration of gravity and  the difference between the 

liquid and vapor densities), the influence of gravity is negligible and the liquid bridge has a 

constant mean curvature. 

The shape of the bridge y(x) can be calculated analytically by integration of Eqn. (1.1). The 

exact global solution of this equation always leads to expressions given in terms of elliptical 

integrals 23, 28, 39, 40, 74. Neumann 106 made for the first time the frequently used circular 

approximation of the meridional profile of a liquid bridge for small separations of the 

substrates, which leads to closed solutions. However, this approximation can rarely be 

applied at large separations, which can be seen by inspection of some of the images in chapter 

4.

The total capillary force can be obtained as the sum of forces arising from surface tension 

(Ftension) and the Laplace pressure (FLaplace) in any plane of the bridge perpendicular to the axis 

of symmetry. The total force is independent of the particular choice of this plane but the 

relative magnitude of the two contributions may vary with the position of the plane. Here, we 

will refer to the limit that the reference plane coincides with one of the two planar substrate 

surfaces. We obtain for identical contact angles 74, 107:
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where Ftotal (D) is the total capillary force as a function of the distance D between the 

substrates, R(D) is the radius of the contact area between liquid and substrate and  is the 

contact angle. Note that the principal curvatures and thus the Laplace pressure also depend on 

the separation between the substrates. Some recent studies are based on Eqn. (1.2) rather than 
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on Eqn. (1.1), however there is no common practice when it comes to the evaluation of the 

total capillary force and often it is only described by the contribution of the Laplace pressure 

neglecting the contribution from the surface tension12.

Minimization of the total free energy 

Most studies on capillary forces are based on the analytical or numerical integration of the 

capillary equation (Eqn. 1.1) but the overall stability of a liquid bridge can only be 

determined by minimization of the total free energy. For this reason and to avoid having to 

use some of the approximations described in the last section, we have chosen the second 

approach, i.e. the minimization of the total free energy of the liquid bridge, to evaluate the 

capillary force. This is a flexible method because it allows to study very general situations, 

such as for example the case of different geometries and different contact angles of the two 

substrates. The concept of energy minimization is not a local concept, because the increase of 

the energy in one region of the liquid surface may be overcompensated by a decrease in 

another region. It can be shown  that the capillary equation is equivalent to the Euler-

Lagrange 30 equation resulting from the variation of the energy, where the Laplace pressure is 

equivalent to the Lagrange multiplier  enforcing a constraint on the liquid volume. 

The total energy of a liquid bridge is the sum of three contributions: the liquid-solid ( lsAls),

the liquid-vapor ( lvAlv) and the solid-vapor ( svAsv) interfacial energies, where  and A denote

the respective surface tensions and surface areas. Since the substrate is considered to be rigid, 

we can assume the total substrate area, As=Als + Asv, to be constant throughout the wetting 

process. Because the total interfacial energy E of the system is determined up to a constant, it 

can be written in the following way:

E lv Alv ( ls vs)Als . (1.3) 

This expression can be calculated using different numerical approaches. In this work, we 

have used the software package Surface Evolver 108 to calculate E, which will be explained in 

more detail in the following chapter. 
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2 Enhancement of capillary forces by multiple liquid 
bridges

2.1 Abstract 

Capillary forces can significantly contribute to the adhesion of micro- and nano-scale objects 

in biology and technology. In this chapter we study numerically the effect of meniscus size 

on the force between two homogeneous flat plates for different contact angles. The force 

distance curves show excellent quantitative agreement with previous investigations. The 

results for n menisci of equal total liquid volume reveal interesting scaling properties and an 

unexpected maximum force for moderately hydrophilic surfaces (i.e. contact angles around 

70 degrees). Further, we calculate the minimum solid liquid area for multiple bridges, the 

stress (i.e. force per area) and the work required to separate the plates. The results are 

presented in two dimensional maps, which may be useful in the understanding of biological 

attachment structures and in the design of artificial contact systems.  

2.2 Introduction

The first theories of capillary forces were established in the nineteenth century by Young 16,

Laplace 15, and Poisson 109, to name some of the early founders of this large field of research. 

Their studies of the shape of liquid interfaces were based on phenomenological descriptions 

of the surface tension and on local conditions for a mechanical equilibrium. Gauss 17

introduced the principle of minimal surface energy and established the connection between 

capillarity and variational calculus. Based on these studies, later theories were refined to 

include the kinetic theory of matter 110, classical thermodynamics 111 and statistical mechanics 

of liquid-gas surfaces 112, 113.  This progress led to the concept of surface tension on a 

molecular basis and to an understanding of phenomena such as the dynamical behavior of 

condensation and evaporation 104, 105, 114.
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One of the many interdisciplinary aspects of capillarity is its effect on adhesion. This topic 

was initiated by studies of wettability 115-117 that gained momentum when wet adhesion was 

recognized as a major contributor to hard disk crashes 65. Recently, investigations of 

biological attachment systems and their transfer to technological applications have created 

new interest in the theory of capillarity. Examples that highlight its importance in biological 

systems are the toe pads of tree frogs 3, and the attachment terminals of some insects like 

beetles 7, 118, bugs 119, flies 6, 120 and ants 121. Even the adhesive structures in geckos, which 

are known to exhibit dry adhesive systems 9, 10, have been shown to be affected by capillarity 

due to air humidity 11. For dry adhesive systems, the calculation of adhesion design maps has 

shown that splitting of one contact element into many finely structured elements can result in 

enhancement of molecular adhesion 1, 102. This raises the questions whether a similar size 

effect also exists in wet adhesive systems and what implications it may have for biological 

and bio-inspired adhesive systems.  

The aim of this work is to explore how finely structured liquid bridges can affect the capillary 

force between two surfaces. To this end, we apply a numerical method 108 to calculate force-

distance curves and shapes of liquid menisci between two substrates. The method is flexible 

in so far as it allows arbitrary geometries of the substrates to be studied, as well as symmetric 

and asymmetric configurations of the contact angles between the substrates and the liquid. It 

has been successfully applied to problems of capillary surfaces 122-124 but not specifically to 

liquid bridges between parallel plates. We therefore test it first by conducting numerical 

investigations of one liquid bridge between two rigid plates for different contact angles and 

compare the results with available analytical results. Subsequently, new calculations are 

performed by splitting the volume of one bridge into n small bridges and recalculating the 

force-distance curves.  

Before we introduce the applied numerical method in the next section, we briefly review the 
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state-of-the-art literature on force-distance curves of the capillary force. The capillary force 

can be expressed as the sum of forces arising from the surface tension (Ftension) and the 

Laplace pressure (FLaplace)
74, 125:

PDRDRFFDF lvsublvsubLaplacetensiontotal )(sin)(2)( 2  (2.1) 

where Ftotal (D) is the total capillary force as a function of the distance D between the 

substrates, Rsub(D) is the radius of  the interface between liquid and solid,  is the contact 

angle at the three phase contact line, and P is the Laplace pressure defined as the pressure 

difference across the liquid-vapor interface. The Laplace equation 15 relates P to the mean 

curvature of the liquid-vapor interface and expresses the mechanical equilibrium between the 

bulk phases and the curved liquid-vapor interface: 

21
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Here, lv is the surface tension of the liquid-vapor interface and 1/R1 and 1/R2 are the two 

principal curvatures at a given point on this interface. Provided gravitational forces are 

negligible, P is the same everywhere on the liquid-vapor interface which implies that this 

interface has a constant mean curvature 21 1121 /R/R/H  in equilibrium. 

The total capillary force has been determined both theoretically and experimentally for a 

variety of idealized conditions. An analytical approximation of the capillary force between 

identical spheres exists 126. This approximation was later improved to yield exact expressions 

for the force and for the neck radius and the volume of a liquid meniscus between the spheres 

127. Experimentally, the force between two spheres has been evaluated as a function of their 

separation 128. The geometric configuration of a liquid bridge between a sphere and a plate 

has also been investigated 73-75, 129. In the first study, the equation for the surface profile of a 

liquid bridge with zero contact angles ( 1= 2=0) is evaluated, while the other two present 
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approximations of the capillary force for nonzero and different contact angles. A more 

rigorous description of this case exists 74, but the results are expressed in terms of elliptical 

integrals and are therefore difficult to interpret.  

A commonly used approximation 12 assumes a sphere of radius R in contact with a plane, 

both with identical contact angles. Under theses conditions the resulting capillary force is: 

cos4 lvLaplace RF . (2.3) 

This equation is frequently used, for example to calculate the capillary force between a flat 

substrate and the tips of a scanning tunneling 62 or an atomic force microscope 86. Since it 

considers only the contribution of the Laplace pressure to the total capillary force, it may not 

always be applicable.

Analytical calculations of the force-distance relationship for a liquid bridge between two 

solid parallel plates with arbitrary but equal contact angles at both surfaces have been 

presented by Fortes 39 and Carter 40. To test the energy minimization method used in this 

work, we chose the same geometric configuration as used by Carter 40 and numerically 

calculated the force-distance curves for the whole range of contact angles. Comparison with 

Carter’s results 40 yields excellent agreement, which justifies the application of this method to 

new problems of capillary surfaces for which there are no analytical solutions. In spite of the 

large number of publications dealing with models of the capillary force between substrates of 

different geometries, a numerical evaluation for one liquid bridge between two planar 

surfaces has not previously been published. 

Forces mediated by multiple bridges have been considered in studies dealing with the effect 

of surface roughness on adhesion. The contributions to wet adhesion from multiple-asperity 
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contacts have been evaluated by 63, 130 for different liquid levels.  90 estimated the wettable 

surface area fraction between rough substrates from the width of the distribution of distances 

between surface asperities. All studies give approximate expressions for the total adhesive 

force but do not analyze its functional dependence on the number of the contacts. The present 

work presents, for the first time, numerical solutions of the total capillary force as a function 

of the number n of liquid bridges for different contact angles. As a result, an interesting size 

effect has been discovered theoretically and scaling properties have been evaluated that were 

not anticipated intuitively. 

2.3 Methods

We assume two perfectly homogeneous flat substrates with equal contact angles  and a 

constant liquid volume V between them (Figure 2.1).  

Figure 2.1: Schematic illustration of a liquid bridge which wets two planar parallel substrates with fixed 

contact angles 1 and 2. If the plates are pulled apart, the distance D between them increases while the radius of 

the liquid-solid interface Rsub decreases and the volume V of the liquid bridge remains constant. For large 

distances the liquid bridge ruptures. The radii R1 and R2 are the principal radii of a liquid bridge. 

When the plates are close together, the liquid-vapor interface is small whereas the liquid-solid 

contact is large. When the plates are pulled apart, the liquid-vapor contact increases at the 

expense of the liquid-solid interface. At any moment, the capillary force depends on the 
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separation D of the substrates, the surface tension lv of the liquid-vapor interface, V and . If 

the length scale s=(3V/4 )
1/3, set by the radius of a fictional liquid sphere of the same volume 

V as the liquid bridge, is small compared to the capillary length lcap=( lv/g )
1/2 (where g is 

the acceleration of gravity and  the difference between the liquid and vapor densities), the 

influence of gravity is negligible and the liquid-vapor interface of the bridge therefore has a 

constant mean curvature. The contour of an axially symmetric bridge can be calculated 

analytically by integration of equation (2.2).  

The total energy of a liquid bridge is the sum of three contributions: the liquid-solid ( lsAls),

the liquid-vapor ( lvAlv) and the solid-vapor ( svAsv) interface energies, where  and A denote

the respective surface energies and surface areas. Since the substrate is considered to be rigid, 

we can assume the total substrate area to be constant throughout the wetting process. Because 

the total energy E is determined up to a constant, it can be written in the following way:  

E lv Alv ( ls vs)Als . (2.4) 

In this work, this expression for the total energy of a liquid bridge was minimized using the 

software package Surface Evolver 108. The liquid-vapor interface is represented by a mesh of 

triangles whose total area approximates the value of Alv. The area of the wetted substrate is 

obtained by line integrals along the contact line. The constraint of constant volume is 

expressed by means of a surface integral over a suitably chosen vector field. With the help of 

this numerical minimization, it is possible to calculate the capillary force as a function of the 

separation of the substrates.

To directly compare our results with the analytical ones obtained by Carter 40, we introduce 

the following normalized quantities: 

normalized separation: d D /s (2.5a) 
normalized contact radius: sdRdr sub /)()(  (2.5b) 

normalized total energy: )/()()( 2sdEde lv  (2.5c) 

normalized total force: )2/()()( sdFdf lv , (2.5d) 
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where Rsub is the absolute radius of contact between liquid and solid (Figure 2.1) and F the 

absolute total force exerted by the liquid between the substrates. The forces are obtained from 

the first derivative of the total energy with respect to distance.  

2.4 Results

2.4.1 Capillary force as a function of distance d and contact angle 

Figure 2.2 shows the normalized force as a function of the normalized distance between the 

substrates for different contact angles.

The forces are attractive (positive) for  90° (as schematically illustrated by liquid bridges 

with concave shapes in the meridional cross section) and decrease with increasing distances. 

In the hydrophobic range the forces are repulsive (negative, bridges with convex shapes in the 

meridional cross section) for small and slightly attractive for large distances. With increasing 

values of , repulsive forces increase while attractive forces decrease. 

The maximum normalized distance, dmax, for a given contact angle, i.e. the end point of each 

curve, corresponds to the largest possible separation of the substrates for which the liquid 

bridge is still stable. Further increase of d will result in rupture of the bridge. We stress that 

the value of dmax depends on the contact angle . The data show that in the hydrophilic range 

rupture occurs at smaller distances for smaller contact angles; for hydrophobic conditions the 

opposite is true.

Figure 2.2 shows that these force-distance curves (symbols) are in excellent agreement with 

the analytically calculated ones (solid lines) 40 over the entire range of distances and for all 

contact angles.
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Figure 2.2: Force versus displacement for hydrophilic 90° and hydrophobic >90° surfaces. In the 

hydrophilic range the forces are always attractive, they converge to positive infinity if the distances approach 

zero and rupture occurs at large separations. The forces in the hydrophobic domain are predominantly repulsive 

but exhibit small attractive contributions for increasing distances. The schematic drawings represent the shapes 

of liquid bridges for hydrophilic and hydrophobic conditions. Comparison between analytical (solid curves) and 

numerical (squares) results demonstrate the excellent accuracy of the numerical model.

2.4.2 Capillary force as a function of number of bridges n and contact 

angle

We now consider the effect of splitting one large liquid bridge into n smaller bridges, each of 

volume V/n as schematically shown in Figure 2.3.  

Figure 2.3: Schematic of splitting one liquid bridge into n smaller liquid bridges of equal size. The total 

volume of the liquid and the separation of the substrates are equal in both cases. 
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In the subsequent calculation it is assumed that the individual bridges do not interact or 

coalesce. This situation could be realized experimentally by topographical or chemical 

patterning of the substrates. 

To calculate the total force of n liquid non-interacting bridges, we start from the absolute 

force for one liquid bridge (eqn. 2.5d). If V decreases to V/n, the scaling factor s and the 

normalized distance d change in the following way: s becomes sn=s n
-1/3 and d becomes dn=d

n
1/3

. For n liquid bridges the total absolute force at distance d is therefore given by: 

)(2)(2)( 3/2
nlvnnlvn dfsndfsndF  (2.6) 

   
Note that the absolute separation D of the substrates has not changed and is the same in F(d)

and Fn(d). The dependence of this total force on n and  is displayed in Figure 2.4, using 

lv=72.8 mN/m for the water-air interface, V=1 µl and D=15 µm.

The results show that the total capillary force increases due to splitting of a bridge for all 

values of . For angles  50°, Fn possesses a maximum at some intermediate value of n,

while for  > 50° a monotonic increase with n is observed.

The maximum attainable force, under the conditions assumed, is achieved for  70°, n

9.5x10
5 and d=dmax(70°). Interestingly, this is not in the very hydrophilic regime but rather 

in the weakly hydrophilic range. For a fixed separation of the substrates, the point of rupture 

for a given contact angle determines the maximum number, nmax, of stable bridges. Its value 

thus depends on the angle .

The information contained in Figure 2.4 can be conveniently displayed in a color map as 

shown in Figure. 2.5. As axes, we choose the contact angle  and the number n of bridges that 

vary in steps of =5° and n=1, respectively, in all color maps presented in this work. The 

parameters V, D, and lv are fixed as in Figure 2.4.
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The color coding corresponds to different total force values. The continuous lines represent 

contours of equal force (labeled in Newtons); the heavy black contour marks the transition 

from attractive to repulsive forces. 

Figure 2.4: Total force versus the number of liquid bridges for different contact angles.

Figure 2.5: Map of the total force versus the contact angle  and the number of liquid bridges. The black 

contours are lines of equal force, some of which are labeled in [N] for a better visualization.
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The maximum force (red area) reflects the maximum discussed in Figure 2.4. The 

“landscape” in Figure 2.5 has an interesting topography which will be discussed later.  

Variation of the total volume for a constant initial distance shows that the force of multiple 

liquid bridges is directly proportional to that volume without changing the qualitative 

behavior of previous results. For a given initial separation, a larger total volume results in a 

larger number of possible bridges and vice versa. Likewise, the choice of different initial 

separations does not change the qualitative behavior of the total force, which scales with the 

initial separation as Fn ~D
-2. Equivalent to a decrease in volume, a larger separation leads to 

fewer possible bridges. We can therefore normalize the total force by FnD
2
/2 lvV and 

summarize the results in Figure 2.6.  

Figure 2.6: Total normalized force versus number of bridges and contact angles. Fn is normalized by the initial 

separation D, total volume V and the surface tension lv of the liquid-vapor interface. Labels of isolines are 

dimensionless. 

Comparison with Figure 2.5 shows that there is indeed no qualitative change in the results. 
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2.4.3 Required substrate area and stress 

Map of substrate area 

After subdividing into n bridges, it is of interest to know the total area of the bridges 

projected onto the substrate, which defines the minimum required substrate area. From the 

numerical minimization of the total energy we directly obtain the radius of the liquid-solid 

interface Rsub(d) and the neck radius R1(d) as presented in Figure 2.1.  

The total area necessary to accommodate n liquid bridges is equal to the sum of all small 

projected areas of each bridge  

  )()( 2
nnn dRndA , (2.7a) 

where nnnn sdRdR )(*)(  (2.7b) 

and  )()(* nsubn dRdR  for 90°

or  )()(* 1 nn dRdR     for >90° (2.7c) 

Eqn. 2.7c reflects the fact that the neck radius of a bridge is larger than its contact radius if 

>90°: R1(d) > Rsub(d).

Figure 2.7 shows that for a given contact angle  <90°, the total area increases as a function 

of n and is maximal at nmax. For =90° it is constant and for  >90° it increases slightly (see 

labeled contour lines in Figure 2.7) due to the convex shapes of the liquid bridges between 

hydrophobic surfaces.

If the number of bridges is kept constant, the total area decreases as a function of for

<90°, is minimal at =90° and increases with  for  >90°. 
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Figure 2.7: Map of the minimal projected area of the bridges onto the plates necessary to accommodate the 

liquid-solid  contact areas of n  liquid bridges versus the contact angle  and the number of bridges n. Isolines are 

labeled in [mm2]. 

Map of stress 

The results presented in Figure 2.5 (map of force) and in Figure 2.7 (map of area) show that 

both force and area increase as a function of n. Therefore, it is interesting to calculate the 

mean contact stress given by the total force per total contact area (Figure 2.8). 

Comparing Figure 2.8 with Figure 2.5, it can be seen that the maximal stress is now obtained 

for =90° instead of =70º as before; the reason lies in the fact that bridges with straighter 

contours take up less projected area. For <35° the stress decreases and for >90° it increases 

as a function of n.
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Figure 2.8: Map of the stress versus the contact angle and the number of bridges. Isolines are labeled in 

[N/m2].

Enhancement effect of multiple bridges 

It is instructive to evaluate the enhancement of the adhesion force and of the stress exerted by  

multiple bridges. We define an enhancement  for force and  for stress as follows: 

 )1()( max FF ,  (2.8a) 

 )1()( max SS , (2.8b) 

where Fmax is the maximum value of the total force Fn for a given angle .

Note that Fmax does not necessarily occur at n=nmax (see Figure 2.4). F(1) is the total force 

for the same angle due to one single bridge. Analogously, Smax and S(1) denote the maximal 

stress and the stress exerted by a single bridge for a given angle.

 and  thus measure the maximal increase of the force or the stress for a given angle. The 

results are plotted in Figure 2.9, where we rescaled  by a factor 10-5 in order to be able to 
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show both curves in one graph. 

Figure 2.9: Enhancement =Fmax - F1 and =Smax - S1 versus contact angle. 

It can be seen that has a maximum at 90° and is not symmetric with respect to this 

maximum. The same also holds for  but the asymmetry between the hydrophilic and 

hydrophobic regimes is even more pronounced. For  < 35° there is no enhancement of the 

stress by increasing n and hence =0.

2.4.4 Work of separation

The work of separation is the energy necessary to pull the substrates apart starting from an 

initial separation that corresponds to a stable arrangement of liquid bridges. It is calculated as 

the difference between the energy of liquid bridges between two substrates at their maximal 

separation and the energy at an initial separation dinitial <dmax. It follows for the work of 

separation Wn for n bridges:

Wn En dmax En dinitial nsn

2
lv e(dmax ) e(dinitial ) . (2.9) 

Here, En(d) is the total energy of n non-interacting bridges that is obtained from eqn. 2.5c and 

dmax is the maximal normalized separation which is independent of n (see section 2.3.1). 
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Consequently, the maximal absolute separation Dmax=dmax(3V/4 n)
1/3 decreases as a function 

of n as is expected for a decreasing volume of the individual liquid bridges.  

To compare the work of separation for different numbers of multiple bridges, we choose the 

absolute initial separation Dinitial to be constant (15 µm) for all n, while V and lv remain as 

before. Furthermore, to compare this energy with values reported in the literature 62, we 

divide the work of separation Wn by the area An calculated with (eqn. 7). In Figure 2.10 the 

top view of a three dimensional graph shows how Wn depends on  and n.

The work of separation possesses a maximum for a single bridge under hydrophilic 

conditions. Its dependence on n is such that it decreases monotonically with n for <35° but 

has a maximum at n>1 for larger angles. For a constant number of bridges, the work of 

separation always exhibits a maximum at some angle . At nmax it is zero for all values of 

because under the conditions chosen the liquid bridges are at the verge of instability already 

at the initial separation. 

Figure 2.10: Map of work of separation as function of the contact angle and the number of 

bridges. Isolines are labeled in [µJ/m2].
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2.5 Discussion

2.5.1 Capillary force as a function of distance and contact angle 

The excellent match of our force-distance curves for one liquid bridge with the analytically 

calculated curves in 40 demonstrates that the energy minimization with Surface Evolver is 

precise over the whole range of contact angles and distances. This finding justifies the 

application of numerical minimization methods to new problems for which there are no 

analytical solutions yet.  

Two main results can be seen from the force-distance curves in Figure 2.2:  

a) For contact angles  90° the force is positive over the entire range of distances. In this 

case, the liquid bridge always exerts an attractive force between the substrates. The attraction 

decreases monotonically with the distance between the substrates because both the Laplace 

pressure and the surface tension decrease.  

b) For angles  > 90° the sign of the force changes. This results in a repulsion of the 

substrates that decreases with increasing spacing and finally turns into a weak attraction. It is 

interesting to note that even in the case of hydrophobic substrates the capillary force can be 

weakly attractive.  

2.5.2 Capillary force as a function of the number of bridges and the 

contact angle  

The results in Figures 2.4 to 2.6 reveal that for all contact angles the splitting of one liquid 

bridge into n smaller ones leads to an increase in the capillary force. The maximum of Fn for 

small angles and its monotonic increase for large angles result from the interplay of two 

terms. Equation 2.6 shows that Fn grows with n as n
2/3 for constant and D.
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On the other hand, the normalized force, f(dn)=f(d n
1/3

), decays in magnitude as its argument 

increases with n. This decay occurs rapidly for small arguments and then levels off and 

approaches the saturation value for the largest possible argument dmax( ) (see Figure 2.2).  

In the hydrophilic regime, these two terms compete and lead to a weak but monotonic 

increase of the force for angles >50°. For angles  50°, however, the decay of f(dn)

remains steep because dmax is small, i.e. rupture occurs at small distances, which leads to the 

observed maximum of Fn for these angles.  

In the hydrophobic regime, the two terms act in the same direction and thus create a 

monotonic increase of Fn leading to attractive capillary forces for large values of n even if the 

substrates are hydrophobic. This effect was also observed for only one bridge (see section 

2.4.1) but it is amplified for multiple bridges in the sense that higher attractive forces are 

attained at the point of rupture for the same total volume V.

A striking example of the adhesive effect of multiple bridges is visualized by the iso-contours 

in Figure 2.5. They show that multiple bridges can generate the same attractive force between 

hydrophobic substrates at, for instance,  = 120° as one large bridge does for hydrophilic 

surfaces with  = 40°.

This finding raises a question of practical importance, namely whether it is possible to render 

repulsive forces attractive in a reversible manner by small changes in the contact angle (for 

instance with the help of the electrowetting effects 131). Figure 2.6 shows that this is 

theoretically possible independent of V and D and that it is easier for larger n.

Another interesting result of the balance of the two terms in Fn is the fact that the maximum 
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force (as a function of n and ) does not occur at very small angles, i.e. for very hydrophilic 

situations, as one might have expected. Neither does it occur at the angle =90°, for which 

nmax is largest. Instead it occurs for moderately hydrophilic situations, i.e. at 70° and 

n=nmax(70°). In this case, the number of bridges is large enough for the n
2/3-term in Fn to 

create a significant increase in the force, but at the same time it is still small enough for the 

individual bridges to have a sufficiently large liquid volume.  

2.5.3 Minimum contact area and stress  

The map of minimal contact area (Figure 2.7) illustrates that if the total available liquid-solid 

contact area is limited but a large number of bridges is still favorable, then the best choice of 

the contact angle is close to 90°. No matter if approaches 90° from above or below, as long 

as it is close to 90°, the total area is small even if n is large. At the same time, the force Fn is 

large (Figures 2.4 and 2.5), leading to a high stress for angles close to 90° (Figure 2.8). 

For angles larger than 90° the stress decreases rapidly because nmax and hence Fn decreases 

rapidly while the area increases weakly. The region of relatively high stress in Figure 2.8 for 

angles <35° and small n reflects the fact that the force is almost constant and high and the 

area is almost constant and small over this regime. 

The enhancement of the adhesion force and of the stress due to multiple bridges is largest for 

=90° (Figure 2.9). Again, it is interesting to observe that this maximum is not in the 

hydrophilic regime, the reason being that nmax, and thus Fmax and Smax are largest at =90°.

This result and the pronounced asymmetry of  and  would favor the use of less hydrophilic 

or even weakly hydrophobic substrates for technical applications of adhesive systems with 

multiple bridges. 
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For <35° there is no gain in stress as n increases. By contrast, the data in Figure 2.8 show 

that the stress decreases as n increases because the area increases faster than the force in this 

regime. 

 2.5.4 Work of separation  

Contact splitting has a very different effect if the work of separation is the decisive parameter 

(Figure 2.10). A single bridge with hydrophilic substrates ( <35°) produces the highest value 

because the final separation between the substrates is greater than for multiple bridges at a 

given . With increasing n, the maximum separation drops and the attraction is of shorter 

range.

The map in Figure 2.10 shows that for constant intermediate n, the work of separation first 

increases and then decreases for increasing values of . It can become negative for very large 

angles because of the repulsive interaction force. If a contact system based on wet adhesion is 

required to combine several properties such as maximal stress and minimal work of 

separation, our results predict that angles in the range of 70°< <100° may constitute a good 

choice.

2.5.5 Stability of multiple bridges 

All liquid bridges presented in this work are described as individual systems with constant 

volume. This description is based on the assumption that transport of liquid molecules 

through the ambient vapor phase or through a wetting film between the bridges proceeds on 

time scales that are much shorter than experimentally relevant times.  
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For a fixed total volume, the global minimum of the energy corresponds either to a single 

large bridge or to one droplet wetting one of the plates. Hence, a configuration of multiple 

bridges is unstable with respect to coalescence of neighboring bridges for all contact angles 

and distances. 

However, thermodynamic stability of multiple bridges can be enforced by introducing 

appropriate constraints that hinder the coalescence of bridges. This can be achieved by the 

formation of wetting barriers 30 due to topographic or chemical structuring of the surfaces. 

They can suppress the coalescence of bridges and thus stabilize the formation of separate 

small bridges. In an experimental or biological situation, individual micro- or nano-scale 

adhesive structures, such as often observed in attachment organs of animals, can take on the 

role of wetting barriers. Stable arrangements of multiple liquid bridges are therefore feasible.  

Slender and long bridges are subject to mechanical instabilities, as for example the Plateau-

Rayleigh instability 20, 132. All liquid bridges presented in this work have been obtained by 

numerical minimization of the interfacial energy and are therefore mechanically stable.

The onset of mechanical instability corresponds to the point of rupture in our force-distance 

curves. Beyond this point (i.e. for distances larger than dmax) there are no solutions of the 

numerical energy minimization procedure. 

The Rayleigh-Plateau stability criterion for a cylindrical bridge with radius R between 

parallel plates, for example, requires that its length L satisfies the condition L < R
25, 30. This 

is true even for the smallest cylindrical bridges considered in this work. As stated in section 

3.2, it is this maximal length (or correspondingly, the minimal volume for fixed L) of the 

bridges that defines nmax for a given contact angle and that ensures that all bridges presented 

in this work are mechanically stable. 
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2.5.6 Comparison with biological systems and with van der Waals forces 

Splitting of one large contact element into many smaller, hairlike elements is observed in 

many biological attachment systems 9, 133. The advantages of the principle of contact splitting 

in predominantly dry adhesive systems such as in spiders 134 and geckos 9, 10 include an 

increase of the adhesion force with the number of contacts due to minimization of elastic 

strain energy 102, and good adjustment to rough surfaces by increasing the contact area and 

thus the number of molecular interactions between the substrate and the contact elements 135, 

136.

The gecko, for example, possesses several million micrometer-sized contact elements (setae) 

that can create a contact area large enough to generate an adhesion force that is greatly in 

excess of the force needed to carry the gecko’s body weight 137, 138. This adhesion capability 

provides the gecko with a large safety margin and is still no hindrance to its mobility. A 

recent paper 138 suggests that the reason being that the gecko’s setae are ultra-hydrophobic 

and thus non-adhesive in the unloaded default state. The gecko therefore combines the 

conflicting properties of strong adhesion on the one hand and avoidance of inappropriate 

adhesion on the other hand. 

Our study of model adhesive systems based on capillary forces show that the advantages of 

contact splitting also apply to wet adhesion. The total capillary force and the contact area 

increase upon splitting of one liquid bridge into several smaller ones for all possible contact 

angles. In analogy to the contact elements in dry systems, the number of liquid bridges could 

serve as a control parameter to regulate the contact area and thus the total capillary force. In 

addition, it could also act as a switch between repulsive and attractive behaviour. This can be 

seen in Figures 5 and 6 where for contact angles between 90°< <180° the force becomes less 

repulsive with increasing n and even attractive as n approaches nmax (see also section 2.4.2). 
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Liquid bridges with large contact angles can thus mediate an attractive force between two 

surfaces that can be reversed by decreasing n. A biological wet adhesive system employing 

such bridges would be well adapted to situations in which reliable attachment and fast 

detachment are equally important and could therefore be the “wet counterpart” of the gecko’s 

dry adhesive system. 

The coupling of attachment and detachment performances may also be the reason why some 

biological systems 5 employ much less capillary force than they theoretically could. Capillary 

forces can indeed become very large if the distance between the surfaces becomes small 

(Figure 2.2). Exactly this fact can turn into a survival disadvantage if the animal has to avoid 

undesired attachment and/or has to detach fast. 

It therefore seems more beneficial for a biological system to operate in the regime of large 

distances, i.e. close to the point of rupture, where a small increase in D leads to easy 

detachment from a substrate.  Although the contribution of a single liquid bridge to the 

capillary force is small in this regime, the contributions from many bridges can again lead to 

a large attractive force ensuring good adhesion performance.  

There may be biological situations that require a large adhesion force for a small contact area, 

for example due to a small size of the animal’s attachment organ or due to a rough substrate 

surface. Our results of the capillary force per area (see map of stress, Figure 2.8) indicate that 

many liquid bridges with a cylindrical shape would be the best choice in this case. These 

bridges generate the highest forces per unit area because one cylindrical bridge can be split 

into very many smaller ones (nmax (90°) is large) without increasing the total contact area (see 

Figure 2.7).
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If animals make use of the principle of multiple liquid bridges, a fundamental question is how 

they manage to control the number of bridges formed. One way of doing so could be to 

control the amount of liquid that is secreted from the contact elements. 139 showed that a large 

amount of secretion decreases the adhesion performance of insects on smooth surfaces but 

increases it on rough surfaces. This increase is attributed to the formation of many small 

liquid menisci in the cavities between the substrate and the animal’s adhesion pad that 

eventually merge to create a large contact area.  

This study demonstrates that animals can actively influence the number of menisci that are 

formed. On very rough substrates this can in principle lead to systems that are very similar to 

our model systems when each surface asperity accommodates one liquid bridge and the 

asperities are separated by deep troughs that avoid coalescence of the bridges.  

Some biological adhesive systems seemingly employ dry and wet adhesion principles. It is 

therefore instructive to compare our data quantitatively to dry adhesion based on van der 

Waals forces. To this end, we envision two systems made of two identical flat substrates, one 

separated by air (dry system) and the other one by a liquid bridge (wet system). We choose a 

distance of 5 nm between the substrates, because in this regime the van der Waals force is 

non-retarded and has significant strength 140. If the substrates are made of polysterene, the 

Hamaker constant is equal to 6.37·10
-20

 J
141.

Applying the well known equation for the van der Waals force between two plates 142 to this 

geometry, we obtain 2.80·10
4

N/m
2. Now let the volume of a liquid bridge be equal to 10

-18 
l. 

Note that for this volume the number of water molecules is still very large (3·10
7 molecules). 

We can therefore assume that water still behaves like a fluid and we can calculate the 

capillary force using the continuum mechanical treatment realized in this work. The 
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calculation of capillary forces for this volume, a contact angle  = 91° for polysterene 143, and 

separation D=5 nm leads to a force per unit area of one bridge equal to 2.88·10
5

N/m
2. This 

value is 10 times larger than that obtained for the dry system. We now split the bridge into 

n=10000 smaller bridges; this number leads to a volume of an individual small bridge that is 

equal to 10
-22

 l (0.1 zeptoliter), which is still above the minimum value necessary to apply 

continuum mechanics 144. The splitting further increases the capillary force by a factor of 100, 

to 2.88·10
7
N/m

2.

This comparison seems to suggest that in adhesive systems of nanometer size, which applies 

to many biology attachment organs, the concept of liquid bridge splitting can principally 

generate adhesion forces that exceed van der Waals forces in dry systems by several orders of 

magnitude.  

2.6 Conclusions

We performed numerical calculations of the capillary force between two planar substrates 

with identical contact angles. The results, displayed as a function of the separation of the 

plates, agree well with analytical results for the entire range of contact angles. In addition, we 

presented novel calculations of the capillary force as a function of the number of liquid 

bridges for constant total volume. The results predict an increasingly attractive force for 

multiple bridges even for contact angles larger then 90°. This finding demonstrates that the 

adhesion force of a wet contact system is not only a function of the contact angle but is also a 

non-linear function of the number and size of liquid bridges. Two-dimensional maps 

conveniently summarize these results; they can be helpful tools in the design of artificial wet-

adhesive systems. 

Depending on the adhesion requirements, different “optimum” regions were found: 
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To optimize the total capillary force, a large number of individual bridges and a

      contact angle of about 70° is advantageous (red region in Figure 2.5). 

To achieve a high capillary force per contact area (contact stress), the optimum 

occurs for a large number of cylindrical bridges with =90° (red region in Figure 2.8). 

A high work of separation is achieved for single bridges and hydrophilic surfaces,

<35° (orange region in Figure 2.10). 

Under the assumptions of our calculations, also hydrophobic contacts profit from 

contact  splitting : for large n, repulsive interactions may even turn into attractive 

interactions. 

Our discussion of “wet” biological contact systems suggests that animals may 

modulate  attachment forces by controlling the number of liquid bridges or the volume of 

secreted  fluid. 
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3 Capillary forces between chemically different substrates 

3.1 Abstract 

Motivated by experimental results, we present novel numerical calculations of the force 

versus distance exerted by a liquid bridge between two substrates with different contact 

angles, i.e. different chemical properties. Compared to identical contact angles, the results for 

chemically asymmetric substrates are qualitatively different: one strongly hydrophilic 

substrate, for instance, exerts mostly attractive forces over the whole range of displacements, 

independent of the contact angle of the second substrate.

The results are displayed in a map of force versus both contact angles for a given separation. 

These results allow the derivation of an approximated capillary force, which can be 

conveniently used to analyze experimental results. We calculate also the rupture 

displacements, i.e. the maximal extensions of liquid bridges, as a function of the contact 

angles. Our results show good agreement with previous theoretical models and experiments. 

3.2 Introduction

As outlined in chapter 1.2, the force exerted by a liquid bridge between two substrates was 

investigated extensively for a variety of conditions. But most of these investigations are based 

on idealized assumptions and are therefore not sufficient to explain situations as they occur 

for example in technical or biological attachment situations. For example, the experimental 

force-displacement curves presented in chapter 4 differ strongly for chemically different 

substrates from those for identical contact angles. Consequently, there is a need for further 

investigations of the effect of different contact angles on the capillary force. In this work, I 

conduct numerical calculations and experimental measurements of the capillary force for 
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liquid bridges between parallel rigid plates with different surface properties and hence also 

different contact angles. 

3.3 Methods

We used the same experimental set up as described in chapter 4 to measure the force-

displacement curves of liquid bridges between different substrates. To summarize briefly, we 

placed a drop of water on a glass plate and moved it towards a second plate that was attached 

to a cantilever. A deflection of the cantilever was measured when the drop connected both 

plates thereby forming a liquid bridge. The force-displacement curve was obtained from the 

cantilever deflection when moving the top plate towards the bottom plate or away from it.  

For the calculations, we assume two planar substrates with different wetting angles 1 and 2,

a distance D between them and a constant liquid volume V as depicted in Figure 3.1. 

Figure 3.1 Image of a liquid bridge of volume V  0.5 µl between different substrates with 1 = 108° and 2 =

60°, recorded during the measurement of a force-displacement curve. This picture illustrates that the surface 

profile of the bridge cannot easily be approximated by a sphere or some other simple geometric function. 

Under these conditions, the total energy of the liquid bridge is numerically minimized using 

r1

r2

D

r1

r2

D
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the software package Surface Evolver 108. This software has been successfully used for the 

analysis of cylindrical bridges between equal disks 122, liquid systems between three 123 and 

more particles 145, configurations of the liquid contact line on patterned super hydrophobic 

substrates 124 and to calculate the force of multiple liquid bridges (chapter 2 in this thesis). In 

the following sections, we will use the same notations as in chapter 2.

3.4 Results

In the following subsections we will show how specific asymmetric combinations of contact 

angles at the bottom and top plates influence the behavior of the force (section 3.4.2) and 

compare the results to symmetric systems (chapter 2 and review below). These investigations 

are extended to include large contact angle asymmetries which are shown to evoke large 

asymmetries in the force-displacement curves as well. The behavior for arbitrary contact 

angle asymmetry is shown for a given separation in section 3.4.3. To asses the behavior at the 

point of rupture qualitatively, we display in section 3.4.4 the maximal separation of the plates 

as a function of the contact angles for symmetric and asymmetric configurations. Finally, in 

section 3.4.5 we compare the calculated results to experimental measurements of the capillary 

force between chemically different substrates.  

3.4.1 Review of the symmetric case: 1 = 2

For later reference, Figure (3.2) presents curves of the normalized force versus the 

normalized displacement for identical contact angles (for details see chapter 2).  

In this case, forces are attractive (positive) for contact angles 90° (hydrophilic surfaces) 

and increase for decreasing values of . The opposite behavior is seen for > 90°

(hydrophobic surfaces). Attractive forces can be observed for all contact angles at large 
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separations. The maximal displacement for stable liquid bridges (point of rupture) is largest 

for = 90° and decreases monotonically for smaller and larger values of the contact angles. 

Figure 3.2 Capillary force versus displacement displayed for different but identical contacts angles  = 1= 2.

Hydrophilic surfaces (contact angles  90°) lead to attractive forces (positive) while hydrophobic ones (contact 

angles  > 90°) to predominantly repulsive forces (negative).

3.4.2 Effect of contact angle asymmetry: 1 2

Figure 3.3 shows normalized force-distance curves for fixed contact angles, as for example, 

1=60° (a) and 2=120° (b). It is evident that the force is not simply the average of the 

corresponding symmetric cases. The same applies to the distances of rupture, which are 

always largest for the symmetric case and decrease with increasing degree of asymmetry.  

Inspection of Figure (3.3a) also shows that if 1 is chosen such that 1 < 2 then the 

corresponding normalized force f( 1, 2,d) tends to be more attractive as compared to the 

symmetric case with 1 = 2. Even the sign of the force can change in this way: the force for 

1 = 60° and 2 = 120°, for example, is attractive over the whole range of distances while for 

1 = 2 = 120°, it is repulsive except for very large distances.  
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(a)       (b) 

(c)       (d) 

Figure 3.3 Four examples of asymmetric configurations where 1 is fixed while 2 is varied. A hydrophilic 

substrate with 1 = 60° (a) can lead to entirely attractive forces even if the second substrate is hydrophobic ( 2 =

120°). Conversely, a hydrophobic substrate with 1 = 120° (b) can lead to predominantly repulsive forces even if 

the second substrate is hydrophilic ( 2 = 90°). These effects are more pronounced if the first substrate is super 

hydrophilic (c) or super hydrophobic (d). In these cases, the force remains attractive or repulsive even for large 

contact angle asymmetries.

The contact angle asymmetry thus results in an extension of the attractive region in the force-

distance diagram that extends up to a contact angles 2 120° as opposed to 2 90° for 

identical contact angles.  
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Analogously, for 1 > 2 the force tends to be more repulsive than for the symmetric 

configuration (Figure 3b). For 1 = 120°, for example, the repulsive region of the force-

distance diagram extends up to contact angles 2 90° (except for very large distances). 

This asymmetry in the size of the attractive and repulsive regions is even more pronounced if 

1 is either super hydrophilic or super hydrophobic. These situations are depicted in Figures 

3c and 3d, respectively. Here the attractive region for  1 = 30° extends up to angles 2

150°, while the repulsive region for 1 = 150° extends up to angles 2 60° (except for very 

large distances). 

While Figure 3.3 focuses on the behavior of the force for finite distances up to the point of 

rupture, the asymptotic behavior for d  0 is shown in Figure 3.4. Here, we calculate the 

force for the same contact angles 1 as in Figures 3.3a and 3.3b and vary 2 in steps of 2 =

10° for better resolution. The results are displayed as a color map whose independent axes are 

the normalized displacement d and the second contact angle 2 while the colors correspond to 

different force values. Both graphs, 3.4a and 3.4b, display the normalized force for 

normalized displacements ranging from d = 0.01 to 0.05. 

The value of the force approaches infinity if d approaches zero. The black lines represent 

isolines of equal force where the isoline for f = 0 separates the regions of attractive and 

repulsive forces. Figure 3.4a clearly visualizes that for 1 = 60° the region of attractive forces 

dominates over the region of repulsive forces, while the opposite holds for 1 = 120°.
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(a)

(b)

Figure 3.4. Normalized capillary force for d  0. Black lines depict lines of equal force and are labeled by 

their respective values. The grey region marks the asymptotic behavior of the force: f  for a hydrophilic 

substrate (a), and the white region marks the asymptotic behavior f -  for a hydrophobic substrate (b). In (a) 

the attractive region of the force dominates the force map while in (b) it is the repulsive region that dominates.

Figure 3.5a displays the normalized force as a function of 1 and 2 for a fixed normalized 

displacement d = 0.05. For good interpolation, we vary 1 in steps of 1 =30° while 2

varies in steps of 2=10°. It is seen that the function f( 1, 2) = cos( 1)+cos( 2) (solid lines 

in Figure 3.5a) matches the numerical results quantitatively very well.  
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This relationship was first postulated by O’Brien et al.75 for the case of a liquid bridge 

between a sphere and plate. We will discuss this result in more detail in section 3.4.4 

(a)

(b)

Figure 3.5. Behavior of force for a fixed displacement d=0.05 and arbitrary contact angles 1 and 2. In (a) 1

and 2 vary in steps of 30° and 10°, respectively, while in (b) they both vary in steps of 10°. In (a) symbols 

corresponds to numerically calculated forces while solid lines correspond to fit functions. 
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The curves in Figure 3.5a can be better visualized as a color map as presented in Figure 3.5b, 

where we show the normalized force (colors) for all permutations of the contact angles. Here, 

we vary 1 and 2 in steps of =10° for better visualization. In this map, the effect of a super 

hydrophilic or a super hydrophobic surface leading to large attractive and repulsive 

interactions, respectively, is clearly visible. 

3.4.3 Stability and rupture of liquid bridges

In this section we extend our studies to include an investigation of the dependence of the 

rupture distance on the contact angles.  

The symmetric case 1 = 2

The maximal extension of a stable liquid bridge, or point of rupture, corresponds to the last 

point in the force-displacement curve in Figure 3.2. Rupture distances have been calculated 

analytically by Carter40. These results were discussed in detail in chapter 2. Langbein29

obtained results for rupture distances in terms of the normalized volume and the normalized 

pressure. To be able to compare his results with ours we express the displacement in terms of 

the volume:  

3

1
~

4

3

1

V

d  (3.2) 

where d is the normalized displacement, as defined in this work, and 
~

V  is the normalized 

volume used by Langbein. According to the criterion calculated by Langbein, a liquid bridge 

is stable if the surface profile of the bridge has no inflection point between the plates 

(inflection point criterion) or if the liquid volume does not correspond to an extremum as a 

function of the Laplace pressure (extremum volume criterion).  
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In Figure 3.6 we compare our numerically calculated values of the rupture distances with 

those obtained by Carter and Langbein. 

In this graph, all continuous curves were acquired from interpolation of discrete data points 

for contact angles varying in steps of =5°. As can be seen, all results agree very well over 

the entire range of contact angles except for the results by Langbein that are based on the 

criterion of minimum volume. The implications of these results will be discussed in section 

3.5

Figure 3.6. Comparison of rupture distances of a liquid bridge between substrates with equal contact angles 

obtained by four different methods. 

The asymmetric case 1 2

Since reliable analytical results do not exist for the asymmetric situation, we cannot compare 

our data to results obtained by other authors in this case. Figure 3.7 shows the rupture 

distances for many combinations of contact angles as obtained from our numerical 

calculations.  
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Figure 3.7. Rupture distances of a liquid bridges between two plates with different contact angles obtained 

numerically with Surface Evolver.

For a given contact angle of one substrate, the normalized rupture distance is a maximum 

only if 1 equals 2. With increasing contact angle asymmetry, it decreases monotonically in a 

manner that cannot be fitted to a linear or to a power law function.

3.4.4 Application of the model to experiments

In this section we investigate the effect of contact angle asymmetry on the measurement of 

the capillary force and on the hysteresis of the force-displacement curves in dynamic 

experiments. In these experiments, the contact angle asymmetry was generated by using 

different substrates at the bottom and the top of a liquid bridge.

During the dynamic force measurements a liquid bridge between two rigid plates was either 

continuously stretched or compressed by moving the plates relative to one another with a 

constant velocity. 
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The contact angles were measured via the evaporation method as described in 146 and were 

then used as input for the numerical model to compare the experimental with the numerical 

data. Liquid volumes were determined from the images of the droplets prior to the formation 

of a liquid bridge.

The velocity used to move the bottom plate relative to the top plate was set to v = 10 µm/s,

which ensured that evaporation of an aqueous volume of about 0.5 µl was negligible when 

submitted to a low relative humidity of 18 %. Experiments of this kind are described in more 

detail in the next chapter. Here we present two relevant examples including the hysteresis for 

two different substrates. 

Figures 3.8a and 3.8b present measured force-distance curves (red lines) for two different sets 

of plates. In each of these experiments, the branch of the curve marked “advancing curve” 

corresponds to a compression of the liquid bridge, i.e. the plates are moved towards one 

another. In this situation, the measured equilibrium contact angles at the two plates are called 

the advancing angles.

The branch marked “receding curve” represents a liquid bridge that is stretched by pulling the 

two plates apart from each other and the corresponding contact angles are called receding 

angles. There are thus four different angles that characterize one dynamic experiment: two 

advancing and two receding angles for each of the two plates.  

The black and blue curves in each figure represent numerically calculated force-distance 

curves that have been fitted to the advancing and receding branches of the measured curve, 

respectively, by adjusting the values of the contact angles 1 and 2 in each fit. 
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(a)

(b)

Figure 3.8. Measured hysteresis of the capillary force (red curves) and numerically calculated force-distance 

curves (black and blue curves). By fitting the calculated curves to the advancing and receding branches of the 

measured curve, the advancing and receding angles of the substrates can be determined. This is demonstrated for 

two substrates with a small (a) and a large (b) contact angle hysteresis. 
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The fit curves in Figure 3.8a show that both substrates are hydrophilic and their advancing 

contact angles correspond to 90° and 60 °, while their receding contact angles correspond to 

80° and 36°, which results in a moderate hysteresis of the measured force-distance curve. A 

more pronounced hysteresis results when one substrate is hydrophobic while the other one is 

hydrophilic. This is depicted in Figure 3.8b, where the advancing contact angles are 

approximated by 120° and 65° and the receding contact angles by 90° and 50°.  

3.5 Discussion

3.5.1 Review of the symmetric case: 1 = 2

The excellent match of our force-distance curves for one liquid bridge with the analytically 

calculated curves in 40 was already discussed in chapter 2. Here, we emphasize it again to 

demonstrate that the energy minimization with Surface Evolver is precise over the whole 

range of contact angles and distances. This finding justifies the application of Surface 

Evolver to new problems like asymmetric contact angles for which there are no analytical 

solutions.  

In the symmetric case, contact angles  90° lead to positive forces over the entire range of 

distances. In this case, the liquid bridge always exerts an attractive force between the 

substrates. The attraction decreases monotonically with the distance between the substrates 

because the absolute value of both the Laplace pressure and the surface tension decrease. For 

angles  > 90°, the capillary force is predominantly repulsive. This repulsion decreases with 

increasing spacing and finally turns into a weak attraction showing that the capillary force 

can be weakly attractive even between hydrophobic and super hydrophobic substrates. 
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3.5.2 Effect of contact angle asymmetry: 1 2

Our results in Figures 3.3a, b show that if one substrate is weakly hydrophilic, the capillary 

force between this substrate and a second one can be attractive over the whole range of 

distances even if the second substrate is hydrophobic. Analogously, one weakly hydrophobic 

substrate can produce repulsive interactions at small separations even if the second substrate 

is hydrophilic. These observations become even more pronounced if the first substrate is 

either super hydrophilic or super hydrophobic. In these cases, the capillary force is attractive 

or repulsive even for large contact angle asymmetries (Figure 3.3c, d). These results illustrate 

that not only the magnitude but also the type of the capillary interaction, i.e. whether 

attractive or repulsive, is a function of the properties of both substrates. Therefore, the force-

distance curve cannot be easily anticipated if one of the substrates is hydrophilic and the other 

hydrophobic and if the asymmetry between their contact angles is either small or large. 

However, if the force-distance curves for asymmetric configurations are known, then for a 

given substrate, the degree of the contact angle asymmetry can be used as a tuning parameter 

to adjust the capillary force to a desired value. This determines the wettability of the second 

substrate and thus facilitates the choice of the substrate material.  

The results in Figures 3.3 and 3.4 are also useful in obtaining measurements of contact angle 

hystereses. Direct measurement of contact angles can be difficult, especially for surfaces with 

large contact angles. A drop of water on such a surface does not adhere but tends to stick to 

the needle of dispense or to run downwards on an inclined surface that is used to measure the 

advancing and receding angle. I have therefore proposed an alternative method to measure 

the contact angle hysteresis by measuring the hysteresis of the capillary force and fitting 

numerically calculated force-distance curves to it [see sections 3.4, 4.4]. This fitting 

procedure allows to determine the contact angle hystereses for two arbitrary substrates.
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The results in Figure 3.4 show that the capillary force rapidly diverges if the normalized 

distance decreases to values below 0.05. The large magnitude of the capillary force for small 

distances might be the reason why for some animals 5 that apply wet adhesion the measured 

adhesion force is usually much smaller than predicted by theoretical models. These animals 

seem to favor relatively large distances between their attachment organs and the substrate, 

which keeps the adhesion force moderately large and thus ensures efficient detachment from 

the substrate. In these cases, the optimum distance is therefore the result of the conflicting 

interests of tight attachment to and fast detachment from the substrate. The asymptotic 

behavior of a liquid bridge between plates is in contrast with the behavior of a bridge between 

a plate and a sphere that will be discussed in chapter 5.   

The fit of the function f( 1, 2) = cos( 1)+cos( 2) to the numerically calculated forces in 

Figure 3.5a has been extended to larger values of d (data not shown) and shows the same very 

good agreement except for distances close to the point of rupture. This fit function was 

originally postulated by O’ Brien 75 for the normalized capillary force between a sphere and a 

plate and later other authors 74, 87, 89, 94, 95 applied it to similar geometric configurations 

without verifying it’s applicability. Our results show that it also holds for the force between 

two rigid, infinite plates. This suggests that the applicability of this fit function is limited to 

configurations in which the linear dimensions of the substrates (e.g. the radii of spheres) are 

large with respect to the dimensions of the liquid bridge (D). In these cases, the fit function 

provides a quick estimate of f( 1, 2,) for constant d which is otherwise a complicated 

elliptical integral that cannot be given in a closed form 
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3.5.3 Stability and rupture of liquid bridges 

The results of different rupture distances of a liquid bridge presented in Figure 3.6 show that 

the method based on the criterion of an extremal volume is not suitable to approximate the 

rupture distance between substrates with equal contact angles because it generally leads to an 

overestimation of the distance by as much as a factor of 1.5. The method based on the 

criterion of the inflection point seems to evoke more realistic results but it cannot be extended 

to situations with different contact angles.  This is the reason why we display only our own, 

numerically calculated, results for rupture distances between chemically different substrates 

in Figure 3.7. These curves demonstrate the superior mechanical stability of symmetric liquid 

bridges as compared to asymmetric ones for all possible values of the contact angles. These 

results can help to design appropriate force sensors in measurements of the capillary force 

between two plates.

3.5.4 Application of the model to experiments 

Our results in Figures 3.8a and b show that we can reproduce the experimental force-distance 

curve numerically with high precision using the liquid volume and both advancing angles and 

both receding angles of the substrates as input for the numerical model. This demonstrates 

that the model can accurately assess situations in which the contact angles are i) different and 

ii) at the same time display a hysteresis. Although this is the case in most experimental 

situations, there are not many studies that address both issues simultaneously. Lambert 147, for 

example, compares the results of his simulation with experimental data for the very specific 

case of polydimethylsiloxane-oil between a sphere and a plate with contact angles 1 = 16°

and 2 = 12° but he does not discuss the contact angle hysteresis nor the stability of the 
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bridge.

Having confirmed the accuracy of the numerical model, we can use the calculated force-

distance curves for asymmetric configurations to fit them to experimentally measured force-

distance curves. This procedure allows to determine advancing and receding contact angles, 

and thus the contact angle hysteresis of arbitrary planar substrates.   

3.6 Conclusions 

Our results presented for the special case of a liquid bridge between two parallel plates show 

a variety of new effects that are also expected to apply to substrates with other geometries.  

In summary we showed that: 

force-displacement curves can be calculated numerically for arbitrary contact angles,   

a simple fit function exists that matches all calculated force-displacement curves very 

well,

symmetric configurations are mechanically more stable than asymmetric 

configurations,

a very hydrophilic/ hydrophobic substrate biases the capillary force towards attractive/ 

repulsive values even for a large contact angle asymmetry.  
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4 Effect of contact angle hysteresis on the measurement of 
capillary forces 

4.1 Abstract 

We conduct experimental investigations of macroscopic capillary force between two flat rigid 

substrates characterized by their advancing and receding contact angles with water. Our 

results exhibit excellent agreement with theoretical predictions obtained by the numerical 

solution of the capillary equation. Based on this comparison, we use the measurements of 

capillary force to investigate the phenomenon of contact angle hysteresis. We present 

examples of force measurements for surfaces that display low, middle and high contact angle 

hysteresis and compare results for a larger variety of substrates. Finally, we show that for the 

case of water, the role of viscosity is insignificant within the range of force and velocity 

measured in the present work. 

4.2 Introduction

The phenomenon of capillary force is classical, yet still elusive in the context of many real 

world materials that drive today’s applications. The pioneering investigations of capillary 

force extend back to Young 16 und Laplace 15, who first introduced the concept of surface 

tension and formalized the capillary equation, where the difference P between the vapor and 

liquid pressure, i.e. the pressure across the interface of a liquid bridge, equals the surface 

tension times the mean curvature (1/R1+1/R2). Based on this foundation, numerous research 

groups have increased the general understanding of capillary force in the context of different 

geometries 43-46, 68, 70-74, environmental conditions 47-59, 67, 101, and materials 60-64, 66, 69. In most 

of these studies, the concept of a liquid bridge was regularly used to describe microscopic 
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events, although they were rarely imaged. The theoretical calculations used to support 

experimental observations were largely based on two model geometries: i) liquid bridge 

between two spheres 43-46, 68, 70, 71 or ii) liquid bridge between sphere and plane 47-64, 66-70, 72-74.

The solutions to these model problems were obtained by different approximations and only a 

few exact solutions of the capillary equation, numerical or analytical, can be found in the 

literature 70-74. In general, these results are expressed in terms of elliptical integrals or 

dimensionless parameters, which are not convenient for the analysis of experimental data. 

Consequently, most experimental researchers have proposed their own calculations. The 

insight provided by these previous investigations was fundamental to the general 

understanding of capillary forces, and its importance was supported by the many applications 

in the different branches of science and technology. However, this rich literature has largely 

focused on the modeling of the capillary condensation phenomenon and does not specifically 

address the effects of surface properties of real world materials.  For example, most solid 

surfaces display hysteresis in the liquid contact angle as it advances with increasing volume 

and recedes with decreasing volume. How does this hysteresis affect the measurement of the 

capillary force? 

Here, we conduct experimental studies of macroscopic liquid bridges of approximately 0.1 - 

0.5 µl drops of water between two rigid flat substrates, which are characterized by their 

advancing and receding contact angles a and r. Through comparison of experimental data 

and theoretical predictions, we address: i)  the accuracy of a numerical solution to the 

capillary equation achieved from the minimization of the total energy and ii) the effect of 

contact angle hysteresis on the measurement of capillary forces for liquid bridges. This new 

understanding and demonstration is desirable for a variety of applications and is specifically 

aimed at impacting the interpretation of capillary forces in biology 3, 5, 7, the adhesion 

measurements of multiple contacts 148-150 and the overall characterization of ultra-hydrophilic 

and ultra-hydrophobic surfaces properties 146, 151-156.
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4.3 Methods

Since the main goal of this work is to explore experimentally the impact of contact angle 

hysteresis on capillary forces, we only summarize the theoretical model to describe general 

capillary bridge forces.

4.3.1 Theoretical model

We assume a liquid bridge with a constant liquid volume V between two perfectly 

homogeneous flat substrates with equal contact angles  = 1 = 2 as shown in Figure 4.1.

Figure 4.1. Illustration of a liquid bridge with volume V between two identical substrates obtained through 

numerical minimization of the total energy with Surface Evolver 108.

The capillary force depends on the separation D of the substrates, the surface tension lv of the 

liquid-vapor interface, V and . If the length scale s= (3V/4 )
1/3, set by the radius of a liquid 

sphere of volume V, is small compared to the capillary length lcap=( lv/g )
1/2 (where g is the 

acceleration of gravity and  the difference between the liquid and vapor densities), then the 

influence of gravity is negligible and the liquid bridge has a constant mean curvature. In the 

case of water,  lcap =2.7mm, which indicates that for V << 80 µl gravitational contributions 

can be neglected. 

R1

R

D
R2 R1

R

D
R2



4 Effect of contact angle hysteresis on the measurement of capillary forces 

74

The capillary force can be expressed as the sum of forces arising from surface tension 

(Ftension) and Laplace pressure (FLaplace)
74 as:  

21

2 11
)(sin)(2)(

RR
DRDRFFDF lvlvLaplacetensiontotal  (4.1) 

where Ftotal (D) is the total capillary force as a function of the distance D between the 

substrates; R(D) is the radius of  the interface between liquid and solid; and R1 and R2 are the 

principal radii of curvature. The tension term describes the surface tension of the liquid acting 

on the substrates while the Laplace term describes the mechanical equilibrium between the 

bulk phases and the liquid-vapor interface  

To compare the predictions of equation (4.1) with experimental data, we need to determine 

the values of R and P = (1/R1+1/R2) for a given value of contact angle and D. To avoid 

elliptical integrals, we use an equivalent approach as used by Carter 40, which consists of the 

minimization of the total energy in the capillary bridge system at a given D and . The total 

energy of a liquid bridge is the sum of three contributions: the liquid-solid ( lsAls), the liquid-

vapor ( lvAlv) and the solid vapor ( svAsv) interface energies, where  and A denote the 

respective surface energies and surface areas. Since the substrate is considered rigid, we 

assume the total substrate area to be constant throughout the wetting process. Therefore the 

interfacial energy E of the system is constant and written as:  

E lv Alv ( ls vs)Als . (4.2) 

This expression for the total energy of a liquid bridge is minimized using the software 

package Surface Evolver 108. In this method, the liquid vapor interface is substituted by a 

mesh of triangles whose total area approximates the value of Alv. The area of the wetted 

substrate is obtained by line integrals along the contact line. The constraint of constant 

volume is expressed by means of a surface integral over a suitably chosen vector field. With 

the help of this numerical minimization, it is possible to calculate the capillary force as a 
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function of the separation of the substrates from the first derivative of the total energy with 

respect to distance. In Figure 2.2, we review the results obtained in 150 to give an overview of 

how capillary forces behaves for different contact angles over the whole range of 

displacements. 

4.3.2 Experimental method 

We measure water capillary forces between two substrates with arbitrary surface properties 

and compare them with force-separation-curves obtained from the numerically-solved model 

described above. In addition to the measurement of force, we image the liquid bridge before, 

during, and after the process of contact and separation of the liquid with the two substrates.

These measurements are performed on a custom-built instrument as shown in Figure (4.2).  

Figure 4.2. Picture of the experimental construction, for details see text.

A detailed description of the measurement procedure follows. 

The measurement:
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First, a droplet of water of V ~ 0.5 µl is placed on the bottom substrate, which is rigidly fixed 

to piezoelectrically-driven nanopositioner (EXFO Burleigh Inchworm).  This droplet then 

moves by the use of the nanopositioner in the direction of the top substrate, which is fixed to 

an aluminum cantiliver (Al-Cantilever). The length of the Al-Cantilever can be varied to 

modify its stiffness for measuring a wide range of forces. When the droplet contacts the top 

substrate, the Al-Cantilever deflects in response to the capillary force. The deflection is 

measured by a fiber optic displacement sensor (Philtec), and the position of the 

nanopositioner is obtained from an integrated optical encoder.  Both quantities are recorded 

continuously through a computer with a National Instruments Labview interface. Since the 

initial position of the nanopositioner and Al-Cantiliver are recorded, the force and separation 

can be obtained from the deflection measurements: 

sdkF  (4.3a) 

 )( MdD s , (4.3b) 

where ds is the deflection of the fiber sensor, k is the stiffness of the Al-Cantilever, and M is 

the displacement of the nanopositioner. 

Calibration of stiffness and fiber sensor 

The stiffness of the Al-Cantilever is calibrated using standard weights (0.1 to 6 mN ).  The 

average stiffness value is k =(18.92 ± 0.2) µN/m for the cantilever lengths used in the 

experiments discussed here. We calibrated the stiffness before each measurement for 

verification, and each result is calculated with its own stiffness. The noise level of the force 

measurements is approximately F  9 µN. This value is approximately 10 times smaller than 

the forces measured in this work. 

Imaging, calculation of volumes and contact angles.

To facilitate comparisons among different capillary bridges, we image the droplets and the 

liquid bridges before, during and after each experiment. These images show an exact contour 

and reflection of the liquid on the substrates as shown in Figure (4.3a). From these images, 
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we can accurately measure the radius, contact angle and height of the liquid droplets and 

bridges. From these values, we calculate the volume via the radius and contact angle or via 

the radius and height through well-known equations for the geometry of a droplet. Volumes 

calculated from both conditions are compared in Figure (4.3b), and the slope of unity reveals 

an accurate measurement of both contact angle and volume. In addition to facilitating fair 

comparisons of different capillary bridges, these values of volume are also used in the 

theoretical model for direct comparison of measured forces with theoretical calculated forces.  

(a)      (b) 

Figure 4.3. (a) Droplets of water with V  0.5 [µl] recorded previous and immediately after each 

measurement. Height h, radius r and contact angle  are obtained through the imaged reflection of the surface 

contour on the substrates. (b) Calculated volumes obtained through the measured contact angle and height. 

Measurement of contact angle hysteresis via evaporation dynamics 

The contact angle of the droplet before bridge formation roughly corresponds to the 

advancing angle, while the contact angle after bridge rupture is close to the receding angle. 

Independent measurements of the advancing and receding contact angles were made by a 
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method described in detail by Gao 146. This method consists of recording the advancing 

contact angle as the maximum contact angle during droplet deposition on a substrate and the 

receding contact angle as the angle at which the contact line moves during droplet 

evaporation. We measured the contact angle hysteresis of all substrates used in our 

experiments by recording movies as described above using the instruments of Dataphysics 

model OCA 30. These values are compared with the contact angles hysteresis obtained from 

the capillary bridge measurements.  

4.4 Results

In this section, we present the forces measured experimentally and compare them with the 

theoretical ones.  

4.4.1 Measurement of capillary forces between two parallel plates

Figure 4.4a shows a representative force-separation curve for a capillary bridge experiment 

between two toluene-cleaned glass substrates with advancing contact angle of 70° and 

receding contact angle of 50°. The red points represent the experimental data while the black 

and blue lines are theoretical fittings obtained from our numerical model for the advancing 

and receding contact angles, respectively.  

In this representative example, the capillary bridge forms upon approach when the glass 

substrates are approximately separated by 400 m. After forming the bridge, the capillary 

force increases as the bridge length, or separation, decreases upon approach. During 

approach, the advancing contact angle controls the droplet expansion on the substrates as 

demonstrated by the black fitting curve. The images of the water droplet/bridge illustrate how 

the shape of the bridge changes during the approach.
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(a)

(b)

(c)

Figure 4.4 Examples of substrates with different contact angle hysteresis determined by the fitting of the 

experimental curve with the numerical model of capillary force. (a) Glass with intermediate values, (b) PDMS 

with high and (c) tris(trimethylsiloxy)silylethyldimethylchlorosilane151 with low hysteresis demonstrate the good 

agreement between experimental and theoretical data for a variety of conditions.  
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At an arbitrarily defined minimum separation, the nanopositioner stops for 10 seconds and 

subsequently reverses at the same velocity as the approach. Upon reversal, the contact angle 

decreases until it reaches the receding contact angle and remains constant for the rest of the 

separation process. Images illustrate the transitions of the bridge at different separations until 

it ruptures. Since the relative humidity during our experiments was RH  18 %, low velocities 

of approach and separation provide time for evaporation of the water. In fact, a change of 

volume of 0.1 µl is enough to dramatically change the comparison between experimental and 

theoretical curves, Therefore, for the volume V  0.5 µl, we used a consistent velocity v = 10 

µm/s for all experiments reported here to avoid significant volume loss due to evaporation. 

The droplet images before and immediately after the measurements allowed us to calculate 

the volumes precisely and confirm the insignificant volume loss under these experimental 

conditions. Larger velocities were not used due to the limited data collection rates of our 

instrument.  

The results in Figure (4.4a) show quantitative agreement for the global behavior of both the 

model and experimental curves. The small deviation at close separations occurs due to the 

transition behavior of the contact angle as it changes from advancing to receding when the 

movement of the nanopositioner reverses direction. This transition does not occur 

instantaneously and our numerical model does not include a time-dependent change of 

contact angle. We also found precise agreement, in terms of both force and separation, for the 

point of rupture of the liquid bridge.

4.4.2 The effect of contact angle hysteresis  

Figure 4.4 shows three force-separation curves for materials that exhibit different degrees of 

contact angle hysteresis.  Figure 4.4(a) demonstrates the effect of relatively low hysteresis, 

where both the advancing and receding contact angles are less than 90°. In this capillary 
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bridge, the forces for both approach and recession are attractive at small separations. This 

behavior is consistent with our understanding of capillary bridges with static contact angles, 

as shown in our theoretical curves in Figure 2.

Figure 4.4(b) shows the force-separation paths for substrate materials with high hysteresis.  In 

this example, upon approach the force is repulsive at small separations, but the force changes 

to attractive at small separations upon reversal of the nanopositioner direction.  For these 

measurements, we used a 1:30 cross-linked poly(dimethylsiloxane) (PDMS) (Dow Corning, 

Sylgard 184) film supported by a glass slide.  The change from repulsive to attractive forces 

at small separations is an indication of the critical range of advancing and receding contact 

angles of this material.  The advancing contact angle is approximately 115°, while the 

receding contact angle is approximately 90°.  

In Figure 4.4(c), the substrate materials show low hysteresis and both the approach and 

recession data indicate repulsive forces at small separations. For this experiment, the 

substrate material was a tris(trimethylsiloxy)silylethyldimethylchlorosilane-silicon supported 

monolayer151. The small hysteresis of the force-separation curves in this figure is consistent 

with the low hysteresis of the advancing and receding contact angles of the substrate 

materials. 

4.4.3 Comparison between capillary force and contact angle methods 

In addition to the three representative force-separation curves shown in Figure 4.4, we 

measured the force-separation curves for an extensive series of different substrates. From 

these capillary force curves, we used our theoretical curves to determine the advancing and 

receding contact angles that provide the best-fit curve. For these materials, we also quantified 

the advancing and receding contact angles with the evaporation method described above 146.
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The values for the advancing and receding contact angles from both methods are compared in 

Figure 4.5.

Figure 4.5 Comparison of contact angle hysteresis obtained by the capillary force measurement and 

conventional contact angle methods146.

The error bars for the evaporation method results are calculated from the standard deviations 

of 6 measurements per substrate. The slope of unity demonstrated in Figure 4.5 confirms the 

accuracy of using a capillary force measurement for determining both advancing and 

receding contact angles. 

4.5 Discussion

4.5.1 Measurement of capillary forces between two parallel plates

The force-separation curve of a capillary bridge depends strongly on the contact angles of 

both bounding substrates, the volume of the drop during the complete measurement, the 

velocity of the measurement or viscosity of the liquid, the alignment or geometry of the 

substrates, as well as numerous other parameters. In this paper, we have focused primarily on 

20 30 40 50 60 70 80 90 100 110 120 130

20

30

40

50

60

70

80

90

100

110

120

130

Advancing angle

Receding angle

 v
ia

 e
v
a
p

o
ra

ti
o

n
 m

e
th

o
d

, 
[D

e
g

]

 via force measurement, [Deg]



4 Effect of contact angle hysteresis on the measurement of capillary forces 

83

the effect of contact angle hysteresis for the substrate materials.  The contact angle hysteresis 

can be simply accounted for in our theoretical model by using the advancing contact angle for 

force-separation curves during approach and receding contact angles for force-separation 

curves upon recession.  The deviations between our theoretical curves and experimental data 

at small bridge separations is attributed to the transitional behavior of the contact angle as the 

substrates change direction.  This behavior is not accounted for in our simple theoretical 

model and further modifications would be required to quantitatively account for these 

changes.

In addition to relating the force-separation hysteresis to the contact angle hysteresis, our data 

shows quantitative agreement between experiment and theory for the point of rupture. We 

observe that larger contact angles lead to rupture at larger separation values. This fact plays a 

fundamental role in understanding the behavior of multiple liquid bridges 150, which is 

relevant for understanding the adhesion mechanisms in biology 3, 5, 7 and of patterned surfaces 

148, 149.

We note that we have assumed both substrates to have identical advancing and receding 

contact angles. This assumption is supported by the good quantitative agreement between 

model and experiments curves. When the bounding substrates are dissimilar, the prediction of 

force-separation curves becomes more complex. In this case, each substrate has its individual 

hysteresis and 4 contact angles are required to describe the force-separation curve, i.e. 2 

advancing (bottom and top) and two receding angles, to completely fit the experimental 

curves. The role of different contact angles between the two substrates will be addressed in a 

subsequent paper.

4.5.2 The effect caused by the contact angle hysteresis 
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Contact angle hysteresis has been studied and reported extensively, but its relation to 

capillary force hysteresis has not been quantitatively addressed.146, 152, 154-156. Our 

measurements confirm that the hysteresis of a capillary bridge force-displacement curve is 

directly associated with the contact angle hysteresis of the bridge/substrate interface. This 

hysteresis causes the specific force-separtion relationship to be history dependent.  In other 

words, the examples in Figure 4.4 clearly indicate that the force associated with a given 

separation is dictated by the previous movement history for the two bounding substrates. This 

difference in force for a given separation can be especially significant when the advancing 

and receding contact angles are greater and less than 90°, respectively (as shown in Figure 

4.4b). This path dependence of capillary forces could have important implications in the 

fabricatiton of micron and nano- scale devices, such as MEMS, where capillary effects often 

cause defects or failure. 

Comparisons between capillary force hyteresis and contact angle hysteresis with our current 

approach can be obtained only if the advancing and receding contact angles are constant over 

the whole range of separation. However, it is not difficult to imagine a material with patterns 

or impurities that cause the contact angle to change with lateral position or time. For these 

materials, the kinetics of hysteresis become essential for a complete description of the 

capillary bridge force-separation curve.

4.5.3 Comparison between force and standard methods 

As Figure 4.5 indicates, capillary force measurements provide a straightforward, alternative 

technique for quantifying the effect of contact angle hysteresis for a variety of materials.  In 

particular, this approach is robust and sensitive for the characterization of materials that have 

extreme surface properties, such as ultra-hydrophobic and ultra-hydrophilic surfaces. For 

these surfaces, the stability of a sessile drop due to gravitational effects or the camera 
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resolution often limit the precise measurement of contact angles over a range of liquids.  

These difficulties often limit the fundamental insight that is needed in these technologically-

important surfaces.  These effects do not present difficulties in the measurement of capillary 

forces.  Once a drop of known volume is on the surface of a substrate, the forces can be 

measured as a function of separation and the hysteresis can be recorded and analyzed in the 

context of the numerical model presented here. In these measurements it is clear if the surface 

is truly non-hysteretic and if the surface is truly superhydrophobic, i.e. adv = rec = 180° .  

For this surface condition, the entire force-separation curve will exhibit repulsive forces – the 

only case that exhibits this behavior. 

4.5.4 Volume evaporation and viscosity 

Although previous studies of capillary forces with water bridges often neglect viscosity 

effects147, 157, many reports of non-aqueous liquid bridge capillary forces often emphasize the 

impact of viscosity effects.158-162. Therefore, for completeness, it is necessary for us to use 

Stefan’s equation 163 : 34 4/3 dvrFvisc  to calculate the viscosity force of a liquid between 

two discs of radii r, viscosity , velocity v and separation d.  With this force calculation, we 

can determine the validity of neglecting viscosity effects in our measurements.  Assuming a 

value of r  1000 µm which is the maximal radius at the minimal separation d = 200 µm, the 

viscosity  = 0.001 Pas for water and the maximal velocity v = 10 µm/s, we obtain Fvisc-stefan =

2.94 nN.  For conditions at the point of rupture, we calculate Fvisc-stefan = 2.64 pN. These 

values are significantly smaller than force values measured in our experiments; therefore, our 

neglect of viscosity contributions is valid for these studies.  Future investigations will use 

different liquids and velocity ranges to investigate viscosity effects in the context of capillary 

bridges between materials with contact angle hysteresis. 
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4.6 Conclusions 

We have shown the importance of hysteresis in the measurement of the force-separation 

curves for capillary bridges, and the utility of this technique for characterizing general 

surfaces. The hysteresis of the force-separation curve is related directly to the measured 

hysteresis of contact angles as shown by the quanitative agreement between our experimental 

data and theoretical curves from the numerical solution of the total energy of a capillary 

bridge.  This agreement was demonstrated for a wide-range of substrate materials.  The 

characterization of surfaces properties with capillary bridges also emphasizes the importance 

of the kinetics of transition from advancing to receding contact angles in determining the 

specific force at a given bridge separation. Finally, we emphasize the ease and 

quantitativeness of this procedure for the inspection of hysteresis in super hydrophobic 

surfaces, which is not easily detected in contact angle measurements on these surfaces but is 

essential for a variety of technical applications.
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5 Capillary force between sphere and plate

5.1 Abstract 

We study numerically the effect of the radius of a sphere on its adhesion to a planar substrate 

due to capillarity.  The adhesion force is found to scale linearly with the radius in near 

contact; for large separations, the behavior is found to be more complicated and exponential 

fit-functions with coefficients depending on the contact angle and displacement are proposed.  

The results for a large radius converge as expected to the results obtained for the plate-plate 

geometry, however, results for small spheres reveal that a repulsive force can be obtained 

even for contact angles smaller than 90° at small separations. We also calculate the Laplace 

pressure, surface tension and total force for the whole range of displacements and contact 

angles for the plate-plate and sphere-plate configurations. These results are fundamental to an 

understanding of the enhancement of the force due to multiple small bridges between many 

small spheres and a plate. Color maps display the comparison of the total force due to 

multiple bridges for both situations. 

5.2 Introduction 

Capillary forces exerted by a liquid bridge between two surfaces have been extensively 

investigated experimentally and theoretically. The most common geometries were i) sphere-

sphere35, 43, 46, 71, 126-128, 162, 164, ii) sphere-plate 12, 47-50, 54, 60-65, 72-97, 125 and iii) plate-plate 24, 25, 27, 

29, 39, 40 configurations. Studies based on different assumptions resulted in many 

approximations and rarely in a general model. In an earlier numerical study of the capillary 

force due to multiple liquid bridges 150, we have shown, for example, that the total capillary 

force of n bridges is maximized at moderately hydrophilic contact angles, i.e. 70°, and not for 
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very hydrophilic substrates, as would be intuitively expected. We found good quantitative 

agreement between the results of the model and new experimental data for liquid bridges 

between two parallel plates 165. Also the effect of different contact angles on the force-

displacement curves was studied numerically 166. These investigations were restricted to a 

plate-plate geometry. 

The adhesion of a sphere in contact with a plate was studied by McFarlane and Tabor 47.

Their result for the adhesion force is 

cos4 RF lv , (5.1) 

where lv is the surface tension of the liquid, R the radius of the sphere and  the contact angle 

of the liquid on the plate. O’ Brien and Hermann 75 extended this equation to

 )cos(cos2 21RF lv , (5.2) 

where 1 and 2 are the contact angles of the liquid on the plate and on the sphere, 

respectively,  to include dissimilar material properties. These equations became the reference 

for numerous research groups in the context of a humidity-dependent capillary force 48-50, 54, 76

and measurements of capillary adhesion and friction by atomic force microscopy 64, 77-83.

Further expressions were proposed based on the circular approximation of the curvature of 

the liquid-vapor interface 60-62, 84-88 and on numerical computations of the curvature 72-74, 89.

The circular approximation was shown to be valid for small liquid bridges 72-74, 89.

Furthermore, the sphere-plane geometry was also frequently used to model capillary forces 

on rough surfaces 63, 90-97

However, this large body of literature has mainly focused on very specific problems that are 

often described by idealized conditions such as a sphere that is in immediate contact with a 

plate, numerical calculations for some selected contact angles but not for the whole range of 
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possible angles, the focus on only one liquid bridge instead of several adjacent ones as might 

occur on rough substrates or the fact that most often the size of a spherical substrate relative 

to the volume of the liquid bridge is neglected in quantitative descriptions. 

In this work, we investigate theoretically how the radius of the sphere influences the force-

displacement curve for a large range of radii and all contact angles. We calculate the force 

versus the sphere radius for different displacements and propose different fit-functions 

depending on the range of the displacements. Furthermore, we show how the Laplace 

pressure and surface tension terms behave for different contact angles and displacements for 

plate-plate and sphere-plate geometries. Based on these results, we extend the multiple bridge 

model proposed in 150 to a sphere-plate geometry.

5.3 Methods

We assume a liquid bridge, with a constant liquid volume V, between a rigid sphere of radius 

R and a flat substrate as shown in Figure 5.1. 

       (a)     (b)         (c) 

Figure 5.1. Schematic illustration of a liquid bridge wets between a spherical and a planar substrate with fixed 

contact angles 1 and 2. (a) illustrates the shape of the liquid-vapor interface for =30°, (b) for =90° and (c) 

for =150°. The radius of the sphere (R) is five times larger than the radius obtained from the volume V of the 

liquid bridge. The radius on the substrate (Rsub), the radius on the sphere (Rsph) and the wetting height (H) for the 

separation D between sphere and plate are obtained from numerical calculations of the total energy with Surface 

Evolver 108.
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The surfaces are characterized by their contact angles 1 and 2, which are assumed to be 

identical:  = 1 = 2. The capillary force depends on the separation D, the surface tension lv

of the liquid-vapor interface, V and . Rsub in Figure 5.1 is the liquid-solid contact radius on 

the substrate while Rsph is the same radius on the sphere. H is the wetting height.

We calculate numerically the minimization of the total energy of the liquid bridge given by E

= lvAlv+( ls- vs)Als using the software package Surface Evolver 108. This software has been 

successfully used for earlier studies of plate-plate geometries 150, 165, 166 (chapters 2, 3 and 4 in 

this thesis). We will use in the following sections the same notations as in chapters 2 and 3. 

The normalized total force is also obtained from the sum  of forces arising from the surface 

tension (ftension) and the Laplace pressure (fLaplace) as given in 74, 125
.  The surface tension 

contribution is calculated by ftension(d) = r(d)
2
sin( ), where the  normalized radius of contact 

between liquid and solid r(d) is a direct output from the numerical calculation. The 

normalized Laplace pressure can be calculated by subtracting the normalized surface tension 

contribution from the normalized total force. Following Carter 40 and our earlier study 150, we 

relate an attractive force to a positive Laplace pressure.  

5.4 Results

5.4.1 Force versus displacement for fixed sphere radii 

Figure 5.2a displays the normalized force as a function of the normalized distance for a plate-

plate (solid lines) and sphere-plate (circles) geometry. The radius R of the sphere is 1000 

times larger than the radius s, set by the volume of the liquid bridge (R = 1000·s). This 

comparison shows excellent agreement for all contact angles, except for  = 90° and very 

small displacements.  
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In Figure 5.2b the size of the sphere is reduced to 5·s. Comparison between Figures 5.2a and 

5.2b shows that this decrease of the radius of the sphere does not significantly affect the 

forces at large distances except for the case  = 90°.

Figure 5.3 shows the effect of the radius R on the force-distance curves at small distances. 

For  = 60°, Figure 5.3a illustrates that for R < 500·s the sphere-plate geometry (solid lines) 

strongly deviates from the plate-plate curves (circles). We note that the force approaches 

infinity for the plate-plate configurations while it converges to a finite value in the case of 

sphere-plate configurations. For  = 120°, Figure 5.3c shows a similar behavior, but with 

opposite sign. Further calculations for different  values gave qualitatively the same results. 

Interestingly, for  = 90° an anomaly occurs (Figure 5.3b). This irregularity occurred also in 

Figure 5.2 a, b. Figure 5.3b shows in detail how the size of the sphere affects the behavior as 

d approaches zero, the force becomes repulsive (negative) for all sphere radii; it is completely 

attractive (positive) for the plate-plate geometry. Stronger repulsive forces are observed for 

larger radii. The range of displacements for repulsive forces is smaller for larger R.
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(a)

(b)

Figure 5.2. Numerical force versus displacement for hydrophilic 90° and hydrophobic >90° surfaces for 

two fixed sphere radii: (a) Comparison between results for plate-plate (solid curves) and a large sphere radius,  

R = 1000·s, (circles) demonstrates excellent agreement. (b) Results for a sphere-plate geometry with a sphere 

radius five times larger than the radius for the volume of the liquid bridge. 
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(a)

(b)

(c)

Figure 5.3. Examples of force-displacement curves for fixed contact angles and different sphere radii 

(circles). The range of force is appropriately chosen to highlight the comparison at small separations. (a) displays 

the results for =60° (b) for  = 90° and (c) for  = 120°.
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5.4.2 Force versus radius for fixed separations 

It is instructive to display the forces as a function of the radius of the sphere at fixed 

normalized displacements (Figure 5.4). The numerical data (circles) are fitted with different 

functions (solid lines). For very small separations, the forces can be fitted by linear functions 

of the form: 

0,, fR)df(R , (5.3) 

 where is a contact-angle dependent slope given by ( )=2cos( ), R is the radius of the 

sphere and f0 = 0. We also calculated the normalized force f for larger distances and verified 

that the linear fit in Eqn. (5.3) holds up to separations of d=0.01.

Figure (5.4b) shows numerical results for an even larger separation of d=0.05. In this case, 

the normalized force can be fitted to the following exponential function:  

0exp,) fdRdhf(R,d,  (5.4) 

 where, h(d, ) = (d)· ( ) and (d) are displacement and contact-angle dependent functions, 

respectively. At this value of d, the fit function matches the numerical data very well for 

( )=cos( ) (Figure 5.4b) but there are no analytical expressions for (d) and (d).

If the distance is increased to d = 1, the numerical results can still be fitted by a fit function as 

given in Eqn. (5.4) (Figure 5.4c) but now the analytical expression for ( ) is also unknown. 

Taken together, the comparison between numerical data and the exponential fit functions 

shows good agreement up to distances close to the maximal extension, i.e. point of rupture 

(results not shown). 



5 Capillary force between sphere and plate 

95

(a)      

(b)       

(c)      

Figure 5.4. Force versus radius for fixed contact angles and fixed displacements. (a) displays the results for 

very small d, (b) for small and (c) for intermediate displacements d, respectively. Comparison between fit-

functions (solid curves) and numerical data (circles) demonstrate a good agreement for these particular 

displacements. 
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5.4.3 Laplace pressure and surface tension for flat and spherical 

geometries

Figure (5.5) presents color maps of the behavior of the Laplace pressure (5.5a, d),  the surface 

tension along the contact line (5.5b, e) and the total force (5.5c, f). As axes, we choose the 

contact angle  and the normalized displacement d (in steps of =5° and d=0.001). The 

color coding corresponds to different normalized force values. The continuous lines represent 

contours of equal force and the contour maked “0” describes the transition from attractive to 

repulsive forces. 

First, we compare the Laplace pressure, surface tension and total force for the plate-plate 

geometry shown in Figure (5.5a, c). The Laplace pressure and the total force increase 

dramatically for separations d < 0.5, they approach positive infinity for  < 90° and negative 

infinity for  > 90°. The Laplace pressure is positive over the whole range of displacements 

for  < 20°. Beyond this contact angle, it crosses the line of zero force and becomes negative 

for shorter displacements with increasing contact angle.  For  > 90°, it is entirely negative. 

The total force, however, is positive for the whole range of displacements if  < 90° and 

crosses the zero line from negative to positive values for  > 90°.

Comparing the isolines of the Laplace pressure with the isolines of the surface tension 

(Figure (5.5b)) for large separations, shows that the surface tension dominates the total force 

for this displacement regime. Therefore, since the surface tension is always attractive 

(positive), it results in an attractive total force at large separations, even for super-

hydrophobic surfaces. Note that the Laplace pressure decreases much faster to small values 

than the surface tension. The white color at large separation represents the rupture of the 

liquid bridge.



5 Capillary force between sphere and plate 

97

(a)             (d)    

(b)             (e)    

(c)             (f )     

Figure 5.5. Map of force contributions to the total capillary force. (a), (b) and (c) are the Laplace pressure, 

surface tension and total force, respectively, for the plate-plate geometry. (d), (e) and (f) are the force 

contributions in the same order for the sphere-plate geometry. 
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In the case of a sphere-plate geometry, the Laplace pressure (Figure (5.5d)) and consequently 

the total force (Figure (5.5f)) assume finite values at close separations. Besides, the Laplace 

pressure decreases to more negative forces at large separations than the forces obtained for 

the plate-plate geometry at the same regime of distances. The opposite occurs for the surface  

tension.

Comparing Figure (5.5b) with (5.5e) at large separations, shows that the surface tension 

contribution for the sphere-plate geometry is more positive than that for the plate-plate. 

Comparison of the maximal extension of the liquid bridge between plate-plate and sphere-

plate geometries, for example, (Figure (5.5 c) and (5.5f)), shows that the rupture occurs at 

larger distances for plate-plate than for sphere-plate arrangements and that the maximum 

separation occurrs for =90° for two plates and for =125° for a sphere and a plate. 

The Laplace pressure and the total force shown in Figure (5.5 d) and (f) at small separations 

differs strongly from the Laplace pressure shown in Figures (5.5 a) and (c) for a contact angle 

approaching 90°. 

To visualize this difference, we display in Figures (5.6 a) and (b) two dimensional force-

displacement curves of solutions for plate-plate and sphere plate geometry for contact angles 

approaching 90° from the right and left side. Comparison of these pictures shows that the 

mentioned anomaly of the previous section (Figure (5.3c)) does not occur exclusively for 

=90° but for all contact angles around =90°. It shows that repulsive forces occur even for 

< 90° if the separation and the sphere radius are both very small. 



5 Capillary force between sphere and plate 

99

(a)

(b)

Figure 5.6. Comparison of force-displacement curves between a plate-plate and a sphere-plate geometry for a 

small sphere radius R = 5 s and restricted range (70°-110°) of contact angles. The figures are details of Figure s 

(5c) and (5f) represented as two-dimensional curves. (a) Results for the plate-plate and (b) the sphere-plate 

geometry, respectively. 
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5.4.4 Extended maps of multiple liquid bridges 

We now consider the effect of splitting one large liquid bridge between a sphere and plate 

into n smaller bridges with the identical ratio Q=R/s, i.e. a self-similar splitting into n equal 

bridges of volume V/n as schematically shown in Figure 5.7.  

Figure 5.7. Schematic of splitting one liquid bridge into n smaller liquid bridges of equal size. The total 

volume of the liquid, the ratio R/s and the separation of the substrates are equal in both cases.  

In the subsequent calculation it is assumed that the individual bridges do not interact or 

coalesce. This situation could be realized experimentally by chemical patterning of the 

substrate.

Map of force 

To calculate the total force of n non-interacting bridges, we proceed as described in 150. We 

start from the absolute force for one liquid bridge (Eqn. 2.5d). If V decreases to V/n, the 

scaling factor s and the normalized distance d change in the following way: s becomes 

sn=s n
-1/3 and d becomes dn=d n

1/3
. For n liquid bridges the total absolute force at distance d

is therefore given by: 

 )(2)(2)( 3/2
nlvnnlvn dfsndfsndF  (5.5) 
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Note that the absolute separation D of the substrates and the ratio Q=R/s have not changed. 

To provide a direct comparison between sphere-plate and plate-plate geometry we replot in 

Figure (5.8a) the results for the plate-plate configuration published in 150 . The dependence of 

this total force on n,  and R is displayed in Figure (5.8b), using lv=72.8 mN/m for the 

water-air interface, V=1 µl, D=15 µm and R=5·s.

As axes, we choose the contact angle  and the number n of bridges that vary in steps of 

=5° and n=1, respectively. The color coding corresponds to different total force values. 

The continuous lines represent contours of equal force (labeled in Newtons); the heavy black 

contour marks the transition from attractive to repulsive forces.  The fields labeled “rupture” 

correspond to situations for which the liquid bridges are no longer stable. 

First, an enhancement of the total force is seen as the number of bridges (spheres) increases. 

Comparison between Figures (5.8a) and (b) reveals that the total force for the sphere-plate 

configuration is decreased with respect to the plate-plate configuration. The maximal forces 

between two plates is about 1.15 N for  ~ 70° (Figure 5.8a), while the maximal force for the 

sphere-plate geometry is about 0.838 N for  ~ 50° (Figure 5.8b). Close inspection shows that 

the isolines for the total forces F < 0.505 N are quantitatively very similar for the same 

number of bridges and contact angles. The comparison also shows that the possible number 

of bridges is reduced for the sphere-plate geometry: the “rupture” field is larger. 

Map of stress 

To calculate the stress we divide the total force Fn for n liquid bridges by the total area An

obtained from the sum of the projections of the equatorial areas of the n spheres onto the 

bottom substrates, i.e. the area necessary to accommodate n adjacent spheres. The stress 

shown in Figure 5.9 is maximal for strong hydrophilic surfaces and one liquid bridge (red 

area near =0°).
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(a)

(b)

Figure 5.8. Map of the total force versus the contact angle  and the number of liquid bridges. The black 

contours are lines of equal force, some of which are labeled in [N] for a better visualization. The graphs (a) and 

(b) display a comparison between a plate-plate and a sphere-plate geometry for a constant ratio (Q = 5) between 

sphere-radius and bridge-radius.  
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Figure 5.9: Map of the stress versus the contact angle and the number of bridges. Isolines are labeled in 

[N/m2]. The stress is calculated as total force of n bridges divided by the total area necessary to accommodate the 

n adjacent spheres, i.e. the total area that results from projecting all spheres onto the lower substrate.

5.5 Discussion

5.5.1 Forces-displacement curves for large and small separations 

Large separations 

Comparison between plate-plate (solid curves) and sphere-plate (circles) results in Figure 

5.2a demonstrates excellent agreement. It is reasonable to assume that the energy 

minimization with Surface Evolver is reliable over the whole range of contact angles. This 

finding justifies the application of the numerical minimization method to systematically 

investigate the size effect of the sphere on the force-displacement curves, as demonstrated in 

Figure 5.2b. The qualitative similarity between Figures 5.2a and 5.2b at large distances 

(except for  = 90°) indicates that a liquid bridge is not sensitive to the size of the sphere in 

this regime. Since the surface tension dominates the total force at large separations, it follows 
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from our observations that the surface tension is also insensitive to the size of the sphere at 

large separations. 

Small separations 

As mentioned in the introduction, the sphere-plate model has been frequently used to model 

capillary condensation and other adhesion experiments, however, the effect of the ratio R/s

has been rarely taken into account. Our results in Figure 5.3 clearly show that this ratio has 

indeed a very large effect on the total force. In particular, Figure 5.3a shows that for R/s

500 the sphere-plate geometry can be approximated by a plate-plate geometry, which is easier 

to handle numerically because less parameters are needed to describe this configuration. 

There are many experimental situations with R/s  500, such as for example in 52, where such 

approximations would be meaningful. Our results in Figure 5.3a are therefore helpful in 

choosing an appropriate geometric model to quantitatively describe experimental results. If, 

for example, a liquid volume is of the order of 10-15 m3, as occurs during capillary 

condensation, and a spherical substrate is of the order of few mm, then it follows that R/s

500. Our results suggest that this situation can be approximated by a plate-plate geometry 

which is very convenient in experimental measurements of the total force.  

Anomaly for  = 90°.

The repulsive force shown in Figure 5.3b demonstrates the importance of knowing the exact 

contact angle to compute the total force. It is frequently assumed that the force for  = 90° is 

completely attractive between a sphere and a plate, our results however shows that attractive 

forces can be obtained only if R approaches very large values. Furthermore, this effect may 

be difficult to observe experimentally because it occurs at very small 

separations and specific contact angles.
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5.5.2 Fitting results 

Linear fit 

By plotting the slope observed in Figure 5.4a versus the contact angles (results not shown), 

we obtained ( )=2cos( ). Thus, insertion of equation (5.3) in equation (2.5d) yields: 

3

1

)4/3()cos(4)( VRRF lv . (5.6) 

Up to the volume term, this result is identical to the previous observations in 47 and 

demonstrates the accuracy of our numerical model at very small separations, which is not 

evident in earlier numerical solutions 72-74, 89.

Exponential fit 

The fact that ( ) = cos( ) for d = 0.05 in Eqn (5.4) does not hold for larger separations as 

shown in Figure 5.4c. This indicates that it is difficult to propose a global quantitative model 

that fits the results for a large range of different values of d. Even if such a model existed, the 

physical interpretation of its coefficients would most likely remain elusive. Numerous 

quantitative approximations presented in earlier studies did not consider the effect of the 

sphere radii and contact angles for all separations. Consequently, there are no comparable fit 

functions in the literature. We therefore suggest more experimental investigations to support 

our fits and to possibly give physical meanings to the fit coefficients. 

5.5.3 Laplace pressure and surface tension for flat and spherical 

geometry 

The “landscapes” shown in Figure 5.5 have interesting topographies, because they 

characterize the liquid bridge between two substrates when one pulls them together or pushes 

them apart. By reading off the Laplace pressure, one can deduce how the liquid-vapor 
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interface is being deformed, while the surface tension describes how the contact line moves. 

In general, the Laplace pressure governs the total force at small separations while the surface 

tension plays the dominant role at larger separations. 

As opposed to the plate-plate configuration, where the contact line can expand indefinitely 

outwards, the contact lines are constrained by the spherical shape of one substrate. Thus, the 

liquid bridge starts to “feel” the size of the sphere as it approaches the plate. The response of 

this curvature results in a repulsive force even for contact angles smaller than 90°.  

The Laplace pressure is more strongly repulsive (negative) at large separations for the sphere-

plate geometry than for the plate-plate configuration. Interestingly, the surface tension is 

more strongly attractive (positive) for the sphere-plate geometry than for the plate-plate 

geometry at the same large separations. We suggest that the combination of these effects 

explains why the rupture occurs at smaller separations for the sphere-plate geometry than for 

plate-plate configurations. 

Geometric and size effects in the context of different substrate shapes and relative humidities 

have been investigated in earlier studies 68, 167-170. However, the size effect of the sphere 

relative to the size of the liquid bridge is not investigated in the present literature. To our 

knowledge, a complete overview of the influence of contact angles and substrate geometries 

on the force-displacement curves has not been published so far. The map of force 

contributions due to the Laplace pressure and the surface tension for plate-plate and sphere-

plate geometries are also completely new results. Besides the completeness, the results shown 

in Figure 5.5 are the basics for understanding the effects described in 150 . 
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5.5.4 Map of total force and stress 

Map of total force 

In the context of improving adhesion, the map of the total force due to multiple bridges for 

the sphere-plate geometry reveals that the enhancement of force is moderately reduced if 

compared to the map of force for the plate-plate geometry. In the case of artificial attachment 

devices, this result suggests that capillary adhesion is stronger for a plate-plate arrangement. 

Such configurations would occur, for instance, for capillary bridges between pillars with flat 

tip geometry as described in 171. Also some biological systems, as for example the attachment 

organ of flies 6-8, resemble a plate-plate geometry rather than a sphere-plate geometry. 

On the other hand, reduction of adhesion is desired in many technical application as described 

in 63. Previous investigations addressed the effect of roughness on the capillary force 92-94 and 

even the hypothesis of multiple bridges 90, 92, 96, 97. However, it was not known how the 

number of bridges affects the total force for arbitrary contact angles. Therefore, the map of 

total force due to multiple liquid bridges for sphere-plate geometries presents a helpful new 

tool to minimize the adhesion and stiction by controlling the number of asperities and the 

contact angles of the substrates.  

Our results are also qualitatively consistent with a previous experimental observation of a two 

dimensional curve of the total force versus the number of bridges as shown in 97. This result 

was obtained by sliding an AFM tip with radius R ~ 10 nm on a hydrophilic rough surface of 

glass. Water bridges can form between the tip and the asperities of the surface resulting in a 

total force Fn proportional to n2/3. This observed power law represents a stripe in our color 

map for a very specific condition and therefore direct comparisons cannot be made. 
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Map of stress 

The maximal stress for strongly hydrophilic surfaces and one liquid bridge demonstrates that  

Contact splitting is not an efficient method to maximize the adhesion if the available area for 

adhesion is limited. This is in contrast to a plate-plate geometry. The reason is that here, for a 

given separation, i) the maximal force is obtained for the minimal contact angle (very 

hydrophilic substrates), and ii) the total projected area obtained by splitting a large spherical 

contact does not depend on the contact angle and increases with the number of  bridges. The 

highest stresses are thus obtained for  0°, and n  1, which corresponds to the red region in 

Figure 5.9. 

This too indicates that hierarchical biological attachment devices rather resembles a plate-

plate geometry than a sphere-plate geometry, because they make use of contact splitting and 

require a strong adhesion for a limited contact area. 

5.6 Conclusions 

The results presented in this work reveal the importance of the ratio of the sphere relative to 

the volume of the liquid bridge. This ratio changes the behavior of the force-distance curves 

in different ways depending on the separation. We have shown, for example, that repulsive 

forces can be obtained for  < 90° and small sphere radii.  

We reproduced previous results for a sphere in contact with a plate and extended the 

description of this configuration to all separations. The exponential fits proposed here are 

very accurate and convenient but require experimental verifications.  

For the first time, contributions due to the Laplace pressure and the surface tension are 

displayed for all distances and contact angles. These maps do not only give an overview of 
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the contributions to the total force, but also help to understand the effects observed for 

multiple liquid bridges. 

Finally, the calculation of a map of the total force due to multiple liquid bridges for sphere-

plate geometries has shown that an enhancement of the force is also present for this case. This 

map can be very instructive in designing artificial adhesive systems where, for example, the 

capillary adhesion due to surface asperities is to be minimized. 



6 Summary and outlook 

110

6 Summary and outlook 

Earlier studies of the effect of capillary forces on adhesion have revealed that it remains 

difficult to this date to derive a general model of capillarity that is based on realistic 

conditions such as i) different chemical properties and different geometries of the substrates, 

ii) more then one liquid bridge between the substrates and that applies to a large range of 

possible distances. The idealized conditions studied previously left many open questions that 

are important for the qualitative and quantitative understanding of how liquid bridges behave 

generally. The investigations in this work go beyond the limits presented in the literature and 

offer a more general view of capillarity.  

We have shown that the force exerted by multiple liquid bridges does not scale linearly with 

the number n of bridges, as might be intuitively assumed. Instead, two scaling regimes are 

found: for a contact angle  52°, the force exhibits a maximum at some intermediate value 

of n, while for  > 52°, it increases monotonically with n. In both cases, however, does 

contact splitting lead to an enhancement of the force as compared to only one bridge. The 

overall maximum of the force occurs for moderately hydrophilic surfaces with contact angles 

of  ~ 70° and not for strongly hydrophilic surfaces as expected at first glance. Color maps 

calculated for the stress and the energy of separation of the substrates show that the maxima 

are shifted towards contact angles of 90° and many bridges and towards very small angles 

and only one bridge, respectively. These maps can be helpful tools to optimize engineered 

functional surfaces.  

In view of biological attachment systems, the maps suggest that animals may indeed apply 

the mechanism of liquid bridge splitting, because many small bridges can lead to stronger 

adhesion than a single bridge, which is especially important for adhesive systems operating in 
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the regime of large distances, i.e. close to the point of rupture. Furthermore, animals most 

likely have the capability to adjust the amount of liquid that is secreted to their attachment 

organs and to control the number of bridges that are in contact. Both parameters may serve as 

control parameters that can modify the capillary force and even switch it from attractive to 

repulsive and vice versa.

The calculations of the capillary force for different contact angles show that the force 

between very hydrophilic and moderately hydrophobic surfaces is attractive over the whole 

range of distances. On the other hand, the point of rupture (maximal possible separation) is 

maximal for identical contact angles and decreases with increasing degree of contact angle 

asymmetry. These results may have important consequences for biological attachment 

devices, where the contact elements, of insects for example, are assumed to be strongly 

hydrophilic while the substrates to which they attach can range from hydrophilic to strongly 

hydrophobic. Our results suggest that this is not necessarily a problem, because very 

hydrophilic contact elements provide attractive interactions with a large class of substrates 

ranging from hydrophilic to hydrophobic. On top of that, a large contact angle asymmetry has 

the additional advantage of small rupture distances and thus of easy detachment from the 

substrate whenever necessary.  

Comparison between our numerical calculations and measurements of the capillary force for 

one bridge between two parallel plates demonstrates the high accuracy of the numerical 

model. This allows to use fits of the numerically calculated force-distance curves to measured 

ones in order to determine the dynamic contact angles at both substrates, thereby providing a 

new and accurate method to evaluate the contact angle hysteresis. This method is very 

flexible and can also be applied to super hydrophobic surfaces which are otherwise very 

difficult to analyze with standard techniques.
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Calculation of the capillary force between a sphere and a plate shows that in this case the 

additional parameter describing the size of the sphere relative to the volume of the liquid 

bridge is very important and affects the force-separation curves. As opposed to the plate-plate 

configuration, it is shown that the force converges to finite values for d  0, that it can 

become repulsive even for  < 90° as the size of the sphere approaches that of the liquid 

bridge and that the maximal rupture distance decreases and shifts from 90° to larger contact 

angles with decreasing sphere size. If the sphere is more than 500 times larger than the 

bridge, our results suggest that a sphere-plate configuration can be approximated well by a 

plate-plate configuration.  Color maps of the Laplace pressure and the surface tension for 

plate-plate and sphere-plate geometries are very helpful in understanding the role of the 

individual contributions to the total force for all separations and contact angles. The results of 

contact splitting show that an enhancement of the force is still present but it is reduced as 

compared to two planar substrates and it decreases with decreasing radius of the sphere. The 

maximal total force is shifted to  ~ 50° for a sphere 5 times larger than the individual bridges 

and the stress is maximal for very hydrophilic substrates and one bridge.

In future work, it would be very interesting to measure experimentally the capillary force due 

to multiple liquid bridges for plate-plate and sphere-plate geometries. To this end, 

macroscopic liquid bridges could be considered with dimensions comparable to those used 

for the study of one bridge in chapter 4. This would allow to systematically investigate the 

combined effects of the contact angles and the number of liquid bridges and thus to verify the 

calculated maps of force and stress. On the level of microscopic dimensions, capillary 

condensation could be studied experimentally with a sphere-plate geometry. This would 

allow to verify the effect of the relative size of the sphere and whether the forces is repulsive 

for contact angles  < 90°, as theoretically predicted. The exponential fits of the forces as a 

function of the sphere radius at large separations, as proposed in chapter 5, could also be 
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inspected experimentally to understand the physical meaning of the coefficients better. Such 

investigations would surely provide new aspects of the capillary force and open new 

directions for its application not only in view of adhesion but also to design functionalized 

surfaces and to explain complex phenomena observed in micro fluidic devices. 
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Deutsche Zusammenfassung 

Motivation 

Die Motivation für diese Arbeit beruht zum einen auf dem großen wissenschaftlichen und 

technischen Interesse an Bindungs- und Haftphänomenen, sowie zum anderen darauf, dass –

obwohl bereits im 18 Jahrhundert begründet – die Theorie der Kapillarität bis heute 

fundamentale, ungeklärte Fragen enthält.  

Die Haftung und Reibung zwischen zwei Substraten, bei denen Wasser oder eine wässrige 

Lösung eine Rolle spielt, wird als „nasse Haftung“ bezeichnet, im Gegensatz zur „trockenen 

Haftung“, bei der keine Haftkraft-vermittelnde Flüssigkeit existiert. Die quantitative 

Untersuchung der nassen Haftung sowie der Benetzbarkeit von Substraten wurde in den 

sechziger Jahren initiiert 115, 116 und hat sehr an Auftrieb gewonnen, nachdem die nasse 

Haftung als Hauptursache  für das Versagen von Festplatten identifiziert wurde 65.

Zusätzlichen großen Impuls hat dieses Forschungsgebiet während der letzten 10 Jahre 

erfahren, als die Haftorgane und die Haft- oder auch Antihaftmechanismen einiger Tiere und 

Pflanzen systematisch untersucht worden sind, um z.B. zu beantworten, wie einige Insekten 

und Geckos auf vertikalen, glatten Oberflächen haften und laufen können. In vielen Fällen hat 

sich dabei herausgestellt, dass nasse Haftung, eine wesentliche Rolle bei der Adhäsion von 

tierischen Haftorganen auf Substraten spielt. Dies ist z.B. bei Baumfröschen der Fall   3-5, die 

ein flüssiges Sekret zwischen Fuß und Substrat bilden, oder auch bei einigen Fliegen 6-8.

Sogar beim Gecko, bei dem die molekulare Anziehung durch sehr viele nanometergroße, 

haarartige Haftorgane vermittelt wird 9, 10, weisen Experimente daraufhin 9, dass die Haftkraft 

mit wachsender relativer Luftfeuchtigkeit zunimmt.  

Das Verstehen der Haftmechanismen in biologischen Systemen ist aber nicht nur von 
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wissenschaftlichem, sondern darüber hinaus auch von technischem Interesse. Es existieren 

bereits mehrere biomimetsiche Konzepte zur Übertragung der Struktur und der 

Funktionsweise biologischer Haftsysteme auf technische Systeme. Ein Beispiel hiefür sind 

mikro-strukturierte Polymeroberflächen 103.

Um biologische und technische Haftsysteme verstehen, bzw. entwickeln zu können, müssen 

einige fundamentale Fragen der nassen Haftung geklärt werden. Dazu gehört z.B., wie die 

Kapillarkraft zwischen zwei Substraten, die durch eine flüssige Brücke zwischen ihnen 

vermittelt wird, durch Randbedingungen und Substrateigenschaften beeinflusst wird. Die 

chemischen Eigenschaften eines Substrates werden dabei durch den Kontaktwinkel , der 

sich zwischen der Flüssigkeit und dem Substrat ausbildet, charakterisiert. Streng genommen 

ist dieser Winkel nur in statischen Fällen eine Konstante. Wenn sich dagegen die Substrate 

relativ zueinander bewegen, d.h. die flüssige Brücke entweder gedehnt oder gestaucht wird, 

dann variieren die Kontaktwinkel an beiden Substratoberflächen in Abhängigkeit von der 

Richtung der Relativbewegung. In diesem Fall spricht man von dynamischen 

Kontaktwinkeln.  

Es existieren viele Modele zur Berechnung der kapillaren Kraft, die den Einfluss der 

Substratgeometrie berücksichtigen. So gibt es Arbeiten zu Platte-Platte Konfigurationen 21-42,

Kugel-Platte 12, 47-64, 66-69, 72-76 und Kugel-Kugel 43-46, 70, 71 Geometrien sowie weiteren, 

unterschiedlichen Geometrien 68.   Auch der Einfluss der relativen Luftfeuchtigkeit 47-59 und 

der Materialeigenschaften der Substrate 60-64, 66 sind untersucht worden. Dass trotz der 

umfangreichen Literatur wichtige Fragen noch ungeklärt sind, hängt zum Teil damit 

zusammen, dass analytische Berechnungen der Kapillarkraft wegen des großen 

Parameterraumes entweder nicht möglich oder kompliziert und unanschaulich sind.  

Außerdem werden in vielen quantitativen Beschreibungen idealisierte Bedingungen 
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angenommen. Z.B. werden statische Kontaktwinkel vorausgesetzt, obwohl dynamische 

realistischer wären, oder es werden idealisierte Geometrien angenommen oder Größeneffekte 

der Substrate vernachlässigt. Dies führt dazu, dass es bis heute keine einheitliche Theorie der 

Kapillarität gibt, die auf alle Flüssigkeiten, Substrate und Längen-und Zeitskalen anwendbar 

ist.

In der vorliegenden Arbeit sind numerische Berechnungen und experimentelle Messungen 

der Kapillarkraft angestellt worden, die auf allgemeineren Annahmen beruhen, als es bisher 

in der Literatur geschehen ist. So wird z.B. der Fall behandelt, dass sich an den Substraten 

unterschiedliche Kontaktwinkel ausbilden, d.h. dass die Substrate unterschiedliche 

Eigenschaften haben, wie man es in einem natürlichen Haftsystem erwarten würde. 

Desweiteren wird berücksichtigt, dass die Kontaktwinkel sich ändern können und dass die 

Substrate verschiedene Geometrien haben können. Im Hinblick auf biologische Haftsysteme 

wird erstmalig untersucht, wie sich eine Aufspaltung der Kontaktfläche in mehrere kleine 

Kontakte auf die Gesamtkraft auswirkt. Die erzielten Ergebnisse erweitern das Verständnis 

von der kapillaren Adhäsion und ermöglichen neue Interpretationen biologischer Haftsysteme 

sowie interessante Vorhersagen zur Anfertigung künstlicher Systeme.  Im Folgenden werden 

die wichtigsten Ergebnisse und ihre Bedeutung für Haftsysteme erläutert.

Erhöhung der Kapillarkraft durch mehrere flüssige Brücken 

In diesem Kapitel haben wir zunächst die Kraft, die eine einzelne kapillare Brücke zwischen 

zwei Substraten ausübt, als Funktion des Abstandes zwischen ihnen berechnet. Als Substrate 

haben wir parallele, steife Platten mit gleichen Materialeigenschaften, d.h. 1 = 2 = ,

angenommen. Die Ergebnisse haben wir in Abb. 2.2 (Symbole) als Diagramm 

wiedergegeben, in dem die normierte Kapillarkraft f als Funktion des normierten Abstandes d

für alle möglichen Kontaktwinkel aufgetragen ist. Das Diagramm zeigt, dass die Kraft 
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attraktiv (positiv) ist für  90° und abstoßend (negativ) ist für  > 90°. Darüber hinaus sieht 

man deutlich, dass auch hydrophobe Oberflächen (  > 90°) attraktive Wechselwirkungen bei 

großen Abständen ausüben können. Die Berechnungen zeigen, dass der Betrag von f für 

kleine d proportional zu 1/d2 abnimmt, während er für große d divergiert. Abb 2.2 enthält 

außerdem einen Vergleich der numerisch berechneten Kurven mit analytisch berechneten 

Kraft-Abstand Kurven 40 (Linien). Die exzellente Übereinstimmung bestätigt die Genauigkeit 

unserer numerischen Rechnungen und rechtfertigt die Anwendung dieser Methode auf 

komplexe Systeme, für die es keine analytische Lösung gibt. 

Beim Übergang von einer Brücke zu n Brücken (Abb. 2.3), nehmen wir an, dass das 

Gesamtvolumen der Flüssigkeit und der Abstand der Platten konstant bleiben. Außerdem soll 

es keine Wechselwirkung zwischen den Brücken geben, und alle Brücken werden als 

thermodynamisch stabil angenommen. Letzteres ist auch bei kleinen Volumina der einzelnen 

Brücken möglich, wenn Materialtransport zwischen ihnen ausgeschlossen werden kann, was 

z.B. durch eine geeignete Strukturierung der Substratoberflächen möglich ist.  

Die Abb. 2.4 und Abb. 2.5 fassen die Ergebnisse für alle möglichen Werte von  und n

zusammen, wobei als absoluter Abstand D zwischen den Platten D=15 µm gewählt wurde, 

für das Gesamtvolumen V der Flüssigkeit V=1 µl gewählt wurde und die 

Oberflächenspannung zwischen Flüssigkeit und Luft wie folgt angenommen wurde: 

lv=0.0728 N/m. Wir sehen, dass die Anzahl der mechanisch stabilen Brücken durch D und V

limitiert ist und von  abhängt, es existiert also ein nmax = nmax(D,V, ). Die Kurven zeigen 

außerdem, dass für  52° f(d) ein Maximum bei  bestimmtem n < nmax hat, während für  > 

52° die Kraft mit n monoton wächst. Die maximale Kraft tritt nicht wie erwartet für sehr 

hydrophile Oberflächen auf, sondern für   ~ 70°. Dieses Phänomen lässt sich aus dem 

Zusammenspiel zwischen der Oberflächenspannung der Kontaktlinie und dem Laplace Druck 
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der flüssigen Brücke erklären. Die Ergebnisse zeigen außerdem, dass die schwach attraktive 

Kraft für große d und   > 90° durch Aufspaltung in viele kleine Brücken stärker wird. 

Oberflächen, die a priori hydrophob sind, können also bei genügend großer Anzahl von 

Brücken eine attraktive Kraft ausüben, die so groß sein kann wie im Fall einer einzigen 

Brücke zwischen hydrophilen Oberflächen.

Wird die Gesamtkraft durch die gesamte Fläche geteilt, die mindestens notwendig ist, um n

individuelle, nichtüberlappende Brücken nebeneinander auf einem Substrat zu platzieren, so 

erhält man die Spannung als Funktion von  und n. Abb 2.8 stellt ein derartiges 

Spannungsdiagramm dar, in dem die Farbskala die Werte der Spannung angibt und D, V und 

lv wie oben gewählt sind. Man sieht, dass das Maximum der Spannung bei = 90° liegt, da 

in diesem Fall, d.h. für zylindrische Brücken, die Kraft mit n zunimmt, während die Fläche 

konstant bleibt. Abb. 2.10 stellt ein Farbdiagramm der Energie dar, die benötigt wird, um die 

Brücken beginnend bei dem Abstand D=15 µm bis zum Zerreißen zu strecken. Sie ist ein 

Maß für die Stärke der Anziehung der beiden Platten. In diesem Fall tritt das Maximum bei 

einer Brücke zwischen hydrophilen Platten auf.

Zusammenfassend zeigen die Ergebnisse, dass i) für alle Kontaktwinkel durch die Bildung 

mehrerer kleiner Brücken eine Erhöhung der Kapillarkraft auftritt im Vergleich zu einer 

einzigen großen Brücke, dass ii) das absolute Maximum der Kraft bei  70° und n  9·105

(unabhängig von D und V) liegt und dass iii) das Maximum der Spannung, also der Kraft bei 

vorgegebener Kontaktfläche, bei  90° und n  9·105 liegt und dass iv) die Wechselwirkung 

zwischen hydrophoben Substraten als Funktion von n attraktiv werden kann. Die 

Farbdiagramme von Kraft, Spannung und Energie der kapillaren Brücken können als 

übersichtliche Leitlinien dienen, um gewünschte Eigenschaften in künstlichen Haftsystemen 

einzustellen.
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Asymmetrische Kontaktwinkel  

Während im letzten Kapitel angenommen wurde, dass die Kontaktwinkel an beiden Platten  

identisch sind, wird in diesem Kapitel diese idealisierte Annahme aufgegeben, und es wird 

der Einfluss der Kontaktwinkelasymmetrie, d.h. 1 2, auf die Kapillarkraft untersucht. 

Abgesehen von Berechnungen einiger Spezialfälle 74, 75, gibt es keine systematische Studie zu 

dieser Frage, da die Oberflächenkontur einer flüssigen Brücke zwischen zwei verschiedenen 

Substraten nicht durch eine einfache Geometrie angenährt werden kann. Aus diesem Grund 

kann nur eine numerische Methode angewendet werden, um für beliebige 

Substratkonfigurationen die Kapillarkraft zu berechnen.

Die numerisch berechneten Kraft-Abstand Kurven für eine flüssige Brücke sind für 

verschiedene Kombinationen von Kontaktwinkeln in Abb 3.3 dargestellt. Die Ergebnisse 

zeigen, dass im Fall einer hydrophilen Platte ( 1 = 60°) die Kraft attraktiv ist bis zu einem 

Kontaktwinkel  2  120°, d.h. der Bereich attraktiver Wechselwirkungen wächst auf Kosten 

des Bereiches repulsiver Wechselwirkungen. Das Umgekehrte geschieht wenn eine Platte 

hydrophob ist  ( 1 = 120°), dann erstrecken sich die repulsiven Wechselwirkungen bis zu 

Kontaktwinkeln 2  90° (ausgenommen hiervon sind die Kräfte bei sehr großem d). Diese 

Effekte werden verstärkt, wenn eine Platte entweder super hydrophil (30°) bzw. super 

hydrophob (150°) ist.

Abb 3.7 zeigt die größtmöglichen Abstände zwischen den Platten als Funktion der 

Kontaktwinkel. Aus den Kurven folgt, dass für alle möglichen Kontaktwinkel dieser 

maximale Abstand bis zum Zerreißen der Brücke immer für den symmetrischen Fall 1 = 2

auftritt. In Abb 3.5 sind Kraft-Abstand Kurven für einen festen normierten Abstand d = 0.05 

aufgetragen. Die Symbole geben die berechneten Kurven wieder, während die Linien 

Fitfunktionen der Gestalt f(d, 1, 2)=g(d)·(cos 1+ cos 2) sind. Mit diesem Fit reproduzieren 

wir ein früheres Resultat 75, das für eine Kugel in Kontakt mit einer Platte entwickelte wurde. 
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Die gute Übereinstimmung in unserem Fall zeigt, dass diese Fitformel auch auf die 

Konfiguration Platte-Platte anwendbar ist, die sich aus obiger Konfiguration für einen sehr 

großen Kugelradius ergibt. 

Zusammengefasst zeigen die Berechnungen dieses Kapitels, dass bei asymmetrischen 

Konfigurationen der Kontaktwinkel ein stark hydrophiles bzw. hydrophobes Substrat den 

attraktiven bzw. repulsiven Wechselwirkungsbereich vergrößert. Somit ist der Grad der 

Kontaktwinkelasymmetrie ein weiterer Parameter zur Steuerung der Kapillarkraft. 

Symmetrische Brücken sind mechanisch stabiler als alle asymmetrischen Brücken. Die 

Resultate dieses Kapitels sind besonderes wichtig bei der Interpretation experimenteller 

Beobachtungen, in denen praktisch immer unterschiedliche Kontaktwinkel auftreten. Aus 

diesem Grund beinhaltet diese Arbeit ein Kapitel über Messungen von Kontaktwinkeln und 

Kapillarkräften.  

Experimentelle Bestimmung der kapillaren Kraft  

Um die Berechnungen des letzten Kapitels experimentell zu überprüfen, wurden Kraft-

Abstand Kurven für verschiedene plattenförmige Substrate gemessen. Diese Experimente 

wurden im Rahmen einer Kollaboration mit Prof. A. Crosby von der University of 

Massachusetts in Amherst, USA, durchgeführt. Der experimentelle Aufbau ist in Abb. 4.2

dargestellt. Mit Hilfe eines Piezo – Motors wird Substrat 2, auf dem ein Wasser Tropfen 

platziert ist, mit einer Geschwindigkeit von ca. 10 µm/s in die Richtung des Substrates 1 

bewegt, das an einem Aluminium Kantilever befestigt ist. Eine flüssige Brücke bildet sich 

wenn das Wasser Substrat 1 berührt, wodurch der Kantilever bewegt wird. Aufgenommen 

wird der Abstandsunterschied, der bei dieser Bewegung entsteht und aus dem sowohl der 

Abstand als auch die Kraft zwischen den Substraten errechnet werden können. Als Substrate 

dienten wieder zwei parallel ausgerichtete Platten mit unterschiedlichen 
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Materialeigenschaften.

In Abb. 4.4 präsentieren wir sowohl die experimentell gemessenen Kurven 172 als auch die 

numerisch berechneten (schwarz und blau). Während der Motor das Substrat 2 in die 

Richtung des Substrates 1 führt, wird die Brücke zwischen den Platten gestaucht und der 

Gleichgewichtswert  der dynamischen Kontaktwinkel ist der sog. fortschreitende (advancing) 

Kontaktwinkel. Die gemessene Kraft entspricht in diesem Fall dem Ast der roten Kurve, der 

mit „advancing branch“ bezeichnet ist. Bei Richtungswechsel ändert sich auch der 

Kontaktwinkel an den Platten und es stellt sich der sog. Rückzugswinkel (receding angle) ein, 

und die gemessene Kraft entspricht dem Ast, der mit „receding branch“ bezeichnet ist. Die 

Ergebnisse zeigen, dass die beiden Äste der gemessenen Kurve durch die numerisch 

berechneten Kurven sehr gut angenähert werden, wenn im numerischen Model die angegeben 

dynamischen Winkel an den beiden Platten vorausgesetzt werden. Man benötigt demnach 4 

Winkel: 2 fortschreitende und 2 Rückzugswinkel an beiden Platten, um eine allgemeine 

Platte-Platte Konfiguration zu beschreiben.

Die gute Übereinstimmung zwischen gemessenen und berechneten Kurven zeigt, dass das 

numerische Model auch im Falle unterschiedlicher Kontaktwinkel realistische Resultate 

liefert und ist somit eine weitere Bestätigung für die Zuverlässigkeit dieser Methode. Darüber 

hinaus zeigt der Vergleich der Kurven, dass Messungen der Kapillarkraft verwendet werden 

können, um die Kontakwinkelhysteresis (Unterschied zwischen advancing und receding 

angle) zu bestimmen. Bis jetzt ist dies oft über direkte Messungen der Winkel versucht 

worden, was allerdings besonders bei sehr hydrophoben Substraten sehr schwierig sein kann. 

Unsere Methode ist dagegen einfach durchzuführen und zuverlässig.

Geometrie der Substrate
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In diesem Kapitel wird ein Substrat als kugelförmig angenommen und diese Kugel-Platte 

Konfiguration mit der in den letzten Kapiteln untersuchten Platte-Platte Konfiguration 

verglichen. Der Übergang zu einem kugelförmigen Substrat führt zu einem zusätzlich 

Parameter bei der Berechnung der Kapillarkraft, nämlich der Größe der Kugel im Vergleich 

zur Größe der flüssigen Brücke. Dieses Verhältnis wird durch R/s ausgedrückt, wobei R der

Radius der Kugel ist und s der Radius einer fiktiven Kugel, deren Volumen dem flüssigen 

Gesamtvolumen V entspricht.  

Der Einfluss des Verhältnisses R/s auf die Kraft-Abstand Kurve hängt von dem Abstand ab. 

Für d  0, zum Beispiel, konvergiert die Kraft für alle Winkel und auch für großen 

Kugelradius gegen einen endlichen Wert (Abb. 5.3), so wie es erwartet wird, da der Radius 

der Kugel die Benetzungsfläche begrenzt und folglich auch die Kraft. Somit spielt der Radius 

der Kugel eine wichtige Rolle bei kleinem Abstand. Eine interessanter Unterschied zur 

Situation einer Platte-Platte Geometrie, ist die abstoßende Kraft für  90°, die bei sehr 

kleinen Abständen auftritt und mit kleiner werdenden Radius deutlicher wird (Abb. 5.3b, 

5.6b).

Darüber hinaus haben wir bei festem Abstand die Kraft als Funktion des Kugelradius für alle 

Winkel ausgedrückt (Abb. 5.4).  Somit haben wir nicht nur frühe Ergebnisse 47, 75 für eine 

Kugel in Kontakt mit einem Substrat reproduziert, sondern auch ein auf alle Abstände 

erweitertes Model präsentiert. Exponentielle Fitfunktionen nähern die berechneten Kraft-

Radius Kurven sehr gut an. 

Zum ersten Mal wurden die verschiedenen Beiträge zur Gesamtkraft, die aus dem Laplacen 

Druck und der Oberflächenspannung der Kontaktlinien resultieren, getrennt für alle 

Abstände, Kontaktwinkel und für unterschiedlichen Geometrien dargestellt (Abb. 5.5). Diese 

Farbdiagramme vermitteln nicht nur einen Überblick über das verschiedenen Verhalten aller 

Kräfte, sondern sie sind auch besonders wichtig für das Verständnis bestimmter Resultate, 
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wie z.B. die die Erhöhung der Kapillarkraft durch mehrere flüssige Brücken. 

Die Ergebnisse einer solchen Kontaktaufspaltung für die Kugel-Platte Geometrie (Abb. 5.8) 

zeigen, dass eine Erhöhung der Kraft eintritt, diese jedoch reduziert ist im Vergleich zur 

Geometrie zweier Platten. Auch ist das Maximum der Kraft zu kleineren Winkeln, ~50°

verschoben.

Zusammengefasst haben wir in diesem Kapitel gezeigt, dass im Falle einer Kugel in Kontakt 

mit einer Platte nicht nur die Geometrie dieser Konfiguration, sondern auch die Größe der 

Kugel im Vergleich zur Größe der flüssigen Brücke wichtige Parameter darstellen, die zu 

Ergebnisse führen, die qualitativ und quantitativ von denen einer Platte-Platte Konfiguration 

abweichen.

Eine Verstärkung der Kapillarkraft für mehrere kleine Brücken tritt auch in diesem Fall auf, 

ist aber schwächer ausgeprägt als im Falle zweier Platten. 
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Appendix

Scriptum for liquid bridges between two plates

Definition of parameters:

PARAMETER capillary length=1

PARAMETER length max=0.020

PARAMETER length min=0.004

PARAMETER total volume=4/3*Pi

PARAMETER initial distance=0.01

PARAMETER initial radius substrate=2/sqrt(3*initial distance)

PARAMETER end distance=2.5

PARAMETER distance factor=1.01

PARAMETER old distance=initial distance;

PARAMETER new distance=initial distance;

PARAMETER distance=initial distance

PARAMETER contactangle bottom=120

PARAMETER contactangle top=60

PARAMETER wetability bottom=-cos(Pi/180*contactangle bottom)

PARAMETER wetability top=-cos(Pi/180*contactangle top)

definition of diverse energies:

quantity interfacial energy energy global method edge scalar integral

scalar integrand: 2*Pi*x1

quantity substrate energy bottom energy method vertex scalar integral

scalar integrand: wetability bottom*Pi*x1*x1

quantity substrate energy top energy method vertex scalar integral

scalar integrand: wetability top*Pi*x1*x1

quantity gravitation energy energy global method edge vector integral

vector integrand:

q1: -0*Pi*x1*x2*x2/(capillary length*capillary length)

q2: 0

q3: 0

quantity drop volume fixed=total volume global method edge vector integral
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vector integrand:

q1: 0

q2: Pi*x1*x1

q3: 0

quantity substrate radius info only method vertex scalar integral

scalar integrand: x1

constraints:

constraint 1

formula: x3=0

constraint 2

formula: x2=0

constraint 3

formula: x2=distance

constraint 4 nonnegative

formula: x1

constraint 5 nonpositive

formula: abs(x2-distance/2)-distance/2

list of vertices:

vertices

1 initial radius substrate 0 0 constraint 1 2 4 substrate energy bottom substrate radius

2 initial radius substrate initial distance 0 constraint 1 3 4 substrate energy top

list of edges: edges 1 1 2 tension 0 constraint 1 4 5

read

gv:= {
U;

r; g;

r; g;

r; g;

filename := sprintf
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"/fux5/scratch/souza/orig %g %g.dat",

contactangle bottom, contactangle top;

while(old distance<=end distance) do {
jj:=0;

while(jj<100) do {
refine edges ee where ee.length > length max;

g 5;

delete edges ee where ee.length < length min;

g 5;

jj:=jj+1;

};
minimal radius:=100;

foreach vertex vv do {if(vv.x1<minimal radius) then minimal radius:=vv.x1 };
printf ’’%f\t% f\t%f\t%f\n’’, distance, minimal radius, substrate radius.value,

total energy � filename;

new distance:=old distance*distance factor;

jj:=0;

while(jj<100) do {
distance:=distance+(new distance-old distance)/100;

g;

refine edges ee where ee.length > length max;

jj:=jj+1;

};
old distance:=new distance;

}; };
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Carter’s calculation with Mathematica

Definitions:

Def. of the z-coordinate of the undoloid as a function of the parameters "ro"

(rmax) and "ri" (rmin) and the radius r:

z[ro , ri , r ] = ro ∗EllipticE[k[ro, ri, r],modul[ro, ri]] + ri ∗ EllipticF[k[ro, ri, r],modul[ro, ri]]−z[ro , ri , r ] = ro ∗ EllipticE[k[ro, ri, r],modul[ro, ri]] + ri ∗ EllipticF[k[ro, ri, r],modul[ro, ri]]−z[ro , ri , r ] = ro ∗ EllipticE[k[ro, ri, r],modul[ro, ri]] + ri ∗ EllipticF[k[ro, ri, r],modul[ro, ri]]−
1/r ∗ Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]1/r ∗ Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]1/r ∗ Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]

−
q

(r2−ri
2)(−r2+ro2)

r
+roEllipticE[k[ro, ri, r],modul[ro, ri]]+riEllipticF[k[ro, ri, r],modul[ro, ri]]

Def. of the phase "k", appearing in the incomplete elliptic integrals F and E:

k[ro , ri , r ] = ArcSin[Sqrt[ro∧2(r∧2 − ri∧2)/(r∧2 ∗ (ro∧2 − ri∧2))]]k[ro , ri , r ] = ArcSin[Sqrt[ro∧2(r∧2 − ri∧2)/(r∧2 ∗ (ro∧2 − ri∧2))]]k[ro , ri , r ] = ArcSin[Sqrt[ro∧2(r∧2 − ri∧2)/(r∧2 ∗ (ro∧2 − ri∧2))]]

ArcSin

[√
(r2−ri

2)ro2

r2(−ri
2+ro2)

]

Def. of modul "modul" (!), in F and E:

modul[ro , ri ] = (ro∧2 − ri∧2)/ro∧2modul[ro , ri ] = (ro∧2 − ri∧2)/ro∧2modul[ro , ri ] = (ro∧2 − ri∧2)/ro∧2

−ri
2+ro2

ro2

First derivative "zd"of z with resp. to r (needed for the contact angle later):

zd[ro , ri , r ] = (r∧2 + ro ∗ ri)/Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]zd[ro , ri , r ] = (r∧2 + ro ∗ ri)/Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]zd[ro , ri , r ] = (r∧2 + ro ∗ ri)/Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]

r2+riroq
(r2−ri

2)(−r2+ro2)

distsmallthetaneck[ro , rn , rs , re ] = z[ro, rn, rs] + z[ro, rn, re]distsmallthetaneck[ro , rn , rs , re ] = z[ro, rn, rs] + z[ro, rn, re]distsmallthetaneck[ro , rn , rs , re ] = z[ro, rn, rs] + z[ro, rn, re]

−
√

(re2−rn2)(−re2+ro2)

re
−

√
(ro2−rs2)(−rn2+rs2)

rs
+

roEllipticE
[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn

2+ro
2

ro2

]
+roEllipticE

[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn

2+ro
2

ro2

]
+

rnEllipticF
[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn

2+ro
2

ro2

]
+rnEllipticF

[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn

2+ro
2

ro2

]
distsmallthetanoneck[ro , rn , rs , re ] = z[ro, rn, rs] − z[ro, rn, re]distsmallthetanoneck[ro , rn , rs , re ] = z[ro, rn, rs] − z[ro, rn, re]distsmallthetanoneck[ro , rn , rs , re ] = z[ro, rn, rs] − z[ro, rn, re]√

(re2−rn2)(−re2+ro2)

re
−

√
(ro2−rs2)(−rn2+rs2)

rs
−

roEllipticE
[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

]
+roEllipticE

[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn2+ro2

ro2

]
−

rnEllipticF
[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

]
+rnEllipticF

[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn2+ro2

ro2

]
distlargethetaneck[ro , rn , rs , re ] = 2 ∗ z[ro, rn, ro] − z[ro, rn, rs] + z[ro, rn, re]distlargethetaneck[ro , rn , rs , re ] = 2 ∗ z[ro, rn, ro] − z[ro, rn, rs] + z[ro, rn, re]distlargethetaneck[ro , rn , rs , re ] = 2 ∗ z[ro, rn, ro] − z[ro, rn, rs] + z[ro, rn, re]

−
√

(re2−rn2)(−re2+ro2)

re
+

√
(ro2−rs2)(−rn2+rs2)

rs
+roEllipticE

[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

]
−

roEllipticE
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn2+ro2

ro2

]
+rnEllipticF

[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

]
−
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rnEllipticF
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn2+ro2

ro2

]
+2

(
roEllipticE

[
−rn2+ro2

ro2

]
+ rnEllipticK

[
−rn2+ro2

ro2

])
distlargethetanoneck[ro , rn , rs , re ] =distlargethetanoneck[ro , rn , rs , re ] =distlargethetanoneck[ro , rn , rs , re ] =

2 ∗ z[ro, rn, ro] − z[ro, rn, rs] − z[ro, rn, re]2 ∗ z[ro, rn, ro] − z[ro, rn, rs] − z[ro, rn, re]2 ∗ z[ro, rn, ro] − z[ro, rn, rs] − z[ro, rn, re]√
(re2−rn2)(−re2+ro2)

re
+

√
(ro2−rs2)(−rn2+rs2)

rs
−roEllipticE

[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

]
−

roEllipticE
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn2+ro2

ro2

]
−rnEllipticF

[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

]
−

rnEllipticF
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn

2+ro
2

ro2

]
+2

(
roEllipticE

[
−rn

2+ro
2

ro2

]
+ rnEllipticK

[
−rn

2+ro
2

ro2

])
area[ro , ri , r ] = 2 ∗ Pi ∗ ro ∗ (ro + ri) ∗ EllipticE[k[ro, ri, r],modul[ro, ri]]−area[ro , ri , r ] = 2 ∗ Pi ∗ ro ∗ (ro + ri) ∗ EllipticE[k[ro, ri, r],modul[ro, ri]]−area[ro , ri , r ] = 2 ∗ Pi ∗ ro ∗ (ro + ri) ∗ EllipticE[k[ro, ri, r],modul[ro, ri]]−
2 ∗ Pi ∗ (ro + ri) ∗ Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]/r2 ∗ Pi ∗ (ro + ri) ∗ Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]/r2 ∗ Pi ∗ (ro + ri) ∗ Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]/r

−2π(ri+ro)
q

(r2−ri
2)(−r2+ro2)

r
+ 2πro(ri + ro)EllipticE

[
ArcSin

[√
(r2−ri

2)ro2

r2(−ri
2+ro2)

]
, −ri

2+ro2

ro2

]

areasmallthetanoneck[ro , rn , rs , re ] = area[ro, rn, rs] − area[ro, rn, re]areasmallthetanoneck[ro , rn , rs , re ] = area[ro, rn, rs] − area[ro, rn, re]areasmallthetanoneck[ro , rn , rs , re ] = area[ro, rn, rs] − area[ro, rn, re]
2π(rn+ro)

√
(re2−rn2)(−re2+ro2)

re
− 2π(rn+ro)

√
(ro2−rs2)(−rn2+rs2)

rs
−

2πro(rn + ro)EllipticE
[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

]
+

2πro(rn + ro)EllipticE
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn2+ro2

ro2

]
areasmallthetaneck[ro , rn , rs , re ] = area[ro, rn, rs] + area[ro, rn, re]areasmallthetaneck[ro , rn , rs , re ] = area[ro, rn, rs] + area[ro, rn, re]areasmallthetaneck[ro , rn , rs , re ] = area[ro, rn, rs] + area[ro, rn, re]

−2π(rn+ro)
√

(re2−rn2)(−re2+ro2)

re
− 2π(rn+ro)

√
(ro2−rs2)(−rn2+rs2)

rs
+

2πro(rn + ro)EllipticE
[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn

2+ro
2

ro2

]
+

2πro(rn + ro)EllipticE
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn

2+ro
2

ro2

]
arealargethetanoneck[ro , rn , rs , re ] = 2 ∗ area[ro, rn, ro] − area[ro, rn, rs] − area[ro, rn, re]arealargethetanoneck[ro , rn , rs , re ] = 2 ∗ area[ro, rn, ro] − area[ro, rn, rs] − area[ro, rn, re]arealargethetanoneck[ro , rn , rs , re ] = 2 ∗ area[ro, rn, ro] − area[ro, rn, rs] − area[ro, rn, re]
2π(rn+ro)

√
(re2−rn2)(−re2+ro2)

re
+

2π(rn+ro)
√

(ro2−rs2)(−rn2+rs2)

rs
+

4πro(rn+ro)EllipticE
[
−rn2+ro2

ro2

]
−2πro(rn+ro)EllipticE

[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

]
−

2πro(rn + ro)EllipticE
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn2+ro2

ro2

]
arealargethetaneck[ro , rn , rs , re ] = 2 ∗ area[ro, rn, ro] − area[ro, rn, rs] + area[ro, rn, re]arealargethetaneck[ro , rn , rs , re ] = 2 ∗ area[ro, rn, ro] − area[ro, rn, rs] + area[ro, rn, re]arealargethetaneck[ro , rn , rs , re ] = 2 ∗ area[ro, rn, ro] − area[ro, rn, rs] + area[ro, rn, re]

−2π(rn+ro)
√

(re2−rn2)(−re2+ro2)

re
+

2π(rn+ro)
√

(ro2−rs2)(−rn2+rs2)

rs
+

4πro(rn+ro)EllipticE
[
−rn

2+ro
2

ro2

]
+2πro(rn+ro)EllipticE

[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn

2+ro
2

ro2

]
−

2πro(rn + ro)EllipticE
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn

2+ro
2

ro2

]
Volume "V" of the undoloid between ri and r

vol[ro , ri , r ] =vol[ro , ri , r ] =vol[ro , ri , r ] =

Pi/3 ∗ ((2 ∗ ro∧3 + 2 ∗ ri∧2 ∗ ro + 3 ∗ ro∧2 ∗ ri) ∗ EllipticE[k[ro, ri, r],modul[ro, ri]]−Pi/3 ∗ ((2 ∗ ro∧3 + 2 ∗ ri∧2 ∗ ro + 3 ∗ ro∧2 ∗ ri) ∗ EllipticE[k[ro, ri, r],modul[ro, ri]]−Pi/3 ∗ ((2 ∗ ro∧3 + 2 ∗ ri∧2 ∗ ro + 3 ∗ ro∧2 ∗ ri) ∗ EllipticE[k[ro, ri, r],modul[ro, ri]]−
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ro ∗ ri∧2 ∗ EllipticF[k[ro, ri, r],modul[ro, ri]]−ro ∗ ri∧2 ∗ EllipticF[k[ro, ri, r],modul[ro, ri]]−ro ∗ ri∧2 ∗ EllipticF[k[ro, ri, r],modul[ro, ri]]−
(r∧2 + 2 ∗ ro∧2 + 2 ∗ ri∧2 + 3 ∗ ro ∗ ri) ∗ Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]/r)(r∧2 + 2 ∗ ro∧2 + 2 ∗ ri∧2 + 3 ∗ ro ∗ ri) ∗ Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]/r)(r∧2 + 2 ∗ ro∧2 + 2 ∗ ri∧2 + 3 ∗ ro ∗ ri) ∗ Sqrt[(ro∧2 − r∧2) ∗ (r∧2 − ri∧2)]/r)

1
3
π

(
−

q
(r2−ri

2)(−r2+ro2)(r2+2ri2+3riro+2ro2)
r

+
(
2ri2ro + 3riro2 + 2ro3

)

EllipticE

[
ArcSin

[√
(r2−ri

2)ro2

r2(−ri
2+ro2)

]
, −ri

2+ro2

ro2

]
− ri2roEllipticF

[
ArcSin

[√
(r2−ri

2)ro2

r2(−ri
2+ro2)

]
, −ri

2+ro2

ro2

])

volsmallthetaneck[ro , rn , rs , re ] = vol[ro, rn, rs] + vol[ro, rn, re]volsmallthetaneck[ro , rn , rs , re ] = vol[ro, rn, rs] + vol[ro, rn, re]volsmallthetaneck[ro , rn , rs , re ] = vol[ro, rn, rs] + vol[ro, rn, re]

1
3
π

(
−
√

(re2−rn2)(−re2+ro2)(re2+2rn2+3rnro+2ro2)
re

+ (2rn2ro + 3rnro2 + 2ro3)

EllipticE
[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn

2+ro
2

ro2

]
− rn2roEllipticF

[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn

2+ro
2

ro2

])
+

1
3
π

(
−
√

(ro2−rs2)(−rn2+rs2)(2rn2+3rnro+2ro2+rs2)
rs

+ (2rn2ro + 3rnro2 + 2ro3)

EllipticE
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn

2+ro
2

ro2

]
− rn2roEllipticF

[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn

2+ro
2

ro2

])
volsmallthetanoneck[ro , rn , rs , re ] = vol[ro, rn, rs] − vol[ro, rn, re]volsmallthetanoneck[ro , rn , rs , re ] = vol[ro, rn, rs] − vol[ro, rn, re]volsmallthetanoneck[ro , rn , rs , re ] = vol[ro, rn, rs] − vol[ro, rn, re]

−1
3
π

(
−
√

(re2−rn2)(−re2+ro2)(re2+2rn2+3rnro+2ro2)
re

+ (2rn2ro + 3rnro2 + 2ro3)

EllipticE
[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

]
− rn2roEllipticF

[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

])
+

1
3
π

(
−
√

(ro2−rs2)(−rn2+rs2)(2rn2+3rnro+2ro2+rs2)
rs

+ (2rn2ro + 3rnro2 + 2ro3)

EllipticE
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn2+ro2

ro2

]
− rn2roEllipticF

[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn2+ro2

ro2

])
vollargethetaneck[ro , rn , rs , re ] = 2 ∗ vol[ro, rn, ro] − vol[ro, rn, rs] + vol[ro, rn, re]vollargethetaneck[ro , rn , rs , re ] = 2 ∗ vol[ro, rn, ro] − vol[ro, rn, rs] + vol[ro, rn, re]vollargethetaneck[ro , rn , rs , re ] = 2 ∗ vol[ro, rn, ro] − vol[ro, rn, rs] + vol[ro, rn, re]

1
3
π

(
−
√

(re2−rn2)(−re2+ro2)(re2+2rn2+3rnro+2ro2)
re

+ (2rn2ro + 3rnro2 + 2ro3)

EllipticE
[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn

2+ro
2

ro2

]
− rn2roEllipticF

[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn

2+ro
2

ro2

])
−

1
3
π

(
−
√

(ro2−rs2)(−rn2+rs2)(2rn2+3rnro+2ro2+rs2)
rs

+ (2rn2ro + 3rnro2 + 2ro3)

EllipticE
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn

2+ro
2

ro2

]
− rn2roEllipticF

[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn

2+ro
2

ro2

])
+

2
3
π

(
(2rn2ro + 3rnro2 + 2ro3)EllipticE

[
−rn

2+ro
2

ro2

]
− rn2roEllipticK

[
−rn

2+ro
2

ro2

])
vollargethetanoneck[ro , rn , rs , re ] = 2 ∗ vol[ro, rn, ro] − vol[ro, rn, rs] − vol[ro, rn, re]vollargethetanoneck[ro , rn , rs , re ] = 2 ∗ vol[ro, rn, ro] − vol[ro, rn, rs] − vol[ro, rn, re]vollargethetanoneck[ro , rn , rs , re ] = 2 ∗ vol[ro, rn, ro] − vol[ro, rn, rs] − vol[ro, rn, re]

−1
3
π

(
−
√

(re2−rn2)(−re2+ro2)(re2+2rn2+3rnro+2ro2)
re

+ (2rn2ro + 3rnro2 + 2ro3)

EllipticE
[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

]
− rn2roEllipticF

[
ArcSin

[√
(re2−rn2)ro2

re2(−rn2+ro2)

]
, −rn2+ro2

ro2

])
−

1
3
π

(
−
√

(ro2−rs2)(−rn2+rs2)(2rn2+3rnro+2ro2+rs
2)

rs
+ (2rn2ro + 3rnro2 + 2ro3)

EllipticE
[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn2+ro2

ro2

]
− rn2roEllipticF

[
ArcSin

[√
ro2(−rn2+rs2)
(−rn2+ro2)rs2

]
, −rn2+ro2

ro2

])
+
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2
3
π

(
(2rn2ro + 3rnro2 + 2ro3)EllipticE

[
−rn2+ro2

ro2

]
− rn2roEllipticK

[
−rn2+ro2

ro2

])

Solve[Tan[θ]∧2 − (x + ro ∗ ri)∧2/(ro∧2 − x)/(x − ri∧2) == 0, x]Solve[Tan[θ]∧2 − (x + ro ∗ ri)∧2/(ro∧2 − x)/(x − ri∧2) == 0, x]Solve[Tan[θ]∧2 − (x + ro ∗ ri)∧2/(ro∧2 − x)/(x − ri∧2) == 0, x]{{
x → 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2−

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)}

,{
x → 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2+

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)}}

rsup[ro , ri , theta ] =rsup[ro , ri , theta ] =rsup[ro , ri , theta ] =

Sqrt[Sqrt[Sqrt[

1
2(−1−Tan[θ]2)

1
2(−1−Tan[θ]2)

1
2(−1−Tan[θ]2)(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2−(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2−(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2−
(ri + ro)Tan[θ]

√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)]
(ri + ro)Tan[θ]

√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)]
(ri + ro)Tan[θ]

√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)]
r

2riro−ri2Tan[θ]2−ro2Tan[θ]2−(ri+ro)Tan[θ]
√

−4riro+ri2Tan[θ]2−2riroTan[θ]2+ro2Tan[θ]2

−1−Tan[θ]2√
2

rsdown[ro , ri , theta ] =rsdown[ro , ri , theta ] =rsdown[ro , ri , theta ] =

Sqrt[Sqrt[Sqrt[

1
2(−1−Tan[θ]2)

1
2(−1−Tan[θ]2)

1
2(−1−Tan[θ]2)(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2+

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2+

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2+

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)]

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)]

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)]

r
2riro−ri2Tan[θ]2−ro2Tan[θ]2+(ri+ro)Tan[θ]

√
−4riro+ri2Tan[θ]2−2riroTan[θ]2+ro2Tan[θ]2

−1−Tan[θ]2√
2

romin[theta ] = ((1 + Abs[Cos[θ]])/Sin[θ])∧2romin[theta ] = ((1 + Abs[Cos[θ]])/Sin[θ])∧2romin[theta ] = ((1 + Abs[Cos[θ]])/Sin[θ])∧2

(1 + Abs[Cos[θ]])2Csc[θ]2

distlargethetaup[ro , ri , theta ] = 2 ∗ distlargethetanoneck[ro, ri, ro, rsup[ro, ri, θ]]distlargethetaup[ro , ri , theta ] = 2 ∗ distlargethetanoneck[ro, ri, ro, rsup[ro, ri, θ]]distlargethetaup[ro , ri , theta ] = 2 ∗ distlargethetanoneck[ro, ri, ro, rsup[ro, ri, θ]]

2
(
−roEllipticE

[
−ri

2+ro2

ro2

]
−

roEllipticE
[
ArcSin

[√
2
√((

ro2 (−1 −Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2

Tan[θ]2 − (ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−

riEllipticF
[
ArcSin

[√
2
√((

ro2 (−1 −Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2

Tan[θ]2 − (ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/
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((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−

riEllipticK
[
−ri

2+ro
2

ro2

]
+ 2

(
roEllipticE

[
−ri

2+ro
2

ro2

]
+ riEllipticK

[
−ri

2+ro
2

ro2

])
+(√

2
√((

ro2 − 1
2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2−

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))

(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))))/

(√(
1

−1−Tan[θ]2

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))))

distlargethetadown[ro , ri , theta ] = 2 ∗ distlargethetanoneck[ro, ri, ro, rsdown[ro, ri, θ]]distlargethetadown[ro , ri , theta ] = 2 ∗ distlargethetanoneck[ro, ri, ro, rsdown[ro, ri, θ]]distlargethetadown[ro , ri , theta ] = 2 ∗ distlargethetanoneck[ro, ri, ro, rsdown[ro, ri, θ]]

2
(
−roEllipticE

[
−ri

2+ro2

ro2

]
−

roEllipticE
[
ArcSin

[√
2
√((

ro2 (−1 −Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2

Tan[θ]2 + (ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−

riEllipticF
[
ArcSin

[√
2
√((

ro2 (−1 −Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2

Tan[θ]2 + (ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro
2

ro2

]
−

riEllipticK
[
−ri

2+ro2

ro2

]
+ 2

(
roEllipticE

[
−ri

2+ro2

ro2

]
+ riEllipticK

[
−ri

2+ro2

ro2

])
+(√

2
√((

ro2 − 1
2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2+

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))

(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))))/

(√(
1

−1−Tan[θ]2

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))))

vollargethetaup[ro , ri , theta ] = 2 ∗ vollargethetanoneck[ro, ri, ro, rsup[ro, ri, θ]]vollargethetaup[ro , ri , theta ] = 2 ∗ vollargethetanoneck[ro, ri, ro, rsup[ro, ri, θ]]vollargethetaup[ro , ri , theta ] = 2 ∗ vollargethetanoneck[ro, ri, ro, rsup[ro, ri, θ]]
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2
(

1
3
π

((
2ri2ro + 3riro2 + 2ro3

)
EllipticE

[
−ri

2+ro2

ro2

]
− ri2roEllipticK

[
−ri

2+ro2

ro2

])
−

1
3
π

((
2ri2ro + 3riro2 + 2ro3

)
EllipticE[

ArcSin
[√

2
√((

ro2 (−1 − Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2−

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−

ri2roEllipticF
[
ArcSin

[√
2
√((

ro2 (−1 − Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[

θ]2 − (ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−(√

2
√((

ro2 − 1
2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))

(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))

(
2ri2 + 3riro + 2ro2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2−

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

(√(
1

−1−Tan[θ]2

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))))

vollargethetadown[ro , ri , theta ] = 2 ∗ vollargethetanoneck[ro, ri, ro, rsdown[ro, ri, θ]]vollargethetadown[ro , ri , theta ] = 2 ∗ vollargethetanoneck[ro, ri, ro, rsdown[ro, ri, θ]]vollargethetadown[ro , ri , theta ] = 2 ∗ vollargethetanoneck[ro, ri, ro, rsdown[ro, ri, θ]]

2
(

1
3
π

((
2ri2ro + 3riro2 + 2ro3

)
EllipticE

[
−ri

2+ro2

ro2

]
− ri2roEllipticK

[
−ri

2+ro2

ro2

])
−

1
3
π

((
2ri2ro + 3riro2 + 2ro3

)
EllipticE[

ArcSin
[√

2
√((

ro2 (−1 − Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2+

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−

ri2roEllipticF
[
ArcSin

[√
2
√((

ro2 (−1 − Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[

θ]2 + (ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−
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(√
2
√((

ro2 − 1
2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))

(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))

(
2ri2 + 3riro + 2ro2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2+

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

(√(
1

−1−Tan[θ]2

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))))

resdistlargethetaup[ro , ri , theta ] =resdistlargethetaup[ro , ri , theta ] =resdistlargethetaup[ro , ri , theta ] =

(3 ∗ vollargethetaup[ro, ri, θ]/(4 ∗ Pi))∧(−1/3) ∗ distlargethetaup[ro, ri, θ](3 ∗ vollargethetaup[ro, ri, θ]/(4 ∗ Pi))∧(−1/3) ∗ distlargethetaup[ro, ri, θ](3 ∗ vollargethetaup[ro, ri, θ]/(4 ∗ Pi))∧(−1/3) ∗ distlargethetaup[ro, ri, θ]

(
2
(

2π
3

)1/3
(
−roEllipticE

[
−ri

2+ro2

ro2

]
−

roEllipticE
[
ArcSin

[√
2
√((

ro2 (−1 −Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2

Tan[θ]2 − (ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−

riEllipticF
[
ArcSin

[√
2
√((

ro2 (−1 −Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2

Tan[θ]2 − (ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−

riEllipticK
[
−ri

2+ro2

ro2

]
+ 2

(
roEllipticE

[
−ri

2+ro2

ro2

]
+ riEllipticK

[
−ri

2+ro2

ro2

])
+(√

2
√((

ro2 − 1
2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2−

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))

(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))))/

(√(
1

−1−Tan[θ]2

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))))/

(
1
3
π

((
2ri2ro + 3riro2 + 2ro3

)
EllipticE

[
−ri

2+ro
2

ro2

]
− ri2roEllipticK

[
−ri

2+ro
2

ro2

])
−

1
3
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π((
2ri2ro + 3riro2 + 2ro3

)
EllipticE[

ArcSin
[√

2
√((

ro2 (−1 − Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2−

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
− ri2roEllipticF[

ArcSin
[√

2
√((

ro2 (−1 − Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2−

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−(√

2
√((

ro2 − 1
2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))

(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))

(
2ri2 + 3riro + 2ro2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2−

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

(√(
1

−1−Tan[θ]2

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 − (ri + ro)Tan[θ]

√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))))1/3

resdistlargethetadown[ro , ri , theta ] =resdistlargethetadown[ro , ri , theta ] =resdistlargethetadown[ro , ri , theta ] =

(3 ∗ vollargethetadown[ro, ri, θ]/(4 ∗ Pi))∧(−1/3) ∗ distlargethetadown[ro, ri, θ](3 ∗ vollargethetadown[ro, ri, θ]/(4 ∗ Pi))∧(−1/3) ∗ distlargethetadown[ro, ri, θ](3 ∗ vollargethetadown[ro, ri, θ]/(4 ∗ Pi))∧(−1/3) ∗ distlargethetadown[ro, ri, θ](
2
(

2π
3

)1/3
(
−roEllipticE

[
−ri

2+ro2

ro2

]
−

roEllipticE
[
ArcSin

[√
2
√((

ro2 (−1 −Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2

Tan[θ]2 + (ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−

riEllipticF
[
ArcSin

[√
2
√((

ro2 (−1 −Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2

Tan[θ]2 + (ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−
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riEllipticK
[
−ri

2+ro2

ro2

]
+ 2

(
roEllipticE

[
−ri

2+ro2

ro2

]
+ riEllipticK

[
−ri

2+ro2

ro2

])
+(√

2
√((

ro2 − 1
2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2+

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))

(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))))/

(√(
1

−1−Tan[θ]2

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))))/

(
1
3
π

((
2ri2ro + 3riro2 + 2ro3

)
EllipticE

[
−ri

2+ro2

ro2

]
− ri2roEllipticK

[
−ri

2+ro2

ro2

])
−

1
3

π((
2ri2ro + 3riro2 + 2ro3

)
EllipticE[

ArcSin
[√

2
√((

ro2 (−1 − Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2+

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
− ri2roEllipticF[

ArcSin
[√

2
√((

ro2 (−1 − Tan[θ]2)
(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2+

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

((−ri2 + ro2
) (

2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))]
, −ri

2+ro2

ro2

]
−(√

2
√((

ro2 − 1
2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
))

(
−ri2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))

(
2ri2 + 3riro + 2ro2 + 1

2(−1−Tan[θ]2)

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2+

(ri + ro)Tan[θ]
√

−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2
)))/

(√(
1

−1−Tan[θ]2

(
2riro − ri2Tan[θ]2 − ro2Tan[θ]2 + (ri + ro)Tan[θ]

√
−4riro + ri2Tan[θ]2 − 2riroTan[θ]2 + ro2Tan[θ]2

)))))1/3

resdistplotup[theta ]:=Plot[resdistlargethetaup[ro, 1, θ], {ro, romin[θ], romin[θ] + 2000}]resdistplotup[theta ]:=Plot[resdistlargethetaup[ro, 1, θ], {ro, romin[θ], romin[θ] + 2000}]resdistplotup[theta ]:=Plot[resdistlargethetaup[ro, 1, θ], {ro, romin[θ], romin[θ] + 2000}]
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resdistplotdown[theta ]:=Plot[resdistlargethetadown[ro, 1, θ], {ro, romin[θ], romin[θ] + 2000}]resdistplotdown[theta ]:=Plot[resdistlargethetadown[ro, 1, θ], {ro, romin[θ], romin[θ] + 2000}]resdistplotdown[theta ]:=Plot[resdistlargethetadown[ro, 1, θ], {ro, romin[θ], romin[θ] + 2000}]
resforcelargethetaup[ro , ri , theta ] =resforcelargethetaup[ro , ri , theta ] =resforcelargethetaup[ro , ri , theta ] =

2 ∗ Pi(Sin[θ] ∗ rsup[ro, ri, θ] − rsup[ro, ri, θ]∧2/(ro + ri))∗2 ∗ Pi(Sin[θ] ∗ rsup[ro, ri, θ] − rsup[ro, ri, θ]∧2/(ro + ri))∗2 ∗ Pi(Sin[θ] ∗ rsup[ro, ri, θ] − rsup[ro, ri, θ]∧2/(ro + ri))∗
(3 ∗ vollargethetaup[ro, ri, θ]/(4 ∗ Pi))∧(−1/3);(3 ∗ vollargethetaup[ro, ri, θ]/(4 ∗ Pi))∧(−1/3);(3 ∗ vollargethetaup[ro, ri, θ]/(4 ∗ Pi))∧(−1/3);

resforcelargethetadown[ro , ri , theta ] =resforcelargethetadown[ro , ri , theta ] =resforcelargethetadown[ro , ri , theta ] =

2 ∗ Pi(Sin[θ] ∗ rsdown[ro, ri, θ] − rsdown[ro, ri, θ]∧2/(ro + ri))∗2 ∗ Pi(Sin[θ] ∗ rsdown[ro, ri, θ] − rsdown[ro, ri, θ]∧2/(ro + ri))∗2 ∗ Pi(Sin[θ] ∗ rsdown[ro, ri, θ] − rsdown[ro, ri, θ]∧2/(ro + ri))∗
(3 ∗ vollargethetadown[ro, ri, θ]/(4 ∗ Pi))∧(−1/3);(3 ∗ vollargethetadown[ro, ri, θ]/(4 ∗ Pi))∧(−1/3);(3 ∗ vollargethetadown[ro, ri, θ]/(4 ∗ Pi))∧(−1/3);

θ = Pi ∗ 179/180;θ = Pi ∗ 179/180;θ = Pi ∗ 179/180;

distforcelist = {};distforcelist = {};distforcelist = {};
For[ro = 1.001, ro ≤ 25 ∗ romin[Pi− θ], ro = ro ∗ 1.01,For[ro = 1.001, ro ≤ 25 ∗ romin[Pi− θ], ro = ro ∗ 1.01,For[ro = 1.001, ro ≤ 25 ∗ romin[Pi− θ], ro = ro ∗ 1.01,

distforcelist =distforcelist =distforcelist =
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Liquid bridge between a sphere and a plate

Definition of parameters:

PARAMETER length max=0.005

PARAMETER length min=0.001

PARAMETER ini sep=0.0

PARAMETER end sep=2.4

PARAMETER sep=ini sep

PARAMETER sep step=(end sep-ini sep)/480;

PARAMETER ini radius=2

PARAMETER end radius=10

PARAMETER radius=ini radius;

PARAMETER radius factor=1.0092529;

PARAMETER vol=4*Pi/3

PARAMETER theta=60

PARAMETER alpha=50

#define wet cos(Pi*theta/180)

#define ca cos(Pi*alpha/180)

#define sa sin(Pi*alpha/180)

Definition of interfacial energies:

quantity int energy energy method edge scalar integral

scalar integrand: 2*Pi*x1

quantity sub energy bottom energy method vertex scalar integral

scalar integrand: -wet*Pi*x1*x1

quantity sub energy top energy method vertex scalar integral

scalar integrand: -wet*2*Pi*(x2-sep)*radius

quantity wet radius bottom info only method vertex scalar integral

scalar integrand: x1

quantity wet radius top info only method vertex scalar integral

scalar integrand: x1

quantity height info only method vertex scalar integral
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scalar integrand: x2

Computes volume of liquid bridge:

method instance main volume method edge vector integral

vector integrand:

q1: 0

q2: Pi*x1*x1

q3: 0

method instance vol correction top method vertex scalar integral

scalar integrand: -Pi*(x2-sep)*(x2-sep)*(3*radius-x2+sep)/3.0

quantity drop volume fixed=vol method main volume method vol correction top

Constraints:

constraint 1

formula: x3=0 // cutting plane

constraint 2

formula: x2=0 // bottom plane

constraint 3

formula: sqrt(x1*x1+(x2-radius-sep)*(x2-radius-sep))=radius // top sphere

constraint 4 nonnegative // axis

formula: x1

constraint 5 nonnegative

formula: x2

constraint 6 nonnegative

formula: sqrt(x1*x1+(x2-radius-sep)*(x2-radius-sep))-radius

List of vertices:

vertices

1 1.5*sa*radius -1.5*(1-ca)*radius 0 constraint 1 2 4 sub energy bottom wet radius bottom

2 radius 0 0 constraint 1 3 4 sub energy top wet radius top vol correction top height

//3 0 0 0 fixed constraint 1 2

//4 radius 0 0 fixed constraint 1 2
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//5 0 0 0 fixed constraint 1 3

//6 radius radius 0 fixed constraint 1 3

//7 0 0 0 fixed

//8 5 0 0 fixed

//9 5 5 0 fixed

//10 0 5 0 fixed

List of edges:

edges

1 1 2 tension 0 constraint 1 4 5 6 int energy main volume

//2 3 4 tension 0 fixed constraint 1 2

//3 5 6 tension 0 fixed constraint 1 3

//4 7 8 fixed

//5 8 9 fixed

//6 9 10 fixed

//7 10 7 fixed

read

gv:= {
r; g;

r; g;

U;

filename :=

sprintf"/jupiter/home/souza/sp %g R%g.dat",

theta, end radius;

printf"# parameter: \n" � filename;

printf"# theta: %g \t vol: %g \t inisep: %g \t endsep: %g \t radius: %g \ n",

theta, vol, ini sep, end sep, end radius >> filename; printf"# output format: \n"
� filename; printf"# separation �total energy �pressure �beta �r min �r max �r bottom

�r top �ls-area bottom �ls-area top �lv-area height �total force \n" � filename; // g

250;

jjmax:=20;
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jj:=0;

while(jj<jjmax) do {
g 5;

refine edges ee where not fixed and ee.length > 3*length max;

g 5;

delete edges ee where not fixed and ee.length < 3*length min;

jj:=jj+1;

};
while(radius<end radius) do {
g 5;

refine edges ee where not fixed and ee.length > 3*length max;

g 5;

delete edges ee where not fixed and ee.length < 3*length min;

radius:=radius*radius factor;

};
radius:=end radius;

jjmax:=150;

jj:=0;

while(jj<jjmax) do {
g 5;

refine edges ee where not fixed and ee.length > 2*length max;

g 5;

delete edges ee where not fixed and ee.length < 2*length min;

jj:=jj+1;

};
while(sep<end sep)do {
jjmax:=20;

jj:=0;

while(jj<jjmax) do {
g 5;

refine edges ee where not fixed and ee.length > length max;

g 5;
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delete edges ee where not fixed and ee.length < length min;

jj:=jj+1;

};
jjmax:=250;

jj:=0;

prun:=0;

while(jj<jjmax) do {
g 5;

refine edges ee where not fixed and ee.length > length max;

g 5;

delete edges ee where not fixed and ee.length < length min;

jj:=jj+1;

prun:=prun+drop volume.pressure;

};
rmax:=0.0;

rmin:=1000.0;

foreach vertex vv where not fixed do {
if(rmin>vv.x1) then rmin:=vv.x1;

if(rmax<vv.x1) then rmax:=vv.x1;

};
prun:=prun/jjmax;

printf"%f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f

\n", sep,

total energy,

prun,

acos(1+sub energy top.value/(2*Pi*cos(Pi*theta/180)*radius*radius)),

rmax,

rmin,

wet radius bottom.value,

wet radius top.value,

sub energy bottom.value/(cos(Pi*theta/180)),

sub energy top.value/(cos(Pi*theta/180)),
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int energy.value,

height.value-sep,

-Pi*wet radius bottom.value*(wet radius bottom.value*prun-2*sin(Pi*theta/180))

� filename;

sep:=sep+sep step;

};
};
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