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Summary

Imagine an intelligent robot entering an unknown room. It starts inter-
acting with its new surroundings to understand what properties the new
objects have and how they interact with each other. Finally, he gathered
enough information to skillfully perform various tasks in the new environ-
ment. This is the vision behind our research towards intelligent robots. An
important role in the described behavior is the ability to chose actions in
order to learn new things. This ability we call exploration. It enables the
robot to quickly learn about the properties of the objects. Surprisingly au-
tonomous exploration has beenmostly neglected by robotics research so far,
because many fundamental problems like motor control and perception
were still not satisfactory solved. The developments of recent years have,
however, overcome this hurdle. State of the art methods enable us now to
conduct research on exploration in robotics.
On the other hand the machine learning and statistics community has

developed methods and the theoretical background to lead learning algo-
rithms to the most promising data. Under the terms active learning and ex-
perimental designmanymethods have been developed to improve the learn-
ing rate with fewer training data.
In this thesis we combine results fromboth elds to develop a framework

of exploration in robotics. We base our framework on the notion of infor-
mation and information gain, developed in the eld of information theory.
And although we show that optimal exploration is a computational hard
problem, we develop e cient exploration strategies using information gain
as measure and Bayesian experimental design as foundation.
To test the explorative behavior generated by our strategies we introduce
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the Physical Exploration Challenge. It formalizes the desired behavior as ex-
ploration of external degrees of freedom. External degrees of freedom are
those the robot can not articulate directly but only by interacting with the
environment. We present how we can model di ferent exploration tasks of
external degree of freedom: Exploring themeaning of geometric symbols by
moving objects, exploring the existence of joints and their properties, and
exploring how di ferent joints in the environment are interdependent. Dif-
ferent robots show these exploration tasks in both simulated and real world
experiments.

Zusammenfassung

Wie würde sich ein intelligenter Roboter verhalten, der einen ihm unbe-
kannten Raum betritt? Vermutlich würde er anfangen all die Dinge um
sich herum zu untersuchen, um sich ein Bild darüber zu verscha fen, wel-
che Eigenschaf en die Objekte ausmachen und wie sie miteinander zusam-
menhängen. Dieses Wissen würde es ihm dann ermöglichen verschiedens-
te Aufgaben in der neuen Umgebung zu erledigen. Eine zentrale Rolle bei
diesemVerhalten spielt die Fähigkeit eigenständig zu entschieden, was es zu
untersuchen gilt.Diese Fähigkeit nenntmanExploration. Erstaunlicherwei-
se wurde autonome Exploration bisher in der Robotik vernachlässigt. Der
Grund liegt darin, dass grundlegendere Fähigkeiten, wie zum Beispiel die
Erzeugung von Bewegung oder die Wahrnehmung, die Wissenschaf bisher
vor große Probleme stellten. Die Entwickelungen der letzten Jahre in diesen
Bereichen ermöglichen uns aber nun Exploration der Umwelt mit Robo-
tern zu untersuchen.
Auf der anderen Seite wurden im Bereich desMaschinellen Lernens und

der Statistik Methoden und theoretische Grundlagen entwickelt, die Ler-
nalgorithmen in die Lage versetzen, selber ihre Trainingdaten zu sammeln.
Dadurch kann die Lernrate mit möglichst wenig Trainingsdaten verbessert
werden. Diese Methoden werden unter den Begri fen Aktiv Lernen und
Experimentell Design zusammengefasst.
In dieser Arbeit kombinieren wir die Resultate aus den beiden vorge-
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nannten Feldern. Wir entwickeln damit die Grundlagen für autonome Ex-
ploration in der Robotik. Wir leiten diese Grundlagen von der Informa-
tionstheorie ab, die eine formale De nition von den Größen Information
und Informationsgewinn entwickelt hat. Und obwohl wir zeigen, dass op-
timale Exploration nicht e zient berechenbar ist, könnenwir basierend auf
dem InformationsgewinnHeuristiken entwicklen, die zu e zienten Explo-
rationsstrategien führen.
Umdas Explorationsverhalten, dass sich aus diesen Strategien entwickelt,

zu testen, führen wir die Physical Exploration Challenge ein, das Problem
der physikalischen Exploration. Es formalisiert unsere Vision eines intelli-
genten, explorierenden Roboters als Problem der Exploration von externen
Freiheitsgraden. Externe Freiheitsgrade sind solche, die der Roboter nicht
direkt beein ussen kann, sondern nur durch Interaktion mit der Umwelt.
Schlussendlich modellieren wir verschiedene Explorationsaufgaben von ex-
ternenFreiheitsgradenund zeigenmit verschiedenenRobotern, simulierten
wie auch echten, wie diese Aufgaben gelöst werden können. Die Aufgaben
umfassen dabei das Erkunden der Bedeutung von Symbolen, die geometri-
sche Zusammenhänge widerspiegeln, die Exploration von Existenz und Ei-
genschaf en von Gelenken in der Umwelt und wie die Stellung von Gelen-
ken entscheidend für die Beweglichkeit andere Gelenke sein kann.
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Graphical Model Notation

This notation resembles the notation of Bayesian networks with some ad-
ditional syntax. For an introduction to this notation see Barber (2012).

R A random variableR,R is latent.

R A random variableR,R is observ-
able.

R S Two random variables R and S, S
depends onR.

R1 R2 R3 . . .

A dynamic Bayesian network,
de ning a chain of random
variables R1,R2,R3, . . ., each
dependent on its predecessor.

Rn

1 : N

A plate, de ning N − 1 random
variablesR1, . . . ,RN.

Rn Sn

1 : N

Aplate de ning that each random
variable Si is dependent on the
random variablesRi.

Rn Sn

1 : N

Aplate de ning that each random
variable Si is dependent on all ran-
dom variablesR1, . . . ,RN.
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1 Introduction

Figure 1.1: Cockatoo ‘Muppet’ is confronted with a complex locking mech-
anism and achieves success by exploring it. Picture courtesy of
Alice Auersperg.

A cockatoo is confrontedwith a complicated box, lockedby se-
veral mechanisms blocking the way to a small amount of grain
behind a translucent door, as shown in Fig. 1.1. The bird sees
the food and tries to reach it, it picks the door, then starts pick-
ing the various mechanism. Its rst attempts are unsuccessful,
but af er a while it is able to unlock the rst mechanism us-
ing its claws and sprout. Slowly it progresses by trying out the
other mechanisms, exploring each until it understands how to
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1 Introduction

unlock it. Slowly, one af er one, they open, until eventually
the cockatoo can reach the grain behind the door. Happily, it
receives its reward.

This scene is an excerpt from a video of an experiment conducted by
Auersperg et al. (2013). Watching the bird instantlymakes the observer think
how intelligent these animals must be to be able to solve such a complicated
task. What are the viewers astonished about? It is most likely not the abil-
ity of the cockatoo to see the food, and not the ability to open the com-
plex mechanisms with its claws. Such intuitive abilities are deemed easy,
although Moravec’s paradox tells us that those things are surprisingly hard
to achieve (Moravec 1988). The viewer is astonished about the cockatoo’s
ability to explore the mechanisms, and the ability to learn how to solve the
puzzle.
Exploration and learning are two important building blocks of many in-

telligent systems. Exploration is the ability to actively gather information
about new situations. As such it crucially needs learning. Learning describes
any method to improve the own abilities. Without it exploration would be
useless, because the gathered experienceswould not a fect the behavior of an
exploring agent. But augmented with learning, exploration can be a power-
fulmechanism to guide the actions of an agent. Through exploration agents
can gather information to cut o f branches of possibilities to nd out the
truth. Learning tells them how to incorporate that information to become
better.
The cockatoo also learns to improve its ability to open the lockbox in the

long run: In repeated experiments the bird opens the doormuch faster, even
if the mechanisms are shu ed (i.e., the locks are in di ferent order). It has
learned how to operate the mechanism and the execution is not a problem
anymore. It seems like it has built a mental model of the mechanism and
only needs to navigate through that model to unlock the mechanism again.
In this thesis we will primarily focus on exploration for model-based learn-
ing. Building a precise model that predicts how an environment reacts is a
way to transfer experiences to new situations. To gather such experience we
could rely on randomly chosen actions, or simply observe the environment,
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1.1 Active Learning General Principle of Data Gathering

but actively gathering them can help us to understand the dynamics of an
environment faster as well as getting a more precise understanding.
Summarizing, exploration is a key ability to deal with new situations and

thus a key ability for intelligent behavior. Without exploration strategies,
nding new solutions would be notoriously hard, new situations would
overburden us, and any of our greater achievements as human race would
not have been possible. To be clear, the ability to explore is not su cient to
build intelligent behavior, but it is a necessary means.
When the new scienti c eld of arti cial intelligence emerged during the

second half of the last century, the goal was to build artifacts that resem-
ble the human intelligence and autonomy at least partly. If we still want
to achieve this goal, there is no question the systems we build will need
ways to explore their environment. And while we are still far away from
human-like intelligence, the experiment of Auersperg et al. (2013) shows us
that also other systems, which we acknowledge to be intelligent, are able
to autonomously explore their environment. In this thesis we will develop
methods that equip robots with this ability.

1.1 Active Learning as General Principle of Data
Gathering

For any learning process we need data to train the algorithm with. These
data sets can have di ferent forms. In supervised classi cation, for example,
they consist of input data and labels of a classes these data samples belong to.
In reinforcement learning they are typically trajectories through the space of
possible states augmented with reward signals that encode howmuch value
each of these states has. And in clustering tasks there are only the input
data samples, from which the structure of the data distribution should be
learned. From these data sets various learning algorithms try to improve the
solution of the given task: Learning a classi er tries to improve the predic-
tion of a class label for new data samples, a reinforcement learner seeks to
nd a better policy to act in a given scenario and a clustering algorithm tries
to segment the data set.
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1 Introduction

Many of these learning algorithms rely on large, pre-sampled data sets.
Exploration on the other hand actively gathers data about the environment.
It is the process of learning while choosing data for the training data set.
This method of generating data sets is also of en called active learning (Set-
tles 2012). The principle behind active learning is very general: The learning
agent is not presented with training data, but it is equipped with a method
to choose the data it needs for learning by itself. This method is two-fold:
rst it needs means to create samples or must be provided with access to
already generated samples and second a way to measure how interesting a
sample is. Based on this measure it can choose the best tting sample for the
learning task.

We will use this principle to build exploration strategies for robots. A
major di ference to active learning approaches in the literature is that when
exploring real environments, a robot needs tomanipulate objects in the real
world by means of its embodiment. It thus needs to interact with objects.
Active learningmethods in themachine learning literature, in contrast, sam-
ple purely within sof ware.

Reasoning about con gurations of an environment also introduces the
problem of physical reasoning. In the robotic context a data sample resem-
bles a physical con guration of an environment, e.g., it consists of positions
and orientations of all objects in the scene. When sampling data points
from such distributions, they must obey physical laws. If not carefully con-
structed some samples might be infeasible: Objects might oat in the air,
penetrate each other, or otherwise disobey physics. This resembles the prob-
lem of Lang and Baum (1992). In a handwritten digit recognition task sam-
ples generated by their active learning method could not reasonable be clas-
si ed, because they did not resemble any digit. We will show how we can
generate data samples that are physically feasible or in other settings how to
avoid the problem entirely by nding useful parametrizations.

Summarizing, active learning in its generality is powerful and has proven
to outperform passive methods (Tomanek andOlsson 2009). It is therefore
a good candidate for a framework of exploration and we will use it as basis
throughout this thesis.
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1.2 Shannon Entropy Formalized Driving Force

1.2 Shannon Entropy as Formalized Driving Force

With active learning as the general formulation of exploration, the question
remains, what criterion the agent should follow,when actively choosingnew
data points.
When learning amodel of the environment, wewant each newdata point

to reduce the uncertainty over the model we have so far. Reducing the un-
certainty most would improve our model most. To represent the state of
the environment together with our uncertainty we rely on the Bayesian in-
terpretation of probabilities, where uncertainty is represented as probability
distribution. We call distributions that describe our ownbelief over the state
of the world, including the uncertainty of it, belief distributions (Kaelbling,
Littman, and Cassandra 1998).
When measuring the uncertainty over the belief distribution the natural

measure is the Shannon entropy (Shannon 1948). It captures how much
information a new sample of a distribution contains in expectation. Thus if
it is low,we canpredict a new sample better, or fromadi ferent viewpointwe
have more information about the underlying distribution. By reducing the
uncertainty over our belief of the world we improved our ability to predict
future samples of the environment. We have learned to predict better.
As such exploration is gathering the most information with the fewest

exploration steps. And since Shannon entropy captures all this in a well
developed framework, we will use it as the main criterion to drive our ex-
ploration.
We will however see, that we can not directly optimize that criterion be-

cause of computational barriers. We thus develop heuristics that indirectly
minimize the entropy of the distributionwe are interested in. Those are still
based on information theoreticmeasures butwill work stepwise, so keeping
the computational e fort at an a fordable level.

1.3 Thesis Outline

This thesis is structured as follows: The next section is about the theory of
active learning. It starts with a review of the active learning and exploration
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1 Introduction

literature (Sec. 2.1). Then we recall results from Wolpert (1996) that there
is no algorithm that can perform better in active learning than random ex-
ploration ( Sec. 2.2), but only if we do not have any assumption about the
distribution to learn. Following that, we show that with priors there is a
Bayes optimal solution (Sec. 2.4), but that it is still too expensive to com-
pute. Chapter 3 develops and analyzes a maximum cross entropy strategy
for exploration, that is well suited for situations where strong priors are in
place but should not mislead the exploration.
The following chapters are about exploration in robotic environments.

We rst give background on related robotics research (Sec. 4.1). We then
de ne the physical exploration challenge, which is the formalization of the
desired robotic behavior (Sec. 4.2). Following, the rigid world assumption
(Sec. 4.2.2) limits the set of possible scenarios to a reasonable size, by restrict-
ing the environments to consist only of rigid bodies connected by joints.
Af er this chapter on background in robotics we present various exper-

iments on exploration in robotics. We show a robotic exploration task for
learning a symbolic representation, that is in turn used to plan in a reinforce-
ment learning task (Sec. 5). These experiments already contain the full explo-
ration stack, but in a somewhat limited scenario. The scenario is widened by
including themost important degrees of freedom in rigidworlds: joints. We
show how to explore environments to discover new joints, their parameters,
and nally their dependency structure (Sec. 6).
The thesis closes with a analysis of the results and discusses its limitations

and the future work they imply (Sec. 7).

1.4 Published Parts of the Thesis

This thesis is based on already published publications. It enhances these
publications by broader theoretical background, deeper analysis and wider
discussion. The publications are:

• J. Kulick, M. Toussaint, et al. (2013). “Active learning for teaching a
robot grounded relational symbols”. In: Proc. of the Int. Joint
Conf. on Artificial Intelligence (IJCAI), pp. 1451–1457
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• S. Otte et al. (2014). “Entropy Based Strategies for Physical
Exploration of the Environment’s Degrees of Freedom”. In: Proc. of
the Int. Conf. on Intelligent Robots and Systems (IROS), pp. 615–622

• J. Kulick, R. Lieck, et al. (2015). “The Advantage of Cross Entropy
over Entropy in Iterative Information Gathering”. In: arXiv
e-prints 1409.7552v2 (stat.ML)

• J. Kulick et al. (2015a). “Active Exploration of Joint Dependency
Structures”. In: Proc. of the Int. Conf. on Robotics & Automation
(ICRA), pp. 2598–2604

• J. Kulick et al. (2015b). “Robots Solving Serial Means-Means-End
Problems”. In: RSS Workshop on Combining AI Reasoning and
Cognitive Science with Robotics
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2 Theory on Active Learning

A learning system consists of two major parts: A learning algorithm, which
improves the current behavior, and data. Every learning algorithm needs
data to be trained on, the so called training set.
In classical machine learning the training data of the algorithm is chosen

not by the algorithm itself, but by an independent source. This can include
hand chosen data sets by human experimenters or randomly sampled sets.
While the learning algorithms are able to improve with more data, they are
not the driving force in generating the training data.
Active learning, in contrast, is a concept that gives the learning agent the

control over the data set used for training (Settles 2012). It is also known
by the name experimental design. To choose training data the agent needs
a notion of informativeness of the data points. This can, for instance, be
driven by a measure of novelty of new data points, or how likely new data
would surprise the agent. Thewayhowan agent learns fromnewdatamight
also in uence how it measures the relevance. Knowing the algorithm that is
used to learn can a fect the choice of training data immensely. But also the
knowledge of a particular task might in uence the notion of importance of
data points.
Another important aspect of active learning is that generating training

data might be expensive. Although in the time of Big Data large data sets
are available more easily, there are still areas where acquiring data is not easy.
Running a whole experiment, for instance, with a complicated apparatus in
physics or a genetic experiment over a few generations of a species, is still
expensive. Automating the process of choosing useful parameter sets for
experiments is the task of experimental design, as coined by the statistical re-
search community (Fedorov 1972). But also when considering an exploring
robot, a new sample consists of moving somewhere, inspecting objects, and
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interacting with them, which takes time. Reducing these costs is a major
bene t of using active learning algorithms to generate data sets, as only the
most important data points need to be classi ed or evaluated.
Active learning has proven to be bene cial for learning complex tasks

(Tomanek and Hahn 2009). It was, however, used mostly in the area of
machine learning to learn parameters of predictive systems. Using it to gen-
erate explorative behavior on robots is not yet widely applied. We leveraged
the general active learning idea to enable robots explore their environment.
We need to develop a good notion on what explorative behavior should op-
timize. Af er reviewing related work in the eld of active learning we will
argue that strategies based on the theory of information as introduced by
Shannon (1948) are well suited. Theory of information is a well developed
eld and many active learning algorithms are based on it already.
Af er discussing the related work we will derive the optimal solution to

the active learning problem. This derivation will give an understanding of
the computational di culties that arise when attempting to implement it.
Because of these computational barriers, various heuristics have been de-

veloped to ndgood active learning strategies. Wewill analyze a collectionof
them and discuss their strengths and weaknesses for generating explorative
behaviors. Namely, they will be classical Bayesian experimental design, un-
certainty sampling, and Query-by-committee (QBC), each of which is an
example of a di ferent category of active learners. From that analysis we de-
velop a novel method to generate behavior that overcomes the main weak-
nesses for the use case of robotic agents exploring their environment. Its
major bene t will be that it tries to challenge its current belief, until it has
enough evidence to be certain about it. Informally speaking, it resembles
the scienti cmethod, trying to nd experiments that possibly falsify its own
hypothesis, instead of searching only for supporting evidence.
We will give experimental evidence that this novel strategy performs bet-

ter in inference tasks, i.e., where information is gathered to infer the distri-
bution of latent variables of the model, whereas it is inferior when informa-
tion is gathered for prediction tasks, i.e., predicting the outcome of further
experiments on the same variable. We will end the chapter with an analysis
of the reasons for this dual outcome.
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2.1 Related Work in Active Learning

Settles (2010, 2012) gives a broad overview over the area of active learning.
He categorizes the algorithms in two di ferent ways. The rst distinction
is how new samples can be acquired by the algorithm. He distinguishes
between three variants: Query Synthes , Stream-based Sampling, and Pool-
based Sampling. The other distinction is how the active learning algorithms
weight the importance of the di ferent samples. The threemajor approaches
areUncertainty Sampling, Version Spacemethods andOptimal Experimen-
tal Design.

2.1.1 Sample Acquisition

Query synthesis might seem themost intuitive way to generate samples: the
agent can query the whole input space and thus synthesize a new sample on
its own and ask for its label or evaluation. Some of the earliest attempts to
active learning were of this kind (Angluin 1988; Cohn, Ghahramani, et al.
1996). It is, however, of en the case that de ning the input space is not a
trivial task. If we apply too wide boundaries to it, some samples may have
nomeaning or generate unde ned behavior. This was the case, for example,
with actively learning handwritten characters (Lang and Baum 1992), where
a human oracle was not able to identify any actual character in the generated
queries. The same di culties arise with physical con gurations of objects
supposed to be build by a robot that does not obey the rules of physics, e.g.,
objects oating in free space. Those desired samples are not possible to gen-
erate, whereas query synthesis assumes that all samples in the sample space
are feasible. To use query synthesis the sample space must be su ciently
small to include only feasible samples, where it should not exclude any use-
ful sample. De ning the sample space su ciently might not be trivial or
not even possible. For the particular problem of de ning physically feasible
samples we will explain solutions in section 4.3.
To avoid this problem stream-based and pool-based sampling are of en

used. Stream-based sampling generates a continuous stream of samples of
the actual distribution of data, which is assumed to be cheap and the active
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learner only has to decide whether to ask for the label or evaluation, respec-
tively, of the current sample (Cohn, Atlas, et al. 1994). Pool-based sampling
generates a large pool of samples from the distribution, which is again as-
sumed to be free or inexpensive. The active learner now chooses the most
promising sample from that pool to get a label or evaluation. Pool-based
sampling is of en applied throughout many elds of machine learning. Set-
tles (2012, p. 9) gives many examples.
Algorithm 1 shows an overview of the three di ferent methods of acqui-

sition. While in theory these sample acquisition strategies di fer, in practice
the problem of infeasible or meaningless samples of en still persists. Only if
a black box sampler of the real distribution is available for low cost, stream-
or pool-based sampling o fer bene ts. If the labeling process is the expensive
part and querying the input space is cheap, those techniques are valuable. If
sampling from the real distribution is, however, expensive, those techniques
o fer little bene t.

2.1.2 Uncertainty sampling

The second distinction between active learning algorithms according to Set-
tle is the way to choose samples. Uncertainty sampling, as coined by Lewis
and Catlett (1994), samples in areas where the learner is uncertain about its
own prediction accuracy. Uncertainty can be measured di ferently. An easy
example of measuring uncertainty is the following: Consider a linear binary
classi er. Now measure the distance of each sample to the decision bound-
ary. The sample closest to the decision boundary is the most uncertain one.
For a probabilistic binary classi cation model, this translates to the sample
whose class probability is closest to 0.5 (Lewis and Gale 1994). For multi-
class classi cation problems, Culotta and McCallum (2005) expanded this
idea to sampling the least con dent sample, which they de ned to be the
sample with the lowest probability for the most likely class:

x∗ = argmin
x

p(ŷ | x) (2.1)

where ŷ = argmaxy p(y | x) is the most likely class. Another variant is
to measure the margin between the most likely and the second most likely
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Algorithm 1 Three di ferent approaches to sample acquisition in active
learning
function QuerySynthesisActLearning(ImportanceMeasure)

D← ∅
repeat

x∗ ← argmaxx∈D ImportanceMeasure(x)
y∗ ← get label for x∗ from orcale
D← D ∪ {(x∗, y∗)}
train learner onD

until some convergence criterion
end function
function PoolBasedActiveLearning(ImportanceMeasure)

X← ∅
repeat

x← draw sample fromD
X← X ∪ {x}

until su cient number of samples drawn
D← ∅
repeat

x∗ ← argmaxx∈X ImportanceMeasure(x)
y∗ ← get label for x∗ from orcale
D← D ∪ {(x∗, y∗)}
X← X \ x
train learner onD

until some convergence criterion
end function
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Algorithm 2 Active learning sample acquisition (continued)
function StreamBasedActiveLearning(ImportanceMeasure,
SampleCriterion)

D← ∅
repeat

x̃← draw sample fromD
if SampleCriterion(ImportanceMeasure(x̃)) then

x∗ ← x̃
y∗ ← get label for x∗ from orcale
D← D ∪ {(x∗, y∗)}
train learner onD

end if
until some convergence criterion

end function

class, where large margins are considered less important, because the learner
is already quite certain about the outcome (Sche fer et al. 2001). It, however,
ignores again all other class probabilities.
Amore general uncertaintymeasure is the entropyof adistribution (Shan-

non 1948), denoted asH [p(x)], whichmeasures the expectednumber of bits
of information a random event contains:

x∗ = argmin
x

H [p(y | x)] (2.2)

= argmin
x

−∑
y

p(y | x) log p(y | x)

 . (2.3)

Generally, entropy is a measurement of how uncertain we are about the
outcomeof a drawof a givendistribution. For learning a predictionwewant
to be as certain as possible about the next outcome, and henceminimize the
entropy.
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Figure 2.1: A toy example of pool-based uncertainty sampling. On the lef
there are all samples in the pool classi ed. In the center we have
linear classi er trained on a random selection of samples (Accu-
racy 70%). On the right uncertainty sampling is used to choose
the samples (Accuracy 90%). Figure from Settles (2010).

It is used throughout the literature of active learning as measure of un-
certainty (e.g., Ratnaparkhi et al. (1994), Hwa (2004), Körner and Wrobel
(2006), Settles and Craven (2008), and Kulick, Toussaint, et al. (2013)), and
generally performs well. There are, however, examples showing that for
particular problems it is worse than random sampling (Schütze et al. 2006;
Tomanek andHahn 2009; Wallace et al. 2010). In Sec. 2.2 we will show the-
oretical ndings whether active learning methods are generally better than
passive ones.

2.1.3 Version Space Methods

Another view on learning algorithms is the idea of version spaces proposed
byMitchell (1977, 1982) and its implications. The version space is de ned as
the set of hypotheses that conform with the training data. E.g., in a linear
separable classi cation task, all linear separators that perfectly separate the
training examples. Learning is now the reduction of the version space until
only the true hypothesis remains.
Based on this view on learning Cohn, Atlas, et al. (1994) proposed an al-

gorithm, which Settles (2012) calls Query-By-Disagreement (QBD). It is a
stream-based active learning algorithm for binary classi cation that explic-
itly maintains the version space. Whenever two hypotheses of the version
space disagree on the label of a new sample arriving, the true label is queried
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Figure 2.2: An example of Query-by-Disagreement. Each blue circle and
each red square denotes a sample of one of two classes. Each
hypothesis is a rectangular decision boundary between the two
classes. If a new sample falls within the gray area not all hypothe-
ses of the version space agree on the label and the true label is
queried. If a sample falls outside the gray area all hypotheses agree
on the label and the version space does not need to be adapted.
Figure based on Cohn, Atlas, et al. (1994).

and the version space is adapted accordingly. If all hypotheses agree on the
label the new sample does not carry new information and it is unnecessary to
query the true label. An illustrative example ofQBD is shown in Figure 2.2.
There are a few drawbacks of QBD. Maintaining the version space ex-

plicitly might be prohibitively expensive. With noisy labels or overlapping
class areas there might be no hypothesis in the version space. And for non
stream based situations it might be useful to measure the amount of dis-
agreement between the hypotheses for each sample to decide which one to
choose, especially if there are more than two classes to be labeled.
The rst issue is tackled by an algorithm called Query-by-Committee,

proposed by Freund, Seung, et al. (1997) and Seung et al. (1992). Query-
by-committee does not maintain the whole version space but a nite set of
committee members as representations of hypotheses. These members are
learning algorithms that can be trained. Whenever they disagree on a label
the true label is queried and the algorithms are retrained on the extended
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training set. Thus the committee members represent hypotheses from the
version space and are updated to t in the version space af er each query.
McCallum and Nigam (1998) extended this algorithm further to use it in

pool-based active learning scenarios. They do not simply decide whether
two committee members disagree or not, but measure the amount of dis-
agreement. Thus they can use the algorithm for regression tasks as well as
multiple class classi cation tasks. It is also tri ing that all committee mem-
bers conform to all training data, allowing for noisy data. Their measure of
disagreement is the sum of all Kullback-Leibler (KL) divergences from each
committee member’s predictive distribution to the mean predictive distri-
bution of all committee members:

1
∥ θ ∥

∑
θ

DKL

[
p(y | θ,D, x)

∣∣∣∣∣∣∣∣ ∑θ p(y | θ,D, x)
∥ θ ∥

]
. (2.4)

This measures how di ferent the prediction of each committee member
p(y | θ,D, x) is to the mean prediction of all committee members together.
The mean prediction assigns a uniform prior over committee members. It
can easily be extended to a fully Bayesian version by incorporating a belief
over committee members p(θ | D):

∑
θ

p(θ | D) ·DKL

[
p(y | θ,D, x)

∣∣∣∣∣
∣∣∣∣∣ ∑

θ

p(θ | D)p(y | θ,D, x)

]
. (2.5)

Further versions of the algorithms were proposed by Abe and Hiroshi
(1998), based on the ideas of boosting (Freund and Schapire 1997) and bag-
ging (Breiman 1996).

2.1.4 Optimal Experimental Design

All the previously described methods give heuristics on which sample is the
most informative for the learning algorithm. We are, however, interested
in maximizing some measurable performance of the algorithm. Thus we
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would like to know, how a given sample would change that performance if
sampled. We would than sample at positions that increase our performance
most. We would sample optimally with respect to our performance mea-
sure. Unfortunately the change of performance is dependent on the actual
evaluation of the sample (i.e., its actual label or value). We therefore have to
integrate over all possible outcomes for all possible hypotheses and use the
expected utility of the sample. This method is called Optimal Experimen-
tal Design (Chaloner and Verdinelli 1995; Fedorov 1972) or, when we use a
prior belief over the possible outcomes,Bayesian Experimental Design. The
general formulation of Bayesian experimental design is

x∗ = argmax
x

∫
y
max
d∈D

∫
Θ
U(d, θ, x, y)p(θ | y, x)p(y | x)dθdy, (2.6)

whereU is the utility measure, dependent on a decision d taken based on
the outcome y from sampling xwith hypothesis θ (Chaloner and Verdinelli
1995). A decision is two-fold: the choice of the design of the experiment x
and a nal decision af er the experiment, which can have di ferent utilities
as well. In practice this nal decision is of en ignored. With this formula-
tion, Bayesian experimental design maximizes the expected utility of a sam-
ple w.r.t. the hypothesis and the outcome.
The most common utility function is the information gain, for example,

how much information a distribution has gained by adding a sample. In-
formation gain is de ned as the Kullback-Leiber divergence (Kullback and
Leibler 1951) between the posterior and the prior distribution:

U(d, θ, x, y) = DKL [p(θ | y, x) ∥ p(θ)] (2.7)

=

∫
p(θ | y, x) log p(θ | y, x)

p(θ)
dθdy. (2.8)

Experimental design is mainly investigated within the eld of statistics,
but themachine learning community has had similar ideas. Roy andMcCal-
lum (2001) proposed an optimal active learning algorithm, that optimizes
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the expected loss function of the learner. To make the computation of the
expectation tractable they compute a Monte Carlo estimate.

2.1.5 Exploration in Reinforcement Learning

Another track of research that has to dealwith information gathering is rein-
forcement learning (Kaelbling, Littman, andMoore 1996; Sutton and Barto
1998). Put general, reinforcement learning are methods that learn a strategy
from interaction with the environment through trial-and-error. The value
of a state is rated by a reward function, which might be arbitrarily shaped.
It does not directly evaluate an action, but only the resulting state. An agent
hence needs to assign the reward to the correct action or action sequence on
its own.
Typically each state (or each state-action pair) is assigned a value com-

puted from the rewards gathered in the experiences. If the value function
captures the reward function su ciently, an agent can greedily follow the
values of reachable states to maximize its reward. However, the value func-
tion is not known, but the agent needs to infer it.
Togather experiences an explorationpolicy is needed. Of en ad-hocmeth-

ods are used to specify the exploration strategy. Examples are ε-greedy, that
performs random actions in a fraction of the actions (de ned by the param-
eter ε, hence the name) or Boltzmann exploration, which uses the expected
value to perform actions (Kaelbling, Littman, andMoore 1996).
Other strategies use the paradigm of optimism in face of uncertainty, i.e.,

they are more likely to perform actions about whose outcome they are un-
certain. Examples are exploration bonus algorithms (Kolter and Ng 2009;
Sutton 1990) andRmax (Brafman and Tennenholtz 2002).
Explicit Explore and Exploit (E3) from Kearns and Singh (2002) explic-

itly computes policies for exploration of new states, and exploitation of the
value function with a xed horizon. Both policies alone are optimal for
their task, but combined the algorithm is only near-optimal with polyno-
mial bounds, as is Rmax. Based on E3 and Rmax Lang, Toussaint, and Ker-
sting (2012) develop the REX (relational exploration) framework for explo-
ration in relational reinforcement learning (see Sec. 5.2 for a short introduc-
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tion to relational reinforcement learning).
These exploration strategies use the reinforcement learning formulation

asMarkovDecision Problem (Mdp) and leverage this formulation to de ne
an optimal solution. The actual derivation of the optimal solution is topic
of Section 2.4.
Another idea for exploration in reinforcement learning is to use arti -

cial curiosity as intrinsic motivation of the agent. A central driving force of
exploration in animals and humans is their curiosity. The concept of arti-
cial curiosity has been introduced to the reinforcement learning literature
by Schmidhuber (1991a,b). It models the curiosity found in animals and hu-
mans as desire to build an exact world model, i.e., a model that can predict
e fects of actions in an environment. While we can not predict the outcome
of an interaction with the environment, it is interesting to examine this in-
teraction. It becomes boring when we understood the e fect. The attention
is then drawn to e fects we do not understand yet.

2.2 A No-Free-Lunch Theorem for Active Learning

Given the various formsof active learning, it is interesting to askwhether any
of the given algorithms generally performs better than the others. Wolpert
and Macready (1995, 1997) showed that for optimization the so called No-
free-lunch theorem holds, which states that any two optimization algori-
thms are equally good, if averaged over all possible functions. The task of
optimization is to nd the point at which a function has its highest value.
To formalize the No-free-lunch theorem we use a Bayesian formulation

of optimization and learning, based on the extended Bayesian formalism of
Wolpert (1996, 2001) and Wolpert and Macready (1995, 1997). Let a1, a2,
f, m and D be random variables. a1 and a2 de ne the query algorithms to
choose the x-values of the training set D = {(x1, y1), . . . , (xm, ym)}. f is
the target function, and for the training set yi = f(xi). m is the size of the
training set. We writeDx

m andDy
m to name the sets of x and y values of the

training set respectively. With this formalism theNo-free-lunch theorem for
optimization reads:
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Theorem 1 (No-free-lunch for optimization).

∀a1, a2,m,Dy
m :
∑
f

p(Dy
m | f,m, a1) =

∑
f

p(Dy
m | f,m, a2)

The proof is given by Wolpert and Macready (1997). The intuition be-
hind the proof is that when summarizing over all functions, every function
value is equally likely, because we do not assume any shape of a function
to be more likely. Thus every set of function values is always equally likely
regardless of the inputs. Hence, it is independent of the optimization al-
gorithm. From this theorem it directly follows that for any performance
measure Φ(Dy

m), only dependent on the data D
y
m, the performance of any

two query algorithms a1, a2 is the same if averaged over all f:

∀a1, a2,m,Φ(·),Dy
m :∑

f

p(Φ(Dy
m) | f,m, a1) =

∑
f

p(Φ(Dy
m) | f,m, a2) (2.9)

When considering learning, one is typically not interested in optimizing
the function that is learned, but in the performancewhenpredicting further
values of the given function. Are there learning algorithms whose predic-
tion performance is generally better than others? To analyze this, we need a
measure of the prediction performance of a learning algorithm. This perfor-
mance can be measured by means of a loss functions c = L(f(x), l(x)) that
measures howwell a prediction of a learner l(x) covers the actual value of the
function f(x). Typical examples of loss functions include quadratic loss and
zero-one loss functions. These loss functions are, however, not only depen-
dent onDy

m but also on f, thus the No-free-lunch theorem of optimization
does not directly apply.
But for the set ofhomogeneo loss functionsWolpert (1996, 2001) showed

that any two learning algorithmshave the sameperformance if averagedover
all supervised learning problems. A loss function is called homogeneous if∑

f(x) δ[c,L(f(x), l(x))] (with δ being the Kronecker delta) is independent
on l(x). Loosely speaking this ensures that if we have no information about

41



2 Theory on Active Learning

f(x) a priori all hypotheses are equally good. Quadratic loss and zero-one
loss are again examples of loss functions that are homogeneous.

Theorem 2 (No-free-lunch for supervised learning).

∀l1, l2,m, c :
∑
f

p(c | f,m, l1) =
∑
f

p(c | f,m, l2)

The proof is given byWolpert (1996). Anot sowidely known corollary of
this proof is that the cost of a learning algorithm is not only independent of
the learner but also from the dataset used to train the algorithm, as long as
the query algorithm is independent of all function values it has not queried
yet (see Wolpert 1996, Sec. 5.4). Thus we can formulate a No-free-lunch
theorem for active learning.

Theorem 3 (No-free-lunch for active learning).

∀a1, a2, l1, l2,m, c, :
∑
f

p(c | f,m, a1, l1) =
∑
f

p(c | f,m, a2, l2)

The proof is again given by Wolpert (1996). This states, that any two
active learners (i.e., a combination of an algorithm a that queries a training
set and a learning algorithm l that learns the target function based on this
training set) performs equally well if averaged over all learning problems.
While this result seems discouraging at the rst sight, it only states that

averagedover all learning problems there is nopossible gain for an algorithm.
Naturally many of the possible learning problems are not interesting for us,
as they are problems without any structure to exploit. Usually we are not
interested in learning such functions, but want to learn functions that have
structure to some extend.
While the No-free-lunch theorems have been sharpened by Schumacher

et al. (2001) to apply to sets of functions if and only if the set is closed under
permutation and further to non-uniform distributions over f by Igel and
Toussaint (2005), they also showed that for the large subset of input spaces
with a non-trivial neighborhood relation (i.e., not all or no points are neigh-
bors) the no-free-lunch theorems do not apply.
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Thus we should consider the outcome of the theorem not as a negative
one, but as a positive one: For function spaces with su cient structure it is
possible toperformbetter than randomguesses. Or takendi ferently: Given
a structuredprior belief over the problem spacewe can formulate anoptimal
solution. Section 2.4 will cover this optimal solution.

2.3 Active Learning Problem Definition

As shown in the overview of the current state of the eld (Sec. 2.1), there is
no single problem statement for the problem of learning actively in an opti-
mal fashion. There are even results suggesting, that active learning is on par
with all other sampling strategies (see Sec. 2.2), but this is only true for sets of
learning problems that have no exploitable structure. For real world prob-
lem sets such a structure can be used for nding optimal strategies. In this
chapter we will give a de nition for active learning, which is quite general
andwhichwewill use throughout the theses. It is based on self-information
(Shannon 1948).
Self-information is de ned as the number of bits (i.e., the smallest pieces

of information possible to transmit) needed to transmit the state of a ran-
dom variable. It can be computed as

I(x) = − log (p(x)) . (2.10)

One interpretation of which is the amount of information that is miss-
ing to accurately determine the state of the random variable. Consider the
extreme case of one outcome having the probability of 1. No information is
needed to determine the state of that random variable, since before drawing
from the distribution it is already clear what result will occur. Hence, the
information of such an event is 0.
If framed as a probabilistic model all information in the active learning

framework can only be contained in the state of a random variable. Thus
the self-information of the random variable holding the desired knowledge
is a well suited criterion. We want to minimize the amount of information
that is missing to know the state of the random variable. However, the self-
information only covers the information that is contained in one sample. If
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Figure 2.3: A generic generative model of data as Bayesian network. The al-
ready known data D as well as the new query x and label y are
drawn from a distribution f. Dashed arcs describe the dependen-
cies af er marginalizing out f, dotted arcs describe the dependen-
cies before that. θ subsumes hyperparameters or di ferent mod-
els that can generate the data. Figure from Kulick, Lieck, et al.
(2015).

wewant tomeasure the information of a distribution, we need the expected
information of a draw from that distribution, the entropy:

H [p(x)] = E [I(x)]x (2.11)

= −
∫
x
p(x) log(p(x)), (2.12)

This is the expected amount of information contained in a sample from
the distribution (which is thought of as message, since Shannon worked on
theory of communication). There is a distinction between the entropy of a
discrete and a continuous distribution. The latter is called di ferential en-
tropy. We will not make the distinction between the two whenever they are
interchangeable and call both simply entropy. We will explicitly call them
discrete and di ferential entropy when necessary.
We now de ne the necessary parts of themodel, that are needed to derive

the optimal solution.
Let f, x, y, θ and DN = {(x1, y1), . . . , (xN, yN)} be random variables.

Their dependency structure is depicted in 2.3. (The notation of graphical
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models follows the Bayesian network conventions. It is shortly summed up
in the notation overview at the beginning of this thesis.) f is a data generat-
ing function, x and xi are input data of the learner, yi observed outputs and
y a predicted output. Normally we marginalize out f, as we are not inter-
ested in the distribution of data generating functions. θ are potential hyper
parameters or di ferent model classes leading to di ferent data generating
functions.
We call p(θ | D, x, y) the posterior hypotheses belief af er observing an

additional data point (x, y). Accordingly, we call p(θ | D) the prior hy-
potheses belief, even though it is already conditioned on observed data. It
does, however, play the role of a Bayesian prior in computing the posterior
hypotheses belief. We call p(y | θ,D, x) the predictive distribution, as it is
the distribution to predict further data from the underlying function. Typ-
ically, machine learning algorithms try to learn this distribution.
Within the probabilistic model, active learning can be framed as opti-

mization problem of the expected information of y, given already observed
data x andDN. This resembles the typical desire to learn a predictive distri-
bution, that can predict further samples of the data distribution:

(x∗1 , . . . , x
∗
N) = argmin

(x1,...,xN)
E [− log p(y | x,DN)]x,y,DN

. (2.13)

Naturally, the formulation of active learning as minimizing the expected
information can be reframed asminimizing the expected entropy of the dis-
tribution as follows, making the two notions of information for the case
of active learning equivalent (note the subscripts of the expectation, which
shows over which random variables the expectation is taken):

(x∗1 , . . . , x
∗
N) = argmin

(x1,...,xN)
E [− log p(y | x,DN)]x,y,DN

(2.14)

= argmin
(x1,...,xN)

E

[
−
∫
y
p(y | x,DN) log p(y | x,DN)

]
x,DN

(2.15)
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= argmin
(x1,...,xN)

E
[
H [p(y | x,DN)]

]
x,DN

. (2.16)

But learning the predictive distribution is only one view on active learn-
ing. So far we have marginalized θ, the hyperparameters of the model. But
we might also be interested in other unobservable factors, that lead to the
data. Thus we can also de ne active learning of the hyperparameters:

(x∗1 , . . . , x
∗
N) = argmin

(x1,...,xN)
E
[
H [p(θ | y, x,DN)]

]
y,x,DN

. (2.17)

This is the view of experimental design, that is not necessarily interested
in the actual value of an experiment, but in an underlying parameter of the
model the experiment might unveil.
Throughout this thesiswewill refer to the active learningproblemasmin-

imizing the expected entropy of any distribution, w.r.t. all observed data.

2.4 Bayes Optimal Solution to the Active Learning
Problem

When considering the di ferent approaches to active learning it is insightful
to know that there exists a Bayes optimal solution to the problem that active
learning tries to solve. We will outline the optimal solution and show that
it is computationally intractable.

2.4.1 Multi-armed Bandits

To derive the optimal solution to the general active learning problem we
start with a simple multi-armed bandit setting. Consider a gambling hall
with n bandits, that return a reward when pulled. The task of an agent
is now to repeatedly pull bandits to receive maximum reward. The agent,
however, does not know what each bandit will return and each return itself
may be in fact stochastic. Thus the agent can only maintain a belief over the
return it will receive when pulling a bandit.
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Each action has two e fects: First, the agent gets a reward, i.e., the bandit
returnsmoney. But second, the agent gathers information about the bandit
it played, and it is worthwhile to include this information in itsmodel of the
bandit, for it might help the agent to choose a better bandit to play in the
next round.
Formally, this setting can be modeled as follows. Let at ∈ {1, . . . , n} be

actions the agent can perform (i.e., machines it can play) and rt ∈ R the
rewards received at each time step. Find a policy

π : ((a1, r1), (a2, r2), . . . , (at−1, rt−1)) 7→ at (2.18)

that maximizes1

maxE

[
T∑
i=1

ri

]
. (2.19)

We now represent the agent’s knowledge of the history

ht = ((a1, r1), (a2, r2), . . . , (at−1, rt−1)) (2.20)

as belief over latent parameters of each machine θ = (θ1, . . . , θn) that de-
termine the stochastic reward p(ri | θi) each bandit returns. This belief is
formulated as probability distribution p(θ | ht).
The history about the action and rewards contain all information about

the process. We call such a set of observations a sufficient statistic, if and only
if no other set of observations contains more information about a parame-
ters (Fisher 1922). A su cient statistic is not necessarily unique. Thus we
could exchange the history with another su cient statistic of the bandits.
For a binary bandit scenario where each bandit returns a binary reward

r ∈ {0, 1} the belief distribution might for example be modeled as follows.
As the n bandits are independent of each other the belief factorizes into

p(θ | ht) =
n∏
i=1

p(θi | ht). (2.21)

1There are other possible objectives, like max rT, but for the sake of brevity we focus on
one single objective.
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Now each θi can be Beta distributed with αi and βi counting how of en
each bandit has returned a reward or not.

θi ∼ Beta(pi | αi, βi). (2.22)

How can we build strategies to chose actions such that we gain as much
reward as possible? We need to have a look into decision theory.

2.4.2 Markov Decision Processes

These kinds of sequential decision making problems are usually modeled
as Markov decision process (Mdp) as introduced by Bellman (1957a). The
de nition and introductionof Mdps givenhere followsKaelbling, Littman,
and Cassandra (1998).
AnMdp is a tuple (S,A,T,R), with

• S a set of states,

• A a set of actions,

• T : S×A → Π(S) (withΠ(·) being a probability space over a set) a
state-transition function giving a probability distribution over states,
which state is reached by performing an action in a state,

• R : S × A → R a reward function, giving the immediate reward of
an action in a state.

The joint distribution of anMdp is depicted in the graphical model shown
in Fig. 2.4. As can be seen in the gure, the state at time t only depends on
the state and action at time t−1 and not on any earlier state or action. Thus
the following equation, called theMarkov property, holds for the stochastic
process:

p(st | st−1, at−1, . . . , s1, a1) = p(st | st−1, at−1). (2.23)

To nd the optimal policy π∗(s), i.e., the policy thatmaximizes the expected
return, we compute the value of each stateVπ,t(s) as expected sumof future
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rewards given the policy. If we have a nite time horizonT, this can be done
by the following recursion:

Vt−1(s) = max
π

E

[
T∑
i=t

R(si, π(si))

]
(2.24)

= max
π

R(st, π(st)) + E

[
T∑

i=t+1

R(si, π(si)

] (2.25)

= max
π

(
R(st, π(st)) +

∑
s′

p(s′ | st, π(st))Vt(s′)

)
. (2.26)

This is the well-known Bellman equation for the value function (see, for
example, Bellman (1957a,b), Kaelbling, Littman, and Cassandra (1998), and
Sutton and Barto (1998)). A policy that is greedy with respect to the value
function is optimal and exists (Sutton and Barto 1998).
For an in nite horizon, i.e., T is in nite, the expected return may also be

in nite. We can, however, use a discount factor 0 < γ < 1, and de ne the
value function as the expected discounted future return.2

Vt−1(s) = max
π

E

[ ∞∑
i=t

γi−tR(si, π(si))

]
(2.27)

= max
π

(
R(st, π(st)) + γ · E

[ ∞∑
i=t+1

γi−t−1R(si, π(si))

])
(2.28)

= max
π

(
R(st, π(st)) + γ

∑
s′

p(s′ | st, π(st))Vt(s′)

)
(2.29)

There exist various algorithms, such as policy iteration and value itera-
tion (Sutton and Barto 1998), that can compute the optimal policy using

2We will cover only the finite time case for the further reading, although everything ap-
plies to the infinite time horizon case as well.
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Figure 2.4: The joint distribution of a Mdp depicted as DBN. As the state
is Markovian the actions can depend only on the current state.

dynamic programming. And although they are quite e cient – only poly-
nomial time in thenumber of states and actions– the state space alonemight
be prohibitively large, as we will see.

2.4.3 Partial Observability and Belief-MDPs

In the bandit scenario the state of the environment, θ, is not observable,
i.e., an agent can not directly observe the value of eachmachine’s parameter.
Only the return of each slot machine is observable af er it is played. While
the actual state is still Markovian, the agent does not know it precisely. Such
a process is called a partially observable Markov decision process (Pomdp).
The description of Pomdps also followsKaelbling, Littman, andCassandra
(1998).
A Pomdp consists of

• AnMdp (S,A,T,R),

• Ω, a nite set of observations and

• O : S×A → Π(Ω), an observation function, giving the probability
distribution over observations given a state and action.

The joint distribution of a Pomdp is depicted in Fig. 2.5. Instead of di-
rectly accessing the state, the agent in a Pomdp only has access to observa-
tions, which depend on the state and the agent’s action. These observations
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Figure 2.5: The joint distribution of a Pomdp depicted as DBN. The pol-
icy in this example is naively generated without any memory of
former observations.

are not guaranteed to follow the Markov property, given only the former
observations. Thus relying only on the current observations might lead to
sub-optimal policies. Di ferent states, for example, might create the same
observations, but need di ferent actions for the optimal policy. Thus the
agent needs to maintain a su cient statistics, e.g., the history of observa-
tions.
Given the history of observations, the agent can build a belief bt ∈ Π(S)

over the true state. This belief is formulated as probability distribution over
the state space to account for the uncertainty over the true state in a typical
Bayesianmanner. To compute a belief for the next time step, we recursively
compute the probability over states given the current belief bt, the current
observation ot and the current action at:

p(st+1 | bt, ot, at) =
p(ot | st+1, bt, at)p(st+1 | bt, at)

p(ot | bt, at)
(2.30)

=
p(ot | st+1, bt, at)

∑
st∈S p(st+1 | st, bt, at)p(st | bt, at)
p(ot | bt, at)

(2.31)

All these quantities—except for the normalization factor in the denom-
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inator, which only normalizes the distribution to sum up to one—are de-
ned in the Pomdp model. We call this distribution the state estimator SE
of the Pomdp.
Based on this belief we can build a so-called belief Mdp (see Fig.2.6. This

is a continuous state Mdp over the belief distribution over the true state. It
is de ned as tuple (B,A, τ, ρ)with

• B ⊆ Π(S) the set of belief states, being probability distributions
over states,

• A, the same actions as in the Pomdp,

• τ(b′, a, b), the transition function, which is de ned as

τ(b′, a, b) = p(b′ | a, b) =
∑
o∈O

p(o | a, b)p(b′ | a, b, o) (2.32)

• ρ(b, a) the reward function de ned as

ρ(b, a) =
∑
s∈S

p(s | a, b)R(s, a). (2.33)

Note that b and b′ are probability distributions and the transition func-
tion thus is a distribution over distributions. However, the distribution
p(b′ | a, b, o) can be de ned in terms of the state estimator of the Pomdp
as

p(b′ | a, b, o) =

{
1 if SE(a, b, o) = b′

0 else
(2.34)

We now have again an Mdp, where we can compute the value function.
Since the history we base the belief Mdp on is a su cient statistic, a pol-
icy greedy w.r.t. Vt(b) will be an optimal policy in the Pomdp (Kaelbling,
Littman, andCassandra 1998). Using the belief state to gain a optimal policy
for a Pomdp is called planning in belief space or belief planning (Kaelbling
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Figure 2.6: The joint distribution of a belief Mdp depicted as DBN. It
can be seen that the underlying structure of a belief Mdp is a
Pomdp. Additionally a memory over the observations is held,
the so called belief.

and Lozano-Pérez 2013). To compute the value function we apply the value
iteration algorithm to the belief Mdp and gain:

Vt−1(b) = max
π

E

[
T∑
i=t

ρ(bi, π(bi))

]
(2.35)

= max
π

(
ρ(bt, π(bt)) + E

[
T∑

i=t+1

ρ(bi, π(bi))

])
(2.36)

= max
π

ρ(bt, π(bt)) +
∑
b′∈B

p(b′ | bt, π(bt))Vt(b′)

 (2.37)

53



2 Theory on Active Learning

= max
π

(∑
s∈S

p(s | bt, π(bt))R(s, π(bt))+

∑
b′∈B

∑
o∈O

p(o | bt, π(bt))p(b′ | bt, π(bt), o)Vt(b′)


(2.38)

The belief state space is exponential number of states of the underly-
ing Mdp. Thus the polynomial time of dynamic programming algorithms
turns out to be too expensive. As Howard (1960) and later in more detail
Kaelbling, Littman, and Cassandra (1998) showed, solving a Pomdp gener-
ally isNP-complete. Finding goodpolicies for a concrete Pomdp is therefore
a hard problem.

2.4.4 Global Optimization: Infinite Bandits

So far we considered the bandit problem for decision making. To cover ac-
tive learning we need to extend the formalism further. While the bandit
scenario deals with a discrete set of decisions, in active learning the agent
might has to choose samples (x1, . . . , xN) from a continuous space. The
continuous version of bandits, continuo global optimization, extends the
bandit setting to continuous observations.
Global optimization is a framework, where a global optimum of a func-

tion should be found. Its continuous formulation can be considered as a
version of the bandit setting, where there are in nitelymany bandits, one at
each position of the sample space, while the reward is the actual value of the
function (since it is to be maximized).
The problem of continuous global optimization is de ned by Močkus

(1975) as follows. Let f : D → R be a real-valued function and let x∗ =
argmaxx f(x) be themaximum of f. We now de ne a decision function dn :
Dn×Rn → Dwhichmaps the observed data x1, . . . , xn and their function
evaluation f(x1), . . . , f(xn) to a new data point xn+1 to query.

xn+1 = dn(x1, . . . , xn, f(x1), . . . , f(xn)) (2.39)
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The task is to chooseN ∈ N points x1, . . . , xN ∈ D, such that theymin-
imize |x∗ −max{x1, . . . , xN}|, i.e., to minimize the distance of the maxi-
mum element in the trajectory to the actual maximum of the function.
Global optimization in general does not necessarily consider stochastic

functions or noisy observations of function values. If f has stochastic out-
comes, it is useful tomaintain a belief over the possible outcomes. And even
with non-stochastic outcomes it is useful to have a probabilistic belief over
not yet discovered areas. Jonas Močkus wrote a series of articles about the
Bayesian method towards solving global optimization, which maintains a
probabilistic belief over the function optimize (Močkus 1972; Močkus 1975;
Močkus 1989). They coined the term Bayesian optimization. In Bayesian
optimization we have a prior p( f ) over the function space. With each ob-
servation (xi, yi) we compute a posterior p( f | (x1, y1) . . . , (xi, yi)), our
belief bi over the possible states.
With this belief we can, analogous to the previous section, form a Pomdp

and perform belief planning. The belief space B is the probability space of
all functions overD. An action is to choose an input point for the function
and since f is de ned over the space D the action space is A = D. The
reward function is de ned as

ρ(b, a) =
∫
f
p( f | a, b)f(a) , (2.40)

since we want to maximize the actual function we have a belief over. The
transition function becomes

τ(b′, a, b) = p(b′ | a, b) =
∫
o∈O

p(o | a, b)p(b′ | a, b, o). (2.41)

Based on this belief Mdp we can de ne the value function recursively
exactly same way as in the discrete state. The only change happening is that
sums now become integrals.

Vt−1(b) = max
π

E

[
T∑
i=t

ρ(bi, π(bi))

]
(2.42)
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= max
π

(
ρ(bt, π(bt)) + E

[
T∑

i=t+1

ρ(bi, π(bi))

])
(2.43)

= max
π

(
ρ(bt, π(bt)) +

∫
b′∈B

p(b′ | bt, π(bt))Vt(b′)
)

(2.44)

= max
π

(∫
s∈S

p(s | bt, π(bt))s(π(bt))+∫∫
b′∈B,o∈O

p(o | bt, π(bt))p(b′ | bt, π(bt), o)Vt(b′)
)
.

(2.45)

Vt−1(b) is the optimal optimizer for the global optimization problem.
There is, however, no known feasible way to solve this recursive equation,
even for minimalistic examples.

2.4.5 Active Learning as Global Optimization of Information

The active learning problem as stated in Section 2.3 is to sampleN samples
from a (potentially) continuous space in order tominimize the expected en-
tropy. Recall the active learning de nition of Eq. 2.16 and Eq. 2.17:

(x∗1 , . . . , x
∗
N) = argmin

(x1,...,xN)
E
[
H [p(y | x,DN)]

]
x,DN

, (2.16 rev.)

(x∗1 , . . . , x
∗
N) = argmin

(x1,...,xN)
E
[
H [p(θ | y, x,DN)]

]
y,x,DNy,x,DN

. (2.17 rev.)

We can reframe that problem as a global optimization problem and apply
belief planning to that problem. As in global optimization, we can have a
belief over the function f, which generates the data points y from the inputs
x, at any time t

bt(f) = p(f | (x1, y1), . . . , (xt, yt)). (2.46)
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Nowwe are not interested in directlymaximize that function, but instead
we want to maximize our information about it. Thus the reward is the ex-
pected neg.-entropy 3 of the distribution we are learning:

ρ(bt, a) = −E
[
H [p(y | x, f,Dt)]

]
x,f,Dt

, (2.47)

ρ(bt, a) = −E
[
H [p(θ | x, y, f,Dt)]

]
x,y,f,Dt

. (2.48)

Again, we could use belief planning to nd the optimal policy for active
learning:

Vt−1(b) = max
π

(
ρ(bt, a) +

∫
b′∈B

p(b′ | bt, π(bt))Vt(b′)
)
. (2.49)

As with global optimization it is infeasible to compute the optimal so-
lution to the active learning problem. While incorporating knowledge of
all possible future states via the recursion leads to the optimal solution, for
almost every case it is prohibitively expensive to actually compute such a ex-
pected future reward.
Butwewill see that we can still can build e cient heuristic algorithms. In

the next section we will develop such an algorithm for environments where
we have strong priors over parameters.

3Negative entropy because we maximize the reward.
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Parts of this chapter have already been published as:

J. Kulick, R. Lieck, et al. (2015). “The Advantage of Cross En-
tropy over Entropy in Iterative Information Gathering”. In:
arXiv e-prints 1409.7552v2 (stat.ML)

We have seen that we need to incorporate prior beliefs over the environ-
ment to nd optimal solutions to exploration. Especially in real world ex-
ploration taskswe can encodemany aspects of theworld as prior knowledge,
since the properties of the environment are inherently properties of the real
world. For instance, physics always applies. We also know that environ-
ments are made by but also—and evenmore important—for humans. This
knowledge is not limited to a single environment, but holds for many situ-
ations robots might face. If we encode this knowledge as prior belief in the
learning algorithm, exploration can focus on those cases where the priors do
not holdor are vague. Unsurprisingly themost interestingparts of theworld
are those which are special, and we want exploration methods to focus on
these specialties. Active learning methods for real world exploration should
thus include a notion of what is regular in real world scenarios to infer what
is interesting.
In the Bayesian framework developed so far prior knowledge is naturally

de ned asprior belief distributions. Consider the graphicalmodel inFig. 2.3.
We want to gather information about the underlying model of the environ-
ment, i.e., about hyperparameters θ that de ne the behavior of the environ-
ment. In real world scenarios such a hyperparameter can be as abstract as
whether two objects are connected by a joint (this is exactly the case in the
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experiments in Sec.4.2). Typically, we have strong beliefs about such param-
eters (e.g., not many objects are connected by a joint, but if, that is interest-
ing), which would be encoded by a high a priori probability for each two
objects that they are not connected. But as discussed, exploration should
quickly uncover if areas do not follow the prior belief. We would like to
nd out the interesting areas of the state, that do not follow our prior be-
lief and update them accordingly, e.g., we want to nd out, which objects
are connected by a joint. In this chapter we will show that active learning
methods so far are not well suited in situations where we have a strong prior
belief. We will develop an algorithm that closes this gap.

3.1 Bayesian Experimental Design for Exploration

Maximizing information about the hyperparameters θ is typically the task
of Bayesian experimental design. Since directly optimizing over the whole
trajectory of samples is computationally too expensive (see Section 2.4), we
need to handle the problem iteratively and do not consider all possible fu-
ture states. It is intuitive to minimize the one-step expected hypotheses en-
tropy1. This is a common utility function for Bayesian experimental design
(Chaloner and Verdinelli 1995). We use negative entropy (NE) for clarity.
That way we can maximize all criteria.

xNE = argmax
x

∫
y
−p(y | x,D)H [p(θ | D, x, y)] . (3.1)

It is instructive to rewrite this same criterion in various ways. We can, for
instance, subtract H [p(θ | D)], as it is a constant o fset to the maximizing
operator (see App. A.2 for the detailed transformations):

argmax
x

∫
y
−p(y | x,D)H [p(θ | D, x, y)] (3.2)

1Note that this is often called the conditional entropy and writtenH [θ | y]. To avoid con-
fusion, we will not use this shorthand notation but explicitly state the distribution we
take the entropy of and over what random variable we will take the expectation.
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= argmax
x
−
∫
y
p(y | x,D)H [p(θ | y, x,D)]−H [p(θ | D)] (3.3)

= argmax
x

∫
y
p(y | x,D)DKL [p(θ | y, x,D) ∥ p(θ | D)] . (3.4)

These rewritings of expected entropy establish the direct relation to utility
functions of Bayesian experimental design (Eq. (3) and (4) in Chaloner and
Verdinelli 1995). We nd that xNE can be interpreted both as maximizing
the expected neg. entropy, as in Eq. (3.1), or maximizing the expected KL
divergence, as in Eq. (3.4).
Minimizing the expected model entropy is one way of maximizing in-

formation gain about θ. However, in the iterative setup we will empiri-
cally show that this criterion can get stuck in local optima: Depending on
the stochastic sample D, the hypotheses posterior p(θ | D) may be “mis-
lead”, that is, having low entropy while giving high probability to a wrong
choice of θ. The same situation arises when having a strong prior belief
over θ. As detailed below, the attempt to further minimize the entropy of
p(θ | D, x, y) in such a situationmay lead to suboptimal choices of xNE that
con rm the current belief instead of challenging it.
This is obviously undesirable. Insteadwewant tohave a robust belief that

cannot be changed much by future observations, not because the change is
avoided, but because all necessary evidence is already incorporated in the
belief. We therefore want to induce the biggest change possible with every
added observation. In that way, we avoid local minima that occur if a belief
is wrongly biased. While minimizing the entropy would in this situation
avoid observations that change the belief, measuring the change of the belief
regards an increase of entropy as a desirable outcome.

3.2 Maximum Cross-Entropy

One approach to maximize the expected change of the entropy would be to
maximize

xCH = argmax
x

∫
y
p(y | x,D)

∣∣∣∣H [p(θ | y, x,D)]−H [p(θ | D)]
∣∣∣∣. (3.5)
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Figure 3.1: Characteristics of three di ferent criteria for choosing samples:
Cross entropy, neg. entropy, and change of entropy. The belief is
over a binary variable, i.e., a point on the x-axis encodes thewhole
belief. The black dot indicates the prior belief of 0.25, the blue
and yellow dot indicate the posterior af er having seen two dif-
ferent observations. These observations are not explicitly shown.
The blue graph shows how the di ferent criteria assess di ferent
expected posterior beliefs. Cross entropy regards a change in any
direction as an improvement. Neg. entropy, in contrast, prefers
changes that support the current belief over those that challenge
it – unless the posterior belief ips to having an even lower en-
tropy than the prior. Change of entropy is similar to cross entropy
in that for small changes it regards any direction as an improve-
ment. For larger changes, however, is has a local optimum for a
at posterior of 0.5 and a local minimum for a ipped posterior
with the same entropy as the prior. (Figure from Kulick, Lieck,
et al. (2015).)
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Figure 3.2: Cross entropy and neg. entropy as a function of prior and poste-
rior belief of two possible hypotheses. Values are normalized and
the axes show the probability of one of the twohypotheses. Max-
imizing the cross entropy prefers a high entropy only if it chang
the belief while maximizing the neg. entropy ignores the prior
belief. (Figure from Kulick, Lieck, et al. (2015).)

This criterion has two undesirable pathologies: (a) it always has a local max-
imum for a at posterior belief with maximum entropy—unless the prior
is already at—and (b) changing a strong belief, say 0.25/0.75 for a binary
hyperparameter, to the equally strong but contradictory belief of 0.75/0.25
is one of the global minima with zero change of entropy (see Figure 3.1).
Another criterion that measures the change of the belief is the cross en-

tropy between the current and the expected belief.

H [p(x); q(x)] = −
∫
x
p(x) log q(x). (3.6)

The di ferences between the neg. entropy and cross-entropy can be seen
in Fig. 3.2. Whereas the neg. entropy is the same for all prior beliefs, the
cross entropy is high, when prior and posterior belief disagree. Intuitively
neg. entropy actually does notmeasure the change of distributions, but only
the information of the posterior belief p(θ | D, x, y).
When facing strong but misleading priors the neg. entropy will not value
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change that does not tilt the belief toward the opposite, i.e., a di ferent out-
come on a discrete random variable is more likely than the most likely out-
come in the prior. We will see this in detail soon. For situations were strong
priors are desirable we therefore propose theMaxCE strategy which max-
imizes the expected cross entropy between the prior hypotheses belief p(θ |
D) and the posterior hypotheses belief p(θ | D, x, y). This, again, can be
transformed to maximizing the KL-divergence, but now with switched ar-
guments (see again App. A.2 for details).

xCE = argmax
x

∫
y
p(y | x,D)H [p(θ | D); p(θ | D, x, y)] (3.7)

= argmax
x

∫
y
p(y | x,D)DKL [p(θ | D) ∥ p(θ | D, x, y)] . (3.8)

The KL-divergenceDKL [p(θ | D) ∥ p(θ | D, x, y)] quanti es the addi-
tional information captured in p(θ | D, x, y) relative to the previous knowl-
edge p(θ | D).
This does not necessarily require the entropy to decrease: the expected

divergenceDKL [p(θ | D) ∥ p(θ | D, x, y)] can be high even if the expected
entropy of the distribution p(θ | D, x, y) is higher than H [p(θ | D)]—so
this criterion is not the same as minimizing expected model entropy. The
following example and the later quantitative experiments will demonstrate
the e fect of this di ference.

3.2.1 An Illustrative Example

Bayesian experimental design suggests to minimize the expected entropy of
the model distribution Eq. (3.3). As we stated earlier, this may lead to get-
ting stuck in local optima in an iterative scenario. Wenow explicitly show an
example of such a situation. Assume a regression scenario where two Gaus-
sian Processes (GP, see for instance Rasmussen and Williams (2006) for an
introduction to GPs) hypotheses should approximate a ground truth func-
tion. BothGPs use a squared exponential kernel, but have a di ferent length
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scale hyperparameter. The ground truth function is a sample from one of
the GPs.
Consider now a case where the rst two observations by chance support

the wrong hypothesis. This may happen due to the fact that the ground
truth function is itself only a random sample from the prior over all func-
tions described by the underlying GP and as such might be a relatively un-
likely one. Furthermore observationsmay be noisy, whichmay lead to a sim-
ilar e fect. Such a scenario is shown in Figure 3.3. Af er two observations the
probability for the wrong model in this scenario is already high. If we now
compute the expected neg. entropy from Equation 3.3 it has its maximum
close to the sampleswe already got. This is due to the fact that samples possi-
bly supporting the other—the correct—model would temporarily decrease
the neg. entropy. It would only increase again if the augmented posterior ac-
tually ipped and the probability, such that it is higher than the prior belief
for the wrong hypothesis.
TheMaxCE approach of maximizing cross entropy (see Equation 3.7) on

the other hand favors chang of the hypothesis posterior in any direction,
not only to lower entropy, and therefore recovers much faster from themis-
leading rst samples. Figure 3.3 shows both objectives for this explicit exam-
ple.

3.2.2 The Conditional (Posterior) Hypotheses Entropy is not
Submodular

At the rst glance, the former ndings might contradict the fact that the en-
tropy is submodular (Fujishige 1978) and optimizing submodular functions
can be done e ciently (Iwata et al. 2001; Nemhauser et al. 1978). But it is
to notice that the hypotheses entropy we are trying to minimize is a di fer-
ent entropy: The submodular entropy function is a set function on set of
random variables, where the entropy of the joint distribution of all variables
in the set is computed. Formally if Ω = {V1, . . . ,Vn} is a set of random
variables, then for any S ⊆ Ω the entropy of this subset H [p(S)] is sub-
modular. In contrast, we compute the entropy of the distribution of a xed
random variable, conditioned on a set of random variables (see Eq. (3.1)). As
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Figure 3.3: The top graph shows two competing hypotheses where one cor-
responds to the correct model (the Gaussian process the data are
actually drawn from) and the other is wrong (a Gaussian process
with a narrower kernel). For the two observations seen so far, the
current belief is biased towards the wrongmodel because it is the
more exible one, i.e., the underlyingGaussian process can adopt
to functions with higher frequencies. The two curves below cor-
respond to the expected neg. entropy (Eq. 3.3) and the expected
cross entropy (Eq. 3.4) of the belief, conditioned on a query at the
corresponding location. The arrows indicate the query location
following each of the two objectives. Figure from Kulick, Lieck,
et al. (2015).
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noted earlier this is the conditional entropy. See Sec. A.1 for a proof that the
conditional hypotheses entropy is not submodular.

3.2.3 Differences to Traditional Active Learning Methods

Asopposed tomost existing active learningmethods, Bayesian experimental
design with the traditional utility function, as well as our MaxCE criterion,
de nes the objective directly in terms of the hypotheses belief p(θ | D) in-
stead of the predictive belief p(y | x,D).
As active learning is typically used to improve machine learning proce-

dures it utilizes the predictive belief to measure sampling performance. It
bears however close resemblance to Bayesian experimental design. Minimiz-
ing the expected entropy on the predictive belief for example is the direct
translation from Bayesian experimental design to the predictive belief:

xSI = argmax
x

∫
y
p(y | x, θ,D)H [p(y | x, θ,D)] (3.9)

In the case p(y | x, θ,D) assumes the form of a Gaussian, this is the same
as minimizing the expected variance of the predictive belief, since

H
[
N (μ, σ2)

]
=

1
2
log(2πeσ2), (3.10)

which is a strictly monotonically increasing function on σ2. Minimizing
the expected mean variance over the whole predictive space is introduced as
active learning criterion by Cohn, Ghahramani, et al. (1996).
A mix between these two worlds is Query-by-Committee (QBC) (Mc-

Callum and Nigam 1998; Seung et al. 1992). While aiming at discriminating
between di ferent hypotheses, it uses the predictive belief formeasurements.
Note that nding the correct hypotheses does not directly lead to good

predictive performance. While samples from one area of the input space
might clearly discriminate between two competing hypotheses, they do not
necessarily tell anything about the other areas of the input space. So we
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might still predict poorly, although we are certain, which hypothesis is the
correct one. On the other hand good prediction performance does not nec-
essarily lead to discrimination between hypotheses, since hypotheses might
agree on the prediction in large areas and only disagree only in a small frac-
tion of cases.

3.3 Quantitative Experiments

Tasks that occur in realworld scenarios canof enbe classi ed as either regres-
sion (predicting a function value) or classi cation (predicting a class label)
tasks. We tested both task classes rst on synthetic data. We also tested the
regression scenario on a real world data set. Usually machine learning scien-
tists are interested in prediction performance, whereas classical statisticians
might value that nding the correct hypothesis might help for the task as
well as generalizing to further situations. We tested both in our experiments.
As ad-hoc solution for prediction we combined uncertainty sampling with
the MaxCE in a linear fashion.
Further results of the exploration strategy in more complex scenarios can

be found in Sec. 6.2. All earlier robotic experiments used other measures,
because the MaxCE method was not yet developed.

3.3.1 Compared Methods

We compared six di ferent strategies: MaxCE, classical Bayesian experimen-
tal design, which we de ne to minimizes the expected entropy, query-by-
committee, uncertainty sampling, and random sampling, which randomly
chooses the next sample point.
Normally, uncertainty sampling is used to train a single model, i.e., only

one hypothesis is assumed, while for comparing it to our methods we have
to consider a set of hypotheses. The most natural way to handle the set of
models is as amixturemodel and thenminimize the variance of thismixture
model

xUS = argmin
x

E
[
p(y | x, θ,D)2

]
θ
− E

[
p(y | x, θ,D)

]
θ

2

. (3.11)
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Additionally we tested a mixture of MaxCE and uncertainty sampling

xmix = argmax
x

α · fCE(x) + (1− α) · fUS(x) , (3.12)

where fCE and fUS are the objective functionsmaximizing the expected cross
entropy and the entropy of the predictive distribution respectively:

fCE(x) =
∫
y
p(y | x,D)H [p(θ | D); p(θ | D, x, y)] (3.13)

fUS(x) = −E
[
p(y | x, θ,D)2

]
θ
+ E

[
p(y | x, θ,D)

]
θ

2

. (3.14)

The mixing coe cient, which was found by a series of trial runs, was α =
0.5 for both synthetic data sets and α = 0.3 for the CT slices data set.

3.3.2 Measures

Tomeasure progress in discriminating between hypotheses we compute the
entropy of the posterior hypotheses belief for each method. To measure
progress in the predictive performance we plot the classi cation accuracy
and the mean squared error for classi cation and regression, respectively.
To compute an overall predictive performance for a method we took the
weighted average over the di ferent models, with the posterior probabilities
as weights. This corresponds to the maximum a posteriori estimate of the
marginal prediction

p(y | D, x) =
∑
θ

p(θ | D) p(y | θ,D, x) . (3.15)

Fig. 3.4 shows these measures for all our experiments.

3.3.3 Synthetic Data

We test our method in both a 3d-regression and a 3d-classi cation task. The
setup for both experiments was essentially the same: A ground truth Gaus-
sian Process (GP) was used to generate data. The kernel of the ground truth
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Figure 3.4: Themean performance of the di ferent explorationmethods for
the classi cation and regression tasks. Figure fromKulick, Lieck,
et al. (2015).
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GPwas randomly chosen to depend either on all three dimensions (x, y, z),
only a subset of two dimensions (x, y), (y, z) or (x, z), or on only one di-
mension (x), (y) or (z). Finding the correct hypothesis in this case corre-
sponds to a feature selection problem: uncovering on which features the
unknown trueGPdepends on. The latent variable θ, to be uncovered by the
active learning strategies, enumerates exactly those seven possibilities. One
run consisted of each method independently choosing f y queries one-by-
one from the same ground truthmodel. Af er each query the corresponding
candidate GP was updated and the hypotheses posterior was computed.
Fig. 3.4a, 3.4b, 3.4c and 3.4d show themean performance over 100 runs of

the synthetic classi cation and regression tasks, respectively. Both hypothe-
ses belief entropy and accuracy/mean squared error are shown.
On this synthetic data MaxCE signi cantly outperforms all other tested

methods in terms of entropy, followedbyBayesian experimental design, and
the mixture ofMaxCE and uncertainty sampling (Fig. 3.4a and 3.4c). As ex-
pected, in terms of classi cation accuracy and predictive error bothMaxCE
and Bayesian experimental design perform poorly. This is because their ob-
jectives are not designed for prediction but for hypothesis discrimination.
However, the mixture of MaxCE and uncertainty sampling, performs best
(Fig. 3.4b and 3.4d), which is presumably due to its capability to uncover the
correct hypothesis quickly and to trade prediction accuracy for improved
chances of nding the true hypothesis.

3.3.4 CT-Slice Data

We also test our methods on a 384-dimensional real world data set from the
machine learning repository of the University of California, Irvine (Bache
and Lichman 2013). The task on this set is to nd the relative position of
a computer tomography (CT) slice in the human body based on two his-
tograms measuring the position of bone (240 dimensions) and gas (144 di-
mensions). We used three GPs with three di ferent kernels: a γ-exponential
kernel with γ = 0.4, an exponential kernel, and a squared exponential ker-
nel. Although obviously none of these processes generated the data, we try
to nd the best matching process alongside with a good regression result.
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Fig. 3.4e and 3.4f show the mean performance over 40 runs on the CT slice
data set.
In the CT slice data set neitherMaxCE nor Bayesian experimental design

minimize the entropy quickly (Fig. 3.4e). This may be a consequence of the
true model not being among the available alternatives. As a consequence
both methods continuously challenge the belief thereby preventing it from
converging. QBCmay be subject to the same struggle, here even resulting in
an increase of entropy af er the rst 25 samples. In contrast, the entropy con-
verges reliably for uncertainty sampling, the mixture method, and random
sampling. Concerning the predictive performance MaxCE, Bayesian exper-
imental design, andQBC do not improve noticeably over time (cf. explana-
tion above). Again uncertainty sampling and the mixture method perform
much better, while here the di ference between them is not signi cant.

3.4 Conclusion

Exploration strategies typically try to improve the prediction of a learning al-
gorithm. In exploring the environmentwith a robotic agent we aremore in-
terested in gathering information about the environment instead of directly
predicting its future state. As discussed discrimination between hypotheses
does not directly lead to good prediction performance, because it might not
cover the input space su ciently and still know the correct hypothesis. This
information, however, generalizes better about the environment and is eas-
ily transferable to new tasks, eventually leading to better prediction perfor-
mance due to better models.
Bayesian experimental design aims exactly at gathering information about

hypotheses. We have shown that traditional measures from Bayesian ex-
perimental design are not necessarily suitable for the nature of exploration,
wherewewant to incorporate strongprior beliefs toquicken the exploration
and focus on particularities of the current environment. In such a situation
maximizing the neg.-entropy of the belief tries to prove the strong belief
instead of acknowledging that other regions of the input space might con-
tradict the current best belief. We developed a method without this short-
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coming. The MaxCE method tries to implement the scienti c method: it
values experiments that falsify a hypotheses equally to those strengthening
it. Thus the interesting parts of the environment, which do not follow the
prior belief, are uncovered quickly. We will show examples of this behavior
in the subsequent chapters.
Using strong prior beliefs over the environment is an important tech-

nique to speed up lengthy exploration runs and let the learning focus on
the relevant parts of the environment. Having exploration strategies that
incorporate this knowledge is thus a major step towards robots autonomy.
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4 Background on Exploration in
Robotics

The Physical Exploration Challenge (see Sec. 4.2) and the
RigidWorld Assumption (see Sec. 4.2.2) were rst mentioned
in the following publication and are de ned in greater detail in
this thesis.
S. Otte et al. (2014). “Entropy Based Strategies for Phys-

ical Exploration of the Environment’s Degrees of Freedom”.
In: Proc. of the Int. Conf. on Intelligent Robots and Systems
(IROS), pp. 615–622

Exploring the environment is important for both animals and humans to
learn about their surroundings. From infants playing with various objects
to learn about their properties (e.g.j Baldwin et al. (1993)) to scientists ex-
ploring their area of research with experiments, new knowledge is gathered
by means of exploration. The cockatoo experiment, mentioned already in
the introduction of this thesis, is an impressive presentation of exploratory
behavior in birds, and showed how cockatoos were able to open a complex
mechanism to reach food af er exploring the mechanism with various ac-
tions (Auersperg et al. 2013). It shows that to solve problems in new envi-
ronments techniques for exploration are crucial.
Given its importance in animals and humans, exploration should be a

very important sub eld of robotics. Also the typical usage of robots suggests
that autonomous exploration is important in the robotics research commu-
nity: The mars rover explores the distant planet (Crisp et al. 2003), robotic
search teams enter hazardous environments (Ackerman 2011; Guizzo 2011)
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and the DARPARobotics Challenge 2015 showed state-of-the-art robots in
typical search-and-rescue situations (DARPA Robotics Chellange Organ-
isation Team 2015). Robots in all these examples apparently need to ex-
plore their environment. They need to act in unknown environments and
need to be fault tolerant to previously unknown scenarios. However, these
robots do not autonomously explore their environment. Instead they are
remotely controlled, without much autonomy. The exploration strategy is
outsourced to a human operator and the robots are only remote avatars of a
human being. For these speci c projects this is a reasonable decision, given
the current state of autonomy in robotics. But if robots should be widely
deployed in the future, remote controlled systems are not an option. The
problem of exploration has to be addressed. And while there are some ex-
amples of fully autonomously exploring robots (Thrun et al. 2004), in those
examples the robots only passively map their environment and do not truly
interact with it.
Surprisingly, autonomous exploration of the environment or parts of it

only recently found interestwithin the robotics community. Amajor reason
is that tough challenges were tackled developing the various sub-systems of
robots, like motion planning, navigation, or core vision techniques. But
today the fundamental abilities for robots exploring the environment aswell
as the computational power of computers, are developed well enough to
open the room for conducting research on bringing autonomous explora-
tion to robots.
Autonomous exploration of the environment is an important ability for

animals and humans, and so it is for arti cial intelligent agents. In any realis-
tic scenario it is impossible tomodel the environment exhaustively. Instead,
robots, supposed to act in a wide variety of applications, need to build those
models on their own by interacting with the environment. It is thus impor-
tant to model the interaction strategies for the agents instead of the speci c
environment.
As we have shown in the last chapter, active learning strategies are good

candidates for generating exploration strategies. They perform well on ma-
chine learning problems and are theoretically sound.
In this chapter, we will give background on work on active learning in
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robotics. We will rst examine the literature on this topic, showing that
so far exploration in robotics is mainly focused on exploring internal de-
grees of freedom, i.e., degrees of freedom that can directly be altered by the
robot, typically through motors. We also discuss the recent developments
on exploration on external degrees of freedom, degrees of freedom that are
only changeable through interaction with the environment. Then we will
present work we base parts of our robotic system in the experiments on,
e.g., the perception system of our robot. Af er the related work we will de-
ne the Physical Exploration Challenge, which will de ne the problem of
exploration in robotics rigorously and frame the setting of the further ex-
periments. To focus on the problems arising from the exploration of exter-
nal degrees of freedom context, we restrict the scenarios to a relatively easily
modeled set, namely we will assume the environments to consist of rigid
bodies and joints only. We will end this chapter by a brief discussion of the
problem of physical reasoning and possible solutions. Physical reasoning is
the process of reasoning about physical con gurations of an environment.
Many of theses con gurations might be infeasible due to physical laws. We
will discuss howwe can ensure that a robot does not try to explore such con-
gurations.

4.1 Related Work

4.1.1 Exploration of Internal Degrees of Freedom

Using active learning in robotics has a long tradition. Already the early active
learningpapers fromCohn,Ghahramani, et al. (1996)mentions learning the
dynamics of a robotic arm as application for active learning and even earlier
Thrun (1992) used active learning to train robot navigation. However, active
learning in robotics ismainly concernedwith exploration of internal degrees
of freedom, which we de ne as DOF directly controllable by the robot (see
Sec.4.2.1). We will review the literature on active learning on internal DOF
and then show that recently exploration on external DOF draw attention to
the community.
Exploration is central in the eld of developmental robotics (Cangelosi
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and Smith 2015; Lungarella et al. 2003). In developmental robotics the key
question is how to enable robots to develop skills from a small set of built-in
capabilities, similar to the early development of human children. To extend
their capabilities they need to learn from novel situations. Exploration is
needed to confront robotswith thosenew situations. Hester et al. (2013) and
Lopes et al. (2012) de ne exploration for that purpose in the reinforcement
learning framework. The described problems are however not full robotic
environments, but abstract away the actual robot. The same is true for in-
trinsically motivated reinforcement learning described by Singh et al. (2010)
where an internal reward signal is used to generate explorative behavior.
Anof en applied procedure used in developmental robotics ismotor bab-

bling. Here the robot constantly changes motor commands, which the ro-
bot should reach with an ende fector (Rolf et al. 2010). With those move-
ments the robot typically learns its inverse kinematic model. Usually the
motor position is randomly changed, hence the name babbling. It comes
fromobservations of human infants that seem to randomlymove their bod-
ies in order to understand how it reacts to speci c muscle commands (Melt-
zo f and Moore 1997). A more sophisticated approach is to actively choose
goals, both directly inmotor space as well as in goal space (Moulin-Frier and
Oudeyer 2013a,b). These approaches use a measure of learning accuracy,
which they de ne in terms of the distance of the prediction to the actual
outcome of a motor command. Thus the learner tries to actively choose
motor commands that improve the prediction of the kinematic model of
the robot.
Another area of robotic research, where active learning techniques are ap-

plied, is self-localization andmapping (SLAM).While already only localiza-
tion bene ts from the active choice of exploration actions (Burgard et al.
1997; Fox et al. 1998), SLAM poses the following problem: a robot has to
simultaneously draw a map of the area it is acting in and localize itself on
that map. The active choice of movements to enhance the precision of both
themap and the localization is called active SLAM (Leung et al. 2006, 2008;
Sim and Roy 2005). Various criteria for measuring the uncertainty in ac-
tive SLAM have been proposed and typically resemble the criteria in active
learning and optimal design such as A-optimality and D-optimality, usual
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measures in the frequentists optimal design literature (Carrillo et al. 2012).
But also Bayesian techniques are used to actively drive the exploration in
SLAM (Martinez-Cantin et al. 2007). Stachniss et al. (2005) use informa-
tion theoretic measures to decide on the next action to take. However, all
active SLAM algorithms are limited to move the robot to a desired position
and do not handle interactions with the environment.
Although grasping is inherently concerned with manipulating external

degrees of freedom, active learning in the grasping literature has mainly ap-
plied to internal DOF: Active learning is used to sample grasp directions
or positions (Kroemer et al. 2010; Montesano and Lopes 2012; Salganico f
et al. 1996) to determine the best grasping strategy—approach direction or
pre-grasp pose of the hand—for a given object. It is also used to sample ap-
proach trajectories to unknown objects to use the tactile feedback to model
the surface of the object (Dragiev et al. 2011, 2013).
Active learning algorithms are also usedwithin the eld of human-robot-

interaction (HRI). When interacting with human beings, it is crucial to ask
meaningful questions and gain asmuch insight as possible with each, to not
annoy the human operators. In the work of Chao et al. (2010) a human
teacher is supposed to teach a robot symbols made from paper cut-outs.
Here the teacher is asked to generate new samples by speech interaction, the
robot does notmanipulate the state on its own. In the work of Cakmak and
Thomaz (2012) a robot learns a pouring task, where it generates new trajec-
tories which are then judged from a human teacher. Here it only explores
internal degrees of freedom.

4.1.2 Exploration of External Degrees of Freedom

All active learning and exploration methods discussed so far are concerned
with the internal degrees of freedomof a system, i.e., all degrees of freedoms
that are directly controllable by the system, such as joint angles of servomo-
tors. None of the work is directed towards exploration of external degrees
of freedom, which can be only controlled through interaction with the en-
vironment with directly controllable degrees of freedom, e.g., the position
of an object, which is only controllable when grasped. From the 596 papers
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published atRobotics: Science and Systemswithin the period of its existence
so far (since 2005) only 34 (less than 6%) are concerned with manipulating
objects at all, whereas almost 25% are concerned with trajectory generation
(e.g., motion planning, and control)1. This is certainly explainable by the
computational di culty of the problems involved in manipulation tasks
and also by the di culty in performing the tasks on real robotics hardware.
Manipulating external degrees of freedom also bears the risk of damage to
both the robot and the environment and is thus of en avoided. Given that
only such a small percentage of research papers deals with manipulation at
all, it is no wonder that autonomous exploration through interaction is still
not thoroughly analyzed. In recent years, however, the topic got attention.
One of the rst publications using active learning on external degrees

of freedom is our paper about teaching robots grounded symbols (Kulick,
Toussaint, et al. 2013). It uses active learning to ask a human teacher for la-
bels about spatial relations of objects. The detailed ndings are part of this
thesis (see Sec. 5).
van Hoof, Kroemer, and Peters (2014) and van Hoof, Kroemer, Ben A-

mor, et al. (2012) conducted research on autonomous exploration within
cluttered environments for segmentation, also called interactive perception.
A robot pushes objects around on a cluttered tabletop scenario to under-
stand which parts on the sensory input belong to the same object. It uses a
probabilistic forward model to estimate the e fects and quanti es the infor-
mation obtained by the action. In a similar fashion, Bersch et al. (2012) and
Hausman, Balint-Benczedi, et al. (2013) segment objects throughmotion in-
duced from a robotic arm. They, however, use the concavity of regions as
heuristic to guide actions instead of a full probabilistic model of the actions.

1Measuring whether a paper is concerned with such a broad topic is subjective. Of course
any manipulation has to be done by some means of trajectory generation, so arguably
any trajectory generation paper has potential influence onmanipulation. In our count,
however, we only included all papers which are directly concerned with manipulating
the state of an object not directly controllable, e.g., relocation of objects or cutting ob-
jects. We decided upon whether a paper is concerned with manipulation by manually
judging the title and in the case of uncertain titles judging the abstract. The num-
bers are, however, not necessarily sharp. They give nevertheless a good estimate of the
amount of research done in a given direction.
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The principles of arti cial curiosity—building a predictive world model
as intrinsic motivation—were also applied to robotics. Ngo et al. (2012) and
Ngo et al. (2013) used arti cial curiosity to learn skills such as building block
stacks from playing with blocks. In this work the focus is on learning ac-
tion skills as byproduct of learning a world model. All previously discussed
research does not consider more complex environments with constrained
degrees of freedom, i.e., joints.
Very close in spirit to our work is the work of Hausman, Niekum, et al.

(2015). They employ a recursive state estimator to classify types of joints and
estimate their parameters, while keeping a distribution over joint hypothesis
availablewithin a particle lter. This enables them to actively choose actions
by means of information theoretic measures. An action in their setting is a
force applied to an object. They also use a Bayesian change point detection
(Niekum et al. 2015) to nd end points of joints. We employ a change point
detection to more generally nd hints in the dynamics of a joint, that lead
to joint dependency detection (see Sec. 6.2). Their work is, however, only
on the level of exploring one particular joint. We used similar strategies for
higher level exploration strategies (i.e., answering the question of which ob-
ject in a complex environment we should explore rst).
In work on interactively identifying joints by Barragán et al. (2014) an in-

put-output hiddenMarkov is used to model articulated mechanisms. They
use Bayesian inference to uncover the latent variables, especially the type of
the mechanism. To make the computations tractable they limit themselves
to a discrete sets of mechanisms and a discrete set of actions. The robot has
then to infer which joint type it is acting on, based on the observation if
the desired motion could be executed or not. Our experiments are going
further in that they consider more than one joint in the environment. We
also address the question of existence of joints and how to account for the
entropy of non-existing distributions.
Another quite di ferent approach is that of Höfer et al. (2014). They

pose the exploration problem as relational reinforcement learning problem,
where reward is given when a dependency between di ferent parts of furni-
ture is uncovered, e.g., learning that a given handle opens a door. A ε-greedy
strategy is used for exploration. Note that exploration in this context is two-
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fold: at the one hand they describe the problem as reinforcement learning
problemand thus need exploration in a reinforcement learning sense, on the
other hand the policy learned by the reinforcement learner implements an
exploration strategy in the sense of exploration de ned earlier in this thesis.

4.1.3 Planning in Belief Space

Beside these explicit explorationheuristics, Kaelbling andLozano-Pérez (2013)
model robotic tasks asPomdpandplan inbelief space, as described inSec. 2.4.
Thus they act optimally without explicitly incorporating exploration strate-
gies in their work. That way they, however, have to model uncertainty over
everything explicitly—so far the belief representation is relatively naive and
does not scale well. They use a Gaussian distribution over the pose of each
objects, which will be intractable when the number of objects in a scene
raises. It is also laborious to hand-build the representations for a new do-
main of tasks.

4.1.4 Interactive Perception

In our experiments we want to learn a model of the underlying kinematics
of the environment (see Sec. 4.2.2 for details of the assumption of a rigid
world). To learn a model of such an environment, we need algorithms that
are able to identify parameters of joints from sensory input. Various meth-
ods have been developed. They are subsumed under the term interactive
perception, since they need movement of objects and thus interaction with
objects. In the experiments in the further chapter we use such systems to
perceive type and parameter of the joints.
Sturm et al. (2011) propose a probabilisticmethod, that identi es the type

of a joint from a time series of pose estimates of objects. It is able to distin-
guish between rigid, revolute and prismatic joints. For other types of con-
nected movements it uses a non-parametric Bayesian model. It leverages a
graphical model to obtain the most probable (maximum a posteriori prob-
ability) kinematic model for each link between objects. It is, however, nec-
essary to obtain trajectories from object parts. Thus it uses a marker based
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object detection.
The work of Brock’s group, in contrast, acts directly on the camera im-

age. They published a series of papers on identifying joint types from sen-
sory input and interaction with the objects (Katz, Orthey, et al. 2014; Katz,
Pyuro, et al. 2008; Martín-Martín and Brock 2014). They use RGB features
(SURF features, see Bay et al. (2008)) which they enhance for the use on
RGB-D data. From the movement of these features they model the rigid
body motion. From this motion the kinematic structure is identi ed. With
this structure a forward model is inferred to predict the further movement
and nally generate a recursive state estimator.
Since our work assumes objects to be identi ed, we use the library from

Sturm to estimate the joint type and parameters.
Despite the term interactive perception, the motions in the work of both

groups are still pre-scripted by a human experimenter and not autonomous-
ly inferred. These algorithms are thus very good tools for the use with ex-
ploration strategies but do not address the question of exploration.

4.1.5 Dynamics of Joints

When exploring degrees of freedom models of joints are helpful in a vari-
ety of use cases. They de ne joint parameters and can give a prediction of
movement. Endres et al. (2013) analyzed the movement of doors and built a
analytic dynamic model of them, which enables them to estimate the door
parameters, such as the center of rotation of the hinge, and the deceleration
parameter (which subsumes physical e fects such as friction or inertia) di-
rectly by solving a system of linear equations. As input they need the trajec-
tory of a point on the door and its normal, which they observe with a depth
sensor. They are then able to predict movements of the door given forces
acting on it. With their compliant robotic arm they can move the door to
desired positions. In our work we leverage a similar, but simpler, dynamic
model of a joint (a) to infer joint parameters with sampling methods (see
Sec. 6.1) and (b) to pre-process force-torque sensor data (see Sec. 6.2).
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4.2 The Physical Exploration Challenge

Toassess the explorationperformanceof a robot,weneed tode ne a goal be-
havior we want to achieve. Loosely speaking this behavior can be described
as follows.

If a robot enters a new environment it should start interacting
with it until it has acquired a su ciently precise model of it.

The Physical Exploration Challenge is the formalization of this behavior.
This is a important problem for robotics, as it is a central behavior to be
applied to unknown environments. It enables the agent to nd out the spe-
cialties of a scenario to be able to use the objects in its environment. The
physical exploration challenge consists of three central parts:

1. Perception: The agent needs to be able to perceive the state of the
environment and its various parts. In the environments we will in-
vestigate this will be mostly the perception of joints. We will use the
work of Sturm et al. (2011) for this purpose.

2. Motor Skills: The agent needs to be able to interact with the world
bymeans of itsmotor skills. This is a central research area of robotics.
We will use state of the art operational space controllers to enable
the agent for interaction (Toussaint et al. 2010). Learning these skills
has been, as mentioned before, the topic of developmental robotics
(Moulin-Frier and Oudeyer 2013b).

3. Exploration Strategi : The agent needs strategies that tell him how
to explore environments. This essentially is the question of which
action the robot should take next. To answer that question we will
show how to transfer insights from active learning research to explo-
rationof external degrees of freedomof environments in robotic tasks.
Developing successful and e cient exploration strategies on external
degrees of freedom is the main contribution of the following chap-
ters.
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We will now rigorously de ne the problem of the physical exploration
challenge.

4.2.1 Environments, and Internal and External Degrees of
Freedom

Manyde nitionsof degrees of freedomhavenbeenproposedover time (Pen-
nestri et al. 2005). We will use a de nition based on the formulation of gen-
eral dynamical systems (Mazzola and Giunti 2012).

De nition 1. Let E = (T,M,Φ) be a dynamical system on a monoid T, with
state spaceM ⊆ Rm being a set and evolution function Φ : T×M 7→ M. We
call E the environment. Every dimension of the state spaceM we call a degree
of freedom.

We do not want the robot and its strategy be de ned by the evolution
function, since we want to use an agent inmultiple environments and want
to clearly distinct between the environment and the robot. Thus we need
the agent to be able to interact with the environment. We rst de ne the
agent as its policy.

De nition 2. Let A be a set of actions. Then an agent defined by its policy
π : T×M 7→ A.

Now we de ne the interface for the agent to interact with the environ-
ment. First we distinguish between internal and external degrees of free-
dom. Although the following de nition alone does not explain the di fer-
ence between internal and external degrees of freedomweneed it for further
de nitions.

De nition 3. The state space M of an environment the Cartesian product
of the two sets M = MI × ME. We call MI internal degre of freedom, and
ME external degre of freedom.

The agent needs away to interact with the environment through the con-
trollable degrees of freedom. Thus we de ne the evolution function as con-
catenation of the agent’s policy, the robot’s model, and the environment.
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De nition 4. A robot defined by its internal evolution function ψ : T ×
MI × A 7→ MI. The external evolution function φ : T × MI × ME 7→ M
defin the behavior of the environment. Let m = (mI,mE) ∈ MI × ME
and t ∈ T. Then the complete evolution function Φ of the environment
then defined

Φ(t,m) = φ
(
t,

robot’s evolution function︷ ︸︸ ︷
ψ
(
t,mI, π(t,m)︸ ︷︷ ︸

agent’s policy

)
,mE

)
. (4.1)

Note, that an agent can only interact with the environment by chang-
ing the internal degrees of freedom. Knowledge over φ (and ψ) is essential
to do meaningful things in an environment. This is the prior knowledge
we need to incorporate in our agent to e ciently explore its environment.
For robotic tasks, knowledge about the environment includes, for instance,
knowledge about physics and kinematics. All these e fects are incorporated
in φ. Thus we need to know the behavior of φ well enough to manipulate
external degrees of freedom by means of φ and ψ, e.g., pushing a door uses
the knowledge ofNewton’s laws ofmotion to change the pose of the door—
external degrees of freedom—bymoving ones own joints—internal degrees
of freedom.

4.2.2 Rigid World Assumption

Our world consists of many degrees of freedom which are very hard to mo-
del and manipulate. To focus our research on exploration, we limit the sce-
narios we analyse. For all following experiments we assume the world to
consist only of rigid bodies connected by joints. The only change of state
can be imposed by exerting forces to objects. We call this the rigid world
assumption.
This intentionally excludes many scenarios from the research: folding

towels, handling liquids, or squishing deformable objects are not possible
within these limited scenarios. All these are interesting areas of research, also
when conducting experiments on exploration. But since we want to focus
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on the problems that arise fromexploration itself, we keep the scenarios sim-
pler to magnify those problems. The rigid world assumption still includes
a wide variety of manipulation and exploration tasks: picking and placing
of objects, handling furniture, or investigating the parameters of doors are
some examples which are possible within the rigid world assumption.
Byusing the rigidworld assumption the only degrees of freedom in an en-

vironment become the pose of objects, possibly constrained by joints. Thus
the degrees of freedom are greatly reduced and it is computational tractable
to model them within our probabilistic framework.

4.2.3 Exploration in Rigid Environments

As we have stated the exploration challenge is about learning a model of the
environment. The behavior of the model is de ned by φ, which can be po-
tentially stochastic. Thus we want tominimize the expected information of
the probability distribution of outcomes of φ given experience in the envi-
ronment so far. This is what the active learning de nition (see Eq. 2.16 and
Eq. 2.17, page 46) is about:

(x1, . . . , xn) = E
[
H [p(φ(t, x) | x,D)]

]
x∈M,D , (4.2)

with t the current time. And if φ is a parameterized function, where we just
want to learn the parameters

(x1, . . . , xn) = E
[
H [p(θ | φ(t, x), x,D)]

]
x∈M,φ(t,x),D . (4.3)

Thus we can see that exploration of external degrees of freedom is active
learning on the evolutionary function of the environment. We use our in-
ternal degrees of freedom tomaneuver to regions of the environment’s state
space which have the biggest expected information gain.
In Sec. 5 and Sec. 6 we will present various experiments that support the

thesis that active learning canbeused to drive explorationof external degrees
of freedom in robotic tasks and environments in a meaningful way.
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4.3 Physical Reasoning

Whendealingwith external degrees of freedomoneparticular challenge is to
create con gurations that are feasible. Consider the situation where a sam-
ple might be the position of an object. If the agent can sample all possible
positions, many of them do not obey physical rules. For instance, an object
might penetrate another one or might be oating in the air, not following
the rule of gravity. This is an important di ference to exploring internal de-
grees of freedom, where limits are either known before or easy to obtain.
Of en pool-based sampling is used to avoid situations that are infeasible.

However, we still need to create a pool of physically feasible samples. Thus
we need to reason over the physical feasibility of samples. This process we
call physical reasoning.
Closely connected to physical reasoning is the controllability of objects.

While some samplesmight be physically feasible, we have nomeans to build
theses samples, because we can not control some degrees of freedom. While
internal degrees of freedom are always controllable, external degrees might
not be changeable due to di ferent reasons, the most common being that
the agent is not in contact with an object and thus can not move it. When
reasoning over samples to explore, theymust be reachable as well as feasible.
Toussaint (2015) proposed amathematical programming approach, called

Logic-Geometric Programming, which alternates between symbolic plan-
ning and subsymbolic optimization. It uses symbolic actions together with
trajectory planningmethods to construct possible situations instead of sam-
pling and decidingwhether a situation is feasible or not. This has the advan-
tage of generating the necessary actions to build a state alongside with that
state. Another bene t is that it can only build reachable samples, because it
inherently uses the abilities of the agent to generate samples.
We used a simpler approach in the experiments of Sec. 5, since Logic-

Geometric Programming was not introduced yet. We use a physical sim-
ulator (NVidia PhysX ) within the rejection criterion for an rejection sam-
pling step. Rejection sampling is a method to generate samples from distri-
butions we can normally not sample from. We sample from an adversarial
distribution and reject samples proportionally to the likelihood, that this
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sample would not appear in the desired distribution (Von Neumann 1951).
For physical reasoningwe generate samples of physical con gurations of the
environment from a very broad distribution. From that sample a scene in
the physic simulator canbe instantiated and the simulator is run. If nounex-
pected movement is noted, e.g., from penetrations or gravity, the situation
is considered feasible. That way we can create a pool of feasible samples,
which we can in turn rate by means of exploration measures.
Of en it is the case that the given problem is relatively easy to parametrize,

such that boundaries of the space are easier to de ne, as for example when
uncovering joint dependency structures in Sec. 6.2. Then we can rely on
those boundaries and do not need physical reasoning. When this opportu-
nity exists it is worthwhile to build the parametrization, since physical rea-
soning techniques are computationally heavy.
The following two chapters will bring the theoretical background which

we have presented in this chapter into practice. We have conducted several
experiments that show how to explore external degrees of freedom. First we
present work on unconstrained DOF (Sec. 5), followed by experiments on
exploration of joints (Sec. 6.1) and their dependencies (Sec. 6.2).
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Parts of this section have already been published as:

J.Kulick,M.Toussaint, et al. (2013). “Active learning for teach-
ing a robot grounded relational symbols”. In: Proc. of the Int. Joint
Conf. on Artificial Intelligence (IJCAI), pp. 1451–1457

Many real world tasks consist of manipulating the state of external de-
grees of freedom. Objects must be picked up and placed somewhere else,
furniture must be opened to reach the content, or tools must be used to
achieve a desired e fect. To explore new environments it is important that
robots interact with surrounding objects to learn how these objects work.
They need to alter the state of the objects to nd functional states and to
learn how to operate mechanisms.
Complex object manipulation tasks require both motion generation on

the geometric level as well as sequential composition and reasoning onmore
abstract, e.g., symbolic relational representations (Katz, Pyuro, et al. 2008;
Lemaignan et al. 2011). In existing systems that incorporate both levels it is
usually assumed that a set of grounded action symbols (motion/manipula-
tion primitives) as well as state symbols are prede ned (Beetz et al. 2010).
In manipulation scenarios where the world is composed of objects and the
state is naturally described by properties and relations of objects, relational
representations based on conjunctions of logical predicates are well-suited
(Džeroski et al. 2001). They generalize well over the actual object instance
and transfer knowledge to similar objects and new environments. This led
to the recent development of e cient methods for relational reinforcement
learning (RL) andplanning,which combineprobabilistic learning andplan-
ning with relational representations (Lang and Toussaint 2010). However,
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learning appropriate action and state symbols themselves remains a funda-
mental challenge.
Instead of prede ning a set of symbols by the system designer it is de-

sirable that a robot learns new symbols that enable it to reason about new
situations. In this experiment we will use the following setting. A human
teacher labels a few examples of situations that are descriptive for a new sym-
bol and considered to be useful for a new task. From this the robot learns a
rst model of the symbol, which it actively aims to re ne. The exploration
in this setting is to move objects to interesting con gurations and ask the
teacher whether a given symbol holds or not. Learning the model of a sym-
bol is called the symbol grounding problem. We will test the accuracy of
the learned symbol groundings as well as their usefulness in reinforcement
learning tasks.

5.1 The Symbol Grounding Problem

In any symbolic systems, symbols are meaningless syntactic elements in the
beginning. They are connected to a semantic by a grounding. This ground-
ing is speci c to an agent and maps parts of states of it sensory input to a
symbol, giving the symbol its meaning. To communicate with these sym-
bols it is necessary that agents share themeanings of the used symbols. That
does not mean they need to have exactly the same mapping. But for the sit-
uation that is communicated themapping from both communication part-
ners should map to the same symbols. The image of that mapping should
be su ciently overlapping. The symbol grounding problem is to nd such
a mapping.
There exist two famous philosophical papers about the symbol ground-

ing problem. The rst is from Searle (1980), which introduces the prob-
lem as the “Chinese Room” problem. It is an intellectual game putting the
reader in a situationwhere she communicateswith theworld only over a ter-
minal with Chinese symbols (where she normally does not speak Chinese)
and a Chinese-Chinese dictionary. Searle now asks if the reader will ever be
able to understand themeaning of the symbols and draws an analogy to the
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symbol grounding in an arti cial intelligence, which can also never truly un-
derstand the meaning of the symbols it subsumes. Harnad (1990, §8 – §10)
extends that line of reason and asks:

Suppose you had to learn Chinese as a rst language and the
only source of information you had was a Chinese/Chinese
dictionary! This is more like the actual task faced by a purely
symbolic model of the mind: How can you ever get o f the
symbol/symbol merry-go-round? How is symbol meaning to
be grounded in something other than just more meaningless
symbols? This is the symbol grounding problem.

Here he questions the possibility of a symbolic AI at large. Our approach
will not disprove Harnad’s intuition and argument. Instead we will ground
the symbols needed for a relational reinforcement learning task in sub-sym-
bolic sensory input in an active manner. We do not assume a fully sym-
bolic AI, but add a sub-symbolic state, based on sensory input – an em-
bodiment. The symbols are directly given by a human teacher, the robot
should only learn its grounding. This process is sometimes called symbol
anchoring (Coradeschi and Sa otti 2000, 2003) to contrast it with the sym-
bol grounding problem. As such symbol anchoring is classi cation. Each
symbol is connected to a classi er, that determines whether a given symbol
holds for a state or not.
For learning or anchoring symbols from a human teacher we need intelli-

gent exploration to i) askmeaningful questions to the human teacher and ii)
speed up learning to avoid annoyance of the human teacher. Cakmak and
Thomaz (2012) showed in their research that asking good questions is cru-
cial for human-robot interfaces and that using active learning methods is a
suitable means to that end.

5.2 Relational Reinforcement Learning

In the following experiments the symbol groundings are used within the
framework of relational reinforcement learning. We brie y describe this
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framework here.
Reinforcement Learning is a way to nd good policies in Mdps. As de-

scribed before (see Sec. 2.4.2) an Mdp consists of states, actions, transition
function and reward function. While in simple environments states and ac-
tions can be enumerated, state representations becomes more complicated
formore realistic settings. Amore sophisticated approach is to use a so called
relational state and action space (De Raedt 1997). The resulting Mdp is
called a relationalMdp and reinforcement learning algorithms on such rela-
tional Mdps are called relational reinforcement learning, accordingly (Dže-
roski et al. 2001).
A relational state is compounded of objectsO, predicatesP and functions

F. It is the conjunction of (potentially negated) predicates and functions
over the objects, which are true for a given state. It can be seen an enumer-
ation of all attributes of the state and relations between objects in the state
(hence the name). For a detailed description see Pasula et al. (2007).
To de ne the transition function we need to de ne the outcome of ac-

tions. For the actions in the experiment we use noisy, indeterministic, deic-
tic (NID-) rules as de ned by Pasula et al. (2007). An example of these rules
is:

pickup(X) : {Y : block(Y)}
block(X), on(X,Y)

→


0.6 : ¬on(X,Y), inhand(X)
0.3 : no change
0.1 : noise

(5.1)

A NID-rule describes two things: the outcome of an action and con-
straints when an action can be applied. The rule rst shows the name of
the action and the list of parameters in parentheses (pickup(X)). All pa-
rameters are variables. Variables can refer to any object in the scene. This
property allowsNID rules to generalize over object instances. A rule applies
to all objects if they satisfy the given constraints. Variables are written with
upper letters, in this caseX andY. When applying the rule to an actual state,
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i.e., performing the action, these variables have to be assigned to an actual
object within the constraints of the rule. This assignment is ambiguously
called grounding in the relational reinforcement learning literature, and not
to be confused with the symbol grounding. If no grounding is possible the
action can not be performed. We will shortly explain how to ground the
variables but rst describe the constraints of the rule.
The constraints of the rule are split in two parts: the deictic and the con-

text block. Af er the colon follows the list of deictic constraints in curly
brackets. Deictic variables are variables important to describe the context
of the rule, although they do not appear in the parameters of the rule. The
deictic constraints de ne the constraints on the deictic variables. The con-
text block (block(X), on(X,Y)) follows in the next line. It describes con-
textual constraints that must be satis ed to apply the rule.
A grounding assigns actual objects to all variables of the rule. A ground-

ing is legal if all predicates in the deictic and context block evaluate to true.
In this example the function parameter X must be assigned to an object
that is a block (block(X) must be true), which must be on another block
Y (on(X,Y) and block(Y)must be true).
Then follows the list of possible outcomes and their stochastic distribu-

tion. Each line shows rst the probability of the outcome and then the out-
come. The outcome includes all predicates that become true or false af er
the action has performed. The rules can have a noise outcome, which cap-
tures all outcomes not precisely modeled by the action. An action in real
world can havemany unpredictable or highly unlikely outcomes. The noise
outcome subsumes those outcomes to generalize better. In the given rule ev-
erything around the block the agent picked up might break down because
the block was somewhere in the middle of a structure. Many predicates in
the state would change in an unpredictable manner.
Pasula et al. (2007) showed how these rules can be learned from experi-

ences and Lang and Toussaint (2010) showed how planning can be done in
such relational domains with their PRADA algorithm. They also investi-
gated what exploration in such relational domains could look like (Lang,
Toussaint, and Kersting 2012). The relational symbols, predicates and func-
tions, however, are always handcraf ed. We now show that those symbols
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can alsobe learned andhowactive learning as explorationprinciple can guide
the selection of training data.

5.3 Learning Symbol Groundings

We assume that a scene s is composed of objects. For each object i we have
a geometric feature vector xi ∈ Rm describing geometric or other physical
properties of the object (like radius, height, absolute position, color). Like-
wise, for each pair of objects (ij) we have features xij ∈ RM describing the
objects’ geometric relation (like the di ference xi − xj, distance, relative po-
sition, etc.).
We de ne a grounded relational symbol σ = (p, f ) as a tuple of a rst

order predicate p and a discriminative function f grounding the symbol. f
determines the probability that the predicate pholds for objectso = (oi, oj)
given their features xo = (xi, xj, xi,j)T (or o = oi and xo = xi for the unary
case) in state s,

p(p(o) | xo) = sig(f(xo)). (5.2)

where sig is the logistic function sig(z) = 1
e−z+1 . For each continuous

state s we can now de ne a symbolic state t ∈ {0, 1}v. For all objects and
combinations of objects o and symbols σ = (p, f), t has an entry ti which is
1 if and only if sig(f(xo)) > 0.5 and 0 otherwise. t describeswhich symbolic
predicates are considered to be true in state s.
Learning a discriminative function is the classical task for classi cation

in machine learning. We use Gaussian Process Classi cation (Rasmussen
andWilliams 2006) to learn the discriminative function f. Gaussian Process
Classi cation (GPC) has the bene t of estimating an uncertainty about ev-
ery prediction in addition to the prediction itself. In fact it learns a complete
distribution, namely a Gaussian, for all input data samples. Wewill use that
for the active learning strategy. The active learning algorithm can query an
oracle for yp,o, which holds the truth value of whether p holds for objects o.
For the sake of clarity we drop the use of the subscripts and assume that all
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following equations refer to the same predicate p and set of objects o. Thus
in the remainder of this section xmeans xo and ymeans yp,o.
A bene t of using a GPC is, that computing the entropy of a Gaussian is

easy and so we can de ne the global information gain as the integral of the
entropy over the whole space of the classi er, comparable to what Cohn,
Ghahramani, et al. (1996) suggested.

H(D) :=
∫
x
H [p(y | x,D)] . (5.3)

For active learning, the system chooses the sample x∗H with

x∗H = argmax
x′

H(D)− E
[
H(D ∪ {(x′, y′)})

]
y′ . (5.4)

Typically, the integral in equation (5.3) as well as themaximization to gain
x∗H cannot be computed analytically. To approximate the integral (5.3) we
perform aMonte-Carlo integration, by sampling k physically feasible refer-
ence con gurations. The optimization in (5.4) is approximated using a pool
of physical feasible situations, where the best con guration is queried (see
Sec. 5.4).
While this approximation leads to good results it is computationally ex-

pensive, sinceH [p(y | x,D)] has to be computed at all reference points for
all tested samples. This is especially problematic in situations where time
for an oracle is considered expensive, such as in experiments with a human
teacher.
Therefore, we compare this objective to a local estimation of the uncer-

tainty. For this purpose we use the entropy of the predictive distribution
directly as optimization criterion and the robot chooses the sample x∗Locwith

x∗Loc = argmax
x′

H
[
p(y | x′,D)

]
. (5.5)

This criterion scales well to high dimensional spaces, since noMonte-Carlo
integration (with very high k) is needed to approximate an integral. We op-
timize again via the pooling approach.
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5.4 Physical Reasoning: Sampling Physically Feasible
and Informative Situations

Given a classi er f we can estimate the reduction of predictive uncertainty
for any new input x. However, the inputs x to a classi er have to be features
of a real physical situations. Not every feature vector can be generated by a
physically feasible situation and the feature map from sensory inputs to in-
put vectors cannot be inverted to retrieve a physical situation that generates
a given feature. The physical feasibility can be viewed as a structural con-
straint of the classi er’s input domain which is not present in typical active
learning approaches andwhichwehave to explicitly take into account. Thus
we have to only sample from this subspace during learning the groundings.
To cover this subspace we use a physical simulator to generate a large set of
physically feasible situations, which are steady. The robot now can generate
the features of the situations from the simulator and compute the expected
reduction of the predictive uncertainty from this simulated situation. I have
discussed the problem in detail in Sec. 4.3.
This approach is a form of pool-based active learning (see Sec. 2.1). By

using the simulator we do not need to actually build the situations in real
world, but can generate them fast in simulation and still have a notion of
steadiness and feasibility. The actual query is then evaluated in real-world.

5.5 Robot manipulation to generate informative
situations

To interact with a human teacher in the given active learning scenario the
agent needs to manipulate objects in the real world and literally generate in-
formative situations (see Fig. 5.1). Because we compute the features from
simulated situations we have access to the positions of the objects and build
the most interesting scene in real world. But since the sensorimotor loop of
a robot is subject of many sources of noise, we are not able to precisely gen-
erate the same situation as we had in the simulation. While the normal pool
based active learning assumes that the samples can directly be labeled by the
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5.6 Evaluation of Active Symbol Grounding

teacher, the robot-human scenario introduces another step in the processing
and the labeled sample x′ is di ferent from the originally generated sample x.
It does not necessarily lead to the same information gain. While our system
usesGPC,which explicitly handles noisy observations and is able to general-
ize to close by samples, we do not handle the di ference between the desired
and the actual sample. We do, however, evaluate the current situation and
label the actual sample and not blindly the desired one.
To place objects into desired poses we generate robot pick-and-place mo-

tions using standard robot trajectory optimization methods. Concerning
the object picking, the pre-grasp (hand and nger poses before closing n-
gers) and reaching trajectory to the pre-grasp are jointly optimized; the ob-
jective function includes cost terms for trajectory length and collision and
joint limit avoidance during the trajectory as well as cost terms for the rel-
ative wrist-to-object pose, nger tips to surface distances, and opposedness
of nger tips of the nal pre-grasp. The optimization is done with a fast
sequential 2nd order optimizer that exploits the sequential structure of the
trajectory in the (banded)matrix inversion. The placing trajectories are sim-
ilarly optimized, with cost terms re ecting the desired nal placement of the
object. See Toussaint et al. (2010) for details.

5.6 Evaluation of Active Symbol Grounding

We investigate whether (a) our active learning method permits faster learn-
ing than passive learning, (b) our formalmodel of symbol grounding allows
to ground relational symbols in the physical world, and (c) the learned sym-
bols enable abstract robot learning and reasoning, opening the door to the
techniques developed in symbolic arti cial intelligence, such as relational
RL planners.

5.6.1 Experimental Setup

We examine our symbol learning approach in a robot manipulation sce-
nario where a robot manipulates balls, cubes and cylinders on a table. The
robot can execute three motor primitives: closeHandAround(X) grabs an
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5 Active Symbol Grounding

Figure 5.1: In active learning of grounded relational symbols, the robot
generates situations in which it is uncertain about the symbol
grounding. Af er having seen the examples in (1) and (2), the
robot can decide whether it wants to see (3a) or (3b). An ac-
tively learning robot takes its current knowledge into account and
prefers to see themore novel (3b). Figure fromKulick, Toussaint,
et al. (2013).
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object; openHandOver(X) opens the robot’s hand above some other object
and openHandAt(X) opens the hand at a speci c point in space. While
opening the hand always succeeds, grabbing objects might fail (both in sim-
ulation and real world).
The object observations of the robot are described by continuous feature

vectors xi comprising the pose of the object (position of the center and ori-
entation of the object) and the size of object oi. The object features are used
to construct features xij = φ(xi, xj) describing the relationship between
objects, namely the distance and size di ferences and the sine of the angle
between the main axes of the objects.
We performed experiments both in simulation (see Fig. 5.4) and on a real

robot (see Fig. 5.3). In both scenarios the robot consists of a Schunk Light
Weight armwith 7DoF, a SchunkDextrousHandwith 7DoF, 6×14 tactile
arrays on each of the 6 nger segments and aMicrosof Kinect depth sensor.
A point cloud based vision system directly computes the positions and sizes
of the objects.

5.6.2 Experiment 1: Quantitative results in simulation

Specific setup In the rst experiment we let an agent learn unary and bi-
nary spatial relations of objects in a simulated environment. For each sym-
bol the agent is providedwith an example where the relation underlying the
symbol holds.
The unary predicate, the robot should learn, is upright(X) while the bi-

nary predicates in this experiment are on(X,Y) and close(X,Y).
The meaning of the symbols should be the following:

• upright(X), the object’s main axis a is within ε degrees of the z-axis
of the world coordinate frame

• on(X,Y), the distance ∆posz along the world coordinate frame’s z-
axis of the center positions of both objects is

0 < ∆posz <
sizez(X) + sizez(Y)

2
+ ε, (5.6)
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Figure 5.2: Experiment 1: Comparison of the proposed active learning ap-
proach with passive learning. The results for learning unary and
binary grounded relational symbols in simulation show that ac-
tive learning outperforms passive learning. (d) shows the devia-
tion of the learner not the deviation of the mean estimator. This
deviation is very small due to the high number of experiments
(n = 1000). Figures from Kulick, Toussaint, et al. (2013).
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(with sizez(X) being the size of object X in z-direction) the distance
in x and y direction is smaller than ε,

• close(X,Y), the distance of the closest surface points of objectX and
Y is smaller than ε.

The agent should now learn a predictive model for the given symbol by
querying an teacher with new situations. The teacher in these experiments
is a handcraf ed oracle, that computes whether a relation holds or not.1 Af-
ter each query the agent can recompute its model and then choose the next
point. Each test is performed 1000 times for both active learning criteria
(i.e., the local and the global) and a passive learner (i.e., a learner choosing
random samples).
To evaluate the learning rate the classi er is testedwith 5000 random sam-

ples af er each query and the classi cation rate is computed.

Results and Discussion In gure 5.2 we show the results of these tests and
the standard deviation of one learner. The standard deviation of the mean
estimator is very small (< 0.01 for all points), due to the high number of
experiments. Hence we do not show it in the graphs.
It can be seen that in all cases the active learning approach outperforms

the passive learning. Also the standard deviation is smaller. When com-
paring the di ferent information gain measurements, one can see that the
learning progress is slower during the start of the close learner when using
the global criterion. Qualitative experiments suggest that this is an artifact
of the small size of the reference set at which the variance is evaluated.
Another interesting investigation is the learning decay of the upright lear-

ner af er 17 samples. The relation is only depending on the angle of the ob-
ject. Since we use the sine of the angle, we only have a usable feature range
of [−1, 1] to learn this relation. The global criterion starts over- tting here,
since the Gaussian process has a kernel that is too wide to perform better.

1To acquire quantitative data we do these experiments without a human in the loop, al-
though similar results can be expected, since the oracle simply provides fast access to
labeled data.
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Overall the local criterion leads to similar results, although the global cri-
terion outperforms it in all experiments. However, the computing time is
much shorter for the local criterion and one might choose it over the global
one, if computation time is expensive.

5.6.3 Experiment 2: Real-world robot

Specific Setup To show the possibility of real world applications we per-
formed a complete active learning procedure on a real-world robot as spec-
i ed above with a human in the loop. The robot is – similar to the rst
experiment – in the begining provided with a situation where the relation
underlying the symbol holds. It then queries the human teacher by actively
manipulating the objects with pick and place actions to generate an interest-
ing situation. Af er generating the situation the robot senses the real posi-
tion of the objects and computes the features. It then updates its classi ca-
tor with the new data. By generating data with object manipulation, noise
is introduced in the sample generating process, since grasping and putting
objects does not always work perfectly on a real robot. The trajectory gen-
erator also tries to avoid collisions, hence the real positions di fer from the
desired. The Kinect perception system introduces another source of noise.
Af er each query the agent is tested with 5000 simulated situations to test

its learning performance.

Results andDiscussion The classi cation rate of an example trial is shown
in gure 5.3.
The experiment shows that learning on an abstract symbolic level can be

done by interaction with a human teacher. The method is robust against
noise in the sample generation, such as control noise, although the learning
rate decreases.
Wediscovered that the rather big embodiment led to problemswhile gen-

erating samples with cylinders very close to each other. The Schunk Dex-
terous Hand was not able to put the cylinders directly next to each other
and the robot therefore tried to generate a very similar sample several times
without success. Thus the learning rate decreases af er the 7th sample and
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Figure 5.3: Experiment 2: Learning on a real world robot. A qualitative
example of learning the symbol on with a real-world robot. The
robot builds interesting situations (top) according to a sample it
generated with active learning (bottom right). Af er each query
it integrates the result to improve its understanding of the pred-
icate. The classi caton rate is shown at the bottom lef . Figure
from Kulick, Toussaint, et al. (2013).
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the classi cation rate improves less, because the optimal sample could not
be built. This is an interesting aspect of physical reasoning. Since we did
not include the actual process of positioning the object with the given em-
bodiment, we included samples in the pool that were not physically feasible,
i.e., we did not specify our sampling distribution correctly.

5.6.4 Experiment 3: Full-fledged relational RL

Figure 5.4: A simulated robot playswith boxes and balls scattered on a table.
The task is to put balls in the blue tray and boxes in the red tray,
regardless of their color. Figure from Kulick, Toussaint, et al.
(2013).

The symbols we learned in the previous experiments have not been used
for any task so far. We learn such relational symbols to use them in rela-
tional Reinforcement Learning scenarios. While relational symbols in the
literature are hand-craf ed and thus not noisy, learned symbols might in-
clude wrong information. In this experiment we tested whether the learned
symbols give us the ability to plan in complex real-world scenarios.
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Specific Setup The task for the robot is to clean up a table with scattered
objects. It should put objects of di ferent shape in di ferent trays, until no
objects are lef on the table (see Fig. 5.4).
To measure the performance the robot receives a reward for every object

within the correct tray. Tomake faster solutions more pro table the reward
is discounted over time, such that every further step decreases the reward.
The actual experiment consists of three stages:
At the rst stage we learned the relation inside(X, Y). The symbol should

denote whether an object lies in a tray. This relation is the most important
one for the task, since it can show the robot how it performs. Note that
the robot does not receive reward from the real world, but from his belief
state, i.e., the state might include wrong symbols or miss symbols, since the
learned symbol might predict the state wrongly.
The second stage is to learn the probabilistic transition model of the ac-

tion set. For this purpose the robot performs random actions. From the
perceived states, which may include the grounded symbol, it learns noisy,
indeterministic, deictic rules (NID rules) from the sequences as described by
Pasula et al. 2007 (see Sec. 5.2). They are used to provide a relational planner
with a stochastic model of action outcomes.
Eventually, we use the PRADA planning algorithm from Lang and Tou-

ssaint 2010 to actually plan action sequences and record the reward earned.
Here the real reward is computed, not the reward of the belief state, to ac-
tually evaluate the real behavior.
We performed the experiment six times. Three times the symbol was

learned with the local criterion and three times it was learned by a passive
learner. Each experiment consists of 30 complete runs.

Results and Discussion Fig. 5.5 shows the results of the experiments. It is
apparent that learning grounded symbols in an active manner leads to sig-
ni cantly higher rewards than passive learning. Adding more samples im-
proves both, the active and the passive approach, but the gain is biggerwhen
using actively chosen queries.
The di ference to the optimal behavior can partly be explained by non
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Figure 5.5: Experiment 3: Full relational reinforcement learning scenario.
The active learner requires signi cantly fewer samples to learn
grounded relational symbolswhichpermit an autonomous agent
to plan for high-reward states. The step like shape of the curves
are artifacts from the task: grasping an object can not lead to re-
ward, but only putting things into trays. Thus at best only every
second action can generate reward. Figure from Kulick, Tous-
saint, et al. (2013).
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optimal behavior of the planner and noisy outcomes of actions (e.g. a ball
falling outside a tray), but also partly by non optimal grounding. The be-
havior with optimal grounding (done by the handcraf ed oracle routine)
su fers from the noisy control, but outperforms the learned symbol. The
action outcomes of the optimal behavior shown are always perfect. It must
therefore be considered merely theoretical and has no deviation.

5.7 Discussion

To enable robots to reason on an abstract level and generalize, symbolic re-
lational representations are a well suited, but handcraf ing the groundings is
in exible, time consuming and needs expertise in programming. Teaching
robots new symbols in an easy way is thus desirable. We propose an active
learning approach to teach robots the groundings of relational symbolswith
a human teacher. The method is shown to learn spatial relations with few
training samples. Hence, it is applicable in interaction with human beings
where time is considered expensive. Using active learning methods sped up
the process. We have also successfully used the learned symbols in solving a
task. Unsurprisingly the agent performed better with better grounded sym-
bols. We showed that active exploration led to better symbol groundings
and thus better performance in solving the clean up task.
Although this is itself an important achievement the insightwe gain from

the experiments goes further. It is active learning on external degrees of free-
domfor the rst time. The robot has tomanipulate the state of its surround-
ing environment to sample new queries. Thus a reasoning about the phys-
ical feasibility of proposed states is needed. The proposed physical reason-
ing approach using a physical simulator for rejection sampling has shown
to work well despite its simplicity. However, we have also seen its limita-
tions. It ignores the embodiment of the robot and generates samples the
robot is not able to build. Simulating the actions from the robot would
solve this problem, but would further increase the computational costs. It
is also questionable if the simple rejection sampling approach scales tomore
complex scenarios. While in this scenario many samples could be accepted,
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more complex physical con gurations aremore likely to beunstable andwill
be rejected. Thus we will need to sample a huge amount of con gurations
to generate a pool of su cient size.
The experiments show the complete pipeline of an autonomously explor-

ing robot in a spotlight. While all parts of that pipeline are present, many
of them are tailored to the task at hand. For example perception and action
primitives are relatively strong bound to the pick and place tasks. Especially,
the symbols that should be learned were given from a human teacher. Thus
the prior knowledge of the environment—which symbols are necessary—
was out-sourced to a human. The following experiments will focus on how
we can encode such knowledge to let the robot decide more autonomously
on what to explore.
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Parts of this chapter have already been published as:

S. Otte et al. (2014). “Entropy Based Strategies for Physical
Exploration of the Environment’s Degrees of Freedom”. In:
Proc. of the Int. Conf. on Intelligent Robots and Systems (IROS),
pp. 615–622

J. Kulick et al. (2015a). “Active Exploration of Joint Depen-
dency Structures”. In: Proc. of the Int. Conf. on Robotics &
Automation (ICRA), pp. 2598–2604

In (Otte et al. 2014) I contributed the belief representation of
the existence of random variables and was involved in the de-
sign of the experiments. I will explicitly refer to the paper for
the additional parts.

When considering the rigid world assumption (see Sec. 4.2.2), the most in-
teresting degrees of freedom are external joints. They are not directly con-
trollable by the agent and still are degrees of freedom that do notmodel sim-
ply the pose of an object freelymovable in space, but they are constrained by
the joint parameters such as axis and limits. Joints are designedbyhumans to
structure the environment. They are where functional bene ts arise from
changing the state of degrees of freedom in the world: turning handles to
open windows, pushing buttons to switch on or o f the light, or turning a
key to lock a door.
In this chapter we show scenarios where a robot needs to explore envi-

ronments with joints in various places. First, we show how to explore the
existence of joints, which entails the di culty tomodel existence in a proba-
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bilistic model. Later we focus on structures where one joint changes the be-
havior of another joint, e.g., a handle that locks or opens a window. We call
such structures joint dependency structur . Robots need to uncover such
dependency structures to solve a wide variety of tasks.

6.1 Exploring the Existence of Joints

The exploration challenge states that a robot entering a new environment
should start building a worldmodel. With the rigid world assumption, that
is to collect information about (a) the objects in theworld, and (b) the joints
connecting them.
In this section we will investigate the following scenario: A robot enters

a new environment with several objects. It should explore if and how these
objects are connected. Additionally to discovering the degrees of freedom, it
should model their behavior by nding the parameters of the joint models.
For this task, we assume that the robot has access to a segmentation of

the scene into rigid bodies (objects). The robot can perceive (without phys-
ical interaction) their shapes and poses, but the kinematic structure and the
dynamic properties of the joints are initially unknown.
We propose the followingminimum set of properties that a robot should

know to accomplish generic manipulation tasks in a rigid-body world:

• Object type: An object can be eithermovable or static.

• Joint type: If there exists a joint between two rigid bodies, the joint
can be either rotational or prismatic.

• Joint limits: Each joint hasmechanical limits, capturedby aminimum
and maximum value of the joint variable.

• Friction coefficient: Friction slows down the movement of a shape at-
tached to a joint. Although di ferent physical quantities act together
(friction forces, inertia etc.), we summarize them in a single parame-
ter.
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We therefore de ne randomvariables for each property of an object i: object
type Oi, the joint type Ji, and we group the joint properties—upper and
lower joint limit and friction coe cient—in one RV for each joint type (θir
for the rotational and θip for the prismatic joint).

6.1.1 Belief Representation

J i

T i

θir

Oi

θip

Figure 6.1: Graphical model that represents the belief associated to a single
object i. Object type Oi, joint type Ji, joint parameters for the
rotational joint θir, joint parameters for the prismatic joint θ

i
p,

the observed trajectory Ti of the object. Figure from Otte et al.
(2014).

Wede ne a structuredbelief over theproperties for eachobject (see graph-
icalmodel in Fig. 6.1). Each object in the scene graph is augmentedwith such
a joint distribution.
Let the index i denote the object i. In the following, i is omitted for read-

ability. Let O and J be discrete random variables and θr and θp be sets of
continuous random variables. The object type O indicates if the object is
movable or static. Its discrete probability distribution is calculated from the
number of times anobject is observed tobemovableor static. J represents the
joint type which can be rotational or prismatic. To represent the dependent
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nature of the world, we also add a pseudo value nil, which wewill explain in
the next section. The probability distribution is estimated by counting the
number of observations for each value. θr and θp are the parameters of the
joints, consisting of upper and lower joint limit and a friction factor. These
variables are assumed to be Gaussian distributed. Dependent on all theses
variables is the trajectory T of the object. The trajectory is observable.

6.1.2 The nil Value

In exploration scenarios of en the task itself is to nd out about new things.
Thus it is inherently important to model the uncertainty over the existence
of objects. When exploring degrees of freedom in a rigid world, this applies
as well to joints. When starting an exploration, we might not know if two
objects are connected by a joint and therefore want to discover whether a
joint exists or not. Thus an agent only has a belief over the existence of a
random variable. To apply exploration strategies, we need to model this ex-
istence belief properly.
Normally, the existence of random variables is not in question. During

inference no random variables appear or disappear and the structure of the
probabilistic model remain constant. But consider a case where we have a
belief over certain aspects of an object, e.g., its position, size and weight. In
a probabilistic formulation those aspects would typically become random
variables. Now, if we are not certain if the object really exists, we would also
capture this fact by a random variable. But now the existence of the random
variables capturing the properties of an object depend on the actual state of
the randomvariable capturing the existence of said object. Only if the object
exists, does it have a position, size, andweight. Andwhen considering explo-
ration based on entropy: how can we compute the entropy of distributions
that might not exist?
Not much research has dealt with the problem of existence in probabilis-

tic models. Ngo et al. (2013) used the probabilistic outcomes of NID rules
(as described by Pasula et al. (2007), see Sec. 5.2) to model objects that can
come into existence and plan in such domains. A deterministic planner that
can handle uncertainty of the objects in existence is from Srivastava et al.
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(2009) using three valued logic (Sagiv et al. 2002). Amore general approach
is the Bayesian Logic (BLOG) as described by Milch et al. (2007). They all,
however, do not deal with the actual distributions nor with entropies over
possibly non-existent distributions. However, we need to compute the en-
tropy to measure the expected information gain if want to explore such en-
vironments.
We propose the following solution: We introduce a pseudo value for dis-

tributions which we call nil value. It captures the situation when the exis-
tence of the variable is unknown. Consider the simpli ed case of object type
O and the dependent joint type J. If we have a probability p(O = static) =
0.3, we only have a 0.7 belief that there is a joint type involved in themodel.
So we have a deterministic dependency between O and J, stating that the
marginal is p(J = nil) = 0.3. We call J nil-dependent on O being static.
To avoid corrupting the entropy by possible existence or non-existence of
a RV we have to handle the nil value case for discrete and continuous RV
separately.

De nition 5. If X a discrete random variable nil-dependent on another
discrete random variable Y having the value v the conditional probability
distribution

p(X = nil | Y) =

{
1 if Y = v
0 else

. (6.1)

With these pseudo values, we can compute meaningful entropies over
the distributions. Using this formalization the random variableXwill have
minimal entropy if Y assumes the value v. In the joint example this means
that if we encounterO to be static the distribution p(J | O) becomes one
for the nil value and zero everywhere else, thus having a entropy of zero.
The same problem of uncertainty over existence arises with continuous

distributions, but it is not possible to inject a discrete pseudo-value here. We
therefore use aDirac delta as pseudo-value. TheDirac delta function has the
minimal entropy (i.e.,−∞). Intuitively it can be thought of as an in nites-
imal nil value. The Dirac delta simply formalizes in a continuous space that
everything is known about a variable and no uncertainty is in play. Thus if
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we would know that a random variable does not exist, we could set its dis-
tribution to a Dirac delta, because there is no uncertainty over non-existent
random variables. The only question would be where to position the Dirac
delta, since every actual valuemakes equally little sense—anon-existent vari-
able does not have any value. We could introduce a pseudo nil position, but
it is unclear where this position should be and how a marginal or a expec-
tation over the existence of the random variable would then be computed.
But since we use this pseudo value only for computing the entropy, the ac-
tual position of the Dirac delta is not important as long as it does not bias
the marginal distribution. Since the entropy of the nil-depended distribu-
tion should decrease with increasing probability p(Y = v), we center the
Dirac delta at the mean of the nil-dependent distribution conditioned on
Y ̸= v. Thus we do not introduce any bias by the pseudo value.

De nition 6. If X a continuo random variable nil-dependent on a dis-
crete random variable Y having the value v, the conditional probability dis-
tribution given by:

p(X | Y = v) = δE[p(X|Y ̸=v)]X(X), (6.2)

with δx(·) being the Dirac delta function at position x.

Although this is the clear translation of the discrete to the continuous
case, it is not possible to calculate themarginal of a randomvariable if aDirac
delta function is involved in amixture. We therefore approximate the Dirac
with a very narrow Gaussian distribution. This is particularly useful since
the joint parameters naturally haveGaussian distributions and the entropies
become easily comparable.

6.1.3 Calculating the Entropy

Now, for each object i and its parametersOi, Ji, θip, θ
i
r we could calculate the

entropy assuming independence of its parameters

H
[
Oi, Ji, θir, θ

i
p

]
= H

[
Oi
]
+H

[
Ji
]
+H

[
θip
]
+H

[
θir
]
. (6.3)
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However, the distributions are not independent. We de ne an entropy
measure, Ĥ, which weights the entropy of each distribution according to its
likelihood and takes the nil-dependence into account:

Ĥ
[
Oi, Ji, θir, θ

i
p

]
= H

[
Oi
]

(6.4)

+ p(Oi = movable) H
[
Ji
]

(6.5)

+ p(Ji = prismatic) H
[
θip
]

(6.6)

+ p(Ji = rotational) H
[
θir
]
. (6.7)

Note that Ĥ can be computed analytically because each distribution is either
categorical or Gaussian.

6.1.4 Experimental setup

To test if the modeling of joint existence leads to useful exploration strate-
gies, we conduct two experiments with the structured belief. The robot en-
ters an unknown environment, where the task of the robot is to learn the
joint positions and existence in the new environment. It can perceive the
position of objects in the world. Once it interacts with an object it per-
ceives a 3d trajectory of the object. The object type Oi is updated with a
static observation if there was no movement, or with amoving observation
if movement was observed. For learning the joint type Ji and pose, we use
the articulation library by Sturm et al. (2011). The distribution for the joint
type Ji is updated accordingly.
Because the articulation library does not infer joint properties such as

joint limits and a friction coe cient, we employ a graphical model to in-
fer these parameters based on the physical laws of motion. We project the
perceived 3d trajectories to the 1d joint space (i.e., rotation angle or position
of the prismatic joint) and model the motion there. For inference we used
theMarkovChainMonte-Carlo python library PyMC (Patil et al. 2010). For
details of the parameter estimation see our paper (Otte et al. 2014).
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We conduct two experiments: A synthetic experiment in a toy scenario
and a physically simulated experiment in a realistic robotic simulation. Both
experiments are equal in all parts, but the actuation of objects. While in the
synthetic experiment forces can directly be applied to objects, in the physical
simulation experiment actual trajectories of a robot are computed, that in
turn apply forces to objects. Through the simulation more sources of noise
are introduced: The controller does not perfectly follow the trajectories, and
the physics simulation models some dynamics wrongly and has numerical
instabilities.
The action that is performed is a simple “push the object” action. We

assume that a push is strong enough to move any object that is not static
(and that we do not by chance exactly push in the direction of an axis etc.).
This is implemented as a xed force applied to the object at a random surface
point towards the center ofmass of the object. The set of actions is therefore
equal to the set of objects and the terms are used interchangeably.
Based on this setup we test four exploration strategies:

1. Random: The agent chooses one of the objects in theworld uniform-
ly at random. This simple strategy serves as a baseline for our evalua-
tion.

2. Round robin: The agent selects objects sequentially. Although this
strategy seems to be a very simple, one should note that for certain
worlds—such asworlds that only consist of the same objects and thus
return the same reward/reduction of entropy—the round robin stra-
tegy yields optimal results.

3. Expected change of entropy: The agent computes the expected change
of entropy for each object in the belief and chooses the object that
minimizes this criterion.

4. Max Entropy: The agent computes the current entropy for each ob-
ject. It chooses the one with the highest entropy. The assumption
is that objects with high entropy are not yet modeled properly and
thus a large reduction in entropy can be expected from exploring it.

118



6.1 Exploring the Existence of Joints

This heuristic is successful in many kinds of problems, however, it
pays unjusti ed attention to actions with random outcome.

6.1.5 Synthetic Experiment

Our rst set of experiments is in a purely synthetic scenario to show the basic
characteristics of a set of strategies. A set of twoobjects is given. Oneof them
is static, one of them is attached to the static world by a prismatic joint. This
is the minimal example that can lead to interesting behavior. We expect an
agent to focus on the movable object and ignore the static object af er only
very few interactions. In the scenario the agent—a purely algorithmic one
with no physical representation—chooses an object to explore. The agent
then observes whether the object is static or movable, which type of joint it
is attached to (if at all), and the value of the continuous parameters of the
joint.
In Fig. 6.2, we show the situation af er exploring each object ve times.

We show both discrete distributions along with their entropies and the ex-
pected change of entropy. The rst two plots show the distributions of ob-
ject type and joint type for each object, the third and forth show the discrete
and di ferential entropies for each distribution and the last plot shows the
expected change of entropy.
One can see that the rst object is most likely a wall or another xed ob-

ject and the second object is probably movable along a prismatic joint. Al-
though both objects have been explored the same amount of times, the ex-
pected change of entropy is higher for the movable object (see the last plot).
This is due to the fact that the static object with high probability has a non-
existent joint type and joint properties (a nil value). Thus the entropy of
those distributions is small (see the third and fourth plot). Furthermore,
the probability of change is small, since we are already certain of the object
being static. Consequently, the expected change of entropy is also small.
An explorer maximizing the expected change of entropy or choosing the

object with maximal entropy would choose the object with the prismatic
joint over the static object. This is an interesting behavioral observation.
Intuitively, it is a reasonable decision, since drawers and doors seem more
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Figure 6.2: An example of a belief af er ten exploration steps: Both ob-
jects have been explored ve times. The rst two plots show
the distribution of the object type and the joint type, the third
and forth plot show the entropies of the various distributions—
either discrete or continuous—and the last plot shows the ex-
pected change of entropy of each distribution. Figure af er Otte
et al. (2014).
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interesting to us. With our belief representation, we were able to catch this
intuition by formally deducing higher self-information from those objects
with larger parameter sets.

Fig. 6.3 provides further support for this statement. It shows the reduc-
tionof entropy achievedby thedi ferent strategies. Maximizing the expected
change of entropy outperforms the heuristic strategies, although the di fer-
ence in such a simple scenario is small. We will see a more complex scenario
in the physical simulation experiment.

6.1.6 Physical Simulation

To test and compare the di ferent strategies in a more realistic scenario, we
set up a simulation of an environment with several DOF. The agent in this
scenario is a PR2 robot with two 7-DOF arms, a telescopic spine, two grip-
pers and a omni-directional base. We generate the full body motions with a
rapidly exploring random tree (RRT) (LaValle and Ku fner 2000).

As shown in Fig. 6.4, in a more realistic scenario the di ference between
strategies is more pronounced. Although our observations are noise-free,
we still have various sources of uncertainty. The physics simulation is not
very precise and leads to unrealistic movements. Our 1d point mass model
may not capture all of these e fects. Also the joint pose inferred by articula-
tion introduces a source of noise.

However, we can see that the strategies driven from information theory
lead to better and faster uncertainty reduction. Also, the round robin and
random strategies are still successful. Since we investigate the complete mo-
del, this surprising result is reasonable. We have no speci c task but to learn
a precise model of the world. So the properties of all objects are equally im-
portant. Thus only the fact that static objects lack certain properties makes
them less interesting. Still, each exploration leads tomore certainty that they
are static and thus to a reduction of uncertainty.
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Figure 6.3: The performance in minimizing the belief entropy of di ferent
strategies in the toy world (without noise and with 5% noise). 20
runs were performed. Figure fromOtte et al. (2014).
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Figure 6.4: The performance in minimizing the belief entropy of di ferent
strategies in the physical simulation experiment. 19 runs were
performed. Figure fromOtte et al. (2014).
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Figure 6.5: Real world experiment: our PR2 is exploring the joint depen-
dency structure of a cabinet. Af er only two observations, the
robot learned that in order to open the drawer, it must rst un-
lock it by turning the key (compare to Fig. 6.10). Figure from
Kulick et al. (2015a).
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6.2 Dependent Joint Exploration

6.2 Dependent Joint Exploration

As shown in the previous section, learning a world model is still relatively
easy and straight forward when all joints are directly movable with very sim-
ple actions. This changes, however, if every day objects like furniture come
into play. Those objects have a dependency structure between the joints
they consist of. A key, for example, opens a door when in the right position.
When we assume every dependency structure to be equally likely, i.e., the
position of each joint could possibly lock every other joint, we face a huge
amount of dependency structures. Every joint has a continuous state from
which all other joints might be dependent. There are too many possible de-
pendencies to draw any sensible conclusion. Fortunately, theworld is not an
unstructured environment, but instead formed by human beings. We build
things to lead our actions to functional changes. For example, many han-
dles of doors open and close them at one end of their possible range, or snap
into important states to guide the operator. Also, dependencies are more
likely between joints close to each other, whereas dependencies between re-
mote joints are rarely found. All these clues should lead our search for joint
dependencies.
In this chapter we will use the priors about how joint dependency struc-

tures occur in the world to build fast and e cient inference methods for
those structures, which in turn can then be used to explore those structures
e ciently. With the rigid world assumption, joint dependencies are one of
themore complex functional structures. Exploring them e cientlywill lead
to a much greater range of possible tasks, that can be solved.
Research on joints has not touched on dependency structures, but has

focused on (a) handling and controlling known mechanisms (Klingbeil et
al. 2010; Nagatani and Yuta 1995; Peterson et al. 2000), (b) estimating joint
types and parameters (Martín-Martín and Brock 2014; Sturm et al. 2011)
from given data, or (c) autonomous exploration to distinguish between pre-
de ned models (Barragán et al. 2014). In contrast, our work focuses on
autonomous exploration of mechanisms with complex joint dependency
structures, i.e., mechanismswhere certain parts can only be articulated if the
joints are in a speci c con guration, not known beforehand. For this we as-
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6 Joint Exploration

Figure 6.6: The probabilistic graphical model for joint dependency struc-
tures. Tab. 6.1 explains the random variables. Arrows leaving a
plate and entering it again denote dependencies from all source
RVs to all target RVs. Figure from Kulick et al. (2015a).

sume the control and the parameter estimation of mechanisms as given.

6.3 Probabilistic Modeling of Joint Dependency
Structures

Joint dependency structures are structures where the state of one joint de-
pendson the state of another joint. Consider environments (of rigidworlds),
where each joint can be locked or unlocked. We call this the locking state of
the joint. If a joint is locked nomovement is possible (e.g., if the door handle
is not turned the door cannot be opened), if a joint is unlocked movement
within the normal constraints of the joint (e.g., axis limits or friction) is pos-
sible.
The locking state of one joint can change depending on the state of other

joints. We call the joint whose position determines the locking state of an-
other joint themaster and the joint which locking state depends on themas-
ter’s position the slave. We can divide the master’s joint con guration into
segments which put the slave into the locked or unlocked locking state.
With arbitrarypossible dependencies between any two joints in theworld,

the search space fordependencies grows exponentially and cannot e ciently
be searched even for a small number of joints. This is especially problematic
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6.3 Probabilistic Modeling of Joint Dependency Structur

Table 6.1: Summary of used symbols.

Symbol Description Domain
N Number of joints N
M j Maximum joint angle of joint j R
t, s, u, v Indices for time N
j Index for joints {1, . . . ,N}
D j RV, dependency of joint j {1, . . . ,N+ 1}
L j
t RV, locking state of joint j {0, 1}

Q j
t RV, joint state/position of joint j at time t R

F j
t RV, force/torque measurements of joint j at

time t
R

C j
t RV, change points of joint j at time t {0, 1}

S jp RV, segment borders of joint j at position p {0, 1}

if a robot is to uncover the joint dependency structure of real world mecha-
nisms. We overcome this problem by using the sensor clues themechanisms
o fer. During themanipulation of a jointwemeasure its force/torque (F/T)
feedback. Change points in the F/Tmeasurements should indicate the bor-
ders between the locking state segments, e.g., in one segment the master
locks the slave, and in other segments the master does not lock the slave.

6.3.1 Modeling the Joint Dependency Structure

The robot has to infer the joint dependency structure from its actions and
the F/Tmeasurements. For this wemodel the joint dependency structure as
a probabilistic model (depicted in Fig. 6.6). We introduce random variables
D1:N, L1:N1:t , Q

1:N
1:t , F

1:N
1:t , C

1:N
1:t , and S

1:N
M , summarized in Tab. 6.1, which we

explain in detail below. N is the number of joints to be modeled and t is the
time index for the time dependent random variables. M j is the maximum
reachable joint position of joint j and we assume without loss of generality
that the minimum joint position is 0.
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6 Joint Exploration

D j is a discrete random variable with the domain {1, . . . ,N+ 1} \ {j}.
The rst N − 1 states indicate which other joints joint j depends on. The
last state indicates if joint j is independent of all other joints. This choice of
D j limits our model to one-to-one joint dependencies. It is easy to extend
this to more complex dependencies by extending the domain ofD j. That,
however, enlarges the space of possible dependency structures signi cantly.

L j
t is the locking state of joint j at time step t. It is a binary variable stating

whether joint j is locked or unlocked. We could incorporate further locking
states by increasing the cardinality ofL j

t . Thuswe could encode stateswhere
a joint is, for example, disassembled or broken.

Q j
t is the joint state of joint j at time t, i.e., the angle for rotational joints

and the prismatic extension for prismatic joints.

F j
t are potentially pre-processed force/torque (F/T) sensormeasurements

observed at time t for joint j. The measurements can be mapped to a par-
ticular joint since the agent knows which joint it is actuating. In these ex-
periments only F/T measurements are used; however, di ferent modalities,
such as sound, could be incorporated in a similar fashion.

C j
t is a binary variable that states whether at time t a change point in the

F/Tmeasurements was detected. Again, this can be mapped to a joint since
the agent knows which joint it is actuating.

S jq is a binary variable statingwhether there is a segment border at position
q in joint state space of joint j. A segment border divides the continuous
joint space into discrete functional units of the space. Since the joint space
is a continuous space, strictly speaking S j is a random eld over the joint
space. However, we simpli ed this by nely discretizing the joint space in
our implementation such that S j becomes a set of random variables.

The agent observes the joint stateQ1:N
t at a given time t and the F/Tmea-

surements F j
t . To query the locking stateL

j
t , an oracle can be asked. Alterna-

tively, an action could be performed (e.g., pushing, pulling or rotating the
joint) to compute the locking state from the observations.
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6.3 Probabilistic Modeling of Joint Dependency Structur

6.3.2 MaxCE Exploration Strategy

We formalize the goal to uncover the joint dependency structure as to min-
imize the uncertainty overD j. This can be achieved by minimizing the en-
tropy over D j. Since we want to include many strong priors about joint
dependencies (such as F/T clues or distance between joints), we leverage the
MaxCE method developed in Sec. 3.
For this purpose, we compute the expected one-step cross-entropy be-

tween the current joint dependency structure distribution PD j
t
and the ex-

pected joint dependency structure distribution one time step ahead PD j
t+1
.

Wemaximize this expectation to get theoptimal next samplepositionQ0:N
t+1

∗:

(Q1:N
t+1

∗
, j) = argmax

(Q1:N
t+1,j)

∑
L j
t+1

p
(
L j
t+1 | Q

1:N
t+1, S

1:N
)
·H
[
PD j

t
; PD j

t+1

]
(6.8)

with

pD j
t
= p

(
D j | L j

1:t,Q
1:N
1:t , S

1:N
)

(6.9)

pD j
t+1

= p
(
D j | L j

1:t+1,Q
1:N
1:t+1, S

1:N
)
. (6.10)

6.3.3 Likelihood

The posterior of the joint dependency structure is dependent on the likeli-
hood of the queries p

(
L j
t+1 | D j,Q1:N

t+1, S
1:N
)
. Since the locking state is a

discrete variable, the usual choice for its probability is a Dirichlet prior. The
likelihood is then:

p(L j
t+1 | D

j,Q1:N
t+1, S

1:N) =
Γ(
∑

k αk)
Γ(O+

∑
k αk)

K∏
k=0

Γ(ck + αk)
Γ(αk)

, (6.11)

whereO is the number of queries alreadymade,K is the cardinality ofL j
t+1,

αk are the Dirichlet hyper-parameters, ck are the query counts (i.e., counts
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for each locking state, wewill de ne it in depth shortly), andΓ is the gamma
function.
In principle, we could use counts of how of en each locking state of joint

j occurred in the queries. We call this the unweighted query counts ĉk. Let
l ji ∈ {0, . . . ,K} be the observed locking state of joint j in i-th query, where
0 ≤ i < O. Then the unweighted query count of locking state k is

ĉk =
O−1∑
i=0

δ(l ji , k), (6.12)

with δ(·, ·) being the Kronecker delta

δ(a, b) =

{
1 if a = b
0 else

. (6.13)

We will now explain how we weight the query counts to account for the
fact that the locking state can change depending on the segment the joint is
in. Let τ(i) be the time step of the i-th query. We weight each query by the
probability that it was observed in the same segment as master joint h is at
time step t+ 1, i.e., the probability that there is no segment border in joint
space between the joint positions of master joint h betweenQ h

τ(i) andQ
h
t+1

(cf. Eq. 6.15). The master joint is de ned by the dependency structureD j.

ck =
O−1∑
i=0

δ(l ji , k)
Q h
t+1∏

q=Q h
τ(i)

(
1− p

(
S hq | Q h

1:t,C
h
1:t, F

l
1:t

)) . (6.14)

Howwe can compute the probability of a segment border will be subject of
Sec. 6.3.4.

6.3.4 Change Points

As described in the last section, we depend upon the probability of a seg-
ment border between two points in joint space that describes whether these
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two points are in the same functional segment. While we could use typical
distance functions like radial basis functions, we leverage the knowledge that
state changes can of en be inferred from feedback. Tomodel this, we use the
F/T sensor measurements to generate a probability distribution over seg-
ment borders, based on detected change points in the F/T measurements.
We assume that the segment borders are independent from each other.

The probability of no state change between two positions Q j
u and Q

j
v at

time u and v of joint j is then

Q j
v∏

q=Q j
u

(
1− p

(
S jq | Q j

1:t,C
j
1:t, F

j
1:t

))
. (6.15)

As depicted in the graphical model (see Fig. 6.6), S jq is dependent onQ
j
1:t

andC j
1:t. Wemodel this dependency as the probability of a segment border

being the mean probability of a change point in the force measurements at
a particular joint position. Thus we can infer S jq by

p
(
S jq | Q j

1:t,C
j
1:t, F

j
1:t

)
=

∑t
s=1 δ(Q

j
s , q)p(C

j
s | F j

1:t)∑t
s=1 δ(Q

j
s , q)

(6.16)

with δ(·, ·) the Kroenecker delta.
To infer the change point probability from the sensor measurements we

leverage the Bayesian change point detection (BCPD) introduced by Fearn-
head (2006).1

BCPD computes the posterior p(C j
s | F j

1:t) – the probability of a change
point at a time s, given the sensor input.
It models the sensor data as m segments of independent constant data

with Gaussian noise. Thus the data likelihood of two points F j
t , F

j
s , condi-

tioning them on being in the same segment, is
1The code for computing Bayesian change point detection is published as open-
source python library at http://www.github.com/hildensia/bayesian_
changepoint_detection.
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p(t, s) =
∫
μ

s∏
i=t

T(F j
i | μ) · π(μ), (6.17)

whereT( · | μ) is the Student’s t distributionwith location parameter μ and
π is a prior distribution over the possible means. The Student’s t distribu-
tion arises because the variance of the Gaussian noise is unknown, and we
place a conjugate prior on it (see Murphy (2007) for details).
With thismodel we can recursively compute the exact probability of each

time step being a change point between segments, even marginalizing out
the number of change points m. The detailed derivation can be found in
(Fearnhead 2006). Although the force torque measurement are not well
described by a piecewise constantmodel, we can pre-process them, such that
they obey such dynamics (see Sec. 6.4.1).

6.4 Experiments

6.4.1 General Setup

We test our dependency model in (a) a physical simulation and (b) on a real
robot. Here we describe the parts of the experiments that are shared. The
details speci c to each experiment are described in the corresponding sec-
tions. The goal of the robot in both experiments is to uncover the joint
dependency structureD of a complex mechanism.

Assumptions

We assume the agent initially has a kinematic model of the environment,
including the existance of joints and their parameters, but not their depen-
dencies.
For simplicity we also assume the F/T pro le of each joint is known, i.e.,

the F/T recording of each joint of the entire joint space.
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Actions

An action in our experiments is setting all joints to a desired state and query-
ing the locking state of a joint. The exploration strategy (see Eq. 6.8) pro-
vides us with the desired target con gurations of all joints Q1:N∗

t+1 and the
joint j ofwhich the locking state is supposed to be checked. Given themodel
of the mechanism, a controller can bring the mechanism to the desired con-
guration if possible. The locking state of joint j is supplied via the simula-
tion or via a human oracle respectively.

Prior

For the probabilistic model, we must choose priors. We want to incorpo-
rate the knowledge that most joints in the world are independent of other
joints, e.g., most drawers and cabinet doors can be opened directly without
unlocking them and they do not lock each other. Therefore, for the depen-
dency prior p(D), we set the probability of a joint being independent to 0.7.
We also think that proximity is a good indicator of the dependency of joints.
Joints that are close to each other are more likely to depend on each other
than joints that are far apart. For the dependency prior p(D), we set the
probability of being dependent on another joint proportional to 1

d(i,j) , with
d(i, j) being the Euclidean distance between joint i and j. The probability
of a joint locking itself is set to zero. More formally:

p(D j = i) =


0 if i = j (self-dependent)
.7 if i = N+ 1 (independent)

1
d(i,j)cN

else (j depends on i)
(6.18)

with cN being a normalization constant.

Data Pre-processing

The second graph in Fig. 6.7 shows the F/T sensor readings while actuating
a joint. These readings are a non-linear time series. To e ciently compute
the change point probabilities we, assume a piecewise constant model plus
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Gaussian noise. To account for that assumption, we pre-process the F/T
measurements as follows.
Themeasured force is the force needed to induce a certain velocity change

on the joint, which can be calculated using physical laws as

∆v =
√
v2 − cfv∆t, (6.19)

with v the velocity,∆t the change in time and cf a virtual friction constant
incorporating the mass of the object, the contact force and actual friction
coe cient. From the actual F/T measurements we can thus compute the
virtual friction constantwhich changes if there is feedback in the jointmech-
anism. As can be seen in the third graph of Fig. 6.7, the virtual friction
constant is piecewise constant up to sensor noise. We can feed it to the
Bayesian change point detection and compute change point probabilities
(fourth graph of Fig. 6.7).
We map (cf. Eq. 6.16) the change point probabilities, which are in time

space (bottomplot in Fig. 6.7), into joint space and get the probabilities over
segment borders (top plot in Fig. 6.8). With this data we can then start the
actual exploration of the mechanism.

The Exploration Sequence

The data pre-processing yields the segment border probabilities as depicted
in the rst graph of Fig. 6.8. From the segment border probabilities and all
observation data we can compute the next query point/action (see Sec. 6.3
and Sec. 6.4.1). Then, the robot performs the given action, i.e., it brings all
joints into the goal con gurationQ1:N∗

t+1 and checks the locking state of joint
j. The graphical model is updated with the resulting observation and the
process is repeated. Fig. 6.8 shows some exploration steps of this procedure.2

2The code for performing the experiments is published as open-source software at http:
//www.github.com/hildensia/joint_dependency.
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6.4 Experiments

Figure 6.7: Data gathered fromexploring a (simulated) cupboard,whichhas
a key that locks the door between 20 and 50 degrees. All graphs
show data from the key. The pre-processing of the F/T data
shown here is done once once before the exploration. Figure af-
ter Kulick et al. (2015a).
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Figure 6.8: The exploration sequence of the same simulated cupboard as de-
picted in Fig. 6.7. (Caption continued on next page.)
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Figure 6.8: (Previous page.) Again, only data from the key is shown. Each
action moves the key to the desired con guration shown in red.
Af er each action, the robot also observes the locking state of
one joint. In this particular example, it explores the key of the
cupboard and always queries the locking state of the door. Note
that in the rst step no observations are present and thus all ac-
tions are equally interesting. Tiebreaking is done randomly. Af-
ter three actions, the probability of the key being the master of
the door is already greater than 70% (not shown). Figure from
Kulick et al. (2015a).

6.4.2 Physical Simulation: Setup

First we test ourmethod in a physical simulation. We simulate the dynamics
of the joints to determine change points in themovement pro le. The agent
applies forces to the joints to move them to desired positions using a PD-
controller. The agent senses the applied forces and the position of the joint
and can use this information to infer the change points and segments.
We test three di ferent strategies to uncover joint dependency structures:

1. the baseline strate selects actions randomly,

2. the expected entropy strate minimizes the expected entropy of the
distribution ofD j, and

3. theMaxCE strate maximizes the cross-entropy as described inSec. 3.

Additionally, we test the in uence of the change point detection on the
overall performance. We test all the strategies with (a) the change point de-
tection enabled and (b) using a common exponential distance function as
likelihood of two experiences belonging to the same joint state, instead of
using the segments detected by the change point detection.
Each strategy is evaluated in 50 di ferent environments. An environment

consists of furniture with di ferent joint dependency structures and di fer-
ent parameters of the locking state. An environment is generated by ran-
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Table 6.2: Furniture used in the simulation.

Name Description Locking mechanism
Cupboard with handle A cupboard with a

door and a handle
attached to it.

The handle must be at
upper or lower limit to
unlock the door

Cupboard with lock A cupboard with a
door and a key in a
lock

The key must be in a
particular position to
unlock the door

Drawer with handle A drawer with a mov-
able handle

The handle must be at
upper or lower limit to
unlock the drawer

Drawer with lock A drawer with a key in
a lock

The key must be in a
particular position to
unlock the drawer

domly choosing three di ferent objects from Tab. 6.2 and randomly choos-
ing at which joint positions the furniture is locked. E.g., one instance of an
environment might consist of a cupboard with a key (which is unlocked if
the key is, e.g., between 73 and 93 degree), a cupboardwith a handle (which
opens, e.g., at its upper limit), and a drawer with a key (which is unlocked
if the key is, e.g., between 122 and 142 degree). In an exploration sequence,
the agent can perform 30 actions.

6.4.3 Physical Simulation: Results and Discussion

Fig. 6.9 shows the performances of the di ferent strategies with andwithout
change point detection. The upper plot shows the average correctly clas-
si ed joint dependencies over time. We de ne correctly classi ed as recog-
nizing the correct joint dependency with a probability of≥ 0.5. Note that
due to the prior, three dependencies are always classi ed correctly, namely
the independent joints. Here one can see that the MaxCE method is able
to classify signi cantly more dependencies correctly as well as faster when
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Figure 6.9: Results of the simulation experiment. We show the sum of en-
tropies of allD j random variables. The error bars re ect a 99%
con dence interval of the mean estimator. Figure from Kulick
et al. (2015a).
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compared to all other strategies. One can also see that the change point de-
tection increases the performance of the strategies. Note that the entropy
method is not able to nd out anything apart from the three independent
assumptions, which are already correct due to the prior. The entropy is al-
ready quite low and cannot easily be reduced. Querying con gurations that
lower the independence belief would increase the entropy which is unde-
sired although it would improve the belief in the long run.
In the lower graph we show the sum of entropies of all D j over the ac-

tions. First, we can see that the MaxCE strategy with change point detec-
tion is the only strategy which is able to lower the entropies signi cantly.
Again the entropy method does not lower the entropy, because the prior is
too strong. All other strategies raise the entropy. This is due to the strong
prior that joints are independent of each other. Thus lowering the belief of
independence raises the entropy.
The MaxCE strategy that use the change point detection reduce the un-

certainty faster than its counterpart without change point detection, be-
cause with change point detection an observation yields information for the
entire segment. With the exponential distance function on the other hand
fewer observations contribute to the dependency structure belief, because
they are deemed uninformative.

6.4.4 Real World Experiment: Setup

We also test our dependencymodel using a real PR2 and a typical o ce cab-
inet. The cabinet has a drawer, which can be locked/unlocked by a key.
The key also works as handle to open the drawer once the drawer is un-
locked. Again, the robot knows the physical model of the cabinet, its dy-
namics and its joints (see Sec 6.4.1). The con guration of the furniture is
measured through proprioception of the robot. The robot’s wrist can mea-
sure the joint angle of the key. The extension of the arm corresponds to
the joint value/extension of the drawer. We manually position the gripper
of the robot around the key. No re-grasping is required during the experi-
ment. TheMaxCE strategy is used to explore the cabinet. Fig 6.5 shows our
PR2 exploring the joint dependency structure of a cabinet drawer.

140



6.4 Experiments

0 5 10 15 20

No. of interactions

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Drawer dependent on...

0 5 10 15 20

No. of interactions

Key dependent on...

drawer key independent

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Figure 6.10: The results of the real world experiment. We show the proba-
bility distributionof the two involvedD j randomvariables over
the number of interactions the robotmade. We can see that the
dependency of the key as master over the slave drawer is uncov-
ered very early, whereas the probability of the independence of
the key is not signi cantly raised during the interactions. The
self-dependency is zero throughout the whole experiment as it
has a hard zero prior. Figure from Kulick et al. (2015a).
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As additional sensory clues the robot uses F/T feedback of the drawer,
measured by a sensor located in the wrists of the PR2. The measurements
consist of the three dimensional force vector and three dimensional torque
vector acting on the wrist of the robot. We sum up these values and pre-
process them as stated in Sec. 6.4.1.

6.4.5 Real World Experiment: Results and Discussion

Fig. 6.10 shows the results of the conducted experiment. The main result
is that the robot is able to uncover the dependency of the drawer from the
key position. Even with several sources of noise—proprioception, F/T sen-
sor, and motion generation—it took only very few actions to uncover the
correct dependency structure for the drawer. We can thus conclude that the
proposed method works well even in real world scenarios.
Looking at the exploration sequence inmore detail, we see that the robot

was not able to increase the probability that the key was an independent
joint. This results from the fact that there are no direct observations which
imply independence and therefore would increase the probability for the
joint being independent. During the experiment we only observed that the
key was in the “unlocked” locking state, but this does not increase the prob-
ability of the key being an independent joint. Being always in the unlocked
stated can either mean that no master was found so far, thus we could not
lock the state yet, or that the joint is independent indeed. To guarantee in-
dependence we would have to observe the “unlocked” state for the entire
con guration space, i.e., the joint space of all joints. This could only be ac-
complished by exhaustively searching the con guration space.

6.4.6 Conclusion

We developed an active learning method to explore complex joint depen-
dency structures. The method leveraged the sensory clues from the mecha-
nisms (F/Tmeasurements were used) to segment the joint space intomean-
ingful discrete clusters. While in this experiment we limited clues to F/T
clues, it is relatively straight forward to addmoredata sources, such as sound.
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TheMaxCE strategy proved to be an e cient strategy to explore joint de-
pendency structures whereas the common active learning strategy, expected
entropy, did not succeed. We demonstrated our method in simulation and
on a real PR2.
One major limitation of our approach is the fact that only one-to-one

dependencies can be modeled, since the D j random variable only gives the
dependency to exactly one other joint. While this could easily be extended to
multiple dependencies, the exploration strategies would have to cope with
O(N2) di ferent models already for two dependencies of each joint, up to
exponentially many models for arbitrary dependencies. Arbitrary joint de-
pendencies are, however, rare. Using a prior that limits the set to a useful
size, e.g., only few master joints for a slave, would reduce the amount of
models drastically.

143





7 Discussion and Conclusion

We have seen that exploration is a necessary ability for robots to solve many
problems. In this thesis we developed a general framework to solve explo-
ration problems. While its results are convincing, there are of course limita-
tions to the approach described. Also every research raises new questions to
be answered. In this chapter we will rst discuss competing methods, that
are candidates for also solving the exploration problem. Then we discuss
limitations of ourwork and further work to overcome these limitations. We
will close the thesis with a nal discussion of the results.

7.1 Discussion on Alternative Approaches

7.1.1 Could Big Data Solve the Exploration Problem?

Big Data and coupled with it the termDeep Learning are the latest trends
in the machine learning community. Deep Learning techniques together
with immense databases, aggregated through the ascend of ubiquitous on-
line devices, have achieved tremendous results in various topics of learning
(e.g., image classi cation (Russakovsky et al. 2015), face recognition (Taig-
man et al. 2014), ormastering the game ofGo (Silver et al. 2016)). With these
achievements in sight, it is natural to ask, whether using enormous amounts
of data could render specialized exploration strategies, as those developed in
this thesis, useless. Could the use of Big Data together with Deep Learning
solve exploration as well?
Deep Learning, as pioneered by Bengio et al. (2007), Hinton, Osindero,

et al. (2006), and Poultney et al. (2006), refers to training an arti cial neural
networkwithmore thanonehidden layer. Deepneural networks aremainly
very powerful function approximators. To solve the exploration problem
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one could train such a net to approximate a function from sensor inputs to
actions. These actions should in turn maximize information gain and thus
implement an exploration strategy. It would be necessary to incorporate a
notion of information gain into the training process of the net, such that
it would be able to represent sensor inputs in a way that novelty of new
observations could be measured. Although it is not clear how such a net
would look like nor how it would be trained, it is not unlikely that research
toward such a net would generate valuable insights and results. Such an
end-to-end learning would implement a model-free exploration strategy, as
it does not require amodel of the environment’s dynamics. See the next sec-
tion for further discussion about model-free exploration. Neural networks
are, however, notorious to need a large amount of data to be trained. This is
the main reason why it recently became successful: the ubiquity of digitally
processed datamade huge training sets available. Deep Learning needed Big
Data to prove its potential.
But to make use of Big Data the data has to be available in the rst place.

In robotics, generation of data samples is still of en expensive. On the one
hand working with a robot is tedious and the hardware is of en expensive
in terms of money. Running a real robot also bears the risk to break it, such
that the operation time of a robot is limited. On the other hand, there is no
standardized format to archive data gathered by one robot and even if there
was, the translation of actions from one robot to another is hard. Never-
theless, robots become more and more available and a fordable. This leads
to much more data being generated and could eventually lead to big data
sets for learning in robotics. With these data sets, we could generate good
approximations of the underlying distributions in the world, which of en
would mitigate the need of exploration. Whenever the environment would
follow this distribution the robot could operate instantly. And while this is
desirable and will be very useful in the future, exploration is exactly about
the outliers of these distributions. Even if we have many data sets from
which we can extract prior knowledge, we still want to nd the specialties
of the environment at hand. And in every new environment we only have
little data. We then need e cient strategies to nd the interesting parts of
the environment that make it special. Even if the environment follows the

146



7.1 Discussion on Alternative Approach

prior distribution, we might still be interested in the actual value of proper-
ties. They enable us to perform well in the environment.
MaxCE is an algorithmwhich is exactly about nding outliers and special-

ties quickly. We have shown (e.g., in Sec. 6) that especially in the presence
of strong priors MaxCE can be used for nding good explorative actions.
When available, Big Data will give us exactly those strong priors on a much
more reliable basis than using common sense and rule-of-thumb approxi-
mations as we did. However, the exploration strategy could stay the same.

7.1.2 Model Free Exploration

All the exploration strategies developed in this thesis are model-based algo-
rithms. That means they use a predictive distribution to calculate expected
e fects of actions. One could ask if there are model-free alternatives to this.
Model-free methods directly compute values of state-action pairs without
using a forward model to predict the outcome of an action. The values are
learned fromexperienceswithout rst learning amodel. Exploration in such
a setting would mean to choose actions that improve the approximation of
the values. We could use the same underlying principle as in the other exam-
ples in this thesis: we could model a distribution over the state-action pair
values and try tominimize the entropy of that distribution. But since we do
not have a forwardmodel we could not use for example theMaxCE strategy
or traditional Bayesian experimental design.
Since an agent with a model-free exploration strategy does not have a no-

tion about the outcome of an action, it cannot rely on the possible changes
that occur in the state to measure novel experiences. Instead, in a purely
model-free scenario the agent has only counts of state-action pairs together
with the reward earned. With only these datawe cannot transfer knowledge
of one state to another state. Thus an agent needs to explore large parts of
the state space to learn a good policy. We could tackle this problem by de-
veloping similarity measures between states, but this would be similar to
building a model of the state, since it would need to encode how di ferent
states would react to actions. Although not directly being a model of the
dynamics of the environment, it would be a rst step in that direction.

147



7 Discussion and Conclusion

With a model-based approach on the other hand we are able to transfer
knowledge gathered in one part of the state space to di ferent states, because
we learn the dynamics of the environment. In a purely exploration scenario,
learning a model also has the bene t of generalizing to di ferent tasks. Us-
ing the model of the dynamics, we are able to plan towards di ferent goals
without relearning a value function.

7.2 Limitations and Future Work

7.2.1 Relaxing the Rigid World Assumption

Relaxing the strict assumptionof aworld consisting only of rigidbodies is an
obvious path for further research. This would clearly widen the area where
our methods and framework would be applicable. We could in principle
widen the spectrumuntilmodeling the behavior of humanbeings as degrees
of freedom in the environment. While this would enlarge the problem-set
greatly, our expectation is that many of the underlying principles described
in this thesis would still be applicable. Information gain as driving force
behind exploration and probabilistic models as representations are by no
means limited to modeling rigid environments. Also MaxCE will be ap-
plicable on much more complex models. The reason for the rigid world
assumption is to have a set of environments and tasks that are easier to op-
erate with a robot of today’s capabilities. Within these boundaries we can
focus on the general principles behind exploration using well understood
algorithms for perception and movement generation.
That said, it is clear that building e cient inference algorithms on very

complex models is hard. Many of the assumptions made within the vari-
ous experiments in this thesis do not hold for non-rigid bodies like cloth
or liquids. However, for many tasks one can not model the non-rigidity
at all and just assume things to be rigid. For instance, the detailed move-
ment of fabric of cloth is seldom important to solve a task. If one wanted to
explore the possible movements for folding shirts, however, it is, requiring
more detailed models. But we can hope that we could still use the proba-
bilistic exploration framework, as long as we can nd useful representations
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of the fabric. The rigid world assumption does not restrict the generality of
the principles we have investigated, it allows us to focus on the structure of
exploration.

7.2.2 Automatically Modeling Exploration Tasks

In this thesis each exploration task (e.g., learning joint dependency struc-
tures or learning joint existence) is de ned by hand. We build graphical
models to capture the tasks and derive inference algorithms from themodels
manually. The ultimate autonomy would be to automatically model those
tasks. To accomplish that a robot would need to learn the representation of
each taskwhile performing it. Representation learning is of en de ned as di-
mensionality reduction process, as for example with auto-encoders (Hinton
and Salakhutdinov 2006). Auto-encoders compress input data to a lower
dimensional space. The objective for the compression is to be able to re-
produce the data with minimal corruption from the compressed represen-
tation. Jonschkowski and Brock (2015) addedmore semantics to that setting
by incorporating general prior knowledge about the environment in the rep-
resentation learning process, like a notion of Newton’s law of motion. The
representations enabled their robot to learn navigation tasks in a reinforce-
ment learning setting.
Still, these representations donot catch the variety of structured graphical

models. There is interesting research on learning Bayesian networks from
data (De Campos and Ji 2011). However, the techniques are still not well
enough understood, that automaticallymodeling a robotic exploration task
will be possible soon. For still some time, we will need to build the models
by hand.

7.2.3 Planning to Explore

The exploration strategies used in this thesis haveonemajor limitation: They
only look one step ahead. This is reasonable when optimizing submodular
functions, since it is guaranteed to performnear optimal. But in our formu-
lation of active learning there are no guarantees for convergence or near op-
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timal behavior. As shown in Sec. 2.4, optimal exploration requires to com-
pute an optimal policy in a Pomdp. Thus for choosing the optimal action
weneed to take all possible future action outcomes into account. Insteadwe
only take the possible outcomes of one action into account. This can lead to
suboptimal performance. However, taking a possibly in nite amount of fu-
ture states into account is too expensive. But we still could look more steps
ahead, using tree-search algorithms.
For our probabilistic approach Monte-Carlo-Tree-Search (MCTS) algo-

rithms are especially interesting (Browne et al. 2012). While classical tree-
search algorithms build a search tree up to a particular depth and evaluate
the leaf notes by some heuristic, MCTS samples the model further to esti-
mate the reward that could be reached from that state. This estimate can
be propagated back to the current decision of which action one should take
next. Through sampling the model, we get an estimate of the reward with-
out the need of an expert building a heuristic. MCTS normally does not
incorporate explicit exploration strategies. For complex tasks, however, ex-
ploring rst could enhance the result by giving a better understanding of the
underlyingmodel. Using theMaxCEmeasure as intrinsic motivation could
be a driving force towards such explicit exploration behavior.

7.2.4 Physical Reasoning

Themethods for physical reasoning in this thesis are very rudimentary. The
joint exploration experiments are purely parametrized. Physical reasoning
in these experiments only consists of setting proper limits to the param-
eters. The active symbol grounding (Sec. 5) needs slightly more sophisti-
cated methods. Still, the rejection sampling approach is very basic and will
need too many samples to generate useful distributions in more complex
scenarios. Toussaint (2015) gives interesting directions how physical reason-
ing could be driven by the abilities of an agent to build up possible future
con gurations. However, reasoning about the physical state of an environ-
ment needs much more attention of the scienti c community if robots are
to be enabled to act in such environments.
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7.2.5 Safe Exploration

An important question for robotic exploration is whether the chosen ac-
tions are safe to perform. In traditional active learning scenarios sampling
does not come with severe punishments more than computational costs.
When robots act in real environments they can damage both itself as well
as the environment or even harm human beings. When leaving the lab envi-
ronment, it is important to model such costs and perform safe exploration.
While restricting the inner degrees of freedom to reachable limits is easy,
doing so for external degrees of freedom is hard. Limits are not known, it is
not clear how easily things may break and howmuch force one can exert on
them.

All those questions are not yet modeled nor answered within the devel-
oped framework. Safe exploration inMdps and reinforcement learning has
gotten some attention (Hans et al. 2008; Moldovan and Abbeel 2012). For
real-world exploration more research is needed. Especially the physical rea-
soning becomes more involved if damage and injuries are supposed to be
integrated in the reasoning process.

7.2.6 Object Assumption

Another limitation of all exploration experiments in this thesis is the as-
sumption of solved object recognition, i.e., all methods are based on the
assumption that we already have the visual input segmented into rigid bod-
ies. While Martín-Martín and Brock (2014) or Sturm et al. (2011) provide
methods to recognize joints and objects, using them still means to decouple
the recognition from the exploration behavior. While this is a reasonable
factorization of the problem, it might not be the best one. It would be in-
teresting to feed information from the exploration back into the recognition
algorithms to enhance their results.
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7.3 Conclusion

Exploration is an important ability for any intelligent being, be it biologi-
cal or arti cial. As we have seen in the cockatoo experiment described in
the beginning of the thesis, exploration enables agents to operate in totally
unknown environments. Exploring the external degrees of freedom of an
environment is a way how we can enable robots to solve tasks in many un-
known environments, as degrees of freedom are a major functional unit in
the world. Exploring their existence and their function is necessary to do
many useful things, if we do not want tomanually model all degrees of free-
dom. If we want robots and arti cial systems to understand the world and
be able to interact with it in unknown scenarios and environments, we un-
doubtedly need a good framework for exploration.
So far, researchers tend to neglect pure autonomous exploration in favor

of structuring the environment. When deployed to unstructured environ-
ments they are of en remote-controlled, not using exploration strategies as
well. The areas where exploration was used in robotics so far were either
about the internal degrees of freedom or about mapping the environment.
In this thesis we developed a framework for exploring degrees of freedom

based on information theory, that enables robots to handle new situations
by leading them to explorative actions that very generally lead to informa-
tion gain. The notion of informativeness drives the robot to uncover as
much knowledge about its environment as possible. The MaxCE strategy,
developed within this thesis, let it handle strong priors e ciently, by han-
dling outliers as interesting points, rather than undesired mischief-maker.
While similar Bayesian experimental design and active learning techniques
have been studied formany years, their use for robotic exploration is a recent
development.
We have shown these theoretic foundations to be useful in various sce-

narios, all obeying the rigid world assumption. Although the rigid world
assumption covers a whole range of useful environments, many are omit-
ted. However, the general principle of information gain as driving principle
directly translates to other environments and will be still applicable way be-
yond the rigid world assumption. How models in such environments will

152



7.3 Conclusion

look like is still open to research. But information gain and MaxCE will be
applicable, as long as the models are within the probabilistic formalism.
With the information theoretic foundation it is a natural choice tomodel

environments within the framework of Bayesian statistics. However, Bayes-
ian methods are notorious for being computationally very expensive. We
have, however, shown that using the right structural belief we can e ciently
compute them—even exactly. Nevertheless, we might discover situations
where no such structure is apparent and we have to resolve to general infer-
ence techniques, that are computationally hard. On the other side, using
probabilistic models enables us to easily incorporate prior knowledge, lead-
ing to faster exploration.
We also discussed limitations to our approach. The rst major limitation

is that we have to manually model every new exploration task (exploring
object existence, exploring joint existence and parameters, exploring joint
dependency structures). While these tasks are relatively broad and trans-
late well to di ferent environments, it still involves the process of a human
researcher de ning the model and the exact inference methods. It is an in-
teresting question if we will be able to unify the di ferent exploration task
developed in this thesis to one general model of exploration.
The secondmajor limitation is thatwe cannot solve the explorationprob-

lem optimally, but have to rely on one-step look-ahead heuristics. We have,
however, shown that our heuristics are successful in a variety of tasks. We
also have discussed a possible way to incorporate the information theoretic
measures into planning algorithms. With the farther planning horizon of
these algorithms they should improve over the one-step look-ahead.
Concluding, we are optimistic that the methods developed in this thesis

will enable robots to solve awider range of tasks in unknown environments.
Moving the investigation of environments from the researcher to the robot
will be a huge step to more autonomous, more intelligent systems, which
will perform well in a broad area of tasks rather than in narrow specialized
elds. If we are to build truly autonomous systems, exploring their environ-
ment will always be one of their important tasks, as it has for any intelligent
being. Hence, understanding the process driving the exploration is impor-
tant.
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A Appendices

A.1 Proof: The Conditional Hypotheses Entropy is
not Submodular

We proof that the conditional hypotheses entropy is not submodular by
contradiction.

De nition 7. For a set Ω, the set function f : 2Ω → R submodular if and
only if

f
(
D ∪ {y1}

)
+ f
(
D ∪ {y2}

)
≥ f
(
D ∪ {y1, y2}

)
+ f
(
D
)

(A.1)

with D ⊂ Ω and y1, y2 ∈ Ω \D.

De nition 8. For a random variable θ and a set of random variabl Y,

H [θ|Y] =
∑
Y

p(Y)H [p(θ|Y)] (A.2)

the conditional entropy.

Lemma 1. f : 2Ω → R with f(Y) = H [θ|Y] not submodular.

Proof. We proof by contradiction, giving an example that violates

H [θ|∅ ∪ {y1}] +H [θ|∅ ∪ {y2}] ≥ H [θ|∅ ∪ {y1, y2}] +H [θ|∅] .
(A.3)

Let θbe a binary randomvariable, and y1 and y2 be identically distributed
binary random variables with

prior: p(θ) =
(

0.5
0.5

)
(A.4)
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likelihood: p(y|θ) =
(

0.1 0.9
0.9 0.1

)
(A.5)

marginal: p(y) =
∑
θ

p(y|θ)p(θ) =
(

0.5
0.5

)
(A.6)

posterior: p(θ|y) = p(y|θ)p(θ)
p(y)

=

(
0.1 0.9
0.9 0.1

)
, (A.7)

so that

H [θ|y1] = H [θ|y2] = H [θ|y]

= −
∑
y

p(y)
∑
θ

p(θ|y) log p(θ|y) = 0.325, (A.8)

H [θ|∅] = H [θ] =
∑
θ

p(θ) log p(θ) = 0.693 (A.9)

and

H [θ|y1] +H [θ|y2] = 2 · 0.325 < 0.693
= H [θ] ≤ H [θ|y1, y2] +H [θ] ,

(A.10)

which contradicts Eq. (A.3).
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A.2 Expected Kullback-Leibler divergence
transformations

TheKL-divergence, the entropy, and the cross-entropy of two distributions
p and q are closely related (rows in Eq. (A.11)) and can be rewritten as expec-
tation values (columns in Eq. (A.11))

DKL
[
p(x) ∥ q(x)

]
= H

[
p(x), q(x)

]
−H

[
p(x)

]
= = =∫

p(x) log
p(x)
q(x)

dx = −
∫

p(x) log q(x) +

∫
p(x) log p(x)

= = =

E
[
log

p(x)
q(x)

]
p(x)

= −E
[
log q(x)

]
p(x)

+ E
[
log p(x)

]
p(x)

.

(A.11)

When taking the expectation of the KL-divergence over p(y|x,D), depend-
ing on the direction of the KL-divergence, either the entropy or the cross-
entropy term is constant with respect to x (and therefore drops out when
taking the argmaxx)

E
[
DKL

[
p(θ|y, x,D) ∥ p(θ|D)

]]
p(y|x,D)

= −E
[
H
[
p(θ|y, x,D)

]]
p(y|x,D)

+ E
[
H
[
p(θ|y, x,D), p(θ|D)

]]
p(y|x,D)
(A.12)

= −E
[
H
[
p(θ|y, x,D)

]]
p(y|x,D)

− E
[
log p(θ|D)

]
p(θ|y,x,D),p(y|x,D)

(A.13)

= −E
[
H
[
p(θ|y, x,D)

]]
p(y|x,D)

− E
[
log p(θ|D)

]
p(θ|D)

(A.14)

= −E
[
H
[
p(θ|y, x,D)

]]
p(y|x,D)

−H
[
p(θ|D)

]︸ ︷︷ ︸
const.

(A.15)
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E
[
DKL

[
p(θ|D) ∥ p(θ|y, x,D)

]]
p(y|x,D)

= E
[
H
[
p(θ|D), p(θ|y, x,D)

]]
p(y|x,D)

− E
[
H
[
p(θ|D)

]]
p(y|x,D)

(A.16)

= E
[
H
[
p(θ|D), p(θ|y, x,D)

]]
p(y|x,D)

−H
[
p(θ|D)

]︸ ︷︷ ︸
const.

. (A.17)

For the step from Eq. (A.13) to Eq. (A.14), note that p(θ|x,D) = p(θ|D)
since θ is independent of x so that for any function f(θ,D) that depends
only on θ andD, such as log p(θ|D) above, an expectation over p(θ|y, x,D)
and p(y|x,D) is equal to an expectation over just p(θ|D)

E
[
f(θ,D)

]
p(θ|y,x,D),p(y|x,D)

=

∫∫
y,θ

f(θ,D) p(θ|y, x,D) p(y|x,D) dy dθ

(A.18)

=

∫
θ
f(θ,D)

[ ∫
y
p(θ, y|x,D) dy

]
dθ (A.19)

=

∫
θ
f(θ,D) p(θ|x,D) dθ (A.20)

=

∫
θ
f(θ,D) p(θ|D) dθ (A.21)

= E
[
f(θ,D)

]
p(θ|D)

. (A.22)
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