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Abbreviations

AFM ... Antiferromagnetic

ESR ... Electron spin resonance

HAFM ... Heisenberg antiferromagnet

HFM ... Heisenberg ferromagnet

HWHM ... Half-width-half-maximum

IAFM ... Ising antiferromagnet

NS ... Neutron scattering

NSE ... Neutron spin-echo scattering

NRSE ... Neutron resonance spin-echo scattering

NRSE-TAS ... Neutron resonance spin-echo triple-axis spectroscopy

NMR ... Nuclear magnetic resonance

PAC ... Perturbed angular correlations of γ − ray spectroscopy

TAS ... Triple-axis spectroscopy

μSR ... Muon spin relaxation
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Zusammenfassung in deutscher
Sprache

Kritische Dynamik in klassischen Antiferromagneten

Diese Arbeit beschreibt eine Studie der kritischen Dynamik der Antiferromagneten

MnF2 und Rb2MnF4 mit zwei- bzw. dreidimensionaler (2D, 3D) Kopplung der S = 5/2
Spins. Die Untersuchungen wurden mittels Neutronen-Spinecho-Spektroskopie mit ho-

her Energieauflösung ohne externes Magnetfeld durchgeführt. Beide Materialien sind

Heisenberg-Antiferromagneten mit einer kleinen uniaxialen Anisotropie, die von der

dipolaren Wechselwirkung verursacht wird und zu einem Übergang in der kritischen

Dynamik nahe der Néel-Temperatur TN führt. Die hohe Energieauflösung der Spin-

Echo Technik ermöglichte die Bestimmung der kritischen Exponenten z für die lon-

gitudinalen und transversalen Komponenten der kritischen Fluktuationen. Für MnF2

sind sowohl die Übergangstemperatur der Fluktuationen von 3D-Heisenberg- nach 3D

Ising-Dynamik und die Exponenten z konsistent mit der Skalentheorie. Das Verhält-

nis der Amplituden der longitudinalen und transversalen Fluktuationen stimmt mit den

theoretischen Vorhersagen überein. Rb2MnF4 zeigt bei hohen Temperaturen T ≫ TN

die erwartete Heisenberg-Dynamik, doch der kritische Exponent z = 1.387(4) nahe

bei TN findet keine einfache theoretische Erklärung und resultiert wahrscheinlich von

dipolaren Wechselwirkungen mit langer Reichweite.

Kritische Fluktuationen treten an kontinuierlichen Phasenübergängen auf. Sie wur-

den zuerst im frühen 19. Jahrhundert beim Verdampfen von flüssigem CO2 beobachtet.

Dichtefluktuationen bewirken verstärkte Lichtstreuung und trüben die ansonsten durch-

sichtige Flüssigkeit. Thomas Andrews beschrieb schon im Jahr 1869 den Zusammen-

hang der kritischen Trübung mit Phasenübergängen [1]. Die Untersuchung kritischer

Fluktuationen ist auch heute noch ein ergiebiges Thema, wobei sich 20. Jahrhundert das

Interesse auf magnetische Phasenübergänge verlagerte. Diese haben den Vorteil, dass

die Parameter in weiten Bereich variabel sind: von ein- bis dreidimensionaler Wechsel-

wirkung des Spins, mit Quantencharakter (S = 1/2) oder fast klassisch (S = 5/2).

Die Neutronenstreuung spielt eine zentrale Rolle bei der Untersuchung kritischer

magnetischer Fluktuationen, da der Neutronenspin an die fluktuierenden magnetischen

Momente koppelt. Dynamische Fluktuationen führen zu inelastischer Streuung der
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Neutronen, die mit modernen Spektrometern analysiert wird. Die intensive Forschung

wurde in mehreren Publikationen zusammengefasst: Ergebnisse der inelastischen Neu-

tronenstreuung an kritischen magnetischen Fluktuationen in den Büchern von Als-

Nielsen [2] und Collins [3], kritische Fluktuationen in Flüssigkeiten im Buch von

Levelt-Sengers [4] und Ergebnisse von magnetischen Systemen mittels NMR im Über-

sichtsartikel von Hohenemser [5].

Die statischen (zeitlich gemittelten) Eigenschaften magnetischer Phasenübergange

hängen nur von der Dimension der Kopplung des Spinsystems ab. In der Nähe des

Phasenübergangs folgen die statischen Eigenschaften wie Magnetisierung, Suszeptibi-

lität, spezifische Wärme und Korrelationslänge Potenzgesetzen der reduzierten Tem-

peratur t = T/Tc,N − 1, mit kritischen Exponenten β, γ, α, und ν. Skalen-Gesetzte

definieren die Relationen zwischen den kritischen Exponenten.

Die dynamischen Eigenschaften magnetischer Phasenübergänge wurden erstmals in

der dynamischen Skalentheorie von Halperin und Hohenberg [6, 7] quantitativ be-

schrieben. Ein wesentliches Ergebnis besagt, dass die charakteristische Energiebreite

Γ der Spinfluktuationen mit der magnetischen Korrelationslänge ξ skaliert, z ist der

dynamische kritische Exponent:

Γ ∼ ξ−z ∼ tzν

Bei Annäherung an die kritische Temperatur (t = 0) divergiert die Korrelationslänge

und Γ geht gegen Null, was als kritische Abbremsung der Spinfluktuationen bezeichnet

wird. Für 3D Heisenberg-Ferromagneten (3D HFMs) wird z = 2.5 vohergesagt, für

3D Heisenberg-Antiferromagneten (3D HAFMs) z = 1.5. Zusätzliche langreichweitige

Spin-Wechselwirkungen können die kritische Dynamik drastisch beeinflussen.

In MnF2, einem der besten Modelle für 3D Ising-Antiferromagnetismus (3D IAFM),

induzieren dipolare Spin-Spin Wechselwirkungen mit langer Reichweite eine kleine

uniaxiale Anisotropie. Die gemessenen statischen kritischen Exponenten β, ν und γ
folgen nahe der Néel Temperatur TN wie erwartet 3D Ising Verhalten, aber der dyna-

mische Exponent z liegt nahe bei 1.5, was der für 3D Heisenberg AFM vorhergesagten

Skalierung entspricht. Eine überzeugende Erklärung für diese Diskrepanz wurde bisher

nicht gefunden, wahrscheinlich spielt die begrenzte Energieauflösung der Dreiachsen-

Spektrometer (TAS) eine wesentliche Rolle, da die sehr kleinen Energiebreiten Γ nahe

TN nicht gut aufgelöst werden. Im Fall des zweidimensionalen Heisenberg-Antiferro-

magneten (2D HAFM) Rb2MnF4 mit S = 5/2 sollte die uniaxiale Spin-Raum Asym-

metrie bei Abkühlung Richtung TN einen Übergang von Heisenberg nach Ising Ver-

halten bewirken. Hier sind Tests der dynamischen Skalentheorie mittels TAS wie bei

MnF2 schwierig bis unmöglich. Mit einem geeigneten Magnetfeld H an der Probe nahe

am bikritischen Punkt im H-T Phasendiagramm sollte die Anisotropie nicht relevant

sein. Neutronenstreuung zeigt an diesem Punkt z = 1.35(2), das klar vom theoretisch



vorhergesagten z = 1 verschieden ist [8]. Eine Erklärung für diese Diskrepanz wurde

bisher ebenfalls nicht gefunden.

Diese offenen Fragen und experimentellen Schwierigkeiten sollen in dieser Disser-

tation neu beleuchtet werden. Ziel waren neue Experimente an den Modellsystemen

MnF2 und Rb2MnF4 mittels Spin-Echo-Dreiachsen Spektroskopie (NRSE-TAS) mit

Energieauflösung im Bereich 1μeV. Die von der magnetischen Streuung induzierten

Spinflip Prozesse der Neutronenspins führen zu komplizierten Oszillationen der Spin-

Echo Signale. Um diese instrumentellen Effekte unabhängig von Näherungen zu be-

schreiben, führen wir eine neue Analysemethode basierend auf einer Ray-Tracing Sim-

ulation des Spektrometers ein. Diese Methode erlaubt die Trennung von longitudinalen

und transversalen Komponenten der Spinfluktuationen auch dann, wenn beide Kom-

ponenten zum Strukturfaktor beitragen. Dies ist ein weiterer Vorteil der NRSE-TAS

Methode.

Wir fassen nun zuerst die Ergebnisse für MnF2 kurz zusammen. Fig. 0.1 zeigt die

Temperaturabhängigkeit der longitudinalen Linienbreite (Γ∥), der transversalen

Linienbreite (Γ⊥) und der relativen integrierten Intensität an Q = (300). Die Anal-

yse der Spin-Echo Daten wurde mit der oben genannten neuen Technik durchgeführt.

Wegen der Spin-Anisotropie zeigen nur die longitudinalen Fluktuationen kritisches

Verhalten für T → TN, während die transversalen Linienbreiten kontinuierlich ver-

laufen. TN = 67.29 K wurde aus der maximalen Steigung der Intensität des mag-

netischen Q = (300) Bragg-Reflexes bestimmt. Die Daten für Γ∥(T) in Fig. 0.1 (a)

weichen im grau schattierten Bereich bei T = 69 K deutlich von einfachen Potenzge-

setzen ab. Die blaue gepunktete Linie ist an die Daten im Bereich TN < T < 1.01 TN

angepasst mit zν = 1.25(2). Mit dem für 3D Ising Antiferromagneten (3D IAFM)

vorhergesagten Exponenten ν3DIAFM = 0.6301 erhalten wir z = 1.98(3), das innerhalb

des Fehlers dem für diese Universalitätsklasse vorhergesagten z = 2 entspricht [7].

Für T > 1.04 TN enspricht die rote Kurve dem Exponenten zν = 1.02(3). Mit dem

theoretischen ν3D HAFM ergibt sich z = 1.43(5), was nahe bei dem für 3D Heisenberg-

Antiferromagneten (3D HAFM) erwarteten z = 1.5 liegt. Die Daten Γ∥(T) zeigen einen

Übergang von 3D IAFM nahe TN zu 3D HAFM Skalierung für T > TN. Die relativen

Amplituden (∼ 3) aus diesem Fit sind in guter Übereinstimmung mit dem Wert 3.1, der

von Riedel und Wegner berechnet wurde [10, 11]. Wir erhalten als Übergangstempe-

ratur Tx = 69.2(1)K oder tx = 0.029(1) in guter Übereinstimmung mit der Vorhersage

tx = 0.036 von Pfeuty et al. [12].

Die Linienbreite Γ⊥(T) der transversalen Fluktuationen ist in Fig. 0.1 (b) zusam-

men mit TAS Daten aus der Literatur aufgeragen [13, 14]. Wir beobachten einen

schnellen Anstieg von Γ⊥ zwischen TN und der unteren Grenze des Übergangsbereichs

bei 1.01 TN, wobei Γ⊥ bei etwa 300μeV in Sättigung geht. Berechnungen haben diesen

Sättigungswert vorausgesagt, der einem Exponenten z⊥ = 0 entspricht [11, 15, 16].



Fig. 0.1: Temperaturabhängigkeit in MnF2 von (a) Γ∥ und (b) Γ⊥. (c) Verhältnis der integrierten

Intensitäten. [9].

Γ⊥ wächst oberhalb des Übergangsbereichs (T > 1.04 TN), so wie es für 3D HFAM

Skalierung erwartet wird. Die Fehlerbalken werden bei hohen Temperaturen groß,

da die Flügel der Lorentz-förmigen Linie durch die Transmissionsfunktion des TAS

beschnitten werden. Daher erlaubt die Qualität der Daten hier keine Bestimmung des

kritischen Exponenten und qualitative Bestätigung der 3D HAFM Skalierung von Γ⊥
für T ≫ TN.

Fig. 0.1 (c) zeigt das Verhältnis der integrierten Intensitäten von longitudinalen und

transversalen Fluktuationen. Nahe TN dominieren wegen der uniaxialen Anisotropie



die longitudinalen Korrelationen die kritische Streuung. Mit wachsendem T steigt das

Verhältnis der integrierten Intensitäten schnell an und geht gegen 1 für T ≫ TN, was

dem Übergang des Systems in die 3D HFAM Skalierung entspricht.

Im Folgenden diskutieren wir die Ergebnisse für Rb2MnF4. Das Mermin-Wagner

Theorem besagt, dass in 2D Heisenberg-Antiferromagneten keine Ordnung mit langer

Reichweite für T > 0 K auftritt. Die 3D antiferromagnetische Ordnung in Rb2MnF4

unterhalb TN = 38.4 K wird durch kleine Spin-Asymmetrie αI induziert. Fig. 0.2 (a)

zeigt Γ∥(T), das nahe T = 44 K die Steigung ändert. Wegen der dipolaren Anisotropie

erwartet man einen Übergang des Verhaltens von 2D Ising Antiferromagnetismus (2D

IAFM) für T ∼ TN nach 2D HAFM für T ≫ TN. Solch ein Übergang in der longitu-

dinalen Korrelationslänge wurde nahe Tx = 1.2 TN von Lee et al. [17] beobachtet. Im

Intervall TN < T < 1.16 TN ergibt unser Experiment den Exponenten zν = 1.387(4). Mit

dem theoretisch für 2D IAFM vorhergesagten ν2DIAFM = 1 erhalten wir z = 1.387(4),
das sich signifikant vom erwarteten z2D IAFM unterscheidet [18]. Das bedeutet, dass

unsere Daten für Γ∥ nahe TN nicht konsistent mit 2D IAFM sind. Solch eine Ab-

weichung von 2D IAFM Skalierung wurde für den statischen kritischen Exponenten

β auch von Birgeneau et al. [19] beobachtet. Das aus der Magnetisierungkurve für

T < TN bestimmte β = 0.18 unterscheidet sich deutlich vom erwarteten β = 0.125 [20].

Eine mögliche Ursache für dieses unerwartete Skalierungsverhalten von Γ∥ für T >
1.20 TN ist die dipolare Wechselwirkung, die auch wesentlich für das Magnonen-Gap

im geordneten Zustand verantwortlich ist, und durch die lange Reichweite das uni-

verselle Skalierungsverhalten ändern kann. Ein Fit mit dem Ausdruck Γ∥(t) ∝ ξz∥
eff

ergibt z∥ = 0.96(4) in Übereinstimmung mit der Vorhersage z = 1 für 2D HAFM [7].

Die Übergangstemperatur Tx = 44.3(4)K oder tx = 0.179 ist etwas kleiner als der

vorhergesagte Wert.

Die Linienbreite Γ⊥ der transversalen Fluktuationen ist in Fig. 0.2 (b) aufgetragen.

Γ⊥ hat bei TN einen Wert > 0, formt ein Plateau bei 200μeV und wächst kontinuierlich

für T > Tx. Unser Fit ergibt z⊥ = 0.97(15) wie für 2D HAFM Skalierung erwartet.

Dieses Ergebnis ist auch konsistent mit dem Verhältnis der Integrierten Intensitäten in

Fig. 0.2 (c), das oberhalb Tx gegen 1 geht, wie für das identische Verhalten transversaler

und longitudinaler Fluktuationen in 2D HAFM erwartet wird.

In Fig. 0.3 sind die wesentlichen Ergebnisse unserer Studie des dynamischen kri-

tischen Verhaltens von zwei schwach anisotropen S = 5/2 Antiferromagenten mit zwei-

und dreidimensionaler Spinkopplung zusammengefasst. Beide Verbindungen zeigen

einen Übergang im Skalierungsverhalten, der aus der kleinen uniaxialen Anisotropie

resultiert. Der dynamische kritische Exponent von MnF2 ändert sich von z∥ = 1.43(5)
oder 3D HAFM Skalierung bei hohem T nach z∥ = 1.98(3) oder 3D IAFM nahe

TN. Dieser Übergang tritt bei Tx = 1.03 TN auf, was den Vorhersagen entspricht.

Die transversale Linienbreiten Γ⊥ sind konsistent mit dem vorhergesagten z = 0 nahe



Fig. 0.2: Temperaturabhängigkeit in Rb2MnF4 von (a) Γ∥ und (b) Γ⊥. (c) Verhältnis der inte-

grierten Intensitäten. [9].

Tx, aber sinken deutlich bei Abkühlung Richtung TN. Der dynamische kritische Ex-

ponent z∥ in Rb2MnF4 ändert sich an der Übergangstemperatur Tx = 1.18 TN von

z∥ = 0.96(4) bei T > Tx, das entpricht 2DHAF Saklierung, nach z∥ = 1.387(4) für

TN < T < Tx. Der letzte Wert entspricht nicht dem für das 2D Ising Modell erwarteten

z = 1.75. Diese Skalierung resultiert wahrscheinlich von der langreichweitigen Natur

der dipolaren Kräfte, die dynamischen Fluktuationen durch das Öffnen zusätzlicher

Zer-fallskanäle beeinflussen, während die statischen Eigenschaften nicht beeinflusst

werden. Die transversalen Fluktuationen zeigen konstante Linienbreiten mit z⊥ = 0

nahe TN und sind identisch mit den longitudinalen Fluktuationen für hohe Tempera-



Fig. 0.3: Linienbreiten der longitudinalen kritischen Streuung in MnF2 und Rb2MnF4. [9].

turen T ≫ TN, d.h. sie zeigen 2DHA Skalierung mit z⊥ = 0.97(15).
Die hochauflösende Dreiachsen-Spinecho Technik hat in dieser Arbeit einen detail-

lierten Einblick in die kritische Dynamik von Antiferromagneten ermöglicht und zur

Klärung vorheriger widersprüchlicher Ergebnisse beigetragen. Unsere Methode, die

eine Trennung von longitudinalen und transversalen Fluktuationen erlaubt, kann direkt

auf eine große Klasse von Fragen über kritische magnetische Fluktuationen angewendet

werden. Der nächste Schritt wird die Durchführung einer ähnlichen Studie über quan-

tenkritische Fluktuationen in TlCuCl3 in der Nähe des quantenkritischen Punktes bei

moderatem Druck ohne Magnetfeld sein. Erste Testexperimente mit neu entwickelten

Gasdruckzellen wurden durchgeführt.





Abstract

Critical Dynamics in Classical Antiferromagnets

This thesis reports on a neutron spin-echo study of the critical dynamics in the S = 5/2
antiferromagnets MnF2 and Rb2MnF4 with three-dimensional (3D) and two-dimen-

sional (2D) spin systems, respectively, in zero external field. Both compounds are

Heisenberg antiferromagnets with a small uniaxial anisotropy resulting from dipolar

spin-spin interactions, which leads to a crossover in the critical dynamics close to the

Néel temperature, TN. By taking advantage of the μeV energy resolution of the spin-

echo spectrometer, we have determined the dynamical critical exponents z for both

longitudinal and transverse fluctuations. In MnF2, both the characteristic temperature

for crossover from 3D Heisenberg to 3D Ising behavior and the exponents z in both

regimes are consistent with predictions from the dynamical scaling theory. The ampli-

tude ratio of longitudinal and transverse fluctuations also agrees with predictions. In

Rb2MnF4, the critical dynamics crosses over from the expected 2D Heisenberg behav-

ior for T ≫ TN to a scaling regime with exponent z = 1.387(4), which has not been

predicted by theory and may indicate the influence of long-range dipolar interactions.

This work establishes a basis for high-resolution studies of critical antiferromag-

netic fluctuations by neutron spin-echo. The next step is the investigation of magnetic

quantum criticality. First measurements were conducted on TlCuCl3, which exhibits a

quantum critical point under moderate pressure.

15



16



1 Introduction

Critical fluctuations occur close to continuous phase transitions. They were first ob-

served in the early 19th century at the liquid-gas transition in CO2. Density fluctuations

induce enhanced scattering of light and lead to opalescence of the otherwise transpar-

ent system. Thomas Andrews in 1869 first pointed out the connection between critical

opalescence and phase transitions [1]. The basic parameter for the description of critical

fluctuations is the correlation length ξ, which sets an universal length scale and diverges

at the phase transition. In the case of CO2, ξ shows large values up to 1cm, which are

visible by bare eye. The study of critical fluctuations remained an attractive subject

during nearly 150 years. In the 20th century, researchers focused on magnetic phase

transitions. These have the advantage to show a broad range of parameters: one- to

three-dimensional interactions of the spins, with quantum (S = 1/2) or nearly classical

(S ≫ 1/2) character. Neutron scattering played an important role in the investigation

of critical magnetic fluctuations, as the neutron spin couples to the fluctuating mag-

netic moments, and dynamic effects result in inelastic scattering of the neutrons, which

is resolvable with modern spectrometers. The intense research has been summarized

in several excellent reviews. The books by Als-Nielsen [2] and Collins [3], for exam-

ple, have summarized results on magnetic fluctuations obtained by neutron scattering.

Levelt-Sengers [4] has reviewed critical fluctuations in fluids, and the article by Hohen-

emser [5] has summarized studies of magnetic systems with a focus on NMR.

For magnetic phase transitions, the static (time-averaged) properties depend only on

the lattice and spin dimensionality in systems with short-range interactions, but not on

the microscopic Hamiltonian. This is the so-called universality of the phase transition.

In approaching the critical temperature from above and below, the static properties,

such as magnetization, susceptibility, specific heat, and correlation length, become sin-

gular and can be described by power laws, of the reduced temperature t ≡ T/Tc,N − 1

with critical exponents β, γ, α, and ν [see Table 2.1]. The relations among these expo-

nents are governed by the so-called scaling laws.

The dynamic properties of magnetic phase transitions were first quantitatively de-

scribed by the dynamic critical hypothesis proposed by Halperin and Hohenberg [6, 7].

One basic result is that the characteristic energy width Γ of spin fluctuations scales with

the static magnetic correlation length ξ,

Γ ∼ ξ−z ∼ tzν
(1.1)

17



18 1 Introduction

Fig. 1.1: The first neutron scattering on critical fluctuations of Fe: the total cross section vs.
temperature. The nuclear cross section σnt shows a weak and featureless variation with temper-

ature. From [21].

with z the dynamical critical exponent. Approaching the critical temperature (t = 0), the

correlation length diverges and Γ goes to zero, corresponding to the so-called critical

slowing down of the spin fluctuations. z can be experimentally verified by measuring

Γ as a function of temperature or momentum transfer. The dynamic scaling depends

both on the universality class, and on conservation laws of a system. This leads to dif-

ferent z for a given universality class if the conservation law that applies to the systems

are different. For example, z = 2.5 and z = 1.5 are predicted for the three-dimensional

Heisenberg ferromagnets (3D HFMs) and antiferromagnets (3D HAFMs), respectively.

In addition, the presence of non-conserving forces arising from the long-range spin in-

teractions can drastically affect the critical dynamics.

To investigate the magnetic critical phenomena, neutron scattering is a valuable tool

for probing the order parameter and spin fluctuations of a system in the vicinity of

critical point. The triple-axis spectrometer (TAS) allows direct measurement of the dy-

namic structure factor S (Q, ω) in momentum-energy (Q-ω) space. Other macroscopic

tools, such as specific heat measurement and nuclear techniques, can only probe the

averaged properties of spin fluctuation in the long-wavelength Q = 0 limit. Indeed,

the results of neutron scattering experiments played a key role in understanding critical

phenomena. Historically, the first neutron scattering experiments on the critical fluctu-

ations can be traced back to the 1950’s. Latham and Cassels [22], and later Squires [21]

found that the total scattering cross section of various ferromagnets increases at their

respective Curie temperatures Tc, signaling the onset of long-range magnetic orders

of the systems. Fig. 1.1 shows the temperature dependent total cross section of Fe,
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Fig. 1.2: The temperature dependence on longitudinal (∥) and transverse (⊥) susceptibility χ of

MnF2. Owing to the uniaxial anisotropy, only χ∥ diverges at TN = 67.3 K. From [13].

together with the total nuclear contribution σnt. A sharp peak at Tc indicates the on-

set of ferromagnetic order. Als-Nielsen’s and Dietrich’s seminal work on β-brass in

1967 [23, 24, 25] found three static critical exponents β = 0.305(5), ν = 0.65(2), and

γ = 1.25(2). These results are clearly different from the mean field predictions [26]

but in good agreement with the prediction by series expansions using renormalization

group theory [see Table 2.2]. Since then, neutron scattering studies on critical fluctua-

tions of various materials in different lattice and spin dimensionality have made large

progress.

The 3D model systems

In 3D HFMs, static properties of the model systems such as Ni, Fe, and EuO agree

well with the prediction of the 3D Heisenberg model, while dynamic properties are

less understood due to crossover effects resulting from dipolar or equivalent long-
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Fig. 1.3: The experimental strategies for separat-

ing the longitudinal and transverse spin fluctua-

tions in the weakly anisotropic MnF2. Along the

[100] direction, the pure transverse fluctuations

contribute to the scattering, while along the [001]
direction, a mixture of the longitudinal and trans-

verse parts contributes. From [13].

range interactions [27]. Among 3D HAFMs, RbMnF3 is one of the best experimen-

tal realizations for both static and dynamic properties of critical phenomena: the static

properties [28] follow the 3D Heisenberg model; and the dynamical critical exponent

z = 1.43(4) [29] is in good agreement with the dynamical scaling theory which pre-

dicts z = 1.5 [7]. Among the three-dimensional Ising antiferromagnets (3D IAFMs),

FeF2 and MnF2 are the best realizations from theoretical and experimental aspects. Be-

low the Néel temperature TN, the uniaxial anisotropy of both leads to the Ising spin

arrangement along the crystalline c axis. In strongly anisotropic FeF2, the static and

dynamic behavior ideally fits the 3D IAFM scaling. In MnF2, where dipolar spin-spin

interactions induce a small uniaxial anisotropy, the measured static critical exponents

β, ν, and γ follow 3D Ising behavior [13, 30], as expected close to TN, but the dynamic

exponent z obtained from neutron scattering is close to the value 1.5 predicted for the

3D HAFM scaling [13]. In addition, z = 1.75(5) [30] and z = 2.3(3) [31] were de-

duced from the nuclear techniques in MnF2. The origin of these discrepancies in z has

not yet been conclusively resolved. They are probably caused by the limited energy

resolution of TAS [13], which precludes inelastic scattering measurements sufficiently

close to TN. Another reason is the data treatment used in conventional TAS and nuclear

techniques in discriminating the longitudinal and transverse spin fluctuations especially

for anisotropic materials.

Regarding the critical phenomena of 3D IAFM, only the longitudinal fluctuations

along the uniaxial spin anisotropy become critical, while the transverse components of

spin fluctuations are suppressed by the anisotropy and thus are non-critical. In previ-

ous TAS studies on MnF2, the two transverse components of the spin fluctuations were

assumed to be identical [13, 14]. Fig. 1.2 shows the experimental results of the longi-

tudinal and transverse staggered susceptibilities, χ∥ and χ⊥, of MnF2 as a function of

temperature [13]. χ∥ diverges at TN whereas χ⊥ remains finite in the critical region.

The crystals were aligned in the (H0L) scattering plane as depicted in Fig. 1.3. Note

that only the spin fluctuations that are perpendicular to the scattering vector Q make

the contribution to the neutron scattering cross section. Hence, measurements along

the [001] direction signal the pure transverse spin fluctuations since the longitudinal
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fluctuations are parallel to Q. The scattering function for this pure transverse mode S P

can be expressed as

S P(q, ω) ∝ AP

κ2⊥ + q2

1

2
[ Γ⊥

Γ2
⊥ + (ω −ω0)2

+ Γ⊥

Γ2
⊥ + (ω +ω0)2

]. (1.2)

On the other hand, measurements along the [100] direction consist of mixed contribu-

tions from the longitudinal and transverse spin fluctuations. The corresponding mixed
scattering function S M gives

S M(q, ω) ∝ AM

κ2
∥
+ q2

Γ∥

Γ2
∥
+ω2

+ λ AM

κ2⊥ + q2

1

2
[ Γ⊥

Γ2
⊥ + (ω −ω0)2

+ Γ⊥

Γ2
⊥ + (ω +ω0)2

]. (1.3)

In the above two expressions, q denotes the amplitude of a reduced wave vector from

the magnetic zone center andω0 is the magnon energy gap of the transverse components

below TN. AP and AM are the amplitudes of the scattering functions and λ describes the

relative weight. In both experiments along the [001] and [100] directions, the dynamic

property of the longitudinal spin fluctuations, the energy linewidth Γ∥, can be extracted

by subtracting the pure transverse component from the mixed scattering function.

The 2D model systems

After Onsager’s exact solution on the static properties of two-dimensional Ising anti-

ferromagnets (2D IAFMs), the K2NiF4-type compounds, such as K2CoF4 and K2MnF4,

were identified as good realizations of the 2D spin systems [32, 33]. Among them, the

dynamic critical exponent follows the conventional value z = 1.75 [34], independent of

the spin value S . In the magnetically ordered state, the systems usually cross from 2D

IAFM scaling near TN to 3D IAFM scaling well below TN. This leads to a changeover

in the exponent β from the sublattice magnetization.

Following the discovery of high-temperature superconductivity in doped antiferro-

magnets, the spin dynamics of 2D antiferromagnets has received considerable attention

in recent years. Since the spin systems of the parent compounds of the copper- and

iron-based superconductors are nearly isotropic [35, 36, 37], the spin excitations and

critical dynamics of Heisenberg antiferromagnets have been widely studied by inelas-

tic neutron scattering [38, 39]. The undoped parent compounds of the cuprate super-

conductors, such as La2CuO4, are excellent models for the two-dimensional Heisen-

berg antiferromagnets (2D HAFMs) with S = 1/2. The temperature dependent mag-

netic correlation length ξ measured by neutron scattering is well described by the-

oretical work on the 2D HAFMs, not only for S = 1/2 compounds La2CuO4 and
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Fig. 1.4: Two energy-integrating scans on Rb2MnF4 along the [H/2 H/2 L] direction at T = 43

and 38.6 K with TN = 38.4 K. The dashed lines are the transverse component of the magnetic

scattering. From [17].

Sr2CuO2Cl2 [35, 36, 37, 40], but also for related S = 1 K2NiF4 [38] and La2NiO4 [39]

compounds and S = 5/2 Rb2MnF4 [17, 41]. The static properties of the 2D HAFM in

the paramagnetic state generally agree with scaling relations predicted by the theories

in the classical [42, 43] or quantum limit [44, 45, 46].

Measurements on the spin dynamics in the paramagnetic state of S = 1/2 Sr2CuO2Cl2

and Sr2Cu3O4Cl2 systems are in good agreement with the exponent z = 1 predicted for

the 2D HAFM [40]. For the quasi-2D S = 5/2 compound Rb2MnF4, on the other hand,

the uniaxial spin-space anisotropy is expected to generate a crossover from 2D HAFM

to 2D IAFM behavior upon cooling towards TN, which precludes experimental tests of

the dynamical scaling by neutron scattering, as in the case of MnF2. Lee et al. [17] per-

formed a two-axis neutron scattering experiment under zero magnetic field and utilized

an analysis strategy to separate the longitudinal and transverse spin fluctuations. They
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assumed the scattering function

S (q2D) = sin
2
φ

S ∥(0)
1 + q2

2D/κ2∥ + (1 + cos
2
φ) S ⊥(0)

1 + q2
2D/κ2⊥ , (1.4)

where q2D is a measure of wave vector from the magnetic Bragg point in the 2D sheets.

S ∥,⊥ are the static scattering amplitude for longitudinal and transverse correlations, re-

spectively. φ is defined according to the geometric configuration of the crystal mount-

ing, which is subtended by a scattering wave vector Q and the c axis. Fig. 1.4 shows

the analysis results of Eq. (1.4) for data at T = 43, and 38.6 K. By deducing data from

the longitudinal correlation, they found ν = 1.0(1) at the temperatures within 1.2 TN, in

good agreement with the 2D IAFM scaling. Later, Leheny et al. [41] and Christianson

et al. [8] performed neutron scattering experiments in a magnetic field H close to the

bicritical point in the H-T phase diagram of Rb2MnF4, such that the spin anisotropy

is expected to become irrelevant. The static properties are well described by the 2D

HAFM theory in the classical limit [42, 43]. However, the dynamic properties yielded

a value of z = 1.35(2), clearly different from the theoretically predicted z = 1 for the

2D HAFM scaling [8]. The origin of this unexpected exponent has thus far remained

unresolved.

Among the aforementioned model systems in 2D and 3D, experimental results of

the static properties are in reasonable agreement with the theoretical predictions, inde-

pendently of whether the spins are in the classical or quantum limit. They confirm the

universality and scaling hypothesis of magnetic critical phenomena. However, much

less information is available on the critical dynamics of the model systems. Several

discrepancies were observed in dynamic scaling behavior, especially for systems with

the admixture of anisotropy field arising from the long-range dipole-dipole interactions.

MnF2 and Rb2MnF4 are in this special case: they are a well-suited pair of classical an-

tiferromagnets that are structurally and chemically closely similar and host 3D and 2D

spin systems, respectively. So far, the long-standing puzzles for the critical dynamics

of these materials with small spin anisotropy have not been experimentally articulated.

For conventional neutron scattering experiments, the following technical difficulties

contributed to these discrepancies.

• One of the reasons for these discrepancies is the limited energy or momentum

resolution of the neutron spectrometers used in previous times. For weakly

anisotropic antiferromagnets, a small anisotropy causes uniaxial spin alignment

along the c axis below TN. At temperatures close to TN, the magnetic correla-

tion length (the inverse of the momentum-width) and the magnetic lifetime (the

inverse of the energy linewidth) of the spin fluctuations become infinity. Experi-

mentally, these facts make it difficult to resolve the much narrower widths in the

momentum and energy scans with conventional neutron spectrometer. Typically,
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the momentum and energy resolutions for a triple axis spectrometer at a thermal

neutron source are around 0.01 Å−1 and 1 meV, respectively. The limited mo-

mentum and energy resolution restricts experiments to approach the asymptotic

critical region, which is more pronounced if the system is weakly anisotropic

like MnF2 and Rb2MnF4. This corresponds to a small crossover wave vector or

crossover temperature, separating the anisotropic and isotropic critical regions

of a system.

• The second reason is the data treatment to distinguish different components of

the spin fluctuations. As illustrated in Eq. (1.2) to (1.4), the transverse (non-

critical) component of the scattering cross section arising from the spin-wave

scattering is subtracted by incorporating assumptions based on the scattering ge-

ometry and symmetry of the crystal. Although these strategies could model the

data reasonably well, information of the relative intensities of the longitudinal

and transverse components is missing. A clear separation of both components

would offer a direct verification for applicability of these data treatments, since

the integrated intensity of the longitudinal component dominates the scattering

cross section as T → TN.

Motivated by these open questions in dynamic critical scaling and experimental dif-

ficulties, we have re-investigated the critical dynamics of the model compounds MnF2

and Rb2MnF4 by means of the neutron spin-echo (NSE) triple-axis spectroscopy tech-

nique with energy resolution in the μeV range. A related NSE technique was first

used by Mezei to study the critical dynamics of poly-crystalline iron [47, 48] and later

optimized for the measurement of linewidths of quasi-elastic excitations at small mo-

mentum transfer Q [49]. For the present study at larger Q, we took advantage of a

modified type of NSE based on radio-frequency spin flippers incorporated in a TAS

spectrometer (termed neutron resonant spin-echo, NRSE) [50, 51]. In this setup, the

TAS provides good momentum resolution and helps suppress the background, but of-

fers a comparatively coarse energy resolution, while the spin-echo device enhances the

energy resolution by about two orders of magnitude.

For magnetic neutron scattering, it has thus far proven difficult to find a scattering

vector Q where only one of the two components of the scattering function has a nonzero

cross section. With the advantage of the NRSE setup, we are able to echo the desired

longitudinal or transverse spin fluctuations along the corresponding Q-space by select-

ing an appropriate magnetic field configuration on the spectrometer arms. However,

the neutron spin-flip processes related to the magnetic scattering by spin excitations

lead to complicated spin-echo signals, which makes the experimental data analysis dif-

ficult to deal with. To describe these effects, we introduce an analysis technique based

on a neutron ray-tracing simulation of the spectrometer. In this way, we are able to

discriminate between longitudinal and transverse fluctuations at positions in Q-space

where both fluctuation components contribute to the scattering cross section. This is
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an additional distinct advantage of the NRSE-TAS setup. In this way, we were able to

obtain new insight into the dynamical critical exponents and crossover temperatures in

classical 3D and 2D antiferromagnets.
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2 Critical phenomena in magnetic
systems

2.1 Magnetic phase transitions and related critical
exponents

Critical fluctuations at second order phase transition have been extensively studied for

more than 100 years, from the liquid-gas transition in CO2 [1] to quantum phase transi-

tions that appear at T = 0 K [52]. A second order phase transition shows a discontinuity

in the second derivative of the Gibbs free energy at the critical point.

Magnetic model systems play an important role in understanding magnetic critical

phenomena. An ideal model system possesses relatively simple exchange interactions

between the magnetic ions, and the magnetic moments are not coupled to the lattice. In

the high-temperature paramagnetic phase, the moments are randomly disordered and

form a well-defined magnetic structure as the temperature is cooled below the critical

temperature TC,N for ferromagnetism and antiferromagnetism, respectively. The mag-

netically ordered and disordered phases of a system are thus separated by TC,N.

The key features of magnetic phase transition are [3]:

• There is a broken symmetry at the critical point. In the magnetic critical phenom-

ena, this symmetry is represented by the time-averaged order parameter M of a

system, which tends to zero in the high-temperature phase and is non-zero below

the critical point. Indeed, each physical quantity following the above rule can

be referred to as M for all phase transitions. In ferro- and antiferromagnetism,

the order parameters are the magnetization and sublattice magnetization, respec-

tively. Fig. 2.1 shows a typical example for the magnetic critical scattering in a

prototype antiferromagnet MnF2 at Q = G+ q [14]. The dashed curve represents

the data collected at the pure magnetic Bragg point with q = 0, showing the in-

tensity of the antiferromagnetic Bragg peak (∝ M2). With small deviations from

the magnetic zone center, the solid curves signal the pure contribution from the

magnetic critical scattering, with the peak positions located at T = TN.

• The magnetic correlation length ξ tends to infinity, both by approaching TC,N

from above or below. From a microscopic point of view, this divergent behavior

27
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Fig. 2.1: Intensities of neutron critical scattering in MnF2 (with TN = 67.3 K) at and in the

vicinity of the magnetic Bragg reflection G = (100). From [14].

illustrates that the disordered spins or spin clusters become correlated over long

distances compared to spin-spin interaction distances as the critical temperature

is approached.

• The lifetime of spin fluctuations of a system tends to infinity as the critical point

is approached. This dynamic (time-dependent) property is the so-called critical

slowing down, which is the main subject of this thesis.

For the description of critical phenomena, the so-called static and dynamic properties

are treated separately. The static properties are described by a time-averaged correla-

tion function, which is determined by the so-called universality classes. The latter only

depends on the spin and lattice dimensionality of the system and is independent of the

local interactions. For the description of the dynamic properties, both the universality

class and the conservation laws have to be taken into account. For example, in ferro-

magnets the order parameter commutes with the total energy, which is not the case in

antiferromagnets. This leads to different dynamic critical exponents in ferro- and anti-

ferromagnetism with the same universality class.
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2.1.1 Static critical phenomena

The static (time-averaged) properties of magnetic phase transition can be described by

the Gibbs free energy G(T,H) of a system. By definition, the first and second derivative

of G lead to static variables, including the order parameter M, the specific heat CH at a

constant magnetic field, and the isothermal susceptibility χT [3, 5].

M = −(∂G/∂H)T , CH = −T(∂2G/∂T 2)H , χT = −(∂2G/∂H2)T . (2.1)

The correlation length ξ, which describes the size of regions of correlated spins, is

obtained from the equal-time correlation function

Cαβ(r, ξ) = ∣r∣−1e−∣r∣/ξ. (2.2)

By taking the Fourier transform of Cαβ(r, ξ), it gives

Ĉ(q, κ) = S (q, κ) ≃ S (0, κ)[1 + (q/κ)2]. (2.3)

S (q, κ) is proportional to the cross section for neutron scattering [2]. The reduced

momentum transfer is q = Q−G, where Q is the momentum transfer and G is a magnetic

Bragg point. The inverse correlation length, κ = ξ−1, is the characteristic width of

S (q, κ) with respect to q. In accordance with the fluctuation-dissipation theorem,

S (q, κ) ∝ χ(q, κ), (2.4)

with χ(q, κ) the q-dependent susceptibility. In practice, neutron scattering provides a

direct measure of χ(q, κ).
Upon approaching the critical point, all the static variables diverge and their singu-

lar behavior is best described in power law dependencies as a function of the reduced

temperature t ≡ ∣(T − TC,N)∣/TC,N. The static critical exponents α, β, γ, ... can be

obtained from different thermodynamic properties. Table 2.1 shows the definition of

Exponents Properties Definition Conditions

β Magnetization, M M ∝ ∣t∣β H = 0

δ Magnetization, M M ∝ H1/δ t = 0

γ Susceptibility, χ χ∝ ∣t∣−γ H = 0

α Specific heat, CH CH ∝ ∣t∣−α H = 0

ν Correlation length, ξ ξ ∝ ∣t∣−ν H = 0

η Correlation function, S S (q, κ) ∝ q−2+η H = 0

Table 2.1: Definition of the static (time-averaged) critical exponents.
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model mean field Ising Ising Heisenberg

n any 1 1 3

d any 2 3 3

γ 1 1.75 1.2372(5) 1.3960(9)

ν 0.5 1 0.6301(4) 0.7112(5)

α − 0 0.110(1) -0.1336(15)

β 0.5 0.125 0.3265(3) 0.3689(3)

δ 3 15 4.789(2) 4.783(3)

η 0 0.25 0.0364(5) 0.0375(5)

Refs. [26] [20] [53] [54]

Table 2.2: Static critical exponents calculated for various spin (n) and lattice (d) dimensionality.

The dash indicates the corresponding quantity doesn’t follow a power law in the critical region.

various static critical exponents.

The Weiss molecular mean field theory of phase transition, introduced by Weiss in

1907, is the simplest one for magnetic systems [26]. It gives a general expression of the

order parameter M below the critical temperature and the corresponding critical expo-

nent β = 0.5. However, this prediction is insufficient to describe real magnetic systems

since it neglects the effects of the spin fluctuations, which are crucial to magnetic phase

transitions. Nonetheless, the mean field theory acts as the starting point in the develop-

ment of theories of phase transitions. Later in 1944, Onsager [20] solved the 2D Ising

model exactly and the resulting critical exponents are different from the mean field re-

sults [see Table 2.2]. However, no experimental data from layered magnetic systems

were available to verify these predictions at that time.

More recently, Wilson applied the renormalization group theory (RGT) to the prob-

lems concerning continuous phase transitions [55, 56]. The RGT makes it possible

to calculate the values of critical exponents more precisely. With the advantage of new

computing techniques using RGT, precise results of the calculable exponents have been

obtained. Table 2.2 shows the static critical exponents in various universality classes.

It is clear that the static critical exponents within a certain class are universal, and they

do not depend on the microscopic details of magnetic interactions. Real systems with

identical spin and lattice dimensionality but with different exchange couplings share

the same critical exponents.

In the so-called scaling approach proposed by Kadanoff et al. [57], the temperature

dependent static correlation function S (q, κ) can be expressed as a product of q or κ
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and a homogeneous scaling function g in q/κ
S (q, κ) = κ−2+ηg(q/κ), (2.5)

S (q, κ) = q−2+ηg′(q/κ), (2.6)

where the Fisher exponent η measures the deviation of the exponents in q and κ of

Eq. (2.5) and (2.6) from −2 [58]. Experimentally, η can be determined by measuring the

deviation of χ(q,T) from the simple Ornstein-Zernike theory [59] close to the critical

point:

χ(q,T) ∝ ( 1

κ2 + q2
)1−η/2

. (2.7)

In addition to the universality of second-order phase transitions, critical exponents

obey the so-called scaling laws defining the relation between different exponents. An

example of deriving a scaling law is as follows. By taking the properties of Eq. (2.5)

and the definition of the inverse correlation length κ ∼ tν, it gives

lim
q→0

S (q, κ) ∼ κ−2+η ∼ tν(−2+η)
. (2.8)

According to Eq. (2.4) and the definition of the magnetic susceptibility χ ∼ t−γ, we

obtain

lim
q→0

S (q, κ) ∼ χ(0, κ) ∼ t−γ. (2.9)

From Eq. (2.8) and (2.9), the exponents of t yield a static scaling law

ν(2 − η) = γ. (2.10)

In addition to Eq. (2.10), the rest of the static scaling laws are as follows.

α + 2β + γ = 2 (2.11)

α + β(δ + 1) = 2 (2.12)

γ(δ + 1) = (2 − α)(δ − 1) (2.13)

β = ν(d − 2 + η)/2 (2.14)

δ = (d + 2 − η)/(d − 2 + η) (2.15)

It is of practical importance for experimentalists to check the universality predictions

by measuring at least three of the static critical exponents. The static critical exponents

and the scaling laws in various universality classes have been confirmed. Table 2.3 il-

lustrates the static critical exponents α, β, and γ for three-dimensional isotropic and

anisotropic (Ising) model systems. These values are in overall good agreement with the
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System α β γ α + 2β + γ
Ni (FM) −0.091(2) [60] 0.385(5) [61] 1.31(1) [62] 1.989(14)
Fe (FM) −0.103(11) [60] 0.367(5) [63] 1.33(5) [64] 1.96(5)

EuO (FM) −0.026(5) [65] 0.370(6) [66] 1.30(2) [66] 2.014(24)
FeF2 (AFM) 0.111(7) [67] 0.325(7) [68] 1.25(2) [69] 2.011(19)
MnF2 (AFM) 0.091(5) [67] 0.333(3) [30] 1.27(2) [13] 2.027(22)

Table 2.3: Experimental verification of the scaling law of α + 2β + γ = 2 in three-dimensional

ferromagnets (FMs) and antiferromagnets (AFMs).

theories for the given universality and their scaling relation is governed by the universal

scaling law.

In summary, the current understanding of static critical phenomena has made tremen-

dous progress after more than 100 years of intensive studies.

2.1.2 Dynamic critical phenomena

For the description of the dynamic properties of critical phenomena, frequency- or time-

dependent correlations are introduced in addition to the (static) time-averaged spin-spin

correlation function Ĉ [3] [see Eq. (2.3)],

Ĉ(q, t, ω) = h̵βω−1
c Ĉ(q, t)F(q, t, ω/ωc). (2.16)

The spectral weight function F in the dynamic part of Eq. (2.16) is normalized such

that

∫ ∞

−∞
F(q, t, ω)dω = 1, (2.17)

and the characteristic frequency ωc is defined by

∫ ωc

−ωc

F(q, t, ω)dω = 1

2
. (2.18)

If Ĉ(q, t, ω) is a Lorentzian, then the characteristic frequency ωc is the half-width-half-

maximum (HWHM) Γ of the frequency spectrum. The dynamic scaling hypothesis [6,

7] requires that ωc(q) is a homogeneous function of the wave vector q and the inverse

magnetic correlation length κ = ξ−1 ∼ tν. The related scaling relations are

ωc(q, κ) = κzΩ(q/κ), (2.19)

ωc(q, κ) = qz
Ω
′(q/κ). (2.20)
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Fig. 2.2: Experimental example for the critical slowing down of spin fluctuations in Rb2MnF4

measured by neutron three-axis spectroscopy at the antiferromagnetic magnetic Bragg peak

Q = (010), with TN = 38.4 K. The energy width increases with temperature, indicating that the

lifetime of the critical fluctuations decreases. From [8].

z is the dynamic critical exponent. The quantity Ω = (q/κ)zΩ′ is a homogeneous

scaling function in q/κ, which depends on the static universality class. Experimentally,

these relations can be verified by measuring the characteristic frequency as a function

of the wave vector q at the critical temperature or as a function of temperature at the

magnetic zone center q = 0. The quantity ω−1
c (q, κ) is the lifetime of the spin fluctu-

ations and is proportional to t−zν [see Eq. (2.19)]. This feature is the so-called critical

slowing down of spin fluctuations, which is connected to the static critical exponent

ν for a given universality class. Fig. 2.2 shows a typical example of such behavior in

Rb2MnF4 [8].

Table 2.4 lists the dynamic critical exponents z for different spin systems, which is

adapted from [7]. The dynamic critical phenomena are described as subsets of the static
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Model system
Universality Conserving fields Expression z
(n, d) yes no for z (d = 3)

Heisenberg

(3, d) M − (d + 2 − η)/2 ∼ 5/2ferromagnets

(Model J)

Heisenberg

(3, d) E M d/2 3/2antiferromagnets

(Model G)

Anisotropic

(1, d) E M 2 + α/ν ∼ 2magnets

(Model C)

Kinetic Ising

(n, d) − M ∼ 2anisotropic magnets 2 + cη
(Model A) c ∼ 0.72

Table 2.4: Dynamic critical exponents z in different spin systems. For the conserving fields, M
and E denote the order parameter and the energy, respectively. From [7].

universality classes in terms of (n, d), the spin (n) and lattice (d) dimensionalities. Be-

sides the static universality class [see Sec. 2.1.1], the conservation laws of energy and

spin of a system have to be taken into account for the critical dynamics. In the Heisen-

berg (isotropic) antiferromagnet (Model G of [7]) the order parameter M (staggered

magnetization) is a non-conserved quantity, whereas in the Heisenberg ferromagnet

(Model J of [7]) M is a conserved variable and commutes with the total energy E. This

fact leads to different expressions of z for ferromagnets with z = (d + 2 − η)/2 and

antiferromagnets with z = d/2, even if they belong to the same universality class (3, d).
The Models C and A correspond to anisotropic ferro- and antiferromagnets and possess

a similar critical exponent z ∼ 2. The physical origins of the anisotropic spin arrange-

ments are somewhat relevant: the kinetic Ising model in Model A concerns the dynamic

properties of systems with significant relaxation due to phonon or dipolar interactions,

which break the conservation laws. The presence of the dipolar interactions causes the

spin to align in an anisotropic manner. In discussing the expression of z in Model A,

the small static critical exponent η in three-dimensional systems [53, 54] leads to the

dynamic critical exponent z ∼ 2. On the other hand, the conventional or Van Hove

theory [34] states that the characteristic width ωc is proportional to the inverse static

susceptibility χ,

ωc ∼ χ−1 ∼ ξ−2+η
. (2.21)

Considering the dynamic critical exponent defined by ωc ∼ ξ−z, we obtain the so-called

conventional (Van Hove) dynamic critical exponent z = 2 − η, suggesting c = −1 in the

expression of Model A. Experimentally, this conventional exponent has been confirmed
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for two-dimensional Ising model systems with η = 0.25 [32, 33, 70, 71].

In summary, the theory of dynamic critical phenomena by Hohenberg and Halperin

offers a first insight to the dynamic properties in several model systems. However,

much less information is available for the influences of non-conserving forces on the

critical dynamics, which may cause crossover behavior in the critical region. It is the

main task in this thesis to explore the critical dynamics in Heisenberg magnets with

dipolar anisotropy.

In the following section, we review experimental results of dynamic critical phe-

nomena for model systems with different spin and lattice dimensionalities and with

different types of spin arrangements including ferromagnets and antiferromagnets. The

experimental techniques to investigate critical dynamics discussed here include neutron

scattering (NS), neutron spin-echo spectroscopy (NSE), nuclear magnetic resonance

(NMR), electron spin resonance (ESR), muon spin relaxation (μSR), perturbed angular

correlations (PAC) of γ-ray spectroscopy and the Mössbauer effect (ME).

2.1.2.1 The three-dimensional model ferromagnets

Dynamic critical phenomena were first studied in 3D Heisenberg ferromagnets (3D

HFMs). In the 1970’s, NS studies on Ni [72], Fe [73], and EuO [74] found dynamic

critical exponents consistent with the exponent z = 2.5 expected for the 3D HFM scal-

ing. In a pioneering PAC study, Chow et al. [75] measured the spin autocorrelation

times for Ni and Fe, as shown in Fig. 2.3 (a). The slope of the fitted lines depends on z,

ν, and η. z can be extracted under the assumption of a given universality class. z shows

a change on cooling towards Tc. This change happens around the crossover tempera-

ture tx ∼ 10−2 in both Ni and Fe. z crosses from the 3D HFM class with z = 2.5 well

above tx to the 3D dipolar FM class with z = 2 below tx. With the invention of NSE,

Mezei pushed the energy resolution of NS down to the μeV range, which allowed him

to study the critical dynamics of poly-crystalline Fe and EuO close to Tc. The z = 2.5
found in Fe [47] and EuO [48, 76] is in good agreement with the 3D HFM. In contrast

to NS, ESR studies allow one to measure the relaxation rates of spin fluctuations at

q = 0 and at temperatures very close to Tc. Dunlap et al. [77] found z = 2 by ESR in

EuO. This means there is a crossover in z between the parameter regions sampled by

neutrons and ESR. The ESR data show strong evidence for the z = 2 dipolar FM class

for q = 0 and for a very small reduced temperature in the order of 10−4, in the so-called

asymptotic critical region. A collection of experimentally determined z from selected

materials and related theoretical predictions is listed in Table 2.5.

The crossover behavior in z in the scaling relation of Eq. (2.19) and Eq. (2.20) in the

3D HFMs results from the spin anisotropies. The latter originates from dipolar interac-

tions or from crystal fields. It was realized that the long-range dipolar field, which does
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Fig. 2.3: (a) The divergence of spin autocorrelation time above Tc of Ni and Fe, deduced from

the nuclear relaxation time of a PAC experiment. Both in Ni and Fe the scaling crosses from

the the HFM (z = 2.5) to the dipolar FM (z = 2) class. The crossover temperatures are at

around t = 10−2. From [75]. (b) Energy linewidth Γ versus q at T = Tc for EuO, obtained from

NSE [48, 76] and NS [78]. The experimental data follow the prediction of 3D HFM (z = 2.5)

up to 1/3 of the zone boundary. (c) The scaling regions in the q − κ plane with a crossover

boundary line. From [79].
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System method z t or q(Å−1) range Reference

Ni

NS 2.45(25) q ∶ 0.04 − 0.2 Minkiewicz 1969 [72]

PAC
2.06(4) t ∶ 1 × 10−4 − 0.01 Chow 1980 [75]

2.5(2) t ∶ 0.01 − 0.06 Hohenemser 1982 [27]

Fe

NSE 2.48(5) q ∶ 0.01 − 0.3 Mezei 1982 [47]

PAC
2.06(4) t ∶ 2 × 10−3 − 0.01 Chow 1980 [75]

2.5(2) t ∶ 0.02 − 0.1 Hohenemser 1982 [27]

EuO

NS 2.29(3) q ∶ 0.12 − 0.48 Dietrich 1976 [74]

ESR 2.04(7) t ∶ 3 × 10−4 − 0.1 Dunlap 1980 [77]

NS
2.50(5) q ∶ 0.01 − 0.4

Mezei 1984 [48]

NSE Mezei 1986 [76]

Theory − 2.5 Heisenberg FMs [7] (Model J)

Theory − 2 Dipolar FMs [7] (Model A)

Table 2.5: Observed and predicted z in 3D ferromagnets (FMs). NS: neutron scattering; PAC:

perturbed angular correlations of γ-ray spectroscopy; ESR: electron spin resonance; NSE: neu-

tron spin-echo spectroscopy.

not conserve spin, can change the critical dynamics drastically. As shown in Fig. 2.3

(c), the dipolar interaction becomes influential as q2 + κ2 < q2
d, with qd the crossover

wave vector. Within the circular segment, the z = 2 for the 3D dipolar FM universality

class is observed. Outside the circle, the system is expected to be in the isotropic FM

class with z = 2.5.

For the 3D dipolar FMs, qd is defined from the relation g = (qda)2, with a the lattice

parameter [15, 80]. The dimensionless quantity g is defined as

g = 4πa3

va

(gLμB)2/a3

2J
, (2.22)

which is proportional to the ratio of the dipolar energy (gLμB)2/a3 and the exchange

energy 2J. va is the volume of the unit cell. By taking the measured exchange cou-

pling, it allows one to estimate qd to be 0.013 Å−1 for Ni [81], 0.045 Å−1 for Fe [76],

and 0.147 Å−1 for EuO [76, 81]. As NS is limited to q > 0.01 Å−1, the experimental

approach to the inner region of the circle is difficult and thus one only observes z = 2.5,

as in early NS studies in the 1970’s. PAC and ESR are intrinsically limited to q = 0,

and thus sample the inner region of the circle, with z = 2. The critical exponents for the

3D FMs Ni, Fe, EuO, and the theoretical results are summarized in Table 2.5.

On the theoretical side, the extended scaling approach for the anisotropic materi-

als [10] and mode coupling studies [15, 80] have suggested that dipolar interactions

should affect (non-critical) longitudinal and (critical) transverse correlations in FMs in
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a different way. The existence of the dipolar interaction strongly suppresses the longi-

tudinal fluctuations, leading to a finite susceptibility as the critical temperature is ap-

proached [82]. As a result, the non-critical fluctuations cross from z = 2.5 to z = 0 while

the critical fluctuations changeover from z = 2.5 to z = 2. However, an experimental

verification of these predictions is still lacking, mainly due to the technical difficulties

in sufficiently separating the longitudinal and transverse correlations of materials in NS,

ESR, and PAC experiments.

2.1.2.2 The three-dimensional model antiferromagnets

As mentioned above, the dynamic critical properties in ferromagnets and antiferromag-

nets are different due to their conservation laws. Here we review basic properties of the

3D antiferromagnets, where the reduced anisotropic energy αI, the ratio of anisotropic

energy and the exchange interaction, plays a key role.

RbMnF3 is known as a nearly ideal 3D isotropic Heisenberg antiferromagnet (3D

HAFMs) with very small αI = 6 × 10−6 [83, 84]. The static critical exponents, such as

β, ν, γ, and η, have been previously measured by NS, consistent with the 3D Heisen-

berg universality class [28]. The dynamic critical exponent z = 1.43 ± 0.04 below and

above TN is close to the value z = 1.5 predicted by the dynamic scaling theory for the

3D HAFM scaling (model G [7]). More recently, this fact has been confirmed by Tsai

and Landau [16] using Monte Carlo simulations.

For anisotropic systems with larger αI, including MnF2, FeF2, and CoF2, the static

properties are best represented by the 3D Ising model. However, only FeF2 [85, 86]

and CoF2 [7] follow the dynamic scaling theory with z = 2 for the 3D Ising antifer-

romagnet (3D IAFM) scaling. Table 2.6 shows that the dynamic critical exponent of

MnF2 strongly depends on the experimental methods: z ranges from 1.49(7) by NS to

2.3(3) by μSR. The origin of these discrepancies probably results from the different

q ranges sampled by these methods. As for the NS data of MnF2, Fig. 2.4 (a) and (b)

show the temperature and wave vector dependence of the characteristic energy widths

Γ∥(q = 0, t) and Γ∥(q, t = 0), respectively.

Γ∥(q = 0, t) = (6.6 ± 0.6) [κ∥(T)]1.49±0.07

meV (2.23)

Γ∥(q, t = 0) = (7.0 ± 0.9) q1.6±0.2 meV (2.24)

z = 1.49(7) and z = 1.6(2) are close to the prediction of the 3D HAFM scaling with

z = 1.5, although the static exponents follow the 3D Ising model [13, 87]. This discrep-

ancy likely results from the weak anisotropy and from limited momentum and energy

resolution of conventional spectrometers, as discussed for the 3D FMs.

Riedel and Wegner [10, 11] have calculated the critical properties of the longitudinal
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Fig. 2.4: (a) Temperature and (b) wave vector dependence of the longitudinal energy linewidth

Γ∥(q = 0, t) and Γ∥(q, t = 0) for MnF2, giving z = 1.49(7) and z = 1.6(2). From [13]. (c)

q− κ plane. The circle q2 + κ2
∥
= κ2Δ separates the anisotropic (κ∥ ≪ κΔ) and isotropic (κ∥ ≫ κΔ)

critical regions of a system. From [86].

(Γ∥) and transverse (Γ⊥) energy linewidths for MnF2 and FeF2 in the anisotropic (a) and

isotropic (i) limits.

Γa
⊥ = 0.3 meV, Γa

∥ = 27κ2∥meV, Γi
⊥,∥ = 8.6κ1.5∥ meV for MnF2 (2.25)

Γa
⊥ = 4.5 meV, Γa

∥ = 17κ2∥meV, Γi
⊥,∥ = 12κ1.5∥ meV for FeF2. (2.26)

The crossover wave vector κΔ is represented by a boundary circle q2 + κ2∥ = κ2Δ in the

q − κ∥ plane, separating these two critical regions [see Fig. 2.4 (c)]. In both MnF2 and

FeF2, close to TN the anisotropic interactions suppress the transverse fluctuations. This
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3D Heisenberg AFMs:

System method z t or q(Å−1) range Reference

RbMnF3
NS 1.46(13) t ∶ 0.04 − 0.1 Tucciarone 1971 [28]

NS 1.43(4) q ∶ 0.02 − 0.12 Coldea 1998 [29]

Theory − 1.5 Heisenberg AFMs [7] (Model G)

Theory MC 1.49(3) Tsai 2003 [16]

3D Ising AFMs:

System method z t or q(Å−1) range Reference

MnF2

NMR 1.75(5) t ∶ 2.2 × 10−4 − 1.5 × 10−2 Heller 1966 [30]

NS
1.6(2) q ∶ 0.026 − 0.26

Schulhof 1971 [13]
1.49(7) t ∶ 7.8 × 10−3 − 0.12

μSR 2.3(3) t ∶ 0.01 − 0.1 de Renzi 1984 [31]

FeF2

NMR 2.0(3) t ∶ 5.1 × 10−4 − 1.7 × 10−2 Gottlieb 1971 [85]

NS
2.1(2) q ∶ 0.067 − 0.4

Hutchings 1972 [86]
2.3(4) t ∶ 5.7 × 10−4 − 0.08

CoF2 μSR 2.09 t ∶ 1.3 × 10−3 − 6.6 × 10−3 de Renzi 1984 [31]

Theory − 2 Anisotropic AFMs [7] (Model C)

Table 2.6: Measured and calculated z in 3D antiferromagnets (AFMs). NS: neutron scattering;

MC: Monte Carlo; NMR: nuclear magnetic resonance; μSR: muon spin relaxation.

leads in the anisotropic limit to a finite constant value of Γa
⊥ with z⊥ = 0. The dynamic

critical exponent z of the longitudinal fluctuations crosses from z∥ = 1.5 in the 3D

(isotropic) HAFM class to z∥ = 2 of the 3D (anisotropic) IAFM class. In the isotropic

limit with κ∥ ≫ κΔ (or T ≫ TN), Γ∥ and Γ⊥ become identical and z∥ = z⊥ = 1.5.

κΔ was calculated as 0.054 Å−1 and 0.29 Å−1 for MnF2 anf FeF2, respectively. With

the experimental results of κ∥ [13, 86], the corresponding crossover temperatures can

be estimated as tx = 0.03 and tx = 0.4. These small values of κΔ and tx explain the

discrepancy found in MnF2, where q and t were not sufficiently small to reach the 3D

anisotropic critical region. On the other hand, experimental results of FeF2 [85, 86]

show no contradictions with the 3D IAFM model, because κΔ and tx are relatively

large and the 3D IAFM scaling region is easily accessible by experiments. Table 2.6

summarizes the experimental and theoretical results of z for the 3D IAFM and 3D

HAFM model systems. Following the crossover behavior of 3D dipolar FMs, Frey and

Schwabl [15] further discussed the case for the 3D dipolar AFMs. On the basis of

Eq. (2.22), they calculated the characteristic wave vector of AFMs,

κΔ = ( 1

12
)2/3(qda)4/3qBZ, (2.27)
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where qBZ = π/a(3/4π)1/3 is the boundary of the first Brillouin zone. Taking the exper-

imentally determined values of the exchange coupling, κΔ is about 0.06 Å−1 for MnF2.

Pfeuty et al. [12] have extended the scaling theory to anisotropic systems and pre-

dicted the crossover behavior from Heisenberg to Ising universality classes as t ap-

proaches zero. The reduced anisotropy αI = HA/HE is introduced as the relevant scaling

field of the dynamic scaling hypothesis, where HA and HE are the anisotropy field and

exchange field of a system, respectively. The crossover phenomenon is postulated to

appear at a certain temperature, the so-called crossover temperature tx.

∣ tx ∣=∣ αI ∣1/φ=∣ HA/HE ∣1/φ, (2.28)

where φ is a crossover exponent and it is calculated to be 1.25 in the 3D case. Thus

a system is expected to show 3D Heisenberg behavior in the temperature range t > tx,

and is expected to follow the Ising model as t < tx. In the intermediate temperature

range t ∼ tx, a smooth crossover occurs between the Heisenberg and Ising universality

classes. With the experimental values of αI from the antiferromagnetic resonance stud-

ies [88, 89], tx(MnF2) = 0.036 and tx(FeF2) = 0.45 are obtained.

2.1.2.3 The two-dimensional Ising model

K2NiF4 and compounds with the same structure [19], such as Rb2MnF4 and K2CoF4,

are the best examples for two-dimensional (2D) antiferromagnets, whose magnetic ions

have relatively large exchange interactions J between neighboring ions in the planes.

Typically, the ratio of the effective interplane coupling J′ and J is of the order of

10−6, leading to a 2D spin nature. Another feature of these 2D systems is the re-

duced anisotropy energy αI, which determines if the critical dynamics is Ising-like or

Heisenberg-like. The anisotropic αI results from crystal-field effects in the nickel and

cobalt salt, and from dipolar interactions in the manganese salt. The magnetic moments

are aligned along the crystalline c axis in the ordered state.

On the theoretical side, the static properties of the 2D Ising universality class have

been calculated exactly in 1944 by Onsager [20] and have been verified experimentally

in the model systems K2CoF4 [90] and Rb2CoF4 [91]. However, a clarification of the

dynamic properties is still lacking: Mazenko and Valls [18] have reviewed different

calculations of the dynamic critical exponent z and found a large spread ranging from

z = 1.15 to z = 2.95 in the literature. These discrepancies result from the much nar-

rower asymptotic dynamic critical region than in the static case. On the other hand, the

conventional value of the dynamic critical exponent z = 2 − η = 1.75 [34] holds only if

the temperature is not too close TN.

Experimentally, early NMR studies of K2CoF4, K2MnF4, and Rb2CoF4 were per-
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Fig. 2.5: (a) Temperature and (b) wave vector dependence of the longitudinal energy linewidth

Γ∥(q = 0, t) and Γ∥(q, t = 0) for Rb2CoF4, giving z = 1.69(2) and z = 1.67(8). From [71]. (c)

ME study on KFeF4 in the critical region. Within the experimental range, the critical exponent

crosses from w = 1.20(4) at low t to w = 1.42(2) at high t. From [92].
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System method z t or q(Å−1) range Reference

K2CoF4 NMR 1.77(3) t ∶ 0.1 − 2 Bucci 1971 [32]

K2MnF4 NMR 1.75(10) t ∶ 0.01 − 2 Bucci 1974 [33]

Rb2CoF4

NMR 1.65(5) t ∶ 0.1 − 0.4 Bucci 1972 [70]

NS
1.67(8) q ∶ 0.01 − 0.025

Hutchings 1982 [71]
1.69(2) t ∶ 3 × 10−2 − 0.4

KFeF4 ME
1.77(5) t ∶ 5 × 10−3 − 0.1

Slivka 1984 [92]
1.55(4) t ∶ 4 × 10−4 − 5 × 10−3

Theory
conventional 1.75

Mazenko 1981 [18]
others 1.15 − 2.95

Table 2.7: z in anisotropic 2D antiferromagnets (AFMs). NMR: nuclear magnetic resonance;

NS: neutron scattering; ME: Mössbauer effect.

formed by Bucci et al. [32, 33, 70]. They found that the dynamic properties match the

conventional value of z = 1.75 for the 2D Ising AFMs. In NS experiments on Rb2CoF4

by Hutchings et al. [71], z = 1.69(2) and z = 1.67(8) were obtained by the scaling

relations of Γ(q = 0,T) vs. q and Γ(q,T = TN) vs. T , respectively [see Fig. 2.5 (a) and

(b)]. These experiments support the conventional value of z = 1.75 for the 2D Ising

AFMs. However, it is not known whether these studies are sufficiently in the asymp-

totic critical region or not.

In a surprising ME study of weakly anisotropic KFeF4, Slivka et al. [92] found two

critical regions while approaching TN, as shown in Fig 2.5 (c). For ME studies [93], the

relation between the critical exponents gives

w = ν(z + 2 − d − η), (2.29)

where ν, d, and η are known values for a given universality class. In the temperature

range 4 × 10−3 < t < 0.1, w = 1.42(2) or z = 1.77(5) was found in good agreement

with the conventional value, while in 4 × 10−4 < t < 5 × 10−3 an unconventional value

of w = 1.20(4) or z = 1.55(4) was observed. In summary, Table 2.7 shows a list of

z obtained from these model systems with experimental conditions and the theoretical

predictions.
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2.2 Physics of two-dimensional Heisenberg
antiferromagnets

After discussing the model systems in the 2D Ising universality class with large αI, we

summarize here the properties of two-dimensional Heisenberg antiferromagnets (2D

HAFMs) with small αI. For ideal 2D HAFMs, the Mermin-Wagner theorem [94] pre-

dicts that there is no transition to magnetic long-range order above T = 0 K. However,

this is clearly not the case for real layered compounds. The interlayer exchange in-

teractions, as well as easy-axis or easy-plane anisotropies of the intralayer interaction

lead to a finite transition temperature of the system. Interest in the physics of the 2D

HAFMs was renewed following the discovery of high temperature superconductivity in

1986 [95]. The undoped parent compounds of the copper oxide superconductors, such

as La2CuO4 [35], are nearly ideal representatives of the S = 1/2 2D HAFMs, where

pronounced quantum effects are observed. In this section, a brief experimental review

of the static and dynamic properties of 2D HAFMs will be presented, ranging from the

quantum limit S = 1/2 to the classical case S →∞.

2.2.1 Quantum limit S = 1/2

To describe the static and dynamic critical behavior of 2D HAFMs, an effective field

theory has first been established by Chakravarty, Halperin, and Nelson (CHN), by map-

ping the 2D HAFM into the quantum non-linear sigma model [44, 45]. The CHN

model gives the correlation length ξ in the renormalized classical region. Later, the

CHN theory was extended by Hasenfratz and Niedermayer (HN) [46] to a more precise

expression, which is referred to as the CHN-HN formula and is given by

ξ

a
= e

8

c/a
2πρs

e2πρs/T [1 − 1

2
( T

2πρs
) +O( T

2πρs
)2]. (2.30)

a is the lattice constant. ρs = Zρ(S )S 2 J and c = Zc(S )2√2aS J are the spin-stiffness

and spin-wave velocity, respectively. J is the nearest neighbor exchange coupling con-

stant. One should note that the terms of Zρ and Zc are the quantum renormalization

factors depending on S , i.e. Zρ ≃ 0.699 and Zc ≃ 1.18 are obtained for S = 1/2 [96].

On the basis of CHN’s work assuming the dynamic scaling hypothesis [6, 7], the

dynamic properties of 2D HAFMs have been investigated by Tyc, Halperin, and Cha-

kravarty (THC) using a molecular dynamic simulation [97]. In the scaling region, the

dynamic correlation function S (k, ω) is expressed as

S (k, ω) = ω−1
0 S (k)Φ(q, ν), (2.31)

ω0 = cξ−1(T/2πρs)1/2, (2.32)
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Fig. 2.6: Two experimental representations of static properties for the S = 1/2 2D HAFMs of (a)

La2CuO4 and (b) Sr2CuO2Cl2, together with the prediction by CHN-HN, where the modified ξ
due to spin anisotropies was involved. From [35, 36].

where k is the distance from the magnetic zone center andω0 is the characteristic energy

width. S (k) is the time-averaged correlation function and the dimensionless scaling

variables are defined as ν = ω/ω0 and q = kξ. In addition, the temperature dependence

of the scattering amplitude S 0 is

S 0 ∼ ( T
2πρs

)2

ξ
2
. (2.33)

In real compounds, Fig. 2.6 shows the static properties of (a) S = 1/2 La2CuO4 [35]

and (b) Sr2CuO2Cl2 [36, 37], which follow the CHN-HN formula reasonably well.

Keimer et al. [35] have proposed a generic mean-field expression for ξ to account for

the effective anisotropy αeff

ξ(αeff,T) = ξ0(T)√
1 − αeffξ0(T)2

. (2.34)
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Fig. 2.7: Logarithmic plot of the scaled characteristic width versus inverse correlation length in

2D HAFMs. A comparison of the quantum (S = 1/2) and classical (S = ∞) Monte Carlo sim-

ulations were also made, illustrating that all data are on the same curve as ω0 ∼ ξ
−1. From [40].

ξ0 is the correlation length of the unperturbed 2D HAFM and αeff denotes a combination

of the perturbations arising from the anisotropies. In Fig. 2.6 (a), this αeff modification

of ξ (dashed curve) shows a much better agreement between the CHN-HN formula and

experiment.

As for the dynamic properties of 2D HAFMs, Sr2CuO2Cl2 and Sr2Cu3O4Cl2 are the

only experimental realizations so far for testing the validity of dynamic scalingω0 ∼ ξ−z

for S = 1/2 [40]. Other copper oxide superconductors like La2CuO4 with rather larger

J ∼ 100 meV make neutron scattering experiment difficult to perform at this energy

scale. Fig. 2.7 shows the scaled ω0/J versus a/ξ of S = 1/2 Sr2CuO2Cl2 (filled sym-

bols) and Sr2Cu3O4Cl2 (open symbols). From there, Kim et al. [40] have found the

dynamic critical exponent z = 1.0 ± 0.1 for the S = 1/2 2D HAFM, which is in good

agreement with the dynamic scaling theory with z = 1.

As a result, theoretical work by CHN-HN and THC have nicely captured the static

and dynamic properties of S = 1/2 2D HAFM. However, the description of the static

properties of 2D HAFM suggested by the CHN-HN formula was reported not to hold

for systems with S > 1/2. Such experimental results like in K2NiF4 [37, 38] and

La2NiO4 [39] for S = 1 and in Rb2MnF4 [8, 17, 41] for S = 5/2 show large deviations

from the CHN-HN formula.
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Fig. 2.8: PQSCHA calculations of the correlation length vs. the reduced temperature for various

spin values S . The solid lines are obtained from the low and high temperature results. The

dashed lines are the results by taking the cutoff effect of spin waves. Classical and quantum

results of HTE are illustrated as the filled circles. From [42].

2.2.2 Classical limit S →∞

To resolve the above-mentioned discrepancies found in CHN-HN formula, Elstner et
al. [98] calculated high-temperature expansions (HTE) for 2D HAFM with different

spin values S ranging from S = 1/2 to S = 5/2. In a different theoretical approach,

Cuccoli et al. [42, 43] have proposed a semi-classical theory, which is referred to as the

pure quantum self-consistent harmonic approximation (PQSCHA), to compute the ther-

mal properties of 2D HAFM with quantum corrections. From both HTE and PQSCHA,

these authors observed a strong deviation of the calculated ξ from the CHN-HN theory,

especially for large S . Fig. 2.8 shows the HTE and PQSCHA results of ξ in units of lat-

tice constant a for various S , in which the HTE results are only calculated up to ξ = 10

and thus are insufficient to describe the high-ξ (low-T ) data of classical 2D HAFM.

In the PQSCHA, Cuccoli et al. [42, 43, 100] have used the effective Hamiltonian

method to treat the pure quantum fluctuations by a self-consistent Gaussian approxi-

mation. As for the renormalized terms due to quantum fluctuations, the reduced tem-

perature t = T/JS̃ 2 and effective spin length S̃ = S + 1/2 are defined, given that the

connection between the quantum correlation length ξ(t) and its classical counterpart

ξcl(t) reads

ξ(t) = ξcl(tcl) with tcl = t
θ4(t) , (2.35)

where θ4(t) is a renormalized temperature factor which approaches unity as S →∞.
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Fig. 2.9: (a) Correlation length and (b) staggered susceptibility ∝ S 0 versus t = T/JS̃ 2 for

S = 5/2. Experimental data for KFeF4 [99] and Rb2MnF4 [17] are expressed in circles and

squares, respectively. From [100].

Fig. 2.9 shows the experimental verification of the PQSCHA for S = 5/2 KFeF4 [99]

and Rb2MnF4 [17]. These two compounds possess a nearly identical magnitude of re-

duced spin anisotropy αI, with αI = 0.0045 for KFeF4 and αI = 0.0047 for Rb2MnF4.

Good agreement of the correlation length and staggered susceptibility between the ex-

perimental data and calculation are found in the whole temperature range except for the

magnified regions, where the crossover behavior, arising from αI, between the 2D Ising

and 2D Heisenberg universality class is expected. In summary, the static properties of

2D HAFM are properly described by the PQSCHA.

The success of the PQSCHA in describing the static properties of S = 5/2 2D

HAFM, led the Birgeneau group to re-examine the neutron scattering experiments on

the spin dynamics of Rb2MnF4. Leheny et al. [41] first performed the experiments un-

der external magnetic fields along the spin-flop line proposed by Cowley et al. [101].

Thus the spin anisotropy αI is expected to become irrelevant. Fig. 2.10 (a) shows the

field-temperature (H-T ) phase diagram of Rb2MnF4. The spin-flop line separates the

low-field Ising and high-field XY spin phases with a relation

H = √
28.09 + 0.23T , (2.36)

where H and T are in units of Tesla and K. Accordingly, they obtained the static prop-

erties of 2D HAFM: the correlation length ξ and static structure amplitude S 0 as a

function of temperature. Fig. 2.10 (b) shows that these results are in good agreement

with Cuccoli’s semiclassical calculation for S = 5/2 in the whole experimental region.

In addition, S 0/ξ2 shows a weak temperature dependence at high T , but has a strong
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Fig. 2.10: (a) The H-T phase diagram of Rb2MnF4. (b) Static properties of the ξ and amplitude

of structure factor S 0 as a function of scaled temperature in Rb2MnF4. The triangle data are

taken from Lee et al. [17] without applying magnetic field. From [41].

temperature dependence on T 2 at low T which agrees with the prediction of the low

temperature theory for 2D HAFM [see Eq. (2.33)]. This might reflect the crossover

behavior between the classical and renormalized classical regions of 2D HAFM [102].

Continuing Leheny’s work, Christianson et al. [8] performed a quasielastic neutron

scattering study under magnetic fields to investigate the dynamic properties of the clas-

sical 2D HAFM Rb2MnF4. They demonstrated dynamic scaling as in Eq. (2.31) based

on the static properties of [41]. Fig. 2.11 (a) shows the temperature profile of charac-

teristic energy widths ω0, which corresponds to the critical slowing down of the spin

fluctuations. Fig. 2.11 (b) plots the energy width ω0 against the inverse correlation

length ξ−1 to test the dynamic scaling ω ∼ ξz. This yielded an unconventional exponent

z = 1.35(2), which is significantly different from the predicted exponents z = 1 for 2D

HAFM and z = 1.5 for 3D HAFM scaling. This unsolved discrepancy might originate

from differences between the dynamic scaling near the bicritical point and the ideal 2D

HAFM scaling. Considering the conservation laws applied to the critical dynamics, the

former possesses a conserved uniform magnetization along the magnetic field while the
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Fig. 2.11: (a) Scaled characteristic widths vs. the scaled temperature in Rb2MnF4. (b) A demon-

stration of dynamic scaling ω0 ∼ ξ
−z, in which z was found with a deviation from the predicted

2D HAFM. From [8].

latter possesses an non-conserved sublattice magnetization. The 3D bicritical dynamics

has been calculated and the resulting exponent was found larger than that for the 3D

Heisenberg model [103]. However, studies of the 2D critical dynamics at the bicritical

point are still lacking.

In summary, the static properties of 2D HAFMs are in overall agreement with theo-

ries, independently of whether the systems are in the quantum or classical limit. For the

critical dynamics, only few materials can be used to test the dynamic scaling hypothesis

since other 2D HAFMs, such as the parent compounds of the copper based supercon-

ductor, have large exchange couplings J. This makes quantitative studies using neutron

scattering difficult. Experimentally, only S = 1/2 Sr2CuO2Cl2 and Sr2Cu3O4Cl2 agree

with 2D HAFM scaling, whereas for S = 5/2 Rb2MnF4, the discrepancy of the mea-

sured dynamic critical exponent from theoretical predictions has not yet been fully

clarified.
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3.1 Neutron scattering
Following the discovery of neutrons by James Chadwick in 1932, the first nuclear reac-

tor "atomic pile" was constructed by Enrico Fermi and his co-workers in 1942. Modern

research reactors, such as those at the ILL or the FRM II use compact cores with D2O

moderation to generate high neutron flux densities in the order of 1015 neutrons per cm2

per second. Alternatively, neutrons are generated in a spallation source via the impact

of GeV protons on a heavy nuclei such as W or Hg. Modern spallation sources are the

SNS, J-Park, ISIS, and the PSI. A current construction project is the European spalla-

tion source in Lund.

Neutron scattering has become a valuable tool for probing structural and dynamic

properties of solids on an atomic scale. The neutron’s de-Broglie wavelength of the

order of several Å and the energy of the order of several meV ideally match interatomic

distances and the energy of elementary excitations such as phonons and magnons. The

neutron is uncharged, which means it can deeply penetrate into the material and there

is no Coulomb barrier to be overcome. The neutron interacts with the nucleus by the

nuclear force. The cross section depends on the isotope and shows in contrast to X-rays

no systematic dependence on the atomic number Z. An important application of this

isotope dependence is the contrast variation by replacing hydrogen with deuterium.

Further, the neutron carries a magnetic moment, which interacts with unpaired elec-

trons. This is used to study magnetic ordering and spin dynamics.

The triple-axis spectrometer (TAS), invented by Bertram Brockhouse in 1961, is a

versatile instrument in performing inelastic neutron scattering to measure the dynamic

structure factor S (Q, ω) in momentum-energy (Q-ω) space. It thus provides more in-

formation than from optical spectroscopy like infrared or Raman spectroscopy, which

are limited to Q = 0. Subsequently, TAS became a standard tool for measuring the

momentum dependence of lattice vibrations (phonons) and spin excitations (magnons)

in solids. For this development, Bertram Brockhouse was awarded the Nobel prize in

Physics in 1994, together with Clifford Shull for neutron diffraction on antiferromag-

netism.

Moving forward to the 1980’s, the method of neutron spin-echo (NSE) was invented

and developed by Ferenc Mezei [49, 104]. It is substantially different from the con-

51



52 3 Neutron spin-echo spectroscopy

ventional TAS method both conceptually and technically. Contrary to the conventional

TAS, the energy transfer can be measured with resolution much narrower than the en-

ergy spread of the incident beam. In an attempt to measure the intrinsic linewidths of

dispersive excitations like phonons, Mezei [105] and Pynn [106] proposed that one can

tune the spin-echo resolution function to the slope of the dispersion curve via tilting

the field boundaries of the spectrometer arms. With implementation of the inclined

field boundaries on conventional NSE spectrometer using dc precession coils, however,

several problems were reported. For example stray fields at the coil boundaries restrict

the maximum tilting angle to about 10 ○, which only allowed the phonon-focusing with

small group velocity like in superfluid 4He [107]. Later on in 1987, a new solution

was realized by Golub and Gähler [50], replacing the DC solenoids to create the static

magnetic field used in the first NSE spectrometer with a sequence of radio frequency

(RF) spin flipper coils. This is the so-called neutron resonance spin-echo (NRSE) tech-

nique, which allows one to shift the field boundary tilt angles up to 50 ○ for the phonon-

focusing technique.

At present, there are only few NRSE-TAS spectrometers in the world, for example

the IN22 with the ZETA option (thermal source) at the Institut Laue-Langevin, Greno-

ble [108], TRISP (thermal source) at the FRM II, Garching near Munich and FLEXX

(cold source) at the Helmholtz-Zentrum Berlin [107, 109]. Detailed illustration of the

phonon-focusing technique are displayed in most recently PhD dissertations by Ayna-

jian and Munnikes [110, 111]. In this chapter we discuss the application of spin-echo

to quasielastic scattering and a new analysis technique for magnetic excitations.

3.2 Neutron spin-echo for quasi-elastic scattering
In an inelastic scattering process, the kinematics is governed by the laws of momentum

and energy conservation.

Q = ki − kf = G + q (3.1)

E = h̵2

2mn
(k2

i − k2
f ) (3.2)

From the above equations, the difference of the neutron wave vectors (ki and kf) before

and after a scattering process is defined, giving rise the total transferred momentum

vector Q and energy transfer with mn the neutron mass and h̵ the reduced Planck’s

constant. G and q are respectively defined as the reciprocal lattice vector and relative

vector within a Brillouin zone. The magnitude of the wave vector k = 2π/λ, where λ is

the wavelength of the neutron beam.

Conventional neutron scattering is discussed in textbooks, e.g. in [112, 113, 114],
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Fig. 3.1: Schematic layout of a neutron spin-echo apparatus for a non-spinflip scattering pro-

cess.

using the formalism proposed by Van Hove [34]. The scattering cross section is pro-

portional to S (Q, ω), the space and time Fourier transform of the time-dependent (τ)
pair correlation function of the scattering system,

G(R, τ) = ⟨ρ(r, t)ρ(r + R, t + τ)⟩, (3.3)

where ρ is the scattering length density. In contrast to most conventional instruments,

the NSE spectrometer can directly measure τ (and to some extent the R) dependence of

the G(R, τ), where G(R, τ) is in fact the more physically meaningful quantity, although

most theories are formulated in the (Q, ω) space. In spin-echo, the energy transfer to

the neutrons during scattering by a sample is measured via comparing the difference of

Larmor precession before and after the scattering process. As a result, the measured

quantity, the average neutron polarization, is proportional to the Fourier transform of

the energy transfer spectrum. In the following, a simplified classical model of Larmor

precession and NSE limited to quasi-elastic scattering is presented. For simplicity, we

first restrict ourselves here to non-spin-flip scattering process, whereas magnetic spin-

flip scattering processes are discussed in an analysis technique [see Sec. 3.4.2].

As a starting point, Fig. 3.1 shows a schematic setup of a NSE spectrometer. Neu-

trons with velocity v1 are assumed to travel along the trajectory (shown as black solid

line). The neutron spins are initially polarized along the direction perpendicular to v1

and the magnetic field B1. The neutron spins precess in the first field region with length

L1, which can be driven either by RF spin flippers (NRSE mode) or by a DC coil (DC
mode). The Larmor phase after passing B1 in the first spin-echo arm is

φ1 = ω(1)L
L1

v1

= m
h̵
ω
(1)
L L1

k1

, (3.4)

where ω
(1)
L and the following ω

(2)
L are the effective Larmor frequencies in the first
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and second spin-echo arms, as illustrated in Sec. 3.3. After leaving the first precession

region, the neutrons impinge onto a sample and enter the second precession region. In

the second precession region (L2) with opposite magnetic field B2 to the first spin-echo

arm, the spins precess by

φ2 = −ω(2)L
L2

v2

= − m
h̵
ω
(2)
L L2

k2

. (3.5)

Taking L1,2 = L, ω
(1,2)
L = ωL and assuming v1 = v2 + δv for quasi-elastic scattering to

fulfill the spin-echo condition, the net Larmor phase is

φNSE = φ1 + φ2 = ωLL[ 1

v1

− 1

v2

] = ωLL
v1

2
δv, (3.6)

and the energy transfer ω is denoted by

h̵ω = m
2
(v1

2 − v2
2) = mv1δv. (3.7)

As a result, φNSE in Eq. (3.6) can be rewritten as

φNSE = ω h̵ωLL
mv3

1

≡ ωτNSE, (3.8)

where τNSE = h̵ωLL/mnv3
1 is defined as the spin-echo time, which depends on the mag-

netic field integral along the neutron’s path and the neutron velocity.

Since S (Q, ω) dω describes the probability of a neutron being scattered with h̵ω, the

measured quantity of NSE gives the average neutron polarization P as

P = ⟨cos (φNSE)⟩ = ∫ S (Q, ω) cosφNSE dω (3.9)

the Fourier cosine transform of S (Q, ω). It has been shown [34] that Eq. (3.9) is iden-

tical to the intermediate scattering function

I(q, τNSE) = ∫ ⟨ρ(r, t)ρ(r + R, t + τNSE)⟩ d
3 R. (3.10)

In the common case of a damped harmonic oscillator, the energy spectrum S (ω), the

scattering law, is distributed over a ω range in the form of a Lorentzian function with

half width at half maximum (HWHM) Γ, i.e.

S (ω) = 1

π

Γ

Γ2 +ω2
. (3.11)
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This fact yields an exponential decay in the polarization,

P(τNSE) = P0 exp (−Γ · τNSE

h̵
). (3.12)

3.3 The NRSE-TAS spectrometer TRISP
TRISP is a novel high-resolution NRSE-TAS spectrometer, operated by the Max Planck

Institute at the FRM II neutron source in Garching near Munich [115, 116]. A schematic

top view of TRISP is shown in Fig. 3.2. At FRM II, the beam tube SR-5b equipped with

a polarizing supermirror bender provides polarized thermal neutrons with wavelengths

0.8 Å < λ < 4 Å to TRISP, followed by a velocity selector to cut out high-order con-

tamination of the incident beam. The pyrolytic graphite (PG) monochromator crystals

for the (002) or (004) allow for vertically- and horizontally-focusing of the neutron

beams. In the first and second spin-echo arms of the spectrometer, two RF spin flip-

pers (standard, NRSE mode) or DC coils (optional, DC mode) are used to drive Larmor

precession. In both spin-echo arms, surrounding mu-metal shields reduce the magnetic

field along the beam path. Variable horizontally-focusing Heusler (Cu2MnAl) alloy

crystals (111) are used as an analyzer in front of the 3He detector. At TRISP, there are

two ways, the NRSE and DC modes, to drive the Larmor precession. In the following,

the key features of these modes are

• NRSE mode: Each single RF coil incorporates a static vertical DC field B0 and a

rotating magnetic field Brf ∝ cos (ωLt) in the scattering plane, with a frequency

FREQ [kHz] in the range 50 − 400 kHz. The effective Larmor frequency ωL can

be expressed as

ωL = 2πνL = 2π ·FREQ · 10
3

·RFMODE/2. (3.13)

νL is the effective frequency applied in the spin-echo arms. The value RFMODE
defines the case of 2 (normal mode) or 4 (bootstrap mode) RF spin flippers coils

operating per arm. In addition, the length of one spectrometer arm L corresponds

to the assigned RFMODE, L = 0.5 m in bootstrap mode and L = 0.406 m in normal

mode. For the NRSE mode, τNSE can be expresses as

τNSE[s] = 6.3897 × 10
−14

· νL[MHz] · L[cm] ·λ
3[Å] (3.14)= 4.0231 × 10

−15
·φNSE[rad] ·λ

2[Å]. (3.15)

As a consequence the RF coils can only be operated in the range τmin ≤ τNSE ≤
20 × τmin. τmin is the smallest approachable τNSE at FREQ = 50 and RFMODE = 2,
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Fig. 3.2: The NRSE-TAS spectrometer TRISP at the FRM II, Garching. From [116].

with τmin = 4.09 ps at ki = 2π/λ = 2.51 Å.

• DC mode: The DC coils are rectangular coils with mu-metal yokes to suppress

the external stray field and generate a nearly homogeneous magnetic field B0,

where the current in the 1 mm Al wire is driven up to 15 A. The effective Larmor

frequency reads

ωL = 2πγnB0 with γn = 2.916 kHz/Gauss. (3.16)

γn is the neutron’s gyromagnetic ratio. The advantage of the DC coils is that τNSE

can be tuned continuously down to zero. This is not possible in the NRSE mode,

where the range of τNSE smaller than τmin ≃ 10 ps is not accessible.

The current setup in the NRSE mode at TRISP is well-suited for most of the cases in

studying the dynamic properties of solids. However, in dynamic processes with strong

relaxation already in the τNSE range below 10 ps, the use of DC coils is crucial. In this

case, the spin-echo signal is often more complicated than the simple exponential decay

[see Eq. (3.12)], and thus needs a more complicated analysis technique.
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3.4 Analysis of spin-echo data including spin-flip
scattering

Within the scope of this thesis, we are investigating the magnetic critical fluctuations

of anisotropic materials. For the strong relaxation of critical dynamics, both the NRSE
mode and DC mode at TRISP were employed to cover the whole experimental τNSE

range 0 ≤ τNSE ≤ 20×τmin. Due to the anisotropic effect, a special treatment to separate

fluctuations along different directions in Q − space is therefore highly desirable. In the

following, we concentrate on the strategy to analyze the complicated neutron spin-echo

signal, which includes

• the data combination from the NRSE mode and DC mode

• the scattering processes resulting from different spin fluctuations

• a conceptually new analysis technique based on the neutron ray-tracing method

The proposed analysis technique tracks the spin phase of each individual neutron

from the monochromator, first spin-echo arm, sample, second spin-echo arm, and fi-

nally to the detector. It offers a clear and straightforward picture to describe the individ-

ual propagation of the neutron spin through the instrument. As a result, the polarization

of neutrons, which is the ensemble average of the neutron spin states, can be obtained

from the analysis technique.

3.4.1 Data combination: calibrating the NRSE and DC modes
The aim of the spin-echo experiment is to determine the polarization P(τNSE) for a

series of τNSE’s. For each τNSE, the precession fields or the frequencies applied to the

RF coils are tuned according to Eq. (3.8). The polarization is measured by detuning

(scanning) the precession region in one spectrometer arm, leading to a small additional

phase ΔφNSE = Δ(BL). This detuning is achieved by scanning the length L or the field

B of one precession region. At TRISP, a NSE scan can be made through translating the

last bootstrap coil (TC4) along the beam direction with the capability of L = ±15 mm

in the NRSE mode, or through tuning the driven current I0 up to 15 A in the DC mode.

In the beginning, a spin-echo scan using a graphite crystal PG (002) as sample was

performed in the NRSE mode with ki = kf = 2 Å−1, FREQ1,2 = 200 kHz, and RFMODE = 8.

The neutron count rate I as a function of the position TC4 of the last bootstrap coil is

illustrated in Fig. 3.3 (a). The raw data of a spin-echo scan of the NRSE and DC modes

can be expressed as

I = I0

2

⎧⎪⎪⎨⎪⎪⎩1 + P · cos [2π(x − x0)
Δx

]⎫⎪⎪⎬⎪⎪⎭ (x: TC4 or I0, P: Polarization), (3.17)
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Fig. 3.3: Coil calibration from the NSE scans using (a) the NRSE mode and (b,c) the DC mode.

Separate scans of two DC coils used in the (b) first and (c) second spin-echo arms are mani-

fested.

where the bracket [...] denotes the phase offset ΔφNSE. A fit for the data shown in

Fig. 3.3 (a) using Eq. (3.17) gives

P = 0.682(4) and ΔTC4 = 1.5707(7)mm (3.18)

In the NRSE mode, the period of Eq. (3.17) is ΔTC4 = 2π × h̵ki/(mnωL). Taking the

value of ωL for the current settings, ki = 1.9957(9)Å−1 is deducible and in good agree-

ment with the assigned ki.

While leaving the above configuration unchanged, the RF spin flippers coils are then

switched off and replaced by the DC coils. In the DC mode, the Larmor phase in a

spectrometer arm is assumed to be proportional to I0(A) and the neutron wavelength
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λ(Å).
φNSE = Cc ·λ · I0, (3.19)

Cc is an intrinsic DC coil parameter. In a NSE scan, the applied current I01 (I02) in

the first (second) spectrometer arm is scanned, while I02 (I01) is kept constant. As a

consequence, the small additional phase resulting from this detuning is

ΔφNSE = Cc ·λ · (ΔI0). (3.20)

In calibrating the DC mode using PG (002), Fig. 3.3 (b) and (c) show two spin-echo

scans of I01 and I02 at I02 = 0 and I01 = 0, respectively. Concerning the observed

periods ΔI0 = 2π/(Ccλ) found in I01 and I02 scans, one obtains the intrinsic param-

eter Cc = 7.958 Å−1A−1. Combining Eq. (3.15) and Eq. (3.19), τNSE for the DC mode

becomes

τNSE[s] = 3.2016 × 10
−14

·λ
3[Å] · I0[A]. (3.21)

To combine the experimental data from the NRSE and DC modes [see Eq. (3.14) and

(3.21)], the conversion relation between these modes yields

τNSE[ps] = 0.12289 · τmin · I0[A]. (3.22)

3.4.2 Magnetic scattering process

For magnetic neutron scattering, only the components of the spin fluctuations M per-

pendicular to the scattering vector Q = ki − kf contribute to the scattering cross sec-

tion [112]. These perpendicular components are denoted by M⊥ = Q × (M × Q). The

neutron spin-flip processes can be described by the magnetic interaction operator

σ · M⊥ = M⊥xσx + M⊥yσy + M⊥zσz, (3.23)

with σ the Pauli matrices

σx = (0 1

1 0
) , σy = (0 −i

i 0
) , and σz = (1 0

0 −1
) . (3.24)

1-dimensional polarization analysis was introduced by Moon, Riste and Koehler [117]

using a polarized triple-axis spectrometer (TAS), which allows one to investigate differ-

ent spin-dependent cross sections in a magnetic neutron scattering experiment. Fig. 3.4

shows an experimental arrangement. At the sample site, a guide field is set to provide a

magnetic field pointing in an arbitrary direction. The incident neutron spins are aligned

along the guide field, and the polarization of the scattered neutrons is measured as the

projection of the neutron spins on the analyzer. Before and after the sample, the spin
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Fig. 3.4: An experimental setup for a polarized TAS. At the sample site, a guide field is gener-

ated by a electromagnet to have a freedom to point in an arbitrary direction. Two spin flippers

before and after the sample select the desired neutron spin states. Four different scattering

channels are illustrated in the text. From [117].

states of neutrons can be changed by two spin flippers, which allows one to select the

spin-up (∣+⟩) or spin-down (∣−⟩) neutron state. In this setup, it is possible to measure

the spin-flip channels of ++, +−, −+, and −− in the magnetic neutron scattering. The

matrix elements can be calculated as ⟨i∣σ · M⊥∣ f ⟩, where i and f represent the neu-
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tron states in the incident and scattered beam, respectively. The four transition matrix

elements are

⟨+∣σ · M⊥∣+⟩ = M⊥z, (3.25)⟨−∣σ · M⊥∣−⟩ = −M⊥z, (3.26)⟨−∣σ · M⊥∣+⟩ = M⊥x + iM⊥y, (3.27)⟨+∣σ · M⊥∣−⟩ = M⊥x − iM⊥y. (3.28)

The corresponding scattering cross sections are proportional to ∣⟨i∣σ · M⊥∣ f ⟩∣2, for ex-

ample in the −+ channel

∣⟨−∣σ · M⊥∣+⟩∣2 = (M⊥x + iM⊥y)∗(M⊥x + iM⊥y) = M2
⊥x + M2

⊥y. (3.29)

The polarization analysis is the standard technique available to measure the magnetic

fluctuations or separate the magnetic scattering from nuclear scattering, for the latter

one is always non-spin-flip.

In contrast to conventional polarization analysis, no guide field is applied at the sam-

ple site in an NRSE experiment. Now we turn our attention to discuss the spin-flip

processes for a magnetic scattering at the sample site, and the influence of these pro-

cesses on the spin-echo signal. In Fig. 3.5, if we assume that the neutron spin impinging

on the sample has a initial phase ϕi with respect to x ∥ Q after passing through the first

spin-echo arm. This corresponds to the spinor

si = (exp(−iϕi/2)
exp(iϕi/2) ) , (3.30)

with the expectation value of polarization Pi of si,

Pi = ⎛⎜⎝
⟨si∣σx∣si⟩⟨si∣σy∣si⟩⟨si∣σz∣si⟩

⎞⎟⎠ =
⎛⎜⎝

cosϕi

sinϕi

0

⎞⎟⎠ . (3.31)

In the remainder of this chapter, all components ofσM⊥ with "⊥" defined in Eq. (3.23)

are omitted for simplicity. The components of magnetic scattering by in-plane (My) and

out-of-plane (Mz) fluctuations lead to the following final states s f ,y, s f ,z, respectively:

s f ,y = Myσy∣si⟩ = My√
2
(−i exp(iϕi/2)

i exp(−iϕi/2)) , (3.32)

s f ,z = Mzσz∣si⟩ = Mz√
2
(exp(−iϕi/2)

exp(iϕi/2) ) . (3.33)
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Fig. 3.5: General case of the neutron spinflip processes at the sample site. The polarization Pi

of the incident beam are spread within the x − y plane, where x ∥ Q and z is vertical. Only

magnetic fluctuations My and Mz contribute to the scattering cross section. The Pi with Larmor

phase ϕi is flipped to P f ,y and P f ,z by My and Mz, respectively.

The corresponding expectation values of the polarization are

P f ,y = M2
y

⎛⎜⎝
− cosϕi

sinϕi

0

⎞⎟⎠ and P f ,z = M2
z

⎛⎜⎝
− cosϕi− sinϕi

0

⎞⎟⎠ . (3.34)

The spin phases after the scattering processes become

ϕ f ,y = π − ϕi (↑↑), (3.35)

ϕ f ,z = π + ϕi (↑↓). (3.36)

To fulfill the spin-echo condition, i.e. the recovery of polarization after the second

precession region, the fields of the two precession regions must be antiparallel in case of

non-spin-flip scattering. Eq. (3.35) shows that the phase ϕ f ,y resulting from My inverts

the sign of ϕi and this fact effectively acts as an inversion of the sign of B1 from the first

arm of NRSE-TAS. Thus to fulfill the spin-echo condition, a parallel field configuration

(↑↑) of B1 and B2 is required. On the other hand in Eq. (3.36), the sign of ϕ f ,z resulting

from Mz remains the same as ϕi with a constant π adding to the phase, and therefore

the spin-echo condition is achieved in the usual anti-parallel field configuration (↑↓)
setting. The π phase shifts have no practical meaning in most experiments and can be

compensated for. However, they play a key role in a ray-tracing modeling, as explained

in the following section. To summarize, one should apply the ↑↑ (↑↓) magnetic field

configuration for the in-plane (out-of-plane) fluctuations in a NSE measurement.
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3.4.3 Modeling based on a ray-tracing simulation
For large spin-echo time τNSE, only the scattering process fulfilling the spin-echo con-

dition [see Eq. (4.4)] contributes to the echo signal, the other mentioned spins are de-

polarized and lead to an unpolarized background. For small τNSE in the case of DC

coils, all scattering processes contribute to the signal, which then shows a strong os-

cillation instead of the simple exponential decay of P(τNSE) observed in conventional

spin-echo experiments. To model the polarization, we use here a simple ray-tracing

model, which traces the spin of individual neutrons in the precession regions and takes

the corresponding scattering process into account. By assumption, the applied current

in the first spin-echo arm I01 is kept positive (↑), while positive or negative sign of the

applied current I02 in the second arm can be considered as the parallel (↑↑) or antipar-

allel (↑↓) magnetic field configurations. In a quasi-elastic scattering, each neutron is

defined by the wave vector k, the polarization vector P, and a probability p. p is the

probability that a neutron exists in the assigned state. In addition, several parameters

like ki, the resolution function R(ω) [118], or energy transfer ω, are assumed to follow

a Gaussian or Lorentzian distribution. Convenient coordinates (x, y, z) of this model

are chosen as (1) x ∥ ki in the incident beam, (2) x ∥ Q at the sample site, and (3)
x ∥ kf in the scattered beam. The scattering plane is spanned by vectors x and y, with

z pointing upwards.

The neutron spin polarization is calculated in the following steps.

• I. In the incident beam (x ∥ ki), neutrons are selected with a uniform distribution

on the magnitude of wave vector ki and we assume the initial polarization Pi ⊥
ki. The Larmor phases φi(ki, I01) of the neutrons propagating through the first

spin-echo arm are calculated. The probability pi of the neutrons is given by

a Gaussian distribution of ki with FWHM Δki, which can be estimated from a

Cooper-Nathans model of the monochromator [119]. Typically, Δki = 0.04 Å−1

for ki = 2.51 Å−1 at TRISP.

• II. For different scattering processes (consisting of in-plane M1 and out-of-plane

M2 fluctuations, indexed by 1 and 2), we transform φi into the sample coordinate

(x ∥ Q) as φsi. Energy transfers ω1,2 are assigned to different scattering channels

arising from M1 and M2. The magnitude of the scattered wave vectors (kf1 and

kf2) and the corresponding shift in Larmor phases (φsf1 and φsf2) in accordance

with Eq. (3.35) and (3.36) are calculated. We assume the scattering function

S (Q, ω) to be independent of Q within the small momentum range defined by

the TAS resolution ellipsoid R(Q, ω). The probability function of the scattering

process pω1,2 is then expressed as

pω1,2 = S 1,2(ω1,2,Γ1,2) · R(ω) · I1,2. (3.37)

The resolution function of the TAS, R(ω), is modeled as a Gaussian , and the
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FWHM is taken as the Vanadium width determined experimentally. I1,2 is propor-

tional to the integrated intensities scattered by M1,2 with I1+I2 = 1. S 1,2(ω1,2,Γ1,2)
is modeled as a Lorentzian. The total scattering function thus reads

S (ω1,2,Γ1,2) = I1 × Γ1

ω2
1 + Γ2

1

+ I2 × Γ2

ω2
2 + Γ2

2

(3.38)

In the energy band dω, the probability for a energy transfer is S 1,2(ω1,2,Γ1,2) dω
and is normalized to 1 via

∫ S (ω1,2,Γ1,2) dω1,2 = 1. (3.39)

The selection of ω1,2 was made in a reasonable band Δω1,2 = ±10Γ1,2 to avoid

cutting of the Lorentzian wings. Moreover, if Γ1 and Γ2 are different, the proba-

bility pω1,2 has to be normalized to the ω band as pω1,2 ·Δω.

• III. After transforming φsf1 and φsf2 to the scattered beam coordinate (x ∥ kf),

we add precession phases φf1,2(ω1,2, kf1,2) in the second spin-echo arm, which

is driven by a I02. The magnitude of the polarization vector P after the second

precession region is

P = ∣P∣ = ∣∑ pi · pω1,2 · (cosφf1,2, sinφf1,2)∑ pi · pω1,2

∣. (3.40)

One should note that the polarization is the ensemble average over the spin states

in a neutron beam with P = (N↑ − N↓)/(N↑ + N↓), where N↑ (N↓) is the number

of neutrons with spin up (down).

• IV. The model was implemented as a MATLAB function and calculates the po-

larization as

P = P0 × P(τNSE, ki,Δki,Γ1,Γ2, I1). (3.41)

For quasielastic scattering, I01 = ∣I02∣ is kept fixed to ensure the spin-echo con-

dition. τNSE can be derived from I0 by Eq. (3.22). P0 is the spin-echo resolution

function, including instrumental effects resulting from the beam divergence and

from small field inhomogeneities in the NRSE and DC modes. This can be de-

termined experimentally by measuring the polarization of the unscattered beam

or of a nuclear Bragg reflection.
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Fig. 3.6: Calculations of P from the MC and Grid methods in the isotropic case using ki =
2.51 Å−1, Δki = 0.04 Å−1, Γ1 = Γ2 = 100μeV, and I1 = I2 = 0.5. The resolution function R(ω)
is neglected for simplicity. The inset shows the oscillating behavior of the polarization arising

from the interference between M1 and M2.

3.4.4 Numerical calculations and discussion

In practice, there are several ways to generate the above-mentioned P to analyze the

spin-echo data. Considering the step I. in Sec. 3.4.3, the generation of neutrons can be

made (1) by creating random numbers as in the Monte Carlo (MC) technique, or more

efficiently, (2) on equally spaced grids. The former offers easier and transparent insight,

while the latter is faster and more efficient.

Fig. 3.6 shows two different numerical results of P from the MC and grid methods for

comparison, in calculating the polarization as a function of the applied current I02 with

I01 = ∣I02∣. By neglecting the instrumental effect R(ω), the parameters ki = 2.51 Å−1,

Δki = 0.04 Å−1, Γ1 = Γ2 = 100μeV, and I1 = I2 = 0.5 are used in both calculations. One

should bear in mind that these calculations are actually in the isotropic case, where the

integrated intensities resulting from both fluctuations are identical. In the MC method,

N = 10000 neutrons are used to repeat the previous steps I to III, this means that ki and

ω are generated as random numbers. In the Grid method, a uniform grid of size 150 is

assigned to generate the neutrons with a Gaussian distribution of ki and ω, hence the

resulting calculation is based on a two-dimensional matrix with a size of 150×150. As

seen in Fig. 3.6, theses two results are in good agreement with each other. By using the

MC formalism within a fitting routine (MINUIT) [120], however, it turns out that the

statistical noise tends to disturb the minimization algorithm unless a very high number

of neutrons is used in the simulation. On the other hand, the Grid formalism avoids
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Fig. 3.7: A simple diagram of different polarizations P1 and P2

(arising from M1 and M2) with a phase difference 2ϕi. This

reveals the oscillating nature of polarization found in Fig. 3.6.

the statistical noise introduced by random numbers. We thus used the latter one in the

following data analysis for MnF2 and Rb2MnF4.

An important feature observed in Fig. 3.6 is the oscillating behavior of the polariza-

tion. This fact can be explained as a consequence of the different spin-flip processes,

as shown in Fig. 3.5. The ↑↑ (↑↓) magnetic field configuration has to be applied to ob-

tain the spin-echo of the in-plane My (out-of-plane Mz) fluctuations. However, there is

also a further non-negligible contribution from Mz (My), especially in the small I02 (or

small τNSE) region. That is to say, the number of Larmor precessions is not sufficient

to depolarize the contributions, which do not contribute to the echo signal. Clearly,

the calculations in Fig. 3.6 are in this limit. M1 (M2) are the in-plane (out-of-plane)

magnetic fluctuation, and the positive (negative) abscissa of I02 in Fig. 3.6 represents

the ↑↑ (↑↓) field configuration. The non-echo contributions of M1 and M2 are found

in the current range of −10 A < I02 < 0 A and 0 A < I02 < 10 A, respectively. At

currents > 10 A, these non-echo components are depolarized and the oscillation disap-

pears. The polarization decays exponentially corresponding to the assigned linewidth

of Γ = 100μeV. Therefore, the interference behavior found for ∣I02∣ < 10 A causes a

failure in the normal treatment of NSE data.

In fact, the complicated behavior of M1 and M2 can be illustrated by a simple diagram

shown in Fig. 3.7. As discussed in Sec. 3.4.3, there exists a net phase difference 2ϕi

between the in-plane M1 and out-of-plane M2 from different scattering processes, which

can be deduced from Eq. (3.35) and (3.36). Accordingly, this leads to an effective phase

offset 2ϕi between P1 and P2. The resulting polarization is bouncing up and down

within a boundary between ∣P1 + P2∣ and ∣P1 − P2∣, because ϕi is a function of I02.

The ratio of the maximum in P1 to P2 at I02 = 0 indicates the ratio of the integrated

intensities I1/I2. In addition, the observed oscillatory period T is thus expected to be
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related to the average of cos(2ϕi). More specifically, it gives

⟨cos (2ϕi)⟩ = ⟨cos (4πCc

ki

· I01)⟩ = ⟨cos (2π

T
· I01)⟩. (3.42)

It indicates that T = ki/(2Cc), which depends only on the assigned ki and the intrinsic

spin-echo coil parameter Cc. As a result, T can be estimated to be 0.1483 A, which is

in good agreement with our calculations shown in Fig. 3.6.

In summary, in this thesis a model was developed to describe spin-echo data resulting

from magnetic scattering with different spin-flip processes, which only partially fulfill

the spin-echo condition. This model is especially important for the range of small

τNSE, which is crucial in the case of relatively large linewidth Γ > 100μeV. The new

model can be applied to all spin-echo experiments on spin excitations. An efficient

implementation in MATLAB allows direct application in standard fitting functions.
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4 Experiment

4.1 Crystal and magnetic structures of MnF2 and
Rb2MnF4

4.1.1 3D AFM MnF2

MnF2 is a textbook example of a classical S = 5/2 antiferromagnetic insulator. It

crystallizes in the tetragonal rutile structure with space group P42/mnm and lattice

constants a = 4.874 Å, c = 3.300 Å [121]. Fig. 4.1 (a) shows the nuclear and magnetic

structures of MnF2. The magnetic Mn2+ ion has half-filled 3d5 electronic configuration,

leading to a high spin state with S = 5/2. The main magnetic interactions result from

the direct ferromagnetic exchange J1 between the nearest-neighbor S = 5/2 Mn2+ ions

along the [001] axis and the antiferromagnetic superexchange coupling J2 between the

eight next-nearest neighbors of the Mn2+ ions along the [111] axis. J2 = −1.76 K is by

a factor of 5.5 larger than J1 [122]. The the Mn2+ ions have no orbital components (L =
0). A uniaxial anisotropiy in MnF2 is predominantly due to dipole-dipole interactions.

This causes the spins to align along the tetragonal c-axis. The spin Hamiltonian of

MnF2 is given by

H = −1

2
J1 ∑

i, j
· SiS j − 1

2
J2 ∑

i,k
Si · Sk − DA ∑

i
(S z

i )2
. (4.1)

The summation runs over all magnetic ions i, their nearest neighbors j, and their next-

nearest neighbors k. The anisotropy term is expressed as HA = −DA ∑i(S z
i )2, which

explains the preferred spin alignment below the critical temperature. This magnitude

of the anisotropy was calculated by Keffer [123] and later verified experimentally by

Johnson et al. in an antiferromagnetic resonance measurement [88]. As a result, they

confirmed that the anisotropy is mainly originating from the dipole-dipole interaction

of Mn2+ and the reduced anisotropy is αI = 1.6 × 10−2.

4.1.2 2D AFM Rb2MnF4

Rb2MnF4 belongs to the tetragonal K2NiF4-type structure with space group I4/mmm
and lattice parameters a = 4.230 Å, c = 13.82 Å [124]. As shown in Fig. 4.1 (b), the

square-lattice MnF2 planes are separated by two sheets containing non-magnetic ions.

69
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Fig. 4.1: Nuclear (top) and magnetic (bottom) structures of (a) MnF2 and (b) Rb2MnF4.

Rb2MnF4 forms a 2D spin structure due to the relatively small interplane magnetic interaction

J′. In the ordered state, the spins in both compounds are aligned along the tetragonal c-axis.

This leads to a c much larger than a. The dominant magnetic interaction is the anti-

ferromagnetic superexchange coupling J between the S = 5/2 spins of the Mn2+ ions,

between the four nearest neighbors in the (MnF2) ab-plane in Rb2MnF4. The interplane

magnetic interaction J′ is much smaller than J, roughly by a factor of 10−6. Thus the

spin coupling has a 2D nature [125]. Due to the existence of magnetic Mn2+ ions, the

single-ion anisotropy arising from dipole-dipole interaction causes the spins to align

uniaxially along the c-axis. It can be described by a spin Hamiltonian without inter-

plane coupling

H = Jnn ∑
i, j

Si · S j +∑
i

giμBHA
i S z

i . (4.2)

Jnn is the coupling for the nearest neighbors of spins in the MnF2 plane. The stag-

gered anisotropic field HA
i denotes the effect of dipolar anisotropy. Jnn = 7.36 K was

obtained, for example, by NMR studies on the sublattice magnetization [126] and by

neutron scattering measurements of the spin-wave dispersion [96, 127, 128]. The re-
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duced anisotropy is

αI = gμBHA/ ∑
j=nn

JnnS j ≃ 4.7 × 10
−3
. (4.3)

It is worth noting that in an early neutron diffraction experiment carried out by Birge-

neau et al. [19], two phases in Rb2MnF4 were observed. These consist of K2NiF4 and

Ca2MnO4 structures with a ferromagnetic and an antiferromagnetic stacking arrange-

ments of the MnF2 sheets. These two phases were reported to have the same critical

temperature within the experimental errors and follow the same critical behavior with

an exponent β closer to the 2D Ising scaling.

Concerning the small αI, MnF2 and Rb2MnF4 are considered as weakly anisotropic

Heisenberg antiferromagnets with 3D and 2D spin arrangements, respectively. In MnF2,

pure magnetic Bragg reflections occur at reciprocal lattice points H + L = odd in the(H0L) plane. In this plane, all Bragg reflections are either pure nuclear or pure mag-

netic. In Rb2MnF4, pure magnetic Bragg reflections occur for half-integer H and K in

the (HK0) plane.

4.2 Neutron scattering experiments

4.2.1 Sample alignment
Large single crystals of MnF2 (Rb2MnF4) with a volume of 10 cm3 (3 cm3) and mosaic

spread of 0.44′ (0.99′) were available from a previous experiment [129]. The mosaic

spreads were measured by γ-diffractometry at room temperature using (200) reflec-

tions. The crystals were mounted on the goniometers in the (H0L) plane for MnF2 and

the (HK0) plane for Rb2MnF4, as shown in Fig. 4.2 (a) and (b).

Prior to the NSE investigations, experiments using the neutron Laue camera at the

FRM II were performed to check the crystal’s orientation and quality at room tempera-

ture. Neutron Laue diffraction probes the bulk of a crystal in contrast to X-rays, which

only see the surface. Fig. 4.2 (c) and (d) show the patterns from neutron Laue camera

of the MnF2 crystal along the [001] and [100] directions, respectively. In both pat-

terns, strong nuclear Bragg reflections were observed so as to confirm that the crystal

is single-domain.

The spin-echo experiments were conducted at the NRSE-TAS spectrometer TRISP

at the FRM II [115]. TRISP was operated with a graphite PG (002) monochromator

and a Heusler (111) analyzer, with open collimation and scattering senses SM = −1,

SS = −1, SA = 1 at the monochromator, sample, and analyzer, respectively (−1 is

clockwise). The crystals were mounted in a closed cycle cryostat in exchange 4He gas.
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Fig. 4.2: Photographs of the (a) MnF2 and (b) Rb2MnF4 single crystals. Both crystals were

mounted on the goniometers. Neutron Laue patterns of the MnF2 crystal, which were taken in

backscattering configuration along the (c) [001] and (d) [100] directions.

The data were collected at reciprocal lattice points corresponding to magnetic Bragg re-

flections. For the experiment on MnF2 at Q = (300), we used an incident wave number

ki = 2.35 Å
−1

with a TAS energy resolution V = 0.8 meV (vanadium width, full width

at half maximum, FWHM). For Rb2MnF4, ki was set to 2.51 Å
−1

at Q = (0.5 0.5 0)
with V = 1.1 meV. For the crystal alignment, we used TRISP in TAS mode with spin-

echo coils switched off. Fig. 4.3 shows the rocking scans of MnF2 and Rb2MnF4 at

Q = (300) and Q = (0.5 0.5 0), respectively. The widths are 0.3○ and 0.4○, which cor-

responds to the intrinsic TAS resolution of the instrument.

4.2.2 Antiferromagnetic order parameter

Fig. 4.4 (a) and (b) show the temperature dependence of intensities of the antiferro-

magnetic Bragg peaks (300) in MnF2 and (0.5 0.5 0) in Rb2MnF4. Such temperature
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Fig. 4.3: Rocking scans of the magnetic Bragg peaks in (a) MnF2 and (b) Rb2MnF4 below TN.

The solid lines are from Gaussian fits.

scans with sweep rates of the order of 0.05 K/min where taken at the beginning of

each experiment at TRISP. Thus consistent thermometry is ensured. In Fig. 4.4 (a),

TN = 67.29 K of MnF2 was determined from the maximum slope of the intensity I
of the magnetic (300) Bragg reflection [130]. For Rb2MnF4, the sharp peak of I vs.
T in Fig. 4.4 (b) results from the longitudinal critical scattering [131] and thus defines

TN = 37.6 K. As a result, the observed Néel temperatures are close to values in the

literature [8, 13, 14, 17, 41].

4.3 Magnetic scattering processes

Quasielastic experiments on classical antiferromagnets MnF2 and Rb2MnF4 were con-

ducted at the Q = (300) and (0.5 0.5 0) magnetic Bragg reflections, respectively. In

both materials, the sublattice magnetization M below TN is uniaxial along the crystal-

lographic c axis. The magnetic fluctuations parallel to M are defined as the longitudinal

fluctuations M∥ and the others perpendicular to M are the transverse fluctuations M⊥.

In magnetic neutron scattering, only magnetic fluctuations M ⊥ Q are visible by neu-

trons and thus contribute to the magnetic cross section.

The relation between the coordinates xyz and the longitudinal and transverse spin

fluctuations M∥ and M⊥ is shown in Fig. 4.5. In Fig. 4.5 (a), the MnF2 crystal was

mounted in the (HK0) plane, indicating that the M∥ lies in the scattering plane and the

visible M⊥ is out of the ac-plane and perpendicular to c. In Fig. 4.5 (b), the Rb2MnF4

crystal was aligned in the (HK0) plane. This leads to the visible M⊥ along y and the

M∥ perpendicular to the ac-plane. Fig. 4.5 (c) and (d) show the spin-flip processes for
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Fig. 4.4: Antiferromagnetic order parameters. (a) Intensity of the antiferromagnetic Bragg peak

(300) in MnF2 as a function of temperature. The maximum slope defines the Néel temperature

TN. (b) Intensity of the (0.5 0.5 0) magnetic Bragg reflection of Rb2MnF4. The sharp peak

results from critical scattering and defines TN.

MnF2 and Rb2MnF4. For both materials, the initial Pi undergoes spin flips around the

respective component of M, such that M∥ flips Pi to P f ,∥ and M⊥ flips Pi to P f ,⊥.

In summary, the corresponding spin flips and the appropriate field configurations that

follow the spin-echo condition are

MnF2 ∶ ⎧⎪⎪⎨⎪⎪⎩ϕ f ,∥ = π − ϕi (↑↑)
ϕ f ,⊥ = π + ϕi (↑↓) Rb2MnF4 ∶ ⎧⎪⎪⎨⎪⎪⎩ϕ f ,∥ = π + ϕi (↑↓)

ϕ f ,⊥ = 3π/2 − ϕi (↑↑) (4.4)

The spin-echo condition is fulfilled if the Larmor phase of the first spin-echo arm

is inverted in the second one. Note that for ϕ f ,∥ in MnF2 and ϕ f ,⊥ in Rb2MnF4, the

minus sign of the scattered spin phases corresponds to an effective sign inversion of the

magnetic field applied in the first spin-echo arm. Hence, the magnetic fields in these

two cases have to be chosen parallel (↑↑) to fulfill the echo condition. On the other

hand, the spin flips of ϕ f ,⊥ in MnF2 and of ϕ f ,∥ in Rb2MnF4 don’t change the sign of ϕi.

The echo condition is fulfilled if the magnetic fields are antiparallel (↑↓). The neutron

spins scattered by the component of M not fulfilling the echo conditions effectively

precess with the same sign in both spin-echo arms. They are depolarized if their phase
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Fig. 4.5: Top panel: spin fluctuations parallel and perpendicular to the sublattice magnetization

M are referred to as longitudinal (labeled ∥) and transverse (labeled ⊥). In both MnF2 and

Rb2MnF4, M is parallel to the tetragonal c-axis. (a) In MnF2, the ac-plane was aligned in the

scattering plane, thus the M∥ are along y, and the M⊥ along z. (b) Rb2MnF4 was aligned in the

ab-plane with M∥ along z and M⊥ along y. Bottom panel: Spin flip processes at (c) MnF2 and

(d) Rb2MnF4. The initial polarization Pi is flipped to P f ,∥ and P f ,⊥ resulting from M∥ and M⊥,

respectively.

is spread by more than 2π at the exit of the second region.
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4.4 TAS resolution function

In TAS, the monochromator selects a small band of the incident neutron wave vectors

ki with an averaged value kI. The analyzer in the scattered beam selects a band of kf

with mean kF. As a consequence the momentum and energy transfers of the neutrons

are distributed around the average value (Q0, ω0), where Q0 = kI− kF and ω0 = h̵2(k2
I −

k2
F)/2mn. The TAS resolution function R(Q, ω) defines the probability of detecting

a scattering process at (Q, ω) with the instrumental setting (Q0, ω0). R(Q, ω) is a

4-dimensional Gaussian distribution [119]

R(Q, ω) = R0 exp

⎡⎢⎢⎢⎢⎣−1

2

4∑
i=1

4∑
j=1

Mi j xi x j

⎤⎥⎥⎥⎥⎦ , (4.5)

with R0 a constant, (x1, x2, x3) = Q − Q0 measured in Å−1, and x4 = ω − ω0 = ΔE
measured in meV. M is the TAS resolution matrix.

The momentum resolution is usually given by three components, the longitudinal

resolution ΔQ∥ ∥ Q0, the transverse ΔQ⊥ ⊥ Q0 within the scattering plane, and the

out-of-plane ΔQz. If the instrumental configurations are known, M can be calculated

by Cooper’s method [119], or more advanced by Popovici’s method that includes spa-

tial effects [132]. We use the RESCAL program implemented in MATLAB [133] to

calculate the resolution matrix using these methods. The calculated results of the reso-

lution matrix M for MnF2 and Rb2MnF4 are shown below by using Popovici’s method.

Instead of labeling the components of Q by (x1, x2, x3), often the coordinate labels(x, y, z) are used, where x ∥ Q0, y ⊥ Q0 in the scattering plane, and z ⊥ Q0 perpendicu-

lar to the scattering plane.

For MnF2 with kI = kF = 2.35 Å−1 and Q = (300), the resolution matrix at TRISP is

M = 10
4 × ⎛⎜⎜⎜⎝

0.3715 −0.5814 0 −0.0357−0.5814 1.4227 0 0.0949

0 0 0.1214 0−0.0357 0.0949 0 0.0072

⎞⎟⎟⎟⎠ . (4.6)

This matrix defines an ellipsoid in the 4-dimensional xi space. Typically, the cross sec-

tions in Q of this ellipsoid are given as Bragg widths. This is the width of a scan across

a Bragg peak in the given direction. For MnF2, the Bragg widths are Qx = 0.039 Å−1,

Qy = 0.020 Å−1, Qz = 0.068 Å−1. The projection of the ellipsoid on a plane containing

the energy axis (x4) gives the Vanadium width V = 0.816 meV.

For Rb2MnF4, the resolution matrix for kI = kF = 2.51 Å−1 and Q = (0.5 0.5 0) is
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Fig. 4.6: (a) Direct beam calibration for k = 2.3 Å−1 in the NRSE mode. (b) Coil calibration in

the DC mode at k = 2 Å−1. The above results were used to normalized the spin-echo raw data.

obtained

M = 10
5 × ⎛⎜⎜⎜⎝

0.0823 −0.1519 0 −0.0170−0.1519 1.1476 0 0.1155

0 0 0.0110 0−0.0170 0.1155 0 0.0117

⎞⎟⎟⎟⎠ . (4.7)

This yields the Bragg widths: Qx = 0.026 Å−1, Qy = 0.007 Å−1, Qz = 0.071 Å−1 and

V = 1.091 meV.

4.5 Analysis of the NRSE data

4.5.1 Effect of coil inhomogeneities

In the procedure of data correction, instrumental effects from small field inhomo-

geneities in the RF and DC coils have to be taken into account. This contribution

can be experimentally determined by performing a so-called direct beam calibration or

by measuring the polarization of a nuclear Bragg reflection of a standard material, such

as PG (002).
Fig. 4.6 (a) shows the results of direct beam calibration for k = 2.3 Å−1 in the NRSE

mode, consisting of experimental data from RFMODE = 2 and RFMODE = 4 (see Sec. 3.3).

The polarization is rather smooth as a function of frequency FREQ. The slight drop

of the polarization observed at the minimum FREQ in both modes is a property of the
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RF spin-flipper related to the Bloch-Siegert shift known from NMR [134]. Fig. 4.6 (b)

shows the coil calibration in the DC mode in measuring the polarization of a PG (002)
at k = 2 Å−1. A fit of this curve using Eq. (3.12) with h̵ = 658μeV · ps gives

P = 0.84126 · exp(−2.5271 · τNSE

h̵
). (4.8)

We obtain the non-intrinsic linewidth broadening Γ0 = 2.5271μeV. Practically, the raw

NSE data are normalized by the calibrated P for the NRSE and DC modes such that

P(τNSE = 0) = 1. In this way, it allows us to extract the intrinsic linewidth of a system.

4.5.2 Finite momentum resolution effect

Here we discuss how the finite momentum resolution defined by the TAS resolution

ellipsoid R(Q, ω) affects the spin-echo resolution. The data of the present experiments

were taken at magnetic Bragg reflections G, where q = G −Q and S (q, ω) vary within

the 4-dimensional region defined by (x1, x2, x3, x4) = (q − q0, ω − ω0), as discussed in

Sec. 4.4. To estimate the effect on the linewidth measured by spin-echo, we calculated

the polarization by

P(τNSE) = P0 × ∫ S (Q, ω)R(Q, ω) cos(ωτNSE)dω, (4.9)

where the R(Q, ω) was calculated with matrix elements Mi, j corresponding to the spec-

trometer configurations [119]. The scattering functions S (q, ω) are taken from previous

work in MnF2 [13] and Rb2MnF4 [8, 41].

For the 3D spin system of MnF2, q is defined as q = √
x2

1 + x2
2 + c2/a2 · x2

3 due to the

tetragonal structure. We use the following expressions to calculate the resolution effect.

The scattering function can be expressed as

S (q, ω) = 1

π

1

q2 + κ2 ΓΔ

Γ2
Δ
+ x2

4

. (4.10)

κ is the inverse correlation length above TN, which reads κ(T) = 0.032(T−TN)0.634 Å−1.

The linewidth difference is

ΓΔ = Γ(q,T) − Γ(0,T) with Γ(q,T) = [κ(T)]1.5
Ω[q/κ(T)]. (4.11)

Ω is a scaling function. Consequently, we performed a 4-dimensional integration imple-

mented in MATLAB to calculate the momentum resolution effect on P(τNSE) according

to Eq. (4.9).



4.5 Analysis of the NRSE data 79

For the 2D spin system of Rb2MnF4, the momentum transfer Q2D lies in the mag-

netic planes and the reduced momentum transfer q2D = √
x2

1 + x2
2 is measured from the

antiferromagnetic zone center. Regarding to the dynamic scaling hypothesis of the 2D

HAFM [Eq. (2.31)], the scattering function S reads

S (q2D, ω) = S 0

1 + q2
2Dξ

2

Γγq

Γ2γ2
q + x2

4

, (4.12)

where ξ is the correlation length and γq = √
1 + 1.7q2ξ2. By inserting Γ of Rb2MnF4

obtained at TRISP, it allows us to estimate the effects of the intrinsic energy resolution

and finite momentum resolution. In contrast to MnF2, the latter was calculated assum-

ing 2D correlations in the (HK0) scattering plane.

In both cases, the corresponding linewidth broadening ΓR is obtained by fitting of

P(τNSE) to Eq. (3.12). As a result, ΓR is roughly independent of temperature for T ≥ TN

and amounts to about 5μeV in MnF2 and 1.6μeV in Rb2MnF4. The latter value includes

0.8μeV of the intrinsic spin-echo resolution and 0.8μeV of the finite momentum res-

olution. The reason for the larger value in MnF2 is the relaxed vertical resolution Qz,

which has no effect in the 2D spin system of Rb2MnF4.

4.5.3 An experimental verification of the analysis technique
At first, we used the MnF2 crystal to check the applicability of our analysis technique

in analyzing the critical scattering measurement at T = 69 K. Fig. 4.7 shows typical

NSE data P(τNSE) of MnF2 using the DC mode at TRISP at the pure antiferromagnetic

Bragg point Q = (300) and the result of a fit to the model described above. A prominent

feature of the data is the fast oscillation of the polarization in the low τNSE region,

which is displayed as red area in panel (a) and resolved in the zoomed version in panel

(b). As discussed in Sec. 3.4.4, these oscillations result from the τNSE-dependent phase

difference between P f ,∥ and P f ,⊥ [see Fig. 4.5 (c) and Eq. (4.4)],

ϕ f ,∥ − ϕ f ,⊥ = −2ϕi, (4.13)

where ϕi depends on the wave vector ki = kf = 2.35 Å−1. According to Eq. (3.42), the

oscillation period is = 0.148 A or 0.09 ps, in good agreement with our observation in

Fig. 4.7 (b). For positive τNSE (↑↑ field configuration), only the polarization P f ,∥ obeys

the spin-echo condition, whereas the polarization P f ,⊥ is depolarized with increasing

τNSE, such that the oscillation amplitude decreases.

For negative τNSE (↑↓ field configuration) P f ,⊥ fulfills the spin-echo condition and the

remaining polarization P f ,⊥ generates the oscillations. In Fig. 4.7 (a), the amplitudes of

P f ,∥ and P f ,⊥, denoted by P∥ and P⊥, are extracted from these complicated spin-echo
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Fig. 4.7: Sample echo data of critical scattering in MnF2 and fit with the model described in

the text at Q = (300) at T = 69 K, where TN = 67.3 K. (a) and the zoom (b) show the fast

oscillation of the polarization resulting from the interference of scattering by M∥ and M⊥. The

oscillation period is discussed in the text. A positive (negative) sign of τNSE corresponds to ↑↑
(↑↓) field configuration. The lines P∥ and P⊥ show the contribution of the M∥ and M⊥ to the

polarization, where the peaks of these curves are proportional to the integrated intensities.

signals. The lines of the P∥ and P⊥ result from the contribution of the M∥ and M⊥. The

ratio of peaks at τNSE = 0 between P∥ and P⊥ shows the relative integrated intensity

I∥/I⊥. At large τNSE beyond the oscillation regime τNSE > 5 ps, P(τNSE) can be modeled

by a simple exponential decay [see Eq. (3.12)]. Thus the asymmetry in the decay be-

tween τNSE > 0 and τNSE < 0 indicates Γ∥ ≪ Γ⊥.
4.5.4 Representative NSE data for MnF2 and Rb2MnF4

In the following NSE scans on both materials, data were collected during several beam

times at TRISP with slightly varying crystal mounts. Consistent thermometry between

these runs was ensured by measuring the temperature dependent intensities of magnetic

Bragg reflections at the beginning of each run. Representative scans of spin-echo po-

larization P vs. spin-echo time τNSE [ps] above TN for MnF2 and Rb2MnF4 are shown.

With the advantage of the proposed analysis technique [see Sec. 3.4.3], we are able to

discriminate between the longitudinal and transverse fluctuations (M∥ and M⊥) at posi-

tions in Q = (300) for MnF2 and in Q = (0.5 0.5 0) for Rb2MnF4, respectively. During

these measurements, the temperature was stable within 1 mK.
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3D AFM MnF2

Representative NSE data of MnF2 and fits with the model are shown from Fig 4.8 to

Fig. 4.10, from the temperature close to TN to the temperature far away from TN. The

longitudinal and transverse contribution to the critical fluctuations are shown in green

and grey with shaded areas, respectively. As discussed in Sec. 3.3, the NRSE and DC
modes at TRISP were used to measure the polarization in the large and small τNSE re-

gions, respectively. For the DC mode, the experimental range of τNSE is ∣τNSE∣ = 9.18 ps,

while for the NRSE mode the τNSE range is 4.98 ps < ∣τNSE∣ < 100 ps. Note that the sign

of τNSE shows the applied field configuration (↑↑ or ↑↓).
Fig. 4.8 shows the NSE data at (a) T = 67.35 K, (b) T = 67.70 K, and (c) T = 68.30 K,

which are close to TN = 67.3 K. Due to the presence of the anisotropy field, only the

longitudinal fluctuations M∥ become critical and largely dominate the magnetic critical

scattering. This fact leads to the smaller amplitudes of the curve P⊥ resulting from the

transverse fluctuations M⊥. In Fig. 4.8 (a), P⊥ is negligible compared to the longitudi-

nal contribution to the polarization P∥. The small longitudinal linewidth Γ∥ (or inverse

magnetic lifetime) indicates that M∥ is still small and remains static. In addition, P∥
in the positive τNSE range can be fitted using a conventional exponential decay [see

Eq.(3.12)]. While T increases as in Fig. 4.8 (b) and (c), both M∥ and M⊥ become more

relaxational and thus the use of the DC mode at TRISP is needed to resolve such a

large Γ of the magnetic fluctuations. Further, Fig. 4.8 (c) shows the experimental data

resulting from the NRSE and DC modes, which gives a credence to our coil calibrations.

Fig. 4.9 illustrates the cases of P vs. τNSE in the intermediate temperature range at

(a) T = 68.60 K, (b) T = 69.10 K, and (c) T = 69.60 K. In addition, at T ≫ TN the

NSE data of MnF2 are shown in Fig. 4.10 with (a) T = 70.10 K, (b) T = 70.85 K, and

(c) T = 71.35 K. Among these experimental data, the use of the DC mode at TRISP

plays an important role to resolve the highly relaxational M∥ and M⊥. The oscillation

behavior resulting from the interference of M∥ and M⊥ disappears when the non-echo

fluctuations are fully depolarized. In the positive τNSE range, M⊥ is the non-echo con-

tribution to the polarization and thus the curve P⊥ vanishes eventually when τNSE in-

creases. Consequently P(τNSE > 5 ps) reflects the pure longitudinal contribution P∥. In

the negative τNSE range, M∥ is the non-echo contribution to the polarization but with

large scattering intensity. This makes the conventional data analysis difficult, especially

in the current case where M⊥ is quite relaxational. With the advantage of our analysis

technique, we are able to discriminate the contribution of M∥ and M⊥ in the whole

experimental data range. In Fig. 4.9 (c), we verified again the behavior of oscillations

arising from the interference of scattering by M∥ and M⊥. The obtained oscillating

period is in good agreement with our expectation.

In summary, Table 4.1 lists the fitting results of MnF2 extracted from our analysis

model, containing the Γ∥, Γ⊥, and I⊥/I∥ at various T and the corresponding reduced
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T(K) t Γ∥(μeV) Γ⊥(μeV) I⊥/I∥
67.35 2.8 × 10−3 7.0312 ± 0.2532 3.3669 ± 2.5565 0.035

67.45 4.3 × 10−3 14.304 ± 0.35666 39.614 ± 14.919 0.106

67.50 5.1 × 10−3 16.043 ± 0.32748 94.904 ± 21.74 0.150

67.55 5.8 × 10−3 18.564 ± 0.54683 133.254 ± 38.98 0.187

67.70 8.0 × 10−3 24.885 ± 0.58036 221.529 ± 26.303 0.314

67.85 0.010 35.165 ± 0.92449 241.121 ± 52.163 0.492

68.10 0.014 51.798 ± 1.8904 273.267 ± 53.833 0.535

68.30 0.017 68.865 ± 1.8718 297.651 ± 40.268 0.538

68.35 0.018 77.788 ± 2.3526 268.573 ± 29.196 0.521

68.60 0.022 90.391 ± 2.2326 310.486 ± 38.983 0.574

68.85 0.025 102.708 ± 2.5447 311.99 ± 28.62 0.589

69.10 0.029 123.505 ± 4.9495 298.383 ± 45.832 0.534

69.35 0.033 136.32 ± 3.5908 334.104 ± 34.487 0.632

69.60 0.036 142.862 ± 5.1161 359.997 ± 45.92 0.728

69.85 0.040 160.236 ± 4.6085 318.166 ± 34.692 0.569

70.10 0.044 167.092 ± 5.267 320.291 ± 45.448 0.630

70.35 0.048 174.039 ± 7.8894 324.17 ± 56.203 0.590

70.60 0.051 184.22 ± 9.1761 333.678 ± 57.371 0.597

70.85 0.055 200.427 ± 6.7651 400.719 ± 46.51 0.728

71.10 0.059 214.516 ± 7.5503 462.295 ± 66.872 0.798

71.35 0.063 236.336 ± 12.273 367.983 ± 63.282 0.613

71.60 0.066 231.213 ± 12.041 463.919 ± 85.715 0.822

Table 4.1: Experimental results of critical scattering in MnF2 at Q = (300). Γ∥, Γ⊥, and the

relative integrated intensities are extracted from the aforementioned analysis technique.

temperature t. It is clear that the system tends to enter the isotropic paramagnetic state,

where the relative integrated intensities I∥/I⊥ → 1 as T increases. At T ≫ TN, the

thermal fluctuations gradually come into play in the magnetic interactions of MnF2 and

thus suppress the contribution of the anisotropic field.



4.5 Analysis of the NRSE data 83

Fig. 4.8: Representative NSE data of critical scattering of MnF2 and fits with the model at

Q = (300) at temperatures close to TN = 67.3 K: (a) T = 67.35 K, (b) T = 67.70 K, and (c)

T = 68.30 K.
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Fig. 4.9: Continued from Fig. 4.8. Representative NSE data of MnF2 in the intermediate tem-

perature range at (a) T = 68.60 K, (b) T = 69.10 K, and (c) T = 69.60 K.
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Fig. 4.10: Continued from Fig. 4.9. Representative NSE data of MnF2 for T ≫ TN at (a)

T = 70.10 K, (b) T = 70.85 K, and (c) T = 71.35 K.
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2D AFM Rb2MnF4

Representative NSE scans of P vs. τNSE for Rb2MnF4 at Q = (0.5 0.5 0) and fits with

the model are shown from Fig 4.11 to Fig. 4.13. Here we use the same notation and

symbols in the plots as in MnF2. According to Sec. 4.3 for Rb2MnF4, M∥ (M⊥) is per-

pendicular (parallel) to the (HK0) scattering plane and fulfills the spin-echo condition

for negative (positive) τNSE corresponding to ↑↓ (↑↑) magnetic field configuration.

Fig. 4.11 shows the NSE data of Rb2MnF4 at (a) T = 38 K, (b) T = 39.5 K, and (c)

T = 41 K. Close to TN = 37.6 K, Fig. 4.11 (a) shows that the intensity of M∥ dominates

and M⊥ has nearly no effect on the NSE signal. The obtained Γ∥ is small, so that for

τNSE < 0 the polarization decays slowly. Upon heating, Fig. 4.11 (b) and (b) illustrate

that Γ∥ increases rapidly, leading to a faster decay of P(τNSE < 0). For τNSE > 0, Γ⊥ is

rather large and evolves more smoothly upon heating. Experimentally, we used the DC
mode for τNSE > 0 and the NRSE mode for τNSE < 0 in these experiments.

Fig. 4.12 illustrates the cases of Rb2MnF4 in the intermediate temperature range at

(a) T = 68.60 K, (b) T = 69.10 K, and (c) T = 69.60 K. In addition, Fig. 4.10 shows

the NSE data in the isotropic limit at T ≫ TN, with (a) T = 70.10 K, (b) T = 70.85 K,

and (c) T = 71.35 K. The use of the DC mode at TRISP plays a prominent role to

resolve the interference of M∥ and M⊥ especially in the low τNSE region. This oscilla-

tion behavior disappears when M∥ at positive τNSE and M⊥ at negative τNSE are fully

depolarized. Beyond the oscillation region, P(τNSE < 0) (P(τNSE > 0)) reflects the pure

longitudinal (transverse) contribution P∥ (P⊥). Upon heating, the intensity ratio I⊥/I∥
approaches unity, as expected for the isotropic spin fluctuations. Γ∥ increases rapidly,

leading to a faster decay of P(τNSE < 0); Γ⊥ is rather large at TN and evolves more

smoothly upon heating, so that P(τNSE > 0) shows less variation with temperature.

To summarize, we have separated the contribution of M∥ and M⊥ to the polarization

of Rb2MnF4 in the whole experimental data range. Table 4.2 lists all the results ex-

tracted from our analysis model, containing the Γ∥, Γ⊥, and I⊥/I∥ at various T and the

corresponding reduced temperature t.
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T(K) t Γ∥(μeV) Γ⊥(μeV) I⊥/I∥
37.6 0 4.293 ± 0.029492 161.309 ± 16.784 0.067

38 0.011 6.8238 ± 0.044336 164.429 ± 11.319 0.108

38.5 0.024 14.095 ± 0.08394 191.42 ± 9.5577 0.176

39 0.037 19.525 ± 0.12778 173.943 ± 7.5595 0.221

39.5 0.051 29.673 ± 0.23424 166.908 ± 6.5486 0.262

40 0.064 37.123 ± 0.3808 191.031 ± 7.0526 0.333

40.5 0.077 49.633 ± 0.62686 176.37 ± 6.0363 0.376

41 0.090 59.028 ± 0.90203 191.601 ± 6.3016 0.444

41.5 0.10 72.848 ± 0.81461 188.792 ± 5.9159 0.462

42 0.12 83.193 ± 1.0572 194.354 ± 6.2666 0.502

42.5 0.13 94.851 ± 1.2663 215.019 ± 7.0532 0.564

43 0.14 104.477 ± 1.5763 216.841 ± 7.1653 0.602

43.25 0.15 118.265 ± 1.0293 240.486 ± 4.0574 0.600

43.5 0.16 125.381 ± 1.1177 240.964 ± 4.1129 0.614

43.75 0.16 129.154 ± 1.2088 250.135 ± 4.5314 0.631

44 0.17 136.106 ± 1.3028 247.423 ± 4.3504 0.658

44.25 0.18 142.136 ± 1.4096 254.068 ± 4.8136 0.649

44.5 0.18 149.148 ± 1.5144 251.919 ± 4.8278 0.649

45 0.20 161.019 ± 1.7542 264.691 ± 5.4781 0.685

45.75 0.22 174.665 ± 2.1804 291.702 ± 7.5155 0.765

46.5 0.24 187.177 ± 2.6704 292.966 ± 10.64 0.817

47.25 0.26 201.617 ± 3.042 314.072 ± 7.2452 0.916

48 0.28 225.053 ± 3.8175 347.225 ± 9.1766 0.926

48.75 0.30 233.898 ± 4.2806 349.417 ± 9.318 0.943

49.5 0.32 247.714 ± 5.0273 364.993 ± 11.504 0.942

50.25 0.34 261.649 ± 5.8977 389.707 ± 13.741 0.990

Table 4.2: Experimental results of critical scattering in Rb2MnF4 at Q = (0.5 0.5 0). Γ∥, Γ⊥,

and the relative integrated intensities are extracted from the aforementioned analysis technique.
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Fig. 4.11: Representative NSE data of critical scattering of Rb2MnF4 and fits with the model

at Q = (0.5 0.5 0) at temperatures close to TN = 37.6 K: (a) T = 38 K, (b) T = 39.5 K, and (c)

T = 41 K.
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Fig. 4.12: Continued from Fig. 4.11. Representative NSE data of Rb2MnF4 in the intermediate

temperature range at (a) T = 42.50 K, (b) T = 43.75 K, and (c) T = 45 K.
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Fig. 4.13: Continued from Fig. 4.12. Representative NSE data of Rb2MnF4 for T ≫ TN at (a)

T = 46.5 K, (b) T = 48 K, and (c) T = 50.25 K.
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5 Critical dynamics in classical
antiferromagnets

5.1 3D AFM MnF2

Fig. 5.1 (a) shows the longitudinal linewidths Γ∥(T) at Q = (300) extracted from the

model calculations described in Chapter 4. The bare measured linewidth Γ∥(T = TN) =
5μeV is larger than the intrinsic spectrometer resolution (< 1μ eV) and agrees with the

additional linewidth broadening Γ0 calculated above by taking the finite Q resolution

into account. According to the dynamical scaling prediction [6, 7], the resolution-

corrected Γ∥ follows a power law

Γ∥(T) = A∥t
zν

(5.1)

where A∥ is a normalized amplitude, t = T/TN − 1 is the reduced temperature, and

κ = ξ−1 ∼ tν is the inverse correlation length.

The Γ∥(T) data in Fig. 5.1 (a) clearly deviate from a single power law in the shaded

region at around T = 69 K. After subtracting the residual linewidth ΓR, we performed

separate fits of Eq. (5.1) to the regions below and above 69 K. The blue dotted line

fits the data in the range TN < T < 1.01 TN, with a normalized amplitude A∥ =
1.148 × 104 μeV and an exponent zν = 1.25(2). With the exponent ν3D IAFM = 0.6301

predicted for 3D Ising antiferromagnet (3D IAFM) scaling [53], we obtain z = 1.98(3),
which matches the z3D IAFM = 2 expected for this universality class within the exper-

imental error [7]. The 3D Heisenberg antiferromagnet (3D HAFM) scaling in this

temperature range can be excluded: dividing zν by ν3D HAFM = 0.7112 predicted for the

3D HAFM [54] results in z = 1.77, inconsistent with z3D HAFM = 1.5 predicted for the

3D HAFM [7]. For T > 1.04 TN, the red dotted curve corresponds to a normalized

amplitude A∥ = 3.830 × 103 μeV and an exponent zν = 1.02(3). Dividing by ν3D HAFM

gives z = 1.43(5), close to 3D HAFM scaling, whereas the z = 1.62(4) obtained with

ν3D IAFM is inconsistent with the theoretical z3D IAFM = 2. Thus the data Γ∥(T) show a

crossover from 3D IAFM close to TN to 3D HAFM scaling for T ≫ TN. The relative

amplitude A∥,3D IAFM/A∥,3D HAFM = 3.0 resulting from the fits is in good agreement with

the value 3.1 predicted by Riedel and Wegner [10, 11], who extended the dynamical

scaling theory to anisotropic systems.

93
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Fig. 5.1: (a) Temperature dependence of longitudinal linewidths Γ∥ in MnF2 at Q = (300).
It shows a crossover from 3D Ising to 3D Heisenberg critical scaling, where the gray band

indicates the crossover region centered at Tx. R = 5μeV is the broadening due to the finite

momentum resolution. (b) The phenomenological expression for the crossover function H vs.
T − Tx. The fitting parameter λ = 1.15 defines the transition temperature width ΔT of the

crossover behavior, as described in the text. The gray band corresponds to the ΔT .

For a quantitative description of the crossover region of Γ∥(T), we use the phe-

nomenological expression of a crossover function with the linewidths ΓIsing below and

ΓHeisenberg above the crossover region

Γ(T) = [1 − H(T − Tx)] ·ΓIsing + H(T − Tx) ·ΓHeisenberg, (5.2)

H(T − Tx) = 1/2 + 1/2 tanh[λ(T − Tx)]. (5.3)

H(T − Tx) is a slowly varying function symmetrically centered at a crossover tem-

perature Tx. H(T) defines a soft continuous transition from 0 to 1 and approaches the

Heaviside step function for λ→∞. The transition width λ is defined as the region 0.1 <
H < 0.9 describing the crossover temperature range ΔT = ∣T − Tx∣. A fit of Eq. (5.2)

to our data gives λ = 1.15 and Tx = 69.2(1)K (or tx = 0.029(1)). Thus ΔT = 0.96 K

can be deduced and it defines a crossover temperature region 1.01 TN < T < 1.04 TN

centered at Tx. The crossover behavior of the dynamic fluctuations is not surprising as

the uniaxial anisotropy is expected to be significant only close to TN, whereas far above

TN isotropic 3D HAFM scaling should dominate.

Schulhof et al. [13] pointed out that their Γ∥ result for MnF2 favors the value z = 1.5,

consistent with 3D HAFM scaling, whereas the static exponents ν and γ agree with
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Fig. 5.2: A phase diagram of the critical phenomena of an anisotropic system. The corre-

sponding anisotopic and isotropic phases in the (q, κ∥) space are separated by the boundary

κ2
∥
+ q2 = κ2Δ.

the 3D IAFM model. They argued that the reason for this discrepancy might be the

small range in momentum q where the crossover is visible in Γ∥. Riedel and Weg-

ner [10, 11] introduced a characteristic wave vector κΔ = κ∥(tx, q = 0) defining the

crossover between isotropic and anisotropic regions in momentum space, with the

boundary κ2∥ + q2 = κ2Δ [see Fig. 5.2]. They estimate κΔ = 0.054Å
−1

for MnF2, cor-

responding to Tx ∼ TN + 2 K, close to the observation in the present work. In addition,

Pfeuty et al. [12] predicted such a crossover from 3D IAFM to 3D HAFM scaling oc-

curs at tx = α0.8
I , where the reduced anisotropy αI = HA/HE is the ratio of anisotropy

and exchange fields in the spin Hamiltonian. Experimentally, αI = 0.016 from an an-

tiferromagnetic resonance experiment of MnF2 [88] gives tx = 0.036, which is in good

agreement with our experimental result. Frey and Schwabl calculated the critical dy-

namics by taking dipolar interactions into account [15]. From their formulas, we obtain

a similar value of κΔ = 0.06 Å
−1

. Since the linewidths Γ∥ at q ∼ κΔ were too narrow

to be resolved by TAS, the crossover of the dynamical exponent z was missed. For the

strongly anisotropic antiferromagnet FeF2 [86], both tx = 0.45 and κΔ = 0.29 Å
−1

are

larger, such that the TAS experiment covered the 3D Ising region close to TN without

observing the crossover to Heisenberg dynamic scaling.

The energy width Γ⊥(T) of the transverse fluctuations is shown in Fig. 5.3 (a) in

comparison with previous TAS data from [13, 14]. We observe a rapid increase

of Γ⊥ between TN and the lower bound of the crossover region at 1.01 TN, where

Γ⊥ saturates at ∼ 0.3 meV. Calculations predicted this saturation value, correspond-

ing to z⊥ = 0 [11, 15, 16]. But Γ⊥ is expected to stay constant in the broad range

TN < T < Tx, which contradicts both our data and the results of the early TAS exper-

iments. Γ⊥ increases beyond the crossover region (T > 1.04 TN), as expected for the
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Fig. 5.3: (a) Temperature dependence of transverse linewidths Γ⊥ in MnF2 at Q = (300) and

data from early TAS experiments [13, 14]. The crossover region (grey band) deduced from

the longitudinal correlations is also included. The green dotted line shows the calculated Γ⊥
by Riedel and Wegner [11]. (b) Ratio of integrated intensities I⊥/I∥. Close to TN, I∥ is much

stronger. For T > Tx in the 3D HAFM region, I⊥/I∥ is growing within the experimental tem-

perature range and approaches unity for T ≫ TN.

3D HAFM scaling. The error bars increase at high temperature, because the wings of

the Lorentzian line are cut by the transmission function R(ω) of the NRSE-TAS spec-

trometer (∼ 0.8 meV FWHM). Hence the data quality does not allow fitting of a critical

exponent and quantitative confirmation of 3D HAFM scaling of Γ⊥ for T ≫ TN.

Fig. 5.3 (b) shows the ratio of integrated intensities I⊥/I∥ arising from M⊥ and M∥.

Close to TN, M∥ largely dominates the critical scattering due to the uniaxial anisotropy.

As T increases, I⊥/I∥ is growing rapidly and then approaches 1 for T ≫ TN indicating

the system enters the 3D HAFM scaling.
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Fig. 5.4: (a) The longitudinal linewidths Γ∥ vs. temperature of the critical fluctuations in

Rb4MnF4 at Q = (0.5 0.5 0). Γ∥(T) shows a crossover in the critical scaling at Tx = 44.3 K,

where the gray band indicates the crossover region centered at Tx. The orange dotted line

shows the 2D HAFM scaling at T ≫ TN, in agreement with the calculated Γ(T) by Wysin and

Bishop in classical AFMs. (b) The crossover function H vs. T −Tx for Rb2MnF4 is shown with

λ = 1.28. The resulting crossover temperature region is ΔT = 1.7 K, as depicted in the grey

band.

5.2 2D AFM Rb2MnF4

Figure 5.4 (a) shows the linewidth Γ∥ of the longitudinal fluctuations. The broadening

of Γ∥ sets in about 0.6 K below TN and reaches 4.3μeV at TN. This value is larger

than the calculated resolution of ∼ 1.6μeV. Very close to TN, where the fluctuations

leading to the 3D order also must reflect 3D correlations, such that the finite Qz reso-

lution should become relevant. However, this temperature regime is very narrow, and

the resolution correction should be insignificant in the range of reduced temperatures

we are probing [19]. Nonetheless, we note that the observed width at TN is very similar

to the one in MnF2 at TN, where it most likely arises from the 3D spin correlations in

conjunction with the poor vertical resolution. It is also similar to the residual linewidth

of magnons at T = 3 K, deep in the Néel state of Rb2MnF4, which could be attributed

to the effect of structural and/or magnetic domain boundaries. Further work is required

to determine whether the small linewidth at TN arises from an unidentified resolution

effect or from intrinsic properties of the sample such as residual disorder. In the fol-

lowing analysis, we subtract this contribution from the temperature dependent Γ∥ data.

The Γ∥(T) data in Fig. 5.4 (a) show a change in slope at around 44 K. From the dipo-
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lar anisotropy, one expects a crossover from 2D Ising antiferromagnet (2D IAFM) scal-

ing for T ∼ TN to 2D Heisenberg antiferromagnet (2D HAFM) behavior for T ≫ TN.

Such a crossover was observed by Lee et al. [17] for the correlation length ξ∥ close to

Tx = 1.2 TN. This value of Tx was calculated for an anisotropy parameter αI = 0.0047

extracted from the spin wave dynamics [126, 127, 128]. Fitting the power law Γ∥(t) of

Eq. (5.1) in the range TN < T < 1.16 TN gives an exponent zν = 1.387(4). This value

depends only weakly on the choice of the fitting range; removing two data points at the

upper or lower boundary changes the result within the error bar. Using the exponent

ν2D IAFM = 1 predicted for 2D IAFM scaling [20], we obtain z = 1.387(4), clearly dif-

ferent from the z2D IAFM = 1.75 predicted for the 2D IAFM scaling [18]. Other simple

models, such as the 3D IAFM scaling, also do not fit. With ν3D IAFM = 0.6301, we

obtain z = 2.201(6), different from the predicted z3D IAFM = 2. This means that our

linewidth data close to TN are not consistent with the 2D IAFM behavior observed for

the correlation length ξ∥ [17]. In addition, such a deviation from 2D IAFM scaling with

β = 0.125 [20] was also observed for the static exponent β = 0.18 deduced from the

antiferromagnetic order parameter by Birgeneau et al. [19].

A possible reason for the unexpected scaling of Γ∥(T) is the the dipolar interaction,

which is the major contributor to the magnon gap in the antiferromagnetically ordered

state and can affect the universality class by virtue of its long spatial range. Based on

theoretical considerations, Refs. [15, 82] argued that the long-range nature of the dipo-

lar forces should have no effect on the correlation length in antiferromagnets, but that

the critical dynamics are modified by additional damping processes, especially in the

limit of small q and close to TN. In 3D antiferromagnets such as MnF2, the critical

regime in which the long-range character of the dipolar interaction significantly affects

the critical scaling is expected to be small [135]. Indeed, our investigation of MnF2 did

not uncover any evidence of such an effect. For the 2D case, a stronger influence of the

long range character is expected [15], but to the best of our knowledge a calculation

of the critical dynamics of a 2D antiferromagnets with dipolar interactions has not yet

been reported. It is interesting to note that the critical exponent in a magnetic field H
close to the bicritical point in the H−T phase diagram of Rb2MnF4, z = 1.35±0.02 [8],

is identical to ours within the experimental error. This suggests that the magnetic field

does not close the damping channels actuated by the dipolar interaction.

For T ≫ TN the impact of the anisotropy decreases, and the fluctuations are expected

to follow the 2D HAFM model which exhibits magnetic long range order only for T →
0 K [94]. It is not possible to obtain the critical exponent z from the relation of Eq. (5.1),

as both t and ν are undefined in 2D HAFM scaling. The correlation length ξ2D HAFM for

the pure S = 5/2 2D HAFM has been calculated by Cuccoli et al. [42, 43] using a pure

quantum self-consistent harmonic approximation (PQSCHA), and the influence of the
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Fig. 5.5: Numerical results of the effective correlation length ξeff and its inverse κeff = ξ
−1
eff vs.

temperature. The latter terminates at T = TN and follows the 2D IAFM scaling.

small spin-space anisotropy can be described by the mean-field expression ξeff [35]:

ξeff(αI,T) = ξ2D HAFM√
1 − αI ξ2

2D HAFM(T) . (5.4)

The effective (perturbed) correlation length ξeff is obtained by inserting αI = 4.7 ×
10−3 [96, 127, 128] and the PQSCHA result. Fig. 5.5 shows the numerical results of

ξeff and κeff = ξ−1
eff as a function of temperature. ξ−1

eff vanishes at TN due to the uniaxial

anisotropy. Fitting the expression κ = κ0tν to the ξ−1
eff (T) data gives κ0 = 0.20581 Å−1

and ν = 1.01, in agreement with the static properties of 2D IAFM [20]. We employ the

expression for describing Γ(T) in 2D HAFM scaling

Γ(t) = A × ξ−z
eff(t), (5.5)

where A is a normalized amplitude, t is the reduced temperature, and z is the dynamic

critical exponent.

Fitting Eq. (5.5) to the data Γ∥ at T > 1.20 TN gives the normalized amplitude A∥ =
3.362 × 103 μeV · Å and the exponent z∥ = 0.96(4). In contrast to z = 1.35(2) by

Christianson et al. [8], the obtained z∥ is in agreement with the prediction z = 1 for

the 2D HAFM [7]. This result also agrees with a numerical simulation of Γ∥ by Wysin

et al. [136], also shown in Fig. 5.4 (a), and with experimental results on a 2D HAFM

model compound with S = 1/2 [40]. Finally we analyzed the entire data set Γ∥(T > TN)
with the crossover function introduced in Eq. (5.2). The fitting results yield λ = 1.28

and Tx = 44.3(4) (or tx = 0.179). The resulting crossover temperature region reads
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Fig. 5.6: (a) The transverse linewidths Γ⊥ vs. temperature of the critical fluctuations in

Rb2MnF4 at Q = (0.5 0.5 0). In the temperature range TN and Tx, Γ⊥ is finite and forms a

plateau with z⊥ = 0. At T ≫ TN 2D HAFM scaling is observed, as expected for the isotropic

case. (b) Ratio of integrated intensities I⊥/I∥. Close to TN, M∥ dominates the spin-echo signal.

As T increases, M∥ and M⊥ become identical and thus enter the isotropic paramagnetic state

with I⊥/I∥ = 1.

ΔT = 1.7 K, and Tx is slightly smaller than the predicted value. Fig. 5.4 (b) illustrates

the crossover function H(T − Tx) and the resulting temperature region.

The linewidth of the transverse fluctuations Γ⊥(T) is plotted in Fig. 5.6 (a). Γ⊥ is

nonzero at TN, forms a plateau with z⊥ ∼ 0 between TN and Tx, and grows continu-

ously for T > Tx. In the 2D HAFM regime observed for Γ∥(T > Tx), it is expected

that Γ⊥(t) = Γ∥(t) [10]. It was pointed out that the effective Néel temperatures for

the longitudinal and transverse fluctuations T∥ and T⊥ are different in the anisotropic

systems [137], such that the corresponding reduced temperature is t = T/T∥,⊥ − 1. TN

relevant for the magnetic ordering is the larger T∥. We then fit Γ⊥ = A⊥×ξ−z⊥
eff to the data

Γ⊥(T > Tx) assuming A⊥ = A∥, where the latter is known from the scaling of Γ∥. This

fit gives T⊥ = 33.3(14)K and z⊥ = 0.97(15) as expected for the 2D HAFM. This result

is also supported by the intensity ratio I⊥/I∥ shown in Fig. 5.6 (b), which approaches 1

above Tx as expected for the identical behavior of M∥ and M⊥ in the 2D HAFM.
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Fig. 5.7: Scaling plot of the linewidth of longitudinal spin fluctuations in MnF2 and Rb2MnF4.

The residual linewidths ΓR at TN for both materials are subtracted from the data. From [9].

5.3 Summary

We have investigated the dynamic critical exponents of the spin fluctuations in MnF2

and Rb2MnF4, two canonical weakly anisotropic S = 5/2 antiferromagnets with 3D

and 2D spin coupling, respectively. Fig. 5.7 summarizes the intrinsic linewidths of lon-

gitudinal spin fluctuations in MnF2 and Rb2MnF4. Both compounds show a crossover

in the scaling behavior resulting from the small uniaxial anisotropy induced by dipolar

interactions. The dynamic critical exponent in MnF2 changes from z∥ = 1.43(5) at

high T , consistent with 3D Heisenberg scaling, to z∥ = 1.98(3) corresponding to a 3D

Ising model close to TN. This crossover occurs around Tx = 1.03 TN, consistent with

predictions in the literature [11, 12]. The previous contradictory experimental results

for the longitudinal fluctuations, with z∥ ranging from 1.6 to 2.3, are mainly due to

the insufficient energy resolution of conventional triple-axis spectroscopy. The trans-

verse linewidths Γ⊥ are consistent with the predicted value z⊥ = 0 around Tx, but Γ⊥
decreases significantly upon cooling towards TN. This behavior was also observed in

earlier triple-axis spectroscopy experiments.

The dynamical critical exponent z∥ measured in Rb2MnF4 changes around the cross-

over temperature Tx = 1.18 TN from z∥ = 0.96(4) for T > Tx, corresponding to the

expected 2D Heisenberg scaling, to z∥ = 1.387(4) for TN < T < Tx. The latter value

does not correspond to the expected z = 1.75 for the 2D Ising model. This scaling
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behavior probably results from the long-range nature of the dipolar forces, which influ-

ence the dynamic scaling in antiferromagnets by opening additional damping channels,

while the static exponents remain unaffected. The transverse spin fluctuations show

constant linewidths (z⊥ = 0) close to TN and are equal to the longitudinal fluctuations

for T ≫ TN, where they show 2D Heisenberg scaling with z⊥ = 0.97(15).
The high resolution three-axis spin-echo technique in combination with a ray trac-

ing simulation of the spectrometer has thus provided detailed insight into the critical

dynamics of antiferromagnets and helped resolve previous contradictory results. Our

approach can straightforwardly be applied to a large class of questions on spin fluctua-

tions and spin excitations, especially if a broad dynamic range with linewidths < 1μeV

up to a few hundred μeV has to be covered.



6 Appendix: The dimerized spin
system TlCuCl3

The study of antiferromagnets in this thesis is aimed at establishing a firm experimental

basis for the investigation of critical fluctuations by means of the high resolution spin-

echo technique. The next step is to perform a similar study on quantum fluctuations in

the vicinity of quantum phase transitions. We performed first steps in this direction and

identified the dimerized spin system TlCuCl3 as a good candidate for a spin-echo study.

Quantum criticality occurs at a moderate pressure in zero magnetic field. In the present

work, the crystal growth group at the MPI-FKF succeed in growing large crystals. First

test experiments were performed using newly developed gas pressure cells from the

sample environment group of the FRM II.

6.1 Introduction

Classical antiferromagnets usually show long-range magnetic order below the Néel

temperature TN, at which the strength of the thermal fluctuations is reduced and the

magnetic moments can align in a well-defined structure. In quantum antiferromagnets,

quantum fluctuations suppress long-range order and thus prevent the formation of such

an ordered ground state even down to T = 0 K, leaving the spin system remaining in

a quantum disordered spin-liquid state. Fig. 6.1 shows a phase diagram of these quan-

tum antiferromagnets. The ordered state may then be recovered above the critical value

of a tuning parameter r, such as pressure, magnetic field, or chemical doping concen-

tration [52, 138, 139]. These types of phase transition are known as quantum phase

transitions (QPT), and are attracting much interest.

The dimerized spin system TlCuCl3 provides a unique opportunity for experimen-

tal studies of QPT in that it undergoes a pressure-induced QPT to an ordered phase,

occurring at the critical pressure pc = 1.07 kbar [140, 141]. The applied pressure p
is the inverse of the tuning parameter r. This ordered phase, which contains an un-

conventional longitudinal (Higgs) mode and two transverse (Goldstone) modes, has

been studied by inelastic neutron scattering with continuous pressure control through

the QPT [142]. Quantum and thermal fluctuations have qualitatively similar effects

in melting the ordered phase and opening excitation gaps, but behave independently

near a quantum critical point. In the quantum critical region, the dominant behavior is

103



104 6 Appendix: The dimerized spin system TlCuCl3

Fig. 6.1: A phase diagram of QPT for

systems with a long-range ordered state

at finite temperature. From [138].

quantum critical ω/T scaling of the energies and linewidths of critically damped excita-

tions, whereas it crosses over to a narrow classical critical scaling region around TN(p).
We aim to study the critical fluctuations as a function of pressure and temperature

through the QPT of TlCuCl3 using TRISP, employing the NRSE technique. With the

advantage of our new analysis technique, we are able to discriminate the longitudinal

and transverse components of the critical fluctuations through the appropriate choice of

magnetic field configurations at TRISP. A Helium gas pressure cell has been designed

by the sample environment group at the FRM II and tested at TRISP.

6.2 Experimental methods

6.2.1 Crystal and magnetic structures of TlCuCl3
TlCuCl3 belongs to the KClCu3 structure group with the monoclinic space group P21/c
at room temperature [144]. There is no structural change reported down to T = 1.5 K.

At T = 2 K, the lattice parameters are a = 3.9625(1)Å, b = 13.7096(2)Å, and

c = 8.6594(2)Å with β = 95.150(2) ○, determined by neutron powder diffraction [145].

Fig. 6.2 (a) shows a schematic view of unit cell in TlCuCl3 at room temperature, with

projection along a axis in the b-c plane. Planar dimers of Cu2Cl6 with double chains

of S = 1/2 Cu2+ ions are at the four corners and at the center of the b-c plane. These

planar dimers, separated by Tl+ cations, form a ladder-like structure along the a axis.

The pressure-induced antiferromagnetic order was found in TlCuCl3 by Oosawa et
al. [146], pointing out that the magnetic moments lie in the b-c plane. At the pressure

p = 14.8 kbar, they found an additional spin reorientation at T = 10 K, leading to an

inclination of Ms towards the b axis. In the range pc < p < 10 kbar, the spin structure

of TlCuCl3 is depicted in Fig. 6.2 (b). As for the critical spin fluctuations, the compo-

nents parallel to Ms are defined as the longitudinal (L) fluctuations and the other two
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Fig. 6.2: (a) Crystal structure of TlCuCl3 in the crystallographic b-c plane. The Cu-Cu spin

dimers are marked as the yellow dashed ellipses. From [143]. (b) The spin structure of TlCuCl3
at pc < p < 10 kbar. The magnetic moments Ms are aligned in the a-c plane with an angle

α ∼ 60 ○ with respect to a axis.

transverse components perpendicular to Ms are denoted as T1 and T2, respectively.

6.2.2 Neutron Larmor diffraction

The neutron Larmor diffraction technique, introduced by Rekveldt et al. [147], allows

to measure the lattice spacing spread Δd/d and the mosaicity of a single crystal. In the

following we only concentrate on the measurement of Δd/d, while the measurement

of mosaicity can be found elsewhere [148]. The basic idea is that the spin-echo field

boundaries (C1-C4) are aligned parallel to the lattice planes of the sample and that the

magnetic field configuration of both spin-echo regions is set to be parallel (↑↑). The

latter is in contrast to the ordinary spin-echo setup [see Sec. 3.2]. This experimental

setup is sensitive to Δd but insensitive to sample mosaicity and independent of beam

divergence and monochromaticity. At TRISP, it allows to measure Δd/d with a resolu-

tion Δd/d ∼ 10−6.

As explained in [147], the Larmor phase difference Δφ is proportional to the relative

variation of the reciprocal lattice vector ΔG, which reads

Δφ = φtot
ΔG
G

with G = 2π

d
. (6.1)

φtot is the total Larmor phase angle arising from ↑↑ magnetic field configuration. Con-

sidering the Bragg law, ∣G∣ = 2ki sin θB, and the neutron velocity v = h̵ki/mn, the total
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Fig. 6.3: A schematic view of the Larmor diffraction. The coil boundaries of the first (C1, C2)

and second (C3, C4) spin-echo arms are parallel to the diffracting planes of the sample. The

magnetic field configuration is parallel.

Larmor phase at the exit of the spectrometer can be expressed by

φtot = ωL · 2L/v = 2ωLLm sin θB

πh̵
d. (6.2)

where ωL is the same as the one used in NRSE mode at TRISP and defined previously

in Sec. 3.3.

In general, a single-Gaussian distribution f (ε) with (ε = ΔG/G = Δφ/φtot describes

the distribution of lattice spacing well. In a normalized Gaussian distribution with a

FWHM εFW,

f (ε) = √
4 ln 2

π

1

εFW

exp [ − 4 ln 2
ε2

ε2FW

], (6.3)

The polarization P(φtot) is

P(φtot) = ⟨cos [Δφ(φt)]⟩ = ∫ f (ε) cos [Δφ(ε)]dε (6.4)

= P0 exp( − φ2
t

16 ln 2
ε

2
FW). (6.5)

P0 is a normalized constant that accounts for the non-perfect initial polarization.

However, in some cases the distribution of lattice spacing is more complicated. For

example, if the peak splits as a consequence of a structural transition, such as in iron
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Fig. 6.4: An example of Lamor phase shift due to heating a polycrystalline Al sample. ΔL is

the length of the second precession coil from its center. From [147].

pnictides [149]. To fit the data, we consider a multiple-Gaussian distribution f (ε), with

the relatively integrated intensity w of the individual peaks.

P(φtot) = P0 ∑wi exp( − φ2
t

16 ln 2
ε

2
FW), (6.6)

where

∑wi = 1. (6.7)

Another key application of the Larmor diffraction technique is the so-called thermal

expansion measurement [147]. This can be performed by measuring the Larmor phase

shifts Δφ of the total Larmor phase φtot for a given ωL while temperature changes. Δφ
is measured by scanning the position of the last RF coil. Typically, we choose the

Larmor phase at the lowest temperature as the reference point to obtain the Larmor

phase shift and the corresponding ΔG/G [see Eq. (6.1)]. Fig. 6.4 shows Δφ observed in

a polycrystalline Al sample due to heating from 263.2 K to 267.8 K, which corresponds

to a shift in the lattice spacing ΔG/G [147].
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Fig. 6.5: (a) p-T phase diagram of He. Replotted from [150, 151, 152]. (b) Thermal expansion

studies on the Cu (111) at various pressures, ranging from ambient to p = 3.0 kbar. Previous

work by Kroeger [153] is also included for comparison. The sudden drops of Δd/d under

pressure result from the solid-liquid phase transition of He.

6.2.3 A Helium gas pressure cell

Usually, CuBe is used for pressure cells in neutron spectroscopy. The disadvantage

of this material is the relatively high absorption rate of neutrons. Aluminum is nearly

transparent for neutrons, but has a lower tensile strength than CuBe, such that aluminum

cells with inner cell diameters of 6 mm are limited to pressures up to 7 kbar, whereas

more than 20 kbar are reached with CuBe cells. As the critical pressure for TlCuCl3

is well in the range of the aluminum cell, we decided to take advantage of this nearly

transparent material. A more detailed description concerning the high-pressure neutron

scattering techniques can be found in [154]. At the FRM II, a helium (He) gas pressure

cell made of high-tensile aluminum alloy 7075 has been designed by the sample envi-

ronment group. With an inner diameter of 10 mm, the pressure cell uses compressed

He gas as the pressure medium, which allows to apply pressure up to p = 4 bar.

For the usage of a He gas pressure cell, one should consider the pressure-temperature

(p-T ) phase diagram of He [150, 151, 152], as shown in Fig. 6.5 (a). The boundary line

represents the melting curve of He in the (p,T) space and thus separates the solid and

liquid phases. Practically, we apply the pressure at a temperature above 40 K, where He

is still in the gas state. Once the pressure is stable, we then cool down the system to the

lowest temperature. At this stage, the applied pressure is not stable since temperature

is decreasing until the system passes through the melting point of He. This means that

if we want to change the pressure the whole system should be warmed up to the tem-
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Fig. 6.6: Photograghs of (a) Sample I and (b)

Sample II. In the high-pressure neutron experi-

ments, Sample I was mounted in the (0KL) scat-

tering plane. Sample II was firstly mounted in

the scattering plane spanned by (010) and (102̄)
planes.

perature well above the melting temperature associated with the initial applied pressure

[see Fig. 6.5 (a)].

To test the pressure cell, we performed thermal expansion measurements on a Cu(111) crystal using the Larmor diffraction technique. Fig. 6.5 (b) shows these exper-

imental results at ambient, p = 1.5 and 3.0 kbar. At ambient, our result agrees with

Kroeger’s work on the thermal expansion work of Cu [153], except that a small bump

was found in the low temperature region. This anomaly is due to the magnetic con-

tribution of a steel component used in the pressure cell. At p = 1.5 and 3.0 kbar, two

sudden drops are found at the temperatures corresponding to the He melting tempera-

tures, which are used to determine the actual pressure acting on the sample.

By using Larmor diffraction, we can estimate the pressure lost of the pressure cell

while temperature passing through the melting point. Recalling from the bulk modulus

B of a material, its relation associated with pressure p and volume V is given by

Δp = −B
ΔV
V

with
ΔV
V

≈ 3
Δd
d
. (6.8)

Taking B = 1.42 × 1011 N/m2 for Cu at low temperature [155] and the drop amplitudes

of Δd/d above and below the melting point, the pressure losses are 0.38 and 0.74 kar

for p = 1.5 and 3.0 kbar, respectively. This fact offers an important information of the

usage of He gas pressure cell during the experiments.

6.3 Results and discussion

In our studies of critical fluctuations through the QPT of TlCuCl3, we used two single

crystals: Sample I was provided by Prof. Ch. Rüegg at the Paul Scherrer Institute

(PSI), Switzerland; Sample II was grown by Dr. C. T. Lin from the crystal growth
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Fig. 6.7: Intensities of the antiferromagnetic Bragg peak at Q = (001) in TlCuCl3 under various

pressures. The inset shows the TN(p) and energy gap Δ as a function of pressure with pc =
1.07 kbar. From [140].

group at the Max Planck Institute for Solid State Research (MPI-FKF), Germany. Both

crystals were synthesized by the Bridgeman method. The TlCuCl3 single crystals are

shiny black and their surfaces can turn greenish if in the humid environment, with H2O

plus Cl probably forming HCl. They are soft and can easily be cut along the [010] and[102̄] directions with a razor blade and application of some small force. Fig. 6.6 (a) and

(b) show the photographs of Sample I and II used in our investigations. The Sample I

has already turn greenish and is degrading. The fresh Sample II shows a shiny surfaces

corresponding to the natural cleavage planes.

6.3.1 Sample I

Sample I was available from previous high-pressure neutron scattering experiments by

Rüegg et al. [140, 141]. The crystal was aligned and mounted in the pressure cell in the(0KL) scattering plane. We performed a series of temperature scan on the intensity of

the (001) Bragg peak of TlCuCl3 to check of the pressure-induced antiferromagnetic

order at different pressures larger than the critical pressure pc = 1.07 kbar, as shown in

Fig. 6.7. The wave vector Q = (001) is expected to be a pure antiferromagnetic Bragg

peak. Note that relatively large background with ∼ 5 counts/s was observed due to the

degradation of Sample I. These background contributions were cut out from our data.

TN is enhanced while increasing applied pressure, in good agreement with the work

from [140]. Experimentally, the relation between TN [K] and p [kbar] follows a simple
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Fig. 6.8: Thermal expansion studies on the nuclear Bragg reflections at (a) Q = (0 10 0) and (b)

Q = (006). A sudden drop of (a) allows to determine the actual pressure applied to the sample.

power law [145],

TN = 6.348 (p − 1.07)0.37
. (6.9)

Accordingly, we tried to measure the linewidths of critical spin fluctuations below and

above TN(p) at p > pc, using the NRSE technique at TRISP. However, we were not

able to extract the linewidths from these experiments, for that the observed background

(∼ 5 counts/s) largely obscures the spin-echo signal.

We then turned to perform the thermal expansion experiments under pressure p =
2 kbar > pc. Fig. 6.8 shows the Δd/d data of nuclear Bragg peaks at (a) Q = (0 10 0)
and (b) Q = (006). In (a), a sudden drop appears in the Q = (0 10 0) data at around

21 K, which corresponds to the melting point of He. The applied pressure 1.99 kbar can

be derived from the solid-liquid phase diagram. Anomalies are found below TN in both

reflections, which may arise from the diverging Grüneisen parameter Γ = α/cp in the

quantum critical scaling region [156], where the thermal expansion α is more singular

than the specific heat cp. In the literature, there are several examples exhibiting a di-

vergent Grüneisen parameter in the quantum criticality, such as heavy fermion metals

Pr2Ir2O7 [157] and YbRh2Si2 [158].
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6.3.2 Sample II

The fresh Sample II crystal was mounted in a sealed Al can with a transparent window

made of a Kapton film, preventing a H2O contact with the crystal. We used an in-house

X-ray Laue camera to probe the surface properties along [010] and [102̄] directions, as

shown in Fig. 6.9. They are in good agreement with the expected patterns from Laue

pattern simulations, whereas Fig. 6.9 (b) shows that the crystal is slightly misaligned

along the [102̄] direction. We then performed the single-crystal neutron diffraction of

Sample II at the diffractometer RESI, FRM II in order to have a full knowledge of the

crystal’s orientation and quality. The obtained lattice parameters agree with the values

in the literature [145]. Fig 6.9 (c) and (d) depict some selected diffraction patterns. The

observed strong nuclear Bragg reflections confirm the crystal to be single domain. In

addition, the FWHM angle from the rocking curve of the crystal is ∼ 0.3 ○, within the

instrument resolution.

Fig. 6.9: (a,b) X-ray Laue and (c,d) neutron diffraction patterns of Sample II. The results in (a)

and (b) were measured in backscattering configuration along the [010] and [102̄] directions. In

(c,d), strong nuclear Bragg points were observed.
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Fig. 6.10: A rocking scan of Q = (103̄) at p = 1.74 kbar at T = 0.6, 12, and 15 K. No magnetic

signals are observed.

Moving Sample II to the pressure cell, we firstly mounted the crystal in the scattering

plane spanned by (010) and (102̄) reflections and checked the alignment. Secondly,

we took the (010) reflection as a reference and then adjusted to new scattering plane

spanned by the (010) and a purely magnetic reflection at (103̄). Since magnetic order

in the (103̄) reflection only appears under extreme conditions, several in-plane nuclear

Bragg peaks, such as at (040), (143̄) and (153̄), were checked at room temperature.

This confirms the alignment of Sample II. At p = 1.74 kbar > pc and T = 0.6 K,

unfortunately, there were no any pressure-induced magnetic signals that can be detected

at Q = (103̄). Fig. 6.10 shows a rocking scan of Q = (103̄) at p = 1.74 kbar at different

temperatures. A weak and temperature independent peak was observed, possibly due

to the second order contamination of the nuclear Bragg peak (206̄).
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6.4 Summary
In current studies on the single crystals of TlCuCl3, we are incapable to obtain a con-

clusive result. Only Sample I shows pressure-induced magnetic order at p > pc =
1.07 kbar, however, the existence of larger background (∼ 5 counts/s), arising from the

crystal degradation, makes the spin-echo signals difficult to obtain. Anomalies in Δd/d
are found from the thermal expansion experiments. This might be explained by the

universally divergent property of the Grüneisen ratio in the quantum criticality region.

However, we can’t offer more evidences to support this argument so far.

From the technical aspects, we have tested the He gas pressure cell designed by the

sample environment group at the FRM II. It proves that the pressure cell is reliable

within its working temperature and pressure range, where a previous He gas leakage

problem were reported. The pressure loss in the cell resulting from the He passing

across the soild-liquid phase boundary can be estimated. This property is crucial for

further applications in the future.
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