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1. Abstract

1.1 English

Ever since the pioneering work of Pulay in local correlation (1), a wide spectrum of

local variants of Single-Reference (SR) methods appeared. Local methods aim at reducing

the computational costs of electron correlation methods with the minimal loss in accuracy

possible. Many choices of local virtual orbitals were used and for almost all classes of

methods a local variant was implemented. This allowed the significant reduction of the

scaling of computational resources with the molecular size. Of particular relevance is

the work of Werner and Schütz in the development of the first linear scaling electron

correlation methods using Projected Atomic Orbitals (PAOs) (2,3), and the similar work

of Neese et al. with Pair Natural Orbitals (PNOs) (4). On the other hand, local variants of

Multireference (MR) methods were barely explored. Even though the scaling of MR and

SR methods with the molecular size is affected by the same exponents, the pre-factors of

this scaling are larger for MR methods. MR methods are therefore computationally more

demanding than SR methods and exploring the effects of local approximations can become

more meaningful. This exploration began only recently, and only now are available the

first local MR methods. In this work we present the development and implementation of

a local linear scaling variant of a Multireference Perturbation Theory (MRPT) method,

CASPT2. Our method was named PNO-PAO Local Complete Active Space 2nd-order

Perturbation Theory (LCASPT2) and like the parent canonical method can be used to

calculate reaction and excitation energies. Because of the reduction of the computational

costs, we extended until now the applicability of the CASPT2 level of theory to more than

230 atoms and 4175 basis functions. This molecular size is unthinkable to the canonical

method at the current state of the art technology.

The LCASPT2 method uses Intrinsic Bond Orbitals (IBOs) for the closed-shell and

active spaces, even though after orthogonalizing the configuration subspaces the local-

ized structure of active orbitals is no longer explored. Two choices of local virtuals are

used: all configuration subspaces are initially transformed to the PAO basis; a few of

these configuration subspaces are then transformed to the PNO basis. Using PAOs as an

intermediate step before generating PNOs contributes to reduce the computational cost

of obtaining the PNOs. In both cases we use domain approximations to reduce the size

of substitution spaces for each type of configuration. We build specific PAO domains for
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each closed-shell orbital but a common PAO domain for all active orbitals. For the case of

PNOs, occupation numbers and an energy consistency threshold are used to build the do-

mains. Pair approximations are also employed, and three types of pairs are distinguished:

normal pairs, without any kind of approximation; distant pairs, for which it is possible to

apply the Multipole Approximation (MPA); very distant pairs, which can be neglected.

Using the default options for the PAO and PNO domains builds local substitution

spaces for orbital pairs with typically 40 to 60 PNOs. In these conditions LCASPT2

recovers almost 99.9% of the canonical correlation energy. In average, absolute errors of 2.1

meV are introduced by the local treatment in excitation energies. For reaction energies,

LCASPT2 with the default options differs by around 0.42 kcal.mol−1 with respect to the

canonical case. Smaller domains for both PAOs and PNOs can also be used for larger

systems. The accuracy is slightly affected (e.g., smaller PAO domains can double the

average absolute errors in excitation energies) and a larger variance is observed in the

results.

1.2 Deutsch

Seit der Pionierarbeit von Pulay in lokaler Korrelation (1) ist ein weitreichendes Spek-

trum an lokalen Single-Reference (SR) Methoden erschienen. Lokale Methoden zielen

darauf ab, den Rechenaufwand von Elektronenkorrelationsmethoden mit nur einem min-

imalen Verlust an Genauigkeit zu reduzieren. Dabei wurden viele Arten von lokalen

virtuellen Orbitalen entwickelt und für fast alle Methoden wurde eine lokale Variante im-

plementiert. Dadurch wurde die Skalierung der Rechenzeit mit der Molekülgrösse deutlich

reduziert. In der Entwicklung der ersten linear skalierenden Elektronenkorrelationsmeth-

oden ist die Arbeit von Werner und Schütz von besonderer Bedeutung (2,3), die Projected

Atomic Orbitals (PAOs) benutzen, sowie die Arbeit von Neese et al. mit Pair Natural

Orbitals (PNOs) (4). Allerdings wurden lokale Varianten von Multireference (MR) Meth-

oden bislang kaum betrachtet. Auch wenn die Skalierung mit der Molekülgrösse für MR

und SR Methoden vom gleichen Exponenten abhängt, so ist doch der Vorfaktor für MR

Methoden grösser. Da MR Methoden rechnerisch anspruchsvoller sind, ist es demnach

bedeutsam, die Effekte lokaler Näherungen genauer zu betrachten. Damit wurde erst

kürzlich begonnen, sodass neuerdings die ersten lokalen MR Methoden verfügbar sind.

In dieser Arbeit präsentieren wir die Entwicklung und Implementierung einer lokalen

linear skalierenden Variante der Multireference Perturbation Theory (MRPT) Methode,

CASPT2. Unsere Methode nennt sich PNO-PAO Local Complete Active Space 2nd-order

12



Perturbation Theory (LCASPT2) und kann wie die vorrangegangene kanonische Meth-

ode verwendet werden, um Reaktions- und Anregungsenergien zu berechnen. Aufgrund

der Verringerung des Rechenaufwandes haben wir jetzt die Anwendbarkeit von CASPT2

auf bis zu 230 Atome und 4175 Basisfunktionen erweitert. Diese Molekülgrösse war bis

dato mit der kanonischen Methode und dem aktuellen Stand der Technik bis datum un-

berechenbar.

Die LCASPT2 Methode verwendet Intrinsic Bond Orbitals (IBOs) für den besetzten

und aktiven Raum, auch wenn nach Orthogonalisierung des Konfigurationsunterräumes

die lokalizierte Struktur der aktiven Orbitale nicht mehr benutzt wird. Dabei wurden

zwei Varianten von lokalen virtuellen Orbitalen verwendet: zunächst werden alle Konfig-

urationsunterräume in die PAO Basis transformiert; dann wird ein Teil der Konfiguraton-

sunterräume weiter in die PNO Basis übertragen. Mithilfe dieses Zwischenschritts, der

Verwendung von PAOs vor dem Erzeugen der PNOs, wird die Rechenzeit reduziert. In

beiden Fällen verwenden wir die Domänennäherung, um die Grösse des Anregungsraumes

für jedes Orbitalenpaar zu reduzieren. Wir erzeugen für jedes besetzte Orbital spezifis-

che PAO Domänen, aber nur eine gemeinsame PAO Domäne für alle aktiven Orbitale.

Im Falle von PNOs werden die Besetztungszahlen und ein Energiekriterium als Grenzw-

erte für die Domänenselektion verwendet. Außerdem werden Paarnäherungen verwendet.

Dabei wird zwischen drei Arten von Paaren unterschieden: normal pairs, ohne jede Art

von Näherung; distant pairs, für die es möglich ist, eine Multipolnäherung (MPA) zu

verwenden; very distant pairs, welche vernachlässigt werden können.

Durch die Verwendung der default Optionen für die PAO und PNO Domänen erhält

man normalerweise Unterräume für die Orbitalpaare mit 40 bis 60 PNOs. Unter diesen

Umständen gibt LCASPT2 99.9% der kanonischen Korrelationsenergie wieder. Im Durch-

schnitt beträgt der absolute Fehler bei der lokalen Berechnung von Anregungsenergien 2.1

meV . Für Reaktionsenergien liegt die Abweichung von LCASPT2 mit default Optionen

zur kanonischen Methode bei 0.42 kcal.mol−1. Werden kleinere Domänen für PAOs und

PNOs für grössere Systeme verwendet, kann eine grössere Varianz in den Ergebnissen

beobachtet werden (z.B. können kleinere PAO Domänen den durchschnittlichen abso-

luten Fehler in den Anregungsenergien verdoppeln), obwohl die Genauigkeit dadurch nur

geringfügig beinträchtigt ist.
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1.3 Português

Após o trabalho pioneiro de Pulay no desenvolvimento de aproximações locais em cor-

relação electrónica (1) surgiu um amplo espectro de variantes locais de métodos Single-

Reference (SR). O objectivo destes métodos locais é a redução dos custos computacionais

no cálculo de energias de correlação electrónica sem afectar significativamente a exac-

tidão dos resultados. Diversas escolhas para orbitais virtuais locais foram usadas e para

quase todas as classes de métodos foi implementada uma variante local que permitiu

reduzir consideravelmente o escalar de recursos computacionais com as dimensões dos

sistemas a estudar. De especial relevância é o trabalho de Werner e Schütz no desenvolvi-

mento dos primeiros métodos de correlação eletrónica com escalar linear usando para tal

orbitais atómicas projectadas (PAOs) (2, 3), bem como o trabalho de Neese e colabo-

radores com orbitais naturais para pares (PNOs) (4). No entanto, variantes locais de

métodos Multireference (MR) permaneceram praticamente inexploradas. Ainda que o

escalar de teorias MR e SR com as dimensões moleculares seja influenciada pelos mesmos

expoentes, os pré-factores são significativamente maiores para métodos MR. Estes são

portanto computacionalmente muito mais exigentes, tornando ainda mais relevante a ex-

ploração de aproximações locais. Esta pesquisa teve ińıcio recentemente, estando só agora

dispońıveis as primeiras variantes locais de métodos MR. Neste trabalho apresentamos o

desenvolvimento e a implementação de uma variante local da teoria de perturbações de

segunda ordem aplicada a uma referência Complete Active Space (CASPT2). O método

aqui desenvolvido, PNO-PAO Local Complete Active Space 2nd-order Perturbation Theory

(LCASPT2), apresenta escalar praticamente linear para todos os recursos computacionais.

Tal como o método parente (com orbitais canónicas), o LCASPT2 pode ser utilizado no

cálculo de energias de reacção e de energias de excitação electrónica. Devido à redução

significativa do custo computational torna-se posśıvel usar a teoria CASPT2 em sistemas

com mais de 230 átomos e 4175 funções de base, dimensões moleculares até à data im-

pensáveis para estes métodos usando a tecnologia actual.

O método LCASPT2 recorre a orbitais intŕınsicas de ligação (qúımica), IBOs. Estas

são utilizadas tanto para o espaço de orbitais de camada fechada como para o espaço

de orbitais activas, ainda que após a ortogonalização dos subespaços de configurações a

estrutura localizada das orbitais activas não possa mais ser explorada. Duas escolhas de

orbitais virtuais locais são usadas: todos os subespaços de configurações são inicialmente

transformados para uma base de PAOs; alguns destes subespaços de configurações são

posteriormente transformados para uma base de PNOs. Recorrendo a uma transformação
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intermediária para a base de PAOs permite reduzir o custo computacional para gerar a

base de PNOs. Tanto no caso das PAOs como para as PNOs utilizam-se aproximações

nos domı́nios das orbitais para diminuir as dimensões dos espaços de substituição de cada

tipo de configuração excitada. Para tal, constroem-se domı́nios de PAOs espećıficos para

cada orbital da camada fechada e um domı́nio comum para todas as orbitais activas.

Para o caso das PNOs os domı́nios para os pares de orbitais são constrúıdos com base

em números de ocupação e num critério de consistência energética. Aproximações nos

pares de orbitais são também exploradas. Para tal distinguimos três classes distintas de

pares: pares normais, sem qualquer tipo de aproximação; pares distantes, para os quais é

posśıvel utilizar a aproximação multipolar (MPA); pares muito distantes, os quais podem

ser desprezados do tratamento.

Recorrendo às opções default para os domı́nios de PAOs e PNOs o método LCASPT2

constrói espaços de substituição com tipicamente 40 a 60 PNOs. Nestas condições é

posśıvel recuperar quase 99.9% da energia de correlação do respectivo método canónico.

Em média observam-se desvios por excesso de 2.1 meV em energias de excitação. Para

energias de reacção observámos para as mesmas condições erros de 0.42 kcal.mol−1 face

ao CASPT2 canónico. Para sistemas maiores é posśıvel reduzir os domı́nios das PAOs sem

grandes consequências na exactidão: erros absolutos em energias de excitação duplicam

e a variância aumenta.
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2. Introduction

In theoretical chemistry, ab initio refers to methods built from first principles. The

results are independent of any experimental data. These methods involve specific ap-

proximations, which determine their accuracy. The field of theoretical chemistry aims at

improving theoretical methods while simultaneously minimizing their computational cost.

One of the most popular methods in Single-Reference (SR) theoretical chemistry is

Second-Order Møller-Plesset Perturbation Theory (MP2) (5). This has mostly to do with

its relatively low computational costs (6,7), as it is the most economical SR electron corre-

lation method available. Although not the most accurate of methods (8), MP2 estimates

well correlation effects. MP2 can be formulated non-iteratively (9) and brings together two

desired qualities in quantum chemical methods (6, 10–12): size consistency and size ex-

tensivity. Configuration Interaction (CI), another possibility to treat electron correlation,

is neither size consistent nor size extensive and Coupled Cluster (CC) is not variational.

Furthermore, both CI and CC are computationally much more expensive than MP2 (13).

MP2’s comfort zone is for non-degenerate Ground States (GSs) of closed-shell systems

with a wide HOMO-LUMO gap (Highest Occupied Molecular Orbital (HOMO); Lowest

Unoccupied Molecular Orbital (LUMO)) (14,15). The reference is a Restricted Hartree-

Fock (RHF) wavefunction. Open-shell systems can also be treated at the MP2 level using

an Unrestricted Hartree-Fock (UHF) reference (16,17). The main problem is an undesired

spin-contamination already from the reference (18–22), which also affects the convergence

of UMP2 negatively (12, 13, 23). The spin contamination complication can be overcome

using spin projected (24–27) or spin-adapted formulations (28–38). Nevertheless, all MP2

variants are restricted to wavefunctions with strong SR character. When systems gain

Multireference (MR) character, the Hartree-Fock (HF) reference becomes less suitable: it

no longer is the dominant configuration in the wavefunction. Typical cases range from

some GSs (e.g. ozone, organometallic complexes) to Excited States (ESs) or to systems

at dissociation limits. Since the reference loses its quality, Perturbation Theory (PT) cor-

rections become unreliable (20,29,30,34,37,39,40). The result is that the Møller-Plesset

Perturbation Theory (MP) series begins to lose its convergence properties (10). With

multi-configurational references, PT regains its attractive properties and the total elec-

tronic correlation is kept balanced over full Potential Energy Surfaces (PESs) (9,40–44),

from minima up to dissociation, as well as for any electronic state.

The multi-configurational reference with the basic qualitative description for MR sys-
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tems is calculated using the Multi-Configuration Self-Consistent Field (MCSCF) the-

ory (45–47). In MCSCF the most relevant configurations to introduce strong correlation

in a wavefunction are included. The results are qualitatively correct, but not quantita-

tively. Even though MCSCF includes many different approaches, now-a-days the most

widely used is the Complete Active Space Self-Consistent Field (CASSCF) (48–52). Here,

orbitals are partitioned into three spaces (46): closed-shell, with doubly occupancy; vir-

tual, always empty; active, with variable occupation numbers. A specific combination for

the dimensions of these orbital sets builds a Complete Active Space (CAS) reference. The

CAS includes all configurations arising from all possible substitutions within the active

space. This ansatz may include configurations with minor or negligible contribution to the

wavefunction, but due to its Full Configuration Interaction (FCI) character (45), special

techniques may be used to simplify the computational effort.

The first MRPT methods were developed by Bloch and Horowitz (53, 54), (55), and

Kelly (56) in the 50’s and 60’s. One of the biggest challenges in MRPT was the gen-

eralization of the zeroth-order Hamiltonian from MP (15, 39). The pillar upon which

PT is built, is the search of an approximate solution to a problem having as starting

point the exact solution of a similar but simpler problem. The zeroth-order Hamiltonian

defines the problem with the exact solution, while the perturbation term allows the cal-

culation of the approximate solution to the problem one wishes to solve. Any ambiguity

or ill-definition of the zeroth-order Hamiltonian may determine the lack of success of the

method (9,13,40,57). And this is indeed the source of most errors (58). In MP theory, the

zeroth-order Hamiltonian is the sum of one-electron Fock operators (5). Attempts were

made to outperform this choice, but none actually achieved any improvement (56,59–61).

Likewise, when generalizing to the MR case, the zeroth-order wavefunction should be

an eigenfunction of the zeroth-order Hamiltonian (57, 62, 63). It should furthermore be

fast convergent (39, 58), equivalent to the MP Hamiltonian for the SR limit (12, 39, 64)

and it should be orbital invariant (57, 62, 63).1 In general, the zeroth-order Hamiltonian

for MR theories is non-diagonal in the configuration basis and built from non-diagonal

Fock matrices (65). As showed by Pulay and Sæbø (8), it is possible to reformulate

MP with orbitals other than canonical and with non-diagonal zeroth-order Hamiltoni-

ans (13, 57, 66, 67). The zeroth-order Hamiltonian is still the sum of one-electron Fock

operators (66), but the orbitals are no longer in the main diagonal of the Fock matrix. The

results are equivalent (8,68) but at the price of a slight increase of the computational cost:

1For an orbital invariant method, using two different types of orbitals gives the exact same result.
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analytical solutions are no longer directly found (14) and the solution must be sought it-

eratively (8,57,66,68). Non-diagonal zeroth-order Hamiltonians can however be brought

to block diagonal forms (14). For these cases, convergence is rapidly achieved and each

iteration has a low computational cost. In contrast, there are also methods with diagonal

zeroth-order Hamiltonians. This diagonality stems from diagonal Fock matrices, either

in the orbital basis, or from both in the orbital and in the configuration bases. These

methods are however not orbital invariant (57). For these cases, the methods additionally

depend on the definition of the configuration spaces. Given the possible choices for the

zeroth-order Hamiltonian in the MR case, different variants of MRPT were proposed and

implemented. References for some of the most relevant work in the field can be found

in (9,12,13,23,40–42,44,57,69–73).

From the whole spectrum of MRPT methods that were developed, now-a-days only

CASPT, N-Electron Valence state Perturbation Theory (NEVPT) and Multireference-

Møller-Plesset (MR-MP) are still in use (63). Of these, CASPT enjoys perhaps greater

popularity (74). In this work, local approximations were applied to CASPT2.

The first version of CASPT2 was proposed by Roos in 1982 (58). It was built to be

a non-iterative reduced perturbative treatment to account for dynamic correlation after

a CASSCF calculation (58). The wavefunction included initially only pairs (58) and the

zeroth-order Hamiltonian was built from a Fock operator diagonal in the orbital basis. The

latter was multiplied to the left and to the right by projectors to the reference space and

its orthogonal complement (58). These projections made the zeroth-order Hamiltonian

diagonal in the configuration basis. Around equilibrium geometries, the method provided

good estimates for basic properties of chemical systems, e.g., excitation energies, but

dissociation processes of chemical bonds were poorly represented (39, 58, 63). This was

related to the absence of singles in the first-order wavefunction (58,63).

In the first improvement the singles and the internals were added to the first-order

wavefunction (39). The zeroth-order Hamiltonian was also changed from diagonal to block

diagonal with respect to configuration subspaces (39). Thus, the interaction between dif-

ferent configuration subspaces was neglected, but interactions within each configuration

subspace were considered (39). The Fock matrix in the zeroth-order Hamiltonian was

partitioned in two different terms (39): diagonal elements were used in the zeroth-order

Hamiltonian; off-diagonal terms were collected in the perturbation operator. This new

version of CASPT2 improved total energies but was still not absolutely satisfactory for

energy differences (39). The method was thus once more improved by skipping the parti-

tioning of the Fock matrix and by making the zeroth-order Hamiltonian non-diagonal in
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the configuration basis. This became the modern version of CASPT2 (64).

For systems with high SR character, CASPT2 offers but only minor differences with re-

spect to MP2. However, for strong MR cases like Ozone, differences are not negligible (64).

CASPT2 behaves with fair accuracy when compared to Multireference Configuration In-

teraction (MRCI) or even FCI (64). The great advantage is that CASPT2’s computation

time can take down to 20% of the calculation time of MRCI (42). In the current literature

there is already an unsurmountable amount of applications of CASPT2. To mention a

few, we can refer the reader to the references (64, 75–86). These are but very few exam-

ples, including mostly excitation energies, some transition metal chemistry and PES with

special focus on avoided crossings. While for the first two cases CASPT2 enjoys success

and good potential (64,81,83,86,87), for PES with avoided crossings the performance is

somewhat far from ideal (88–90). Furthermore, CASPT2 suffers from the intruder state

problem. This occurs whenever the state of interest mixes strongly with a state from the

secondary CAS, shifting excitation energies or even causing divergence (57,63,91).

To overcome the liabilities for avoided crossings, Finley, et al. proposed a multi-state

extension to CASPT2, Multi-State CASPT2 (MS-CASPT2) (89). The theory extends

CASPT2 to multidimensional reference spaces spanned by N > 1 states. In MS-CASPT2

an effective Hamiltonian is perturbed and then diagonalized to allow all the states to

interact (89). The zeroth-order Hamiltonian is separated into contributions from each

reference. The projector to the reference space becomes the sum of projectors to all

references, which build a diagonal Fock matrix in each reference space. The diagonal of

the effective Hamiltonian gives CASPT2 energies for the N states used. MS-CASPT2 was

later generalized to include non-diagonal Fock matrices in the reference space, eXtended

Multi-State CASPT2 (XMS-CASPT2) (74,92,93).

More recently, Cholesky decomposition (94,95) and Density Fitting (DF) approxima-

tions (96) were applied to CASPT2 to improve both the efficiency and applicability of

the method. Finally, the explicitly correlated variants of CASPT2 should be mentioned

(93,97–100), which significantly improve the basis set convergence of CASPT2. Explicitly

correlated methods aim at overcoming the incompleteness of basis sets by including in

the wavefunction terms which depend directly on the inter-electronic distance (101–106).

However, to improve the inherent accuracy of the method, higher orders in perturba-

tion are required. Complete Active Space 3rd-order Perturbation Theory (CASPT3) is

available, but it is already extremely expensive. Even higher orders in MRPT are not

frequently mentioned and might not even bring better results (10). Alternatively, at a

similar cost of CASPT3 but with better accuracy there is still MRCI (43,98,99,107–120)
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and Multireference Coupled Cluster (MRCC) (121–130). Furthermore, analytical gradi-

ents are available for CASPT2, both for the single- and multi-state variants of the theory.

This allows the geometry optimization and the calculation of first-order properties for

both GSs and ESs (62,74,96).

Electron correlation methods are typically formulated in the canonical or natural or-

bital bases. Canonical orbitals emerge from Self-Consistent Field (SCF) calculations (HF

or MCSCF), and in this basis the closed-shell and the external blocks of the Fock matrix

are diagonal. Since no other restriction is imposed, canonical Molecular Orbitals (MOs)

are delocalized through molecules (65,131,132). For pair theories, the correlation energy

may be partitioned according to orbital pairs. The number of pairs to correlate scale

quadratically with the system’s size, and so does the number of orbitals in substitution

spaces. This yields a minimum scaling2 of O (M4) for electron correlation methods (133).

Adding the high tensor rank of the mathematical objects needed, an unphysically steep

increase of computational costs with the molecular size is created. The most economical

electron correlation method, MP2 (5), has a scaling of CPU times already of O (M5) with

the molecular size M (1, 2, 6, 132). These costs arise from the integral transformation to

the MO basis (2). Using the sparsity of the Atomic Orbital (AO) integral list reduces

these costs by almost one order of magnitude (2). Other methods including at most double

substitutions from the reference3 scale typically with O (M6) (2,6,7,133–137), e.g., CISD,

CCSD, CCD, Quadratic CISD (QCISD), Third-Order Møller-Plesset Perturbation The-

ory (MP3), Fourth-Order Møller-Plesset Perturbation Theory (MP4). Any further order

of substitution added increases the scaling by two orders of magnitude. Therefore, includ-

ing triple substitutions raises the scaling to O (M8) (6, 137, 138) (e.g., Singles Doubles

Triples Coupled Cluster (CCSDT)), while introduction of quadruples raises the scaling to

O (M10) (6,138) (e.g., Singles Doubles Triples Quadruples Configuration Interaction (CIS-

DTQ)). The exponent of the computational costs due to the introduction of triples can be

reduced by one, toO (M7), if a perturbative treatment of these is used (2,3,6,66,133,139).

Typical examples are MP4 with triples or quantum chemistry’s ”Gold Standard”, Singles

Doubles Coupled Cluster with Perturbative Treatment of Triples (CCSD(T)).4 Going be-

2The scaling of a method is measured from the most expensive tensor contraction operation. These

involve typically dimensions of different quantities, e.g., the Atomic Orbital (AO) basis, the orbital spaces.

For simplification we transformed these dimensions to a general variable M .
3Single substitutions are usually included as their computational costs are negligible when compared

to the cost of doubles.
4If HF provides a good reference, for large enough basis sets, CCSD(T) can predict reaction energies

within chemical accuracy (3).
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yond triple substitutions for systems with amenable dimensions is not common. Doubling

the system’s size in a method which includes up to triple substitutions represents 128 to

256 times more computational effort. The introduction of quadruple substitutions repre-

sents 512 to 1024 times more computational effort. It is therefore but natural that these

methods become prohibitively expensive for canonical theories. For MR theories, similar

scalings are observed. For instance, CASPT2 shows a scaling of O (M5) and MRCI with

up to doubles a scaling of O (M6). The difference in the computational costs between SR

and MR methods is in the pre-factor for these scalings. In the MR case the pre-factor

depends on the size of the active space and is therefore significantly higher.

Amplifying the increase of computational costs in electron correlation methods is the

requirement for larger AO spaces (1,68). First, the convergence of the correlation energy

with the basis set’s dimension is rather slow when using canonical orbitals (3). Further-

more, for smaller AO spaces, the effort of going beyond HF is not compensating: the

computational effort is too high and the amount of correlation energy recovered is (too)

small. Consequently, basis sets of at least double-ζ quality with polarization should be

used. Even though the size of the basis set does not influence the power in the scaling of

a method, it influences the pre-factors.

All these factors together generate a computatinal scaling wall (1, 132, 136) which is

rapidly reached. This hinders these methods from routine application, or from being used

at all. There is also a problem of disk-storage capacity, as many sets of integrals must

be stored and constantly read. For instance, the number of matrices containing two-

external exchange integrals increases roughly with the square of the number of correlated

orbitals (66,136,140). This is however just one of the required sets of integrals for electron

correlation methods. This very high demand in disk-storage for larger systems brings high

demands in I/O, creating bottlenecks hard to overcome (68).

Decreasing the computational costs of electron correlation methods requires excluding

unnecessary configurations (134,135). The first selection schemes followed PT estimations

of the amplitudes (132). Since no other criteria was used, this arbitrary configuration

selection neglected countless of small contributions, which summed together played a

major role. This had a negative impact on PES, which were not smooth (1,66,68,134,140).

This configuration selection caused also a dependence on the virtual orbitals (66) and had

expensive logic (66, 68, 134). Another solution performed this truncation already at the

orbital level (140). The correlation energy calculated through these methods suffered from

weak dependences on the virtual space, as well as poor convergence (140).

The ideas behind local methods (141–146) are not far from orbital and configuration
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truncations. They also aim at reducing the computational demands of theoretical methods

by truncating the CI expansion at the configuration and orbital levels (66,68,68,134,136,

140). The difference lies in the orbital basis, which is chosen to concentrate efficiently the

information, making the truncation always consistent (66,140). This physically motivated

configuration selection scheme (147) has many consequences: the truncation at two levels

has but a minor influence in the calculation of properties (136, 140); better convergence

with respect to the number of configurations (136); the matrix structure of the formalism

remains intact, avoiding logic in innerloops (147).5

Unlike canonical orbitals, which are not easily interpreted (66, 68, 132), local orbitals

have a clear chemical interpretation and a clear contribution to a particular region of

a molecule. Because local orbitals concentrate spatially the correlation effects, these

bases allow the exploration of the locality of correlation effects (13, 68, 132, 148, 149).

Truncation schemes can then be efficiently applied both at the configuration and orbital

levels: a large fraction of the configurations in a CI expansion can be neglected based on

energy or distance criteria (66, 68, 132); excited configurations associated with a specific

orbital pair are restricted to a particular subspace of the virtuals (66, 68, 132). This

truncation alleviates the ”scaling-wall” of canonical methods at a (very) small sacrifice in

accuracy (148, 149), which, if methodical and structure independent, is negligible when

compared to other sources of error (140).

As the correlation energy rapidly decreases with the distance between orbitals to

correlate (it goes with the sixth power of the interelectronic distance) (66, 68, 136, 148),

orbital pairs can be classified according to their significance to correlation effects (2,3,150).

Separating pairs into classes allows the use of pair approximations (2, 3, 66, 133, 136),

which handle each class differently: high-level treatment of correlation effects is restricted

to the most significant ones; other pairs are treated at lower levels of theory; the least

significant pairs are neglected with no loss. The second level of approximations are domain

approximations (2,66, 136, 148). In canonical methods, the substitution space of a given

orbital (pair) is the full set of virtual orbitals (132,136). Domain approximations restrict

the substitution spaces of each orbital m or pair mn to a subset of the virtual space

(136,140) in the same spatial region as m or mn.

The most popular choices of local bases for the virtual space are beyond doubt

Projected Atomic Orbitals (PAOs) (1, 8, 66, 132, 136, 140) and Pair Natural Orbitals

(PNOs) (4, 137, 139, 151–154). Of particular relevance are also Orbital Specific Virtu-

5The fast operations in both workstations and vector computers are matrix multiplications.
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als (OSVs) (131, 155), Localized Virtual Orbitals (LVOs) (156–159) and fragmentation

methods. Tables 2.1 and 2.2 summarize the main features and provides references for

these and other methods.

Table 2.1: Comparison between different local methods. Table summarizing information

about PAOs; PNOs; OSVs; LVOs; LOVOs; the method of Stollhoff, Vasilopulos and

Fulde; fragmentation methods; the Laplace-transform method of Scuseria and Ayala.

Method Generation Implementation/Accuracy

PAO AOs projected almost all

(1,136) onto the virtual classes of methods

(8,140) space (refer to text);

(66,68,132) 98-99%/30-70 PAOs

PNO tensor factori- mostly CEPA, CC,

(151,160) zations MP2 MPn classes

(161,162) pair amplitudes (refer to text);

(153,154) 99.9%/20-40 PNOs

tensor factorizations CCSD(T) (163);

OSV MP2 intrapair CCSD, MP2 (155);

(131,155) amplitudes CCSDF12, CCSD(T)F12 (131);

99.8%/100 OSVs

localized large basis set

LVO virtual superposition

(156) orbitals errors (164–167);

70% accuracy

based on reaches accuracy

LOVO Boys’ of PAOs and PNOs

(157,158) localization with much more LOVOs;

applied to MRCI (168) and PT (159)

PAOs were introduced by Pulay (1) and implemented by Pulay and Sæbø (8,66,132,

136,140). These are built by spanning the virtual space with non-orthogonal AOs. These

AOs are projected onto the virtual space to ensure orthogonality to other orbital spaces.

Closed-shell orbitals are localized using Boys’ procedure (169–171).6 PAOs domains were

6Other methods to localize closed-shell orbitals are, e.g., the Pipek and Mezey method (172) and

IBOs (173).
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built for each orbital m by including PAOs located on the same atoms on which m

was located (68, 132, 136). These domains were later extended to include neighbouring

atoms. Domains for pairs mn are built by uniting the domains of the orbitals m and

n (68,132,136). Pairs were divided in three classes based on energy criteria (66,134,136)

and singles were initially omitted from the local treatment.

Table 2.2: Comparison between different local methods. Table summarizing informa-

tion about the method of Stollhoff, Vasilopulos and Fulde; fragmentation methods; the

Laplace-transform method of Scuseria and Ayala.

Method Generation Implementation/Accuracy

Stollhoff, local

Vasilopulos, substitution CEPA-0 (174)

Fulde operators

(175–177)

partition MP2 (178–181)

of molecules MP2, CCSD, CCSD(T) (182,183)

Fragmentation in small and CCSD, CCSD(T) (184–186)

Methods local MP2(F12), CCSD(T)(F12) (187–189)

local CCSD, CCSD(T)F12 (190–193)

parts MP2, CCSD, CCSD(T) (194–197)

Ayala, AO-Laplace exact within

Scuseria transform Laplace transform;

(198) (199–201) MP2

Using PAOs, substancial savings in the computational effort of electron correlation

methods were reported (1, 8, 66, 136, 140): speed-up factors of 17-40 for a molecule as

small as butadiene (66, 68). 98-99% of the pair correlation energy is recovered (68, 136)

using domain sizes of around 30-70 PAOs for double- or triple-ζ basis sets with polariza-

tion (136). It was also shown that the local treatment contributed to reduce basis set

superposition errors (8,66,140,147,202–204).

PAOs were used for local variants of CISD, Coupled Electron Pair Approximation

(CEPA)-0, Approximate CCD (ACCD), CEPA-2 and second-, third- and fourth-order

MP (68,134,136).7 Hampel and Werner implemented PAO variants of CCSD and QCISD

(147) and analytical gradients for local MP2 (210) and CCSD (211) were also reported.

7The original publications are in the references (5,151,174,205–209).
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Crawford and Russ implemented also PAO-CC linear response theory (212,213).

Later on, Werner and Schütz used a truncated multipole expansion to approximate

exchange integrals for a specifc pair class (214). This Multipole Approximation (MPA),

together with pair and domain approximations applied to the integral transformation,

provided the ground for the first asymptotic linear scaling MP2 method. This allowed

the first MP2 calculations for systems with ca. 500 correlated electrons and 2000 basis

functions on a PC.

Linear-scaling local variants of MP4(SDQ), QCISD, CCSD (133,215), CCSD(T) (216–

219), Equation of Motion CCSD (EOM-CCSD) (220) and of CC2 (221–225) were also

implemented. A DF (226, 227) variant was implemented for local CCSD (3, 228) and

extending the local approximations to the DF evaluation of integrals lead to linear scaling

Local Density Fitting (LDF) algorithms as well (3,148,228–235).

Near linear-scaling local variants of explicitly correlated methods were also imple-

mented: MP2-F12 (231, 234, 236); CCSD-F12 (150, 237); DF-CCSD(T)-F12 (238). The

local explicitly correlated treatment reduced not only errors of the basis set incomplete-

ness, but also the errors of domain approximations. Finally, unrestricted variations of the

linear scaling local CCSD and CCSD(T) were also implemented, both with and without

explicit correlation (239–241).

Although PAOs comprised a turning step in computational chemistry, large PAO

domains are required for fully converged results (148, 149). For triple-ζ basis sets, ac-

curacies of 99.8-99.9% in correlation energy and chemical accuracy in energy differences

can be reached with domains containing 400-600 PAOs (242). PNOs were introduced

by Edmiston and Krauss (160, 243) and further investigated by Meyer in the context of

CEPA (151, 152, 244–251), Ahlrichs and Kutzelnigg in the context of Independent Elec-

tron Pair Approximation (IEPA) (161,252–256) and Taylor (162,257). PNOs were built

to be a consistent configuration selection method in a CI expansion. They aim to provide

a set of pair specific approximate natural orbitals, for which the CI expansion converges

most rapidly (258). The first use of PNOs in the context of local correlation was due

to Neese et al. (4,137,139,153,154,259–262). PNOs offer a very compact description of

correlation effects. For the same level of accuracy, same level of theory and same basis set,

PNO methods contract pair substitution spaces 6-10 times more than PAO methods (149).

They offer also good convergence of absolute and relative energies with respect to domain

sizes. However, since they are built specifically for each pair, the total number of virtuals

that is built is very large, which can translate into high scaling of computational times as

well as large memory requirements.
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The first PNO implementation in the context of local correlation was the local PNO-

CEPA method (4). Local PNO-CCSD (153), the respective open-shell variant (261)

and parameterized CCSD (154, 263) were also implemented. The problem of these early

implementations was a steep scaling with the system’s size in the generation of PNO,

becoming the methods too expensive for molecules with more than 100 atoms. To reduce

this steep scaling, canonical virtuals were first transformed to the PAO basis using large

PAO domains and the PAOs were then transformed to the PNO basis (72, 137, 148,

149, 235, 264–266). The multipole approximation was also used, along with local DF

approximations for the generation of exchange and Coulomb integrals. All these changes

reduced the original scaling of O (M6) to linear for all computational resources. Losses

in accuracy amounted at most to 0.05% for energy differences and at most to 0.1% in

the correlation energy being recovered. Errors were dominantely introduced by the PAO

domains, even though the use of PNOs contracted substitution spaces to 20-40 local

virtuals (in contrast with 300-700 PAOs per domain). This allowed CCSD calculations

on systems with more than 1000 atoms and 20000 basis functions (264).

Linear scaling local PNO variants of CEPA, variational CEPA, QCISD, parame-

terized CCSD, CCSD(T) and Quadratic CISD with Perturbative Treatment of Triples

(QCISD(T)) were implemented (137,139). The last two implementations required the con-

cept of Triples Natural Orbital (TNO) (139), a generalization of PNOs to triple substitu-

tions. Explicitly correlated variants of local PNO methods were also implemented: PNO-

LMP2-F12 and PNO-LMP3-F12 (235, 266–268); PNO-LCCSD-F12 (269, 270). These

implementations showed that combining PNOs with explicitly correlated methods is par-

ticularly advantageous. A PNO doubles correction to the CI method with singles was

developed for excited states (271), just like PNO linear response theory for CC (272–274).

Although local SR methods have been extensively studied for decades, there is still a

big gap in implemented local MR methods. To our knowledge there are the implementa-

tions of Carter et al. (275–281) of local MRCI and MR Averaged Coupled Pair Functional

(ACPF), Hoyau’s (282) local variant of (uncontracted) MRCI, the recent work of Neese

et al. of a mixed PNO-PAO local NEVPT2 (72) and the state specific singles and dou-

bles PNO Mukherjee MRCC (283). Although not aiming specifically for local correlation

methods, Fink and Staemmler also developed a PNO-MRCEPA (115). This method can

use localized orbitals for the internal orbital spaces, even though a full exploration of the

advantages of local approximations is not undertaken. In a similar fashion there is still

the implementation of a PNO-MRCI by Taylor (257).

In the local variant of NEVPT2, only the closed-shell space is localized (using the
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method of Boys). The active space is not localized,8 and for these orbitals a single domain

is built as the union of all the active orbital domains. The virtual space is spanned either

with PNOs or PAOs, according to the configuration subspaces. Although not yet defined,

we will specify here the the choices for the local NEVPT2, for later reference: for P0 and

S0 PAOs are employed; PNOs are built for P2 and P1; the P2 PNOs are used for S2 and

S1 (OSVs or intrapair PNOs). The threshold used for S1’s PNOs was 100 times smaller

than the thresholds used in other subspaces, in order to retain the same accuracy for all

configuration subspaces. Integrals are built using DF approximations and the MPA is

used as a pre-screening for the calculation of two-electron integrals for all configuration

subspaces involving at least a closed-shell index. Using the default thresholds, PNO-

NEVPT2 recovers 99.9% of the correlation energy. For fixed sizes of the active space, the

computational costs scale linearly with the molecular size. The analogous local Mukherjee

MRCC (283) behaved similarly.

Carter’s local MRCI method (168, 275–279) explored both LOVOs and PAOs. Pair

and domain approximations were also used, yielding a method with a scaling somewhere

between third- and fourth-order with the system’s size. The accuracy remained by 97% for

correlation energies and within 3 kcal/mol from the canonical case for energy differences.

The regionally contracted MRCI of Hoyau et al. (282), brought to MR methods the

concepts of fragmentation methods: a molecule is partitioned into many disjoint blocks or

fragments, and a set of localized virtuals is assigned to each fragment. A series of MCSCF

calculations are then performed on each block and pairs of them to build the ansatz for the

wavefunction. The regionally contracted MRCI introduced errors of 1-100 mH in total

energies, when compared to the canonical case. The reduction of the computational effort

is demonstrated using the relative scaling of the non-local unrestricted MRCI against the

scaling of the regionally contracted MRCI.

In this work a mixed PNO-PAO local variant of CASPT2 was derived and imple-

mented. We named our method PNO-PAO Local Complete Active Space 2nd-order Pertur-

bation Theory (LCASPT2). For simplicity, we omitted both the PNO and PAO acronyms

in the acronym of the method. Our main objective was the reduction of computational

costs without sacrificing the accuracy of the canonical method. Our goal is thus to allow

larger molecules to be studied with MR theories. The larger systems we aim at are typi-

cally organic molecules or transition metal complexes with a large closed-shell space and

a small and local active space. For any other type of chemical system, the local treatment

8This is a significant difference towards our LCASPT2 implementation.
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using both PAOs and PNOs still allows significant savings in the computational cost. We

aimed at asymptotic linear scaling of the computational costs with the molecular size for

the cases of small active spaces and large closed-shell spaces in specific. Local approx-

imations were generalized from the SR to the MR case. This required building PNOs

from PAOs, as well as using pair and domain approximations in building the two-electron

integrals and applying pair approximations to the many configuration subspaces. We

explored the properties of both PAOs and PNOs, using these in the most convenient way

in view of our goals. We implemented LCASPT2 in the development version of MOLPRO ,

partially using FORTRAN, partially using MOLPRO ’s Local ITF (LITF) (111, 284–287).

The latter extends ITF to local cases and was developed by Dr. D. Kats during the course

of this work.
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3. Theoretical Background

3.1 The Molecular Hamiltonian

In Quantum Mechanics, the energy of a non-relativistic quantum many-body system

is given by the Schrödinger equation (6, 288). In its time-independent formulation the

Schrödinger equation is defined as

ĤΨ = EΨ (3.1)

The Hamiltonian operator, Ĥ, is defined as the sum of both kinetic T̂x and potential V̂xy

contributions. The kinetic operator gives the energy due to the motion of each particle,

while the potential operator the energy due to the interaction of particles pairwise. It

accounts for interactions between electrons, between nuclei and between electrons with

the nuclei. Using the subscript e for electrons and the subscript n for nuclei all these

contributions may be specified in the Hamiltonian as

Ĥ = T̂e + T̂n + V̂ee + V̂nn + V̂en (3.2)

with the operators

T̂x = −1

2

X∑
i=1

1

Mi

∇2
i (3.3)

V̂xy =
X∑
i=1

Y∑
j=1

ZiZj
rij

(3.4)

In both equations (eqs.) 3.3 and 3.4, X and Y are the total number of particles x and

y (which can be electrons or nuclei), Mi is the mass of particle i (1 a.u. for electrons),

rij = |ri − rj| is the distance between particles i and j and Zi the charge of the particle.

Neglecting relativistic effects, the Hamiltonian above defined is exact. But being the

nuclei much heavier than electrons, the motion of these two types of particles can be

considered to occur in different time-frames: the nuclei become fix with respect to the

motion of electrons. Consequently, the Hamiltonian and also the wavefunction can be

separated into a nuclear and an electronic component. This separability of the nuclear

and electronic motion leads to the separation of the Schrödinger equation into nuclear

and electronic parts. The electronic equation depends parametrically on the molecular

geometry, thus the wavefunction for each electronic state x is a function Ψx(r, σ; R) of

the coordinates for the electrons r, their spin σ and the nuclear coordinates R. Solving
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the electronic Schrödinger equation for many geometries yields a grid for the nuclear

motion, and this grid composes a Potential Energy Surface (PES) for a given electronic

state. After obtaining PESs from the electronic Schrödinger equation the nuclear part can

also be solved for each molecular quantum state k, yielding a nuclear solution associated

to each electronic state, Θxk(R). The full solution of the Schrödinger equation for the

molecular quantum state k is then given by Ψtotal
k (r, σ,R) =

∑
x Ψx(r, σ; R)Θxk(R). This

separability of the Schrödinger equation into nuclear and electronic components is known

as the Born-Oppenheimer approximation (6,289).

The Hamiltonian in eq. 3.2 is in an operator form requiring integration, also known

as first-quantization. In this formalism one usually keeps track of the behavior of each

particle of the system, even if all the particles are indistinguishable. This becomes cum-

bersome when the number of particles becomes too large and not so practical to be used to

solve many-body problems. An equivalent formalism1 is offered by second-quantization,

which no longer keeps track of particles but instead is centered in occupation numbers and

many-particle states. This is particularly advantageous for systems with a very large num-

ber of particles or systems with a variable number of particles. In second-quantization, a

ket spin-orbital (|ψr,σ〉, where ψr,σ is built as the product of a spatial orbital φr with the

respective spin function σ) is seen as a creation operator, â†r,σ, which creates a particle in

the spatial orbital φr with spin σ = α, β, when acting on an adequate state. Similarly,

a bra spin-orbital (〈ψr,σ|) is seen as an annihilation operator, âr,σ, removing a particle

in φr with spin σ. (Spin-)Orbitals are thus seen as quantum mechanical operators (65).

These creation and annihilation operators can be used to construct n-particle spatial

substitution operators (65),

n =1 Êrs = â†râs =
∑
σ=α,β

â†rσâsσ (3.5)

n =2 Êpq,rs = â†pÊrsâq =
∑
σ=α,β

â†p,σÊrsâq,σ (3.6)

The operators â†r and âr are spin-summed. They do not affect the spin of a particle,

just its spatial function (orbital), and they are in a true sense creation and annihilation

operators. They follow a specific algebra known as the anticommutation rules:[
â†r, â

†
s

]
+

= â†râ
†
s + â†sâ

†
r = 0 (3.7)

[âr, âs]+ = ârâs + âsâr = 0 (3.8)

1The expressions in first-quantization are equivalent to the ones in second quantization if finite basis

approximations are considered in the former (6).
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[
â†r, âs

]
+

= â†râs + âsâ
†
r = δrs (3.9)

These rules can be easily derived by applying the operators sequentially to occupation

vectors, following the algebraic rules inherent to these. The anticommutation rules can be

used to work out specific expressions into workable formulas, which can be implemented

in algorithms. These form the core of second quantization in quantum chemistry.

When projected on the left and on the right by the reference state, the one-particle

substitution operator generates elements of the first-order density matrix, the quantity

bridging the formalisms of first and second quantization.2 Instead of dealing with the

number of particles within the operators, this information is transferred to the wavefunc-

tion (6). In the second quantization the Hamiltonian may be rewritten as

Ĥ =
∑
rs

hrsÊrs +
1

2

∑
pq

∑
rs

(pq|rs) Êpq,rs + Enuc (3.10)

where indices run over the occupied space. hrs gives the kinetic contribution of electrons,

as well as the potential contribution between electrons and nuclei,

hrs =

∫
φ∗r (rx)

(
−1

2
∇2 −

nuc∑
A

ZA
|rx − rA|

)
φs (rx) drx (3.11)

and (pq|rs) the potential contribution between electrons, i.e., their repulsion.

(pq|rs) =

∫
φ∗p (rx)φq (rx)

(
1

|rx − ry|

)
φ∗r (ry)φs (ry) drxdry (3.12)

As can be seen from eqs. 3.10-3.12, the Hamiltonian Ĥ becomes independent on the

number of electrons but depends instead on the integrals hrs and (pq|rs) in a given orbital

basis.

The formulae in this work were developed using the formalism of second-quantization.

Any further expression herein will be expressed in terms of n-particle substitution opera-

tors. For further information on the formalism and basics of second-quantization we refer

the reader to reference (10) and references therein.

3.2 Hartree-Fock

One of the most widely used and central methods in quantum-chemistry is Hartree-

Fock (HF), an extension of the Molecular Orbital (MO) theory (10, 290). The MOs are

2In the first quantization, the first order density is obtained by external product of the orbital coeffi-

cient matrix with itself.
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expressed as a Linear Combination of Atomic Orbitals (LCAO) and the HF wavefunction,

a Slater Determinant (SD), is given by

ΦHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1 (r1) ψ2 (r1) ... ψm (r1)

ψ1 (r2) ψ2 (r2) ... ψm (r2)

... ... ... ...

ψ1 (rN) ψ2 (rN) ... ψm (rN)

∣∣∣∣∣∣∣∣∣∣
(3.13)

SDs are anti-symmetrized products of the one-electron spin-orbitals in compliance with

Pauli’s principle. For simplicity we represent the r, σ pair of indices from ψr,σ as just one

index. SDs describe stationary states of quantum many-body systems with an associated

energy, the minimum for single configurations for a particular molecular geometry (6).

The HF theory starts with the minimization of the energy expectation value using the

variational principle.3

EHF = 〈ΦHF| Ĥ |ΦHF〉 (3.14)

The constraint in this minimization is that the orbitals must remain an orthonormal

set (〈ψr,σ1|ψs,σ2〉 = 〈φr|φs〉〈σ1|σ2〉 = δrsδσ1σ2). This can be easily achieved by building

a Lagrangian for the HF energy. The minimization of this Lagrangian is equivalent to

solving the Roothaan-Hall equation, given by

FC = SCε (3.15)

In eq. 3.15 F is the Fock operator (see description below), C the matrix with the MO

coefficients, S the overlap matrix for the basis set and ε the diagonal matrix with the

orbitals energies. In practice, solving eq. 3.15 is very time consuming and error prone:

in each iteration the Fock matrix must be transformed to the MO basis, a demanding

transformation for which numerical errors may accumulate or even amplify. A more

convenient approach solves this equation in the AO basis and uses the orthogonalization

matrix X = S−
1
2 . The matrix X orthogonalizes the basis of AOs, and transforms eq. 3.15

into 3.16.

X†FXC̃ = F̃C̃ = C̃ε, C = S−
1
2 C̃ (3.16)

Solving eq. 3.16 consists in solving an eigenvalue problem (290), which is equivalent to

the diagonalization of the matrix F̃. When eq. 3.16 is solved one obtains the matrix with

the MO coefficients C and the matrix ε with the orbital energies.

3In quantum mechanics the variational principle minimizes the expectation value of an operator using a

trial function, which depends on many parameters. The optimization takes place by changing (optimizing)

the latter.
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The Fock operator, defined from the minimization of the HF energy as the sum of

effective one-electron Hamiltonians, is given by

F̂ =
∑
rs

frsÊrs (3.17)

frs = hrs +
occ∑
pq

[
(pq|rs)− 1

2
(rq|ps)

]
〈ΦHF| Êpq |ΦHF〉

= hrs +
occ∑
pq

[
Jpqrs −

1

2
Kpq
rs

]
〈ΦHF| Êpq |ΦHF〉

(3.18)

In the latter, 〈ΦHF| Êpq |ΦHF〉 corresponds to the element pq of the first-order density

matrix, D
(1)
pq (10, 65, 290). By definition, F̂ is a N -electron operator built as the sum

of one-electron operators. These describe: the energy of each electron in each spin-

orbital ψi when moving in the field defined by the nuclei (hrs); the repulsion to all other

electrons (J ijrs and Kij
rs). The repulsive component comes through the Coulomb (J ijrs) and

the exchange (Kij
rs) terms. The Coulomb operator has a classical interpretation, it gives

the electrostatic component of an electron in the field generated by the wavefunction (13).

The exchange operator is non-classical and gives the energy of exchanging electrons in such

field. Through the F̂ operator an electron sees all other electrons as a (mean) field and

not as independent particles. Consequently, the electron-electron repulsion is averaged

and one electron sees only the whole as an electronic cloud (10, 65, 290). Since F̂ is a

mean-field operator, HF is a mean-field theory.

Finally, because the Fock operator both depends and determines the MOs, the HF

equations are non-linear and must be solved iteratively.

Limitations of Hartree-Fock

To the HF two main limitations are usually pointed out. The first limitation comes

with the fact that the AO basis is incomplete. The basis set may be improved, but

this error due to the AO incompleteness is reduced only up to a certain point: the HF

limit. No matter how much one improves the AO basis, the HF energy will always be an

upper bound of the true energy of the system. This is related to the second and most

restrictive limitation: the approximation on the electron-electron repulsion interaction.

Because there are no explicit electron-electron interactions, HF always under-evaluates

the electronic repulsion energy: not only are energies predicted by excess, but also the

electronic cloud is broader (than the exact one) (290).

34



The HF method can in principle treat all kinds of systems, from closed- to open-

shell.4 But different systems require distinct treatment, according to the nature of the

MOs searched: Restricted Hartree-Fock (RHF) searches for spatial orbitals, and it is used

for closed-shell systems; Unrestricted Hartree-Fock (UHF) searches for spin-orbitals, and

is valid for both closed- and open-shell molecules; in Restricted Open-Shell Hartree-Fock

(ROHF) all β electrons are paired with α electrons in the same spatial orbital, and if

there still remain α electrons unpaired these are treated as being open-shell (6).

When searching for the GS of a closed-shell system the UHF wavefunction usually

collapses into the RHF solution. For open-shell systems UHF lowers the energy of the

respective RHF, if the latter is even possible to calculate. At dissociative bond lengths

the RHF solution breaks down, because it always forces double occupation. This is incon-

sistent with most bond breaking processes and unable to describe the di-radical nature

of most systems. However the effects of RHF’s forced double occupancy are felt allover

in a PES, not just at dissociative limits (65): i) energies are too high; ii) bond distances

are too small; iii) PESs become steeper than they actually are; iv) minima are misplaced;

v) wavefunctions have an excessive ionic character, increasing the norms of the dipole

moment vectors. The UHF provides better descriptions at dissociative bond distances,

as it allows the breaking in two radicals (290). However, this wavefunction is usually un-

physically contaminated with higher-order spins states, and therefore restricted solutions

are preferred around minima. At sufficiently large bond lengths unrestricted solutions

should be searched, where the RHF solution is no longer a minimum. At intermediate

bond lengths both methods prove themselves qualitatively inadequate: The RHF dou-

ble occupation imposition overshoots the energy, while UHF suffers from contamination

of states with higher spin. Even though UHF can qualitatively describe energy profiles

of bond dissociation processes, its wavefunctions are poor descriptors of these processes.

This becomes even more crucial when predicting other molecular properties, e.g. the total

spin (290), since UHF is not an eigenfunction of the total spin Ŝ2.

To remove the undesired spin contamination, whose relevance grows with the atomic

distances, the wavefunction is changed to a linear combination of configurations. This

keeps the qualitatively correct description of UHF, while still allowing to preserve the

correct spin state. The adoption of a multi-determinant nature of the wavefunction gives

rise to post-HF methods (for further details, cf. reference (290), pages 225-229).

There are many examples illustrating the inadequacy of HF wavefunctions in describ-

4A closed-shell system has an even number of electrons, all paired. An open-shell system does not

have all electrons paired.
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ing both the chemistry and properties of molecular systems. For instance, in the hyper-

surface of disilyne (Si2H2), a new local minimum was discovered with post-HF methods,

inexistent in any HF study (291). There is also the example of carbon monoxide (CO) for

which the dipole moment is qualitatively wrong, pointing to the wrong direction (292).

3.3 Correlation Energy

In HF, electrons avoid an electronic cloud instead of feeling each other electron as a

singular entity. Since the Hamiltonian is a sum of two-electron operators (terms with

(rij)
−1), the real wavefunction, in compliance with the Schrödinger equation, should at-

tend the condition (65)

lim
rij→0

ĤΨ (r1, r2, ..., rN) = EΨ (r1, r2, ..., rN) (3.19)

The limit in eq. 3.19 exists and is the energy of the system, a constant. But the func-

tion ĤΨ has a pole for all ri = rj, the Coulomb singularity. This brings a contradiction

in the equations because the local energy is a constant and it cannot possess singularities.

This singularity needs thus to be canceled out by another term in the Schrödinger equa-

tion. Because electrons do not necessarily have to be close to nuclei, the other singularity

can but only occur in the kinetic energy (65). Expanding the wavefunction in terms of

its Maclaurin series of rij and putting it in the Schrödinger equation, it is possible to

derive an expression that shows the requirement to remove the pole, eq. 3.20. This has

to further assume that electron pairs have singlet spin multiplicity, thus also that angular

terms can be ignored at low order (65).

∂

∂rij
Ψ (rij = 0) =

1

2
Ψ (rij = 0) (3.20)

Around the coalescence between the two electrons, the exact wavefunction has the

shape of a cusp due to the Coulomb hole, as depicted in Figure (Fig.) 3.1 (65). Thus

electrons avoid the instantaneous position of other electrons, making correlation a local

effect. Instead of being ignorant of the whereabouts of other electrons, each electron

rather avoids the field of every other electron. Furthermore, whichever direction is taken

from rij = 0, the wavefunction increases linearly (65). For triplet states, equivalent cusp

conditions exist, but as the electrons are already kept apart by the Pauli principle,5 the

effects of neglecting the correlation energy are not as relevant (65).

5Two fermions cannot occupy the same quantum state.
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Figure 3.1: The interelectronic cusp adapted from reference (65). Wavefunctions plotted

against z = z2 − z1, for x = x2 − x1 = 0 and y = y2 − y1 = 0.

The HF wavefunction does not respect the cusp condition 3.20, as its first derivative

zeroes for rij = 0 (65). Consequently, with its mean-field character, HF does not describe

the correlation of electrons.6

The analysis above defined a short-range type of correlation between electrons, also

known as dynamic or instantaneous correlation (6,65). Dynamic correlation is responsible

for the correct description of the electronic cusp and is dominant closer to minima. This

effect arises from electrons occupying the same spatial orbital and whenever chemical

bonds are close to dissociation, it is minimized. It happens that electron correlation is

not just a concept around minima in a PES. The correct bond dissociation profile defines

yet another type of correlation, known as static or non-dynamic correlation (6,65). Static

correlation becomes significantly more important at molecular dissociation, i.e., when

rij → +∞. For most chemical systems, bond dissociation processes occur in an even

fashion. This means that whenever a bond is broken, the two electrons making up the

former bond are distributed over the two newly-formed fragments. This is the case for

almost all covalent bonds. Static correlation is thus the effect responsible for the correct

description of bond dissociation processes. There is yet another type of electron correlation

effects. Whenever there is more than just one dominant configuration in a correlated

wavefunction, strong correlation effects arise. Both dynamic and static correlation occur in

specific regions of a PES. On the other hand, strong correlation effects are felt globally over

PES, from minima up to dissociation. Strong correlation is usually more significant for

ESs, even though there are several characteristic examples of molecules with already strong

correlation character in the GS. Since in the regime of strong correlation there is more

than just one leading orbital configuration, Single-Reference (SR) electron correlation

methods are inappropriate: wrong energies and wrong properties are predicted.

All types of correlation effects can be introduced by including all excited configurations

of the HF reference. Even though there is only a small overlap in the definitions of dy-

namic, static and strong correlation, it is not possible to clearly point exactly where each

6HF contains however exchange correlation.
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effect begins. As mentioned above, one can however identify the domain where each effect

is predominant. Nevertheless, the calculation of one always introduces some character of

the other types of correlation, even if just to minor extent (6, 63). Both dynamic and

static effects can be accounted for by extremely large wavefunction expansions. Strong

correlation by definition admits more than just one leading configuration, and can be

accounted for by methods which allow the calculation of multi-configurational functions.

This means that the multideterminant character is already introduced at the reference

level. Since correlation effects are described by the same kind of expansion (just to differ-

ent extents), a mathematical distinction between them cannot be introduced. Correlation

energy, Ecorr, comprises thus simultaneously dynamic, static and strong effects and is de-

fined as the difference between the exact and non-relativistic energy of a system, ε,7 and

the HF energy, EHF.

Ecorr = ε− EHF (3.21)

Because HF offers an upper bound to the exact energy, for other variational methods

correlation lowers the exact energy with respect to HF. The correlation energy takes thus

negative values (65).

Since obtaining the exact energy ε is not always possible, this quantity might be

substituted by the energy of a method X. Furthermore, HF might not be used as reference

and instead the energy of the reference method can be used, Eref . This yields the general

expression for the correlation energy of the method X, which is in practice used,

EX
corr = EX − Eref (3.22)

Making use of the adequate methods this definition allows to estimate the contributions

of dynamic, static or strong correlation effects.

The correlation energy comprises typically at most 1% of the total energy of a system

(40). Nevertheless, its magnitude matches the amplitude of the energies associated to

chemical or physical processes. The introduction of these effects is thus of utter relevance

to account for the chemistry and the physics of a system.

3.4 Single Reference Methods

The introduction of dynamic correlation is achieved mainly through three different

theories: Configuration Interaction (CI), Perturbation Theory (PT) and Coupled Cluster

7The Born-Oppenheimer approximation is usually also considered.
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(CC). These methods are not suitable to treat strong correlation (23), since they add

large expansions of configurations with only minor contributions each. The next sections

are dedicated to the first two of these methods for the SR case. For readers interested in

the CC theory, we refer them to, e.g., references (10,138,293).

3.4.1 Configuration Interaction

The full set of unique configurations built from HF’s MOs forms a suitable basis

of N -electron functions to expand multiconfiguration wavefunctions. Including these,

wavefunctions relax around minima and at dissociation limits: electrons are allowed to

avoid each other better by occupying other orbitals.8 The full set of configurations is

complete within an AO basis and includes not only the HF determinant but also all

possible excited configurations. A Configuration Interaction (CI) wavefunction takes a

set of these excited configurations as an ansatz. The wavefunction is thus written as

ΨCI = a0ΦHF +
∑
i=1

aiΦi = a0Φ0 +
∑
i=1

aiΦi (3.23)

Here, Φi, i > 0, is an excited SD and the ai, i ≥ 0, are amplitudes in the wavefunction (6).

Excited configurations are obtained by removing electrons from occupied HF orbitals and

putting these in virtual HF orbitals, a task performed directly by substitution operators

(eqs. 3.5 and 3.6). In the CI method the coefficients for this expansion are determined

using the Schrödinger equation and the variational principle. This optimization takes

place by minimizing the Rayleigh Quotient

Ē =
〈ΨCI| Ĥ |ΨCI〉
〈ΨCI|ΨCI〉

(3.24)

subject to the restriction that ΨCI remains orthonormal. This can once more be achieved

by zeroing the derivatives of the respective Lagrangian with respect to the expansion

coefficients ai. The residual equations of CI are thus given by (65)

Ri = 〈Φi|
(
Ĥ − E

)
|ΨCI〉 = 0 (3.25)

Alternatively, the diagonalization of the electronic Hamiltonian in the basis of configu-

rations yields all eigenvalues and eigenvectors of H. These correspond, respectively, to

8The typical example illustrating this feature is molecular hydrogen, H2 (42,292): With only one con-

figuration, both electrons are always forced to be paired, even at the dissociation limit where each electron

should populate each hydrogen atom; allowing a second configuration to contribute to the wavefunction

enables the spatial separation of the electrons, essential for the correct description of the dissociation

process.
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energies and wavefunctions of many electronic states. The method allows thus not only to

study GSs but also ESs, as they are also eigenstates of the electronic Hamiltonian (65,292).

If the full basis of configurations is used in the ansatz for ΨCI, the result is exact for

the N -electron subspace spanned by the determinants within the AO basis and other ap-

proximations taken.9 This energy is still an upper bound to the exact one, but for any AO

basis, the Full Configuration Interaction (FCI) energy is the closest possible to the exact

energy that can be calculated (292). Unfortunately, the total number configurations in

FCI grows too fast,10 and only (very) small molecules can be treated at this level of theory.

Consequently, CI is commonly used in truncated formulations. Truncated CI schemes on

the other hand limit configuration spaces to maximal orders of substitution, including for

each order all the possible determinants: CISD - includes all the possible single and dou-

ble substitutions; Singles Doubles Triples Configuration Interaction (CISDT) additionally

includes all triples. Any other order of substitution is neglected. Despite the truncation,

the Hamiltonian matrix can still easily reach dimensions of
(
106
)2

= 1012 (6, 65, 292).

This restricts CI to be only solved for a few states of interest, usually through algorithms

like Davidson’s (294).

Any truncated CI scheme has a severe drawback, the lack of both size consistency and

size extensivity (6,65,292). Size consistency is the property ensuring a consistent energy

behavior when two particles cease interacting. Thus for a non-interacting size consistent

system EAB = EA +EB (6,10). Size extensivity consists on the proper (linear) scaling of

the energy with the number of particles, ensuring that the amount of correlation energy

recovered is independent on the system’s size. From the definition, size extensivity implies

size consistency and these methods allow the direct comparison of calculations between

systems with changeable number of electrons (295). These are thus very important prop-

erties in electron correlation methods. Keeping size consistency and extensivity can be

usually achieved at the cost of losing variationality in the optimization. The immediate

consequence is that one does not know anymore whether the energy is being over- or

underevaluated.

9Namely the Born-Oppenheimer approximation and/or neglecting relativistic effects.

10For an N -electron system with 2m orbitals and n excited electrons there are
∑N

n=0

(
N

n

)(
2m−N

n

)
configurations (292).
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3.4.2 Single Reference Perturbation Theory

Perturbation Theory (PT) offers a non-variational, size extensive and size consistent

alternative to CI. In PT, the Hamiltonian Ĥ is partitioned into a zeroth-order component,

Ĥ(0), and a small perturbation, λV̂ . The perturbation term corrects the zeroth-order

approximation, making it exact (6,10,11,65).

Ĥ = Ĥ(0) + λV̂ (3.26)

The key concept in PT is that the perturbation is small. The rationale underneath PT is to

consider the real solution to differ only slightly from one previously found (6,10,11). The

exact energy and wavefunction are expanded as the Maclaurin series of the perturbation,

λ. This variable can in principle be chosen freely, even though it will in practice only

assume the values of zero (unperturbed or zeroth-order expressions) and one (perturbed

system). For small perturbations (40), the perturbation series convergences rapidly and

only the first few orders of perturbation need to be considered.

E =
∑
n=0

λnE(n)
(3.27)

Ψ = Φ0 +
∑
n=1

λnΨ(n)
(3.28)

Using both 3.27, and 3.28 in the Schrödinger equation, an expression with infinite

order on λ is obtained.

Ĥ(0)Φ0 + λ
(
Ĥ(0)Ψ(1) + V̂ Φ0

)
+ λ2

(
Ĥ(0)Ψ(2) + V̂Ψ(1)

)
+ ...

= E(0)Φ0 + λ
(
E(0)Ψ(1) + E(1)Φ0

)
+ λ2

(
E(0)Ψ(2) + E(1)Ψ(1) + E(2)Φ0

)
+ ...

(3.29)

Since 3.29 is valid for any λ ∈ R, for every power of λ an equation can be built. This sep-

aration of the Schrödinger equation into different orders of λ leads to the set of equations

describing perturbation theory:

Ĥ(0)Φ0 = E(0)Φ0, n = 0 (3.30)

Ĥ(0)Ψ(n) + V̂Ψ(n−1) =
n∑
i=0

E(i)Ψ(n−i), n ≥ 1 (3.31)

It is worth noting that according to eq. 3.31, the nth order equation depends on all the

n − 1 orders below, but not on any order above. This feature allows the perturbation

series to be truncated at a specific order n, without requiring knowledge about any order
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above. It can be shown that knowing Ψ(n) allows the calculation of the energy up to the

(2n+ 1)th order. This is known as Wigner’s (2n+ 1) rule (6,10).

In the formalism of Raylaeigh-Schrödinger Perturbation Theory (RSPT) Ψ(i) is spanned

using the CI ansatz (eq. 3.23). To make the theory applicable one needs only to define the

perturbation and the zeroth-order Hamiltonian. The choice of the latter is of uttermost

relevance, since this partitioning of the full Hamiltonian in a zeroth-order Hamiltonian

and a perturbation determines the performance of the method (40). To keep size con-

sistency and extensivity, the zeroth-order Hamiltonian is set to the sum of one-electron

Fock operators. This choice has two other significant advantages: Ĥ(0) is diagonal in the

canonical MO basis; Ψ(0) is an eigenfunction of Ĥ(0). The first-order equations can thus

be easily solved. The perturbation remains as the difference between the Hamiltonian

and the Fock operator (6,11).

Ĥ(0) =
∑
rs

Êrsfrs (3.32)

V̂ = Ĥ − Ĥ(0) = Ĥ − F̂ (3.33)

This choice of the zeroth-order Hamiltonian and perturbation comprises the premises of

Møller-Plesset Perturbation Theory (MP), giving rise to the family of nth-order Møller-

Plesset Perturbation Theory (MPn) methods.11 With this choice, the HF wavefunction

remains an eigenfunction of the zeroth-order Hamiltonian and the HF energy comes as the

sum of the first two orders of energy, i.e., EHF = E(0) +E(1). This means that correlation

corrections can only arise after the second-order in perturbation (6, 10, 11). Projecting

the reference on eq. 3.31 for n = 2 and rearranging in terms of E(2) defines the expression

for the second-order energy

E(2) =
∑
i 6=0

〈0| V̂ |Φi〉 〈Φi| V̂ |0〉
E

(0)
0 − E

(0)
i

(3.34)

Projecting each contribution to Ψ(1) on eq. 3.31 for n = 1 gives the residual equations,

which must once again zero. Alternatively, the residuals may be obtained by differenti-

ation of the Hylleraas energy.12 The full set of excited configurations essential to solve

the nth-order residuals forms the first-order interacting space. This is composed by all

11Note that originally Ĥ(0) was a diagonal operator since canonical orbitals were used. We decided to

follow here the generalization of MP theory to a non-diagonal Ĥ(0) (8), as this proves more useful for

the understanding of MRPT. The difference between canonical and non-canonical MP theory is that the

latter requires solving the residual equations iteratively, since there is no analytical solution. The results

are however equivalent.
12More details on the Hylleraas functional are given in section 4.11.
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non-zero Φrs
pq configurations (65). The residual equations determining each excited con-

figuration’s amplitude in MP2’s wavefunction are given by:

Ri = 〈Φi| F̂
∣∣Ψ(1)

〉
− E(0)

0

〈
Φi|Ψ(1)

〉
+ 〈Φi| V̂ |Φ0〉 = 0 (3.35)

In these expressions, E
(0)
0 is the sum of the energies of all occupied orbitals in the reference,

and E
(0)
i is the sum of energies of occupied orbitals in the excited configuration i (6). For

convenience, intermediate normalization of Ψ(1) is assumed, i.e.,
〈
0|Ψ(1)

〉
= 1.

Since the Hamiltonian is built as a sum of at most two-electron operators then for

second-order perturbation theory substitutions higher than double have no contribution.

Additionally, due to Brillouin’s theorem, singly excited configurations also zero. The first-

order wavefunction is thus left as a linear combination of doubly excited configurations,

which can be generated from the substitution operators 3.6 (65). This leads to the ansatz

Ψ(1) =
1

2

∑
ij

∑
ab

Φab
ij c

ij
ab (3.36)

with

Φab
ij = Êai,bjΦ0 (3.37)

Note that since Êai,bj = Êbj,ai also T ijab = T jiba, which accounts for the factor 1
2

in 3.36.

Using this framework, and assuming the use of canonical orbitals the amplitudes can

be derived from eq. 3.35 as

cijab = − Kij
ab

εa + εb − εi − εj
(3.38)

with the second-order energy thus defined as

E(2) = −
∑
ij

(2− δij)
∑
ab

Kij
ab

(
2Kij

ab −K
ij
ba

)
εa + εb − εi − εj

(3.39)

For non-canonical orbitals the expressions 3.38 and 3.37 differ by the fact that the closed-

shell Fock matrix is no longer diagonal, thus fij 6= εiδij. The virtual block of the Fock

matrix can however be made diagonal. The amplitudes are in this case calculated using

a perturbative update instead. In iteration iter the amplitude c
ij(iter)
ab is defined as

c
ij(iter)
ab = c

ij(iter−1)
ab − R

ij(iter)
ab

εa + εb − fii − fjj
(3.40)

where c
ij(iter−1)
ab is the value of the same amplitude in the previous iteration (c

ij(0)
ab = 0),

and R
ij(iter)
ab is the value of the residual equation for that same pair for the iteration iter.
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At low orders, PT recovers a significant percentage of dynamic correlation (8, 41).

Second-order MP (MP2) recovers typically 80 to 120% of the correlation energy. This

is also the least expensive post-HF method, scaling with O(M5). Third-Order Møller-

Plesset Perturbation Theory (MP3) accounts for typically 90 to 110% of the correlation

energy, scaling with O(M6). The accuracy of Fourth-Order Møller-Plesset Perturbation

Theory (MP4) can go up to 98 to 102% of the correlation and the method scales with

O(M7) (208,209). Calculations beyond MP4 are rare. Although MP4 improves over MP3,

which in its turn improves over MP2 (10), there is no guarantee that the perturbation

series is convergent. There are indeed many examples showing otherwise. Furthermore,

now-a-days, only MP2 and MP3 are still in use, since for equivalent computational costs,

CC methods offer more accuracy and better results (6).

In PT it is not ensured that the calculated energy ceils the exact energy of the system.

As PT considers the perturbation of a system to be rather small, if HF meagers as a

reference, the equations acquire inferior convergence until divergence occurs. This is

indeed the case when the HOMO-LUMO gap becomes too small, causing the energy

to diverge. Everytime bonds are stretched to dissociation, MPn methods are typically

doomed to fail, mostly due to the quality of the reference wavefunction (6, 10). This

liability can only be overcome by generalizing the theory to multiconfiguration references.

3.5 Multireference Methods

Whenever correlation effects take a purely dynamic character, HF offers a proper

zeroth-order approximation. SR methods will be accurate enough for both correlation

energies and correlated wavefunctions. For systems with high strong correlation character

the HF wavefunction is only one of the leading contributions. It no longer is a satisfactory

starting point and consequently SR methods are no longer adequate. A method improving

the reference wavefunction for such cases is the Multi-Configuration Self-Consistent Field

(MCSCF). The MCSCF provides a reference with multiconfigurational character, and

unlike CI, PT or CC will not aim for dynamic correlation. Instead, a balanced and

qualitatively correct wavefunction is searched. For quantitative solutions one may apply

on top of the MCSCF the CI formalism (yielding Multireference Configuration Interaction

(MRCI) theories), Perturbation Theory (giving rise to Multireference Perturbation Theory

(MRPT)), or even Coupled Cluster (Multireference Coupled Cluster (MRCC) methods).

As their name already suggest, these methods are labeled Multireference (MR).

Typical examples of strong MR cases are diradicals like Ozone, benzynes or carbenes.
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For these molecules, energies and properties are not correctly predicted using SR methods.

ESs belong also to the class of typical MR systems (63). In a truly simplistic approxima-

tion, the lowest ESs may be described by one excited SD. This means that we restrict the

transition to single excitations, e.g., n→ π∗ or π → π∗. Such cases are rarely true, and as

the ESs move energetically farther from the GS (e.g. Rydberg states) the density of states

of states increases and different electronic states will mix. Large systems with extended

conjugation with an almost vanishing HOMO-LUMO gap (63) and organometallic com-

pounds are also typically MR. As a consequence of the high strong correlation character

of these systems, they show variable occupation patterns. It is still worth mentioning the

cases of avoided crossings, when two electronic states come energetically close enough for

some particular geometries. These are common for photorelaxation processes (93). Cases

like these can only be treated with purely MR wavefunctions (47).

PES in general and partially broken/formed bonds in particular, like Transition States

(TSs), are also cases which might require a MR treatment. Around stable minima the

HF solution is usually the leading configuration in a wavefunction, acting thus as a good

reference. But closer to the dissociation limits of chemical bonds, higher spin multiplicities

start having a significant weight in the wavefunction. Therefore single-determinant based

solutions do not provide accurate enough results, sometimes not even correct dissociation

profiles. The dissociation of F2 calculated with Perturbation Theory using both SR and

MR methods is presented below. Using MR methods is possible to obtain a balanced

global description of PESs (43), not only for the description of dissociation processes but

also of the many electronic states.
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Figure 3.2: PES for the F2 molecule from 1.1 to 3.5 Ångstrom.

This does not mean though that SR methods cannot predict excitation energies with

some accuracy, nor give correct dissociation profiles. We can surely mention the exam-
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ples of CC2 (221, 222, 224, 225, 296)13 or equation of motion CC methods (297–301),

successful in the calculation of excitation energies. The recently introduced Distinguish-

able Cluster method is also particularly efficient when studying multiple bond breaking

processes (302). In any case, a general treatment of any MR system and its chemistry

(not simply properties like excitation energies) requires a reliable theoretical description

of properly adapted methods (14,126).

The next section provides a short introduction on the multi-configurational reference

using Multi-Configuration Self-Consistent Field (MCSCF).

3.5.1 Multi-Configuration Self-Consistent Field

In a very simplistic way, Multi-Configuration Self-Consistent Field (MCSCF) is an

extremely reduced truncated formulation of the CI method. Here, both the orbitals and

a wavefunction containing only the leading configurations from the FCI expansion are

optimized.

ΨMCSCF =
∑
R

cRΦR (3.41)

The configurations |ΦR〉 = |R〉 are typically Configuration State Functions (CSFs)

(these are detailed in section 4.2) describing pure spin states. This ensures that resulting

wavefunctions are eigenfunctions of the total spin. Since the aim of MCSCF is to introduce

strong correlation, the wavefunction expansion comprises a significantly reduced number

of configurations, just enough to give the wavefunction a multi-configuration character.

Furthermore, in MCSCF, the orbitals are also optimized, being thus possible to let them

relax. The most detailed description possible of the orbitals is of utmost importance,

as the MCSCF is especially built to provide reference wavefunctions for more refined

electronic correlation treatments. The full optimization is performed variationally, such

that the HF solution appears as a restriction of MCSCF to single determinant cases.

Hence, for any given AO basis, the MCSCF energy will always lie between HF’s and

FCI’s (45,48).

EHF ≥ EMCSCF ≥ EFCI (3.42)

The description given above is mostly general, and indeed several MCSCF formulations

are possible. A first difficulty is the selection of configurations to span the wavefunction

(47). Of the possible formulations, the Complete Active Space Self-Consistent Field

13An approximated CCSD method based on linear response theory
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(CASSCF) provides the most simple selection procedure (48–50).14 In CASSCF three

different sets of orbitals are identified: closed-shell (i, j, k and l), active (t, u, v, w, x, y

and z) and virtual (a, b, c and d). One may furthermore define 2 more sets of orbitals

and one subset: the internal space (m and n), which is the union of the closed-shell and

active; the set of all orbitals, defined as the union of all 3 sets (p, q, r and s); the set of

core orbitals, a subset of the closed-shell. Each closed-shell orbital is doubly occupied in

every configuration. Virtual orbitals are always vacant in CASSCF configurations. Active

orbitals have an overall net occupation as a set, leaving the occupation number of each

active orbital free. This is thus a number between 0 and 2, the average of all occupation

numbers in the reference configurations with the CI coefficients acting as weights (45,48).

Typical occupation numbers for active orbitals lay between 0.02 and 1.98 (63). Finally,

core orbitals are the innermost orbitals in a system, from lower shells, and correspond in

essence to free-atom orbitals in a molecule (46). These usually have extremely low energies

and are well separated from the rest of the closed-shell orbitals. Core orbitals are thus

usually not correlated (45) and will be omitted from here on. To build the active space

one unites a small subset of external HF orbitals with a small subset of it’s occupied ones.

A suitable active space contains all orbitals changing significantly along the coordinates

of a transformation, and choosing those orbitals should provide a balanced wavefunction.

Unbalanced solutions overestimate the bi-radical character of the system. A special case

of active spaces is the full valence active space, which considers all valence orbitals in this

orbital set. Since molecular systems usually dissociate to valence states of the constituent

atoms, then the full valence active space ensures an appropriate description for practically

all molecular processes. Having selected an active space, one may describe the Complete

Active Space (CAS) reference with CAS[N,M ] (6, 10), where N is the number of active

electrons and M the number of active orbitals.

The CASSCF wavefunction is built as an FCI expansion of the active space, correlat-

ing only these orbitals (48, 51, 303–307). It includes thus the complete set of CSFs built

by arranging the active electrons amongst the active orbitals in viable ways consistent

with both the spin and the space symmetries (58). The problem of selecting the most rel-

evant configurations is relegated to the selection of the active orbitals. Even if the ansatz

becomes wasteful by including less relevant configurations, the FCI nature of CASSCF

enables the use of efficient techniques. This renders in the end an easier and less cum-

bersome calculation than smaller and more general MCSCF calculations with the same

14The first version for this model was first proposed by Ruedenberg as Full Optimized Reaction Space

(FORS) (51,52).
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internal orbital space (45). On the other hand, even small CAS spaces may easily be-

come unmanageable. To overcome this liability and increase the number of active orbitals

treated in the MCSCF, simplifications like Restricted Active Space Self-Consistent Field

(RASSCF) have been proposed (308). This method consists in a restriction to CASSCF in

which the active space is further partitioned into three Restricted Active Spaces (RASs):

RAS1; RAS2; RAS3. The FCI expansion is only done to RAS2. In both other RAS

spaces the structure of the configurations is restricted such that orbitals in RAS1 act as

electron donors in substitutions, while orbitals in RAS3 act as electron acceptors (6,63).

Seeing the MCSCF as another truncated version of CI allows to succinctly describe

its general procedure. The energy has to be made stationary with respect to changes

in the coefficients of the wavefunction (cR) and the orbitals. The full optimization is

performed by diagonalizing the electronic Hamiltonian over the MCSCF wavefunction

basis set (3.41), i.e., minimizing the expression

EMCSCF = 〈ΨMCSCF| Ĥ |ΨMCSCF〉 =
∑
mn

hmnD
(1)
mn +

1

2

∑
mn

∑
m′n′

(mn|m′n′)D(2)
mn,m′n′ (3.43)

The first- and second-order density matrices are defined by contracting expansion coeffi-

cients with coupling coefficients,

D(1)
mn = 〈ΨMCSCF| Êmn |ΨMCSCF〉 = 〈0| Êmn |0〉 =

∑
RR′

cRcR′ 〈R| Êmn |R′〉

D
(2)
mn,m′n′ = 〈0| Êmn,m′n′ |0〉 =

∑
RR′

cRcR′ 〈R| Êmn,m′n′ |R′〉
(3.44)

Eq. 3.43 is valid under the restriction that both the MCSCF wavefunction and the orbital

basis are orthonormal, i.e.

〈ΨMCSCF|ΨMCSCF〉 =
∑
R

|cR|2 = 1 (3.45)

〈φm|φn〉 = 〈m|n〉 = δmn (3.46)

To minimize the energy (3.43) under the constraint 3.45 one builds the Lagrangian

L =
∑
R,R′

cR 〈ΦR| Ĥ |ΦR′〉 cR′ − ε
∑
R

(
|cR|2 − 1

)
= 0 (3.47)

and zeroes its differential with respect to the coefficients cR,

∂

∂cR
L =

∑
R′

〈ΦR| Ĥ |ΦR′〉 cR′ − 2εcR = 0 (3.48)

These are the usual eigenvalue equations for regular CI theory (45).
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The optimization of MOs follows a parameterization by orthogonal rotations among

these, where the rotations are defined by a unitary transformation. Older MCSCF pro-

grams truncated the orbital rotations to second-order expressions in terms of the rotation.

Using these programs, for most cases, ca. 10 iterations are required to optimize a wave-

function, with a relatively high computational cost for each iteration. This is because

both the gradient and the Hessian matrix must be built for each set of MOs. The radius

of convergence is rather reduced, as the periodicity of orbitals cannot be described. Such

liability may be improved by direct inclusion of higher orders of energy derivatives, which

then makes the method more expensive as well (45).

More recent implementations offer an alternative, which is able to express orbitals

in infinite order with respect to the orbital rotations, thus keeping the orbitals peri-

odic (43, 309). The algorithm becomes more robust and convergence is also improved.

This Lagrange coupled MCSCF program works in two steps, the macro- and microiter-

ations. Simply put, the macroiterations consist in the (re)calculation of the Coulomb

and exchange integrals, as well as a variational energy. The microiterations consist in

the iterative calculation of the orbitals and CI vector for fixed integrals obtained in the

macroiterations. When a minimum is found, the orbitals are transformed. Of course this

method has the additional complication arising from the non-linearity of the equations

in the microiterations, but this is usually overcome by the use convergence accelerators

like Direct Inversion of the Iterative Subspace (DIIS).15 The number of macroiterations

is usually very low, about 3, which is a result of the method’s almost cubic convergence.

Additionally, the radius of convergence is significantly larger than purely second-order

methods, making it more suitable for general application (45).

MCSCF is now routinely used to obtain wavefunctions for GSs and ESs. A general

treatment of the later requires multiroot capability to retrieve the coefficients for the

wavefunction of the desired state, and in principle a set of orbitals is obtained for each

calculated electronic state. However, this procedure yields ill-defined MCSCF wavefunc-

tions (44), since one set of orbitals is only suitable for one state. Alternatively, a single set

of state-averaged orbitals can be calculated in the MCSCF procedure (52,309,312). This

brings many advantages, namely stabilized convergence and prevention of root-flipping

problems, which can occur for close-lying electronic states (313). Furthermore, using a

15DIIS is an extrapolation procedure, which both forces convergence and reduces the number of itera-

tions. For each iteration, it finds the point with the lowest error by minimizing an error function subject

to the normalization constraint. This minimization is then used to generate an extrapolated Fock matrix

for each iteration (6,310,311).
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single set of orbitals for several states eases the calculation of properties like transition

moments (314). The differences between state-averaged and single-state MCSCF is basi-

cally in the calculated orbitals and in the respective density matrices. The latter become

the average of the respective densities for the x states included in the calculation, D
(1)
x ,

using as such the weight of each state wx. E.g., the state-averaged first-order density D
(1)
SA

is given by (
D

(1)
SA

)
mn

=
∑
x

wx
(
D(1)
x

)
mn (3.49)

3.6 Local Methods

Local methods aim to reduce CI expansions both at the configuration and orbital

levels by using a suitable orbital basis. The use of local orbitals allows the exploration

of the locality of correlation effects, meaning that correlation effects between two elec-

trons far enough are minor if not even negligible (132). Furthermore, local orbitals offer

an interpretation resembling chemical intuition (132), similar to the concepts of Lewis’

structures. The changes in orbitals in these methods occur at two levels: i) the occu-

pied space is localized, generating Localized Molecular Orbitals (LMOs); ii) the virtual

space is expressed in a local basis. A local/localized orbital is a probability density func-

tion which takes the value of zero outside a (significantly) restricted spatial region of a

molecular system (132). The difference between local and localized orbital is however

at the mathematical level: localized orbitals are obtained by minimizing/maximizing a

functional; a local orbital requires changing to a local basis. While the localization is a

non-singular unitary transformation (134) that introduces no approximation at the SCF

level (132, 134), a transformation matrix to a local basis yields a different orbital space

with different properties, which might even have different dimensions.

The localization of occupied spaces to generate LMOs is possible whenever these sets of

MOs are invariant to unitary rotations. This is the case of both HF and MCSCF orbitals.16

The success of these techniques depends on the general structure of the functional used

to determine the orbitals, especially the presence of strong and isolated minima (157).

However, the localization scheme itself does rarely play a relevant role for the efficiency

and accuracy of the local method (283). There are several possible localization schemes

available, of which the most widely used are the method of Boys (169–171) and the one

of Pipek and Mezey (172). Common to all localization methods is that the Fock matrix

16For the case of MCSCF the closed-shell and active spaces can be localized separately.
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is no longer diagonal (132) and that the diagonal elements of the Fock matrix are not

orbital energies with physical meaning. However, orbital orthogonality is usually kept. All

these methods yield a set of MOs with coefficients Lµi, which are gathered in a coefficient

matrix L.
|φi〉 = |i〉 =

∑
µ

|χµ〉Lµi =
∑
µ

|µ〉Lµi (3.50)

In the method of Boys the spatial extension of MOs is minimized. This is accomplished

by minimizing the functional

B =
m∑
i=1

〈φiφi| (|r1 − r2|)2 |φiφi〉 (3.51)

Although rather inexpensive (132), LMOs built from this procedure usually mix σ-π

orbitals. This leads to asymmetric solutions, which might not even be unique (147).

A similar approach is the one of Edmiston and Ruedenberg (315), where localized

orbitals are obtained by maximizing the intraorbital Coulomb repulsion (6,132).

ER =
m∑
i=1

〈φiφi|
(

1

|r1 − r2|

)
|φiφi〉 (3.52)

This naturally requires the availability of Coulomb integrals, which have a computational

high cost. Therefore, the method of Edmiston and Ruedenberg is not commonly used.

Nevertheless, this method improves over Boys localization as it allows for a clear separa-

tion of σ and π orbitals.

In a completely different approach, the Pipek-Mezey method (172) maximizes Mulliken

atomic charges, meaning that for each LMO i the functional

PM =
atoms∑
A

(
AO∑
α∈A

AO∑
β

qαiSαβqβi

)2

(3.53)

is maximized. This method produces a set of orbitals with clear σ-π separation as well

(132,173,316), but unphysically tied to the basis set.

An improvement over the latter came recently with the introduction of Intrinsic Bond

Orbitals (IBOs) (173), based on free-atom AOs (317–319). With IBOs an intrinsic mini-

mal basis is defined in a first instance, in order to exactly describe the occupied MOs of

a wavefunction. This minimal basis is then orthonormalized, dividing one-particle spaces

into many atomic contributions, Intrinsic Atomic Orbitals (IAOs). IBOs are built from

orthogonalized IAOs by rotating these in order to maximize the number of electrons in

each LMO.

IBO =
atoms∑
A

occ∑
i

(
2
∑
µ∈A

〈i|µ〉〈µ|i〉

)n

(3.54)
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In the expression above, µ runs over the IAOs of atom A and the exponent n takes the

values of 4 or 2. IBOs are very similar to the orbitals resulting from the Pipek-Mezey

method. They keep a clear distinction between σ and π orbitals (173) and allow for the

analysis and chemical interpretation of wavefunctions. However, IBOs are insensitive to

basis set variations and do not suffer from artifacts of diffuse basis sets.

Having localized the internal molecular spaces, gains in computational efficiency can

be obtained if the virtual space is changed to a local basis (132). There are many possible

choices of virtual orbitals, the most popular being Projected Atomic Orbitals (PAOs), Pair

Natural Orbitals (PNOs) and Orbital Specific Virtuals (OSVs). No matter which choice

is taken, the substitution spaces are always reduced, becoming only subsets (domains) of

the full virtual space (66, 136). This sacrifices however orbital invariance. The cuts are

not random and follow specific criteria, which depends on the choice of virtuals. Their

purpose is to ensure minimal loss in accuracy according to the thresholds used.

The domain approximation can be easily pictured in a physical or spatial way (132):

the farther orbitals are apart from each other, the harder it should be for the electronic

substitution to take place, having thus a smaller weight in the global wavefunction. This

restriction is not just intuitive, it has a mathematical basis (132, 148). The correlation

energy of an electron pair mn is in PT proportional to
∑

ab (Kmn
ab )2. The magnitude of

the integrals Kmn
ab depends on the value of the differential spatial overlaps ρam and ρbn.

Kmn
ab =

∫
R3

ρam(r1)
1

r12

ρbn (r2) dr1dr2 (3.55)

ρam(r) = φa(r)φm(r) (3.56)

If m (n) is a LMO with charge center in Rm (Rn) and if a (b) is a local virtual near m (n),

then ρam (ρbn) is local and is centered around Rm (Rn). By expanding the orbitals m and

a as Gaussian functions, then the integrals Kmn
ab will be a combination of functions which

decay exponentially with the distance Ram = |Rm −Ra| (148). As such, if the internal

orbitals and the respective substitution space do not span the same spatial region, then

the energy contribution of that respective substitution is in practice negligible.

With the domains for each LMO m, [m], domains for pairs are assembled by uniting

the domains of two orbitals m and n, i.e., [mn] = [m] ∪ [n] (136) (for the case of PAOs

and OSVs) or by finding a common domain with a specific procedure (PNOs). Since the

internal space is localized and the virtual space is local, domain sizes are (significantly)

smaller than the full canonical virtual space. In the case of PAOs, for each LMO m the

substitution space contains one to two shells of neighbouring atoms (148). This typically
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corresponds to local virtuals centered on two to eight atoms (147). There are thus three

main consequences from using domain approximations: i) transformation matrices to

local basis are rectangular, with more rows than columns (149);17 ii) the dimensions of

amplitude and residual tensors are reduced, leading to a speed up of the calculation;

iii) the domain sizes become independent of the molecular size, given that the molecules

are large enough (2, 68, 134, 136, 216). Thus, domain approximations ensure that the

correlation space for each orbital pair does not increase unphysically with the molecular

size (68,132).

To select a domain for an LMO m many criteria may be used:

â Spatial or distance - A local virtual belongs to m’s domain if it is within a certain

radius from the atomic centers of m (PAO).

â Energy - All virtuals in the vicinity of m belong to its domain until at least x% of

the correlation energy is recovered (PNO,OSV,PAO).

â Occupation number - Densities are built for an orbital m or pair mn and then

diagonalized. The eigenvalues define occupation numbers for each local virtual. All

virtuals with an ”occupation number” larger than a threshold belong to the domain of m

(or mn) (PNO,OSV).

Domain approximations reduce drastically the number of excited configurations built

for each orbital pair. However, these do not affect the number of pairs, which without in-

troducing further approximations, still scale quadratically with the system’s size. Orbital

pairs can thus be sorted according to specific criteria that allows treating different pair

classes at different levels (2,66,136). This differential treatment is known as pair approx-

imations. These different pair classes can be determined using: the minimum distance

R between any atoms in the domains of i and j (2, 3, 150); atomic connectivity (3, 150);

MP2 energy contributions (1, 136). The connectivity scheme keeps the definition of pair

classes independent of bond lengths and atomic sizes, and it is equivalent for any molecule.

However, some atoms might be spatially close, even though they are separated by many

bonds. Such pairs might have strong contributions to correlation but are nevertheless

wrongly classified according to bond criteria. Mixed schemes are also possible, for which

distance criteria determines distant and very distant pairs, while the other classes are

determined by bond criteria.

Pair approximations are made possible from the definition of the exchange integrals as

well, c.f. eq. 3.55. In the conditions above specified, for local ρam and ρbn, the larger the

17Because only square matrices are invertible, the transformation to a local virtual basis is unidirec-

tional: from canonical to local in the residuals and reversed for amplitudes.
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distance between m and n, then the larger is the distance between ρam and ρbn (148). This

means that the exchange integrals take smaller values and the contribution of a specific

substitution to the correlation energy has but a minor weight. If the summed contribution

of an orbital pair is barely noticeable in the total correlation energy, then this pair can

either be completely neglected or treated at a different (lower) level of theory.

Pair and domain approximations come without much loss in accuracy (when incor-

rectly applied, pair approximations may cause errors up to 10 kcal/mol in energy dif-

ferences (265)). Typically 0.5% or even less is lost of the total correlation for a triple-ζ

quality basis set (133). However, domain and pair approximations are responsible for the

major improvements in the computational costs and are essential for the success of local

methods. Without pair and domain approximations, linear scaling electron correlation

methods would not have been possible (2, 3, 133, 215–219, 228, 231, 234, 236–240). Last,

but not least, local approximations typically reduce the effect of undesired errors, like

basis set superposition errors (8,132).

In summary, since amplitude matrices are usually organized by orbital pair, pair ap-

proximations reduce the number of amplitude matrices required in a calculation (148).

Domain approximations reduce the dimensions of each amplitude matrix.

3.6.1 Transformation to Local Virtual Orbitals

Although many choices of virtuals are available, the transformation from canonical to

local virtuals follows a common procedure (148, 149). In this section such general pro-

cedure is given for general transformation matrices Qij and general local virtual orbitals

αij in the domain [ij]. In other sections, specific transformation matrices are detailed for

each different choice of local virtuals. The transformation matrices Qij for each pair ij

transform canonical orbitals into general local virtuals in the domain ij, αij.∣∣αij〉 =
∑
a

|a〉Qij
aα (3.57)

Since local virtuals are not a priori orthogonal, overlap matrices are defined as well,(
S[ij,kl]

)
αβ

=
〈
αij|βkl

〉
=
∑
ab

Qij
aα〈a|b〉Qkl

bβ =
(
Qij†Qkl

)
αβ (3.58)

Because pair functions are transformation invariant, it follows that∑
ab

|ab〉cijab =
∑
αβ

∣∣αijβij〉cijαβ (3.59)
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Inserting eq. 3.57 in 3.59 results in the following transformation for amplitudes

cijab =
∑
αβ

Qij
aαc

ij
αβQ

ij
bβ (3.60)

A similar expression transforms singles amplitudes as well. The difference is that these

only depend on one virtual index. Since there is a dependence on one closed-shell index,

one either uses the domain for the orbital i (PAO) or for the pair ii (PNO).

cia =
∑
α

Qi
aαc

i
α (3.61)

The residual equations on the other hand are transformed from the canonical to the

local basis,

Rij
αβ =

∑
ab

Qij
aαR

ij
abQ

ij
bβ (3.62)

Again, the residuals for singles transform analogously. The transformed residuals contain

all the integrals in the local basis, subject to domain restrictions.

3.6.2 Local Density Fitting

Imposing a particular structure to tensors is an efficient way of reducing the compu-

tational effort required for the calculation of a particular quantity (131). This can be

achieved, e.g., by factorizations over auxiliary indices. Typical methods are the Cholesky

decomposition18 or Density Fitting (DF). DF consists on approximating the charge distri-

butions ρai = φaφi using an auxiliary basis of functions {A} (137,148,226,227,320,321).

ρai '
∑
A

χAd
A
ai = ρ̃ai (3.63)

By minimization of the self-interaction of the error eSI (322)

eSI = 〈(ρai − ρ̃ai)|
1

r12

|(ρbj − ρ̃bj)〉 (3.64)

the following approximation to two-electron integrals is obtained:

(ai|bj) '
∑
AB

(ai|A) J−1
AB (bj|B) =

∑
A

(ai|A) dAbj (3.65)

with

JAB = (A|B) =

∫
χA (r1)

1

r12

χB (r2) dr1dr2 (3.66)

18Factorization of a matrix A into the product of a lower triangular matrix V by its conjugate transpose,

A = VV∗.
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(B|ai) =

∫
φa (r1)φi (r1)

1

r12

χB (r2) dr1dr2 (3.67)

dAai =
∑
B

J−1
AB(B|ai) (3.68)

Because the integrals are fitted with the aid of the auxiliary basis, the efficiency of

this procedure significantly improves by increasing the size of the auxiliary basis, as the

fitting becomes more flexible (322). There are in the literature many DF bases available.

The optimization of the two DF bases used in this work can be found in (322,323).

The calculation of two-electron integrals using DF starts with the calculation of the

two- (eq. 3.66) and three-center (eq. 3.67) integrals, which are significantly less in number

than the full set of four-center integrals (148). The three-center integrals are calculated

in the AO basis, and then they are converted to the MO basis by contraction with the

MO coefficient matrices C (in the canonical basis).

(B|ai) =
∑
µν

(B|µν)CµaCνi (3.69)

To calculate integrals as just the contraction of two quantities, the J−1
AB term is split in

two symmetric parts using Cholesky decomposition. This yields lower triangular matrices

V such that J−1
AB = VV∗ = VV†. These matrices V rotate the integrals over the aux-

iliary basis to yield the quantities
(
Ā|ai

)
. Building these rotated integrals has the great

advantage of considerably reducing the data that needs to be stored (324).(
Ā|ai

)
=
∑
B

VĀB (B|ai) (3.70)

These
(
Ā|ai

)
integrals are then contracted with themselves to approximate the (ai|bj)

integrals, similarly to 3.65.

(ai|bj) =
∑
Ā

(
Ā|ai

)(
Ā|bj

)
(3.71)

The expression 3.71 can be evaluated in any orbital basis for the internal, virtual and

auxiliary spaces. However it is advantageous to evaluate the integrals in a local basis,

which can use local approximations to reduce the computational effort. This gives rise to

local variants of DF (3,148,228–235). In these conditions, eq. 3.69 is rewritten using the

coefficient matrices for LMOs and PAOs, respectively L and P, to yield

(B|r̃i) =
∑
µν

(B|µν)Pµr̃Lνi (3.72)
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where i refers to an LMO in 3.72. When calculating the integrals (r̃i|s̃j) using local

approximations the indices r̃ and s̃ are restricted to the domains of i and j. Addition-

ally, domain approximations can also be applied to the auxiliary basis functions given

that also these are local (3). Since with the domain approximation the number of r̃ and

A in each domain is independent of the molecular size, then i) the number of integrals

required in the summations in eqs. 3.71 and 3.70, and ii) the number of integrals re-

quired to calculate are significantly reduced. However, transforming the integrals (B|µν)

to (B|µi) =
∑

ν (B|µν)Lνi scales quadratically with the molecular size. To achieve linear

scaling the sparsity of LMO coefficient matrices must be also employed. Directly neglect-

ing smaller Lµm matrix elements leads to sizeable errors. Instead, a parameter lm can be

defined to control which elements in the LMO coefficient matrices are set to zero. lm is

built by contracting the coefficient matrices over the AO dimension

lm =
∑
µ∈C

LµmLµm (3.73)

This sum goes over all orbitals located at an atomic center C. If lm is smaller than a

given threshold TLMO, then all the coefficients Lµm are zeroed. The approximate LMOs

obtained by neglecting smaller Lµm elements are then fit to the original LMOs using the

least squares technique. The same can be applied to PAO coefficient matrices but with a

smaller influence in efficiency (148).

DF is now-a-days widely used in all methods of quantum chemistry, making them sig-

nificantly faster (3). The errors introduced by DF are typically negligible and systematic.

Therefore, the errors introduced will tend to cancel out for energy differences (3).

3.6.3 Multipole Approximation

Another important approximation used to significantly reduce the cost of compu-

tational resources in electron correlation treatments is the Multipole Approximation

(MPA) (137, 214, 325). A two-electron integral (am|bn) can be expressed in terms of

the product of charge distributions ρam and ρbn over the r12 operator. This is given in

eqs. 3.55 and 3.56. For the following analysis, we assume that we are dealing with local-

ized and local orbitals. Canonical orbitals are delocalized through the whole system and

the multipole expansion becomes divergent (325). PAOs were originally used in the work

of Hetzer et al. (214,325). OSVs have also been successfully used (137,148).

To build the integrals (am|bn) in a multipole expansion one starts by expressing the

Coulomb operator (r12)−1 in terms of the electron coordinates with respect to their orbital
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charge centers (r̄). For electrons 1 and 2 (respectively) in orbitals m and n,

r12 = |r2 − r1| = |r̄2 − r̄1 + Rn −Rm| = |r̄2 − r̄1 + R| (3.74)

The Coulomb operator comes thus as (quantities not in bold are the norms of the tensor

in bold)

1

r12

=
1

(r2
12)

1
2

=
[
R2 + r̄2

1 + r̄2
2 + 2R.r̄1 + 2R.r̄2 − 2r̄1.r̄2

]− 1
2

=
1

R

[
1 +

1

R2

(
r̄2

1 + r̄2
2 + 2R.r̄1 + 2R.r̄2 − 2r̄1.r̄2

)]− 1
2

=
1

R
(1 + x)−

1
2

(3.75)

x = r̄2
1 + r̄2

2 + 2R.r̄1 + 2R.r̄2 − 2r̄1.r̄2 (3.76)

Expanding then the function (1 + x)−
1
2 in its Maclaurin series we get

1

r12

=
1

R

∞∑
k

akx
k =

1

R

∞∑
k

[
1

k!

(
dk

dxk
(1 + x)−

1
2

)
x=0

]
xk

=
1

R

∞∑
k

(−1)k(2k)!

22k
(k!)2xk

(3.77)

For x < 1 (or sufficiently large R) the above series is convergent. Inserting then 3.76 in

3.77 we obtain
1

r12

=
∞∑
n=0

1

Rn+1

n∑
m=0

Vm,n−m

(
r̄1, r̄2, R̃

)
(3.78)

where R̃ = R
R

. Using the series 3.78 in the definition of the exchange integrals (eq. 3.55)

and truncating the series 3.78 at a given order p = n+1 we can approximate the integrals

(am|bn) as:

(am|bn)(p) =

p+1∑
n=2

1

Rn+1

n−1∑
m=1

∫ ∫
ρam (r1)Vm,n−m

(
r1, r2, R̃

)
ρbn (r2) dr1dr2 (3.79)

Eq. 3.79 is a finite sum of integrals of Vm,n−m over the spatial overlaps ρam and ρbn. Note

that there are no contributions from the orders n = 0 nor n = 1, because the overlaps

ρam cannot carry any charge. The first non-vanishing term is with n = 2. p is thus

the highest order of multipole operators used in the approximation. For p = 1 one only

uses the first-moment vectors, consisting this in the dipole-dipole approximation to the
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MPA. p = 2 includes up to second-moment terms, introducing additionally the dipole-

quadrupole interaction, p = 3 introduces the quadrupole-quadrupole and dipole-octopole

interactions, etc.. For the first-moment approximation (p = 1, m = 1)

V1,1

(
r1, r2, R̃

)
= −2a1r̄1.r̄2 − 8a2(R̃.r̄1)(R̃.r̄2) = r̄1.r̄2 − 3(R̃.r̄1)(R̃.r̄2) (3.80)

and

(am|bn)(1) =
1

R3

[
〈a|r|m〉 . 〈b|r|n〉 − 3

(
R̃. 〈a|r|m〉

)(
R̃. 〈b|r|n〉

)]
(3.81)

where 〈a|r|m〉 are dipole moment vectors evaluated over the orbitals a and m. This

is the exact expression for the dipole approximation in the MPA. Another simplified

approximation to eq. 3.81 is however proposed and used in most calculations (137,148),

(am|bn) '
√

2

(R)3 [〈a|r|m〉.〈b|r|n〉] (3.82)

When inserted in MP2’s pair energy expression, eq. 3.82 gives a dependence on (R)−6.

The resulting pair energy, EDIP
mn , decays thus with the 6th power of the distance between

the internal orbitals m and n. Note that the decay for contributions with p > 1 is even

faster. These estimated pair energies can then be used to select distant pairs and to

approximate long-range correlation effects. Whenever the pair energy EDIP
mn is below a

threshold thrdist, the respective exchange integral matrix for that pair is approximated

using the MPA. Since the calculation of the exchange integrals using this approximation

is inexpensive, large savings of the computational resources can be achieved. The MPA

can be used as a pre-screening of the integrals required to explicitly be computed.

In the work of Hetzer (214), it was showed that higher-order multipole contributions

play a non-negligible role in estimating the integrals for long-range pairs. Ideally, this

expansion is truncated by the multipole order of p = 3. Approximating the multipole

series by its dipole-dipole term underestimates energies by up to 30%. Including higher-

order terms improves accuracy but reduces convergence given small enough values for R.

There is furthermore a limit to the accuracy and convergence of the multipole expansion.

This is determined by the lowest order of the expansion used but also by the conditions

initially assumed. Other factors influencing convergence and accuracy are the locality of

the charges and the distance between them: the higher the locality and the distance, the

better the results are. The requirement for high locality and high separation of charges

has repercussions in restricting even further domain approximations. Since the charges

ρam and ρbn require good localization and good separation, the domains for orbitals m

and n are not merged to form an united domain. Instead, domains are kept asymmetric.
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This means that when calculating the integrals (am|bn), the domain restrictions are re-

spectively a ∈ [m] and b ∈ [n], not a, b ∈ [m,n]: only terms like (amm|bnn) are included

in the MPA, but not crossed exchange terms like (anm|bmn).

3.6.4 Projected Atomic Orbitals

In the Projected Atomic Orbital (PAO) method the virtual space is expressed with

AOs, which were previously projected onto the virtual orbitals. By definition, AOs are

local (132) and they do not constitute an orthonormal basis of orbitals (326). Nevertheless,

due to their projective nature onto the virtual space, PAOs retain orthogonality towards

LMOs (65). They are furthermore built independently of any occupied orbital, created

to provide a full substitution space for any LMO (155). The transformation to the PAO

basis is defined as

Q̃ar̃ =
〈
a|χAO

r̃

〉
=
(
Cv†SCAO

)
ar̃

=
(
Cv†SAO

)
ar̃

(3.83)

where S is the overlap matrix for the basis used to expand both the canonical virtuals

and the AOs (2, 3, 216) and SAO the AO overlap matrix. Because AOs are contracted

Gaussian type orbitals, the coefficient matrix CAO that expresses AOs in terms of con-

tracted Gaussians has to be considered in eq. 3.83. For correlation consistent or atomic

natural orbitals the matrix CAO is simply the identity matrix (3), since the basis set is

composed by atomic core and valence orbitals or by correlation functions. Alternatively,

canonical HF AOs can be used, for which CAO is a block diagonal matrix. Normalization

of the PAOs transforms CAO into a diagonal matrix containing the normalization factors.

This means that PAOs are associated with Gaussian type orbitals.

It is also possible to define a PAO coefficient matrix P as

P = CvQ̃ = CvCv†SCAO = CvCv†SAO (3.84)

and an overlap matrix for the PAOs given by

SPAO = Q̃†Q̃ (3.85)

Building orbital domains associated to an orbital i is not automatic in the PAO

method. This can be achieved by the Boughton-Pulay method (327), generating the

transformation to the PAO space of m, Q̃m. The method assigns a subset of the PAOs

to each m and this subset contains all the PAOs located at the same atoms, in which

the LMO m is located. This allows the truncation of the wavefunction expansion in a
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physically reasonable way (65). The selection of atoms belonging to a certain domain

is determined by the atoms contributing most to the Mulliken orbital charges, until the

value of 1.8 is surpassed. Those atomic centers are used to build an approximate orbital

φ
′
m. φ

′
m is then fitted to φm using least squares. The approximate orbital is represented

by the orbital domain of m and is defined by the elements of the matrix L
′
.

φ
′

m =
∑
ρ∈[m]

|χρ〉L
′

ρm (3.86)

The matrix L
′

corresponds to the matrix of coefficients of the atomic orbitals in the

orbital φ
′
m. This matrix is determined by comparison with the equivalent quantity from

the actual orbital m, ∑
ν∈[m]

SAO
µν L

′

νm =
∑
ρ

SAO
µρ Lρm (3.87)

yielding the least squares functional

f
(
L
′
)

= min

[∫ (
φm − φ

′

m

)2
]

= 1−
∑
ν∈[m]

∑
ρ

L
′

νmS
AO
µρ Lρm (3.88)

This procedure is applied until f
(
L
′)

is smaller than a given threshold. More basis func-

tions are added until that criterion is satisfied. Adding neighboring centers improves

even more the accuracy but at a higher computational cost: typical domains recover

usually 98-99% of the correlation energy, while extended domains can recover up to 99.8-

99.9% (229,328). However, this selection of domains is ad hoc. In other methods domains

are selected according to wavefunction or energy criteria. In the PAO method selection

takes place with distance or connectivity criteria, not involving information on the vir-

tual space. This may cause unbalanced results in energy differences. This procedure is

furthermore strongly dependent on the basis set (3).

Alternatively one may use the Mata-Werner domain selection (329) based on natural

population analysis (330). This procedure is more stable towards basis sets, but since

no simple localization functional is employed, this method cannot be used in analytic

gradient calculations (210, 215). In our work we are going to use IBO charges to build

PAO domains, which is going to be discussed later.

Since the domain for mn is the union of the domains of m with n (132), the transfor-

mation matrix to the PAO space for the pair mn is given as

Q̃mn =
(
Q̃m|Q̃n

)
(3.89)

Note that since the domains of m and n may overlap eq. 3.89 is not a product of two

matrices. Eq. 3.89 represents thus the union of domains.
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Convergence may be improved by using an orthonormal set of PAOs for each domain

individually. But before orthogonalization (3,147), it is recommended to eliminate PAOs

with norm smaller than a certain threshold. These are usually inner-shell core orbitals.

Afterwards, the remaining virtual orbitals are renormalized for convergence reasons. The

new set of orthogonal PAOs can be found by diagonalization of the PAO overlap matrices(
S[mn,mn]

)
rs

, followed by removal of the eigenvectors associated to eigenvalues smaller

than a certain threshold value. V̄mn is the matrix mapping non-orthogonal PAOs to

orthogonal and domain-specific PAOs. The transformation from canonical to orthogonal

and domain specific PAOs can thus be defined as

Q̄mn = Q̃V̄mn (3.90)

and the new set of orbitals come as

|r̄mn〉 =
∑
s̃

|s̃〉 V̄ mn
s̃r̄ =

∑
b

|b〉 Q̄mn
br̄ (3.91)

Note that since the orthonormalization of PAOs is domain-specific, it is also pair-specific,

and the resulting set of PAOs becomes also pair-specific. This is advantageous when

solving the residual equations using the perturbative update of amplitudes.

Finally, a set of non-redundant SemiCanonical PAOs (PAO(SC)s) can ensure these

also diagonalize the virtual block of the Fock matrix (327, 331). Semicanonicalization of

PAOs does not affect the final result, it only improves convergence (this is a rotation of

the previous PAO transformation matrix). A more detailed description on how to obtain

these orbitals is presented in the section 3.6.5.

3.6.5 Pair Natural Orbitals

Pair Natural Orbitals (PNOs) are a set of approximate Natural Orbitals for each pair

mn. While PAOs restrict significantly the domain for each orbital pair, PNOs offer the

most compact description of pair domains (3,149,155), and therefore also improved con-

vergence for dynamic correlation energies (148,149). By construction, PNOs are localized

in the same spatial region as the internal orbitals they are built from, meaning that the

locality of PNOs is determined by the orbitals they stem from: for canonical orbitals

PNOs are not local.

The transformation mapping canonical orbitals to PNOs is given by the eigenvectors of

MP2 pair density matrices Dmn. These are built from the respective amplitude matrices
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cmn, as expressed in eq. 3.92.

Dmn
ab =

1

1 + δmn

(
c̃mn†cmn + c̃mncmn†

)
ab

(3.92)

c̃mnab = 2cmnab − cnmab (3.93)

Alternatively, for singlet-triplet configurations,

Dmnp
ab =

(
cmnp†cmnp

)
ab

(3.94)

cmnpab =
1

2
(cmnab + pcmnba ), p = ±1 (3.95)

Since the eigenvalues of the pair densities Dmn correspond to natural occupation numbers

a threshold may be used to select just the most relevant eigenvectors. This cut to the

PNO transformation matrices allows the minimization of the number of virtuals for each

domain. Furthermore, since PNOs are obtained from a diagonalization process specific

to each pair, these form by construction an orthonormal set for each pair (148,153). But

such orthogonality does not apply for PNOs in different domains.

Typically, a few PNOs per pair are sufficient for a good approximation of the amplitude

tensors. Consequently, amplitude and residual tensors are very compact, wavefunction

expansions are shorter and lesser integrals are required. Substitution spaces in the PNO

basis can be up to 100 times more compact than their PAOs relatives, allowing for great

savings in data size, I/O, thus also in CPU timings (153). These properties come as a

consequence of the rotation-like character of the transformation, instead of a projective

nature like PAOs (2,3,216). PNOs are optimal with respect to convergence of the corre-

lation energy: in the single reference case, 50 PNOs recover approximately 99.8% of the

correlation energy (131, 153, 155). Furthermore, they permit control of the domain size

and of the accuracy of the energy with a single parameter, the PNOs’ natural occupation

number (4,137,139,148,153). This is particularly advantageous for energy differences, for

which the errors from the domain approximation can be kept at minimum values. This

same parameter is applied to all pairs. For larger distances between the orbitals m and n

(distant pairs) the respective pair occupation numbers decrease. As such, pair domains

for distant orbital pairs are smaller (when compared to non-distant pairs) (153).

On the other, the price to pay for having such a compact description is that PNOs

have to be built for each pair specifically. The direct consequence is also that for each

pair a set of integrals must be built from the respective canonical quantities. Secondly,

for large enough molecules the total number of PNOs for all pairs may become quite

unmanageable (149), easily surpassing the total number of PAOs for the same system
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(2, 3, 216). This brings complications not only because of all the sets of integrals that

have to be built and transformed, but also because of all the overlap matrices that must

be constructed. The problem of the integral transformation for very large spaces was only

recently overcome with the LDF approach (137, 139, 229) together with building PNOs

from PAOs (c.f. chapter 4.7). Finally, the criteria used to truncate the PNO expansion

is not independent of the molecular geometry, which creates microscopical artifacts, e.g.,

in PES (132).

Semicanonical PNOs

Having a set of PNO transformation matrices, nothing guarantees a priori that these

diagonalize the virtual block of the Fock matrix.

F̃mn
PNO = W̃mn†FW̃mn (3.96)

This means that the transformed Fock matrix
(
F̃mn

PNO

)
ãb̃

does not have necessarily the

structure
(
F̃mn

PNO

)
ãb̃

= εmnã δãb̃.

Since the full eigenvector matrix of each F̃mn
PNO is a unitary matrix, it can be multiplied

to the respective PNO transformation matrix, creating a set of SemiCanonical PNOs

(PNO(SC)s). The whole process consists in a rotation of the PNO space, not affecting

the final result. In this new PNO basis, F̃mn
PNO is diagonal. Therefore, the diagonal elements

of F̃mn
PNO, the elements εmna , are orbital energies. The energy denominators used in the

perturbative update of amplitudes are thus more accurate, which results in improved

convergence. Being Umn the eigenvector matrix for F̃mn
PNO,(

Umn†F̃mn
PNOUmn

)
ab

= εmna δab, a, b ∈ [mn] (3.97)

The PNO(SC)s can be defined by

Wmn = W̃mnUmn (3.98)

Semicanonical sets of PAOs may be similarly defined for each orbital or pair domain.

If PAO(SC)s are not orthogonalized within each pair domain, the right side of eq. 3.97

must be further multiplied by the elements of the matrix contraction Umn†SmnPAOUmn.
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4. Local CASPT2 Theory

The first stage of the PNO-PAO Local Complete Active Space 2nd-order Perturbation

Theory (LCASPT2) is the optimization of the reference wavefunction. The reference is

an optimized CAS[N,M ] wavefunction as defined in eq. 3.41. Its energy is calculated as

in eq. 3.43. The orbital spaces emerging from the CASSCF calculation were described

before in the section 3.5.1: we will find nclosed closed-shell orbitals; nactive active orbitals;

nvirtual virtual orbitals (npao for PAOs). Core orbitals can be distinguished from within the

closed-shell space. These are however not correlated and can be completely omitted from

the CASPT2 formalism. Thus nclosed excludes the core orbitals. The MOs are assumed

to be orthogonal and expanded by a set of non-orthogonal AOs |χµ(r)〉 ≡ |µ〉.

|φr(r)〉 ≡ |r〉 =
∑
µ

|µ〉Cµr (4.1)

with C†SAOC = 1. SAO is the overlap matrix for the AO basis. The optimization

of the orbitals can be either state-specific or state-averaged, if these are optimized to

simultaneously suit only one or more than one electronic state, respectively. However, the

theory herein developed is state specific, thus any state specifications are omitted.

The first part of the Theory section addresses the CASPT2 theory. Then, the two

main expansions for the first-order wavefunction and the possible mixtures of these are

analyzed. We then focus on the transformation to the local virtual space. Finally we

present the wavefunction’s ansatz as well as the residual and energy equations.

4.1 Complete Active Space 2nd-Order Perturbation

Theory

MP2’s biggest limitation is the restriction to single configuration GSs (30, 32–34, 37,

38). To overcome the limitations of MP2, strong correlation effects must be introduced.

This can be achieved by using a multi-configurational reference (15). Complete Active

Space 2nd-order Perturbation Theory (CASPT2) is one possible formulation of 2nd-order

MRPT, which results in a MR generalization of MP2.

The first difference between MP2 and CASPT2 is the fact that in the latter the

reference is a linear combination of CSFs from a preceding MCSCF calculation, as given

in eq. 3.41. This significantly changes the spectrum of configurations in the first-order
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wavefunction. Although the starting equations for the energy and residuals remain the

same (eqs. 3.34 and 3.35), including an active space requires the definition of a new

Ĥ(0) for MRPT, thus also the final form of the residual and energy equations. The final

equations are therefore significantly more complex.

Table 4.1: Comparison between different MRPT methods. Ψ(1) is the first-order wavefunc-

tion, C.S.S. stands for configuration subspaces and Ĥ(0) is the zeroth-order Hamiltonian.

This Table contains information about GMP, Murphy and Messmer’s MRPT, MR-MP,

Kozlowski and Davidson’s MRPT and NEVPT.

METHOD Ψ(1) C.S.S. Ĥ(0) Comments

GMP pairs, non-diagonal 2 Configuration

(13,57) ICCs singles, built with Wavefunction

internals non-diagonal Fock

Murphy, Substitution non-diagonal

Messmer operators applied — built with —

(41,42) to each reference non-diagonal Fock

MR-MP pairs, diagonal natural orbitals,

(9,40,44) CSFs singles, built with not iterative

internals diagonal Fock

Kozlowski, diagonal

Davidson CSFs — built with not iterative

(12,23,73) diagonal Fock

NEVPT pairs, Dyall covers

(69–72) ICCs singles, Hamiltonian limitations

internals of CASPT2

There are several successful choices for Ĥ(0) available in the literature. A few of these

choices and the resulting MRPT methods are listed in Table 4.1. In a first classification

one has one- and two-electron zeroth-order Hamiltonians. Ĥ(0)s with two-electron terms

yield size consistent wavefunctions and energies. These are used in NEVPT. One-electron

Ĥ(0)s are simpler and most widely used. However, wavefunctions and energies calculated

with these one-electron Ĥ(0)s are not size consistent. Nevertheless, these errors are usually

small (332). In the second level of classification one separates Ĥ(0)s according to their

diagonality in the full configuration space. Diagonal Ĥ(0)s are not orbital invariant, but

the resulting equations do not have to be solved using iterative procedures. Non-diagonal
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choices for Ĥ(0) are particularly attractive (14): the resulting methods are orbital invariant

for CAS references; these can be brought to sparse block diagonal forms with improved

convergence. And even though the linear PT equations must be solved iteratively, the

relative computational cost of each iteration is relatively low.

In a true generalization of MP, the CASSCF wavefunction should be an eigenfunction

of the zeroth-order Hamiltonian. However, the orbitals obtained from MCSCF calcula-

tions (thus also the wavefunctions) are not eigenfunctions of a single F̂ .

F̂ |0〉 =
∑
rs

frsÊrs|0〉 (4.2)

Using projectors to the reference space (P̂ = |0〉 〈0|) and to its orthogonal complementary

(Q̂ = 1− P̂ )1 on both sides of F̂ is possible to define an operator Ĥ(0), which has Ψ(0) as

eigenfunction with eigenvalue E(0) (14). This choice for Ĥ(0) is the one used in Complete

Active Space Perturbation Theory (CASPT).

Ĥ(0) = P̂ F̂ P̂ + Q̂F̂ Q̂ (4.3)

Ĥ(0)|0〉 = |0〉〈0|F̂ |0〉〈0|0〉 =

(
2
∑
i

fii +
∑
tu

ftuD
(1)
tu

)
|0〉 = E(0)|0〉 (4.4)

It follows directly from eq. 4.4 that if there are no active orbitals, MP theory is recovered.

As defined in eq. 4.3, Ĥ(0) is block diagonal for the P̂ and Q̂ spaces. It is furthermore

invariant to orbital rotations among the active or closed-shell spaces (39). In contrast to

Ĥ(0), the perturbation term remains equivalent to what was previously defined for MP.

In CASPT2 this term is still defined as V̂ = Ĥ − Ĥ(0), and it is thus still associated to

two-electron terms of the Hamiltonian (10).

The first-order wavefunction, Ψ(1), is built by considering all linearly independent

configurations occurring in the Hamiltonian when acting on the reference (58). Ψ(1)

is expanded with configurations orthogonal to the reference, remaining thus also itself

orthogonal to the latter. Once more, because Ĥ is a rank two operator, Ψ(1) is spanned

only by singly or doubly excited configurations (in the sense of eqs. 3.5 and 3.6). However,

because active orbitals are not occupied in all the reference configurations, substitutions

from the inactive to the active space must also be considered. This allows the definition

of three different configuration spaces (58,109): the space of pairs or externals (P ; Φab
P ),

in which 2 electrons are excited to the virtual space; the singles or semi-internals (S; Φa
S),

in which an electron is excited to the virtual space and another to an active orbital; the

1Q̂ projects to the wavefunction’s orthogonal complementary space.
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internals (I; ΦI), in which 2 electrons are excited to the active space. The internal and

semi-internal excited configurations have significant contributions which are important to

consider for correlation corrections to the first-order density matrix (46) and to account for

the open-shell character of the systems (58). Since electrons in the excited configurations

may come either from the closed-shell or from the active space, the configuration spaces

can be further divided into three different subspaces. As proposed by Celani and Werner, a

subscript indicates the number of closed-shell holes in each subspace (15): 0 if no electron

comes from the closed-shell space; 1 if one electron comes from the closed-shell space;

2 if both electrons come from the closed-shell space. The full spectrum of configuration

subspaces can thus be summarized in the following scheme:{
P ab
}

= {P} = {P0} ∪ {P1} ∪ {P2}

{Sa} = {S} = {S0} ∪ {S1} ∪ {S2}

{I} = {I0} ∪ {I1} ∪ {I2}

A similar partitioning of the configuration subspaces was proposed also by Andersson

et al., but with a different nomenclature and specifically applied to the case of internal

contraction (39,64).

With this definition of doubly excited configurations, pure singles in the sense of eq.

3.5 become redundant with semi-internals and internals: in the configuration spaces S

and I internal-to-external substitutions may be coupled with active-to-active substitutions

(spectator substitutions) (129). Explicit consideration of singles Φa
i is then redundant for

a CASPT2 wavefunction.2

Using these configuration spaces and eq. 3.35 it is possible to write down the CASPT2

residuals, which once more should zero at convergence.

RP
ab =

〈
P ab
∣∣ (Ĥ(0) − E(0)

) ∣∣Ψ(1)
〉

+
〈
P ab
∣∣ Ĥ |0〉

RS
a = 〈Sa|

(
Ĥ(0) − E(0)

) ∣∣Ψ(1)
〉

+ 〈Sa| Ĥ |0〉

RI = 〈I|
(
Ĥ(0) − E(0)

) ∣∣Ψ(1)
〉

+ 〈I| Ĥ |0〉

(4.5)

Defining any general excited configurations by Φi and Φj we can build: a vector R con-

taining all the residuals Ri; a matrix H(0) with all the quantities 〈Φi| Ĥ(0) |Φj〉; a vector c

2Assuming a doubly excited configuration with an internal active substitution given by substitution

operators applied to the reference, two forms are possible for these, but with similar results:∑
t ÊamÊtt |0〉 = Êam

∑
t

∑
R c

RÊtt |R〉 = Êam

∑
R c

R |R〉
∑

t n
R
t = NactÊam |0〉

Êau,tm|0〉 = ÊauÊtm|0〉 − δtuÊam|0〉
nRt is the occupation number of the active orbital t in the reference configuration R, and Nact is the

number of active electrons.
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with all the amplitudes; a matrix S containing the overlaps 〈Φi|Φj〉; a vector K containing

the quantities 〈Φi| Ĥ |0〉. This allows one to write the whole set of residuals in a single

matrix equation (333).

R = H(0)c− E(0)Sc + K (4.6)

Due to the orthogonality of orbitals, all these nine different configuration spaces are

mutually orthogonal. This allows each subspace to be independently considered. Further-

more, they all contribute to Ψ(1). But if the reference is a CASSCF wavefunction, then

there is no Φvw
tu configuration which is not in the reference, meaning that the I0 space is

empty. For any other reference, I0 must also be considered. Including I0 in the first-order

interacting space gives CASPT2 enough theoretical flexibility to accommodate references

other than CAS (63), e.g., from a RASSCF calculation.

Given that the correct active space is selected, CASPT2 improves over MP2. Just like

its SR parent, CASPT2 does not have the computational costs of (MR)CI or (MR)CC. In

the general case, if the CASSCF calculation is feasible, so is the CASPT2 (65). CASPT2 is

thus one of the best choices for a relatively low cost electron correlation method that is still

accurate, effective and robust (63). However, CASPT2 is not strictly size extensive (332).

Furthermore, like any other MR method, CASPT2 requires a non-black-box method: the

CASSCF. Knowing how to build an active space is key for success, as it greatly influences

the results. This requires not only experience but also intuition and deep understanding

of electronic structure (63). Finally, CASPT2 suffers from one other fault, the problem of

intruder states. Intruder states occur whenever the reference becomes quasi-degenerate

with configurations from its orthogonal space (57, 89). Consequently, a singularity in

Ĥ(0) − E0 occurs and the energy diverges (63). This problem can be solved either by

including level-shifts in the residuals and energy (c.f. section 4.11.1) or by increasing the

size of the active space (63,91,334).3

CASPT2’s greatest impact is surely on excited states (81–85), as it can a priori treat

any system (63) without strong mixing with other (Rydberg) states (89). There are also

some successful examples in the studies of PES, in which CASPT2 closely models the

behavior of FCI or equivalent benchmarking methods (10, 64, 86). However, prudence

is recommended for PES studies, since whenever avoided crossings are present CASPT2

typically fails (14,41,65,90). This problem can be overcome by using multi-state variants

of CASPT2 (74,89,92).

3Note that the latter solution may introduce other intruder states.

69



4.2 Configuration State Functions

A convenient way of spanning the first order wavefunction uses an uncontracted basis

with all the possible spin-adapted Configuration State Functions (CSFs) (10,108,109). A

CSF is a linear combination of degenerate SDs4 built to be an eigenfunction of the total

spin, Ŝ2, while still being an eigenfunction of the spin component z, Ŝz. By construction,

CSFs form an orthonormal and linearly independent basis of configurations. This basis

can be used to span any kind of wavefunction containing excited SDs from a reference.

This includes both CASSCF and correlated wavefunctions. Some of the methods in which

CSFs are used are MRCI (112–114,118–120) and in Nakano’s Multi-Configuration Quasi-

Degenerate Perturbation Theory (335,336), similar to MS-CASPT2.

The general procedure to construct this basis requires (10): i) the number of electrons

(N); ii) the possible electronic distributions among M free orbitals until full occupation is

reached; iii) to populate the M orbitals with N electrons, building orbital configurations;5

iv) to assign pure and explicit spin eigenfunctions to each singly occupied orbital (spins α

or β). For a singlet system with 7 orbitals and 8 electrons the steps i)-iv) are schematically

represented by

|〉 → |2210021〉 (|22α002β〉 , |22β002α〉) ; |2201120〉 (|220αβ20〉 , |220βα20〉) ; ... (4.7)

Orbital configurations are specified by the number of unpaired electrons they have (10).

Since SDs are eigenfunctions of Ŝz, it results that so are orbital configurations. The

respective eigenvalues are given by MS = 1
2
(Nα −Nβ) (108). Nα is the number of α

spins, and Nβ the number of β spins. The resulting quantities after iv) are however not

eigenfunctions of Ŝ2. Ones needs to combine determinants from each orbital configuration

to satisfy the eigenvalue equation for Ŝ2, while still keeping the built functions eigenvectors

of Ŝz. This is achieved by successive application of standard angular momentum coupling

theory (for more detailed information refer to (108) and references therein).

The process described in i)-iv) is the basis for the more systematic genealogical cou-

pling scheme (10, 108). The genealogical coupling scheme is a sequence of N steps, in

which each electron is coupled with other electrons already present in an orbital con-

figuration. This means that to build an N -electron CSF the whole set of intermediary

(N − 1)-electron CSFs are required. The construction is recursive and in the end the

N electrons are distributed over a set of M orbitals from scratch. Accordingly, the first

4Degenerate in occupation number.
5A set of (SDs) degenerate in the occupation number operator.
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set of CSFs built describes doublets. Adding an electron yields singlet and triplet con-

figurations, and so on. Since only singly occupied orbitals change the spin multiplicity

of the CSF, only these are considered in the scheme. Due to its structure, the scheme

defines furthermore the coefficients of each SD in the CSF. Because all unique combina-

tions of SDs are taken, the set of CSFs arising from the genealogical coupling scheme is

orthonormal, complete and more compact than the full set of SDs.

Having a set of CSFs describing the reference wavefunction we can build the configu-

ration subspaces for the correlated wavefunction by substitution of one and two electrons

from each and every reference configuration (15). Due to the strong coupling of CSFs, a

process to simultaneously excite N > 1 electrons does not exist. One starts by creating all

unique two- and (then) one-hole CSFs.6 It is then when two or one electrons are added to

the active or virtual spaces. With this procedure one avoids building multiple times the

same excited configuration, as the removal of one or two electrons from different reference

configurations may actually yield the same hole structure.

|2202〉 → |2200〉 |2220〉 → |2200〉 (4.8)

Afterwards, all the possible unique combinations of excited CSFs suitable to span the

correlated wavefunction are obtained. This includes by construction all the possible spin

couplings of open-shell electrons.

The main advantage of using CSFs lies on the fact that these force approximate

wavefunctions to the adequate spin symmetry of the system, ensuring thus the correct spin

multiplicity for the solution (10). Because CSFs are spin eigenfunctions, the wavefunction

expansion may be significantly reduced while still remaining flexible. This is due to the

fact that functions without the correct spin symmetry may be neglected without any loss

of accuracy (10). The calculation of Hamiltonian elements is relatively simple, due to

the sparsity of the matrix H in the CSF basis. Furthermore, efficient techniques are now

already available in the literature for the calculation of these matrix elements, (15, 337)

and references therein. Since we make the CSFs by changing orbital occupations, a

disadvantage is that the size of this basis7 grows quite quickly with the size of the reference

space (15,93). As the number of reference configurations increases, the calculations get so

expensive that they might become unfeasible. The use of CSFs is restricted thus to small

reference spaces. But this brings up an advantage as well in multistate-theories (110): the

same CSF basis can be used for many excited states. This simplifies solving the secular

6One-hole CSFs are built by addition of one electron to the internal space of two-hole CSFs.
7As well as the number of associated parameters, like amplitudes.
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equation for many electronic states at the same time. Another disadvantage of CSFs is

that this basis spans a space larger than the first order interacting space of the reference.

The non-interacting configurations still remain in the wavefunction since the zeroth-order

Hamiltonian is non-diagonal in this basis (15).

CSFs provide the most accurate ansatz for a correlated wavefunction: For MRCI it

yields a very accurate variational solution, when compared to FCI (111). However, this

ansatz is also extremely expensive due to the very high number of CSFs required.

4.3 Internally Contracted Configurations

Another possibility is to span the first order wavefunction in terms of Internally-

Contracted Configurations (ICCs), obtained by applyingN -particle substitution operators

to the reference as a whole (15, 43, 65, 107, 108, 338, 339). Using spin summed excitation

operators (fully spin-adapted formalism) we build ICCs as

Φrs
mn = Êrm,snΦ0 (4.9)

Proposed by both Meyer (338) and Siegbahn (339), ICCs were detailed and first

used by Werner and Reinsch in their Internally Contracted Multireference Configuration

Interaction (ICMRCI) method (107). This expansion is also used in PT, namely in Wolin-

ski’s and Pulay’s GMP (13, 57), Roos’ CASPT2 (39, 58, 64, 340), MS-CASPT2 (89) and

NEVPT (69–71). The Internally Contracted Multireference Coupled-Cluster (ICMRCC)

method was firstly studied by both Banerjee and Simmons (121) and was later revived by

both Gauss and Evagelista (122,123), and also by Köhn and Hanauer (124–126). ICCs are

furthermore used in the extension to explicitly correlated ICMRCC, ICMRCCSD(F12*)

(127), and to linear response theory (128). Of special reference is the use of the sequen-

tial orthogonalization technique in the ICMRCC methods of Köhn and Hanauer. This

technique yields only linear combinations of operators with identical rank, thus, orthog-

onalizing sequentially an N th-order substitution from all M < N substitutions (126).

Finally, ICCs are also used in Canonical Transformation Theory (341–348).

Since the reference is treated as whole, its coefficients are always held constant. The

result is a wavefunction independent on the number of reference configurations but less

flexible than a CSF expansion. ICCs offer a natural partitioning of correlation spaces

into nth-order interacting spaces without introducing limitations on configuration spaces

(13,57). Including all the ICC-spanned excited configurations Φi for which
〈

Φi|Ĥ|0
〉
6= 0

guarantees that only the dominant configurations are captured in a balanced way (15,111,
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124). This makes sure i) that the number of expansion coefficients is kept to a minimum

without much loss in accuracy and ii) that no linear combination of excited configurations

zeroes the respective Hamiltonian matrix elements with the reference for any basis set or

geometry (15).

a 〈Φi| Ĥ |0〉+ b 〈Φi| Ĥ |0〉 6= 0, ∀a, b ∈ R (4.10)

In ICC expansions the number of amplitudes depends only on the sizes of the internal

and external spaces (15, 65, 111). Furthermore, because substitution operators are spin

conservative, then an ICC basis conserves the spin of the reference (13).

Although the compactness of ICCs is very attractive, since each electronic state has its

own reference, a set of ICCs can only be used for one electronic state (99,110). ICCs are

thus state-specific. Futhermore, ICCs belonging to the same configuration subspace lack

orthogonality. This may be remedied by orthogonalization of the configuration subspaces,

and indeed linear independent ICC spaces keep some of the attractiveness of the parent

non-orthogonal spaces (13,14,58,107,338). However, the orthogonalization of some ICC

spaces for larger active spaces can become expensive from the computational point of

view (15,43,111). This depends naturally on the size of the active space.

The overlap matrices for these spaces can also be quite complex, depending on higher

order reduced density matrices (43). This complexity is also transferred to Hamiltonian

terms, which depend on even higher order density matrices. These terms are sometimes

harder to evaluate than matrix elements between CSFs (15, 43, 111). Evaluating matrix

terms involving ICCs requires evaluating the effect of strings of annihilation and creation

operators over the reference. Using Wick’s theorem or the anticommutation relations (eqs.

3.7, 3.8 and 3.9), these can however be simplified to lower order N th-order substitution

operators (10). The virtual orbitals end up being grouped in delta Kronecker terms,

and the substitution operators involve only internal indices. As an example we take the

overlap function for P1 configurations,〈
Φab
it |Φcd

ju

〉
= 〈0| Êia,tbÊcj,du |0〉 = δacδbd〈0| Êtu,ij |0〉+ δbcδad〈0| Êtj,iu |0〉 (4.11)

The density matrices can also be simplified using the anti-commutation rules. Taking as

an example the 2nd-order density it comes:

〈0| Êpq,rs |0〉 = 〈0| ÊpqÊrs |0〉 − 〈0| δrqÊps |0〉 (4.12)

Using the orthogonality of orbitals and the symmetry of single-electron substitution oper-

ators the N th-order density matrix of internal orbitals is reduced to the M th-order density
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matrix of the active orbitals.

Êri |0〉 = Êir |0〉 = 2δir |0〉

Êar |0〉 = Êar |0〉 = 0
(4.13)

Note that no simplification is possible for an element involving two active orbitals (Êtu |0〉),
the only case not contemplated in 4.13. This is due to the variable occupation of active

orbitals in the reference space. Unlike closed-shells, for which the orbital indices and the

reference configurations must match in the coupling coefficients 〈R| Êij
∣∣R′〉 = 2δijδRR′ ,

for active orbitals it can happen that Êtu
∣∣R′〉 = |R〉. Consequently the reference config-

urations R and R
′

and active indices do not have necessarily to match (115).

For some configuration subspaces this reduction of order might still generate overlaps

involving 3rd-order densities, e.g., S0 or I1. For Hamiltonian terms of CASPT2’s residuals

this means that the 4th-order density of the active space is involved. This term appears

in a double index contraction with the active block of the Fock matrix. The direct

calculation of this contraction requires obtaining the 4th-order density matrix and then

contract it with the Fock matrix. Unfortunately, the direct calculation of the 4th-order

density is significantly expensive and would restrict the use of ICCs to even smaller active

spaces (15,43,111).8 However, it is possible to calculate this term and still avoid building

the 4th-order density. For that, the four-particle substitution operator is partitioned to

Êtu,vw,xz,yz′ = Êtu,vw,xzÊyz′ − δuyÊtz′,vw,xz − δwyÊtu,vz′,xz − δzyÊtu,vw,xz′ (4.14)

This is then inserted in the double index contraction with the active block of the Fock

matrix. Because the first term on the right side of the equality involves a product of

substitution operators, the resolution of the identity 1̂ =
∑

R |R〉〈R| is used, leading to∑
yz′

fyz′D
(4)
tu,vw,xz,yz′ =

∑
R

〈0| Êtu,vw,xz |R〉
∑
yz′

fyz′ 〈R| Êyz′ |0〉

−
∑
y

D
(3)
vw,xz,tyfyu −

∑
y

D
(3)
tu,xz,vyfyw −

∑
y

D
(3)
tu,vw,xyfyz

(4.15)

Note that the actual resolution of the identity should also include projectors for all excited

configurations. But since we use it to break a substitution operator dealing only with

active orbitals only reference configurations need to be considered. As we calculate directly

a quantity with the dimensions of the 3rd-order density of the active space, this leads to

a significant reduction of the computational costs.

8For an active space of dimension 4, this matrix has dimensions
(
44
)2

= 65536.
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Table 4.2 summarizes the relative computational cost in terms of the maximal order

of the active density matrix needed using ICCs (the larger the highest-order needed,

the larger the computational effort). The highest order needed can be easily obtained

by counting the number of active indices in the matrix element to calculate. Table 4.2

compares the effort required for overlaps, CASPT2 and for MRCI terms.

Although less flexible than CSF expansions, benchmark calculations show that ICCs

raise the CSF energy only slightly: ICCs underestimate correlation energy by 2-3% (349).

This error is below the intrinsic error of a method (e.g. MRCI with respect to FCI), thus

both expansions have essentially the same accuracy (63). The advantage of ICCs towards

CSFs is the significant reduction of both the computational effort and of storage require-

ments (14). ICC-MR methods are built to resemble and exhibit scalings of computational

effort comparable to SR methods (43, 124). However, ICC expansions break down near

the crossing points in sharp avoided crossings, as dynamical correlation reverts the energy

order of the two states (13).

Table 4.2: Maximal order of active density matrix needed with ICCs for overlap, CASPT2,

and MRCI terms.

Space
Holes Electrons Order Active Density Matrix

(Closed-Shell) (Virtual) Overlap CASPT2 MRCI

P2 2 2 0 1 2

P1 1 2 1 2 3

P0 0 2 2 3 4

S2 2 1 1 2 3

S1 1 1 2 3 4

S0 0 1 3 4 5

I2 2 0 2 3 4

I1 1 0 3 4 5

I0 0 0 4 5 6

4.3.1 Contravariant Configurations

The direct application of substitution operators to a reference wavefunction gives rise

to covariant configurations. Due to the structure of their overlap functions, the internal

product of covariant configurations with a correlated wavefunction is a combination of
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different amplitudes. This linear combination of amplitudes may eventually be contracted

with the active density matrix. Taking as an example the case of P1 configurations,〈
Φab
it |Ψ(1)

〉
=
∑
ju

∑
cd

〈
Φab
it |Φcd

ju

〉
cjucd =

∑
ju

∑
cd

[
δacδbdD

(2)
tu,ij + δbcδadD

(2)
tj,iu

]
cjucd

=
∑
ju

δij
∑
cd

[
2δacδbdD

(1)
tu − δbcδadD

(1)
tu

]
cjucd =

∑
u

[
2ciuab − ciuba

]
D

(1)
tu

(4.16)

An alternative way of dealing with ICCs is with the use of contravariant configurations

(65, 350, 351). For the SR case contravariant configurations Φ̃X are built in such a way

that when we calculate their internal product with the correlated wavefunction only one

amplitude is obtained, i.e.,〈
Φ̃X |Ψ(1)

〉
=
∑
Y

〈
Φ̃X |ΦY

〉
cY =

∑
Y

δXY c
Y = cX ,

∣∣Ψ(1)
〉

=
∑
Y

|ΦY 〉cY (4.17)

For the MR case contravariant configurations are defined such that their overlap with Ψ(1)

only contains amplitudes with one possible combination of closed-shell and virtual indices.

This definition excludes linear combinations of amplitudes with different active orbitals

because active indices are affected by the orthogonalization of ICC spaces. Taking as an

example contravariant P1 configurations, we start by defining these as a linear combination

of covariant configurations

Φ̃ab
it = xΦab

it + yΦba
it (4.18)

We then calculate the overlap function defined in 4.17 to get〈
Φ̃ab
it |Ψ(1)

〉
=
∑
u

[
(2x− y)ciuab + (2y − x)ciuba

]
D

(1)
tu (4.19)

Contravariant P1 configurations are obtained by ensuring that the terms with ciuba vanish.

As such, making 2y − x = 0 and 2x− y = 1 leads to x = 2
3

and y = 1
3

or

Φ̃ab
it =

2

3
Φab
it +

1

3
Φba
it (4.20)

Assuming that contravariant amplitudes are a linear combination of covariant ampli-

tudes (eq. 4.21) and using the condition that the correlated wavefunction is independent

of transformations used (eq. 4.22) yields eq. 4.23.

c̃itab = wcitab + zcitba (4.21)∑
it

∑
ab

(
Φab
it c

it
ab − Φ̃ab

it c̃
it
ab

)
= 0⇔ (4.22)
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∑
it

∑
ab

(
Φab
it c

it
ab −

2

3
Φab
it c̃

it
ab −

1

3
Φba
it c̃

it
ab

)
= 0 (4.23)

which by insertion of 4.21 yields the solution

c̃itab = 2citab − citba (4.24)

Similarly contravariant formulations for other configuration subspaces may be defined,

as long as the overlap 4.17 can be factorized as a product of amplitudes with density

matrices. Due to this restriction, the generalization is only possible for the P2, P1 and S2

subspaces. These can be built either before or after the orthogonalization of the respective

subspaces, remaining the final result unchanged. For all other configuration subspaces,

contravariant configurations as defined in this section are not possible.

Besides simplifying the overlap of an excited configuration with Ψ(1), contravariant

configurations also simplify Hamiltonian terms with the reference: the linear combina-

tion of exchange integrals is similarly reduced to just one element. For the case of P1

configurations it follows that 〈
Φ̃ab
it |Ĥ|0

〉
=
∑
u

Kiu
abD

(1)
tu (4.25)

Similar simplifications occur in other terms in the residual equations, given that the

same configuration subspace is involved. For the case of CCSD, contravariant configura-

tions offer inclusively the most compact description of the residuals (350–352).

4.3.2 Singlet-Triplet Configurations

Whenever applying substitution operators to a reference wavefunction, the two exter-

nal (or internal) electrons may be coupled to form singlet and triplet configurations. The

total spin quantum number of the configurations is not affected, as this coupling only

concerns the pairs of electrons. The advantage of using Singlet-Triplet configurations is

that overlap and Hamiltonian matrices become block diagonal (58) since the singlet and

the triplet configurations are orthogonal to each other. Singlet-Triplet ICCs can be built

as a balanced combination of 2 configurations (65,109)

Φrs
mnp =

1

2
(Φrs

mn + pΦsr
mn), p = 1(singlet),−1(triplet) (4.26)

These functions are not naturally normalized and thus normalization is required (43,65,

353). To establish a relation between singlet-triplet and covariant amplitudes, we assume

the former are a linear combination of the latter, but affected by the parameter p.

cmnprs = xcmnrs + ypcmnsr (4.27)
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Taking once more a condition like 4.22,∑
rs

∑
mn

(
Φrs
mnc

mn
rs − Φrs

mnpc
mnp
rs

)
= 0 (4.28)

by insertion of 4.27 in 4.28 we get that x + y = 1. Assuming that the amplitudes are

balanced like the configurations (x = y), this yields the expression

cmnprs =
1

2
(cmnrs + pcmnsr ) (4.29)

From their definition it follows that (15)

Φrs
mnp = pΦsr

mnp = pΦrs
nmp cmnprs = pcmnpsr = pcnmprs (4.30)

4.4 Expanding First-Order Wavefunction

There are two options to expand the first-order wavefunction: ICCs and CSFs. ICCs

belonging to different configuration subspaces are orthogonal. Thus, in an ICC basis all

configuration subspaces are mutually orthogonal (15, 58). Furhtermore, CSFs form by

definition an orthogonal basis of functions. Some configuration subspaces can be spanned

with ICCs, using then CSFs for the remaining subspaces, leading to the concept of mixed

ansätze. Mixed ansätze try to bring a compromise between advantages and drawbacks of

each expansion, using either ICCs or CSFs whenever it is most advantageous (93).

According to the analysis in section 4.3, it is most advantageous to use ICCs for

subspaces containing less active and more closed-shell orbitals (15,93,354). On the other

hand, the number of CSFs required to describe a configuration subspace depends on the

number of reference configurations and on the number of correlated orbitals. CSFs are

thus more advantageous for subspaces with smaller closed-shell spaces. The use of ICCs

and CSFs is thus somehow complementary.

The first mixed expansion for MR wavefunctions was the Werner-Knowles (WK)

ansatz (14, 43, 108). It was successfully used on MRCI (43, 108–110), MRCI-F12 (98),

multi-state MRCI-F12 (99), CASPT2 (14), CASPT3 (14), CASPT2-F12 (97) and on

XMS-CASPT2 (74, 92). In this ansatz no configuration subspaces are distinguished and

the spaces are thus treated as a whole: pairs are expanded by ICCs; singles and inter-

nals are both uncontracted. Since no subspaces are distinguished, the internal orbitals

are also not partitioned (closed-shell orbitals are not distinguished from the active). Full

density matrices of internal orbitals are thus required. The highest rank of density matri-

ces needed remains unchanged, and the most demanding terms involving ICCs requires
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the second-order density in the overlap and third order density in the CASPT2 residuals

(c.f. Table 4.2). In the WK ansatz the number of uncontracted singles is still heavily

influenced by the amount of reference configurations and correlated orbitals. This easily

leads to bottlenecks in the calculations (14,15).

Later on, Celani and Werner (15) improved the WK ansatz by partitioning the config-

uration spaces according to the number of closed-shell holes. With this partitioning they

derived explicit expressions for the overlap functions of each configuration subspace. It

was showed that only for a few subspaces the overlap depended on the third- or fourth-

order density matrix of the active space. In the Celani-Werner (CW) ansatz, all sub-

spaces with overlap depending at most on the second-order density were expressed by

ICCs, leaving the other subspaces uncontracted. This extended the internal contraction

to subspaces in the singles and internals, namely to S2, S1 and I2. S0, I1 and eventu-

ally I0 are spanned by CSFs. Of the latter subspaces, only I1 depends linearly on the

closed-shell space. I0 depends only on active orbitals and S0 depends on the external

space. Since inactive orbitals are explicitly treated in spaces spanned by ICCs, all density

matrices depend solely on active orbitals. All these conditions together built an ansatz,

which allowed arbitrarily larger inactive spaces to be handled than other ansätze (15,111):

The CW scheme maximized efficiency and decreased computational costs without much

change in accuracy (93,111). The first use of the CW scheme was in CASPT2 (15). This

was later extended to MRCI (111) and Configuration Interaction Perturbation Theory 2

(CIPT2) (116). The main liability of both mixed ansätze is the additional requirement of

ICC-CSF coupling coefficients (93). Although not particularly complicated, these require

the use of special techniques and machinery (43).

Since we explicitly require our method to use CAS references, I0 is empty and can

therefore be completely neglected from any further discussion. As the CW ansatz showed,

it is most advantageous to expand with ICCs the P2, P1, P0, S2, S1 and I2 spaces. The

question remains solely with S0 and I1. As these require the orthogonalization of larger

overlap matrices, the use of ICCs may result in bottlenecks in the calculation whenever

the active space becomes too large. But our goal is to derive a local CASPT2 method

for systems with relatively small and local active spaces. Additionally, with the current

technology, the diagonalization of third-order densities is no longer as limiting as it once

was. Indeed we verified with our code that the diagonalization of the overlap matrices

for S0 and I1 takes in average 22 s for 14 active orbitals and 0.17 s for 8 active orbitals.

Choosing a CSF expansion on the other hand, requires both calculating and storing ICC-
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CSF coupling coefficients with all the other subspaces.9 ICCs require terms involving the

fourth-order density, but these quantities can be easily calculated without a significant

increase in the computational cost. As such, i) to explore the compactness that only ICCs

can offer (minimize the number of configurations), ii) to minimize memory requirements

and iii) to avoid the spin coupling between different types of configurations we chose to

expand our first-order wavefunction in a fully internally contracted fashion.

Before presenting our ansatz of the first-order wavefunction in the canonical external

basis, a few more details are required. ICCs require orthogonalization, and the orthogonal

ICC spaces are obtained from the respective non-orthogonal spaces. It is thus necessary

to define first how to express the non-orthogonal subspaces. The indices dealing with or-

thogonal ICC spaces are defined in this section but the conversion between non-orthogonal

and orthogonal subspaces is presented and discussed in section 4.5.

We chose a formalism based on normal ordered operators acting on a CAS reference

as a Fermi vacuum. The first-order wavefunction in LCASPT2 is built from excited con-

figurations obtained when applying the Hamiltonian operator to the reference (58). This

means that any non-orthogonal doubly excited configuration considered is constructed

using two particle substitution operators, as defined in eq. 4.9. Covariant configurations

for each subspace are defined in 4.31, 4.32 and 4.33.

P2 :
∣∣Φab

ij

〉
= ÊaiÊbj|0〉 = ÊbjÊai|0〉 = Êai,bj|0〉

P1 :
∣∣Φab

it

〉
= ÊaiÊbt|0〉 = ÊbtÊai|0〉 = Êai,bt|0〉

P0 :
∣∣Φab

tu

〉
= ÊatÊbu|0〉 = ÊbuÊat|0〉 = Êat,bu|0〉

(4.31)

S2 :
∣∣Φat

ij

〉
= ÊaiÊtj|0〉 = ÊtjÊai|0〉 = Êai,tj|0〉

S1 :


|Φat

iu〉 = ÊaiÊtu|0〉 = ÊtuÊai = Êai,tu|0〉

|Φat
ui〉 = ÊauÊti|0〉 = δtuÊai|0〉+ Êau,ti|0〉

|Φat
ui〉 = ÊtiÊau|0〉 = Êau,ti|0〉

S0 :

|Φav
tu 〉 = ÊatÊvu|0〉 = δtvÊau|0〉+ Êat,vu|0〉

|Φav
tu 〉 = ÊvuÊat|0〉 = Êat,vu|0〉

(4.32)

I2 :
∣∣Φtu

ij

〉
= ÊtiÊuj|0〉 = ÊujÊti|0〉 = Êti,uj|0〉

I1 :

|Φtu
iv 〉 = ÊuvÊti|0〉 = δtvÊui|0〉+ Êti,ui|0〉

|Φtu
iv 〉 = ÊtiÊvu|0〉 = Êti,vu|0〉

(4.33)

9Because I1 and S0 do not interact in the CASPT2 residuals, CSF-CSF terms need not to be calculated.
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The underlined expressions are the ones used to uniquely define each subspace. For

most cases, two-particle substitution operators are equivalent to the successive applica-

tion of two one-particle substitution operators. Exceptions occur whenever active indices

appear simultaneously in the annihilator of the leftmost one-particle substitution operator

and in the creator of the rightmost one-particle substitution operator, namely for I1, S0

and in one type of S1 configurations. For those three cases, the difference is the explicit in-

clusion of pure singles. But single substitutions are implicit when applying the respective

two-particle substitutions. Pure singles were explicitly implemented for S1 by considering

separately the configurations Êai |0〉. In all the test cases used, including the pure singles

influenced the number of non-orthogonal S1 configurations, thus also the orthogonaliza-

tion matrix. However, the number of orthogonal S1 configurations always matched the

case without pure singles and the energy remained unchanged. Therefore, explicitly in-

cluding the pure singles is redundant and just brings complexity to the equations. Even

though we left the explicit singles still implemented, these are by default off. From these

results we assumed that also the pure singles of I1 and S0 are redundant. Although we

derived expressions with the explicit inclusion of these I1 and S0 pure singles, due to the

extra complexity they brought to the equations, we decided to completely leave these out,

of both the formalism and implementation.

Table 4.3 summarizes the configuration subspaces for which special types of configu-

rations were built, namely contravariant or singlet-triplet.

Table 4.3: Configuration subspaces expressed with special non-orthogonal configurations.

Space Type Configuration Amplitude

P2 Contravariant

∣∣∣Φ̃ab
ij

〉
= 1

6

(
2
∣∣Φab

ij

〉
+
∣∣Φba

ij

〉)
= 1

6

(
2Êai,bj + Êbi,aj

)
|0〉

c̃ijab = 2cijab − c
ij
ba

P1 Contravariant

∣∣∣Φ̃ab
it

〉
= 1

3

(
2
∣∣Φab

it

〉
+
∣∣Φba

it

〉)
= 1

3

(
2Êai,bt + Êbi,at

)
|0〉

c̃itab = 2citab − citba

P0 Singlet-Triplet

∣∣Φab
tup

〉
= 1

2

(∣∣Φab
tu

〉
+ p

∣∣Φba
tu

〉)
= 1

2

(
Êat,bu + pÊbt,au

)
|0〉

ctupab = ctuab + pctuba

pctupab = ctupba = cutpab

S2 Contravariant

∣∣∣Φ̃at
ij

〉
= 1

3

(
2
∣∣Φat

ij

〉
+
∣∣Φat

ji

〉)
= 1

3

(
2Êai,tj + Êti,aj

)
|0〉

c̃ijat = 2cijat − c
ji
at

I2 Singlet-Triplet

∣∣Φtu
ijp

〉
= 1

2

(∣∣Φij
tu

〉
+ p

∣∣Φij
ut

〉)
= 1

2

(
Êti,uj + pÊui,tj

)
|0〉

cijptu = cijtu + pcijtu

pcijptu = cijput = cjiptu
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For P2, P1 and S2 we built contravariant configurations as described in section 4.3.1.

Singlet-triplet configurations would have also been possible, but we verified that the resid-

uals for all these spaces were simpler when using contravariant configurations. Appendix

8.1 presents both types of P2 residuals for comparison. The main advantage of contravari-

ant configurations for P2 comes with the fact they simplify the delta Kronecker terms for

both the closed-shell and external spaces. For P1 the simplification comes only with the

delta Kronecker terms involving external orbitals and for S2 only with the delta Kro-

necker terms involving the closed-shell orbitals. This is reflected in the factors of the

contravariant configurations, as Table 4.3 shows.

The P0 overlap depends on the second-order density and no combination of two con-

figurations factorizes out the delta Kronecker terms in the sense of contravariant config-

urations. These are therefore not possible to formulate for P0.〈
Φ̃ab
tu|Φcd

vw

〉
= x

〈
Φab
tu|Φcd

vw

〉
+ y

〈
Φba
tu|Φcd

vw

〉
= δacδbd

(
xD

(2)
tv,uw + yD

(2)
tw,uv

)
+ δbcδad

(
xD

(2)
tw,uv + yD

(2)
tv,uw

) (4.34)

On the other hand, singlet-triplet P0 configurations are possible and can make both the

overlap and the zeroth-order Hamiltonian sparse block: one block for singlet configura-

tions (symmetric), another for triplet configurations (anti-symmetric). Using covariant

P0 configurations on the other hand ends up mixing the symmetric and anti-symmetric

configurations when diagonalizing the zeroth-order Hamiltonian terms: the symmetric

and anti-symmetric parts are mixed back and the eigenvalues come out pairwise degen-

erate. Such mixture does not allow the clear orthogonalization required for a local PNO

MR method. Finally, with singlet-triplet configurations both integral and amplitude ma-

trices are stored in lower triangular forms due to their symmetries. Similarly to P0, for

I2 it is also not possible to build contravariant configurations and thus singlet-triplet

configurations were also built.

For S1, two different non-mutually orthogonal types of configurations can be defined

(inclusively with different overlap functions). These differ by the exchange of two indices.

Therefore, neither contravariant nor singlet-triplet configurations can be defined and this

space is left covariant, as a linear combination of the two types of configurations. Finally

there is still the cases of S0 and I1. Again, contravariant configurations cannot be built

and singlet-triplet configurations render over-complicated equations, without providing

any kind of advantage. These spaces are also left covariant.

Having defined how non-orthogonal configurations are going to be built and the indices

for orthogonal configurations, the wavefunction ansätze using the canonical external basis
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and both the non-orthogonal and the orthogonal configuration bases are given by

Ψ(1) =
1

2

∑
ij

∑
ab

Φab
ij c

ij
ab +

∑
it

∑
ab

Φab
ti c

ti
ab +

∑
p

∑
tu

∑
ab

Φab
tupc

tup
ab

+
∑
ij

∑
ta

Φat
ij c

ij
at +

∑
ia

(
Φa
i c
i
a +

∑
tu

[
Φau
it c

it
au + Φau

ti c
ti
au

])
+
∑
tu

∑
va

Φav
tuc

tu
av

+
∑
p

∑
ij

∑
tu

Φtu
ijpc

ijp
tu +

∑
iv

∑
tu

Φtu
ivc

iv
tu

(4.35)

=
1

2

∑
ij

∑
ab

Φab
ij c

ij
ab +

∑
iD1

∑
ab

Φab
D1i
cD1i
ab +

∑
p

∑
D0

∑
ab

Φab
D0p

cD0p
ab

+
∑
ij

∑
S2a

ΦaS2
ij cijaS2

+
∑
iS1

∑
a

Φa
iS1
ciS1
a +

∑
S0

∑
a

Φa
S0
cS0
a

+
∑
p

∑
ij

∑
I2

ΦI2
ijpc

ijp
I2

+
∑
i

∑
I1

ΦiI1c
iI1

(4.36)

Note that the two expressions are perfectly equivalent, meaning that different configura-

tion subspaces may be expressed in the orthogonal or in the non-orthogonal basis.

4.5 Orthogonalization of ICC Spaces

Unlike CSFs, configuration subspaces spanned by ICCs are not in general orthonor-

mal. This lack of orthogonality arises from the fact that a general N th-order active density

matrix cannot be simplified to a linear combination of products of delta Kronecker func-

tions, like it happens with the closed-shell density matrix.10 This can already be seen for

the 1st-order density, which is diagonal only if natural orbitals are used.11 For any other

order of the density matrix there is no orbital basis diagonalizing it.

This lack of orthogonality is furthermore transmitted to the residuals (14,93). In the

non-orthogonal configuration basis, residuals depend on the overlap functions of each con-

figuration subspace. These overlap functions are contracted with the amplitudes, meaning

that in the non-orthogonal basis the overlap-amplitude contraction must be calculated in

every iteration. For orthogonal subspaces on the other hand, the orthogonalization matrix

10This result follows directly after using the anticommutation relations and the orthogonality of MOs.

For the 2nd-order density, e.g.,
〈

0|Êij,kl|0
〉

= 4δijδkl − 2δikδjl.
11Natural orbitals is the set of MOs diagonalizing the 1st-order density matrix and yield the most

rapidly convergent CI expansion. Natural orbitals correspond thus to the eigenvectors of the first-order

density. The respective eigenvalues are occupation numbers (6,292).
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transforms the overlap matrices into the identity matrix and such contractions vanish from

the calculation. Furthermore, only orthogonal configuration subspaces allow the pertur-

bative update of amplitudes, which improves greatly computational costs and timings. In

each iteration the amplitudes are calculated by adding a correction to the amplitudes from

the previous iteration (111). For an orthogonal P1 configuration Φab
iD1

, the perturbative

amplitude update is given by

∆ciD1
ab = − RiD1

ab〈
Φ̃ab
iD1

∣∣∣ (Ĥ(0) − E
) ∣∣Φab

iD1

〉 (4.37)

ciD1
ab (new) = ciD1

ab (old) + ∆ciD1
ab

(4.38)

where ∆ciD1
ab is the amplitude update in the orthogonal basis and RiD1

ab the residual for

the configuration Φab
iD1

. Similarly, amplitude updates for any other configuration subspace

can be defined. The perturbative update of amplitudes requires a unique set of excited

configurations to be selected and used. For instance, non-orthogonal configurations are

linear combinations of orthogonal configurations and cannot be used in the amplitude

update. Furthermore, building PNOs for non-orthogonal configurations would end up

mixing the PNOs for different pairs upon the orthogonalization step to perform the am-

plitude update. Consequently, the LCASPT2 equations must be assembled and solved in

the orthogonal configuration basis.

However, the orthogonalization of these configuration subspaces can become quite

expensive. For instance, the orthogonalization of S0 and I1 are O (M9) processes. Fortu-

nately, the prefactors in diagonalizing the respective overlap functions are rather small,

and for a CAS as large as CAS[14, 14], both S0 and I1 can be orthogonalized within 20

s each. Methods to orthogonalize configuration subspaces are algebraic methods used to

orthogonalize vector spaces. In principle, the full overlap matrix for all configuration sub-

spaces should be diagonalized, generating a full orthogonalization tensor. However, the

configuration subspaces are mutually orthogonal, meaning that the full overlap matrix

is block diagonal. This allows the separation of the orthogonalization tensors for each

configuration subspace. By diagonalizing the overlap matrices we construct orthogonal-

ization matrices T for each configuration subspace. Since the spectrum of eigenvalues for

overlap matrices may be wide, the ones smaller than a given threshold are zeroed (the

default value is 10−7). The respective eigenvectors are therefore neglected and the matri-

ces T become rectangular, projecting out linear dependencies (126). Consequently, the T

matrices map non-orthogonal to orthogonal spaces, but not the other way around (111).
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We chose the orthogonalization method for symmetric matrices S as proposed by

Siegbahn (339,355,356),12 which changes the original basis as little as possible (355,356).

Since all overlap matrices S symmetric, they are also diagonalizable, meaning that there

is a matrix V and a diagonal matrix d holding the eigenvectors and eigenvalues of S.

V†SV = d (4.39)

Having the eigenvectors and eigenvalues, we build the orthogonalization matrices from

the eigenvectors and eigenvalues as

T = Vd−
1
2 (4.40)

Since S is by definition symmetric, its eigenvectors form an orthogonal basis. It follows

then immediately that T orthogonalizes the matrix S.

Having defined how to obtain orthogonalization matrices, we require the overlap func-

tions for each configuration subspace. These can be obtained using the definition of each

subspace (c.f. section 4.4) and then applying the anticommutation relations 3.7, 3.8, 3.9,

and the simplification of the Nth-order internal density matrix (4.12 and 4.13). The

structure of the overlaps is always a product of three terms13: a string of delta Kronecker

functions with virtual indices - virtual overlap; a product of delta Kronecker functions

with closed-shell indices - closed-shell overlap; an active orbital term depending on (pos-

sibly) many orders of the active density matrix - active overlap. Because delta Kronecker

terms only take the values of 0 and 1 both the closed-shell and virtual overlaps vanish

if the respective indices do not match in some fashion. On the other hand, the active

overlap is not necessarily zero if the active indices are not matching. Consequently, both

closed-shell and virtual indices are dummy to the transformation matrices above defined,

and the matrices T depend only on active indices. They diagonalize the active overlaps

SX for each full configuration subspace overlap 〈ΦX |ΦX′〉. Because the active overlaps

may depend on more than just two active indices, these can be grouped together to form

compound active indices for both left and right configurations.

We note here that due to the complex structure of S1 configurations this subspace

involves many different active overlap matrices. These should not be orthogonalized sep-

arately or the full orthogonality of S1 configurations is not ensured. Instead, a super

overlap matrix is built, which is diagonalized, allowing one to retrieve from the diagonal-

12This method is also known as symmetric or canonical orthogonalization.
13Or a linear combination of these.
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ization procedure the three different orthogonalization tensors: Ttu,S1 , T
′
tu,S1

and TS1 .
2SS1

A −SS1
A 2SS1

−SS1
A SS1

B −SS1

2SS1 −SS1 2

 ,

Ttu,S1

T
′
tu,S1

TS1

 (4.41)

This super structure of S1’s active overlap is transmitted to other quantities, like for in-

stance the γS1 terms. We should furthermore mention that the most compact formulation

of I2’s overlap was obtained using hole-particle density matrices, i.e., the normal order of

the final strings of annihilators and creators is reversed: in the particle-hole formulation

all creators are written first, then all annihilators; in the hole-particle formulation anni-

hilators are written first, then the creators. For each of these formulations we define the

general pair overlaps S
(p)
tu,vw and S̄

(p)
tu,vw in analogy

S
(p)
tu,vw = D

(2)
tv,uw + pD

(2)
tw,uv (4.42)

S̄
(p)
tu,vw = D̄

(2)
tv,uw + pD̄

(2)
tw,uv = S

(p)
tu,vw + 2 (2− p) (δtvδuw + pδtwδuv)

+ (−1) (2− p)
(
δtvD

(1)
uw + pδtwD

(1)
uv + δuwD

(1)
tv + pδuvD

(1)
tw

) (4.43)

Tables 4.4, 4.5 and 4.6 resume the overlap functions for each configuration subspace.

Table 4.4: Overlap functions for the singles configuration subspaces.

Singles Subspace Overlap

S2

〈
Φ̃at
ij |Φbu

kl

〉
= δabδikδjl

(
SS2
)
tu(

SS2
)
tu

= 2δtu −D(1)
tu

S1

〈
Φa
i |Φb

j

〉
= 2δabδij〈

Φau
it |Φbw

jv

〉
= 2δabδij

(
SS1
A

)
tu,vw〈

Φau
ti |Φbw

jv

〉
= −δabδij

(
SS1
A

)
tu,vw〈

Φau
ti |Φbw

vj

〉
= δabδij

(
SS1
B

)
tu,vw〈

Φau
it |Φb

j

〉
= 2δabδij

(
SS1
)
tu〈

Φau
ti |Φb

j

〉
= −δabδij

(
SS1
)
tu(

SS1
A

)
tu,vw

= δuwD
(1)
tv +D

(2)
tu,wv(

SS1
B

)
tu,vw

= 2δuwD
(1)
tv −D

(2)
tv,wu(

SS1
)
tu

= D
(1)
tu

S0

〈
Φav
tu |Φbz

wx

〉
= δab

(
SS0
)
tuv,wxz(

SS0
)
tuv,wxz

= δvzD
(2)
tw,ux +D

(3)
tw,uv,zx
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Table 4.5: Overlap functions for pairs.

Pair Subspace Overlap

P2

〈
Φ̃ab
ij |Φcd

kl

〉
= δacδbdδikδjl + δbcδadδjkδil

P1

〈
Φ̃ab
it |Φcd

ju

〉
= δijδacδbd

(
SD1

)
tu(

SD1
)
tu

= D
(1)
tu

P0

〈
Φab
tup|Φcd

vwq

〉
= 1

2
δpq (δacδbd + pδbcδad)

(
SD0p

)
tu,vw(

SD0p
)
tu,vw

= S
(p)
tu,vw

Table 4.6: Overlap functions for internal configuration subspaces.

Internal Subspace Overlap

I2

〈
Φtu
ijp|Φvw

klp

〉
= 1

2
δpq (δikδjl + pδjkδil)

(
SI2p

)
tu,vw(

SI2p
)
tu,vw

= S̄
(p)
tu,vw

I1

〈
Φtu
iv |Φwx

jz

〉
= δij

(
SI1
)
tuv,wxz(

SI1
)
tuv,wxz

= 2δtwδuxD
(1)
vz −δtxδuwD(1)

vz +2δtwD
(2)
vu,xz

− δuwD(2)
vt,xz − δtxD

(2)
vu,wz − δuxD(2)

wt,vz −D
(3)
wt,vu,xz

Because the transformations T are unidirectional, they are used differently with con-

figurations (residuals) and with amplitudes. We use orthogonalization tensors to bring

non-orthogonal configurations to the orthogonal configuration basis. Thus, by defini-

tion, orthogonal configurations (residuals) are linear combinations of the respective non-

orthogonal quantities. Because correlated wavefunctions are invariant to transformations

like the orthogonalization of configuration subspaces, non-orthogonal amplitudes are lin-

ear combinations of the orthogonal ones (93). Taking as an example the case of P1,

Definition : Φ̃ab
iD1

=
∑
t

Φ̃ab
it TtD1∑

it

∑
ab

Φ̃ab
it c̃

it
ab =

∑
iD1

∑
ab

Φ̃ab
iD1
c̃iD1
ab =

∑
iD1

∑
ab

∑
t

Φ̃ab
it TtD1 c̃

iD1
ab ⇒ c̃itab =

∑
t

c̃iD1
ab TtD1

(4.44)

Table 4.7 provides the respective conversions for both configurations and amplitudes

for all the configuration subspaces.
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Table 4.7: Conversion between non-orthogonal and orthogonal configurations and ampli-

tudes.

Space Configuration Residuals Amplitude

P2 Orthogonal Orthogonal Orthogonal

P1 Φab
iD1

=
∑

t Φab
it TtD1 Rab

iD1
=
∑

tR
ab
it TtD1 cabit =

∑
D1
ciD1
ab TtD1

P0 Φab
D0p

=
∑

tu Φab
tupT

(p)
tu,D0

Rab
D0p

=
∑

tuR
ab
tupT

(p)
tu,D0

cabtup =
∑

D0
cD0p
ab T

(p)
tu,D0

S2 ΦaS2
ij =

∑
t Φat

ijTtS2 RaS2
ij =

∑
tR

at
ijTtS2 catij =

∑
S2
cijaS2

TtS2

S1

Φa
iS1

=
∑

tu Φau
it Ttu,S1

+
∑

tu Φua
it Ttu,S1

+
∑

tu Φa
i TS1

Ra
iS1

=
∑

tuR
au
it Ttu,S1

+
∑

tuR
ua
it Ttu,S1

+
∑

tuR
a
i TS1

citau =
∑

S1
ciS1
a Ttu,S1 ,

citua =
∑

S1
ciS1
a T

′
tu,S1

,

cia =
∑

S1
ciS1
a TS1

S0 ΦS0
a =

∑
tuv Φav

tuTtuv,S0 RS0
a =

∑
tuv R

av
tuTtuv,S0 ctuav =

∑
S0
cS0
a Ttuv,S0

I2 ΦI2
ijp =

∑
tu Φtu

ijpT
(p)
tu,I2

RI2
ijp =

∑
tuR

tu
ijpT

(p)
tu,I2

cijptu =
∑

I2
cijpI2 T

(p)
tu,I2

I1 ΦiI1 =
∑

tu Φtu
ivTtuv,I1 RiI1 =

∑
tuR

tu
ivTtuv,I1 civtu =

∑
I1
ciI1Ttuv,I1

4.5.1 Diagonalization of Zeroth-Order Hamiltonian Terms

In the perturbative update of the amplitudes we require the calculation of energy

denominators given by

εX = 〈ΦX |
(
Ĥ(0) − E

)
|ΦX〉 (4.45)

with ΦX orthogonal configurations for the configuration subspace X. These εX quantities

depend on sums of diagonal elements of the virtual and closed-shell blocks of the Fock

matrix,14 as well as one- and two index contractions between the active block of the Fock

matrix and the many orders of the density matrix. Of the latter, we distinguished two

terms: A zeroth-order active energy given by E
(0)
act =

∑
tu ftuD

(1)
tu ; all other contractions

specific for each configuration subspace X collected in matrices γX(X,X ′). Tables 4.10,

4.8 and 4.9 present for each configuration subspace the γX matrices and the respective

energy denominators εX . The energy denominators are presented for a generic virtual

basis, for which the virtual block of the Fock matrix is not necessarily diagonal. We note

here that for canonical virtuals and for semicanonical virtuals the virtual block of the Fock

14e.g., for a P1 configuration Φab
iD1

these Fock matrix terms are faa, fbb, and fii.
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matrix is diagonal, meaning that fab = εaδab. Any other basis can be used however, which

only requires the respective changes of indices. Note that the P2 energy denominators

have the same structure as in MP theory. For all the other configuration subspaces the

external or closed-shell Fock matrix elements are replaced by contractions of the active

block of the Fock matrix with the many orders of the density matrix.

Table 4.8: γ and energy denominators for Singles.

Space γS;εS

S2

(
γS2
)
tu

= E
(0)
actD

(1)
tu +Df

tu +
∑

v

[(
SS2
)
tv
fvu − ftvD(1)

vu

]
γ (S2, T2) =

∑
tu Tt,S2

(
γS2
)
tu
Tu,T2

εijaS2
= faa + γ (S2, S2)− fii − fjj

S1

γ (S1, T1) =
∑3

i,j=1 γij (S1, T1)

γ11 (S1, T1) = 2
∑

tu

∑
vw Ttu,S1

(
γS1
A

)
tu,vw

Tvw,T1

γ12 (S1, T1) = −
∑

tu

∑
vw Ttu,S1

(
γS1
A

)
tu,vw

T
′
vw,T1

γ21 (S1, T1) = γ12 (S1, T1)

γ22 (S1, T1) =
∑

tu

∑
vw T

′
tu,S1

(
γS1
B

)
tu,vw

T
′
vw,T1

γ13 (S1, T1) = 2
∑

tu Ttu,S1

(
γS1
C

)
tu
TT1

γ31 (S1, T1) = γ13 (S1, T1)

γ23 (S1, T1) = −
∑

tu T
′
tu,S1

(
γS1
C

)
tu
TT1

γ32 (S1, T1) = γ23 (S1, T1)

γ33 (S1, T1) = 2TS1E
(0)
actTT1(

γS1
A

)
tu,vw

= Df
tvδuw +D

(1)
tv fuw +Df

tu,wv

+
∑

x fwxD
(2)
tu,xv +

∑
xD

(2)
tx,wvfxu(

γS1
B

)
tu,vw

= 2Df
tvδuw + 2D

(1)
tv fuw −D

f
tv,wu

−
∑

x fwxD
(2)
tv,xu −

∑
xD

(2)
tv,wxfxu(

γS1
C

)
tu

= Df
tu +

∑
vD

(1)
tv fvu

εiS1
a = faa + γ (S1, S1)− E(0)

act − fii

S0

(
γS0
)
tuv,wxz

= Df
tw,uv,xz + fvxD

(2)
tw,zu

+
∑

yD
(3)
tw,xz,uyfyv +

∑
y fxyD

(3)
yz,tw,uv + δvxD

f
tw,uz

γ (S0, T0) =
∑

tuv

∑
wxz Ttuv,S0

(
γS0
)
tuv,wxz

Twxz,T0

εS0
a = faa + γ (S0, S0)− E(0)

act

Here we have
Df
tu =

∑
vw

D
(2)
tu,vwfvw (4.46)
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Df
tu,vw =

∑
xz

D
(3)
tu,vw,xzfxz (4.47)

Df
tu,vw,xz =

∑
yz′

D
(4)
tu,vw,xz,yz′fyz′ (4.48)

Table 4.9: γ and energy denominators for Pairs.

Space γP ;εP

P2 εijab = faa + fbb − fii − fjj

P1

(
γP1
)
tu

= Df
tu

γ (D1, E1) =
∑

tu TtD1

(
γP1
)
tu
TuE1

εiD1
ab = faa + fbb + γ (D1, D1)− E(0)

act − fii

P0

(
γP0(p)

)
tu,vw

= Df
tv,uw + pDf

tw,uv

γ(p) (D0, E0) =
1

4

∑
tu

∑
vw T

(p)
tu,D0

(
γP0(p)

)
tu,vw

T
(p)
vw,E0

εD0p
ab = faa + fbb + γ(p) (D0, D0)− E(0)

act

Table 4.10: γ and energy denominators for Internals.

Space γI ;εI

I2

(
γI2(p)

)
tu,vw

= 2 (2− p)E(0)
actδtvδuw − 2 (2− p) ftvD(1)

uw

+ 4 (2− p) ftvδuw − 2 (2− p) δuw
∑

x ftxD
(1)
xv

− 2 (2− p) δuw
∑

xD
(1)
tx fxv − 2 (2− p) δuwDf

tv − 2Df
tv,uw

+
∑

x fvx
(
S(p)
)
tu,xw

+
∑

x ftx
(
S(p)
)
vw,xu

γ(p) (I2, J2) = 1
4

∑
tu

∑
vw T

(p)
tu,I2

(
γI2(p)

)
tu,vw

T
(p)
vw,J2

εijpI2 = 2γ(p) (I2, I2)− E(0)
act − fii − fjj

I1

(
γI1
)
tuv,wxz

= (2δtwδux − δtxδuw)Df
vz −D

f
wt,vu,xz

−
∑

yD
(3)
vu,xz,wyfyt −

∑
yD

(3)
wt,xz,vyfyu −

∑
y fwyD

(3)
yt,vu,xz

−
∑

y fxyD
(3)
yz,vu,wt + 2ftwD

(2)
vu,xz − fuxD(2)

wt,vz

− ftxD(2)
vu,wz − fuwD(2)

vt,xz

+2δtw

[
D

(1)
vz fux +Df

vu,xz +
∑

yD
(2)
xz,vyfyu +

∑
y fxyD

(2)
yz,vu

]
+δux

[
2D

(1)
vz ftw −Df

wt,vz −
∑

yD
(2)
vz,wyfyt −

∑
y fwyD

(2)
yt,vz

]
−δtx

[
D

(1)
vz fuw +Df

vu,wz +
∑

yD
(2)
wz,vyfyu +

∑
y fwyD

(2)
yz,vu

]
− δuw

[
D

(1)
vz ftx +Df

vt,xz +
∑

yD
(2)
xz,vyfyt +

∑
y fxyD

(2)
yz,vt

]
γ (I1, J1) =

∑
tuv

∑
wxz Ttuv,I1Twxz,J1

εiI1 = γ (I1, I1)− E(0)
act − fii
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The terms of each γX always involve multiple summations over the active space. The

number of active indices in these summations is twice the number of active orbitals in each

configuration subspace (e.g., S2 configurations depend on one active index; the summation

runs over two active indices). On the other hand, the energy denominators just involve

the indices for the configuration subspace X. This means that only the diagonal elements

of the Fock and of the orthogonal γX matrices contribute to the energy denominator. But

since the latter are by definition symmetric and only depend on quantities available from

the beginning of the calculation, these can be both pre-computed and diagonalized (14).

Finding an orthogonalization matrix for a configuration subspace that also (block) diag-

onalizes the respective γX matrices requires a rotation of the orthogonalization tensors

using the eigenvectors ΛX of each orthogonal γX matrix. Because such rotation matrices

exist, there is no unique set of orthogonal ICCs: many sets are possible. But since the

CASPT2 energy is invariant to rotations of the orthogonalization matrices, we can choose

to uniquely build the orthogonalization tensors so that the γX matrices are diagonal.

This is convenient in building PNOs since it guarantees that a unique set of configu-

rations is used for each subspace. Furthermore, using diagonal γX matrices reduces the

computational cost for solving the equations and speeds up convergence significantly (14).

To get diagonal γX(X,X ′) matrices, we require the matrix of eigenvectors ΛX for

each γX to rotate the respective orthogonalization matrix TX . This is achieved by direct

contraction with the respective ΛX .

T̃X = TXΛX (4.49)

4.6 Pair Approximations

In local SR theories several categories of pairs are distinguished: strong pairs; close

pairs; weak pairs; distant pairs; very distant pairs. This partitioning allows different

classes of pairs to be treated at different levels of theory. In pair theories only the strong

pairs are treated at the highest level of theory, which usually is CCSD. This distinguishes

strong pairs from all other classes. Both close and weak pairs are usually not distinguished

in pair theories and are treated at a lower level of theory, which typically corresponds to

MP2. The MR equivalent to MP2 is CASPT2, and it is thus the lowest level of theory

possible to apply. As such, no distinction is made between strong, close or weak pairs,

and all pairs are treated at the same level of theory. However, we differentiate distant

and very distant pairs from the former.
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In the MR case, unlike SR theories, three orbital sets are distinguished. With the

current level of technology there is a maximum of about fourteen active orbitals possible

to treat in MR calculations. Therefore the number of active orbitals is independent

of the molecular size. Of the two sets of internal orbitals, only the closed-shell space

scales linearly with the system’s size. Furthermore, after domain approximations, the

substitution spaces are in any configuration subspace always independent of the molecular

size. Since the P0 configurations are independent of closed-shell orbitals, the number of

pairs in P0 is independent of the molecular size. The same is true for S0. In the P1 case,

there is a dependence on one active, a closed-shell orbital and two virtuals. The number

of P1 configurations scales thus linearly with the molecular size. Similarly, both S1 and I1

show the same linear scaling. For the cases of P2, S2 and I2 there is a dependence on two

closed-shell indices, meaning that the number of these configurations scales quadratically

with the molecular size.

The first type of approximation we apply to P2’s pair list concerns very distant pairs.

Distance criteria determines the minimal distance between the atomic centers of orbitals

i and j, DISTij. If DISTij is larger than a given threshold RVDIST , the respective

pair is omitted from the pair list and ignored in the subsequent calculation. By default

this option is off. If desired, a value of 25 bohr is recommended. A vicinity parameter

can also be used for the very distant pair approximation, which is also by default off. By

setting IV DIST to an integer, all the orbitals j centered in atoms beyond the IV DIST

neighboring shells of the atom A, in which i is centered, are removed from the pair

list (2, 3, 133). The number of very distant pairs scales quadratically with the molecular

size (68, 132, 136) (the other pair classes scale linearly (2, 133)), and these dominate

asymptotically the computational effort in canonical methods. Neglecting very distant

pairs is essential to reduce to linearity the scaling of a method with the number of closed-

shell orbitals (2,3,65,148,149,216,231,329,331,357).

After removing the very distant pairs, approximate exchange integrals for the remain-

ing P2 pairs are calculated using the MPA (214, 325). These are used to estimate a pair

energy, and if the estimated pair energy lies below a given threshold thrdist, the pair

is classified as distant and the respective exchange integrals are approximated using the

MPA. For all other pairs the two-electron integrals are explicitly calculated. This signifi-

cantly reduces the computational effort for assembling the integrals for this class of pairs.

By default, thrdist = 10−6 Eh as recommended in the literature (148,149,214,325). This

is an energy criterion.

As above mentioned, also the S2 and I2 configuration subspaces exhibit a quadratic
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scaling on closed-shell orbitals. In a first approximation, we reuse the P2 list to build

the S2 and I2 lists. This ensures consistency in applying pair approximations to all

configuration subspaces. Furthermore, integrals like Kji
at, K

ui
at or Kij

tu decay exponentially

with the distance between closed-shell and active orbitals, DISTit. This allowed the

introduction of another distant pair criterion to neglect exchange integrals related to the

P1, S2, S1, I2 and I1 subspaces, RDIST . If DISTit > RDIST , the respective exchange

integrals for P1, S2, S1, I2 and I1 are neglected. By default we have RDIST = 15 bohr,

and for consistency and invariance, DISTit is defined as the minimal distance between

the closed-shell orbital i and any of the active orbitals.

In the following, pair approximations are specified by curly brackets. The specification

{ij} means that orbitals i and j are in the vicinity of each other. {i}t refers to a subset of

the closed-shell space that is in the spatial vicinity of any active orbital and {ij}t means

that not only orbitals i and j are restricted to the vicinity of each other, but also that

these orbitals should be close enough to any active orbital.

4.7 Building PAOs and PNOs

PNOs and their generation depend on the properties of the orbital spaces in which

pair densities are built. E.g., if the set of internal orbitals is not local, neither are the

resulting PNOs. PNOs are generated as local orbitals when the internal orbitals they aim

correlating are also local(ized). Furthermore, the scaling of algorithms to generate PNOs

depends on the nature of the virtual space and the approximations used.

Without any approximation, both the diagonalization of pair densities and the con-

struction of two-electron integrals required to build PNOs scale with the 5th power of the

molecular size (148, 149, 266): the diagonalization of pair densities depends cubically on

the virtual space and quadratically on the number of internal orbitals; constructing two-

electron integrals depends quadratically on the number of internal orbitals, quadratically

on the number of virtuals and linearly on the DF basis. However, since the transforma-

tion of integrals has a small prefactor, the main bottleneck in generating PNOs is the

diagonalization of the pair densities. Pair approximations reduce by one the exponent

of the dependence on the molecular size of these algorithms. Use of domain approxima-

tions makes the substitution and DF spaces associated to each orbital pair independent

of the molecular size. Therefore, the simultaneous use of both pair and domain approx-

imations reduces drastically the scaling of the algorithms that generate PNOs to (near)

linear scaling (if local DF is also used). In order to be able to use both pair and domain
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approximations in building PNOs one must use previously a local basis of virtual orbitals,

e.g. PAOs (72, 137, 148, 149, 235, 264–266) or OSVs (149, 266, 273, 358). Because PNOs

are built only after applying pair and domain approximations to intermediate amplitudes,

the global effect of building PNOs from local virtuals is the reduction of the number of

PNO transformation matrices and of integrals (148). Matrices become very compact, al-

lowing all quantities to be kept in high-speed memory (235). Two additional intermediate

steps have also been reported by building first PAOs, then OSVs (148,149), which leads

to computational savings by yet another order of magnitude.

The way we generate PNOs resembles the techniques employed in PNO-MP2 (148,235)

and PNO-CCSD (137, 149, 265). In our implementation, the first step for near linear

scaling PNO generating algorithms starts by building IBOs. Although any other set of

localized orbitals are suitable, IBOs yield stable orbital partial charges, an important

feature when assigning PAO domains.

We construct then PAOs, and PAO domains are assigned for each closed-shell orbital

i. Building orbital domains for closed-shell orbitals takes place just like in the SR case.

For active orbitals however, further considerations must be taken. We solve the residuals

in the orthogonal configuration basis and this requires amplitudes to be also in this basis.

We build PNOs from unique orthogonal pair amplitudes. The orthogonalization of config-

uration subspaces creates orthogonal ”active” indices, which differ for each configuration

subspace. The transformation may even affect more than just one active index. As seen

in section 4.5, these orthogonal configuration indices have no direct correspondence to

the (non-orthogonal) active orbital indices. Building single orbital domains for the active

space is then pointless, as with the orthogonalization procedure any single orbital domain

we can build loses its validity. Furthermore, because PNOs are built from orthogonal

configuration subspaces, invariance to unitary transformations within the active space is

mandatory. This invariance can only be achieved with a single domain for the whole ac-

tive space, t. This single domain is built from the union of the domains of all single active

orbitals, and it is thus an extension of the concept used to build pair domains from single

orbital domains. Even though the orthogonalization of configuration subspaces does not

allow us to fully explore the locality of active orbitals, localization of the active space is

required to obtain stable active PAO domains.

Because of the inherent efficiency of PNOs, the accuracy of LCASPT2 is often limited

by the PAO domains. These are thus of utmost relevance in determining the quality

of calculations. The PAO domains must be as large as possible so that their accuracy is

virtually the same as with canonical virtuals. For every LMO, all atoms with partial charge
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larger than thresLMO are included in the orbital’s domain. By default we established

thresLMO = 0.2 e (atomic units of electronic charge), which typically leads to domains

relatively stable with respect to geometry changes (148). Because partial charges smaller

than the default value lack physical meaningfulness and might be randomly scattered

throughout molecules, these primary domains are extended by adding neighboring atom

shells. The number of shells can be controlled by iext, which by default we set to 2

(neighboring shells). An atom B is considered to be in a neighboring shell of atom A

if the distance dAB is at most 20% larger than the sum of the atomic radii of A and

B. A distance criterion rext can also be used, which by default is set to 2 × iext + 1

bohr. rext is more advantageous in cases for which bonds are stretched. Nevertheless,

our program uses by default both parameters simultaneously to complement each other:

either dAB ≤ rext or B is within the iext neighboring shells of A.

Having PAO domains for each closed-shell orbital and for the active space, we build

pair domains by union of orbital domains. We build domains for pairs ij (P2) and for

pairs it (P1). Note that for P0 pairs we do not have to build any special pair domain, due

to the singular domain for active orbitals. We orthogonalize the PAOs in each domain

and make them semicanonical. At the end of this step we build the conversion between

canonical virtuals, b, and PAO(SC)s, r̄ij.

|r̄mn〉 =
∑
s̃

|s̃〉 V̄ mn
s̃r̄ =

∑
b

|b〉 Q̄mn
br̄ (4.50)

From the last equation, Q̄mn = Q̃V̄mn transforms canonical orbitals into the orthogo-

nal PAO(SC)s. The matrix Q̃ transforms canonical virtuals into PAOs, r̃, while V̄mn

simultaneously orthogonalizes and semicanonicalizes PAOs for each pair mn.

From orthogonal PAO(SC)s zeroth-iteration pair amplitudes are calculated in the or-

thogonal configuration and orthogonal PAO(SC) bases. These are obtained from the

expressions of the perturbative update of amplitudes. The resulting expression for the

amplitudes has for pairs the general structure of an exchange integral divided by the

respective energy denominators as given in Table 4.9. The expressions for the zeroth iter-

ation amplitudes are given below. For the sake of simplicity, PAO domains are omitted,

since the PAOs below used are always associated to a specific orbital pair.

cijr̄s̄ = −K
ij
r̄s̄

εijr̄s̄
(4.51)

ciD1
r̄s̄ = −

∑
tuK

it
r̄s̄

(
SD1

)
tu
TuD1

εiD1
r̄s̄

(4.52)
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cD0p
r̄s̄ = −1

2

∑
tu

∑
vwK

tu
r̄s̄

(
SD0p

)
tu,vw

T
(p)
vw,D0

εD0p
r̄s̄

(4.53)

These amplitudes are then used to calculate pair densities as given in eqs. 3.92 and 3.94.

Note that even though in eq. 3.94 there is a compound pair mnp this is equivalent to

a D0p pair. For P1, eq. 3.92 is used because of the contravariant configurations. With

the pair densities, PNOs are built, which we also semicanonicalize. With these two steps

the transformation matrices to the PNO basis are generated, allowing the transformation

from canonical virtuals or PAOs to PNOs, ãmn, or to PNO(SC)s, amn.

|ãmn〉 =
∑
r̄

|r̄mn〉 W̃mn
r̄ã =

∑
b

|b〉W̄mn
bã (4.54)

|amn〉 =
∑
b̃

∣∣∣b̃mn〉Umn
b̃a

=
∑
b̃

∑
r̄

|r̄mn〉 W̃mn
r̄b̃
Umn
b̃a

=
∑
b̃

∑
s̄

∑
r̃

|r̃〉 V̄ mn
r̃s̄ W̃mn

s̄b̃
Umn
b̃a

=
∑
r̃

|r̃〉Wmn
r̃a =

∑
b

∑
b̃

|b〉 W̄mn
bb̃
Umn
b̃a

=
∑
b

∑
r̃

|b〉 Q̃br̃W
mn
r̃a

(4.55)

PNO domains can be easily determined using thresholds on the eigenvalues of the

pair densities, thrpno occ. For more distant pairs, this occupation criterion yields too

small or even empty domains, underestimating long range dispersion energies (148). An

energy completion threshold balances the percentage of correlation recovered for all pairs,

independently of their class, guaranteeing that domains are sufficiently large and accurate

for short- and long-range pairs. In the energy completeness criterion, PNOs are considered

in the domain of a pair P until an estimated pair energy in the PNO basis, EP
PNO, is at

least 100×thrpno% of the same energy in the PAO basis, EP
PAO (or canonical virtual basis,

EP ).15 Accessing PNO energies requires having two-electron integrals and amplitudes in

the PNO basis, which is done using full transformation matrices. By default we combine

both strategies to build PNO domains and demand both conditions to be simultaneously

fulfilled. This means that all PNOs corresponding to eigenvalues larger than thrpno occ

are included in the domain of pair P and if
EP

PNO

EP
PAO
≤ thrpno then more PNOs are added until

this condition is also verified. For consistency, further PNOs are added with decreasing

occupation number. By default thrpno occ = 10−8 and thrpno = 0.997.

PNOs are thus built for all pairs in the orthogonal configuration basis. This means

we have PNOs for all pairs ij, iD1 and D0p. Alike the SR case, PNOs cannot be built

specifically for singles. However, PNOs can be reused from pairs in singles. The difference

is that only one external index must be transformed in the case of singles. The first case

15PNO and PAO pair energies are given or can be adapted from the energy expressions given in section

4.11.
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to consider is S2, in which we have configurations of the form ΦaS2
ij . Since an electron

pair originating the substitution is always identifiable, the pair ij, we may relate each S2

configuration to one and only one P2 configuration. It is thus possible to assign for each

S2 configuration a unique set of P2’s PNOs. The second case to take in consideration

is S1. Here there are configurations of the form Φa
iS1

. Since the orthogonalization of

S1 configurations is unrelated to the orthogonalization of P1 configurations, there is no

possible connection between the indices S1 and P1. It is thus not possible to reuse P1’s

PNOs for S1. The other possibilities are either keeping PAOs for S1 or using P2’s OSVs

(intrapair PNOs). We verified that the latter causes greater losses in the correlation

energy, as well as convergence problems. This was also verified by others (72). In the

final version of our equations we used thus PAOs for S1. Finally we have the S0 space,

with configurations of the form Φa
S0

. Because there is no connection between the indices

S0 and D0p, neither singlet nor triplet, no set of PNOs can be assigned to any of S0’s

configurations. S0 configurations were also left in the PAOs basis.

For the case of internals, because no external indices are involved, there is no trans-

formation to local virtual bases.

4.8 Transformation of Integrals

The two-electron integrals used in the LCASPT2 implementation have one of two

possible sources. The first possibility is to read the integrals from a file of the previous

CASSCF calculation, which are loaded in the canonical MO basis. This is how the

program worked in the initial stages. Later on, the program was changed to calculate

the integrals in the AO basis using LDF and to directly transform these to the LMO and

PAO bases subject to pair and domain approximations. Transforming the integrals from

one virtual basis to another consists solely on a matrix multiplication over virtual indices.

These operations take place using the respective transformation matrices for all virtual

indices. The transformation of two- and one-external exchange integrals from canonical

virtuals to the PAO basis is given by

Kmn
r̃s̃ =

∑
ab

Q̃ar̃K
mn
ab Q̃bs̃ (4.56)

Kmn
r̃t =

∑
a

Q̃ar̃K
mn
at (4.57)

Note that the all internal integrals Kmn
tu have no external index and therefore require

no transformation. Alternatively, integrals can be directly transformed to the orthogonal
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pair specific PAO(SC) basis. This requires simply exchanging the transformation matrices

Q̃ by the matrices Q̄mn. The resulting integrals are, respectively, Kmn
r̄s̄ and Kmn

r̄t .

In a similar fashion the integrals in the PAO basis can be transformed to the PNO

basis. The transformations are equivalent to the transformations to the PAO basis. How-

ever, PNO domains are built for orthogonal pairs, meaning that only for the cases of P2

and S2 these expressions hold as they were presented. Note that for S2 the orthogonal

configuration index does not influence the PNO domains. For P1 and P0 the exchange

integrals are transformed to the PNO basis after performing the necessary contractions to

get quantities depending on orthogonal configuration indices only. These transformations

will be presented later. Taking as an example the integrals Ktu
r̃s̃ for P0’s residuals, the

direct transformation to the PNO basis yields a tensor dependent on the indices a, b, t,

u and D0p. If on the other hand we first contract the indices t and u to D0p and then

transform KD0p
r̃s̃ to the PNO basis, we only need to keep track of the indices a, b and D0p.

This same principle holds also for P1. Transforming exchange integrals to the PNO basis

can be performed by the following transformations:

Kij
ab = Kij

aijbij
=
∑
r̃s̃

W ij
r̃aK

ij
r̃s̃W

ij
s̃b (4.58)

Kij
aS2

= Kij
aijS2

=
∑
r̃

W ij
r̃aK

ij
r̃S2 (4.59)

KiD1
ab = KiD1

aiD1biD1
=
∑
r̃s̃

W iD1
r̃a KiD1

r̃s̃ W iD1
s̃b (4.60)

KD0p
ab = KD0p

aD0pbD0p
=
∑
r̃s̃

WD0p
r̃a KD0p

r̃s̃ WD0p
s̃b (4.61)

Similarly, blocks of the Fock matrix involving external indices can be equally trans-

formed to the PAO or PNO bases. These blocks are specifically the virtual block, fab, or

the virtual:internal block, fam. Due to the structure of the elements in the Fock matrix,

these integrals can be directly transformed to any local virtual basis.

4.9 Wavefunction Ansatz in Local Basis

Having defined how the external substitution spaces are expressed for each configura-

tion subspace we can define the wavefunction ansatz given in eq. 4.35 in the local basis.
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The local ansatz for the wavefunction we used is given by

Ψ(1) =
1

2

∑
ij∈{ij}

∑
ab∈[ij]PNO

cijabΦ
ab
ij +

∑
iD1∈{i}t

∑
ab∈[iD1]PNO

ciD1
ab Φab

iD1
+
∑
p

∑
D0

∑
ab∈[D0p]PNO

cD0p
ab Φab

D0p

+
∑
S2

∑
ij∈{ij}t

∑
a∈[ij]PNO

cijaS2
ΦaS2
ij +

∑
S1

∑
i∈{i}t

∑
r̄∈[i,t]PAO

ciS1
r̄ Φr̄

iS1
+
∑
S0

∑
r̄∈[t]PAO

cS0
r̄ Φr̄

S0

+
∑

ij∈{ij}t

∑
I2

cijpI2 ΦI2
ijp +

∑
i∈{i}t

∑
I1

ciI1ΦiI1

(4.62)

In the wavefunction’s ansatz, square brackets refer to orbital domains, just as pre-

viously defined. Different indices are used for PNOs and PAOs. Subscripts on square

brackets specifically identify which local orbitals are used for each case and to which do-

main they belong to. As such, e.g., in the P1 term, the PNOs a and b run over the domain

of the pair iD1; in the S0 term, PAOs r̄ run over the domain for the active space. In

the configuration subspaces spanned by PAOs the restriction t refers to the united PAO

domain for active orbitals. We remind the reader that curly brackets affecting closed-shell

indices refer to pair approximations.

4.10 Residual Equations

In canonical MR methods the residual equations are derived and implemented in the

non-orthogonal configuration basis. Changing to the orthogonal configuration basis is

a side step used in the update of amplitudes that removes linear dependencies and im-

proves convergence. Afterwards, amplitudes are back-transformed to the non-orthogonal

configuration basis and the new amplitudes are used to calculate new residuals in the

next iteration. The procedure is repeated until all the residuals are zero within a certain

accuracy. There is then this pattern of residuals being calculated in the non-orthogonal

configuration basis and then transformed to the orthogonal configuration basis. The am-

plitudes follow the opposite path, they are first obtained in the orthogonal configuration

basis and then transformed to the non-orthogonal configuration basis. In the LCASPT2

method, the residuals must be both built and solved in the orthogonal configuration ba-

sis. Likewise amplitudes are always in the orthogonal configuration basis, at least for the

configuration subspaces spanned in the PNO basis. For P2, P1, P0 and S2 the program

only deals with residuals and amplitudes in the orthogonal configuration basis. For S1,

S0, I2 and I1 this is however not a must. This is a significant difference towards other MR

implementations, since it is required for some quantities to be always in the orthogonal
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configuration basis.

The residual equations can be directly derived in the orthogonal configuration and

local bases. However, working out the expressions for all terms in the residuals is a

lengthy and demanding task, prone to error. We therefore opted for a three step deriva-

tion: expressing non-orthogonal operator expressions as tensor contractions; change to

orthogonal configuration basis; change to local bases. The following explanation of the

many steps used to assemble the final residual equations in the orthogonal configuration

and local bases is complemented with a suitable example. This example is the P1-P0

term contributing to P1’s residuals. All equations were first derived by hand in the non-

orthogonal basis. This required the anticommutation relations 3.7, 3.8 and 3.9, as well as

eqs. 4.12, and 4.13. All these relations allowed us to work out products of substitution

operators and to go from operator expressions 16 to tensor-formulated expressions. The

latter depended exclusively on the many orders of the density matrix, on integrals like

the Fock or exchange matrices and eventually also on amplitudes (the terms 〈Φi| Ĥ |0〉 do

not depend on amplitudes). The resulting expressions were afterwards confirmed using

Dr. D. Kats’ Quantwo software (359). Quantwo is a C++ program that takes an opera-

tor expression written in LATEX format and evaluates it to a sum of tensor contractions.

The evaluation is based on simple creation and annihilation operators along with Wick’s

theorem. The resulting expressions are spin-summed to yield spin-free expressions, and

transformed back to LATEX form.

In the example, the quantity needed to be calculated in the non-orthogonal basis is∑
p

∑
uv

∑
cd

〈
Φ̃ab
it |F̂ |Φcd

uvp

〉
cuvpcd =

=
1

6

∑
p

∑
uv

∑
cd

∑
rs

frsc
uvp
cd

[
2〈0| Êai,btÊrsÊcu,dv |0〉+ 〈0| Êat,biÊrsÊcu,dv |0〉

]
+

1

6
p
∑
p

∑
uv

∑
cd

∑
rs

frsc
uvp
cd

[
2〈0| Êai,btÊrsÊcv,du |0〉+ 〈0| Êat,biÊrsÊcv,du |0〉

] (4.63)

Using eqs. 3.7, 3.8, 3.9, 4.12 and 4.13 to evaluate all terms inside brackets yields∑
p

∑
uv

∑
cd

〈
Φ̃ab
it |F̂ |Φcd

uvp

〉
cuvpcd = −1

6

∑
p

(2 + p)
∑
w

fiwS
(p)
tw,vuc

vup
ab (4.64)

All quantities were then transformed to the orthogonal configuration basis using the

relations in Table 4.7. The end result of both transformations (residuals and amplitudes)

is that quantities in the non-orthogonal configuration basis ended up being expressed in

16For excited configurations i and j, terms like 〈Φi| F̂ |Φj〉 or 〈Φi| Ĥ |0〉.
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terms of orthogonal configuration indices. All the terms depending on internal orbitals

were furthermore separated from terms depending on virtual orbitals and conveniently

collected and rearranged as intermediates. With this step, most terms in the residual

equations could be built as the contraction of three tensors: an orthogonal amplitude;

a term depending on a specific block of the Fock matrix; a coupling term depending on

many orders of the density matrix contracted with orthogonalization tensors. Whenever

possible, the Fock matrix terms were contracted with the coupling term, creating one

single intermediate. This contraction depended on the block of the Fock matrix required.

The exceptions to these rules were terms which did not depend on amplitudes. These

involved either exchange integrals or some mixed block of the Fock matrix17 contracted

with many orders of the density matrix and orthogonalization tensors.

All these rearrangements allowed us to store just the essential quantities. The lat-

ter depended on the least possible number of parameters, allowing the minimization of

memory requirements. Furthermore, only terms depending on amplitudes would require

update in each iteration and all other quantities were calculated just once in the beginning

of each calculation. In the case of the selected example, the term we wished to calculate

in the orthogonal basis is∑
D0p

∑
cd

〈
Φ̃ab
iD1
|F̂ |Φcd

D0p

〉
cD0p
cd =

∑
D0p

∑
cd

∑
tuv

TtD1

〈
Φ̃ab
it |F̂ |Φcd

uvp

〉
T

(p)
uv,D0

cD0p
cd

= −1

3

∑
p

(2 + p)
∑
D0p

cD0p
ab fiD1,D0p

(4.65)

with

fiD1,D0p =
∑
t

fitα
(p)
t,D1,D0

α
(p)
w,D1,D0

=
1

2

∑
tuv

T
(p)
tu,D0

S
(p)
tu,vwTvD1 (4.66)

In this specific example, the closed-shell:active block of the Fock matrix contracts with

the coupling term α. As a result, in the beginning of the calculation we calculate fiD1,D0p

as a matrix with the dimensions of the full P1 space times the full P0 singlet or triplet

spaces. This tensor is loaded and contracted with the amplitudes cD0p
ab in every iteration.

We distinguished four types of coupling coefficients according to the block of the Fock

matrix appearing in that same term: α terms are associated to the closed-shell:active

block of the Fock matrix, coupling different subspaces within a space of excited config-

urations (e.g., P1 with P0); β coefficients are associated with the active:virtual block of

the Fock matrix, coupling different subspaces with the same subscript (e.g., P1 with S1);

17As mixed blocks of the Fock matrix we understand the closed-shell:active, closed-shell:virtual, or

active:virtual blocks.
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γ coefficients appear in terms involving the active block of the Fock matrix, coupling one

subspace with itself; σ coefficients appear along with the closed-shell:virtual block of the

Fock matrix, and are present in the remaining couplings.

In the final step we transformed both the residuals and amplitudes to the local bases

by using eqs. 3.60 for the amplitudes and 3.62 for the residuals. Despite these last two

expressions being given only for P2 configurations, these can be used for both amplitudes

and residuals of other configuration subspaces. This means that each canonical virtual

index was contracted with the transformation matrix to either the PNO or PAO bases.

These transformation matrices contracted then either with integrals, yielding the inte-

grals in the respective local basis, or with each other, yielding overlap matrices for local

bases. These overlap matrices occur in the residual equations because of the general non-

orthogonality of orbitals in these local virtual bases. For general orbital/pair domains

P , Q, the PNO (SPNO
[P,Q]), PAO (SPAO, for non-orthogonal PAOs; SPAO

[P,Q] for orthogonal

semicanonical PAOs), and PNO-PAO (SPAO−PNO
[P,Q] ) overlap matrices are defined as(

SPNO
[P,Q]

)
aP bQ

=
∑
cd

∑
r̃s̃

Q̃cr̃W
P
r̃aP 〈c|d〉Q̃ds̃W

Q
s̃bQ

=
∑
c

∑
r̃s̃

W P
r̃aP Q̃cr̃Q̃cs̃W

Q
s̃bQ

=
∑
c

∑
r̃s̃

W P
r̃aP SPAOWQ

s̃bQ

(4.67)

(
SPAO

[P,Q]

)
r̄s̄

=
∑
ab

Q̄P
ar̄〈a|b〉Q̄bs̄

Q =
∑
a

Q̄P
ar̄Q̄

Q
as̄ (4.68)(

SPAO−PNO
[P,Q]

)
r̄aQ

=
∑
cd

∑
s̃

Q̄P
cr̄〈c|d〉Q̃ds̃W

Q
s̃aQ

=
∑
c

∑
s̃

Q̄P
cr̄Q̃cs̃W

Q
s̃aQ (4.69)

Note that the domains are inherited from the corresponding pairs. Thus, transforming

the a and b canonical indices from the residuals RP
ab or from the amplitudes cPab generates

local orbitals in the domain of pair P . Note as well that all PNOs in the same domain

are orthogonal. As such,
(
SPNO

[P,P ]

)
= I. The same is valid for the orthogonal pair specific

PAO(SC)s. The differences between local and canonical residuals is that integrals must be

in the local virtual bases and all virtual indices of amplitude matrices are not contracted

with integrals. Instead they contract with overlap matrices of the local bases.

Regarding the selected example, applying the above mentioned changes to the last

equality in 4.65 gives the term in the PNO basis:

−1

3

∑
p

(2 + p)
∑
D0

fiD1,D0p

(
SPNO

[iD1,D0p]
cD0pSPNO

[D0p,iD1]

)
ab (4.70)

In a first stage, all the residuals were derived and implemented in the orthogonal con-

figuration and local bases. For S0 and I1 this meant however that we had to build terms,
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which had scalings up to O (n9
active). Building the residuals in the non-orthogonal con-

figuration basis and orthogonalizing them at a later stage changes the maximum scaling

to O (n6
active × npao) for S0 and to O (n6

active × nclosed) for I1. The relative speed of these

procedures depends naturally on the ratios
n3
active

npao
and

n3
active

nclosed
. Because building all inter-

mediates in the orthogonal basis is significantly worse for larger active spaces, we found

suitable to build the residuals for S0 and I1 first in the non-orthogonal configuration basis

and then contract the resulting tensors with the respective orthogonalization matrices for

each subspace. Due to the presence of non-orthogonal configuration subspaces we had to

introduce an extra class of coupling terms, which we named ρ. ρ terms depend only on

one orthogonal configuration index.

We present now the residuals for LCASPT2. The α, β, σ, and ρ coupling terms are

presented in the Appendix 8.2. The γ terms were presented in Tables 4.8, 4.9 and 4.10 in

section 4.5.1. All residuals have the same basic structure. We identified i) Hamiltonian

terms depending on exchange integrals and eventually also on a mixed block of the Fock

matrix; ii) external contraction terms contracting amplitudes with the virtual block of the

Fock matrix (Fv); iii) internal contraction terms contracting amplitudes with the closed-

shell block of the Fock matrix, with γ terms and with E
(0)
act; iv)G terms with all interactions

of a specific subspace with all others. There are simplifications to the residuals, which

are not showed here, but instead in reference (242). An example are the terms involving

the virtual block of the Fock matrix, a diagonal matrix in the semicanonical PNO basis.

The elements fab are in this basis written as orbital energies εa.

R̃ij
ab = Kij

ab +
(
Fvcij

)
ab

+
(
cijFv

)
ab

+Gij
ab +Gji

ba

−
∑
k

fik
(
S[ij,kj]c

kjS[kj,ij]

)
ab
−
∑
k

(
S[ij,ik]c

ikS[ik,ij]

)
ab
fkj

(4.71)

Gij
ab = −1

2

∑
D1

(
SPNO

[ij,iD1]c
iD1SPNO

[iD1,ij]

)
ab
fjD1

+
1

2

∑
S2

cijaS2
fS2b + fai

∑
S1

(
cjS1SPAO−PNO

[jt,ij]

)
b
σ (S1)

(4.72)

fiD1 =
∑
tu

fitD
(1)
tu TuD1 (4.73)

fS2b =
∑
tu

TuS2

(
SS2
)
ut
ftb (4.74)

R̃iD1
ab = KiD1

ab +
[
γ (D1, D1)− E(0)

act

]
ciD1
ab +GiD1

ab

−
∑
j

fij
(
SPNO

[iD1,jD1]c
jD1SPNO

[jD1,iD1]

)
ab

+
(
FvciD1 + ciD1Fv

)
ab

(4.75)
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KiD1
ab =

∑
tu

Kit
ab

(
SP1
)
tu
TuD1 (4.76)

GiD1
ab = −

∑
j

(
SPNO

[iD1,ij]
cijSPNO

[ij,iD1]

)
ab
fjD1 + fai

∑
tuv

(
SPNO−PAO

[iD1,t]
cvt
)
bu
ρtvu (D1)

− 1

3

∑
p

(2 + p)
∑
D0

fiD1,D0p

(
SPNO

[iD1,D0p]
cD0pSPNO

[D0p,iD1]

)
ab

+
∑
S1

[
fAa,D1,S1

(
ciS1SPAO−PNO

[it,iD1]

)
b

+
(
ciS1SPAO−PNO

[it,iD1]

)
a
fBS1,D1,b

] (4.77)

fiD1,D0p =
∑
t

fitα
(p)
t (D1, D0) (4.78)

fBS1,D1,a
=
∑
t

fatβ
B
t (D1, S1) (4.79)

fAa,D1,S1
=
∑
t

fatβ
A
t (D1, S1) (4.80)

RD0p
ab = KD0p

ab +
[
γ(p) (D0, D0)− E(0)

act

]
cD0p
ab

+
(
cD0pFv + FvcD0p

)
ab

+
1

2
GD0p
ab +

1

2
pGD0p

ba

(4.81)

KD0p
ab =

1

4

∑
tu

∑
vw

Kvw
ab

(
SD0p

)
tu,vw

T
(p)
tu,D0 (4.82)

GD0p
ab =

∑
w

faw
∑
vxz

(
SPNO−PAO

[D0p,t]
cvx
)
bz
ρ(p)
wvxz (D0)

−
∑
D1

∑
i

(
SPNO

[D0p,iD1]c
iD1SPNO

[iD1,D0p]

)
ab
fiD1,D0p

(4.83)

R̃ij
aS2

= Kij
aS2
−
∑
k

[
fik
(
SPNO

[ij,kj]c
kj
)
aS2

+
(
SPNO

[ij,ik]c
ik
)
aS2
fkj

]
+
(
Fvcij + γ (S2, S2) cij

)
aS2

+Gij
aS2

(4.84)

Kij
aS2

=
∑
tu

Kij
at

(
SS2
)
tu
TuS2 (4.85)

Gij
aS2

=
∑
b

cijabfS2b +
∑
S1

[(
ciS1SPAO−PNO

[it,ij]

)
a
fAS1,S2,j

+
(
cjS1SPAO−PNO

[jt,ij]

)
a
fBS1,S2,i

]
+fai

∑
tuv

cjvtuρtuv (S2) +
∑
p

(2 + p)

3

∑
I2

f
(p)
a,S2,I2

cijpI2

(4.86)

f
(p)
a,S2,I2

=
∑
t

fatβ
(p)
t (S2, I2) (4.87)

fAS1,S2,i
=
∑
t

fitα
A
t (S2, S1) (4.88)
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fBS1,S2,i
=
∑
t

fitα
B
t (S2, S1) (4.89)

RiS1
r̄ = 2f closr̄i σ (S1) +KiS1

r̄ +
(
FvciS1

)
r̄
−
∑
j

fij
(
SPAO

[it,jt]c
jS1
)
r̄

+
(
SPAO

[it,it]c
iS1
)
r̄

[
γ (S1, S1)− E(0)

act

]
+GiS1

r̄

(4.90)

f closrs = hrs +
∑
i

[2(rs|ii)− (ri|is)] (4.91)

GiS1
r̄ = 2

∑
j

(
SPAO−PNO

[it,ij]

[
2cij − cji

]
Fvc

[ij]

)
r̄j
σ (S1)

−
∑
tuv

(
SPAO

[it,t]c
tu
)
r̄v

∑
w

fiwρutwv (S1)

+
∑
S2

∑
j

[(
SPAO−PNO

[it,ij] cij
)
r̄S2

fCj,S2,S1
− fDS1,S2,j

(
SPAO−PNO

[it,ij] cji
)
r̄S2

]
+
∑
D1

∑
a

[(
SPAO−PNO

[it,iD1] ciD1

)
r̄a
fCa,D1,S1

+ fDS1,D1,a

(
ciD1SPNO−PAO

[iD1,it]

)
ar̄

]
+
∑
w

fr̄w
∑
tu

[
citwu(US1)tu,S1

− cituw(VS1)tu,S1
−
∑
v

civtuρutwv (S1)

]
(4.92)

KiS1
r̄ =

∑
tu

Ttu,S1

∑
vw

(
SS1
A

)
tu,vw

(
2Kiv

aw −Kvi
aw

)
+
∑
tu

T
′

tu,S1

∑
vw

[(
SS1
B

)
tu,vw

Kvi
aw −

(
SS1
A

)
tu,vw

Kiv
aw

] (4.93)

(US1)tu,S1
=2TS1D

(1)
tu +

∑
v

D
(1)
tv

(
2Tvu,S1 − T

′

vu,S1

)
+
∑
vw

D
(2)
tu,wv

(
2Tvw,S1 − T

′

vw,S1

) (4.94)

(VS1)tu,S1
= TS1D

(1)
tu −

∑
v

D
(1)
tv

(
2T
′

vu,S1
− Tvu,S1

)
+
∑
vw

D
(2)
tu,wvTvw,S1 +

∑
vw

D
(2)
tv,wuT

′

vw,S1

(4.95)

fCj,S2,S1
=
∑
t

fjtα
C
t (S1, S2) (4.96)

fDS1,S2,j
=
∑
t

fjtα
D
t (S1, S2) (4.97)

fCa,D1,S1
=
∑
t

fatβ
C
t (S1, D1) (4.98)

fDS1,D1,a
=
∑
t

fatβ
D
t (S1, D1) (4.99)
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Rtu
r̄v =

(
Ktu
S0

)
r̄v

+
∑
w

D
(2)
uv,twf

clos
wr̄ +

∑
wxz

(
γS0
)
tuv,wxz

(
SPAO

[t,t] cwx
)
r̄z

+Gtu
r̄v

+
∑
wxz

(Fvcwx)r̄z
(
SS0
)
tuv,wxz

− E(0)
act

∑
wxz

(
SS0
)
tuv,wxz

(
SPAO

[t,t] cwx
)
r̄z

(4.100)

(
Ktu
S0

)
r̄v

=
∑
wxz

Kwz
r̄x

(
SS0
)
tuv,wzx (4.101)

Gtu
r̄v =

∑
D1

∑
i

(
Fcv

[iD1]

[
2ciD1 − ciD1†

]
SPNO−PAO

[iD1,t]

)
ir̄
ρuvt (D1)

−
∑
S1

∑
i

(
SPAO

[t,it]c
iS1
)
r̄

∑
w

fiwρtuwv (S1)

+
∑
p

∑
D0

∑
w

(
Fav

[D0p]
cD0pSPNO−PAO

[D0p,t]

)
wr̄
ρ

(p)
wutv (D0)

(4.102)

Rijp
I2

= K
ij(p)
I2
−
∑
k

fikc
kjp
I2
−
∑
k

cikpI2 fkj

+
1

2
G
ij(p)
I2

+
1

2
pG

ji(p)
I2

+
[
2γ(p) (I2, I2)− E(0)

act

]
cijpI2

(4.103)

K
ij(p)
I2

=
1

4

∑
tu

∑
vw

Kij
vw

(
SI2(p)

)
tu,vw

T
(p)
tu,I2 (4.104)

G
ij(p)
I2

=
∑
S2

∑
a

cijaS2
f

(p)
a,S2,I2

+
∑
w

fjw
∑
tuv

civtuρ
(p)
tuvw (I2) (4.105)

Riv
tu = 2f closit D(1)

uv − f closiu D
(1)
tv −

∑
w

f closiw D
(2)
uv,tw +

(
Kiv
I1

)
tu

+
∑
wxz

(
γI1
)
tuv,wxz

cizwx

−
∑
j

fij
∑
wxz

(
SI1
)
tuv,wxz

cjzwx − E
(0)
act

∑
wxz

(
SI1
)
tuv,wxz

cizwx +Giv
tu

(4.106)

(
Kiv
I1

)
tu

=
∑
wxz

Kiz
wx

(
SI1
)
tuv,wxz (4.107)

Giv
tu =

∑
S2

∑
j

(
Fcv

[ij]

[
2cji − cij

])
jS2
ρtuv (S2) +

∑
S1

(
ciS1Fva

[i,t]

)
t
(US1)vu,S1

+
∑
p

∑
I2

∑
j

cijpI2

∑
w

fjwρ
(p)
tuvw (I2)−

∑
S1

(
ciS1Fva

[i,t]

)
u
(VS1)vt,S1

−
∑
S1

∑
w

(
ciS1va

[i,t]

)
w
ρvwtu (S1)

(4.108)

4.11 Energy and the Hylleraas Functional

The Hylleraas functional (360) offers a functional construction of the second-order

energy, which allows the variational optimization of the first-order wavefunction. With

the Hylleraas functional one gets thus an upper-bound of the energy for second-order
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perturbation theory (and not of the exact energy). The objective is to minimize the

energy expression

E(2) = 2
〈
Ψ(1)

∣∣ Ĥ |0〉+
〈
Ψ(1)

∣∣ (Ĥ(0) − E(0)
) ∣∣Ψ(1)

〉
(4.109)

with respect to the amplitudes (93). The expression 4.109 for the energy E(2) is rather

general. Due to the additivity of the energy, E(2) can be further partitioned in the

Hylleraas energy for each configuration subspace by partitioning the wavefunction in the

contribution of each configuration subspace. This yields

E(2) = E
(2)
P2

+ E
(2)
P1

+ E
(2)
P0

+ E
(2)
S2

+ E
(2)
S1

+ E
(2)
S0

+ E
(2)
I2

+ E
(2)
I1

(4.110)

Note that the minimization takes place for the total energy and not for individual energies.

This means that any properties herein derived apply only to the sum of energies. We can

thus define the Hylleraas energy for each configuration subspace as

E
(2)
X = 2

∑
x∈X

cx〈Φx| Ĥ |0〉+
∑
x∈X

cx〈Φx|
(
Ĥ(0) − E(0)

) ∣∣Ψ(1)
〉

=
∑
x∈X

cx〈Φx| Ĥ |0〉+
∑
x∈X

cxRx
(4.111)

Since there is a formal dependence on the residuals, which at convergence are zero, the

Hylleraas energy functional converges to second-order PT’s energy (8). Because the proce-

dure is variational, convergence takes place from above (ceiling). But only at convergence

is the correct correlation energy reached.

For the calculation of the energy for each configuration subspace using Hylleraas’

functional one only requires the evaluation of the terms 〈Φx| Ĥ |0〉. From the evaluation

of all terms in the residual equations we know that these correspond to the exchange

integral and Fock matrix terms. The Hylleraas energies for each configuration subspace

are thus given by

E
(2)
P2

=
∑
ij

∑
ab

c̃ijab

(
Kij
ab + R̃ij

ab

)
(4.112)

E
(2)
P1

=
∑
iD1

∑
ab

c̃iD1
ab

(
KiD1
ab + R̃iD1

ab

)
(4.113)

E
(2)
P0p

=
∑
D0p

∑
ab

cD0p
ab

(
KD0p
ab +RD0p

ab

)
(4.114)

E
(2)
S2

=
∑
ij

∑
aS2

c̃ijaS2

(
Kij
aS2

+ R̃ij
aS2

)
(4.115)
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E
(2)
S1

=
∑
iS1

∑
r̄

ciS1
r̄

[
KiS1
r̄ + 2f closr̄i (XS1 + TS1) +RiS1

r̄

]
(4.116)

E
(2)
S0

=
∑
S0

∑
r̄

cS0
r̄

∑
tuv

[(
Ktu
S0

)
r̄v

+
∑
w

D
(2)
tw,uvf

clos
wr̄ +Rtu

r̄v

]
Ttuv,S0 (4.117)

E
(2)
I2p

=
∑
ij

∑
I2p

cijpI2

(
1

2
K
ij(p)
I2

+Rijp
I2

)
(4.118)

E
(2)
I1

=
∑
iI1

ciI1
∑
tuv

[
2f closit D(1)

uv − f closiu D
(1)
tv −

∑
w

f closiw D
(2)
uv,tw +

(
Kiv
I1

)
tu

+Riv
tu

]
Ttuv,I1

(4.119)

The amplitudes used in these expressions must correspond to the amplitudes used in the

residual calculation. Although the Hylleraas energy is only equal to the actual energy upon

convergence, this functional offers two significant advantages: the errors are quadratic

with respect to the errors in the amplitudes; variational optimization of the wavefunction

with respect to the amplitudes.

4.11.1 Level-Shifts

Intruder states can cause serious convergence problems in CASPT2 calculations (62).

Although more often when involving excited states, this problem can also occur for cal-

culations involving GSs (83,86,91,361).

To remove the divergence caused by intruder states from LCASPT2 calculations a

level-shift ε is added to Ĥ(0) as described by Roos and coworkers (91). With this change,

an equivalent set of level-shifted residuals is built, this affecting also the first-order wave-

function (Ψ̃(1)) and the 2nd-order energy (Ẽ(2)). The energy functional to minimize is then

given in eq. 4.120 instead of eq. 4.109.

Ẽ(2) = 2
〈
Ψ(1)

∣∣ Ĥ |0〉+
〈
Ψ(1)

∣∣ (Ĥ(0) − E(0) + ε
) ∣∣Ψ(1)

〉
(4.120)

Because the level-shift is added to Ĥ(0), the difference between Ψ̃(1) and Ψ(1) is just in the

amplitudes, which are different with and without the level-shift.

To remove the level-shift effect from the energy a correction term is used, the latter

depending on ε affected by the weight of Ψ̃(1) to Ẽ(2):

E(2) = Ẽ(2) − ε
〈
Ψ(1)|Ψ(1)

〉
(4.121)

This back transformation is not exact though. Even though the effects of level-shifts are

negligible (91), these are not zero. Level-shifts should thus only be used if there is an

eminent problem with intruder states.
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5. Implementation

The LCASPT2 method described above was implemented in MOLPRO ’s development

version (284, 362). To test the accuracy of LCASPT2 we have also implemented the

respective canonical Fully Internally-Contracted CASPT2 (ic-CASPT2) method. This

code was written by adapting the local code to the canonical case. The ic-CASPT2

method required simplified drivers, simplified routines and different algorithm files. In all

the cases, changes amount to differences in the orbital spaces, overlap matrices for local

virtuals are no longer required and the fact that integrals are no longer transformed to

the local virtual bases. Therefore, the structure of the ic-CASPT2 program resembles in

everything the structure of the LCASPT2 program. The ic-CASPT2 code was not opti-

mized in itself. Any improvements from a first implementation came from the parent local

implementation. The discussion on the implementation focus thus only on LCASPT2.

The LCASPT2 program was implemented at two levels: i) a FORTRAN part to

initialize the program and prepare all the quantities required; ii) an ITF part (111, 284–

286), where the actual LCASPT2 calculation takes place. The ITF part of our code

uses the ITF extension to treat local approximations, LITF (286, 287), extended during

the course of this work by Dr. D. Kats. ITF provides a very efficient machinery to solve

residual equations, and this determined our choice. Because of its resemblance with actual

mathematical formulas, ITF’s algorithms simplified the implementation and debugging

of the code. However, ITF is less effective in calculating quantities like integrals. On

the other hand, MOLPRO contains efficient FORTRAN subroutines for the calculation of

integrals and other quantities, like PAOs or PNOs. Apart from reusing these routines,

new code was written to build the densities, contractions of densities with the Fock matrix

and to orthogonalize configuration subspaces. Prof. Dr. H.-J. Werner adapted the code

to calculate density matrices and wrote the latest version of the code to calculate the

contractions of the Fock matrix with the reduced density matrices. Prof. Dr. H.-J.

Werner also adapted to the case of LCASPT2 the code to calculate integrals and the

codes to build PAOs, PAO(SC)s and PNO(SC)s; he wrote the latest versions of the code

for the symmetric orthogonalization and orthogonalization of pairs; he wrote the code to

calculate the integrals associated to pairs expressed in terms of orthogonal configuration

indices. Besides the LITF extension, Dr. D. Kats wrote most of the interface between

FORTRAN and ITF and the calling of LCASPT2 within ITF. Dr. D. Kats also wrote

and developed Quantwo, a program that took a significant part in deriving the equations.

109



The following chapter is divided in four sections. First the simulation of the LCASPT2

program is discussed. This simulation allowed us to understand how to implement the

final method, providing information on accuracy, potential efficiency and in showing even-

tual faults and strengths. The next two sections deal solely with the implementation at

FORTRAN and ITF levels. In both sections the written code is described and in the end

a sketch of the algorithm is presented. The algorithms are divided into the many tasks

the program undertakes, and all these tasks are numbered. The numbers on tasks have

a correspondence with the numbers placed in the text describing the program. The last

section explains how to call and use the LCASPT2 program in MOLPRO .

5.1 Simulation of PNO-CASPT2

The full implementation of a quantum chemistry method is a cumbersome and lengthy

task, which is prone to errors. Therefore, the first stage of this work consisted in simulating

a PNO-LCASPT2 method using an already implemented CASPT2 program in MOLPRO

(284, 362). Our objectives were: i) to understand how to build PNOs so that accuracy

is maximized; ii) to test how well PNOs work for the CASPT2 method. At this stage

no tests on PAOs were performed. Our simulation was based on the CASPT2 method

implemented by Celani and Werner, CW-CASPT2 (RS2C) (15,62). Differences between

the CW ansatz for the wavefunction and our full ICC implementations are: S0 and I1 are

spanned by CSFs; P2, P1 and S2 configurations are spanned using singlet-triplet ICCs.

This simulation consisted in projecting both the CASPT2 residual equations and the

wavefunction’s amplitudes into the PNO space. The program started by building in the

first iteration pair densities from pair amplitudes in the orthogonal configuration basis (eq.

3.92). After diagonalizing the pair densities, PNO transformation matrices were retrieved

from the eigenvector matrices. These were subject to cuts on the number of columns

according to the magnitude of the respective eigenvalues. Such cuts were determined by

the threshold thrpno occ and allowed us to test the accuracy as a variable of Average PNO

Domain Size (avg(PNO)). At this stage the direct study of how thrpno occ influenced

timings of calculations was not possible. thrpno occ influences domain sizes, and the

larger the domain, the longer a calculation takes. Convergence is also affected, providing

insight on the efficiency.

Because RS2C does not handle pairs with variable dimensions for the substitution

spaces, projection matrices were used to simulate the PNO-LCASPT2 method. These

matrices were built by multiplying PNO transformation matrices by their transposes, eq.
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5.1, and these used to project both amplitudes and residuals onto the PNO basis.

Pmn = W̄mnW̄mn† (5.1)

This projection was tested for many possible combinations of configuration subspaces.

Because RS2C uses singlet-triplet pairs, PNOs were built for all singlet and triplet pairs

separately (S,T). PNOs for singlet-triplet pairs together (ST) were also built by adding

the respective pair densities before diagonalizing them. Although not relevant for the

final implementation, this played an important role in the simulation, since the method’s

accuracy can be affected. Because singlet and triplet pairs have different normalization

factors, to make the results comparable for ST and S,T PNOs, we switched off the normal-

ization step. PNOs built from zero-iteration amplitudes (IniPNOs) and PNOs built from

converged amplitudes (EndPNOs) were also tested. Finally, although the PNO-LCASPT2

simulation was tried on a significantly wider variety of examples, only two representative

cases are presented here. This data is summarized in Figs. 5.1 and 5.2. Tables 8.1 and

8.2 (in Appendix 8.3) complement these results.

96.5 

97.0 

97.5 

98.0 

98.5 

99.0 

99.5 

100.0 

8 28 48 68 88 108 

%
 E

co
rr

 

avg (PNO) 

Simulation Results: % Ecorr Cyclobutadiene 

Ini: S,T 
Ini: ST 
End: ST 

96.5 
97.0 
97.5 
98.0 
98.5 
99.0 
99.5 

100.0 

5 6 7 8 9 10 11 12 

%
 E

co
rr

 

-log10(thrpno_occ) 

Figure 5.1: %Ecorr against avg(PNO) for the cases of zeroth-iteration S,T PNOs, Ini: S,T,

zeroth-iteration ST PNOs, Ini: ST and converged ST PNOs, End: ST. The interior plot

represents the exact same data but against −log10(thrpno occ). Representative example

of cyclobutadiene.

In order to maximize efficiency and accuracy, our goal with the simulation was to
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maximize the percentage of correlation energy being recovered, %Ecorr, while minimizing

avg(PNO). Using ST IniPNO and thrpno occ = 10−8 (about 50-60 PNOs) the simu-

lated PNO-LCASPT2 recovered in average 99.95% of Ecorr. As Fig. 5.1 shows, using

thrpno occ < 10−8 S,T PNOs yield higher accuracy. However, for those cases, S,T PNOs

require thrpno occ to be 10 times smaller than the respective thrpno occ for ST PNOs.

For thrpno occ > 10−8 both types of PNOs are equivalent. Therefore, for the same value

of thrpno occ, ST PNOs yielded better results than using S,T PNOs. The results for

excitation energies (∆E, Fig. 5.2) showed that using thrpno occ = 10−7 or about 40-

50 PNOs is enough for accuracies within the meV with respect to the canonical RS2C

results. Absolute values for the errors in excitation energies are actually smaller for

thrpno occ = 10−7 than they are for thrpno occ = 10−8 because of differences in the

curves %Ecorr Vs. avg(PNO) for the GS and the ES. Globally speaking, an average re-

duction of substitution spaces to 20-30% of the canonical values for these small molecules

is observed.
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Figure 5.2: Absolute error in eV for the excitation energy of Pyrrole, ∆E, against

avg(PNO). Comparison between converged EndPNO and zeroth-iteration (IniPNO) using

ST PNOs.

The simulation results demonstrate that zero-iteration PNOs can be used without

much loss in accuracy. We also verified that whenever using PNOs to describe substitution
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spaces for S1 configurations, not only there was a more pronounced loss in accuracy, but

also a deterioration of convergence. This drove us to use PAOs to express the substitution

spaces of S1 configurations.

5.2 FORTRAN

The FORTRAN part of LCASPT2 is divided in many modules. The person responsible

for the latest version of each module is indicated in the end of each bullet: W - Prof. Dr.

H.-J. Werner; K - Dr. D. Kats; M - the author of this Thesis. The main LCASPT2

module (driver) controls the calculation by using the modules:

â Density module - set of subroutines to build the first three orders of the density

matrix and to calculate contractions of the density matrix with the active block of the

Fock matrix (W).

â ITF interface module - set of subroutines that organize and write tensors and their

dimensions to a file to be later read by ITF (K).

â PAO domain module - contains subroutines to build the PAO domains (W).

â PNO generation module - contains subroutines to build transformation matrices

to the PNO basis from zeroth-iteration PAO amplitudes (and to respectively transform

incoming amplitudes and integrals); to solve the CASPT2 equations just for pairs, in the

PNO basis (W).

â Integral module - set of subroutines to build two-electron integrals or to read these

from a file; to get the Fock matrix (in PAO basis); to build PAOs (get paos); to extract

non-orthogonal PAO domains from the full transformation matrix from canonical to non-

orthogonal PAO basis (W).

â Pair module - contains subroutines to build the pair list; to apply pair approxima-

tions; to orthogonalize pairs; to diagonalize the γ’s for pairs in the orthogonal configura-

tion basis; to calculate energy denominators for pairs (W).

â Singles module - subroutines to build lists for singles from the pair list; to orthog-

onalize singles; to diagonalize the γ’s for singles in the orthogonal configuration basis; to

transform one-external two-electron integrals into the orthogonal configuration basis of

singles; to read, sort and put in the PAO basis one-external two-electron integrals (M).

â Internals module - contains subroutines to orthogonalize the internals; to diagonal-

ize the γ’s for internals in the orthogonal configuration basis; to transform zero-external

two-electron integrals to the orthogonal configuration basis of internals; to read and sort

zero-external two-electron integrals (M).
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â Utils module - contains subroutines to apply symmetric orthogonalization to a given

(symmetric) matrix (W).

â Variables module - contains the declaration of all global variables.

The LCASPT2 driver starts by (1:) setting the environment for the quantum chemical

calculation. This includes reading from the input file relevant options and defining some

system variables. Parameters set from the input file specify the ITF code later to be

used, whether to diagonalize the γ matrices in the orthogonal configuration basis (on/off),

whether PAOs and/or PNOs are used (on/off), whether integrals are read from a file or

calculated, and thresholds. The latter define both the domains of local orbitals and the

orthogonalization of configuration subspaces. All the on/off options above mentioned are

by default on. Integrals are by default calculated and domain thresholds for local orbitals

are going to be the subject of discussion in the chapter of results. The threshold to neglect

small eigenvalues in the orthogonalization of configuration subspaces is by default 10−7.

The system variables set in the beginning of the calculation are the dimensions of each

orbital space (which are only dependent on each system) and the total number of PAOs.

The first computation task performed by the LCASPT2 driver is (2:) building PAOs.

The routine get paos starts by reading in the AO overlap matrix and the MO coefficient

matrix. These matrices are used to build the transformation to the PAO basis Q̃ (eq.

3.83 in section 3.6.4) and the PAO coefficient matrix P (eq. 3.84). The overlap matrix for

PAOs (eq. 3.85) is also computed, although all PAOs with norm below a given threshold

(default 10−7) are removed.

After getting the PAOs the next step is (3:) getting the Fock matrix, which is read

from a file. This is either from the reference CI calculation or from a previous MCSCF

calculation. Then (4:) density matrices are calculated up to the third order (D(1), D(2) and

D(3)), together with the double contractions of the active block of the Fock matrix with

the many orders of the density matrix (E
(0)
act and Df

∗ , where the ∗ as subscript indicates

that these tensors may arise from D(2), D(3) or D(4)). The program starts by building the

transition densities AR,tu = 〈R| Êtu |0〉, which are kept in memory. These are going to be

used in the calculation of all quantities. Getting D(1) is immediate and requires only a

matrix-vector inner product, D
(1)
tu =

(
A†c

)
tu

, where c is the MCSCF amplitude vector.

Looping over t and v, for a fixed tv pair, transition densities B
(tv)
uw,R = 〈0| Êtu,vw |R〉 are

calculated on the fly for each u and w. Direct contraction of B
(tv)
uw,R with c yields the

elements D
(2)
tu,vw =

(
B(tv)c

)
uw

, which are positioned in the tensor D(2). The leading term

in the third-order density is obtained from the matrix-matrix product of B
(tv)
uw,R with AR,xz.

The other terms, products of D(2) with the respective delta Kronecker terms, are then
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subtracted.
D

(3)
tu,vw,xz =

∑
R

B
(tv)
uw,RAR,xz − δuxD

(2)
tz,vw − δwxD

(2)
tu,vz (5.2)

The calculation of the transition densities AR,tu and B
(tv)
uw,R uses a simplification of the sym-

metric group technique described in (108) and the code is parallelized over the indices

tu. In a similar fashion the double contraction of the Fock matrix with the fourth-order

density is calculated, using eq. 4.15. The first step is the contraction of AR,tu with the ac-

tive block of the Fock matrix. The result is used as modified reference coefficients, which

are contracted with the respective transition densities to get the two index contractions

of the Fock matrix with all densities. The calculation of all the quantities is immediate,

except for the contraction with the 4th-order density matrix. This requires the calculation

of the transition density 〈0| Êtu,vw,xz |R〉, which is obtained similarly to how the 3rd-order

density is calculated. As for efficiency, using a CAS[10, 10] (more than 19000 CSFs) or a

CAS[12, 12] (more than 250000 CSFs) and using 4 computing nodes, all these quantities

were obtained within 1 and 40 seconds, respectively. Even though the scaling is facto-

rial, the calculation of all these densities and intermediates poses no bottleneck in any

calculation, at least for the cases for which the MCSCF is also possible.

Subsequently (5: a)) comes the determination of the basis functions associated to each

atom (subroutine basis centers) and (5: b)) obtaining the PAO and PAO(SC) domains

for the closed-shell orbitals (subroutine pao domains drv). These steps are important

to apply before building the pair list so that pair approximations can be explored. The

subroutine pao domains drv starts by reading the IBO charges (note that IBOs are built

prior to the call to the LCASPT2 driver). The PAO domains built are center and charge

based. Thus, with the IBOs, the centers contributing most to rebuild the charge of each

IBO are determined. This allows us to associate to each IBO a certain number of atomic

centers (a set {A}i for each IBO i), which have a charge larger than a given threshold

(0.2 e, atomic units of electronic charge). The primary PAO domain for each IBO is given

by the union of all PAOs belonging to the centers in {A}i. The secondary domains are

built by adding atoms in the vicinity of the primary domains. These are either the iext

neighboring shells or the atoms within the rext radius of the primary domains. The driver

for orbital domains determines both which PAOs and which DF basis functions belong

to the orbital domain of a given closed-shell orbital. If no PAOs are used, the orbital

domains are full of canonical virtuals instead. In a previous step a full transformation

matrix to the PAO basis is calculated. When orbital domains are built, a list containing

the columns from the full transformation matrix associated to each closed-shell i is also

115



constructed. This allows to specifically transform from canonical virtuals into the PAOs

in the domain of i. Calculation of domains for pairs ij consist in the merging of those

lists for orbitals i and j. As previously mentioned, pair domains are generated for both P2

and P1 pairs. For P0 pairs, the single orbital domain for active orbitals is used. Finally,

in pao pairdom all PAOs within a pair domain are orthogonalized and semicanonicalized.

(6:) Afterwards the pair list is created. The subroutine make pairlist starts by build-

ing a list of very distant pairs for the case distance criteria to neglect pairs is on. This

list is a matrix with rows and columns representing orbitals. For pairs considered to be

very distant, the respective matrix element is non-zero. The routine make pairlist loops

then over the possible orbital pairs (individually) skipping orbital pairs in the very dis-

tant pair matrix. With the pair list available, (7:) the program checks whether to apply

the MPA to distant pairs. It is possible to go to orders higher than the dipole-dipole

term in the multipole expansion. This brings more accuracy and was indeed used in the

past (214, 325). In this work however, only the dipole-dipole approximation of the mul-

tipole expansion of exchange integrals is actually used. The program reads in thrdist,

which by default is 10−6. If the MPA is on (thrdist > 0), the subroutine pao dip is called,

acting like a driver for the MPA. Internally this routine calls pao pairen dip. The latter

reads in dipole moment vectors, calculates pair energies using the dipole approximation

and determines the number of distant pairs (ndist), to which the MPA is applied. In the

end, pao dip removes distant pairs from the pair list. Note that alike very distant pairs,

the MPA is only applied to P2 pairs. Distance criteria to neglect exchange integrals re-

lated to P1, S2, S1, I2 and I1 was implemented, thus reducing the respective lists. This

was previously discussed in section 4.6, for which we refer the reader to. In this case, all

integrals related to any of the above mentioned configurations can be neglected, whenever

the respective Rit is larger than a predefined threshold Rdist, Rit > Rdist. By default

Rdist = 15 bohr. Besides this restriction, the lists for S2 and I2 are furthermore restricted

to P2’s list. These are the last steps before distributing pairs over processors.

The first step executed parallel is (8:) the orthogonalization of all configuration sub-

spaces. This is performed by a set of configuration subspace specific subroutines named

ovl X, where X represents a specific configuration subspace. All these routines share

a common structure, in which the overlap function for the configuration subspace X is

built and immediately diagonalized. The out-coming eigenvector matrices are then used

to build the orthogonalization matrices. Even though the overlap functions are always

built inside the subroutines ovl X, the diagonalization of overlaps and the building of the

orthogonalization matrices are performed by the subroutine sym orthog in pno cas utils.
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Then (9:) PAO and PAO(SC)s domains are built using once again pao domains drv.

At this stage the domains for the active space are obtained and (10:) the two-electron

exchange integrals (K) are calculated/read. The subroutine calculating the integrals is

pao integrals drv and is based on what was previously described for PNO-LMP2 (148,

235). Here, two main subroutine calls are performed: define block basis; block trans drv.

In the first subroutine the DF basis, (B|µν), is read and transformed to the LMO and

PAO bases. Prior to the projection, the DF basis is blocked according to atomic centers.

The subroutine block trans drv calculates then the K integrals, which are afterwards

sorted once they return to pao integrals drv. In CASPT2 three types of integrals are

required: two-external integrals, Kmn
ab ; one-external (or one-active), Kmn

at and Knm
at ; the

zero-external (or two active) integrals, Kmn
tu . Instead of having a subroutine for each type

of integral required to calculate, all integrals are calculated in the same routine. For each

pair mn the program writes the integrals in an array with dimensions (npao + nactive)
2.

The full matrix Kmn is obtained as

Kmn =

[
Kmn
r̃s̃ Kmn

r̃u

Kmn
ts̃ Kmn

tu

]
(5.3)

If the integrals are read, they only require the transformation to the PAO or PAO(SC)

basis, if that case applies.

After obtaining the rest of all the required integrals (11: a)) the γ matrices are di-

agonalized and (11: b)) the K’s are transformed to the orthogonal configuration basis

using eqs. 4.76, 4.82, 4.85, 4.93, 4.101, 4.104 and 4.107. The transformation of integrals

is done blockwise. The two-external integrals are stored as matrices for each pair, the

one-external stored as vectors with virtual indices and the zero-external stored either as

matrices (Kij
tu) or vectors (Ki

tuv = Kiv
tu). Because a CAS reference is used, the all active

integrals are only needed for the calculation of the reference energy. This is by default

taken from a previous CASSCF calculation. At this point in the calculation, both PAO

and PAO(SC) are accessible. Integrals which are later transformed to the PNO basis are

previously transformed to the PAO(SC) basis. However, the one-external integrals for

S1 and S0 are left in the non-orthogonal PAO basis to avoid overloading the memory.

The last quantities required are PNOs and the respective transformation matrices. The

first step towards building PNOs is (12:) the calculation of energy denominators so that

zeroth-iteration amplitudes can be estimated. Energy denominators are calculated in the

orthogonal configuration basis for each pair.

The last three steps before termination of the FORTRAN code are (13:) building the
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coupling coefficients for the interactions between pairs (not needed in ITF though), (14:)

building PNOs and (15:) transforming the integrals associated to S2 to the PNO(SC)

basis. PNOs are built in pno cas generate, which starts by getting from the input file

the PNO related thresholds (thrpno and thrpno occ). PAO amplitudes are built (eqs.

4.51, 4.52, 4.53), which are used to build the respective pair densities. We note that if

level-shifts are given in the input file the PAO amplitudes are affected by these, thus also

the PNOs. After diagonalization of pair densities to get PNOs, the respective domains

are selected using the subroutine pno cas select. In pno cas select the program starts by

transforming both the K integrals and PAO amplitudes to the full PNO basis, making

pair energies available in the PNO basis. PNOs are then added to each pair domain until

the occupation number is below thrpno occ and the pair energy is consistent with thrpno.

Algorithm 1 pno-caspt2 (FORTRAN)

1: set environment (parameters and variables);

2: make PAOs;

3: get all blocks Fock matrix;

4: get densities (D(1), D(2), D(3)), and double contractions Fock-densities (E
(0)
act, D

f
∗ );

5: a) determine basis functions for atomic centers; b) build PAO and PAO(SC)s domains

for closed-shell orbitals;

6: make pair list;

7: pair approximations;

8: build orthogonalization matrices: pairs; singles; internals;

9: build full PAO domains and PAO(SC)s;

10: get K matrices in PAO or PAO(SC) basis;

11: a) orthogonalize γ’s; b) build orthogonal K matrices: pairs; singles; internals;

12: calculate energy denominators: pairs;

13: calculate coupling coefficients for pairs;

14: make PNO(SC)s;

15: transform KS2 to PNO(SC) basis;

16: termination:

a) send data to ITF and go to ITF;

b) solve LCASPT2 just for pairs (in FORTRAN);

Both the integral transformation and the generation of the PNOs were implemented

parallel using the Global Array Software (363). Dynamic parallelization is used as de-
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scribed in (148,235). All pairs are distributed over processors to keep an arrangement as

balanced and even as possible. To avoid any sort of communication between processors

in tasks like the orthogonalization of configuration subspaces, pairs are distributed over

closed-shell indices. This means that different pairs ij might be in different processors.

However, all pairs it with the same i are in the same processor, the same with all pairs

tu. Each processor performs its own tasks independently of any other processor so that

the scaling is well behaved even for more than one node.

Finally, if an ITF method is used, all data is sent to ITF. This step is controlled by the

subroutine itf interface, which writes arrays and their dimensions to specific records.

5.3 Integrated Tensor Framework

As its name implies, the Integrated Tensor Framework (ITF) (284, 285) is a tensor

framework integrated in the MOLPRO quantum chemical’s program package. This is a C++

program able to read and execute algorithm files. The latter are human-readable formula

files containing sequences of binary tensor contractions written in an equation-like format.

A quantum chemical’s full set of equations can thus be written as a set of inter-dependent

binary contractions of n-dimensional tensors (285), which is not only significantly easier

to implement but also to read (by the programmer).

For an efficient implementation of LCASPT2 we have used the Local ITF (LITF). As

previously mentioned, this is an extension of ITF for the treatment of local approxima-

tions. Up to now, LITF was able to handle SR cases. Extending LITF to MR systems

was performed by Dr. D. Kats during the course of this work. These extensions allowed

LITF to handle transformations of tensors using active orbitals (like density matrices and

orthogonalization tensors), as well as to define PAO and PNO spaces involving active

orbitals and to manage non-triangular pair lists (like for instance the case of P1).

The ITF part of the LCASPT2 implementation is composed by two parts: an algorithm

file containing algorithms to calculate all quantities required, written in a human-readable

format (.itfaa file); a set of C++ files (.cpp) able to interpret the former algorithms and

use them to perform quantum chemical calculations. There is still an .itfca file bridging

the human-readable algorithms in machine-readable codes.

The algorithm file can be further subdivided in two parts, a declaration section (of

index spaces and tensors) and the codes for the algorithms. In the LCASPT2 case the

declaration of index spaces includes both orbital and (orthogonal) configuration spaces.
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The declaration of any of these index spaces follows the structure

index−space : indices, name of space, index type

index−space is used to declare indices and indices are the indices used for the space

in declaration, given without commas. Multiple letter indices like S0 can be declared

inside {}, like {S0}. name of space is the name chosen to identify the index space.

For the case of LCASPT2 there are, Closed(-shell), Active, PAO, PNO and orthogonal

configuration indices. index type refers to a letter used to identify index spaces. This

reference index can be used to simplify input-output actions of tensors in ITF. As a title

of example, a general active space may be defined as follows:

index−space : tuvwxyz, Active, a

After declaring the index spaces comes the declaration of tensors required to write

the algorithms. This includes final quantities stored on disk, like amplitudes, residuals or

coupling coefficients, but also intermediates used for the calculation of the final tensors,

which may or may not require storing on disk. The declaration of these tensors determines

their use, their storage and their structure. One starts by defining the name of each

tensor and their respective indices inside square brackets. The index order is selected by

the programmer, and the leftmost index is the one running faster. For instance, the P2

residuals in the PNO basis can be represented by tensors R[pqij], where p and q are PNOs

and i and j closed-shell orbitals. Because in the declaration only index spaces should be

specified, R[ppii] can equivalently be used. In this particular case, PNO indices run faster

than closed-shell indices. In ITF two tensors may have the same name as long as they do

not have the same index structure. This means that all residuals can be named R, just

like all exchange integrals can be named K.

The second part of the declaration of tensors is determined inside the statement

!Create. Here, type, cuts and symmetry properties of tensors are defined. The type

can be, e.g., disk, if the tensor is stored on disk, plain, if not stored on disk, or scalar.

disk tensors can be loaded, stored, allocated and dropped, plain tensors can only be

allocated and dropped. scalar tensors are like disk tensors but have no dependence on

any index. In LCASPT2 we have as disk tensors, e.g., density matrices, residuals and

amplitudes, both energies and energy shifts are defined as scalar, and all intermediates

used in the calculation of disk tensors are declared as being plain.

Defining cuts is where orbital domains and pair approximations can be detailed. This

is accomplished using the position number for each index, starting from zero, from left
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to right. In the case of P2’s residuals we can specify cut : 0/23, 1/23, 23, meaning that

the indices in positions 0 and 1 (the first two indices) are restricted to the pair domain

of the last two indices. Since the indices in 0 and 1 are in the same pair domain, this cut

command can be simplified to cut : 01/23, 23. The final 23 after the comma specifies the

pair list. For PAO domains for the active space cut : 0/A can be used to specify that the

orbitals in the first position are in the domain of the active space. Some indices serve just

the purpose of defining domains. These phantom indices are not present in the tensor,

thus summations cannot go over these indices. They serve the purpose of addressing,

allowing to easily address a specific tensor or a specific block inside a larger tensor.

These can be identified by adding after the cut an f followed by the respective index

numbers. For instance, to declare the indices i and j as phantom in the P2 residuals cut :

01/23, 23, f23 can be used. Although not useful for quantities like residuals or amplitudes,

this definition is important when declaring, e.g., PNO overlap matrices. Another type of

cuts are the ones in (pair) lists loaded from the FORTRAN part of the code. Examples

are pair approximations for closed-shell orbitals, which must be in the proximity of active

orbitals. Specifying cut : A1 in I1’s residuals tensor R[{I1}i] specifies that the closed-

shell orbital i (position 1) should be in the spatial vicinity of an active orbital. Finally,

symmetry properties are defined using sym :. For instance, P2 amplitudes have the index

exchange symmetry cijab = cjiba, which can be specified using sym : 23/01. For the case of

singlet-triplet configurations the index exchange symmetries are specified with sym : +12

(singlet) or sym : −12 (triplet).

The algorithm codes use the previously defined tensors to ultimately calculate the

energy of a quantum chemical system. Algorithms are abstract high-level instructions

that adequately and consecutively use tensors to calculate other tensors. Tensors can be

allocated, loaded, stored and/or dropped according to their type. When allocated, tensors

are also automatically zeroed. When loaded, they assume the values of the previous store

action. Most importantly, tensors can be contracted or linearly combined. Any two

tensors can be contracted in ITF, as long as they have matching indices. LITF requires

furthermore the cuts to be compatible. A dot in the beginning of a statement indicates

that a tensor contraction takes place. After the dot the tensor being calculated in the

current step is specified, and on the other side of the equality the two tensors being

contracted. The contraction takes place automatically and is solely defined by the indices

involved in the expression. ITF interprets two indices within an index contraction as an

implicit sum over the full space spanned by the index. Pairs of indices occurring on the

right side of the statement which do not occur on the left side are contracted. However,
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these pairs of indices must belong to each of the tensors contracted. Contractions take

place over as many pairs of indices as required, as long as all pairs of indices are different.

Furthermore, the sign on the contraction can be defined with + = or − =. This means

that summations are affected by the respective sign. Taking as an example the calculation

of the term
Df
tu =

∑
vw

fvwD
(2)
vw,tu (5.4)

in ITF’s algorithm code can be written as

.trFaDM2[tu]+ = f[vw]DM[vwtu]

where trFaDM2[tu] represents Df
tu, f[vw] is fvw and DM[vwtu] betakes D

(2)
vw,tu. Alterna-

tively one tensor can be used on the right side of the equality, meaning that a tensor is

added to the tensor on the left side of the equality. Finally, tensor contractions can be

performed along with the multiplication by a real number. If, e.g., we wished to define

Df
tu as half of the active block of the Fock matrix, we could simply make

Df
tu = 0.5× ftu −→ .trFaDM2[tu]+ = 0.5 ∗ f[tu]

Using these tensor operations, algorithms were written for: all coupling coefficients and

the required intermediates; contractions of the Fock matrix with the density matrix or cou-

pling coefficients; initialization of the residual tensors; calculation of the residual tensors;

amplitude update; calculation of PNO, PAO and PAO-PNO overlap matrices; transfor-

mation of the Fock matrix from PAO to PNO basis; calculation of the reference energy;

calculation of the energy for each configuration subspace. Even though some quantities

were already calculated at the FORTRAN level, only the strictly necessary tensors are

imported. This minimizes as much as possible the time spent in writing and reading of

tensors. All these codes had the same internal structure: i) an input section, in which all

tensors are loaded and allocated; ii) a contraction section, in which all tensors are con-

tracted; iii) an output section, in which tensors are stored and dropped. This structure is

however not fix, since inside the contraction section tensors may be sporadically loaded,

allocated, stored or dropped. Furthermore, like previously mentioned, residuals are built

and solved in the orthogonal configuration basis. The exceptions were the cases of S0 and

I1, for which the residuals are built in the non-orthogonal basis. Since the orthogonaliza-

tion of the residuals is performed immediately after building them, only residual tensors

in the orthogonal configuration basis are stored.

For the codes performing the update of amplitudes a function that scales residual ten-

sors by the denominators was utilized, allowing the direct application of the perturbative
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update of amplitudes. This function is denom − scale, and contrary to tensor contrac-

tions it allows the repetition of an index inside one tensor (like for instance the addition

of diagonal elements from the closed-shell block of the Fock matrix).

All these codes were partitioned according to configuration (sub)spaces and according

to which basis the residual tensors are built. The calculation of coupling coefficients

and intermediates was partitioned into general intermediates (like general contractions

of the density matrix with other tensors) and the coupling coefficients specific for each

configuration subspace. Because they are not memory demanding, the calculation of

coupling coefficients for the pairs are all grouped in the same algorithm. All the algorithms

dealing with residuals and amplitudes are separated into three different codes: one for the

pairs; one for S2, S1 and I2; one for S0 and I1. The calculation of energies is separated

according to configuration spaces: pairs; singles; internals. Other codes calculate overlap

matrices for local virtuals and transform the Fock matrix to the PNO basis.

The C++ part required a new driver routine equipped with functions to read and

execute the algorithms written in the .itfca file. The latter is built from the .itfaa file.

After initializing and defining internal variables, (1:) the new quantum chemical method

is initialized by setting, among other variables, the reference energy and the algorithm file

name. After initialization of the quantum chemical method, (2:) relevant quantities are

imported to ITF. This includes logical options relevant for the execution of the algorithm,

just like all the tensors previously calculated or prepared to export to ITF: integrals;

PAO and PNO transformation matrices; density matrices; etc.. It is after the importing

section that the execution of algorithms using the C++ function AlgoSet.Execute starts.

(3:) PNO, PAO and PAO-PNO overlap matrices are calculated and followed by (4:)

the transformation of the Fock matrix to the PNO basis. Then (5:, 6:) all coupling

coefficients are calculated and written to disk. We note that all these quantities were

written and defined in order to remain unchanged throughout the whole calculation. This

is a significant change with respect to other variants of CASPT2 implemented in MOLPRO ,

like RS2C, in which coupling coefficients are recalculated in each iteration.

After setting the whole environment with all tensors and options required, the actual

execution of LCASPT2 begins. This is done by (7:) initializing the residual tensors to

the respective exchange integral tensor elements (all amplitudes are taken to be zero)

and by performing the (8:) first perturbative update of amplitudes. All zeroth-iteration

amplitudes are thus defined similarly to what pair amplitudes are defined in eqs. 4.51, 4.52

and 4.53. (9:) The zeroth-iteration energies are calculated without using the Hylleraas

functional (by zeroing the residuals in eqs. 4.112-4.119) and the actual (10:) iterative
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solving of the residual equations begins. Like in any other iterative procedure this is done

by setting thresholds for energies and for variances, as well as the maximum number of

iterations, timers for the iterations and a boolean (logical) convergence variable.

The next steps consist in consecutive calls for the algorithms to (11:) calculate the

residuals, to (12:) calculate the Hylleraas energies and to (13:) update the amplitudes

until convergence or the maximum number of iterations is reached. The end of each

iteration is marked by the printing of the iteration number, the current correlation energy,

the energy change towards the previous iteration, the variance and the CPU time.

If convergence is reached, (15:) all the results are printed, namely the energy of the

reference, the correlation energy, the second-order corrected energy (LCASPT2 energy)

and the individual energies for each configuration subspace. Timings and memory usage

are sent back to FORTRAN, so that the program can be terminated. The whole ITF

procedure can be schematized in the following algorithm:

Algorithm 2 pno-caspt2 (ITF)

1: set environment; initialize method;

2: import integrals, orthogonalization matrices, densities, transformations for PAOs, and

PNOs;

3: Build PNO, and PAO-PNO overlaps;

4: transform Fock matrix into PNO basis;

5: calculate general intermediates;

6: calculate coupling coefficients: pairs; S2; S1; S0; I2; I1;

7: initialize residuals to 〈Φ∗| Ĥ |0〉: pairs; S2 + S1 + I2; S0 + I1;

8: initialize amplitudes: pairs; S2 + S1 + I2; S0 + I1; . using update algorithm

9: calculate (zeroth-iteration) energies: pairs; singles; internals;

10: while ((not converged) or (niter ≤ maxiter)) do

11: evaluate residuals: pairs; S2 + S1 + I2; S0 + I1;

12: calculate Hylleraas energies: pairs; singles; internals;

13: update amplitudes: pairs; S2; S1; S0; I2; I1;

14: end while

15: termination and printing of energies, timings, and memory usage.

Even though the FORTRAN code is already fully parallel, the ITF code is only mod-

erately parallel, and a fully parallel implementation will take place in a near future.
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5.4 Using LCASPT2 and ic-CASPT2

Both the drivers for LCASPT2 and ic-CASPT2 are called within the RS2C directive in

MOLPRO . All options for RS2C are thus also valid for LCASPT2 and ic-CASPT2. To call

LCASPT2, the MOLPRO directive pno-caspt2 should be used. An independent directive for

ic-CASPT2 was not introduced and calling this program is done with df -rs2c, fc, where fc

stands for fully-contracted. By default, the LCASPT2 and ic-CASPT2 programs use DF

integrals. Also by default, the ITF’s cpp prog is defined by calling each program and the

user does not need to select any algorithm. Using the non-DF variant of LCASPT2 needs

the calculation of the reference CI, which makes the calculation slower. The basic calls

for LCASPT2 and for ic-CASPT2 are then respectively {pno−caspt2} and {df−rs2c, fc}.
These calls require a previous MCSCF or CASSCF calculation to obtain the reference.

Furthermore, by default, LCASPT2 uses IBOs. For ic-CASPT2, no localization is used.

With the default options, Fock matrices and CI vectors are taken from the previous

MCSCF calculation. Two-electron integrals are however calculated with specific routines

written for LCASPT2. A CI record and orbitals are by default taken from the previous

CASSCF calculation and must be saved in the multi directive

{df−multi; save, cirec=5150.2, orb=2150.2; ...}

and this same record must be read in LCASPT2

{pno−caspt2, cirec=5150.2; orbital, 2150.2; ...}

On the orbital directives in multi, electronic states might be given, building state specific

(and not state-averaged) Ĥ0 operators and state specific densities.

{df−multi; save, cirec=5150.2, orb=2150.2; state, 2;natorb, state=1.1;natorb, state=2.1}

If nothing is specified, state-averaged densities are used allover.

Alternatively, the reference CI can be calculated in the beginning of the LCASPT2

calculation. In this situation, all integrals and quantities are read from a file. This variant

of LCASPT2 can be called using the options {pno-caspt2, blocking=.false., addact=0}
(the defaults for blocking and addact are respectively .true., and 1). Since the reference

CI is performed, no special commands or options are needed in the preceding multi

calculation.

The default DF basis used to assemble integrals is mp2fit (323). It is also possible to

switch off the diagonalization of zeroth-order Hamiltonian terms, i.e., not to force the γ
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matrices to be diagonal in the orthogonal configuration basis. This is done by setting to

false the option diag denf . It is also possible to turn on the use of pure singles within the

S1 subspace by making true the option use singles. We remind the reader that these are

completely redundant in CASPT2 and no changes in the energy nor timings are observed.

This option is by default off.

Both level- and denominator-shifts can be employed just like in the RS2C program.

The variable diisspace chooses which configuration subspaces use DIIS to improve con-

vergence. By default diisspace = p2p1p0s2s1s0i2i1, meaning that all spaces use the DIIS

convergence accelerator.

PNOs are by default used for P2, P1, P0 and S2. For the remaining singles (S1,

and S0) PAOs are used. It is however possible to switch off both the use of PNOs and

PAOs. Setting use pno=.false. turns off the transformation to the PNO basis and setting

use pao=.false. turns off the transformation to the PAO basis. Setting the domain

sizes for PAOs can be done using the options iext or rext. While iext is a vicinity

parameter (neighboring shells), rext is a distance criterion. Both these options were

previously detailed in section 4.7, for which we refer the reader to. There is furthermore

the option reduce act, which makes for active orbitals iext = reduce act. By default

reduce act = iext. The domain sizes for PNOs can be determined using the energy

criterion thrpno or the occupancy criterion thrpno occ. Once more, both these options

were detailed in the section 4.7. The MPA can be switched off by setting thrdist = 0.

The value of 10−6 (Eh) is however recommended. The very distant pair approximation

can be switched on by giving values to either rvdist (distance criterion) or ivdist (vicinity

parameter). The truncation of P1, S2, S1, I2 and I1 pairs can be controlled using distp1.

By default this takes the value of 2, and can be switched off by setting distp1 = 0. The

default distance criterion in distp1 is the same as rvdist.

Variables to save domain sizes were also implemented, which can be used either for

printing or for comparison purposes. These are saved in the arrays avdom pao(x) and

avdom pno(x). In the first position, x = 1, the average PAO/PNO domain size is saved.

For x = 2, the average domain size for P2; for x = 3, the average domain size for P1; for

x = 4 and x = 5, the average domain size for P0 singlet and triplet, respectively.
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6. Results and Discussion

In this section benchmark calculations on LCASPT2 and some applications are pre-

sented. We will present: i) comparison between CW and full ICC ansätze for the wave-

function - section 6.1; ii) effect of orbital domains - section 6.2; iii) benchmarking the

accuracy of LCASPT2 for medium-sized molecules for a larger set of molecules - section

6.3; iv) comparison of excitation energies with experimental values - section 6.3.1; v) cal-

culation of reaction energies - section 6.3.2; vi) basis set effects - section 6.4; vii) effect

of pair approximations - section 6.5; viii) scaling of the computational costs with the

molecular size - section 6.6; vii) PESs - section 6.7.

Due to the wide spectrum of studies used to benchmark LCASPT2, each subsection

works with specific groups of molecules. Unless otherwise stated, structures were op-

timized using MP2 with Dunning’s correlation consistent augmented double-ζ basis set

(aug-cc-pVDZ) (364,365). Even though symmetry might have been used in the first HF

calculation to separate π orbitals from the σ, all calculations were ultimately performed

without symmetry. All optimized geometries, just like all the energies of the calculations

performed are in the supplementary material.

Finding a suitable active space for the description of a (photo)chemical process can

be a very difficult task. It is usual for the MOs to rotate during optimization of the CAS

reference, yielding thus an incorrect active space. Any active space can in principle be

found by rotating initial guess orbitals (HF for instance) in and out of the active space in

the CASSCF calculation. This procedure works well for π and n+ π active spaces, which

are relatively stable and for which the intervening orbitals are easily identified. However,

when searching for active spaces with σ bonds or even d orbitals, this procedure is not

robust and most probably the desired active space will not be found due to rotations

among different orbital spaces. For such cases, IBOs are generated after a HF calculation.

Using a local MP2 calculation, regions are defined from domains and the IBOs located

exclusively on some user selected atoms are isolated. These IBOs are then used to select

the desired active space. However, this procedure does not provide any help in selecting

the HF virtual orbitals we wish to include into the active space. Nevertheless, as long as

the virtual orbitals contain the correct antibonding character, the desired active space is

usually obtained. Still, for some larger molecules, the virtual space was far too large to

avoid a tedious and error prone search for orbitals with a specific antibonding character.

One can for such cases start with a small basis set to conduct an initial orbital search.
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After confirming that the CASSCF has the correct active space, the size of the basis

set can be increased. For cases in which the closed-shell HF orbitals were highly mixed,

the latter procedure could be combined with the IBO procedure, facilitating the task of

finding active spaces.

The default basis set was aug-cc-pVDZ (364–369). For second-row atoms, like sulfur

or phosphorous, d orbitals were added to the augmented basis sets (aug-cc-pV(X+d)Z

or aug-cc-pVDZ+d). cc-pVDZ, cc-pVTZ, aug-cc-pVTZ, aug-cc-pVQZ, aug-cc-pV5Z and

Ahlrichs triple-ζ basis sets with polarization (def2-tzvp) (370) were also utilized. In all

calculations DF approximations were used for the calculation of integrals. This includes

LCASPT2 (242), CASSCF (96,371,372), HF (232,373), RS2C (for comparison of differ-

ent wavefunctions in the canonical basis) (15, 62, 96), LMP2 (for getting IBOs and the

atomic regions to build active spaces) (229) and LUCCSD(T) (to compare some energy

differences) (239, 240, 374–376). Both HF and CASSCF used the corresponding JKFIT

auxiliary bases of Weigend (322). By default the non-augmented variants of these basis

sets were used, although for some particular cases augmented bases were employed. We

verified that the difference between using augmented and non-augmented DF bases is

negligible. By default the ”old” implementation of DF-HF was used (232). For larger

molecules however, the most recent implementation of the linear scaling DF-HF was cho-

sen (373). Since the default is not the recent linear scaling DF-HF program, we will

mention for which cases we applied this method. Two state-averaged CASSCF refer-

ences are also by default optimized, calculated using the 2nd-order MCSCF program as

described in (371,372). This means that by default all orbital spaces are simultaneously

optimized. For larger molecules this procedure becomes too expensive and we end up

having very large MCSCF times. This is a consequence of the fact that all integrals in-

volving up to two external indices must be calculated, without any form of pair or domain

approximation. For those cases the active orbitals were optimized, and a few orbitals of

some atoms in the neighboring shells of the active space are also eventually relaxed. For

the rest of the closed-shell skeleton the IBOs computed previously are used. Alterna-

tively, HF orbitals for the closed-shell skeleton could be directly used. IBOs offer however

the advantage of a clear σ-π separation. This facilitates the determination and isolation

of all orbital spaces: the closed-shell skeleton; the orbitals to relax; the active orbitals.

This procedure does not introduce large errors, especially in the calculation of energy

differences. However, the energy differences can slightly increase because the IBOs are

optimized for GSs. More details can be found in (242). For LCASPT2, RS2C, LRMP2

and LUCCSD(T) the two-electron integrals are calculated using the MP2FIT auxiliary
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basis of the corresponding non-augmented variant of the basis set (323). For most cases,

the minimal AO basis required for building IBOs was the default for MOLPRO .

From the CASSCF calculations the Fock operator, the orbitals, the reference energy

and the reference itself (coefficients) are saved. This allowed to skip the calculation of the

reference CI in the beginning of the CASPT2 calculation. The effective Fock operator

used in the zeroth-order Hamiltonian was thus computed using the JKFIT auxiliary basis.

We note here that the exchange integrals required in CASPT2 are calculated inside the

LCASPT2 driver using MP2FIT. The calculation of quantities taken from the previous

CASSCF are not considered in timings presented. Furthermore, all calculations are run

in serial (parallel calculations are presented in reference (242)).

The calculations on pure organic molecules were performed by default with an energy

convergence threshold of 10−7 Eh. For organometallic compounds however, this threshold

was relaxed to 10−6 Eh. In all cases a threshold for the orthogonalization of singles (thrdls)

of 10−8 was used. This is because the default threshold of 10−7 leads to different sizes for

S1 for the CW and the fully-contracted wavefunctions, not making the methods directly

comparable. Finally, a level-shift of 0.3 was considered by default for all LCASPT2

calculations which involved previously a state-averaged CASSCF calculation. This shift

of 0.3 was used for GS and ES(s). Furthermore, by default, LCASPT2 calculations use

iext = 2, rext = 5, thrpno occ = 10−8 and thrpno = 0.997. The MPA is by default off,

and the neglecting of pairs, distp1, is by default on, using rvdist = 15 bohr. For most

molecules here studied this parameter has no effect and no pair is skipped.

Excitation energies were computed by applying (L)CASPT2 on top of state-averaged

references for each state isolated. Unless otherwise stated, we always refer to vertical

excitation energies. Whenever dealing with adiabatic excitation energies or with both

types of excitations, each type of excitation is specified.

Benchmarks for LCASPT2 are based on eight different families of molecules. These

families are presented in Figs. 6.1-6.6 and described afterwards.

Azulene Benzene Biphenyl Naphthalene

Figure 6.1: Family of aromatic molecules used to benchmark LCASPT2.
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Figure 6.2: Family of catechols used to benchmark LCASPT2.
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Figure 6.3: Family of ”other” molecules used to benchmark LCASPT2.
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Figure 6.4: Family of pyridines used to benchmark LCASPT2.
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Figure 6.5: Family of pyrrole-indoles used to benchmark LCASPT2.
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Figure 6.6: Family of thiophenes used to benchmark LCASPT2.
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Figure 6.7: Family of ”reaction” molecules used to benchmark LCASPT2.

O

Acrolein Butadiene Carbene Carbene2

Cyclobutadiene cis-Hexatriene trans-Hexatriene

Figure 6.8: Family of small molecules used to benchmark LCASPT2.

The family of aromatics is composed by azulene, benzene, biphenyl and naphthalene.

The active spaces used for these molecules corresponds to π systems in conjugation. These
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are: benzene - CAS[6, 6]; azulene and naphthalene - CAS[10, 10]; biphenyl - CAS[12, 12].

Schematic representations of the active spaces used for this and other families of molecules

are presented in Appendix 8.4. Both the default aug-cc-pVDZ basis set and aug-cc-pVTZ

were used for this family of molecules.

The family of catechols includes adrenaline (hormone and drug with an important role

in fight-or-flight responses), catechol, dopamine (neurotransmitter involved in the reward-

motivation system), levo-dopa (LDopa, a biological precursor to dopamine also sold as a

drug in the treatment of Parkinson) and noradrenaline (neurotransmitter and hormone

also with an important role in fight-or-flight responses). The active spaces chosen for

these molecules included the extended π systems in conjugation. This means that for

all molecules in this family all π and π∗ orbitals were included, as well as two non-

bonding pairs of electrons, one from each oxygen. The wavefunction corresponds thus to

a CAS[10, 8]. Except for LDopa, calculations on these molecules were performed using

both aug-cc-pVDZ and aug-cc-pVTZ.

The inhomogeneous group of molecules ”other” contains benzaldehyde, octatetraene,

phenylenediamine, quinoline, pantothenic acid (PanthAcid, vitamin B5), 5,6-dimethylene-

cyclohexa-1,3-diene (2Me(ene)Hexadiene) and bicyclo[4.2.0]octa-1,3,5-triene (2CyBenze-

ne). The TS structure for the electrocyclic ring closure transforming 2Me(ene)Hexadiene

into 2CyBenzene was also optimized. For benzaldehye, octatetraene, phenylenediamine

and quinoline the extended π systems in conjugation were used as active spaces. This

means: benzaldehyde and octatetraene - CAS[8, 8]; phenylenediamine - CAS[10, 8]; quino-

line - CAS[10, 10]. For quinoline a CAS[12, 11] was also used, in which the non-bonding

pair of the nitrogen atom orthogonal to the π system was included. Note that for ben-

zaldehyde the non-bonding orbitals from the oxygen atom were not included in the active

space. For PanthAcid two different CAS[4, 3] wavefunctions were used. The first (Pan-

thAcid1) describes the amide functionality, while the second (PanthAcid2) describes the

carboxylic acid group. Finally, for 2Me(ene)Hexadiene and 2CyBenzene a CAS[8, 8] con-

sistent with the electrocyclic ring closure from 2Me(ene)Hexadiene to 2CyBenzene was

optimized, i.e., the π system for 2Me(ene)Hexadiene and the π system with two σ orbitals

(bonding and anti-bonding) describing the bond between the two sp3 carbons for 2CyBen-

zene. An equivalent CAS was used for the TS. For PanthAcid only the default basis set

was used. For the electrocyclic ring closure reaction both aug-cc-pVDZ and aug-cc-pVTZ

were used. For the other systems aug-cc-pVDZ and def2-tzvp were employed.

The family of pyridines considers niacinamide, niacin (vitamin B3), nicotine, picolinic

acid (Pico), pyridine, pyridoxal (one form of vitamin B6), pyridoxamine (another form of
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vitamin B6) and pyridoxine (yet another form of vitamin B6). Once more the extended

π systems in conjugation were considered for the active spaces. This means that besides

the π orbitals from the conserved pyridine rings the orbitals from amide, carboxylic acid,

aldehyde and alcohol groups directly attached to the pyridine rings were included: nicotine

and pyridine - CAS[6, 6]; pyridoxamine and pyridoxine - CAS[8, 7]; niacinamide, niacin,

Pico and pyridoxal - CAS[10, 9]. For niacin, nicotine, pyridoxal and pyridoxamine the

active spaces were extended to include the non-bonding orbital from the N-pyridine atom,

orthogonal to the π system: nicotine - CAS[8, 7]; pyridoxamine - CAS[10, 8]; niacin and

pyridoxal - CAS[12, 10]. The suffix 1 is used for these larger active spaces. For the active

spaces without the non-bonding electron pair from the pyridine-nitrogen the suffix 2 was

used. The calculation of excitation energies using the larger active space served to confirm

the stability of the calculated excitation energies. We also wanted to have access to higher

ESs, but the second, third and fourth states are quasi-degenerate for the optimized GS

geometries of some molecules with the active space 1. We had thus to optimize five-

state state-averaged references. Of the pyridines, only on niacin2, niacinamide2, Pico and

pyridine we performed calculations using also the aug-cc-pVTZ basis set. For Pico also

aug-cc-pVQZ and aug-cc-pV5Z were tested.

The family of pyrrole-indoles incorporates pyrrole, indole, serotonin (neurotransmitter

associated with the feeling of happiness) and tryptophan (aminoacid). For this family of

molecules we optimized the following references: pyrrole - CAS[6, 5]; indole and trypto-

phan - CAS[10, 9]; serotonin - CAS[12, 10]. For pyrrole a four state state-averaged CAS

reference was optimized. For tryptophan aug-cc-pVTZ and aug-cc-pVQZ were also used.

The family of thiophenes is composed by thiophene, 5,7-dimethyl-2,3-dihydrothieno

[3,4-b] [1,4] dioxine (2Me2HSDiox), 5,7-dimethylene-2,3,5,7-tetrahydrothieno [3, 4-b] [1,4]

dioxine (2Me4HSDiox) and 7,7’-dimethyl-2,2’,3,3’-tetrahydro-5,5’-bithieno [3,4-b] [1,4] diox-

ine (2Me4H2SDiox). The last three structures were taken from the structure of poly(3,4-

ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), a widely used mixture of

two ionomers in the manufacture of Organic Light-Emitting Diodes (OLEDs) due to their

high ductility and conductivity (377–381). The active spaces were built from extended

π systems in conjugation. These include not only the thiophene moieties, but also the

oxygen atoms directly attached to the former: thiophene - CAS[6, 5]; 2Me2HSDiox -

CAS[10, 7]; 2Me4HSDiox - CAS[12, 9]; 2Me4H2SDiox - CAS[20, 14].

The family of small molecules comprises acrolein, butadiene, two conjugated carbenes,

cyclobutadiene, (Z)-hexa-1,3,5-triene (cis-hexatriene) and (E)-hexa-1,3,5-triene (trans-

hexatriene). For the cases of cis- and trans-hexatriene both the GS and first ES structures

133



were optimized. These geometries were optimized at the CASSCF level using a CAS[6, 6]

and aug-cc-pVDZ. This CAS was used in all other calculations in this system. A similar

CAS was previously used by Olivucci et al. for the same system (382). The absolute min-

imum in the S1 PES was also optimized, just like the Conical Intersection (C.I.) between

S0 and S1 and the TSs from cis-hexatriene (S1) and trans-hexatriene (S1) to the C.I..

All the structures involving the hexatriene system compose the main points in the S0

and S1 PESs describing the cis-trans isomerization of hexatriene. Under this context we

performed calculations on those 8 structures (S0 cis, S1 cis, S0 trans, S1 trans, minimum

S1, C.I., both TSs) using aug-cc-pVQZ. Besides the hexatriene system, reaction energies

were also calculated for the addition of the two carbenes to acrolein, butadiene or cyclobu-

tadiene. The active spaces used in these cases correspond once more to the conjugated

π systems. For the cases of the carbenes both unpaired electrons were also considered.

As such, the active spaces used are: acrolein, butadiene, carbene and cyclobutadiene -

CAS[4, 4]; carbene2 - CAS[6, 6]. More details on these calculations can be found in the

next paragraph. Only aug-cc-pVDZ was used in these calculations.

The family of ”reaction” molecules includes idealized molecules obtained from the ad-

dition of carbene and carbene2 to butadiene, cyclobutadiene and acrolein: 4-vinylcyclo-

pent-1-ene (VinylCyPentene), 4,4-divinylcyclopent-1-ene (2VinylCyPentene), 5-vinylbi-

cyclo [2.1.0] pent-2-ene (Vinyl2CyPentene), 5,5-divinylbicyclo [2.1.0] pent-2-ene (2Vinyl-

2CyPentene) and 2,2-divinyl-2,3-dihydrofuran (2Vinyl2HFuran). All these reactions are

hypothetical, mostly because it is very hard to obtain consistent active spaces for both

reagents and products, which allows both species to be treated on equal foot. Because

of the way these molecules were built, the active spaces had to be consistent with the

respective reactions. Besides π orbitals, the respective σ orbitals were added to the active

space. These included the following references: VinylCyPentene and Vinyl2CyPentene -

CAS[8, 8]; 2VinylCyPentene, 2Vinyl2CyPentene and 2Vinyl2HFuran - CAS[10, 10]. The

optimized orbitals are presented in Appendix 8.5. The calculation of reaction energies

was performed using one geometry file for the reagents. The molecules were placed at

a minimal distance of at least 23 Å (arbitrary large value). For the reaction to form

2Vinyl2HFuran an intermediate with diradical structure was also considered. We searched

for other intermediates and for TSs, but no other structure was yet found. For the excita-

tion energies of reaction molecules the same active space was used but a larger level-shift

was required (0.5). Two possible additions of carbene to cinnamaldehyde (the molecule

responsible for the cinnamon flavor) were also studied. The structures of cinnamaldehyde

and the addition products are presented later in subsection 6.3.2. For this case, carbene
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and cinnamaldehyde were optimized together. The separation between the molecules is

about 2.2 Å in the optimized geometry. The active spaces considered in these reactions

were built just alike the active spaces for all the reactions above discussed, meaning a

CAS[14, 14]. No ES was considered in these two reactions, meaning that single-state

references were optimized.

LCASPT2 was applied to a nickel complex with a di-imine and a Cyclopentadienyl

(CP) ligand. The structure, c.f. Fig. 6.9, was determined by X-Ray Crystallography by

Dr. M. Ringenberg, who provided us the geometry of the complex. The optimized active

space contained the π system of the di-imine ligand and the dNi orbitals in interaction

with this π system. This CAS[8, 6] had no contribution from the CP ligand. No Effective

Core Potential (ECP) was used in these calculations, except for the definition of nickel’s

minimal AO basis (to build the IBOs). For this complex both the cc-pVDZ and cc-pVTZ

bases were used. By default, the corresponding JKFIT and MP2FIT auxiliary bases were

used, except for the metal center, for which def2-tzvpp was used.
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CH2
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2+

Figure 6.9: Organometallic complexes used for benchmarking LCASPT2.

LCASPT2 was also applied gold complexes, which are involved in a simple elimination
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reaction. The gold structures were taken from reference (148) (this is a reoptimization of

the structures from (383)). For both cases single-state CAS references consistent with the

reaction were optimized after a linear scaling DF-HF calculation. The reaction involving

the gold complexes involves breaking a N -P bond. This is the first process in a many

step reaction. Even though other steps of the whole process would be more suitable to

be studied using MR methods, this step in particular was chosen due to the size of the

molecules involved. The active space chosen for the reagent included the σNP , σ∗NP , the

lone pair from the nitrogen not bonded to the phosphorous (nN) and a dAu orbital suitable

to interact with the changing π system. For the product the active space is composed by

the orbitals πNN , π∗NN , nP and the equivalent dAu orbital. For both cases the CAS[6, 4]

reference was obtained by first optimizing the active space (with IBOs as closed-shell) and

then optimizing the closed-shell space while freezing the active orbitals. The results of a

fully optimized CAS reference are mentioned for comparison reasons. The basis set used

for this system was cc-pVDZ with aug-cc-pVDZ+d for the phosphorous and cc-pVDZ-pp

for the gold atom. Gold’s inner-shell 60 electrons were treated with a pseudo-potential

(ECP60MDF). For the DF auxiliary bases JKFIT and MP2FIT we used def2-tzvpp.

Last but not least we calculated the singlet-triplet splitting of a nickel complex with

231 atoms. This is up to the moment the largest molecule treated at the LCASPT2 level

of theory. The structure of this complex was taken from (72), and a similar active space

comprising the d orbitals of the metal atom was isolated. However, contrary to what is

presented in (72), we did not fully optimize the CAS reference. Instead we calculated

the GS IBOs (triplet state) and we used these to isolate the desired active space for the

triplet and singlet states. We then optimized the active orbitals of a CAS[8, 5] reference,

using for the closed-shell space the IBOs of the triplet state. This means that for both

electronic states we optimized the respective active orbitals and also for both states the

IBOs of the triplet GS are used to describe the closed-shell space. Since only one state for

each spin symmetry is used, the references consist on single state CASs. For this system

we used the basis set def2-tzvpp.

Besides the hexatriene system already described, PES studies were performed on ethy-

lene. The distance between carbon atoms was increased by 0.025 Å, ranging from 0.919

to 3.269 Å. All geometries were optimized at the single-state MCSCF level using a full

valence active space. In all these cases all parameters were optimized, except for the

distance between the carbon atoms, which was fixed. After geometry optimizations, the

CAS reference was recalculated for the singlet GS and for the first triplet state. LCASPT2

calculations were performed on top of each reference with single-state orbitals. All options
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were used with their default values, except for the PAO domains, which were full. This

allowed us to study the effects of PNO domain sizes isolated. The basis set used in all

these calculations was aug-cc-pVTZ.

The calculations to show the scaling of the computational costs with the molecular

size were performed on alkyl substituted benzenes (alkyl benzenes) and on the dications of

bithiophenes connected by an alkyl chain (bithiophene chains), Fig. 6.10. These conserved

always the same structure, but with an increasing alkyl chain. For the alkyl benzenes the

alkyl chain goes from size 0 (benzene) up to 15 (n-pentadecylbenzene). The active space

consisted in all cases in the π system (CAS[6, 6]), so that the only variable in the systems

is the size of the closed-shell space. All these geometries were optimized using Becke’s

3-parameter, Lee-Yang-Parr Functional (B3LYP) with the aug-cc-pVDZ basis set. Even

though two-state references were optimized, these calculations were performed only on

one electronic state, which made unnecessary the use of level-shifts. The bithiophene

chains were taken from reference (72), and the structures range from n = 10 to n = 50,

increasing the alkyl chain by 10 carbon atoms. After performing the HF calculation and

getting the IBOs for these systems, the active orbitals were optimized for these molecules

in a 5 state state-averaged CAS[10, 10] reference. For the results here shown, we only used

the first electronic state. The basis set used for these bithiophene chains was def2-tzvp.

S

CH2

S

n

CH2
H

n

Figure 6.10: General structure for the alkyl benzenes and for the bithiophene chains used

in the scaling calculations. The alkyl chain for the benzenes goes from 0 (H) to 15 (n-

pentadecyl) increasing the number of carbons by a unit. The chain in the bithiophenes

goes from 10 to 50, increasing the chain by 10 carbons.

6.1 CW Vs. full ICC Ansatz

In the present subsection the ic-CASPT2 and RS2C wavefunction ansätze are com-

pared for a selected group of representative molecules. These are catechol, indole, nora-

drenaline, serotonin, LDopa and tryptophan. The comparison between total energies for

the respective GSs and ESs is given in Table 6.1. Excitation energies using both ansätze

are presented in Table 6.2. This Table also contains information about the dimensions of
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the closed-shell and active spaces.

The ICC ansatz constitutes a less flexible wavefunction. It is then to expect that total

energies calculated with ic-CASPT2 are slightly higher than total energies calculated using

RS2C. This is observed for all the cases here investigated. The highest difference between

these energies lies at 0.3 mEh for GS energies and 0.9 mEh for the ESs. The average

difference is of 0.2 mEh for GS and 0.4 mEh for ES energies. We can thus corroborate

that the differences between the two ansätze are indeed negligible (43).

Table 6.1: Comparison of total energies for GS and ES structures using RS2C and ic-

CASPT2. For GSs there is a maximum difference of 0.3 mEh, an average difference of

0.2 mEh and a minimum difference of 0.1 mEh. For ESs there is a maximum difference

of 0.9 mEh, an average difference of 0.5 mEh and a minimum difference of 0.1 mEh.

CASSCF RS2C ic-CASPT2

Molecule EGS (Eh) EES (Eh) EGS (Eh) EES (Eh) EGS (Eh) EES (Eh)

Catechol -380.54148 -380.36544 -381.67039 -381.50978 -381.67034 -381.50963

Indole -361.60118 -361.43027 -362.74863 -362.59421 -362.74839 -362.59345

Noradrenaline -588.52324 -588.34860 -590.32654 -590.16806 -590.32648 -590.16791

Serotonin -569.58393 -569.41850 -571.40343 -571.26067 -571.40314 -571.25979

Ldopa -701.28750 -701.11263 -703.40984 -703.25164 -703.40979 -703.25150

Tryptophan -682.36146 -682.19126 -684.49864 -684.34575 -684.49839 -684.34493

Table 6.2: Comparison between excitation energies using RS2C and ic-CASPT2. Maxi-

mum difference of 16 meV , average difference of 9 meV and minimum difference of 2.5

meV . C stands for nclosed, and A for nactive.

∆E (eV)

Molecule C A CASSCF RS2C ic-CASPT2 Exp

Catechol 16 8 4.790 4.370 4.373 4.43 (384)

Indole 17 9 4.651 4.202 4.216 4.36 (385)

Noradrenaline 28 8 4.752 4.312 4.315 4.28 (386)

Serotonin 28 10 4.501 3.884 3.901 4.04 (387)

Ldopa 33 8 4.758 4.305 4.307 4.13 (388)

Tryptophan 34 9 4.631 4.160 4.176 4.43 (389)

Similarly, differences between excitation energies calculated with both ansätze are
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negligible. On average there is a difference of 9 meV , and the highest difference is of

16 meV . In both cases errors are below the intrinsic error of CASPT2. These relative

errors are however not necessarily derogative for ic-CASPT2 since for almost all cases the

excitation energies are predicted below the experimental values.

6.2 Orbital Domains

This next section investigates how the PAO domain size and thrpno (PNO completion

threshold) affect the accuracy of LCASPT2. The PAO domain size is an important factor

controlling the accuracy of LCASPT2 in the limit of very small thrpno occ. thrpno is

a parameter balancing the fraction of correlation energy recovered for all types of pairs.

This study considered: iext = 2 shells, rext = 5 bohr (I = 2);1 iext = 0, rext = 2

(I = 0); iext = 1, rext = 3 (I = 1); iext = 2, rext = 5, reduce act = 1 (I = 2, RA);

rext = 1000 (full); thrpno = 0 (off) while iext = 2 and rext = 5. The set of molecules

used in these studies can be found in Fig. 6.12. In all cases, the Ecorr of LCASPT2

compares against the Ecorr of ic-CASPT2.
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Figure 6.11: Average %Ecorr against avg(PNO) for different PAO domain sizes.

thrpno occ ranges from 10−6 to 10−12. Data averaging the curves for GS and ES.

1From here on we omit the units in iext and rext.
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Table 6.3: Average PAO domain size, the respective standard deviation (σ), coefficients

of variation (cv), minima and maxima for different PAO domain options (iext = 2,rext =

5,reduce act = 1); thrpno off; and (rext = 1000). Data averaging GS with ES.

I = 0 I = 1 I = 2, RA I = 2 full

avg 131 199 248 254 292

σ 21 22 33 37 62

cv 0.16 0.11 0.13 0.14 0.21

min 97 144 158 158 159

MAX 185 252 293 300 395

Table 6.4: Average %Ecorr and the respective statistical data for I = 2 and full PAO

domains. σ multiplied by 100, cv multiplied by 104.

I = 2 full

State thrpno occ %Ecorr σ cv min MAX %Ecorr σ cv min MAX

GS 10−6 99.62 4.0 4.0 99.54 99.69 99.71 1.0 1.0 99.68 99.72

10−7 99.79 3.6 3.7 99.71 99.86 99.87 0.83 0.83 99.86 99.89

10−8 99.87 3.7 3.8 99.79 99.93 99.95 0.45 0.45 99.94 99.96

10−9 99.90 3.6 3.6 99.83 99.95 99.98 0.32 0.32 99.97 99.99

10−10 99.91 3.5 3.5 99.84 99.96 99.99 0.29 0.29 99.98 100.00

10−11 99.91 3.5 3.5 99.84 99.96 100.00 0.29 0.29 99.99 100.00

10−12 99.91 3.5 3.5 99.84 99.96 100.00 0.28 0.28 99.99 100.00

ES 10−6 99.62 3.8 3.8 99.53 99.68 99.70 0.94 0.95 99.68 99.72

10−7 99.78 3.5 3.5 99.70 99.85 99.87 0.94 0.94 99.85 99.89

10−8 99.86 3.7 3.7 99.79 99.92 99.95 0.51 0.51 99.94 99.96

10−9 99.90 3.6 3.6 99.83 99.95 99.98 0.36 0.36 99.97 99.99

10−10 99.91 3.6 3.6 99.84 99.96 99.99 0.32 0.32 99.98 100.00

10−11 99.91 3.5 3.5 99.84 99.96 99.99 0.31 0.31 99.99 100.00

10−12 99.91 3.6 3.6 99.84 99.96 100.00 0.31 0.31 99.99 100.00

Fig. 6.11 presents the average %Ecorr recovered against avg(PNO) for different PAO

domain sizes. Tables 6.4, 6.5, 8.3, 8.4, 8.5 and 8.6 provide the respective statistical data.

Table 6.3 presents statistical information for the many PAO domain options. In this

chapter only the Tables for I = 2 and full PAO domains are presented. Other Tables

can be found in the section 8.6.
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Table 6.5: avg(PNO) and the respective statistical data for I = 2 and full PAO domains.

I = 2 full

State thrpno occ avg(PNO) σ cv min MAX avg(PNO) σ cv min MAX

GS 10−6 50 3 0.06 45 56 50 3 0.06 45 56

10−7 53 3 0.05 49 59 53 3 0.05 49 60

10−8 63 4 0.06 56 71 63 4 0.06 57 71

10−9 84 6 0.07 73 94 84 6 0.07 74 94

10−10 116 8 0.07 100 131 116 8 0.07 101 132

10−11 155 11 0.07 136 177 156 11 0.07 136 179

10−12 259 31 0.12 200 300 299 56 0.19 206 395

ES 10−6 50 3 0.06 44 57 50 3 0.06 44 57

10−7 53 3 0.05 49 60 53 3 0.05 49 60

10−8 65 4 0.07 58 74 65 4 0.06 58 74

10−9 88 7 0.08 77 101 89 7 0.07 77 101

10−10 122 9 0.07 105 138 123 9 0.07 106 138

10−11 161 11 0.07 141 184 163 12 0.07 141 186

10−12 259 31 0.12 200 300 299 56 0.19 206 395

As expected, for each value of thrpno occ, the larger the PAO domain size, the more

correlation energy is recovered by LCASPT2. For full PAO domains, LCASPT2 recovers

the canonical ic-CASPT2 energy given that thrpno occ is sufficiently small: LCASPT2

converges thus numerically to the canonical result. Furthermore, for full recovery of the

canonical energy the PNO domains do not require to be full: thrpno occ = 10−11 recovers

already the canonical energy. However, full PNO domains can only be obtained with

thrpno occ = 10−12 (for full PAO domains). Using full PAO domains is also the case

for which LCASPT2 has less variability with respect to recovering Ecorr: the lowest σ

(standard deviation) and cv (coefficient of variation) are always obtained. The minima in

%Ecorr have the largest values. This is even higher than the average for any other set of

data, which shows the relative accuracy that can be reached by using full PAO domains.

By decreasing the average PAO domain size, LCASPT2 begins to recover smaller

fractions of the canonical Ecorr and having more variability in %Ecorr. However, the

evolution of such behavior is rather slow, and only significantly notorious for very small

PAO domains. Using the default values for iext and rext causes a loss of about 0.09%
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in accuracy when compared to the full PAO domain case.2 We note furthermore that

the loss in average correlation recovered is four times larger between I = 2 and I = 1

(0.32%) than it is between full and I = 2. The difference in the accuracies between I = 1

and I = 0 grows even larger, to 1.42%. Furthermore, the difference in accuracy for these

curves using different PAO domain sizes is a constant, which depends only on the PAO

domain size. This means that given any two PAO domains, the difference between the

respective %Ecorr is constant, as long as the same values of thrpno occ are compared.

Regarding the PAO domains themselves, the behavior is as expected: for larger iext

larger PAO domains are obtained. The set of data full shows a larger variation because

the PAO domains are dependent on the molecular size. For other data, the larger the

PAO domain is, the larger is the variability between the domains of different molecules.

This behavior is consistent with what was observed for the PNO domains. Since PAO

domains are defined from distance criteria, the domain sizes are exactly the same for both

GS and ES.

The effects of the option RA should still be analyzed. Reducing the domain size for

the active space has barely any effect in the accuracy of LCASPT2. Differences amount

in average to 0.01%. However setting RA = 1 increases the variability of Ecorr recovered

by about 20% (σ). As for the effect on the PAO domains, using RA decreases just slightly

the average domain size and the variability. Given these results, using RA may eventually

just compensate when performing calculations on systems with larger active spaces.

Looking at the absolute errors of LCASPT2 using the different PAO domain options

brings exactly the same conclusions regarding accuracy and variability. These results are

therefore presented in the Appendix 8.6.

Next we will inspect the effect of PAO domains in calculating excitation energies.

Fig. 6.12 shows the absolute errors in excitation energies using thrpno occ = 10−6, Fig.

6.13 gives the absolute errors for thrpno occ = 10−8 and Table 6.6 gives the respective

statistical data. It is clear that comparative to other options, I = 0 gives the worst re-

sults. Nevertheless, its absolute error for both thrpno occ = 10−6 and thrpno occ = 10−8

is around 10 meV , which is still significantly below the intrinsic error of the canonical

CASPT2 (about 3% of this error). For all other options, the absolute error in the ex-

citation energies is below 5 meV , even for I = 1. These four sets of data are split in

two groups when comparing the average absolute errors. On one side there is I = 1 and

I = 2, RA with similar accuracy and variance, on the other side there is I = 2 closer

2This value was calculated using %Erext=1000
corr −%Eiext=2,rext=5

corr
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to the full results. Even though I = 2, RA resembles in average %Ecorr the behavior

of I = 2, when it comes to calculating excitation energies it resembles the behavior of

I = 1. Since the only difference is in the dimension of the domains for the active space,

we verify the importance of keeping active domains as large as possible. The origin for

the formation of these two sets of results is the main source of the errors. For I = 2 and

full the errors from PNO domains are comparable to the errors from the PAO domains.

For I = 0, I = 1 and I = 2, RA errors are dominated by the PAO domain size.
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Figure 6.12: Absolute error on excitation energies (∆E) in eV using thrpno occ = 10−6.

Comparison for different PAO domain sizes.

Although not stressed out in the way the data is represented, the differences between

different PAO domain sizes increase with the molecular size. This can be seen elsewhere

(242), where the molecules are organized differently, not according to their type but

according to the sizes of the closed-shell and active spaces.

Due to the division of the results in two groups, using full domains does not im-

prove significantly the excitation energies over the default PAO domain options, espe-

cially for thrpno occ = 10−8. This stresses that with LCASPT2 the best compromise

between accuracy and computational cost can be obtained using iext = 2, rext = 5 and

thrpno occ = 10−8.
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Figure 6.13: Absolute error on excitation energies (∆E) in eV using thrpno occ = 10−8.

Comparison for different PAO domain sizes.

Table 6.6: Average error in excitation energies and the respective statistical data.

I = 2 I = 0 I = 1 I = 2, RA full

10−6 avg 3.8 10.7 4.9 4.6 3.4

σ 1.2 6.9 1.7 1.4 1.1

cv 0.3 0.6 0.3 0.3 0.3

min 1.5 2.7 1.9 1.4 1.0

MAX 5.8 26.1 8.4 6.6 5.8

10−8 avg 2.1 8.7 3.2 3.0 1.7

σ 0.7 6.8 1.6 1.4 0.6

cv 0.3 0.8 0.5 0.5 0.4

min 1.0 1.8 0.9 0.9 1.0

MAX 4.0 23.5 7.0 5.3 4.0

Fig. 6.14 evaluates the effects of the PNO energy completion threshold, thrpno, by

comparing the results with and without this threshold. As it is shown, there is only an

actual difference between having thrpno = 0.997 and having this threshold off (thrpno =

0) for thrpno occ = 10−6 and thrpno occ = 10−7. For thrpno occ = 10−8 the difference is
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negligible, both in %Ecorr and in avg(PNO). For even smaller thrpno occ the difference

vanishes, converging both cases to the same result. It is normal for thrpno to affect more

%Ecorr for larger thrpno occ, since this parameter ensures a minimum energy quality

for the PNO domains built. Making thrpno = 0.997 is almost equivalent to decreasing

thrpno occ by an order of magnitude when using thrpno = 0. When thrpno occ = 10−6

and thrpno = 0.997, the energy driven threshold dominates completely the building of

the PNO domains, as previously proposed. Besides improving the accuracy of LCASPT2

and bringing balance to the correlation treatment of all pairs, thrpno brings uniformity to

the calculation. Analysis of the absolute errors for thrpno = 0.997 and thrpno off simply

reinforce the conclusions made above. This plot is also in Appendix 8.6.
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Figure 6.14: Average %Ecorr against avg(PNO) for thrpno = 0.997 and off. thrpno occ

ranges from 10−6 to 10−12. Data was obtained by averaging the curves for GS, and ES.

Finally there is the effect of thrpno = 0 on excitation energies. Fig. 6.15 shows

the rapid convergence of the excitation energies for different values of thrpno occ. For

thrpno occ = 10−8 excitation energies are already converged, with an average absolute

error of 2 meV . This is the same when using thrpno = 0.997. For thrpno occ = 10−6 and

thrpno = 0 the average absolute error is around 24 meV , which is 6 times higher than the

average absolute error for the same conditions but with thrpno = 0.997. These are also

the largest errors we have seen in excitation energies, which emphasize the dominance of

the energy threshold in building the PNO domains for smaller thrpno occ. While when

thrpno = 0.997 one can afford to go to larger thrpno occ without a significant loss in

accuracy and increasing of the variability, whenever thrpno = 0 that is no longer possible.
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To keep the average absolute error below 5 meV thrpno occ = 10−8 is required, reinforcing

our choice for the default value for this threshold. Due to the results here presented, from

here on the energy completion threshold has always the default value of 0.997.
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Figure 6.15: Absolute error on excitation energies (∆E) in eV using thrpno occ ranging

from 10−6 to 10−12.

6.3 Accuracy

To test the accuracy of LCASPT2, calculations on all systems presented in Figs. 6.1-

6.7 were performed. This full test set was named ”Medium Molecules”. Fig. 6.16 presents

the convergence of Ecorr with avg(PNO) for this sample of molecules, for both GSs and

ESs. Note that we present curves for the average, minima and maxima of this sample.

The respective data is presented in Tables 6.7 and 6.8. In these calculations thrpno occ

ranges from 10−6 to 10−12. Domain sizes for PAOs were the default, i.e., iext = 2 and

rext = 5. The average size of PAO domains did not vary within a molecule.

As expected, as thrpno occ decreases, both the %Ecorr and avg(PNO) increase. The

error in Ecorr for LCASPT2 is with 115-120 PNOs converged (but not to zero). This

corresponds to thrpno occ = 10−10. However, using thrpno occ = 10−8 introduces an

error of 0.3− 0.4% in Ecorr, which is negligible. Using this threshold there are typically

60-65 PNOs per domain, a significant reduction of the canonical substitution spaces. We
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also point out that the behavior of the average is closer to the behavior of the minima for

avg(PNO) but closer to the behavior of the maxima when it comes to %Ecorr. This means

that for most of the systems the accuracy is maximized and the domains are minimized.
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Figure 6.16: Average %Ecorr against avg(PNO) for medium molecules. thrpno occ ranges

from 10−6 to 10−12.

Although both the curves for GSs and ESs are almost overlapping, the former has a

slightly faster convergence. Therefore, excitation energies are all going to be predicted by

excess. Fig. 6.17 shows the absolute error for thrpno occ = 10−6 and thrpno occ = 10−8

for both GSs and ESs of all systems, which stresses the difference in the Ecorr recovered

for both GS and ES. This difference in Ecorr recovered is small and tends to decrease

with thrpno occ. For thrpno occ = 10−8 the curves for the absolute errors in Ecorr for

GSs and ESs are visually overlapping for almost all cases (not numerically though). For

smaller thrpno occ (10−6) the domains and the recovery of Ecorr become larger and more

consistent for all types of pairs, because the energy completion threshold dominates. This

ensures that all pairs are somehow treated with more consistency. Only for thrpno occ =

10−7 some closer pairs are better described than some more distant pairs. And of all,

thrpno occ = 10−7 shows larger discrepancies between the two curves, even though for a

few molecules thrpno occ = 10−8 can also be affected. We associate this unbalance with

the origin for the difference in the amount of Ecorr recovered around thrpno occ = 10−7
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for different electronic states.

Table 6.7: Average %Ecorr, the respective standard deviation (σ), coefficients of variation

(cv; multiplied by 104), the minimum (min) and the maximum (MAX) for the medium

molecules.

GS ES

thrpno occ avg σ cv min MAX avg σ cv min MAX

10−6 99.62 0.05 4.9 99.53 99.69 99.62 0.05 4.7 99.53 99.69

10−7 99.79 0.05 4.5 99.70 99.86 99.78 0.04 4.4 99.70 99.86

10−8 99.87 0.05 4.5 99.77 99.93 99.86 0.04 4.5 99.77 99.93

10−9 99.90 0.04 4.3 99.80 99.95 99.90 0.04 4.4 99.80 99.95

10−10 99.91 0.04 4.2 99.81 99.96 99.91 0.04 4.3 99.81 99.96

10−11 99.91 0.04 4.2 99.81 99.96 99.91 0.04 4.3 99.81 99.96

10−12 99.91 0.04 4.2 99.81 99.97 99.91 0.04 4.3 99.81 99.97

Table 6.8: avg(PNO), the respective standard deviation (σ), coefficients of variation (cv),

the minimum (min) and the maximum (MAX) for the test set of medium molecules.

GS ES

thrpno occ avg(PNO) σ cv min MAX avg σ cv min MAX

10−6 49 5 0.09 39 69 49 5 0.10 38 68

10−7 52 5 0.09 40 71 52 5 0.09 40 71

10−8 62 6 0.10 44 81 64 6 0.10 44 82

10−9 82 9 0.10 56 110 87 10 0.11 56 113

10−10 114 12 0.10 79 155 120 13 0.11 80 162

10−11 152 16 0.11 114 214 158 17 0.11 115 222

10−12 255 39 0.15 197 402 255 39 0.15 197 402

To analyze how scattered the data is we should look at the respective standard de-

viations (σ) and coefficients of variation (cv). The σ’s for %Ecorr barely change with

thrpno occ. Because %Ecorr increases then the cv’s have to decrease with thrpno occ.

However, such decrease of the cv stagnates between thrpno occ = 10−9 and thrpno occ =

10−10, meaning that LCASPT2 reaches its limit in both accuracy and consistency (scat-

ter of results). This point marks thus the numerical convergence of LCASPT2 with

thrpno occ. On the other hand, the cv’s tend to increase for avg(PNO). This means that
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as avg(PNO) increases, so does the scattering of the domain sizes. This behavior is ex-

pected since larger PNO domains should become closer to full canonical virtual spaces,

which differ greatly for all the cases studied. To keep the PNO domains as independent

as possible from the molecular size larger values of thrpno occ should be used. We should

note that from thrpno occ = 10−6 to thrpno occ = 10−7 the σs for avg(PNO) have the

tendency to decrease. This is again an effect of the completion threshold.
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Figure 6.17: Absolute error on Ecorr in Eh on medium molecules for thrpno occ = 10−6

(6) and thrpno occ = 10−8 (8). The average absolute errors are 6.0 mEh for thrpno occ =

10−6 and 2.3 mEh for thrpno occ = 10−8.

Fig. 6.18 shows the absolute error in excitation energies (∆E) in eV for thrpno occ =

10−6 and thrpno occ = 10−8.3 On the average, thrpno occ = 10−8 is more accurate

than thrpno occ = 10−6: the average absolute error for thrpno occ = 10−8 is half of

the average error for thrpno occ = 10−6. The standard deviation also decreases with

thrpno occ but not as much as the average absolute error. It can be visually observed

that the smaller the value of thrpno occ, the more consistent are the calculated excitation

3In the next subsection the absolute values of excitation energies are analyzed.
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energies and the less scattered the results are. Nevertheless, there are some cases for

which thrpno occ = 10−6 is more accurate than thrpno occ = 10−8. These cases arise

from fortuitous error compensation and from the fact that %Ecorr converges differently

with avg(PNO) for GSs and ESs. We note furthermore that as expected, LCASPT2 ceils

the canonical ic-CASPT2 excitation energies.

Finally the samples should be analyzed for outliers. Outliers are outside the range

of the region between the first (Q1) and the third (Q3) quantiles.4 We found three

outliers for thrpno occ = 10−6 (second ES of Nicotine1 and Pyridoxamine1 as well as

Vinyl2CyPentene) and two outliers for thrpno occ = 10−8 (Biphenyl and 2Me4H2SDiox).

All outliers lay beyond Q3 and never below Q1. For the case of thrpno occ = 10−8 these

outliers are exactly the same molecules having larger differences in the absolute errors of

the correlation energy for GS and ES (c.f. Fig. 6.17). Because of the sizes of the samples

(42 molecules) and the reduced number of outliers (5% or less) the sample chosen is well

balanced and consistent.

Table 6.9: Statistical data for excitation energies of medium molecules with thrpno occ =

10−6 and thrpno occ = 10−8. Data in meV , if applicable.

thrpno occ avg σ cv min MAX

10−6 4.2 1.4 0.3 1.5 7.9

10−8 2.1 0.8 0.4 1.0 4.5

Even though the default thrpno occ (10−8) has a more consistent and accurate be-

havior, using thrpno occ = 10−6 does not lead to a significant increase of the absolute

errors (there is a difference below 5 meV between samples) nor to a significant decrease

in the consistency and scattering of the results. Our results are consistent to the results

of PNO-LMP2, for which 60 PNOs offer the best compromise between accuracy and CPU

time (148). Even though we still recommend to use the default value of thrpno occ = 10−8,

for very large systems thrpno occ = 10−6 can be safely used without much loss in accuracy

or consistency.

4The median (M̄) was determined just like the values of Q1 and Q3. From these Q̄1 = M̄ −Q1 and

Q̄3 = Q3 − M̄ were calculated. The interquantile range between Q1 and Q3 is given by the interval[
Q1− 1.5Q̄1, Q3 + 1.5Q̄3

]
. Outliers lay outside this interval.
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Figure 6.18: Absolute error of excitation energies (∆E) in eV on medium molecules for

thrpno occ = 10−6 (6) and thrpno occ = 10−8 (8).

6.3.1 Excitation Energies

As seen in the previous section, excitation energies calculated with LCASPT2 converge

to the respective canonical results as thrpno occ goes to zero and as the PAO domain sizes

increase. In section 6.4 we will present a plot showing the convergence of the excitation

energy of picolinic acid with thrpno occ for many basis sets (Fig. 6.23). The convergence

behavior we will see there is quite general and was observed for all molecules studied in

section 6.3. But as important as verifying that errors tend to zero is to compare the

calculated results with experimental values. A purely vertical excitation energy is never

measured, since the transition occurs to the Franck-Condon structure. Nevertheless, we

can assume that the Frank-Condon structure is almost the same as the minimum in the

GS’s PES. As such, we can compare the calculated (vertical) excitation energies with

maxima in absorption spectra. This is the comparison made in this section.
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Table 6.10: Comparison between experimental and calculated excitation energies for a

sample of the medium molecules. Errors of LCASPT2 presented for thrpno occ = 10−6

and thrpno occ = 10−8.

∆E (eV ) Error LCASPT2 (meV )

Experimental ic-CASPT2 10−6 10−8

Azulene 1.78 (390) 1.912 1.5 1.0

Benzene 4.86 (391) 4.595 4.6 0.6

Biphenyl 3.80 (392) 3.852 5.2 4.0

Naphthalene 3.97 (393) 3.791 2.4 1.7

Adrenaline 4.51 (394) 4.309 3.6 2.4

Catechol 4.43 (384) 4.373 2.8 1.1

Dopamine 4.43 (395) 4.306 3.8 2.2

LDOPA 4.13 (388) 4.307 4.1 2.8

Noradrenaline 4.28 (386) 4.315 4.1 2.7

Niacinamide 4.68 (396) 4.572 4.8 1.7

Niacin2 4.68 (396) 4.538 4.5 1.4

Niacin1 4.68 (396) 4.546 4.4 1.7

Nicotine2 4.77 (397) 4.604 5.5 2.4

Nicotine1 4.77 (397) 4.620 4.8 2.1

Picolinic Acid 4.68 (398) 4.554 5.8 1.6

Pyridine 4.86 (399) 4.688 4.7 0.8

Pyridoxal2 3.78 (400) 3.803 4.8 2.4

Pyridoxal1 3.78 (400) 3.774 2.9 2.0

Pyridoxamine2 4.84 (401) 4.351 4.2 2.9

Pyridoxamine1 4.84 (401) 4.390 5.0 2.4

Pyridoxine 3.96 (402) 4.305 3.4 2.0

Indole 4.36 (385) 4.216 3.2 1.7

Pyrrole 5.90 (403) 5.825 4.5 0.4

Serotonin 4.04 (387) 3.901 2.0 2.5

Tryptophan 4.43 (389) 4.176 4.6 2.9

Thiophene 5.17 (404) 5.193 4.0 0.1

2Me2HSDiox 1.55 to 1.13 (405) 4.801 2.3 1.3

2Me4HSDiox 1.55 to 1.13 (405) 4.570 3.4 1.7

2Me4H2SDiox 1.55 to 1.13 (405) 4.271 4.3 4.5
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Table 6.10 presents the experimental excitation energies, the ones calculated using ic-

CASPT2 and the magnitude of the errors introduced by the local treatment. Contrary to

excitation energies, which are presented in eV , errors are presented in meV . For the cases

of 2Me2HSDiox, 2Me4HSDiox and 2Me4H2SDiox we calculated the excitation energies

of two monomers and a dimer. Experimental values are however only available for the

polymer. As such, experimental and calculated excitation energies are not matching. For

consistency, we give the values for the excitation energy of the polymer in Table 6.10.

As can be seen in Table 6.10, all calculated excitation energies are very close to ex-

perimental values. For LCASPT2 there is in average a difference of 160 meV for both

thrpno occ = 10−6 and thrpno occ = 10−8 towards the experimental values. The maxi-

mum errors observed are of 490 meV for pyridoxamine and 350 meV for pyridoxine. these

errors decrease slightly by increasing the size of the active spaces. The smallest error is

curiously of 3 meV for pyridoxal. Considering the similarities between structures, it is

doubtful that these differences in excitation energies arise from the (in)adequacy of the

active spaces. It is more likely that the contrast between experimental and theoretical

values comes from some other effect, which was not accounted for in the calculations. We

remind the reader that the difference between the molecules is in the functional group

para with respect to the nitrogen in the pyridine ring: pyridoxal has an aldehyde group;

pyridoxine has an alcohol; pyridoxamine an amine group.

6.3.2 Reaction Energies

This section is dedicated to the convergence of reaction energies with thrpno occ.

Calculations were performed on the reactions in Fig. 6.19. We considered additions of

carbenes to alkenes or aldehydes, which correspond to numbered reactions. An electro-

cyclization reaction is also presented.

Fig. 6.20 presents the convergence of errors in reaction energies with avg(PNO) for the

reactions with carbenes. These errors are presented in kcal.mol−1. For all these reactions,

using thrpno occ = 10−8 yields errors below 1 kcal.mol−1 with respect to ic-CASPT2.

The average error lies at 0.42 kcal.mol−1 = 18 meV , which is 8-9 times larger than the

errors in excitation energies. LCASPT2 introduces thus larger errors in the prediction

of reaction energies than it does for excitation energies. These errors are still reducing

for thrpno occ < 10−8. For larger systems, like reactions 8 and 9 with cinnamaldehyde,

the decrease in errors is however less significant. The difference between reaction and

excitation energies is that there should not be any close relation between the convergence
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behavior of reagents and products. As such, convergence curves of Ecorr with avg(PNO)

for products and reagents may differ more than these curves for different electronic states.

This justifies why thrpno occ = 10−7 does not show in reaction energies a particularly

bad result when compared to thrpno occ = 10−6. We can observe for all cases, that even

though close to, thrpno occ = 10−7 improves over thrpno occ = 10−6. Errors of individual

reaction energies calculated with LCASPT2 do not go necessarily to zero when comparing

with the canonical calculation. These differences should depend on the molecular size,

and the larger the molecules, the larger the restrictive effect of the PAO domain sizes.

But more importantly, all these reactions consist in additions: the reagents are calculated

in the same geometry file and both molecules are separated by a large distance; products

are always a single molecule. The PAO domain sizes for the reagents as an ensemble

will not match the PAO domains for the products, unlike the case of excitation energies.

Exceptions, e.g. reaction 8, can be accounted by error compensation.

+ 1 + 2

+ 3 + 4

O O
+ 6 O 7

5

O
+ 98

O

O

electrocyclic

Figure 6.19: Schemes of the reactions studied using LCASPT2.

To verify the validity and pertinence of these CASPT2 calculations on the carbene

reactions, the results are compared to local unrestricted SR methods. Table 6.11 presents

the energies for the reactions with carbenes calculated using ic-CASPT2, LRMP2, LUCCSD
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and LUCCSD(T0). All reaction energies are calculated using one geometry file for both

reagents. For reactions 8 and 9 the reagents were optimized together, meaning that also

the intermolecular distance was optimized. Contrary to other cases, the reagents for re-

actions 8 and 9 are only 2.2 Å apart. For reactions 1-6 the carbenes have a purely planar

structure, with all atoms coplanar. In the cinnamaldehyde+carbene pair of reagents (re-

actions 8 and 9), the hydrogen atom bonded to the carbon with the carbene character is

out-of-plane. However, all other atoms in the carbene are coplanar.
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Figure 6.20: Convergence of carbene reaction energies with avg(PNO) for LCASPT2.

Data in kcal.mol−1.

SR theories cannot describe the MR character of these two simple carbenes. Only

other MR methods can. But the active spaces found might not be adequate to describe

these reactions. We also did not find experimental values to corroborate these results.

However, the first triplet states of the carbenes have a dominant SR character. With

balances of energies the reaction energies were calculated with the triplet carbene and

then converted into singlet reaction energies. The conversion took place by adding the

CASPT2 singlet-triplet splittings for the carbenes. The derivation of the expressions

used to estimate the SR reaction energies is schematized in Appendix 8.7. The singlet-

triplet splittings we calculated for the carbenes are 4.34 kcal.mol−1 for carbene and 2.71

kcal.mol−1 for carbene2.
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Table 6.11: Energies for the carbene reactions for ic-CASPT2, LRMP2, LUCCSD and

LUCCSD(T).

∆E (kcal.mol−1)

Reaction ic-CASPT2 LRMP2 LUCCSD LUCCSD(T0)

1 -117.79 -115.99 -106.33 -106.86

2 -105.97 -105.19 -96.43 -96.91

3 -124.06 -124.21 -112.42 -112.60

4 -113.41 -114.64 -106.15 -106.35

5 -92.22 -88.82 -82.84 -83.26

6 -29.95 — — —

7 -62.27 — — —

8 -70.73 -79.30 -69.80 -71.60

9 -85.01 -91.80 -83.36 -84.07

As Table 6.11 shows, the only two reaction energies for which the CASPT2 energies

agree with the LUCC energies are the cinnamaldehyde reactions (8 and 9). For the first

5 reactions there are differences ranging from 7 to 11.5 kcal.mol−1 between CASPT2 and

LUCC, which is ca. 10% of the reaction energies. We could hypothesize the discrepancies

arise from the active spaces. But since all these active spaces were built analogously and

the reactions have the same character, it is not likely for that to be the dominant effect.

We could also hypothesize the differences come from some MR character in the triplet

carbenes, but the references for all carbenes have similar (SR) composition. Comparing

the LCASPT2 reaction energies with the LRMP2 reaction energies we verify that the

energies are in better agreement for the cases of reactions 1-5. The differences in these

reaction energies should then arise from the different description that PT and CC provide

for the correlation energy.

Finally, we would like to analyze the performance of LCASPT2 on a purely SR system.

This is the electrocyclic ring closure of 2Me(ene)Hexadiene to 2CyBenzene. The results of

our calculations are presented in Table 6.12. For this reaction LCASPT2 was used, which

compares once more with LRMP2, LUCCSD and LUCCSD(T0). As can be seen, the

LCASPT2 energies for this reaction are in very good agreement with the LUCC results.

Differences amount to 0.2-2 kcal.mol−1, where the largest differences are for the activation

energy Ea. LCASPT2 and LRMP2 only agree in the activation energy. As for basis sets,

both aug-cc-pVDZ and aug-cc-pVTZ yield very consistent reaction energies, which differ
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by 1 kcal.mol−1 (6%). Activation energies appear to be less consistent with a difference

of 6.5 kcal.mol−1. We note however that this energy has another order of magnitude,

meaning that the differences are quite similar (8%). For the more interested reader,

Appendix 8.7 presents an orbital diagram, which justifies why this particular electrocyclic

reaction is forbidden in the GS, accounting for the magnitude of the activation energy.

Table 6.12: Reaction (∆Erx) and activation (Ea) energies calculated for the electrocyclic

reaction using LCASPT2, LRMP2m LUCCSD and LUCCSD(T0) with aug-cc-pVTZ and

aug-cc-pVDZ.

Basis Set Method avg(PNO) Ea (kcal.mol−1) ∆Erx (kcal.mol−1)

aug-cc-pVTZ LCASPT2 10−6 90 111.73 -12.45

aug-cc-pVTZ LCASPT2 10−8 111 111.68 -12.56

aug-cc-pVDZ LCASPT2 10−6 47 105.05 -11.51

aug-cc-pVDZ LCASPT2 10−8 63 105.03 -11.56

aug-cc-pVDZ LRMP2 — 102.88 -18.80

aug-cc-pVDZ LUCCSD — 108.17 -12.50

aug-cc-pVDZ LUCCSD(T0) — 103.19 -11.84

6.4 Basis Sets

This section studies the convergence of correlation and excitation energies of LCASPT2

for different basis sets. Using the default PAO domain option (iext = 2, rext = 5)

thrpno occ was varied from 10−6 to 10−12 for both aug-cc-pVDZ and aug-cc-pVTZ (c.f.

Fig. 6.22 for the set of molecules used in this study). The convergence of Ecorr with

avg(PNO) is given in Fig. 6.21. The respective statistical data is presented in Tables 8.7

and 8.8 in Appendix 8.8. As depicted in Fig. 6.21, the convergence curves for both basis

sets are very similar, although for larger thrpno occ the double-ζ basis set shows higher

accuracy than the triple-ζ basis. But for thrpno occ = 10−8 both bases become already

equally accurate, meaning that all domain errors become similar. Furthermore, the PNO

domain size relative to the full virtual space grows slower for aug-cc-pVTZ. Therefore, aug-

cc-pVTZ shows a better convergence behavior, reaching earlier the maximum accuracy

possible. This can be seen by plotting the reduced curves for each basis set (dividing each

variable by the maximum value it takes, eg, [avg(PNO)]thrpno occ=x

[avg(PNO)]thrpno occ=10−12 ).
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Figure 6.21: Average %Ecorr against avg(PNO) for aug-cc-pVDZ and aug-cc-pVTZ.

thrpno occ ranges from 10−6 to 10−12.

The average %Ecorr recovered increases with decreasing thrpno occ but the standard

deviation remains practically unchanged. This agrees with previous results, for which

for decreasing thrpno occ LCASPT2 becomes more accurate, with less scattered results.

avg(PNO) behaves also similarly to what was previously observed. We note furthermore

that the scattering of the PNO domain sizes is independent of the basis set. For the

recovered Ecorr on the other hand, the larger basis set shows less scattered results. aug-cc-

pVTZ is thus more consistent for this test sample. We can therefore infer that LCASPT2

shows a better behavior in the convergence of Ecorr for larger basis sets. The analysis

of absolute errors on Ecorr for the two basis sets simply reinforces the conclusions so far

taken. Therefore, the comparison between absolute errors for this sample of molecules

and for these basis sets is relegated to Appendix 8.8.

Finally, Fig. 6.22 presents the absolute errors in excitation energies for aug-cc-pVDZ

and aug-cc-pVTZ. In both cases, the smaller thrpno occ, the smaller the average absolute

error in excitation energies. The improvement of excitation energies with thrpno occ is

more significant for aug-cc-pVDZ. For aug-cc-pVTZ the decrease in errors is softer.

The standard deviation for aug-cc-pVDZ also decreases with thrpno occ, but the one

for aug-cc-pVTZ increases. Even though biphenyl is an outlier in the aug-cc-pVTZ set,

excluding these results does not improve the order of the σ for this basis set. Nevertheless,
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the cv’s show similar values and trends for both aug-cc-pVDZ and aug-cc-pVTZ, results

which are consistent with section 6.3. Therefore, we will not place much relevance in

the behavior of the σ’s for this particular case. From the average absolute errors and

the respective standard deviations we infer it is better to use thrpno occ = 10−8 when

calculating excitation energies for the basis set aug-cc-pVDZ, consistent with our previous

conclusions. For aug-cc-pVTZ the gain in decreasing thrpno occ is not as significant. This

may however be an artifact of the size of the sample here used.
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Figure 6.22: Absolute error on excitation energies (∆E) in eV for thrpno occ = 10−6 (6)

and thrpno occ = 10−8 (8). Comparison between aug-cc-pVDZ and aug-cc-pVTZ.

Table 6.13: Picolinic acid’s excitation energies (eV ) for ic-CASPT2 and CASSCF using

aug-cc-pVDZ (2Z), aug-cc-pVTZ (3Z), aug-cc-pVQZ (4Z) and aug-cc-pV5Z (5Z).

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z

CASSCF 4.809 4.803 4.802 4.803

ic-CASPT2 4.554 4.491 4.484 4.484

To investigate further these effects, the basis set calculations were extended for the

case of picolinic acid. Fig. 6.23 represents the convergence of the excitation energies for

picolinic acid for four basis sets: aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-

pV5Z. The canonical ic-CASPT2 and the CASSCF excitation energies are presented in

159



Table 6.13. In reference (242) a similar analysis is undertaken on tryptophan. Part of

these results (just the plots, no Table) are added to Appendix 8.8.

Table 6.14: Statistical data for excitation energies using thrpno occ = 10−6 and

thrpno occ = 10−8. Data for aug-cc-pVDZ and aug-cc-pVTZ in meV , when applicable.

aug-cc-pVDZ aug-cc-pVTZ

thrpno occ 10−6 10−8 10−6 10−8

avg 4.0 1.7 3.0 2.7

σ 1.1 0.9 1.2 1.4

cv 0.3 0.5 0.4 0.5

min 1.5 0.6 1.7 1.4

MAX 5.8 4.0 6.8 7.2
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Figure 6.23: Convergence excitation energies for picolinic acid using aug-cc-pVDZ (2Z),

aug-cc-pVTZ (3Z), aug-cc-pVQZ (4Z) and aug-cc-pV5Z (5Z) basis sets. thrpno occ ranges

from 10−6 to 10−12. The exception is 5Z, for which the calculation with the smallest of

thrpno occ was not possible.

As Fig. 6.23 shows, if the size of the basis set increases, the relative accuracy of the

calculation with thrpno occ = 10−6 approaches the accuracy of thrpno occ = 10−8. For

160



aug-cc-pVQZ and aug-cc-pV5Z, thrpno occ = 10−6 shows smaller absolute errors in the

excitation energy of picolinic acid than both thrpno occ = 10−7 and thrpno occ = 10−8.

Because the total energy decreases with thrpno occ for all basis sets,5 the relative accuracy

of thrpno occ = 10−6 towards the relative accuracies of both thrpno occ = 10−7 and

thrpno occ = 10−8 can be accounted by error compensation. This error compensation

stems from differences in the convergence curves of Ecorr for different electronic states for

intermediate values of thrpno occ, as previously observed. Ultimately, thrpno occ = 10−7

is the worst value to use for thrpno occ when calculating excitation energies: for larger

basis sets, thrpno occ = 10−7 has the largest error; for aug-cc-pVDZ this threshold is

almost as accurate as the threshold thrpno occ = 10−6. This same trend was also found

for the case of tryptophan.
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Figure 6.24: Relative PNO domain size against−log10(thrpno occ) for picolinic acid. Data

for aug-cc-pVDZ (2Z), aug-cc-pVTZ (3Z), aug-cc-pVQZ (4Z) and aug-cc-pV5Z (5Z).

Next we would like to focus on how the relative domain size changes with the basis

set size. Fig. 6.24 presents the ratio %CanPNO = avg(PNO)
nvirtual

against the negative of the

logarithm of thrpno occ. For the same value of thrpno occ, as the basis set size increases,

%CanPNO decreases. For different basis sets, %CanPNO changes more for intermedi-

ate values of thrpno occ. The values for larger/smaller thrpno occ tend to converge to

5The absolute values for total energies are presented in the supplementary material.
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the same values for all basis sets. These are 0 (empty domains for very large thrpno occ)

and 1 (full domains). We would like furthermore to note that in all cases, when using

thrpno occ = 10−6, LCASPT2 builds PNO domains with about 15-20% of the dimension

of the full canonical virtual space. These relative domain sizes are expected to decrease

with the molecular size and by looking at the case of tryptophan that is indeed verified.

The increase of the domain sizes for thrpno occ = 10−6-10−8 is also relatively flat, espe-

cially for larger basis sets. For tryptophan, a larger molecule, that growth is even less

accentuated. This means that for thrpno occ = 10−8 the PNO domains do not increase

significantly, and still the absolute error in Ecorr decreases by more than half. Since for

thrpno occ = 10−8 Ecorr is practically converged, then the gross of the correlation energy

can be retrieved with PNO domains having about 60 PNOs.
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Figure 6.25: Average %Ecorr against avg(PNO) for aug-cc-pVDZ and def2-tzvp.

thrpno occ ranges from 10−6 to 10−12.

Calculations were also performed to compare the basis sets aug-cc-pVDZ and def2-

tzvp. The exact composition of the sample can be found in Fig. 6.26. Fig. 6.25 presents

the convergence of %Ecorr with the PNO domain size. The respective data is presented

in Tables 8.9 and 8.10, in Appendix 8.8. The results previously obtained when comparing

aug-cc-pVDZ with aug-cc-pVTZ are transposable to the comparison aug-cc-pVDZ-def2-

tzvp. Nevertheless, it should be pointed out that with the basis set def2-tzvp the Ecorr
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converges closer to the canonical energy, differing just by 0.03% upon convergence. For

def2-tzvp the PNO domains are also larger, as expected from a triple-ζ basis set. Other

statistical data agrees well with previous analyses, even though for this particular study

too much relevance to statistical parameters should not be given due to the extremely

reduced size of the sample. Once more, the analysis of absolute errors brings no new

information to this discussion. The respective plots can also be found in Appendix 8.8.
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Figure 6.26: Absolute error on excitation energies (∆E) in eV for thrpno occ = 10−6 (6)

and thrpno occ = 10−8 (8). Comparison between basis setz aug-cc-pVDZ and def2-tzvp.

Finally, Fig. 6.26 presents the errors of these two basis sets in the calculation of

excitation energies using thrpno occ = 10−6 and thrpno occ = 10−8. The respective

statistical data is in Table 6.15. Even though for thrpno occ = 10−6 def2-tzvp is more

accurate than aug-cc-pVDZ, for thrpno occ = 10−8 aug-cc-pVDZ becomes slightly more

accurate with respect to its own canonical excitation energy. Differences amount however

to the range of 0.5 meV , consistent with the comparison between aug-cc-pVDZ and aug-

cc-pVTZ. In both cases, decreasing thrpno occ leads to a decrease in the errors. This is

also in good agreement with previous results, allowing us to conclude that the general

behavior can be extrapolated for the increasing dimension of basis sets. For smaller basis

sets (double-ζ), we recommend using the default thrpno occ = 10−8, since this value offers

clearly better results. thrpno occ = 10−6 provides reasonable results without significant
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loss in accuracy. For triple-ζ bases, thrpno occ = 10−8 still offers a better accuracy, even

though the advantages are not as pronounced as they are for the double-ζ case. For even

larger basis sets there is no advantage in going beyond thrpno occ = 10−6. Note that

these conclusions are only valid for the case of excitation energies.

Table 6.15: Statistical data for excitation energies using thrpno occ = 10−6 and

thrpno occ = 10−8. Data for aug-cc-pVDZ and def2-tzvp in meV , if applicable.

aug-cc-pVDZ def2-tzvp

thrpno occ 10−6 10−8 10−6 10−8

avg 3.5 1.7 2.8 2.1

σ 0.5 0.3 0.6 0.2

cv 0.1 0.2 0.2 0.1

min 3.1 1.2 2.2 1.8

max 4.3 2.1 3.7 2.3

6.5 Multipole Approximation and Larger Cases

Unlike other studies previously presented, the complete sample of molecules at our

disposal is inappropriate to show the effects and consequences of using the Multipole Ap-

proximation (MPA). Using an energy threshold of 1 µEh for the MPA in distant pairs is

equivalent to consider these as being built from orbitals about 10-12 Å apart. For sero-

tonin, using the MPA gives a difference of 60 µEh in Ecorr towards the same calculation

without the MPA. The difference in excitation energy is 20 µeV . For this case, 50 pairs

are treated as distant, which correspond to 14% of the total pairs. For tryptophan, a

molecule just slightly larger, differences of 1 mEh in Ecorr and 2 meV in the excitation

energy are observed. For tryptophan, 17% of the pairs are considered and treated as

distant. We can thus conclude that the sample used in 6.3 is at the border line and no

faithful conclusions can be made. In this section a different approach for the MPA is

taken, using different systems. For these cases, the canonical ic-CASPT2 calculations

were computationally too demanding. Furthermore, only energy differences are going to

be analyzed, not total nor correlation energies. The very distant pair approximation will

not be addressed here since its effects should be similar to the ones of the MPA.

The results for the elimination reaction of the gold complex presented in Fig. 6.9

are given in Table 6.16. The use of the MPA barely affects the final results: differences
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between using the MPA and not using it amount to 0.2 kcal.mol−1. For this case, differ-

ences between different thrpno occ amount to a maximum of 0.1 kcal.mol−1. In terms of

computational savings, the MPA reduces by 35% the number of P2 pairs for the reagent

and by 58% for the product (without MPA there is a total of 7140 P2 pairs). CPU times

are reduced by factors of 2 to 4. One final remark is the size of the PNO domains, which

range between 5% when the MPA is used and 3% when it is not. The fact that the

average PNO domain size increases when the MPA is on can be understood by the fact

that many distant pairs are no longer treated at the CASPT2 level. These pairs have

typically smaller domains and contribute to the decrease of avg(PNO).

Table 6.16: avg(PNO), total energies and reaction energies for the gold system using IBOs

from HF for the closed-shell space.

thrpno occ avg(PNO) EReagent (Eh) EProduct (Eh) ∆E (kcal.mol−1)

CASSCF — 748 -2272.118757 -2272.102876 9.97

I = 2 10−6 23 -2278.729636 -2278.644313 53.54

10−7 24 -2278.740240 -2278.654735 53.65

10−8 26 -2278.745398 -2278.659761 53.74

I = 2, 10−6 32 -2278.728921 -2278.643872 53.37

MPA 10−7 33 -2278.739525 -2278.654295 53.48

10−8 37 -2278.744682 -2278.659320 53.56

Neither the product nor the reagent for this dissociation reaction possess any MR

character. SR theories, like local CC, can reproduce accurately this reaction’s energy

(reference value is 46.96 kcal.mol−1 (265)). The CASSCF coefficients of the references

confirmed furthermore the SR character. Thus, LCASPT2 does not improve the dissoci-

ation energy for this gold complex over other methods. We should however mention that

even though chemically sensible, the active space found is very incomplete. The reaction

energy at the CASSCF level proves itself. Increasing the size of the CAS reference cer-

tainly leads to improved energies. The obvious options to extend the active space are the

carbene ligand and/or more dAu orbitals. Furthermore, the orbitals used are not from

fully optimized CASSCF references. We verified that this also plays a small role in the

calculation of the reaction energies: using fully optimized CAS references for the reagent

and the product reduces the reaction energies by 3 kcal.mol−1, making the result closer

to the reference values.

Table 6.17 resumes the main data collected for the excitation energies of the smaller
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nickel complex presented in Fig. 6.9.

Table 6.17: Excitation energies (∆E, in eV ) and avg(PNO) (for CASSCF the dimension

of the virtual space) for the small nickel complex in Fig. 6.9. Results presented for two

different basis sets, using I = 2, I = 2 with the MPA and I = 1.

Method CASSCF LCASPT2

Domain — I = 2 I = 2,MPA I = 1

thrpno occ — 10−6 10−8 10−6 10−8 10−6 10−8

avg(PNO) (aug-cc-pVDZ) 493 29 31 36 40 34 38

∆E (aug-cc-pVDZ) (eV ) 0.853 2.450 2.455 2.450 2.455 2.450 2.455

avg(PNO) (aug-cc-pVTZ) 1265 49 52 65 69 60 64

∆E (aug-cc-pVTZ) (eV ) 0.853 2.396 2.399 2.396 2.399 2.397 2.398

For this nickel complex the accuracy of LCASPT2 is also barely affected by the use of

the MPA. The largest difference with and without this option is below 0.4 meV for both

basis sets. The total number of P2 pairs is reduced to 57.3% of the original value (4851)

for aug-cc-pVDZ and to 60.4% for aug-cc-pVTZ. By comparing to the case of the gold

complex it is possible to conclude that even though the total number of pairs discarded

changes with the molecular size, savings in CPU time are not so sensible: they are also

around a factor of 2 for cc-pVDZ. As for cc-pVTZ, we observed a reduction of CPU times

to 75% by using the MPA (without the MPA the slowest calculation takes 12400 s).

The conclusions previously taken when comparing different PAO domain sizes are also

confirmed here: the differences between the columns I = 2 and I = 1 are all within 1

meV . Thus, when looking at an excitation energy itself, and not to a plot of absolute

errors, we realize that differences between I = 2 and I = 1 are barely noticeable. However,

CPU times are reduced by a factor of 3 by choosing I = 1.

The two different values of thrpno occ give a difference in excitation energies within

4.7 meV . This difference decreases for smaller PAO domain sizes and larger basis sets.

Furthermore, in the case of this nickel complex, substitution spaces are reduced to 6-7% of

the canonical dimensions, consistent with what was observed for the gold complexes. For

the triple-ζ basis the reduction goes up to 4%. Comparing Table 6.16 with 6.17 confirms

that avg(PNO) is independent of the molecular size, since the values for avg(PNO) barely

change between these two examples.

Finally, we should analyze the results for consistency. Both basis sets yield consistent

results. Differences amount to 55 meV . However, there is some discrepancy between the
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CASPT2 and CASSCF results for both these cases. This means that the active space

might still be incomplete and require some enlargement.

Last, we present the results for the larger nickel complex in Fig. 6.9, up to now the

largest system tested at the LCASPT2 level. Table 6.18 presents absolute energies and

the singlet-triplet splitting for this complex using I = 2 with the MPA and I = 1.

Table 6.18: Absolute energies and singlet-triplet splitting (∆E, in eV ) for the large nickel

complex in Fig. 6.9. Results for CASSCF, DLPNO-NEVPT2 (72) and for LCASPT2

using I = 2 with the MPA and I = 1.

Etriplet (Eh) Esinglet (Eh) ∆E (eV )

CASSCF (72) -6074.799651 -6074.720816 2.145

This work -6074.791411 -6074.707468 2.284

Difference 0.0082 0.0133 —

LCASPT2 I = 2,MPA, 10−6 -6093.822729 -6093.746928 2.063

I = 2,MPA, 10−8 -6093.875157 -6093.799350 2.063

I = 1, 10−6 -6093.758469 -6093.682608 2.064

I = 1, 10−8 -6093.810923 -6093.735026 2.065

DLPNO-NEVPT2 -6093.840776 -6093.768594 1.964

The first result to analyze in this case is the CAS references. In ref. (72) a fully

optimized CAS is used, which for this system takes too long to obtain. On the other hand,

we use a partially optimized CAS reference, where only the active space is optimized at

the CASSCF level. The closed-shell spaces of both states are expressed by the triplet

state’s IBOs. As Table 6.18 shows, this causes barely any effect on the triplet GS: the

difference amounts to 8 meV . For the singlet state the difference increases to 13 meV ,

but it is still nevertheless negligible, especially when the time spent in obtaining the CAS

reference is taken into account (2 to 2.5 hours). Then we should also analyze the singlet-

triplet splitting. LCASPT2 predicts a larger splitting than DLPNO-NEVPT2 does, being

that probably an artifact of the reference function used. Nevertheless, the differences

between methods are very small (100 meV ). Furthermore, all LCASPT2 results are

consistent, even for different values of iext. We note here that we tried to perform this

same calculation with iext = 2 but the memory requirements were very high. As for

the relative sizes of the domains, for the calculations here presented avg(PNO) ranges

between 42 and 53 PNOs. This is about 1.1 to 1.4% of the respective canonical virtual

space (3761), and consistent with the other calculations presented in this section. Finally,
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going to iext = 1 causes the reduction of CPU times to less than 50% of the timings for

iext = 2 with MPA (the longest calculations took 7.6 hours for triplet and 9.5 hours for

the singlet). This also agrees well with the rest of the results in this section. But the

reduction of the number of pairs is for this case even larger than the cases before. With

the MPA 66% of the pairs are treated as being distant (total of 42195 P2 pairs). This

result is in good agreement with the asymptotic linear scaling for the number of pairs we

expect for the LCASPT2 theory.

6.6 Scaling
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Figure 6.27: CPU timings for all the alkyl substituted benzenes. Ref stands for the calcu-

lation of the reference (CASSCF) and Can stands for ic-CASPT2. All other calculations

are performed with LCASPT2. I = 2 is the short for iext = 2, I = 1 is the short for

iext = 1 and the numbers 6 and 8 are the result of −log10(thrpno occ).

The present section analyzes the scaling of LCASPT2’s computational costs with the

molecular size. Fig. 6.27 plots CPU timings against the size of the alkyl chain for alkyl

benzenes. Times are plotted for the full optimization of the reference, ic-CASPT2 and

LCASPT2. Both thrpno occ = 10−6 and thrpno occ = 10−8 are used for the default PAO

domain option (I = 2), for I = 2 with MPA and for I = 1. For each of these curves
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two types of functions were fitted: a polynomial (ax3 + bx2 + cx + d); a power function

(exf + g). While the former was obtained using Microsoft Excel’s curve fitting function,

demanding always that R2 is at least 0.99, the latter was derived by least squares. The

first approximation in the least squares fit were the polynomials from Microsoft Excel

truncated to the last exponent and the constant. Table 6.19 present the best fit functions

for ic-CASPT2 and for LCASPT2.

Table 6.19: Polynomials and power functions fitted to the scalings from Fig. 6.27.

Method ax3 + bx2 + cx+ d exf + g

ic-CASPT2 — a = 5, b = −36, c = 189, d = −31 e = 4.7, f = 2.86, g = 30.5

LCASPT2 10−6 a = 0.0, b = 4.3, c = 36.6, d = 28.9 e = 4.3, f = 2.49, g = 29.0

I = 2 10−8 a = 0.0, b = 4.3, c = 40.0, d = 45.1 e = 3.5, f = 2.63, g = 43.3

LCASPT2 10−6 a = 0.0, b = 0.0, c = 47.6, d = 37.6 e = 48.1, f = 1.01, g = 37.7

I = 2,MPA 10−8 a = 0.0, b = 0.0, c = 49.5, d = 57.5 e = 50.0, f = 1.02, g = 57.7

LCASPT2 10−6 a = 0.0, b = 0.0, c = 25.1, d = 45.5 e = 25.5, f = 1.03, g = 45.8

I = 1 10−8 a = 0.0, b = 0.0, c = 26.6, d = 64.5 e = 27.1, f = 1.03, g = 65.2

Both the optimization of the reference and the ic-CASPT2 calculation show scalings

with higher powers of the molecular size. For ic-CASPT2 a cubic polynomial and a

power function with exponent close to 3 were fitted. It is to expect that asymptotically

ic-CASPT2 scales with the 5th power of the molecular size. The difference between the

expected and observed scalings is surely due to the restriction to small molecules. The

optimization of the reference seems to scale with an even higher power of the molecular

size and with a larger pre-factor. This leads us to point to the fact that the possible future

applicability of LCASPT2 is going to depend on possible work to reduce the computational

cost of the full optimization of CASSCF references. Even though approximations like the

ones used in the section 6.5 made CASPT2 calculations on larger molecules possible,

a critic eye and caution are always needed when looking at the results. Reducing the

computational costs of CASSCF calculations is then of utmost importance.

As for the LCASPT2 calculations, we should start by noticing that using thrpno occ =

10−6 or thrpno occ = 10−8 leads to both similar scalings and CPU times. In fact, the

difference in CPU times goes from 40 to 60 seconds for the largest case here studied

(n = 15). The extra cost is of at most 10%. Of course that for very large systems

this difference increases, but probably it will still not be significant enough. This is a

consequence of the slow increase of the domain sizes with thrpno occ, as seen for picolinic
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acid in section 6.4. Furthermore, for I = 2 no linear scaling is observed. The scaling goes

even with a quadratic polynomial or with a power function with exponent of approximately

2.5. This behavior is expected, since no pair approximations are playing a role in the

calculations. For the case I = 2 with the MPA, up to n-hexylbenzene the respective

curve of CPU timings with the molecular size seems to follow a second degree polynomial.

However, this behavior is rather smooth. From n-heptylbenzene this curve changes to a

straight-line equation. We note that both fits performed were to the whole set of points

and still we were able to obtain a coefficient of determination of at least 0.99. This shows

that if there is a quadratic character in these curves, it has barely any weight on the whole

curve: the behavior is dominantly linear. Finally, there is the case of I = 1, which seems

to be described by two straight-line equations, one from benzene up to n-hexylbenzene,

the other from n-heptylbenzene on. These results are justified by both the MPA (used

also for this case) and the reduced PAO domain sizes. The latter are so restrictive on

substitution spaces that the quadratic behavior becomes very smooth. Finally, with the

current implementations, LCASPT2 is always faster than the parent canonical method.

It can thus be stated that the borderline for which LCASPT2 and ic-CASPT2 have the

same computational time cost is below the molecular size of benzene, if it exists. To be

entirely fair, it should be pointed out again that the algorithm for ic-CASPT2 was not

optimized in the way that LCASPT2 was.

Fig. 6.28 plots the CPU times for increasing sizes of the chain connecting the two

thiophene radical cations. Appendix 8.9 presents a zoom-in of Fig. 6.28 for the region

0 to 60 seconds. These calculations involve only the GS of these chain molecules. All

calculations were performed using iext = 1, thrpno occ = 10−8 and thrdist = 10−6 Eh.

The advantage of the bithiophene chains is that larger ranges of molecular sizes are

reached when studying the scaling behavior of LCASPT2. Indeed, the conclusions taken

from the alkyl benzenes example can be extrapolated for the case of the bithiophene

chains. There are also two scaling behaviors, one for small enough systems, for which

pair approximations play a minor role, and another for larger systems, for which pair

approximations efficiently reduce the computational costs. Thus, up to 182 atoms and

2508 basis functions LCASPT2 shows the asymptotic linear scaling behavior.

Fig. 6.28 still represents the time costs of some parts of our code. We can verify that

the CPU time spent in generating PNOs is negligible when compared to the calculation of

the exchange integrals or the total CPU time spent in LITF. From the scaling behavior up

to n = 50, the generation of PNOs should never be a bottleneck in LCASPT2 calculations.

In this range of molecular sizes, LCASPT2 spends the most of CPU time in LITF, even
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though at some point the calculation of integrals should become as ”expensive” as LITF,

or even more expensive. We note that LITF CPU times include not only the solving of

residual matrices, which depend on the number of iterations, but also the calculation of

all necessary intermediates, overlap matrices, etc..

The most expensive individual step in LCASPT2 is however the calculation of inte-

grals. We can still verify that the main effect of pair approximations is in the calculation

of integrals, since LITF does not show the two types of behavior for small and larger

molecular sizes. This can be easily understood by realizing that LITF spends a signifi-

cant percentage of CPU time calculating intermediates and other quantities, not in solving

the residuals for groups of configuration subspaces. For the largest chain example, LITF

spends 49 s solving all residual equations, which corresponds to 12% of the total CPU

required by LITF. Both the total LITF CPU times and the solving of the residuals scale

linearly with the molecular size. More detail can be seen in the Fig. from Appendix 8.9.
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Figure 6.28: CPU timings for the bithiophene chains. K Int stands for the calculation of

the exchange integrals, PNO Gen for the algorithm to generate PNOs and Res for the

algorithms to solve the residual equations for groups of configuration subspaces.

Finally, we should look at Fig. 6.29, which shows how memory requirements of

LCASPT2 increase with the molecular size. Using least squares a power function de-

pending on the 1.1 power of the molecular size was found. We can thus conclude that
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the LCASPT2 method implemented shows asymptotic linear scaling in CPU times and

an almost linear scaling in memory demands.
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Figure 6.29: Memory usage in GB for the bithiophene chains using LCASPT2s.

6.7 Potential Energy Surfaces

This section presents and discusses the behavior of LCASPT2 in the description of

PESs. The examples chosen can be easily calculated on a current personal computer,

and the gaining in CPU timings when using LCASPT2 is surely not significant. However,

these examples show how accurately the method behaves with respect to ic-CASPT2 for a

wide range of geometries and in the application to conceptually more complex problems.

A PES is an electronic energy profile function of certain geometry changes. It provides

an electronic potential on which the nuclei of a molecule will move. Variables can be bond

distances and/or changes in the angles between three or four atoms. A PES plots how

processes (e.g. reactions) are undertaken and which structures are possible for a certain

combination of atoms (stable isomers, tautomers, conformations).

Fig. 6.30 presents the PES for the first singlet and triplet electronic states of ethylene

(ethene). Both states follow the surface optimized for the singlet GS. In this PES the

carbon-carbon bond distance changes by 0.025 Å, from 0.919 to 3.269 Å. All the energies

here presented are relative to the minimum in the S0 surface calculated with ic-CASPT2.
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This is the zero for all curves. The same PESs calculated with LCASPT2 are presented

also for thrpno occ = 10−6 and for thrpno occ = 10−8. As can be seen, the LCASPT2

PESs follow closely the respective canonical curves. The LCASPT2 errors at the minimum

of the S0 surface are of 0.3 mEh for thrpno occ = 10−8 and 0.8 mEh for thrpno occ = 10−6.

At the same point but in the triplet surface both errors are larger by 0.1 mEh. These

errors are negligible and cannot be seen macroscopically on the PESs. However, orbital

or pair domains typically change for different geometries (213, 357, 406). Consequently,

the dimensions of the substitution spaces for a given orbital pair differ, even if the two

geometries have the same pair lists. Hence, PESs calculated with local methods are

not microscopically smooth. Microscopically, the errors of LCASPT2 with respect to ic-

CASPT2 do not differ much from the errors already given. An average error of 0.79 mEh

was found for thrpno occ = 10−6 and of 0.31 mEh for thrpno occ = 10−8. The maximum

errors are relatively close to average errors, staying at 1.04 mEh for thrpno occ = 10−6

and 0.58 mEh for thrpno occ = 10−8. Both maxima occurred in the triplet PES. We can

thus verify that both the accuracy and consistency of LCASPT2 are in average valid in

any point in a PES, yielding macro- and microscopically consistent results.

Local PNO methods retrieve a certain amount of the Ecorr according to the number

of PNOs used for each pair. This depends both on cut-off thresholds and on the spectrum

of occupation numbers. Since PNO transformation matrices depend on pair amplitudes,

which change with the geometry, then the PNO-transformation matrices depend also on

the geometry of a molecule. It is thus to expect variability in avg(PNO) with geometrical

changes. These changes should in principle not be abrupt. P
V

= avg(PNO)
nvirtual

shows how

the number of PNOs change along the ethylene PES. For most regions of the PES P
V

oscillates around a given value, consistent with the expected behavior. There might be

tendencies on a larger scale, but in small scales P
V

just fluctuates. We see however that

for certain parts of the PES there are some jumps in P
V

. An example is when the singlet

and the triplet states become degenerate at 2.119 Å. These jumps can happen if there are

significant changes in the zeroth-iteration pair amplitudes, which in turn occur if the main

composition of the reference is also changed (both in the orbitals or in the contribution of

reference configurations). Just like the example given above, it might also be that other

electronic state(s) become(s) degenerate with one of the states of interest around these

jumps in the dimension of substitution spaces. Even though these details were not deeply

investigated, as the results show, the quality of PESs is not affected. Nevertheless, these

jumps cannot arise from PAO domains since these are full for the whole PES.
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Figure 6.30: PES for the CC stretching in ethylene using ic-CASPT2 and LCASPT2 (6

stands for thrpno occ = 10−6 and 8 for thrpno occ = 10−8). Separate calculations on the

singlet GS (S0) and the first triplet (T0). All plots presented by subtracting the minimum

energy in the canonical S0 PES. The last curve (P
V

) presents the ratio avg(PNO)
nvirtual

.

Finally, these results should be compared with the literature. Table 6.20 presents some

energies taken from the PES of ethylene and the respective experimental values.

Table 6.20: Main energies from the ethylene PES and the respective experimental values.

Vertical S-T is the vertical transition from the minimum in the singlet GS to the triplet

PES. Vertical T-S is the same difference but from the triplet PES to the GS, dissociation

S is the dissociation energy for the singlet state and the Adiabatic S-T is the energy

difference between the minima in both PESs. Corrected calculated values inside ().

Calculated Experimental

Vertical S-T (eV ) 4.57 (—) 4.6 (407), 4.51 (408)

Vertical T-S (eV ) 2.90 (0.06) —

Adiabatic S-T (eV ) 3.57 (2.78) 2.52 (409)

Dissociation S (eV ) 7.40 (—) 7.55 (410), 7.52 (411)

Dissociation T (eV ) 3.82 (4.61) —

The vertical excitation energy taken from our PESs for the singlet-triplet excitation
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energy is in very good agreement with the experimental values. The difference goes

up to 0.06 eV for the values presented. The singlet state dissociation also agrees with

the experimental values and also with other theoretical results (42). The experimental

adiabatic excitation energy agrees reasonably well with other theoretical investigations

(2.92 eV with the zero point energy correction (408)), but not with ours. The problem in

the adiabatic energy difference we calculated lies in the fact that the absolute minimum

in the triplet PES is not represented by any of the geometries considered. Therefore,

the triplet dissociation energy calculated cannot be reasonable either. We decided thus

to optimize the absolute minimum in the triplet PES to recalculate some quantities in

Table 6.20. Using the optimized triplet geometry, which alike the singlet GS ethylene

is not planar (each methylene is in its own plane, orthogonal to each other), new values

were calculated for energies. These are inside () in Table 6.20. The new Adiabatic S-T

energy difference is in much better agreement with the experimental value. Using the

zero point energy of ethylene (0.14 eV (408)) we obtain an adiabatic excitation energy

0.12 eV apart from the experimental value (2.8 kcal.mol−1). With the correct minimum

in the triplet PES the Vertical T-S splitting was also recalculated, which is just slightly

more than 1 kcal.mol−1 (0.06 eV ). Hence, at the minimum of the triplet well both the

triplet and the singlet states are expected to be degenerate. For the dissociation of the

triplet we found no value to compare to. But since the dissociation products should have

a geometry similar to the dissociation products of the singlet state, we can also conclude

we have a reasonable estimation for this dissociation energy.

Finally there is still the case of hexatriene’s cis-trans isomerization. Like any other

example here presented, LCASPT2’s Ecorr converged towards the respective canonical

energies. However, even for this small molecule the converged LCASPT2 Ecorr corre-

sponded to 99.96% of the canonical correlation energy using the default PAO domain

sizes. Excitation energies however, converged fully to the canonical result. For the de-

fault thrpno occ = 10−8 absolute errors of 1.7 meV were observed.

Fig. 6.31 presents the reduction to one coordinate of the PESs for the cis-trans iso-

merization of hexatriene. We represent the S0 and S1 states. Table 6.21 compiles some

relevant energies calculated from these PESs. It is known that the PES for the cis-trans

isomerization of double bonds depends at least on two geometry coordinates: the distance

between the two atoms forming the double bond; a dihedral angle involving those two

atoms and bonded atoms from the largest substituents. In the case of hexatriene the

two main geometry coordinates are the CC bond between carbons 3 and 4 (the middle

carbons) and the dihedral angle formed by carbons 2, 3, 4 and 5 (middle carbons plus
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the two adjacent carbons). Since only 8 points in each electronic state’s PES were calcu-

lated, we opted for representing these two coordinates in just one variable. This variable

is not accurate but chosen to represent in a chemical sensible way the process taking

place. Therefore the abscissa is omitted in Fig. 6.31. Only structures along the bond flip

pathway were considered, which consists in the rotation of one of the carbons along the

middle bond axis.
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Figure 6.31: Reduction to one coordinate of the PES for the cis-trans isomerization of

hexatriene. Results presented for the first two singlet electronic states, S0 and S1, for two

values of thrpno occ, 10−8 (8) and 10−12 (12).

The structures optimized are (from left to right, only the points with structure next

to them in Fig. 6.31): cis-hexatriene in the GS; cis-hexatriene in the ES; minimum in the

ES PES; trans-hexatriene in the ES; trans-hexatriene in the GS. Both the cis and trans

isomers in the S1 PES have mostly a diradical character as showed in Fig. 6.31. The

vertical excitation energies calculated are in good agreement with previously calculated

excitation energies (412). But the vertical deexcitation energies calculated are significantly

below the ones reported in (412) (approximately by 1 eV ). There are however no CASPT2

nor experimental results for the deexcitation energies to compare to. The minimum in

the S1 PES corresponds to the commonly known phantom state. We will refer from here

on to this state as being the phantom isomer, in analogy to cis and trans isomers. In this
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structure, one of the middle carbons (say carbon 3) showed a pyramidal geometry. The

other carbon (4) still remained planar though. The dihedral angle between carbons 2,

3, 4 and 5 is of 99o. The structure of a Conical Intersection (C.I.) close to the phantom

isomer was also optimized. As expected, the C.I. is geometrically close to the phantom

isomer, with a dihedral angle of 97o. This dihedral angle differs by 20o from literature

results (382). This does not mean that our results are inconsistent with the literature.

First of all, different basis sets and optimization algorithms were used. But perhaps even

more relevant is the fact that the region around the phantom isomer in these PESs is very

flat. And not only is the C.I. geometrically close to the phantom isomer, these structures

are also in the energetic proximity of each other: the phantom isomer is more stable by

0.16 eV (3.69 kcal.mol−1) than the C.I.. The magnitude of this energy difference also

agrees well with the values for other related systems (413). We should still mention the

fact that the geometry found in (382) for the C.I. also showed the pyramidal C3 - planar

C4 type of structure found for the phantom structure and the C.I..

Table 6.21: Main energies (eV) taken from the hexatriene PES for both the cis and trans

hexatriene. V. (De)Exc. stands for vertical (de)excitation energy, A. Exc. stands for

adiabatic excitation energy, Phan. (S1) is the energetic distance towards the phantom

geometry, C.I. the energetic distance to the C.I. and Ea stands for the activation energy.

V. Exc. A. Exc. V. Deexc. Phan. (S1) C.I. Ea

cis 5.00 4.14 3.28 0.11 0.05 0.07

trans 5.05 4.67 3.13 0.58 0.42 0.22

We found also two Transition States (TSs) converting the cis and trans isomers into

the C.I.. The TSs found had dihedral angles of 101o (trans) and 27o (cis). The cis TS

here optimized differs also by 25-30o with respect to the literature results (382) and our

optimized TS occurs earlier. The respective activation energy is in our case also lower (0.07

and 0.22 eV instead of 0.27 and 0.38 eV ). However, as pointed out in reference (382), the

activation energies in these systems are very small and sensitive to the basis set size. The

activation energies there published are known to be above the experimental values. The

authors furthermore remark that larger basis sets shift the cis TS towards the respective

reagent, meaning the cis isomer in the S1 PES.
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7. Conclusions

In this work a local variant of CASPT2 using both PNOs and PAOs was developed and

implemented. At this moment this program is implemented in the development version

of MOLPRO (284, 362). The method was named PNO-PAO Local Complete Active Space

2nd-order Perturbation Theory (LCASPT2).

All the configuration subspaces used to express the correlated wavefunction are spanned

using ICCs. Contravariant, singlet-triplet and covariant configurations are used according

to what is most advantageous to simplify the residual equations and their structure for

each configuration subspace. Closed-shell spaces are localized using the IBO scheme (173).

IBOs are also used for the active space to help building PAO domains for active orbitals.

However, with the orthogonalization of configuration subspaces the localization of the

active space is no longer used. Unlike other localization schemes, IBOs yield very sta-

ble orbital charges, which build stable PAO domains. PAOs are built and used to span

the substitution spaces of all pairs and singles (internals have no virtual orbitals in their

substitution spaces). Domains of PAOs are built for each closed-shell orbital. For active

orbitals, a single domain is assembled in order to achieve invariance for the respective

PAO domain. This is important since we require orthogonal configuration subspaces to

build PNOs. Using pair amplitudes in the PAO and orthogonal configuration bases, PNOs

are generated for all types of pairs. Projection to the PNO basis is used for all pairs and

also for S2 configurations. The other configuration subspaces in the singles (S1 and S0)

are left in the PAO basis. The orthogonal configuration basis is required to build PNOs

because these require a uniquely defined set of configurations. Furthermore, solving the

residual equations in MR theories requires the use of the perturbational update of ampli-

tudes. PAOs are used as an intermediate stage before generating PNOs, which allows a

significant reduction of the scaling to generate PNOs.

With this implementation, domain approximations take place at two stages: at the

PAO level; at the PNO level. We explored the influence of the PAO domain sizes to verify

that ideally the primary domains should be extended by adding two neighboring shells of

atoms (iext = 2). We made these the default PAO domain sizes. With these domains, the

average error in the calculation of excitation energies lies around 5 meV . Using just one

neighboring layer (iext = 1) might be used for larger molecules. This does not lead to a

significant loss in accuracy: the average error in excitation energies is 1-2 meV larger; for

reaction energies, differences to the default option are below 1 kcal.mol−1. Computational
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times are significantly reduced by using iext = 1: 30% of the times for the default option.

Besides the average error increasing, the drawback for this option is that the distribution

of errors is not as uniform and consistent.

We observed that using a threshold of 10−8 for the PNO occupation numbers yields

the most accurate and consistent results for double- and triple-ζ basis sets. This threshold

is thrpno occ, and with thrpno occ = 10−8 the accuracy is about 99.9% for the recovery of

the correlation energy. Using this threshold there is an average of 60 PNOs per orbital pair.

Domain sizes decrease for larger molecules. thrpno occ = 10−6 (ca. 50 PNOs per pair)

yields also accurate and consistent results for those basis sets, if an energy consistency

criterion is used to build the PNO domains. For those conditions and larger basis sets,

thrpno occ = 10−6 actually surpassed the accuracy of thrpno occ = 10−8. These are

however two cases and not a larger and more significant study. Since the computational

time cost for both options is equivalent, thrpno occ = 10−8 is our default option. The

energy completion threshold is on by default because it balances all pair energies.

Pair approximations were also implemented in LCASPT2. Distant and very distant

pairs are distinguished from normal pairs. Exchange integrals associated to distant pairs

are evaluated using the Multipole Approximation (MPA). This leads to a significant cut of

the computational effort. It also reduces to linear the scaling of the number of pairs with

the molecular size. In terms of energy differences, the MPA barely has any visible effect:

for reaction energies the error here found is of 0.2 kcal.mol−1; for excitation energies the

error is around the meV . It was verified however that CPU times are reduced usually by

a factor of 40 − 50%. For systems composed by many fragments the saving can be even

more pronounced (75% for two separated fragments). Very distant pair approximations

were not studied, but due to the similar implementation, we assume they behave like in

other methods implemented in our institute.

Using domain and pair approximations, the implemented LCASPT2 showed asymp-

totical linear scaling behavior. In our studies, the linear scaling behavior begins early,

already with systems with 33 atoms. If pair approximations are not used, the method

will show a scaling behavior between quadratic and cubic.

Up to this date, the largest system studied with LCASPT2 was the singlet-triplet

splitting of a nickel complex with more than 230 atoms and with 4175 basis functions. In

reference (242) we present other examples of large systems. The bottleneck we found in

our calculations was not at the CASPT2 level anymore, but rather in the optimization of

the reference wavefunction. In our calculations we spent indeed a large amount of the time

optimizing the CASSCF references. However, for some studies a fully optimized CASSCF
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reference is not required. This simplifies getting the reference and extends significantly the

applicability of CASPT2. We can safely state that if a reasonable CASSCF reference is

possible to calculate, then also a treatment of dynamic correlation effects at the CASPT2

level using LCASPT2 is.
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8. Appendix

8.1 P2 Residuals using different types of Configura-

tions

P2 residuals in the canonical virtual and orthogonal configuration bases with con-

travariant P2 configurations
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configurations for P2, P1 and S2
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8.2 α, β, σ, and ρ Coupling terms in Residuals

α terms:

α(p)
w (D1, D0) =

1

2

∑
tuv

T
(p)
tu,D0

S
(p)
tu,vwTvD1

αAv (S2, S1) = 2TvS2σ(S1)−
∑
t

TtS2D
(1)
tv TS1

−
∑
tu

TtS2D
(1)
uv Tut,S1 +

∑
tuw

TtS2

[
D̃

(2)
wv,utT

′

uw,S1
−D(2)

wu,vtTuw,S1

]
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D̃
(2)
tu,vw =

1

3

(
2D

(2)
tv,uw +D

(2)
tw,uv

)
αBv (S2, S1) =

∑
tu

TtS2

[∑
w

D
(2)
vw,utT

′

uw,S1
−D(1)

uv T
′

ut,S1

]

αCt (S1, S2) = 4XS1TtS2 −
∑
uv

(
2Tvu,S1 − T

′

vu,S1

)
D

(1)
tv TuS2

+2
∑
u

TS1

(
SS2
)
tu
TuS2 −

∑
uvw

(
2Twu,S1 − T

′

wu,S1

)
D

(2)
tv,uwTvS2

αDt (S1, S2) = 2XS1TtS2 −
∑
uv

(
2T
′

vu,S1
− Tvu,S1

)
D

(1)
tv TuS2

+
∑
u

TS1

(
SS2
)
tu
TuS2 −

∑
uvw

Twu,S1D
(2)
tv,uwTvS2 −

∑
uvw

T
′

vu,S1
D

(2)
tv,uwTwS2

β terms:

βBv (D1, S1) =
∑
tu

TtD1D
(1)
tu T

′

uv,S1
−
∑
tuw

TtD1D̃
(2)
tw,uvT

′

uw,S1

βAv (D1, S1) =
∑
tu

TtD1D
(1)
tu Tuv,S1 +

∑
t

TtD1D
(1)
tv TS1

+
∑
tuw

TtD1D
(2)
tv,wuTuw,S1 −

∑
tuw

TtD1D̃
(2)
tw,vuT

′

uw,S1

β(p)
w (S2, I2) =

1

2

∑
tuv

TtS2

(
SI2p

)
tw,vu

T
(p)
uv,I2

βCv (S1, D1) =
∑
tu

(
2Ttv,S1 − T

′

tv,S1

)
D

(1)
tu TuD1

+2
∑
t

TS1D
(1)
tv TtD1 +

∑
tuw

(
2Ttu,S1 − T

′

tu,S1

)
D

(2)
tu,vwTwD1

βDv (S1, D1) =
∑
tu

(
2T
′

tv,S1
− Ttv,S1

)
D

(1)
tu TuD1 −

∑
t

TS1D
(1)
tv TtD1

−
∑
tuw

Ttu,S1D
(2)
tu,vwTwD1 −

∑
tuw

T
′

tu,S1
D

(2)
tw,vuTwD1

σ terms:

σ (S1) = (XS1 + TS1)

ρ terms:

ρtvu (D1) =
∑
w

D
(2)
tv,uwTwD1

ρ(p)
wvxz (D0) =

∑
tu

T
(p)
tu,D0

(
SS0
)
tuw,vxz

ρtuv (S2) = 2TtS2D
(1)
uv − TuS2D

(1)
tv −

∑
w

D
(2)
tw,uvTwS2
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ρvwxz (S1) = TS1D
(2)
zv,xw −

∑
t

(
2T
′

tx,S1
− Ttx,S1

)
D

(2)
tw,zv +

∑
t

T
′

tz,S1
D

(2)
tw,xv

+
∑
t

Ttz,S1D
(2)
tv,xw +

∑
tu

T
′

tu,S1
D

(3)
tw,xu,zv +

∑
tu

Ttu,S1D
(3)
tu,zv,xw

ρ
(p)
tuvw (I2) = 2 (2− p)T (p)

tw,I2
D(1)
vu − (2− p)T (p)

uw,I2
D

(1)
tv − (2− p)T (p)

tu,I2
D(1)
vw

− (2− p)
∑
x

T
(p)
xw,I2

D
(2)
tx,uv − (2− p)

∑
x

T
(p)
tx,I2

D(2)
wx,uv +

∑
x

T
(p)
xu,I2

(
S(p)
)
tw,xv

+
1

2

∑
xz

T
(p)
xz,I2

(
D

(3)
tx,wz,uv + pD

(3)
tz,wx,uv

)

8.3 Tables Simulation

Table 8.1: %Ecorr against avg(PNO) and the respective values for thrPNOocc for cy-

clobutadiene. Comparison between converged ST PNOs, EndPNO ST, zero-iteration ST

PNOs, IniPNO ST, and zero-iteration S,T PNOs, IniPNO S,T.

EndPNO ST IniPNO S,T IniPNO ST

thrPNOocc avg(PNO) %Ecorr avg(PNO) %Ecorr avg(PNO) %Ecorr

10−5 8 96.58 — — 10 97.34

10−6 18 99.38 10 98.93 19 99.37

10−7 33 99.88 19 99.60 31 99.83

10−8 53 99.97 31 99.85 46 99.94

10−9 73 99.99 46 99.95 63 99.98

10−10 89 100.00 61 99.98 80 99.99

10−11 112 100.00 112 100.00 112 100.00

10−12 112 100.00 112 100.00 112 100.00
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Table 8.2: Absolute error in eV for the excitation energy of Pyrrole, ∆E, against

avg(PNO), for many values of thrPNOocc. Comparison between converged ST PNOs,

EndPNO, and zero-iteration ST PNOs, IniPNO.

IniPNO EndPNO

Threshold avg(PNO) ∆E avg(PNO) ∆E

10−5 8 0.3251 8 0.2753

10−6 18 0.0535 19 0.0427

10−7 37 0.0014 40 0.0037

10−8 64 0.0027 68 0.0003

10−9 94 0.0014 101 0.0004

10−10 127 0.0006 133 0.0002

10−11 175 0.0000 175 0.0000

10−12 175 0.0000 175 0.0000

8.4 Schematic Representation of the Active Spaces

used for the many Families of Molecules

The scheme for the active spaces for the many groups of molecules is presented below.

Azulene Benzene Biphenyl Naphthalene

Figure 8.1: Scheme of the active space used for the family of aromatics.
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N
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N
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Figure 8.2: Scheme of the active space used for the family of ”other” molecules.
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Figure 8.3: Scheme of the active space used for the family of catechols.
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Figure 8.4: Scheme of the active 1 space used for the family of pyridines.
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Figure 8.5: Scheme of the active 2 space used for the family of pyridines.
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Figure 8.6: Scheme of the active space used for the family of pyrrole-indoles.
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O

Acrolein Butadiene Carbene Carbene2

Cyclobutadiene cis-Hexatriene trans-Hexatriene

Figure 8.7: Scheme of the active space used for the family of small molecules.

O

VinylCy-
Pentene

2VinylCy-
Pentene

Vinyl2Cy-
Pentene

2Vinyl2Cy-
Pentene

2Vinyl2H-
Furan

Figure 8.8: Scheme of the active space used for the family of ”reaction” molecules.

S
S

O
O

S

O
O

S

O
O

S

O
O

Thiophene 2Me2H-
ThienoDioxine

2Me(ene)4H-
ThienoDioxine

2Me4H2-
ThienoDioxine

Figure 8.9: Scheme of the active space used for the family of thiophenes.

8.5 The Active Orbitals for the Family of ”Reaction”

Molecules

The optimized active orbitals for the family of reaction molecules are presented next.
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Figure 8.10: Active orbitals for VinylCyPentene.

Figure 8.11: Active orbitals for 2VinylCyPentene.

Figure 8.12: Active orbitals for Vinyl2CyPentene.

Figure 8.13: Active orbitals for 2Vinyl2CyPentene.
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Figure 8.14: Active orbitals for 2Vinyl2HFuran.

8.6 Complementary Data Orbital Domains Results

Table 8.3: Average %Ecorr and the respective statistical data for I = 1 and I = 2, RA.

σ multiplied by 100, cv multiplied by 104.

I = 1 I = 2, RA

State thrpno occ %Ecorr σ cv min MAX %Ecorr σ cv min MAX

GS 10−6 99.30 10.7 10.7 99.05 99.47 99.61 4.7 4.7 99.53 99.69

10−7 99.47 10.4 10.5 99.22 99.64 99.78 4.3 4.3 99.70 99.86

10−8 99.54 10.6 10.6 99.30 99.71 99.86 4.4 4.4 99.78 99.93

10−9 99.57 10.4 10.4 99.33 99.73 99.89 4.3 4.3 99.81 99.95

10−10 99.58 10.3 10.4 99.34 99.74 99.90 4.2 4.2 99.82 99.96

10−11 99.58 10.3 10.4 99.35 99.74 99.90 4.2 4.2 99.83 99.96

10−12 99.58 10.3 10.4 99.35 99.74 99.90 4.2 4.2 99.83 99.96

ES 10−6 99.30 10.7 10.7 99.04 99.47 99.61 4.6 4.7 99.51 99.68

10−7 99.46 10.4 10.5 99.21 99.64 99.77 4.3 4.3 99.69 99.85

10−8 99.54 10.7 10.7 99.29 99.71 99.85 4.5 4.5 99.77 99.93

10−9 99.57 10.6 10.6 99.33 99.74 99.88 4.4 4.4 99.81 99.95

10−10 99.58 10.5 10.6 99.34 99.74 99.89 4.4 4.4 99.82 99.96

10−11 99.58 10.5 10.5 99.34 99.74 99.90 4.4 4.4 99.82 99.96

10−12 99.58 10.5 10.6 99.35 99.75 99.90 4.4 4.4 99.83 99.96
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Table 8.4: Average %Ecorr and the respective statistical data for I = 0 PAO domains

and the data without the energy completion criterion (off). σ multiplied by 100, cv

multiplied by 104.

I = 0 off

State thrpno occ %Ecorr σ cv min MAX %Ecorr σ cv min MAX

GS 10−6 97.91 35.3 36.0 96.84 98.51 98.91 8.8 8.9 98.75 99.10

10−7 98.07 35.0 35.7 96.99 98.67 99.68 4.9 4.9 99.59 99.78

10−8 98.13 35.1 35.7 97.06 98.73 99.85 3.9 3.9 99.78 99.92

10−9 98.15 35.0 35.6 97.08 98.75 99.90 3.6 3.6 99.83 99.95

10−10 98.16 35.0 35.6 97.09 98.75 99.91 3.5 3.5 99.84 99.96

10−11 98.16 35.0 35.6 97.09 98.75 99.91 3.5 3.5 99.84 99.96

10−12 98.16 35.0 35.6 97.09 98.76 99.91 3.5 3.5 99.84 99.96

ES 10−6 97.91 35.5 36.2 96.82 98.52 98.86 9.3 9.4 98.64 99.07

10−7 98.06 35.3 36.0 96.98 98.67 99.67 4.8 4.8 99.59 99.77

10−8 98.13 35.4 36.1 97.05 98.74 99.85 3.9 3.9 99.77 99.92

10−9 98.16 35.4 36.0 97.08 98.76 99.89 3.6 3.6 99.82 99.95

10−10 98.16 35.4 36.0 97.08 98.77 99.90 3.5 3.5 99.84 99.96

10−11 98.16 35.4 36.0 97.09 98.77 99.91 3.5 3.5 99.84 99.96

10−12 98.16 35.4 36.1 97.09 98.77 99.91 3.5 3.5 99.84 99.96
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Table 8.5: avg(PNO) and the respective statistical data for I = 1 and I = 2, RA.

I = 1 I = 2, RA

State thrpno occ avg(PNO) σ cv min MAX avg(PNO) σ cv min MAX

GS 10−6 48 3 0.06 43 55 50 3 0.05 45 56

10−7 51 3 0.06 46 58 53 3 0.05 49 59

10−8 61 5 0.08 53 70 63 4 0.06 56 71

10−9 81 7 0.09 69 93 83 6 0.07 73 94

10−10 110 9 0.08 94 126 115 8 0.07 100 130

10−11 142 11 0.08 126 163 153 10 0.07 136 173

10−12 205 19 0.09 177 258 252 27 0.11 200 296

ES 10−6 48 3 0.06 44 56 50 3 0.06 44 57

10−7 51 3 0.06 46 59 53 3 0.05 49 60

10−8 63 5 0.08 55 72 65 4 0.07 58 74

10−9 85 8 0.09 73 99 88 7 0.08 76 101

10−10 116 10 0.08 99 134 121 9 0.07 105 137

10−11 148 11 0.07 133 170 159 11 0.07 141 178

10−12 205 19 0.09 177 258 252 27 0.11 200 296
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Table 8.6: avg(PNO) and the respective statistical data for I = 0 and off , i.e., without

the energy completion threshold.

off full

State thrpno occ avg(PNO) σ cv min MAX avg(PNO) σ cv min MAX

GS 10−6 42 4 0.09 34 51 14 2 0.14 10 17

10−7 45 4 0.09 36 54 27 4 0.13 21 33

10−8 54 6 0.11 42 64 49 6 0.11 38 57

10−9 70 9 0.12 54 84 78 7 0.09 63 90

10−10 90 11 0.13 69 110 115 9 0.08 97 131

10−11 109 13 0.12 83 136 154 11 0.07 136 177

10−12 136 22 0.16 98 194 259 31 0.12 200 300

GS 10−6 42 4 0.09 34 51 15 2 0.15 12 19

10−7 45 4 0.09 37 54 30 4 0.14 23 38

10−8 55 6 0.12 43 67 53 6 0.12 42 65

10−9 74 9 0.13 57 91 84 8 0.09 68 96

10−10 95 12 0.13 72 119 121 9 0.07 103 137

10−11 113 14 0.12 86 144 161 11 0.07 141 184

10−12 136 22 0.16 98 194 259 31 0.12 200 300
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Figure 8.15: Absolute error on GS Ecorr in Eh for thrpno occ = 10−6. Comparison for

different PAO domain sizes and for thrpno off.
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Figure 8.16: Absolute error on GS Ecorr in Eh for thrpno occ = 10−6. Comparison for

different PAO domain sizes and for thrpno off.
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Figure 8.17: Absolute error on ES Ecorr in Eh for thrpno occ = 10−6. Comparison for

different PAO domain sizes and for thrpno off.
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Figure 8.18: Absolute error on ES Ecorr in Eh for thrpno occ = 10−8. Comparison for

different PAO domain sizes and for thrpno off.

8.7 Complementary Data Reaction Energies

To convert triplet reaction energies into singlet reaction energies we can use the fol-

lowing balance of energy

∆Erx
S

1RA +1 RB −→ 1P

∆ERB
ST ↓ ↓ ∆EP

ST

1RA +3 RB −→ 3P

∆Erx
T

This allows us to write the following equation:

∆Erx
T + ∆ERB

ST = ∆Erx
S + ∆EP

ST

yielding

⇔ ∆Erx
S = ∆Erx

T −∆EP
ST + ∆ERB

ST

⇔ ∆Erx
S = EP

T − E
RA
T − E

RB
T −∆EP

ST + ∆ERB
ST

⇔ ∆Erx
S = EP

S − E
RA
T − E

RB
T + ∆ERB

ST

Any of the last three equations can be used to calculate ∆Erx
S .

The orbital diagram for the electrocyclic reaction is presented below. The black hori-

zontal lines represent qualitatively the orbital energies. The arrows (upwards and down-

wards) represent the electronic occupation of the orbitals and the blue lines connecting
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orbitals represent the orbital changes from reagent to product. The letter S stands for

symmetric orbital with respect to the symmetry plan conserved during the reaction and

A for antisymmetric.
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Figure 8.19: The MO diagram for the electrocyclic reaction presented in Figure 6.19.
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8.8 Complementary Data Basis Sets Results

Table 8.7: Average %Ecorr, the respective standard deviation (σ), coefficients of variation

(cv; multiplied by 104), minima and maxima for aug-cc-pVDZ and aug-cc-pVTZ.

GS

aug-cc-pVDZ aug-cc-pVTZ

thrpno occ avg σ cv min MAX avg σ cv min MAX

10−6 99.66 0.03 3.5 99.58 99.72 99.63 0.03 2.9 99.57 99.67

10−7 99.82 0.03 3.5 99.76 99.88 99.78 0.02 2.4 99.75 99.82

10−8 99.90 0.03 3.2 99.83 99.95 99.89 0.02 2.2 99.85 99.92

10−9 99.93 0.03 3.0 99.86 99.97 99.93 0.02 2.0 99.89 99.96

10−10 99.94 0.03 2.9 99.87 99.98 99.94 0.02 1.9 99.90 99.97

10−11 99.94 0.03 2.9 99.87 99.98 99.94 0.02 1.8 99.91 99.97

10−12 99.94 0.03 2.9 99.87 99.98 99.94 0.02 1.8 99.91 99.97

ES

aug-cc-pVDZ aug-cc-pVTZ

thrpno occ avg σ cv min MAX avg σ cv min MAX

10−6 99.65 0.03 3.1 99.58 99.70 99.63 0.03 2.7 99.57 99.66

10−7 99.81 0.03 3.3 99.75 99.87 99.77 0.02 2.2 99.73 99.81

10−8 99.89 0.03 3.3 99.82 99.95 99.88 0.02 2.2 99.85 99.92

10−9 99.93 0.03 3.1 99.86 99.97 99.92 0.02 2.0 99.89 99.95

10−10 99.94 0.03 3.0 99.87 99.98 99.94 0.02 1.9 99.90 99.97

10−11 99.94 0.03 3.0 99.87 99.98 99.94 0.02 1.9 99.91 99.97

10−12 99.94 0.03 3.0 99.87 99.98 99.94 0.02 1.9 99.91 99.97

196



Table 8.8: avg(PNO), the respective standard deviation (σ), coefficients of variation,

minima and maxima for aug-cc-pVDZ and aug-cc-pVTZ.

GS

aug-cc-pVDZ aug-cc-pVTZ

thrpno occ avg σ cv min MAX avg σ cv min MAX

10−6 48 4 0.09 40 57 92 8 0.09 78 108

10−7 52 4 0.07 47 60 96 7 0.07 83 110

10−8 65 4 0.06 61 74 111 6 0.06 103 126

10−9 88 5 0.06 83 101 147 9 0.06 138 166

10−10 119 8 0.07 108 137 207 13 0.06 194 231

10−11 152 14 0.09 127 177 282 19 0.07 254 319

10−12 229 40 0.17 158 296 513 84 0.16 361 665

ES

aug-cc-pVDZ aug-cc-pVTZ

thrpno occ avg σ cv min MAX avg σ cv min MAX

10−6 48 4 0.09 40 56 92 8 0.09 78 109

10−7 52 4 0.07 46 60 95 7 0.07 84 111

10−8 64 4 0.06 60 72 114 6 0.05 108 129

10−9 86 5 0.06 81 98 155 10 0.06 142 175

10−10 116 8 0.07 105 132 220 14 0.06 204 249

10−11 149 13 0.09 125 172 297 21 0.07 268 342

10−12 229 40 0.17 158 296 513 84 0.16 361 665
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Figure 8.20: Absolute error on Ecorr in Eh for thrpno occ = 10−6 (6) and thrpno occ =

10−8 (8). Comparison between basis sets aug-cc-pVDZ and aug-cc-pVTZ.
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Figure 8.21: Convergence excitation energies for tryptophan using aug-cc-pVDZ (2Z),

aug-cc-pVTZ (3Z) and aug-cc-pVQZ (4Z) basis sets. thrpno occ ranges from 10−6 to

10−12 for 2Z and from 10−6 to 10−11 to 3Z and 4Z.
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Figure 8.22: Relative PNO domain size against −log10(thrpno occ) for tryptophan. Data

for basis sets aug-cc-pVDZ (2Z), aug-cc-pVTZ (3Z) and aug-cc-pVQZ (4Z). thrpno occ

ranges from 10−6 to 10−12 for 2Z and from 10−6 to 10−11 to 3Z and 4Z.
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Figure 8.23: Absolute error on Ecorr in Eh for thrpno occ = 10−6 (6) and thrpno occ =

10−8 (8). Comparison between basis sets aug-cc-pVDZ and def2-tzvp.
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Table 8.9: Average %Ecorr, the respective standard deviation (σ; multiplied by 102),

coefficients of variation (cv; multiplied by 104), minima and maxima for the basis sets

aug-cc-pVDZ and def2-tzvp.

GS

aug-cc-pVDZ def2-tzvp

State thrpno occ avg σ cv min MAX avg σ cv min MAX

GS 10−6 99.67 1.3 1.3 99.66 99.69 99.69 1.1 1.1 99.68 99.71

10−7 99.83 1.7 1.7 99.81 99.85 99.83 1.6 1.6 99.81 99.85

10−8 99.91 1.1 1.1 99.89 99.92 99.93 0.85 0.85 99.92 99.94

10−9 99.94 0.84 0.84 99.92 99.95 99.96 0.44 0.44 99.95 99.97

10−10 99.94 0.77 0.77 99.93 99.96 99.97 0.29 0.29 99.97 99.97

10−11 99.95 0.76 0.76 99.94 99.96 99.97 0.24 0.24 99.97 99.98

10−12 99.95 0.75 0.75 99.94 99.96 99.97 0.23 0.23 99.97 99.98

ES 10−6 99.67 1.3 1.3 99.65 99.69 99.68 1.1 1.1 99.67 99.70

10−7 99.82 1.7 1.7 99.80 99.84 99.82 1.7 1.7 99.80 99.84

10−8 99.90 1.2 1.2 99.89 99.92 99.92 0.87 0.87 99.91 99.93

10−9 99.93 0.86 0.86 99.92 99.95 99.96 0.46 0.46 99.95 99.96

10−10 99.94 0.79 0.79 99.93 99.96 99.97 0.29 0.29 99.97 99.97

10−11 99.95 0.77 0.77 99.94 99.96 99.97 0.25 0.25 99.97 99.98

10−12 99.95 0.76 0.76 99.94 99.96 99.97 0.24 0.24 99.97 99.98
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Table 8.10: avg(PNO), the respective standard deviation (σ), coefficients of variation,

minima and maxima for the basis sets aug-cc-pVDZ and def2-tzvp.

aug-cc-pVDZ def2-tzvp

State thrpno occ avg σ cv min MAX avg σ cv min MAX

GS 10−6 48 4 0.08 44 53 71 6 0.09 63 79

10−7 52 3 0.06 48 56 74 6 0.08 67 82

10−8 64 4 0.06 60 69 88 6 0.07 79 96

10−9 85 6 0.07 78 92 114 9 0.08 101 125

10−10 115 9 0.08 103 126 150 14 0.09 130 168

10−11 146 12 0.08 131 160 190 20 0.10 162 214

10−12 225 17 0.08 199 245 271 25 0.09 244 302

ES 10−6 48 4 0.08 44 53 71 7 0.09 64 80

10−7 52 3 0.07 49 57 74 6 0.08 68 83

10−8 67 4 0.06 62 72 90 7 0.07 82 99

10−9 91 6 0.07 84 98 120 10 0.08 107 132

10−10 122 9 0.08 111 133 158 15 0.09 138 177

10−11 152 12 0.08 138 167 197 20 0.10 169 222

10−12 225 17 0.08 199 245 271 25 0.09 244 302
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8.9 Complementary Data Scaling Results
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Figure 8.24: Zoom-in in CPU timings for the bithiophene chains. PNO Gen stands for

the algorithm to generate PNOs and Res for the algorithms to solve the residual equations

for groups of configuration subspaces. Zoom in for the region 0 to 60 s.
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2. M. Schütz, G. Hetzer, and H.-J. Werner J. Chem. Phys., vol. 111(13), p. 5691, 1999.
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K. Pierloot, and M. Merchán Adv. Chem. Phys., vol. 93, p. 219, 1996.

82. B. O. Roos Acc. Chem. Res., vol. 32, p. 137, 1999.
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123. F. A. Evangelista, M. Hanauer, A. Köhn, and J. Gauss J. Chem. Phys., vol. 136,

p. 204108, 2012.
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221. D. Kats, T. Korona, and M. Schütz J. Chem. Phys., vol. 127, p. 064107, 2007.
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Mol. Sci., vol. 2, p. 242, 2012.

285. K. R. Shamasundar, G. Knizia, and H.-J. Werner, “The integrated tensor framework

(itf),” 2011. [Online; accessed 22-May-2016].

286. D. Kats and F. R. Manby J. Chem. Phys., vol. 138, p. 144101, 2013.

287. D. Kats J. Chem. Phys., vol. 141, p. 244101, 2014.

288. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory, ch. Maathematical Review. In Dover Books on Chem-

istry (414), 1996.

289. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory, ch. Many-Electron Wave Functions and Operators. In

Dover Books on Chemistry (414), 1996.

290. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory, ch. The Hartree-Fock Approximation. In Dover Books

on Chemistry (414), 1996.

291. B. T. Colegrove and H. H. S. III J. Phys. Chem., vol. 94(14), p. 5593, 1990.

292. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Ad-

vanced Electronic Structure Theory, ch. Configuration Interaction. In Dover Books

on Chemistry (414), 1996.

218



293. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory, ch. Pair and Coupled-Pair Theories. In Dover Books

on Chemistry (414), 1996.

294. E. Davidson J. Comp. Phys., vol. 17, p. 87, 1975.

295. T. D. Crawford, “Size-extensivity and size-consistency,” 1996. [Online; accessed

7-January-2016].

296. O. Christiansen, H. Koch, and P. Jørgensen Chem. Phys. Lett., vol. 243, p. 409,

1995.

297. D. C. Comeau and R. J. Bartlett Chem. Phys. Lett., vol. 207, p. 414, 1993.

298. S. A. Kucharski, M. W loch, M. Musia l, and R. Bartlett J. Chem. Phys., vol. 115,

p. 8263, 2001.

299. K. Kowalski and P. Piecuch J. Chem. Phys., vol. 113(19), p. 8490, 2000.

300. K. Kowalski and P. Piecuch J. Chem. Phys., vol. 115(2), p. 643, 2001.

301. P. Piecuch and R. J. Bartlett Adv. Quantum Chem., vol. 34, p. 295, 1999.

302. D. Kats and F. R. Manby J. Chem. Phys., vol. 139, p. 021102, 2013.

303. D. F. Feller, M. W. Schmidt, and K. Ruedenberg J. Am. Chem. Soc., vol. 104, p. 960,

1982.

304. K. Ruedenberg, M. W. Schmidt, and M. M. Gilbert Chem. Phys., vol. 71, p. 51,

1982.

305. K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, and S. T. Elbert Chem. Phys.,

vol. 71, p. 65, 1982.

306. L. M. Cheung, K. R. Sundeberg, and K. Ruedenberg J. Am. Chem. Soc., vol. 100,

p. 8024, 1978.

307. L. M. Cheung, K. R. Sundeberg, and K. Ruedenberg Int. J. Quant. Chem., vol. 16,

p. 1103, 1979.

308. J. Olsen, B. O. Roos, P. Jørgensen, and H. J. Jensen J. Chem. Phys., vol. 89, p. 2185,

1988.

219



309. H.-J. Werner and M. Meyer J. Chem. Phys., vol. 74, p. 5794, 1981.

310. P. Pulay Chem. Phys. Lett., vol. 73, p. 393, 1980.

311. P. Pulay J. Comput. Chem., vol. 3, p. 556, 1982.

312. K. K. Docken and J. Hinze J. Chem. Phys., vol. 57, p. 4928, 1972.

313. M. W. Schmidt and M. S. Gordon Ann. Rev. Phys. Chem., vol. 49, p. 233, 1998.

314. U. Kaldor J. Chem. Phys., vol. 63(5), p. 2199, 1975.

315. C. Edmiston and K. Ruedenberg J. Chem. Phys., vol. 43, p. S97, 1965.

316. S. Dubillard, J.-B. Rota, T. Saue, and K. Faegri J. Chem. Phys., vol. 124, p. 154307,

2006.

317. W. C. Lu, C. Z. Wang, M. W. Schmidt, L. Bytautas, K. M. Ho, and K. Ruedenberg

J. Chem. Phys., vol. 120, p. 2629, 2004.

318. A. C. West, M. W. Schmidt, M. S. Gordon, and K. Ruedenberg J. Chem. Phys.,

vol. 139, p. 234107, 2013.

319. T. Janowski J. Chem. Theory Comput., vol. 10, p. 3085, 2014.

320. D. E. Bernholdt and R. J. Harrison Chem. Phys. Lett., vol. 250, p. 477, 1996.

321. J. L. Whitten J. Chem. Phys., vol. 58, p. 4496, 1973.

322. F. Weigend Phys. Chem. Chem. Phys., vol. 4, p. 4285, 2002.
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