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The mathematician’s patterns, like the painter’s or the poet’s must be
beautiful; the ideas, like the colours or the words must fit together in a
harmonious way.

Godfrey Harold Hardy (1877-1947)
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Preface

“In a very dark Chamber, at a round Hole, about one third Part of an Inch broad, made
in the Shut of a Window, I placed a Glass Prism, whereby the Beam of the Sun’s Light,
which came in at that Hole, might be refracted upwards toward the opposite Wall of
the Chamber, and there form a colour’d Image of the Sun.” This is an excerpt of Sir
Isaac Newton’s famous work “Opticks”, published in 1704, in which he proves that a
ray of sunlight decomposes into its respective wavelengths. In his experiment white
light passes through a glass prism such that on a white sheet of paper a small rainbow
emerges. Newton called that rainbow “spectrum”, which originates from the Latin
word “spectre”, meaning image. His empirical discovery is a foretaste of what spectral
analysis is useful for even if Newton’s definition of the word “spectrum” still varies a lot
from the one used in modern mathematical physics. An experiment which comes closer
to the modern definition of spectrum was performed by the German scientist Robert
Wilhelm Bunsen. In the 19th century he repeated Newton’s experiment in which he
replaced the sunlight by the burning of an old rag which had been soaked in a sodium
chloride solution. The image in Bunsen’s experiment consisted only of a few narrow lines
and a yellow bright one. In those days physicists could not explain that phenomenon
since the theories of classical mechanics predicted a continuous band of light such as in
Newton’s experiment.

In the 1920s the works of Werner Heisenberg and Erwin Schrödinger explained the
theory of quantum mechanics. In contrast to classical mechanics, quantum mechanics
describes the behavior of matter on the microscopic scale such as of atoms and particles.
In Bunsen’s experiment the thermal energy was converted into radiation energy. This
process is explained by quantum mechanics, which says that the valence electrons jump
from a stable state into a higher one. If the valence electrons fall back into their stable
state, energy diminishes, and light emerges. The discrete states of the electrons were the
explanation for Bunsen’s discrete picture. In mathematical physics partial differential
operators are used to describe such phenomena. The difference of the eigenvalues of
the differential operator characterizes the wavelength of the yellow light in Bunsen’s
experiment, which is nowadays known as the spectral line of sodium. Thus, in its
simplest form spectrum in modern mathematical physics denotes the set of eigenvalues
of a given differential operator.
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In the last centuries the analysis of differential operators and their spectra became
one of the main objectives in mathematical physics since they describe numerous physi-
cal phenomena such as mechanical vibrations, sounds, sonar signals, motion of fluids or
particles and many more. For instance, in the 18th and 19th century it was discovered
that in oscillating systems such as the one of a drum the frequencies of normal modes,
also called stationary states or eigenstates, correspond to the eigenfunctions of a differ-
ential operator. A normal mode is geometrically speaking a function whose amplitude
under time evolution changes but not its shape. These standing waves are mathemat-
ically described by the orthonormal basis of eigenfunctions of a differential operator,
yielding a canonical decomposition of the underlying Hilbert space on which the self-
adjoint differential operator acts, which is nowadays known as spectral representation
theorem, abbreviated by spectral theorem1. This theorem is the fundament of spectral
theory, a branch in mathematics which mainly deals with the analysis of self-adjoint
differential operators and properties of their corresponding spectral decomposition. In
general it is not possible to compute the spectrum of a differential operator explicitly.
Therefore a lot of effort has been done during the last decades to develop analytical and
numerical methods for spectrum estimation.

In the beginning of the 20th century a breakthrough was made by Hermann Weyl,
who analyzed the eigenvalues of the Dirichlet Laplacian on a bounded domain. He found
out that the asymptotic behavior of the eigenvalue counting function is proportional to
the volume of the underlying domain, leading to one of the first connections between
classical theories and quantum mechanics, being the hour of birth of spectral analysis.
Weyl’s groundbreaking result, known as Weyl’s law, was the starting point of many
beautiful problems which arose during the last century. One of the most famous ones
was postulated in Mark Kac’s article “Can one hear the shape of a drum?” from 1966.
It was unclear to Kac whether two drums with different shapes would give the same set
of frequencies. However, it took approximately 20 years to provide a response that you
can not hear its shape. Another problem which came into the mind of Weyl was whether
his result could be further improved by an extra term. He conjectured that the next
term in his asymptotic identity would reflect the surface area of the underlying domain,
which after a long time was finally proved by V. Ivrii in the year 1980. In 1961, G.
Pólya showed that the asymptotic identity of Weyl’s result for the eigenvalue counting
function is not just a limit, indeed it yields a uniform inequality under the restrictive
condition that congruent and pairwise disjoint copies of the underlying domain can be
used to cover the whole space up to a set of measure zero. Pólya conjectured that for
all bounded domains this result should hold but up to now there is neither a proof nor
a counterexample to this conjecture, and the problem remains open. Pólya’s conjecture
shows the intricacies in deriving uniform bounds for eigenvalues which reflect the correct
constants and growing orders in Weyl’s law.

1For a detailed historical survey on spectrum estimation and the development on the spectral the-
orem, we refer the interested reader to E. A. Robinson’s work [Rob82].
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With this thesis I hope to contribute a small step to the mathematical problem of
deriving uniform bounds for the eigenvalues of differential operators. This work was
carried out from 2013 until 2016 at the university of Stuttgart.

Acknowledgement

First of all I would like to express my deep gratitude to my supervisor, Prof. Timo
Weidl, for the continuous support of my PhD study and research, for his patience,
motivation, trust, enthusiasm and immense knowledge. It was a great pleasure to work
with him on problems in spectral theory and mathematical physics. I profited a lot
from his guidance in mathematical and especially in personal matters, which I really
appreciated.

Secondly, I want to express my profound thanks to my second advisor and co-author
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Abstract

In this thesis we consider the first Heisenberg group and study spectral properties of
the Dirichlet sub-Laplacian, also known as Heisenberg Laplacian, which is a sum-of-
squares differential operator of left-invariant vector fields on the first Heisenberg group.
In particular, we consider the bound for the trace of the eigenvalues which reflects
the correct geometrical constant and order of growth in Weyl’s law and improve this
inequality by adding an additional negative lower order term. In addition we investigate
on a Hardy-type inequality for the gradient of the Heisenberg Laplacian on bounded
domains since an application of such inequalities improves the growing order of the
additional lower order term.

Let 0 < λ1(Ω) ≤ λ2(Ω) ≤ . . . denote the eigenvalues of the Heisenberg Laplacian

−∆H := −X2
1 −X2

2 , X1 := (∂x1 +
1

2
x2∂x3), X2 := (∂x2 −

1

2
x1∂x3)

for (x1, x2, x3) ∈ R3 with Dirichlet boundary conditions on a bounded domain Ω ⊂ R3.
In this thesis we improve the result in [HL08] by A.M. Hansson and A. Laptev∑

k∈N

(λ− λk(Ω))+ ≤
|Ω|
96

λ3, λ ≥ 0.

We stress that the geometrical constant and order of growth in λ cannot be improved
further. Therefore we add an additional negative lower order term to the right-hand
side of that inequality. Such inequalities yield immediately bounds for the eigenvalue
sum. In addition we show that the growing order of the additional lower order term in
our result can be further improved if there exists a constant c(Ω) > 0 independent of
u ∈ C∞0 (Ω) such that the following Hardy-type inequality holds

1

c(Ω)

∫
Ω

|u(x)|2

δC(x)2
dx ≤

∫
Ω

|X1u(x)|2 + |X2u(x)|2 dx, u ∈ C∞0 (Ω).

The Hardy weight δC is the distance function to the boundary of Ω measured with
respect to the Carnot-Carathéodory metric generated by the span of X1 and X2. In
this thesis we show that for open bounded convex polytopes this inequality holds and
give explicit estimates on the constant c(Ω).
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Zusammenfassung

In dieser Arbeit untersuchen wir spektrale Eigenschaften des Dirichlet-sub-Laplace-
Operators auf der Heisenberggruppe, auch bekannt als Heisenberg-Laplace-Operator.
Dieser subelliptische Differentialoperator ist die Summe links-invarianten Vektorfelder
auf der Heisenberggruppe. Wir untersuchen die Ungleichung der Spur der Eigenwerte,
welche den Grenzwert und die Wachstumsordnung in der weylschen Asymptotik wi-
derspiegelt und verbessern diese Ungleichung, indem wir einen zusätzlichen negativen
Term addieren. Zusätzlich erforschen wir Hardy-Ungleichungen bezüglich des Gradien-
ten des Heisenberg-Laplace-Operators auf beschränkten Gebieten, deren Anwendung
die Wachstumsordnung des zusätzlichen negativen Terms erhöht.

Sei Ω ⊂ R3 ein beschränktes Gebiet und bezeichne 0 < λ1(Ω) ≤ λ2(Ω) ≤ . . . die
Eigenwerte des Heisenberg-Laplace-Operators

−∆H := −X2
1 −X2

2 , X1 := (∂x1 +
1

2
x2∂x3), X2 := (∂x2 −

1

2
x1∂x3)

mit Dirichlet-Randbedingungen, wobei (x1, x2, x3) ∈ R3. In dieser Arbeit untersuchen
wir das Resultat [HL08] von A.M. Hansson and A. Laptev∑

k∈N

(λ− λk(Ω))+ ≤
|Ω|
96

λ3, λ ≥ 0,

wobei in dieser Ungleichung die geometrische Konstante und die Wachstumsordnung in
λ die Größen in der weylschen Asymptotik widerspiegelen. Wir verbessern diese Unglei-
chung, indem wir einen weiteren negativen Term geringeren Wachstums auf die rechte
Seite addieren. Diese Art von Ungleichung liefert sofort Abschätzungen an die Eigen-
wertsumme. Zusätzlich zeigen wir, dass die Wachstumsordnung des negativen Terms
erhöht wird, sofern es eine Konstante c(Ω) > 0 unabhängig von u ∈ C∞0 (Ω), so dass die
folgende Hardy-Ungleichung gelte

1

c(Ω)

∫
Ω

|u(x)|2

δC(x)2
dx ≤

∫
Ω

|X1u(x)|2 + |X2u(x)|2 dx, u ∈ C∞0 (Ω).

Das Hardy-Gewicht δC ist die Abstandsfunktion bezüglich der Carnot-Carathéodory-
Metrik auf der Heisenberggruppe zum Rand des Gebietes Ω. Wir beweisen diese Un-
gleichung auf offenen, beschränkten, konvexen Polytopen mit explizitem c(Ω).
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Chapter 1

Introduction

In this thesis we study spectral properties of a certain class of differential operators,
describing particles which are subject to Heisenberg’s uncertainty principle. Heisen-
berg’s uncertainty principle says that it is not possible to measure the exact position
and velocity of a particle simultaneously. In mathematical terms the Lie bracket of
the position and the momentum operator never vanishes. The Lie group associated to
the Lie algebra generated by the commutation relation of the position and momentum
operator yields the Heisenberg group, which plays an important role in the represen-
tation theory of nilpotent Lie groups, the structure theory of finite groups, geometric
optics, the theory of partial differential equations and sub-Riemannian geometry, see
for instance [How80]. The latter will be of huge importance for this thesis. We con-
sider the left-invariant tangent vector fields1 at the identity element of the Heisenberg
group and study the subelliptic sum-of-squares differential operator, also referred as sub-
Laplacian, given by those vector fields. This operator is called the Heisenberg Laplacian
since the vector fields satisfy the same commutation relation as the position and mo-
mentum operator. The main objective in this thesis is to analyze the spectrum of that
differential operator subject to Dirichlet boundary condition on a bounded domain on
the Heisenberg group.

In quantum mechanics the eigenvalues of the Heisenberg Laplacian describe the
kinetic energy of a particle trapped in its corresponding domain with respect to a
sub-Riemannian system. The interpretation of particles characterized by subelliptic
differential operators differs strongly from the case of elliptic ones. Let us consider
a given physical system: the configuration space is defined by coordinates of a mani-
fold describing the position of a particle, and the phase space consists of positions and
momenta of the particles, given by the configuration space and its tangent space. In
the elliptic case the particles are allowed to move in any direction of the configuration
space, which is called a Riemannian system. In the subelliptic case there is a restric-

1Throughout the thesis we do not distinguish between vector fields on Rn and first order partial
differential operators on Rn since both can be identified canonically with each other.
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1 Introduction

tion of these directions, called sub-Riemannian system. However, for a given particle
in a sub-Riemannian system there is always at least one possibility to travel between
two given positions, which does not have to be the direct path. Thus, let us discuss
some well-known facts and important works about subelliptic sum-of-squares differential
operators.

In 1967 L. Hörmander studied regularity properties of real-valued sum-of-squares
differential operators on open sets. In his groundbreaking work [Hör67] he showed that
if the vector space spanned by given vector fields and their commutators of sufficiently
high order have full rank at any given point, called Hörmander finite rank condition,
then the sum-of-squares of these vector fields is a hypoelliptic operator; especially the
Green’s kernel of the corresponding fundamental solution, in case it exists, is a smooth
function. Hörmander’s fundamental result was the starting point of an extensive and
fruitful research about mathematical properties of sum-of-squares differential operators.

A special class of sum-of-squares differential operators are subelliptic operators. The
first time these operators were classified was in L. Hörmander’s work [Hör66]. A dif-
ferential operator is said to be subelliptic if a Sobolev norm of in most cases fractional
order is locally bounded from above by another Sobolev norm with respect to the given
differential operator and Dirichlet boundary conditions. Such an estimate exists if the
Hörmander finite rank condition of a real-valued sum-of-squares differential operator is
satisfied. We stress that this fact is not necessarily true in the case of complex-valued
sum-of-squares differential operators, which was proved by J. J. Kohn in [Koh05]. The
corresponding metric spaces of subelliptic differential operators are sub-Riemannian
spaces, also called Carnot-Carathéodory spaces, which are metric spaces endowed with
the Carnot-Carathéodory metric generated by the corresponding vector fields. Carnot-
Carathéodory spaces, in the sequel abbreviated as C-C spaces, are the basic geomet-
rical framework for the analysis of hypoelliptic, degenerate elliptic equations, analysis
of nilpotent Lie groups, singular integrals, harmonic analysis, geometric control theory
and sub-Riemannian geometry [Gro96, FL83, RS76, RS86, Ste76, VSCC92]. The ge-
ometric properties of the Carnot-Carathéodory metric were extensively studied in the
famous work [NSW85] of A. Nagel, E. M. Stein and S. Waigner. In the last decades
many theories from elliptic or Euclidean problems have been systematically worked out
in the setting of C-C spaces like the differentiation along vector fields, Sobolev em-
bedding theorems including compactness and extension theorems, Poincaré inequalties,
isoperimetric inequalities, heat kernel estimates for subelliptic operators, surface mea-
sures, quasiconformal mappings, and much more [CCFI11, GN96, GN98, HK00, KR95,
MSC01, VSCC92, VG95]. For a detailed historical survey on subelliptic operators we
refer the interested reader to Y. B. Egorov’s work [Ego75].

A special class of C-C spaces are Carnot groups. A Carnot group is a simply con-
nected nilpotent Lie group whose associated Lie algebra, being the vector space spanned
by the left-invariant tangent vector fields at the identity element endowed with the Lie
bracket of vector fields as binary operation, admits a decomposition such that a given
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linear subspace of the Lie algebra generates the whole algebra by the iteration of its Lie
brackets, called stratification. In comparison to a general C-C space we have a priori
more geometrical structure on Carnot groups: it is possible to define a homogeneous
dimension, (left) translations and a natural family of dilations at the identity element.
In particular, the dilation allows us to extend the classical derivation to the derivation
of Lipschitz functions between two Carnot groups, which is called Pansu derivative in
honor of P. Pansu’s work [Pan89]. Vice versa one could start with the commutation rela-
tion of the associated Lie algebra of a given Carnot group instead of its Lie group. Then
the group structure is explicitly determined by the Baker-Campbell-Hausdorff formula.
A detailed introduction of Carnot groups can be found for instance in [BLU07, CG90].

A prime example of a Carnot group is the first Heisenberg group. Let us briefly
discuss an example to show how analysis on the first Heisenberg group, denoted in the
sequel by H, differs from the one in Euclidean space. A subtle problem on H is the
isoperimetric inequality. Let us endow H with its Carnot-Carathéodory metric and its
Haar measure, being in that case the Lebesgue measure. P. Pansu showed in [Pan83] that
the Haar measure of any domain in H to the power of 3/4 is bounded by its horizontal
perimeter multiplied by a constant independent of the domain. It was proved in [LR03]
that the horizontal perimeter divided by its Haar measure to the power of 3/4 has a
minimizer in the class of bounded sets with finite horizontal perimeter. However, it is
still unclear what the minimizer looks like. P. Pansu conjectured that the corresponding
set should be a bubble set, which up to dilation and translation on H, is obtained by
rotating around the x3-axis a geodesic connecting the points (0, 0,−a) with (0, 0, a) with
a > 0. In comparison to the Euclidean case the C-C ball on H is not the minimizer
[Mon00], giving an impression of the intricacy of analyzing mathematical problems on
H. Various authors contributed many results concerning the analytic and geometrical
properties of the minimizer if one restricts the isoperimetric inequality to a smaller
class of sets [LM05, DGN08, Rit12] but a complete answer to Pansu’s conjecture is still
missing. A detailed introduction to that problem can be found in the following work
[CDPT07].

This thesis is organized as follows: in the first chapter we give an overview over
spectral estimates for the Dirichlet Laplacian on bounded domains and its corresponding
Hardy inequalities since in this work we explain how an application of such an inequality
improves certain spectral estimates. These results will serve us as comparison models
to the subelliptic case because during the last decades these elliptic problems have been
studied thoroughly. In addition we introduce the term Melas-type bound, which is a
special kind of inequality for the eigenvalue sum and its trace. We also discuss the
subelliptic equivalent to these problems and the objectives for this thesis.

In the second chapter we introduce the first Heisenberg group and its corresponding
sub-Laplacian, which is a sum-of-squares differential operator of left-invariant vector
fields on that group. We discuss important analytic properties of that differential oper-
ator especially the ones related to the Carnot-Carathéodory metric, being fundamental
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1 Introduction

for this thesis. At the end we give a summary of the main results.
In the third chapter we study the eigenvalue sum of the Dirichlet Laplacian in the

presence of a constant magnetic field on a domain Ω ⊂ R2 with finite volume. We
prove a Melas-type bound for the eigenvalue sum without the assumption of a Hardy
inequality, which is a generalization of a result in [KW15], done by H. Kovař́ık and T.
Weidl. For this thesis the Dirichlet Laplacian with constant magnetic field is of huge
importance since the two-dimensional Laplacian with constant magnetic field is unitary
equivalent to the Heiseberg Laplacian, being discussed in Section 4.4.

In the fourth chapter we study the trace of the eigenvalues and the eigenvalue sum
of the Heisenberg Laplacian with Dirichlet boundary conditions on bounded domains
on the Heisenberg group. We obtain an inequality with a sharp leading term and an
additional lower order term, improving a result of Hansson and Laptev in [HL08].

In the last chapter we prove a Hardy-type inequality for the gradient of the Heisen-
berg Laplacian on open bounded convex polytopes on the first Heisenberg group. The
integral weight of the Hardy inequality is given by the distance function to the boundary
measured with respect to the Carnot-Carathéodory metric. The constant depends on
the number of hyperplanes given by the boundary of the convex polytope which are not
orthogonal to the hyperplane x3 = 0.

This thesis is based upon the following articles:

1. H. Kovař́ık, B. Ruszkowski and T. Weidl, Melas-type bounds for the Heisenberg
Laplacian on bounded domains, to appear in the Journal of Spectral Theory (2016).

2. H. Kovař́ık, B. Ruszkowski and T. Weidl, Spectral estimates for the Heisenberg
Laplacian on cylinders, to appear in Proceedings of the European Mathematical
Society Publishing House in honor of 70th birthday of Pavel Exner (2016).

3. B. Ruszkowski, Hardy Inequalities for the Heisenberg Laplacian on convex bounded
polytopes, submitted to Mathematica Scandinavica (2016).

1.1 Spectral estimates for the Dirichlet Laplacian

Before we study the spectrum of the Heisenberg Laplacian on the Heisenberg group,
we first consider the spectrum of the Laplacian, which is the natural counterpart of
the Heisenberg Laplacian in the Euclidean space. In the literature there do not exist
many results on the spectrum of subelliptic operators. Therefore we give an overview
of spectral estimates for the Laplacian, which will serve us as comparison model to
the subelliptic case since during the last decades the elliptic problem has been studied
thoroughly. In particular, we focus on spectral estimates reflecting the leading term in
the Weyl asymptotics, which can be further refined by an additional lower order term.

The Laplacian has become one of the main objects in mathematical physics during
the last centuries. This operator appears in several differential equations, describing
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1.1 Spectral estimates for the Dirichlet Laplacian

various physical phenomena, such as heat flow, the propagation of waves, the motion of
viscous fluid substances and phenomena in quantum mechanics [HS96].

For n ∈ N let us consider the Laplacian in Cartesian coordinates, which is the
following second-order differential operator

−∆ := −
n∑
j=1

∂2
xj
,

where ∂xj is the partial derivative in the j-th direction. For a domain Ω ⊂ Rn with finite
volume, we consider the self-adjoint operator, denoted by −∆Ω, which is associated to
the semi-bounded quadratic form

a[u] :=

∫
Ω

|∇u(x)|2 dx =
n∑
j=1

∫
Ω

|∂xju(x)|2 dx

with form domain given by the Sobolev space H1
0 (Ω), see [BS87]. The operator −∆Ω is

called Dirichlet Laplacian.
The object of interest in this section are the eigenvalues of the Dirchlet Laplacian.

The compact embedding H1
0 (Ω) ↪→ L2(Ω), see [AF03], yields a nondecreasing, positive

sequence of eigenvalues 0 < λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ . . . , which accumulates only at
infinity. The german mathematician Hermann Weyl (1885-1955) studied the eigenvalue
counting function

N(λ,Ω) := {j ∈ N|λj(Ω) < λ}

and proved in [Wey12] the following fundamental result

lim
λ→∞

N(λ,Ω)λ−n/2 =
τn

(2π)d
|Ω|, (1.1)

where |Ω| is the n-dimensional Lebesgue measure of Ω and τn is the volume of the
unit ball in Rn. The limit in (1.1) is called Weyl’s law or Weyl asymptotitcs. We
stress that the Weyl asymptotics are determined by the phase space volume of a particle
trapped in Ω, which is an important quantity in physics. H. Weyl conjectured that there
exists a lower order term depending on the surface area of ∂Ω such that (1.1) can be
further improved.

In 1980, V. Ivrii proved this conjecture under strong assumptions on the geometry
of Ω in [Ivr80, Ivr98]; in particular it holds

N(λ,Ω) =
τn

(2π)n
|Ω|λn/2 − 1

4

τn−1

(2π)n−1
|∂Ω|λ(n−1)/2 + o(λ(n−1)/2), (1.2)

as λ → +∞, where |∂Ω| is the surface area of the boundary. We refer to that formula
as the refined Weyl asymptotics.
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1 Introduction

The question arose whether the limits in the Weyl asymptotics give uniform bounds
on the counting function as well. In 1961, G. Pólya showed that if Ω is a tiling domain
it holds

N(λ,Ω) ≤ τn
(2π)n

|Ω|λn/2 (1.3)

for all λ ≥ 0. We stress that the constant on the right-hand side cannot be improved
further because of (1.1). Pólya’s hypothesis suggests that this inequality remains true
for all open domains with finite volume but neither a proof nor a counterexample have
been found yet. The only known generalization was done by A. Laptev in [Lap97]. He
considered domains with finite measure of the form Ω = Ω1 × Ω2 ⊂ Rn1 × Rn2 , where
n = n1 + n2 for n1 ≥ 2 and n2 ≥ 1. Under the assumption that N(λ,Ω1) fulfills Pólya’s
hypothesis, we know then that N(λ,Ω) satisfies that hypothesis as well.

During the last decades it became apparent that things get easier if one does not
consider the counting function directly but averaged or smoothed versions. Therefore
we concentrate on estimates for the Riesz means, which are defined as

Rγ(λ,Ω) = Tr(A(Ω)− λ)γ− :=
∑

k∈N:λk(Ω)<λ

(λ− λk(Ω))γ

for γ ≥ 0; for γ = 0 we obtain the counting function and for γ = 1 the trace. The
identity2 in [AL78]

Rγ+δ(λ,Ω) =
1

β(δ, γ + 1)

∫ ∞
0

tδ−1Rγ(t− λ,Ω) dt, δ > 0, (1.4)

where β(·, ·) is the beta function, shows that uniform bounds or asymptotical results for
Riesz means with higher powers can be obtained by using results for lower order Riesz
means. Hence for σ = 0 and suitable Ω we use (1.2) to get the corresponding Weyl
asymptotics for the Riesz means

Tr(A(Ω)− λ)γ− = Lclγ,n|Ω|λσ+n/2 − 1

4
Lclγ,n−1|∂Ω|λσ+(n−1)/2 + o(λγ+(n−1)/2) (1.5)

as λ→ +∞, where the classical Lieb-Thirring constant is denoted by

Lclγ,n :=
Γ(γ + 1)

(4π)n/2Γ(γ + n/2 + 1)

and Γ(·) is the gamma function. Recently R. Frank and L. Geisinger proved in [FG11]
that (1.5) holds for all γ ≥ 1 if ∂Ω is a C1,α boundary for some 0 < α ≤ 1. The
condition on ∂Ω reduces the strong geometrical assumptions of V. Ivrii.

2Equation (1.4) also holds for the Riesz means of any positive operator with discrete spectrum, like
the Heisenberg Laplacian or the Laplacian with magnetic field on bounded domains subject to Dirichlet
boundary conditions since the proof of (1.4) is based on a simple scaling argument.
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1.1 Spectral estimates for the Dirichlet Laplacian

The first estimate for the Riesz means were done by F.A. Berezin in 1972. He proved
in [Ber72] that the semiclassical limit of the leading term in (1.5) gives a uniform bound
for some Riesz means as well. In particluar, for a domain Ω ⊂ Rn with finite volume
and for all γ ≥ 1 holds

Tr(A(Ω)− λ)γ− ≤ Lclγ,n|Ω|λσ+n/2 (1.6)

for any λ ≥ 0. This inequality is called Berezin inequality or also Berezin-Lieb
inequality because of E. H. Lieb’s work in [Lie73].

For γ = 1 one can immediately deduce bounds for the eigenvalue sum, which is
discussed explicitly in Section A.2 of the appendix. The Legendre transform transforms
then (1.6) for γ = 1 into

k∑
j=1

λj(Ω) ≥ Cn|Ω|−
2
nk1+2/n, Cn := (2π)2τ−2/n

n

n

n+ 2
(1.7)

for all k ∈ N. That inequality was first proved in [LY83] by P. Li and S.-T. Yau with a
minimization technique in the Fourier space without using the duality of the Legendre
transform. Hence, inequality (1.7) is called Li-Yau inequality. The constant and
the order of growth cannot be improved further, which will be discussed in the next
section. We stress that in the literature inequalities of the form (1.6) and (1.7) are also
called Berezin-Lieb-Li-Yau inequalities because of the duality given by the Legendre
transform.

At that point the question arises whether one can improve Berezin-Lieb inequalities
by adding the lower order term of the refined Weyl asymptotics; in the general case this
is not possible. Therefore, let us assume that the left-hand side of the Riesz means are
less equal than the refined Weyl asymptotics in (1.5) for all λ ≥ 0. Then, we consider
the sequence of sets which are used for the construction of Koch’s snowflake; these sets
are piecewice smooth. The perimeter of that sequence tends to infinity while the volume
of it converges, whereas the min-max-principle for the Riesz means of the corresponding
construction step are bounded from below by the Riesz means on a circle, which was
chosen such that it lies inside of all construction steps of Koch’s snowflake, yielding a
contradiction.

However, it is possible to add a negative lower order term which reflects the correct
growing order of the lower order term in the refined Weyl asymptotics for some Riesz
means. In [GLW11] L. Geisinger, A Laptev and T. Weidl proved that for a given convex
bounded domain Ω ⊂ Rn and for all γ ≥ 3/2 there exists a constant C(γ, n,Ω) > 0 such
that for all λ > 0 it holds

Tr(A(Ω)− λ)γ− ≤ Lclγ,n|Ω|λσ+n/2 − C(γ, n,Ω)λσ+(n−1)/2. (1.8)

This result was recently improved by S. Larson in [Lar16] by showing that C(γ, n,Ω)
can be chosen as a multiple of the constant appearing in the refined Weyl asymptotics

13



1 Introduction

1.2 The Melas-type bound

In this section we discuss improvements for the trace and the eigenvalue sum since
the aim of this thesis is to prove similar results for the eigenvalues of the Heisenberg
Laplacian. First of all we compute the refined Weyl asymptotics for the eigenvalue sum

k∑
j=1

λj(Ω) = Cn|Ω|−
2
nk1+2/n + C̃n

|∂Ω|
|Ω|1+1/n

k1+1/n + o
(
k1+1/n

)
(1.9)

as k →∞, which can be deduced by the refined Weyl asymptotics for the trace and the
counting function under suitable conditions on Ω. The constants are given by

Cn := (2π)2τ−2/n
n

n

n+ 2
and C̃n :=

√
πΓ(2 + n

2
)1+1/n

(n+ 1)Γ(3
2

+ n
2
)Γ(2)1/n

.

In 2003 A. D. Melas showed the first improvement of the Li-Yau inequality. He took
an additional restriction into account for the Li-Yau minimization technique and proved
in [Mel03] that for any open bounded set Ω holds

k∑
j=1

λj(Ω) ≥ Cn|Ω|−
2
nk

n+2
n +Mn

|Ω|
I(Ω)

k, k ∈ N, (1.10)

where

I(Ω) := min
a∈Rn

∫
Ω

|x− a|2 dx

is the second moment of the set Ω, and Mn > 0 depends only on the dimension. We
observe that this inequality for the eigenvalue sum satisfies the following two properties:

• The leading term of that inequality reflects the order of growth and the geometrical
constant in asymptotic identity in (1.9).

• The additional lower order term is of growth order one.

Hence, we call an inequality fulfilling the last two properties a Melas-type bound.
As mentioned in the last section the geometrical constant for the lower order term can
not be achieved without any further assumptions on Ω. By the duality of the Legendre
transform we get an improved Berezin-Lieb inequality, meaning that for all γ ≥ 1 and
λ ≥ 0 holds

Tr(A(Ω)− λ)γ− ≤ Lclγ,n|Ω|
(
λ−Mn

|Ω|
I(Ω)

)σ+n/2

. (1.11)

We call such inequalities also Melas-type bounds since they are equivalent to (1.10).
For related results we refer to [Ber72, LY83, Mel03, KW15, KVW09, Yol10, YY13] and
also [Str96] for a generalization to Riemannian manifolds.
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1.3 The Hardy inequality

The best known improvement of (1.10) was done by H. Kovař́ık, S. Vugalter and T.
Weidl. They showed in [KVW09] that the growth order of the lower order term in (1.10)
can be approximated arbitrarily close to the one given by the refined Weyl asymptotics;
especially for high energies this result is extremely good. However, the proving technique
is quite difficult and cannot be adapted to the setting of the Heisenberg Laplacian.

The most important work for this thesis is [KW15] by H. Kovař́ık and T. Weidl.
Assuming the validity of a Hardy inequality, the authors prove a Melas-type bound
for the Dirichlet Laplacian and the Dirichlet Laplacian in the presence of a constant
magnetic field. The technique is extremely powerful and can be used for the Heisenberg
Laplacian, too. In this work we modify that technique and show that for a Melas-type
bound there is no need for the validity of a Hardy inequality at all. This is discussed
in detail in Chapter 3 for the eigenvalue sum of the Dirichlet Laplacian with constant
magnetic field. Only if one is interested to achieve higher growth orders in the lower
order term, one has to assume the validity of that Hardy inequality. The same is true
for the eigenvalue sum of the Heisenberg Laplacian in which the Hardy inequality has
to be adjusted to the setting of the Heisenberg group.

1.3 The Hardy inequality

In this section we introduce briefly some well-known Hardy inequalities since in the last
section we mentioned that Hardy inequalities improve Melas-type bounds. In its sim-
plest form a Hardy inequality allows to control weighted norms by derivative norms with
respect to Dirichlet boundary conditions. During the last century the study of Hardy
inequalities or also called Hardy-type inequalties has received a strong impulse since
they are powerful tools in real-variable harmonic analysis, partial differential equations,
mathematical physics and spectral theory. In 1920 G. H. Hardy proved in [Har20] a
weaker form of Hilbert’s inequality, which is known as discrete Hardy inequality. His
source of motivation was to find a simple and elementary proof of Hilbert’s result. Some
years later in [Har25] he proved for any p > 1 and any positive function f ∈ Lp((0,∞))
the following ∫ ∞

0

(
1

x

∫ x

0

f(t) dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)p dx. (1.12)

This inequality is called Hardy inequality and generalizes his weak version of Hilbert’s
inequality. The constant on the right-hand side of (1.12) cannot be improved further.
For a detailed historical development of that inequality we refer to [KMP06].

In the literature there exist several inequalities, called Hardy inequalities or Hardy-
type inequalities. A well-known Hardy inequality in higher dimensions is the following
one: for all u ∈ C∞0 (Rn) holds

(n− 2)2

4

∫
Rn

|u(x)|2

||x||2e
dx ≤

∫
Rn
|∇u(x)|2 dx (1.13)

15



1 Introduction

if n ≥ 3, where ||x||e denotes the Euclidean length of x ∈ Rn. The constant on the left-
hand side cannot be improved further. In mathematical physics this inequality plays
an important role because the weight function |x|−1

e on the left-hand side of (1.13) is
the Coulomb potential, which describes the force between two point charges. We stress
that for the cases n ∈ {1, 2} inequality (1.13) can not hold, see for instance [BS87]. The
Lp-version of (1.13) for 1 < p <∞, which is less important for this work, can be found
in [OK90].

In this thesis we focus on Hardy inequalities whose weight function is given by
the distance function to the boundary of a given bounded domain. In some sense
such inequalities feel the boundary of that domain, which in regard to the refined Weyl
asymptotics is very useful since the geometrical constant of the lower order term depends
on the volume and the boundary of the domain. Therefore let us consider a bounded
domain Ω ⊂ Rn, where c(Ω) > 0 denotes the smallest constant such that for all u ∈
C∞0 (Ω) holds ∫

Ω

|u(x)|2

δe(x)2
dx ≤ ce(Ω)2

∫
Ω

|∇u(x)|2 dx, (1.14)

where δe(x) = dist(x, ∂Ω) in the Euclidean sense. For convex Ω we know that ce(Ω) = 2,
see [Dav99], which is a sharp result since for any bounded domain holds

1

4
≥ inf

u∈C∞0 (Ω)\{0}

∫
Ω
|∇u(x)|2 dx∫

Ω
|u(x)|2δe(x)−2 dx

.

In general it is not possible to prove a uniform constant without any additional as-
sumptions on Ω; this is not even possible in the class of smooth domains, see [MMP98].
However, A. Ancona proved in [Anc86] that for any simply connected bounded domain
in R2 that ce(Ω) ≤ 4 holds, which is the best generalizations of the result for convex
domains. It is still an open problem to extend this result to higher dimensions since
A. Ancona uses powerful tools in complex analysis, namely the Koebe quarter theorem
in combination with the Riemann mapping theorem. For the sake of completeness we
mention that ce(Ω) < ∞ if Ω is a bounded Lipschitz domain, which is discussed in
[Anc86]. For more information and recent improvements on that inequality we refer the
reader to the following book [BEL15].

One of the aims in this thesis is to prove inequalities of the form (1.14) with respect
to the setting of the Heisenberg group, see Chapter 5. The weight function will be
given by the Carnot-Carathéodory metric generated by the left-invariant vector fields
of the Heisenberg group, which is the natural counterpart of the Euclidean distance in
the Euclidean setting. As mentioned in the beginning such an inequality allows us to
improve the growing order in the lower order term of a Melas-type bound. We discuss
this in detail in the summary of the main results of the upcoming chapter and in Section
4.6.
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Chapter 2

The Heisenberg group

The Heisenberg group appears in several ways, which depends on the mathematical point
of view. In the literature one does not differentiate between these apparently different
objects since they are all equivalent to each other in some sense. The Heisenberg
group plays an important role in the representation theory of nilpotent Lie groups,
the structure theory of finite groups, geometric optics, the theory of partial differential
equations, quantum mechanics and sub-Riemannian geometry, see for instance [How80].
The later will be of huge importance for our purposes, which will be explained in this
chapter.

The Heisenberg group is named after the german scientist Werner Heisenberg (1901-
1976) who established the fundament of quantum mechanics in the beginning of the
20th century. One of his main contributions in quantum mechanics was his uncertainty
principle. Heisenberg’s uncertainty principle says that it is not possible to measure the
exact position and velocity of a particle simultaneously. In mathematical terms this is
expressed by the non-vanishing commutation relation of the position and momentum
operator with respect to the Lie bracket. Indeed, we will see in the next section that
the Lie group associated to the Lie algebra generated by the commutation relation of
the position and the momentum operator is exactly the Heisenberg group.

In that chapter we introduce the Heisenberg group and its corresponding sub-
Laplacian, being the subelliptic sum-of-squares differential operator of left-invariant
vector fields on the Heisenberg group. This differential operator is then the Heisen-
berg Laplacian, which is the object of interest in that thesis. In addition, we discuss
the analytic properties of that differential operator, especially the ones connected to
the Carnot-Carathéodory metric on the Heisenberg group. Then we present the corre-
sponding geodesics on the Heisenberg group and the Kaplan metric, which is equivalent
to the Carnot-Carathéodory metric and easier to handle in certain situations. At the
end of this chapter we give an overview of the main results of that thesis.
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2 The Heisenberg group

2.1 The construction of the first Heisenberg group

There are many motivations and different constructions to introduce the Heisenberg
group, depending on the point of view of its applications. In complex function theory
for instance it can be identified with the boundary of the Siegel upper half-space in C2.
The group law arises from a subgroup of the automorphism group from the complex
unit disc with the Siegel upper half-space. To the interested reader we refer to [Kra09].

However, for our purposes we prefer the point of view in quantum mechanics and fol-
low [Fol89] to introduce the Heisenberg group. For x := (x1, x2, x3) ∈ R3 we consider the
momentum operator Qjf(x) := xjf(x) and the position operator Pjf(x) := −i∂xjf(x),
where f denotes a Schwartz function on R3. We use the Lie Bracket to obtain

[Qj, Pk]f(x) = iδj,kf(x),

where δ·,· is Kronecker’s delta. This commutation relation is called the Heisenberg
canonical commutation relation. In physics observables satisfying non-vanishing com-
mutation relation play an important role because they are subject to the Heisenberg
uncertainty pinciple, see [GS11]. Motivated by the Heisenberg canonical commuta-
tion relation, we take h to be the 3-dimensional real Heisenberg Algebra with basis
{X1, X2, X3} which satisfies the only non-vanishing commutation relation

[X1, X2]h = −X3,

where [·, ·]h denotes the Lie bracket of h. An immediate consequence of the commutation
relation is that h is 2-step nilpotent and obviously a Carnot group. Lie’s third theorem
says that h is associated to a Lie group. Therefore we consider two points (x, y, t) ∈ R3

and (x′, y′, t′) ∈ R3 such that

X := xX1 + yX2 + tX3, and Y := x′X1 + y′X2 + t′X3,

and compute

[X, Y ]h = (−xy′ + yx′)X3. (2.1)

At that point we use Ado’s Theorem [Hal15, Thm. 2.40] and know then that every
finite dimensional real Lie algebra is isomorphic to a real Lie algebra of square matrices
with the matrix commutator as Lie bracket. Therefore we set

m(X) := m(x, y, t) :=

0 y t
0 0 x
0 0 0

 ,

and from m(X)m(Y ) = m(x, y, t)m(x′, y′, t′) = m(0, 0, yx′) we obtain for the matrix
commutator, denoted by [·, ·], the following

[m(X),m(Y )] = [m(x, y, t),m(x′, y′, t′)] = m(0, 0,−xy′ + yx′) = m([X, Y ]h).
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2.1 The construction of the first Heisenberg group

Hence the mapping X → m(X) is a Lie algebra isomorphism from h to the subspace
{m(x, y, t) | (x, y, t) ∈ R}. For a square matrix M we use the exponential map

exp(M) :=
∞∑
j=0

1

j!
M j,

which is an analytic diffeomorphism between a Lie algebra and its corresponding Lie
group, see [CG90, Thm. 1.2.1]. The group structure of that Lie group is then given by
the Baker-Campbell-Hausdorff formula. In our case we have to use that the commutators
of orders higher than two vanish, which yields

exp(m(X))exp(m(Y )) = exp(m(X) +m(Y ) +
1

2
m([X, Y ]h))

= exp

(
m(x+ x′, y + y′, t+ t′ − 1

2
xy′ +

1

2
yx′)

)
= exp

(
m((x+ x′)X1 + (y + y′)X2 + (t+ t′ − 1

2
xy′ +

1

2
yx′)X3)

)
.

Thus the first Heisenberg group, denoted by H, is then defined as the R3 equipped
with the following group law

(x1, x2, x3) � (y1, y2, y3) :=
(
x1 + y1, x2 + y2, x3 + y3 − 1

2
(x1y2 − x2y1)

)
. (2.2)

In the literature the factor 1/2 is sometimes replaced by 2 or −2, which yields an
isomorphic group; from the analytical point of view there is no difference between these
objects. In our construction we omitted Heisenberg groups in higher dimensions for the
sake of simplification though all results in that thesis can be extended to the case in
higher dimensions.

We recall that the object of interest is the sub-Laplacian, which is the sum of squares
of the left-invariant tangent vector fields at the identity element of H. Thus the differ-
ential of the Lie group at the identity element gives the representation of h in terms of
vector fields. A simple computation yields then

X1 = ∂x1 +
1

2
x2∂x3 , X2 = ∂x2 −

1

2
x1∂x3 , X3 = ∂x3 (2.3)

for a given point x =: (x1, x2, x3) ∈ H. Note that these first order partial differential
operators, in the sequel called vector fields because they can be identified canonically
with vector fields on H, fulfill the commutation relation of h, where the Lie bracket in
that case is considered as the differential operator [X1, X2] := X1X2 − X2X1 defined
on C∞(H). In particular X1, X2, X3 form a left-invariant basis in h. A vector field
Y : H→ H is called left-invariant if for all x, g ∈ H holds

dlx(g)Y (g) = Y (x� g),
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2 The Heisenberg group

where the mapping lx(g) : H→ H is given by lx(g) := x� g and its differential by

dlx(g) =

 1 0 0
0 1 0

1
2
x2 −1

2
x1 1

 .

We stress that the Lebesgue measure is preserved under the left-translation lx because
the determinant of dlx is one. Hence the left Haar measure on H is the Lebesgue measure.
Since the Lebesgue measure is also right invariant, we know that H is unimodular.

2.2 The Heisenberg Laplacian

In this section we give a brief introduction and a survey of some well-known analytic
properties of the Heisenberg Laplacian, which is the natural counterpart of the Laplacian
in the Euclidean setting. For the introduction we follow S. Thangavelu in [Tha98]. Let
us briefly recall the properties which characterize the Laplacian:

• invariant under translations,

• invariant under rotations,

• homogeneous of degree 2.

It is clear that we have to adapt these properties to the setting of the Heisenberg group
to obtain an operator, which acts as natural on H as the Laplacian on Rn. Therefore
we consider the following properties:

a differential operator P on H is called left-invariant if it commutes for all g ∈ H
with

Lgf(x) := f(g−1x),

where x ∈ H and f denotes a Schwartz function on R3. The differential operator P on
H is called rotation invariant if it commutes for any σ with

Rσf(x) := f(σ(x1, x2), x3),

where x := (x1, x2, x3), and σ ∈ SO(2). We introduce a family of non-isotropic dilations
on H, i.e. for h > 0 we define

h(x) := (hx1, hx2, h
2x3).

It is easy to verify that h : H→ H is a group isomorphism. The differential operator P
on H is called homogeneous of degree 2 if for all h > 0 and x ∈ H holds

P (f(h(x))) = h2(Pf)(h(x)).
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2.3 The Carnot-Carathéodory metric and the geodesics

From [Tha98, Kor83] it is known that a differential operator satisfying the last three
properties on H must be a multiple of

−X2
1 −X2

2 + αX3, α ∈ R.

Hence the only sum-of-squares differential operator satisfying these properties is then
given by

−∆H := −X2
1 −X2

2 .

This sub-Laplacian is called the Heisenberg Laplacian, in the literature also referred
as Kohn Laplacian.

As an immediate result of the fundamental work of L. Hörmander in [Hör67], we see
that −∆H is a second order hypoelliptic differential operator because the vector fields
X1, X2, [X1, X2] form a basis at any point in H. We recall that an operator P is called
hypoelliptic if for any open set Ω ⊂ H such that Pu ∈ C∞(Ω), it must follow that
u ∈ C∞(Ω).

In comparison to the Laplacian this operator is not elliptic but subelliptic at any
point of H. Let Ω ⊂ Rn be a domain and L be a differential operator of order 2, which is
symmetric on C∞0 (Ω). For 0 < ε < 1 the differential operator L is said to be subelliptic
of order ε at x ∈ Ω if there exists a neighborhood K of x and a constant CK > 0 such
that for all u ∈ C∞0 (K) holds

‖u‖2
ε ≤ CK

(
|〈 Lu, u〉|+ ‖u‖2

0

)
,

where

‖u‖s :=

(∫
Rn

(1 + |ξ|2)s|Fu(ξ)|2 dξ

)1/2

(2.4)

denotes the Sobolev norm of order for ε, Fu the Fourier transform of u and 〈 ·, ·〉 the
scalar product in L2(Ω). Form [Fol73] we know that for any x ∈ H there exists a
neighborhood K ⊂ H of x and a constant cK > 0 such that for all u ∈ C∞0 (K) we have

‖u‖2
1/2 ≤ cK

(∫
K

|X1 u(x)|2 + |X2 u(x)|2 + |u(x)|2 dx

)
,

yielding the subellipticity of the Heisenberg Laplacian.

2.3 The Carnot-Carathéodory metric and the geo-

desics

In this section we give a detailed description of the sub-Riemannian geometry on H.
In particular, we introduce the Carnot-Carathéodory metric. This metric measures
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2 The Heisenberg group

the distance between points on H in a natural way using curves whose derivative lies
pointwise in the span of the vector fields X1 and X2. We will see that the analytic
properties of the Heisenberg Laplacian with the Carnot-Carathéodory metric are as
natural as the ones of the Euclidean metric with respect to the Laplacian.

We call a Lipschitz curve γ : [a, b] ⊂ R → H horizontal if the curve γ(t) :=
(γ1(t), γ2(t), γ3(t)) fulfills for any t ∈ (a, b) the following differential equation

γ′3(t) =
1

2
(γ2(t) γ′1(t)− γ1(t) γ′2(t)) . (2.5)

This is equivalent to the condition that γ′(t) ∈ span{X1(γ(t)), X2(γ(t))} for all t ∈ (a, b).
By an application of Chow’s theorem, see e.g. [Mon02], we know that horizontal curves
exist because X1 and X2 satisfy Hörmander’s finite rank condition. Therefore for a
given pair x, y ∈ H, we consider the family of curves

F(x, y) := {γ : [a, b]→ H : γ is horizontal and connects x with y} . (2.6)

Furthermore, we set

lH(γ) :=

∫ b

a

√
γ′1(t)2 + γ′2(t)2 dt. (2.7)

Given x, y ∈ H, the Carnot-Carathéodory metric (C-C metric in the sequel) is then
defined as follows;

dC(x, y) := inf
γ∈F(x,y)

lH(γ). (2.8)

From the geometric point of view we must compute the smallest two-dimensional Eu-
clidean length of a projected horizontal curve onto the x1-x2 hyperplane, see Figure 2.1.
For further infromation on the C-C metric we refer the interested reader to [CDPT07],
[Mon02] and [CCG07].

The arc joining geodesics starting from the origin were computed in [Mon00] and
[Mar97]. The parametrization of these arcs is given by

γk,θ(t) :=



x1(t, k, θ) =
cos(θ)− cos(kt+ θ)

k
,

x2(t, k, θ) =
sin(kt+ θ)− sin(θ)

k
,

x3(t, k, θ) =
kt− sin(kt)

2k2
,

(2.9)

where t ∈ [0, 2π
|k| ] , θ ∈ [0, 2π) and k ∈ R \ {0}. We stress that the projection of these

curves onto the x1-x2 hyperplane are arcs of circles which go through the origin. For the
computation of the distance from the origin to the point (0, 0, x3) one can transform the
condition (2.5) by an application of Stoke’s theorem into a slightly modified isoperimetric
problem on R2 whose solution matches then with (2.9), see [CDPT07].
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2.3 The Carnot-Carathéodory metric and the geodesics

Hence for a given point γk,θ(t) ∈ H, it holds dC(γk,θ(t), 0) = t if t ∈ [0, 2π
|k| ]. We

extend this formula to the case k = 0 by taking the limit for k → 0, yielding

γ0,θ(t) :=


x1(t, 0, θ) = t sin(θ),

x2(t, 0, θ) = t cos(θ),

x3(t, 0, θ) = 0.

(2.10)

Thus we obtain the arcs connecting the origin with points lying in {(x1, x2, x3) ∈ H |x3 =
0}. Next we define the map

Φ(t, k, θ) :=
(
x1(t, k, θ), x2(t, k, θ), x3(t, k, θ)

)
, (2.11)

for t ∈ [0, 2π
|k| ] , θ ∈ [0, 2π), k ∈ R. The determinant of the Jacobian of Φ, denoted by

JΦ, is given by

det (JΦ(t, k, θ)) =
kt sin(kt)− 2(1− cos(kt))

k4
, (2.12)

see [Mon00, S.161].

Throughout the work we will need the following well-known properties of the C-C
metric.

Proposition 2.1. The following statements hold true:

a) Any two points in H can be connected by a (not necessarily unique) geodesic.

b) The C-C metric is invariant under left translation with respect to the group law
on H, meaning

dC(x, y) = dC(z � x, z � y) (2.13)

for x, y, z ∈ H.

c) The mapping

Φ :

{
(t, k, θ) ∈ R3

∣∣ θ ∈ R/2πZ, k ∈ R, t ∈
(

0,
2π

|k|

)}
→ H \ P,

(2.14)

where Φ is given in (2.11), is a C1-diffeomorphism, where P := {(x1, x2, x3) ∈
H | x1 = 0, x2 = 0}.

d) For a fixed compact set K ⊂ H there exists a constant M > 0 such that for all
x, y ∈ K holds

M‖x− y‖e ≤ dC(x, y) ≤M−1‖x− y‖1/2
e , (2.15)

where ‖x‖e is the Euclidean length in R3 of x.
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2 The Heisenberg group

e) We recall the family of dilations h(x) := (hx1, hx2, h
2x3) for x ∈ H and h > 0.

Then

h4C1(0) = Ch(0) := {x ∈ H | dC(x, 0) < h}, (2.16)

and

dC(h(x), h(y)) = hdC(x, y).

Proof. We refer to [Mon00], [NSW85] and [MR05].

An immediate consequence of the last property is that the homogeneous dimen-
sion of H is 4. From the analytical point of view the Heisenberg Laplacian behaves in
some sense like the Laplacian on R4 although the underlying topological dimension of
H is 3. We will observe this difficultly throughout the proofs of the Hardy and spectral
inequalities on H.

(a) A geodesic connecting the origin with (0, 0, 1),
and its projection onto the x1-x2 hyperplane.

(b) The C-C ball with radius one, centered at
the origin.

Figure 2.1: Geodesics and C-C balls.

2.4 The Kaplan metric

In that section we discuss another distance on the Heisenberg group, which is equivalent
to the C-C metric. We introduce the Korányi-Folland metric or also called Kaplan
metric

dH(x, y) := ‖(−y) � x‖H,
where

‖x‖4
H := (x2

1 + x2
2)2 + 16x2

3,
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2.4 The Kaplan metric

is the Korányi-Folland gauge or Kaplan gauge. For the sake of brevity we will use
the latter notation and call it Kaplan gauge. Indeed dH(·, ·) is a metric [Kra09], and in
[Fol73] G.B. Folland showed that the function f(x) := ‖x‖−2

H up to a multiple constant
is the fundamental solution of −∆H.

It is easy to show that ‖x‖H and dC(x, 0) are equivalent since both are homogeneous
of order 1 with respect to the dilations h(·) for any h > 0. However, the Kaplan metric
and the C-C metric do not share the same analytic properties. For instance the distance
function to the boundary with respect to the C-C metric fulfills the Eikonal equation,
which is of huge importance for the spectral estimates discussed in Section 4.6; the
Kaplan metric does not satisfy that property. In this thesis it will be convenient to switch
between those two distances since for explicit computations it is more comfortable to
work with the Kaplan metric than with the C-C metric. Therefore we need the following
result:

Lemma 2.2. For all x, y ∈ H it holds

1

π2
dC(x, y)4 ≤ ‖(−y) � x‖4

H ≤ dC(x, y)4. (2.17)

Moreover, both inequalities are sharp.

Proof. Using the left-invariance of dC(x, y) with respect to the group law on H we
transform (2.17) into

1

π2
dC(y−1 � x, 0)4 ≤ ‖(−y) � x‖4

H ≤ dC(y−1 � x, 0)4. (2.18)

We know that y−1 = −y. Therefore it is sufficient to prove

1

π2
dC(z, 0)4 ≤ ‖z � 0‖4

H ≤ dC(z, 0)4 ∀ z ∈ H.

At that point we use the arc joining geodesics starting from the origin in (2.9). Thus,
we have to calculate the supremum and the infimum of

‖γk,θ(t) � 0‖4
H

dC(z, 0)4
=

4 (1− cos(kt))2 + 4 (kt− sin(kt))2

(tk)4
.

Hence the aim is to give upper and lower bounds for the function

g(τ) :=
4

τ 4

(
(1− cos(τ))2 + (τ − sin(τ))2)

for 0 ≤ τ ≤ 2π because t ∈ [0, 2π
|k| ]. To proceed we show that the function g(τ) is

non-increasing on [0, 2π]. By differentiating the function g(τ) several times we find that
the latter is non-increasing on [0, 2π], which implies that the same is true for g. Hence

1

π2
= g(2π) ≤ g(τ) ≤ lim

τ→0+
g(τ) = 1. (2.19)

The sharpness of that inequality is an immediate consequence.
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2 The Heisenberg group

2.5 Summary of the main results

In this section we give a summary of the main results of this thesis.

2.5.1 Spectral estimates for the Heisenberg Laplacian

In Chapter 4 we consider a bounded domain Ω ⊂ H and study the sequence of positive
nondecreasing eigenvalues {λk(Ω}k∈N of the Heisenberg Laplacian

−∆H := −X2
1 −X2

2

with Dirichlet boundary condition. For the Riesz means of order one, we obtain

Tr(A(Ω)− λ)− ≤ max

{
0,
|Ω|
96

λ3 − λ2 R(Ω)8

150|Ω|D(Ω)2π4

}
(2.20)

for all λ > 0, where |Ω| is the three-dimensional Lebesgue measure of Ω, D(Ω) is the
diameter and R(Ω) the inradius of Ω with respect to the Carnot-Carathéodory metric
on H. This inequality improves a recent result in [HL08], proved by A. M. Hanson and
A. Laptev. The Li-Yau equivalent of (2.20) is then given by

n∑
k=1

λk(Ω) ≥ 8
√

2

3
|Ω|−

1
2 n

3
2 +

16R(Ω)8

75|Ω|2D(Ω)2π4
n, n ∈ N.

This result is a Melas-type bound since the leading term reflects the geometrical constant
and the order of growth in the Weyl asymptotics and the additional positive term is of
order one.

For domains of the type Ω = ω × (a, b), where ω ⊂ R2 is a bounded domain and
a, b ∈ R are such that a < b, we improve (2.20) for large eigenvalues. For convex
cross-section ω we show that for all λ ≥ 0 holds

Tr(A(Ω)− λ)− ≤ max

{
0,
|Ω|
96

λ3 − λ2+ 1
4

27 · 35/2

|Ω|
Re(ω)3/2

}
, (2.21)

where Re(ω) is the Euclidean inradius of ω in R2. This improvement is also possible
for general domains but then we have to assume the validity of a Hardy inequality,
discussed in the upcoming subsection.

At last we consider the eigenvalue counting function N(λ,Ω) and construct domains
such that for all λ ≥ 0 holds

N(λ,Ω) ≤ λ2 |Ω|
32
,

which is a Pólya-type inequality in the spirit of G. Pólya’s result in [Pól61] for the
counting function of the Dirichlet Laplacian.
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2.5 Summary of the main results

2.5.2 Hardy inequalities for the Heisenberg Laplacian on con-
vex bounded polytopes

In Chapter 5 we study a Hardy-type inequality for the gradient of the Heisenberg Lapla-
cian. Let Ω ⊂ H be a bounded domain, and let us denote by c(Ω) > 0 the smallest
constant independent of u ∈ C∞0 (Ω) such that∫

Ω

|u(x)|2

δC(x)2
dx ≤ c(Ω)

∫
Ω

|∇H u(x)|2 dx. (2.22)

The sub-gradient is given by∇H := (X1, X2), and the distance function δC is the distance
function to the boundary measured with respect to the Carnot-Carathéodory metric on
H.

We prove for an open bounded convex polytope Ω ⊂ H the following

c(Ω) ≤ 5

(
m8/9π8/935/2 · 247/18

√
2−4/3π−2/3 + 16

(
1 +

1

33/227/6π1/3

)2/3

+ 1

)4/3

,

where m ∈ N denotes the number of hyperplanes of ∂Ω which are not orthogonal to the
hyperplane x3 = 0. Under an additional geometrical assumption on Ω, the estimate for
c(Ω) can be further improved. It is then even possible to show that for any ε > 0 there
exists an open bounded convex polytope such that

c(Ω) ≤ 4 + ε.

This shows that there exist convex domains which are more compatible with the Heisen-
berg group structure than we expect them to be since we prove 4 ≤ c(Ω).

2.5.3 Melas-type bounds for the Laplacian with magnetic field

In Chapter 3 we consider a domain Ω ⊂ R2 with finite volume and study the sequence
of positive nondecreasing eigenvalues {λj(Ω,A)}j∈N of the Dirichlet Laplacian with con-
stant magnetic field, given by

H(A) := (i∇+A(x))2, (2.23)

where A(x) := B/2(−x2, x1) for x := (x1, x2) ∈ R2, B > 0 and ∇ := (∂x1 , ∂x2). For the
eigenvalue sum we obtain

n∑
j=1

λj(Ω,A) ≥ 2π

|Ω|
n2 +

Re(Ω)2

32

π2

|Ω|2
n, n ∈ N,

where |Ω| is the two-dimensional Lebesgue measure of Ω and Re(Ω) the Euclidean
inradius of Ω. This inequality generalizes a result in [KW15] by H. Kovař́ık and T. Weidl
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2 The Heisenberg group

since the authors assumed the validity of a Hardy inequality, which is not necessary for
our result. In particular, we obtain a Melas-type bound because the leading term reflects
the semi-classical limit in the Weyl asymptotics and the additional lower order term is
of order one.
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Chapter 3

Melas-type bounds for the
Laplacian with magnetic field

In this chapter we study the eigenvalue sum of the Dirichlet Laplacian in the presence of
a constant magnetic field on a two-dimensional domain with finite volume. We prove a
Melas-type bound for the eigenvalue sum without the assumption of a Hardy inequality,
which is a generalization of a result in [KW15] by H. Kovař́ık and T. Weidl. We will see
later that the Dirichlet Laplacian with constant magnetic field is of huge importance
for this thesis since this differential operator is unitary equivalent to the Heiseberg
Laplacian, being discussed in Section 4.4.

3.1 Introduction

Let Ω ⊂ R2 be a domain with finite volume. We consider the Dirichlet Laplacian with
the following vector potential

H(A) := (i∇+A(x))2, (3.1)

where A(x) := B/2(−x2, x1) for x := (x1, x2) ∈ R2, ∇ := (∂x1 , ∂x2) and B > 0. We
stress that the potential A fulfills curlA = B, yielding a constant magnetic field1.
We denote by H(A) the Friedrichs extension which is associated to the closure of the
semi-bounded quadratic form ∫

Ω

|(i∇+A)u|2 dx, (3.2)

initially given on all u ∈ C∞0 (Ω). Thus H(A) is a positive and self-adjoint operator in
L2(Ω). The well-known compact embedding H1

0 (Ω) ↪→ L2(Ω) yields in combination with

1One could take any other vector potential such that curlA = B is fulfilled since all of these
differential operators are unitarily equivalent to each other, see [FH10].
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3 Melas-type bounds for the Laplacian with magnetic field

the diamagnetic inequality, see (3.6), that the associated quadratic form of H(A) is also
compactly embedded into L2(Ω). Hence, we obtain an unbounded and nondecreasing
sequence of positive eigenvalues of H(A), denoted by λj(Ω,A) for j ∈ N, repeating the
eigenvalues according to their finite multiplicities.

In this chapter we consider the Riesz means of these eigenvalues, given by

Tr(H(A)− λ)γ− :=
∑
j∈N

(λj(Ω,A)− λ)γ− (3.3)

for γ ≥ 0, where y± := (|y|±y)/2 for y ∈ R. For the case γ = 0 we obtain the eigenvalue
counting function N(λ,H(A)) := #{j ∈ N |λj(Ω,A) < λ}. From [ELV00] and (1.4)
one can deduce that the Riesz means satisfy the same Weyl asymptotics as the Dirichlet
Laplacian for d = 2, meaning

lim
λ→∞

λ−1−γTr(H(A)− λ)γ− = Lclγ,2|Ω|, Lclγ,2 := (4π(γ + 1))−1, (3.4)

where |Ω| is the two-dimensional Lebesgue measure of Ω. We stress that the constant
in the Weyl asymptotics describes the phase space volume of a particle trapped in Ω in
the presence of a constant magnetic field, which is an important quantity in physics. In
fact, the leading term of the Weyl asymptotics can be used to give a uniform bound

Tr(H(A)− λ)γ− ≤ Lclγ,2|Ω|λ1+γ (3.5)

if γ ≥ 1, see [ELV00]. We mention that for γ ≥ 3/2 A. Laptev and T. Weidl proved
in [LW00] that for any magnetic field equation (3.5) holds true, as well. For the first
eigenvalue we can apply the diamagnetic inequality [LL01],∣∣∇|u(x)|

∣∣ ≤ |(i∇+A(x))u(x)| a.e. x ∈ Ω, (3.6)

where u ∈ H1
0 (Ω). This inequality holds true for all real-valued vector potentials from

L2
loc(Ω) and appropriate u. The conclusion that the eigenvalues of the Dirichlet Lapla-

cian are always smaller than the ones in the presence of a magnetic field is in general
wrong, which was discussed in [ELV00]. Therefore it is not possible to use known spec-
tral estimates of the Dirichlet Laplacian to obtain results for the case in the presence
of a constant magnetic field. Nevertheless, L. Erdös, M. Loss, and V. Vougalter proved
the following Li-Yau estimate

n∑
j=1

λj(Ω,A) ≥ 2π

|Ω|
n2 (3.7)

for all n ∈ N, which is the same bound as the one for the eigenvalue sum of the
Dirichlet Laplacian. This result is optimal in the sense that the leading term in the Weyl
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3.2 Melas-type bounds and main results

asymptotics of the magnetic operator matches with the bound in (3.7), see [ELV00]. We
can use that result to obtain an estimate for the counting function

N(λ,H(A)) ≤ 1

2π
λ|Ω| = 2Lcl0,2λ|Ω|, λ ≥ 0. (3.8)

R. Frank, M. Loss and T. Weidl proved [FLW09] that in the class of bounded domains
the constant on the right-hand side of (3.8) cannot be improved further, which disproves
Pólya’s conjecture for H(A). They also showed that even in the class of tiling domains
Pólya’s conjecture for the counting function of H(A) is false. In particular the Li-Yau
inequality (3.7) yields an optimal bound for the counting function as well.

H. Kovař́ık and T. Weidl improved (3.7) by showing that under the assumption of a
Hardy inequality there exists c(Ω) > 0 such that

n∑
j=1

λj(Ω,A) ≥ 2π

|Ω|
n2 + c(Ω)n, n ∈ N, (3.9)

which is a Melas-type bound. We discuss that result in more detail in the next section
and prove that this result still holds for any domain with finite measure without any
further assumption.

3.2 Melas-type bounds and main results

The goal in this chapter is to give an improvement of (3.7) in the sense that there exists
a constant C(Ω) > 0 such that

n∑
j=1

λj(Ω,A) ≥ 2π

|Ω|
n2 + C(Ω)nα, n ∈ N, (3.10)

where 0 < α < 2. Since we know that the leading term in the Weyl asymptotics
matches with the one of the Dirichlet Laplacian, one could guess that the lower order
term matches with the second order term in the refined Weyl asymptotics of the Dirichlet
Laplacian as well, see (1.5). However, there is no proof for this conclusion, which means
that the optimal C(Ω) and the correct growth order α remain unknown.

From now on we consider estimates for the Riesz means for the case γ = 1 because an
application of the Legendre transform immediately gives estimates of the form (3.10),
see Corollary A.3 in the appendix. As mentioned in the end of the last section H.
Kovař́ık and T. Weidl were the first ones who improved the Li-Yau inequality in the
magnetic case. In particular, they showed in [KW15] that for a bounded domain Ω ⊂ R2

we have

Tr(H(A)− λ)− ≤ max

{
0,
|Ω|
8π
λ2 − 1

128c2
h(Ω)π

σ(Ω)2

|Ω|
λ

}
, λ ≥ 0, (3.11)
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3 Melas-type bounds for the Laplacian with magnetic field

where the following quantities are given by

σ(Ω) = inf
0<β≤R(Ω)

|{x ∈ Ω | δe(x) < β}|
β

, δe(x) = inf
x∈∂Ω
‖x− y‖e, Re(Ω) = sup

x∈Ω
δe(x).

The constant ch(Ω) ≥ 2 is the smallest possible such that for all u ∈ C∞0 (Ω) the following
Hardy inequality is valid∫

Ω

|u(x)|2

δe(x)2
dx ≤ c2

h(Ω)

∫
Ω

|∇u(x)|2 dx. (3.12)

It is known that for all bounded domains with Lipschitz boundary (3.12) is fulfilled,
which is discussed in [Anc86]. We recall that (3.11) yields a Melas-type bound since
the order of the additional lower order term is one less than the order of the leading
term. In the same work the authors improved that result for convex bounded domains
Ω, meaning

Tr(H(A)− λ)− ≤ max

{
0,
|Ω|
8π

(
λ2 − λ5/4

36Re(Ω)3/2

)}
, λ ≥ 0. (3.13)

The improvement in the order of the additional negative term is based on an application
of (3.12). For convex Ω we know that (3.12) holds true with the optimal constant
ch(Ω) = 2, [Dav99]. In general the computation of the optimal constant fulfilling (3.12)
is quite difficult because it depends on the geometry of Ω and not even necessarily on
its regularity [MMP98]. For instance, A. Ancona showed in [Anc86] that (3.12) holds
for ch(Ω) ≤ 4 if Ω is a simply connected bounded domain. Although we cannot control
ch(Ω) and do not know whether (3.12) holds for any domain, we prove the following:

Theorem 3.1. Let Ω ⊂ R2 be a domain such that |Ω| <∞. Then holds

Tr(H(A)− λ)− ≤ max

{
0,
|Ω|
8π
λ2 − πRe(Ω)2

128|Ω|
λ

}
(3.14)

for all λ > 0. The Li-Yau type equivalent is given by
n∑
j=1

λj(Ω,A) ≥ 2π

|Ω|
n2 +

Re(Ω)2

32

π2

|Ω|2
n for n ∈ N. (3.15)

Comparing the stated result with the one in (3.11), we see that we do not need
the validity of (3.12) any more, and the quantity σ(Ω) does not appear in that result.
It is even possible to consider unbounded domains with finite volume. In particular,
the assumptions of Theorem 3.1 are the weakest possible since (3.14) always holds if
|Ω| =∞.

The proof of Theorem 3.1 starts in the same way as the proof of (3.11), stated in
[KW15]. First, we need the spectral decomposition of the free Dirichlet Laplacian with
constant magnetic field to derive a uniform bound for the trace. Thus we obtain the
leading term of the Weyl asymptotics and an additional negative term. The latter has
to be estimated from below. This is done by an application of a one-dimensional Hardy
inequality, which holds true for any |Ω|.
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3.3 The spectral decomposition

3.3 The spectral decomposition

Here we state the spectral decomposition of the free Laplacian with constant magnetic
field on L2(R2) with operator domain C∞0 (R2). This makes sense since this operator
is essentially self-adjoint, see [Hel09, FH10], and its closure yields a unique self-adjoint
extension H(A,R2) which is associated to the closure of the semi-bounded quadratic
form (3.2) initially given on C∞0 (R2). We stress that the form domain of H(A,R2) is
not the H1(R2) because the functions lying in its domain need to decay sufficiently
strong for |x| → ∞. Let us consider a function u lying in the domain of H(A,R2). The
spectral theorem yields then the following decomposition

H(A,R2)u(x) =
∞∑
k=1

B(2k− 1)

∫
R2

Pk,B(x, y)u(y) dy, (3.16)

where Pk,B is the integral kernel of the orthogonal projection2 in L2(R2) onto the k-th
Landau level B(2k − 1) of the Landau Hamiltonian with constant magnetic field for
B > 0 and k ∈ N. In addtion, we need the following well-known characteristics

Pk,B(y, y) =
1

2π
B, where y ∈ R2,∫

R2

(∫
Ω

|Pk,B(x, y)|2 dy

)
dx =

∫
Ω

(∫
R2

Pk,B(x, y)Pk,B(y, x) dx

)
dy

=

∫
Ω

Pk,B(y, y) dy =
B

2π
|Ω|,

(3.17)

see for instance [Hel09] and [FH10].

3.4 Proof of the main results

In this section we give the proof of Theorem 3.1. As preliminaries we define the Eu-
clidean Ball with radius r > 0 centered at x ∈ R2 by

Br(x) := {y ∈ R2 | ‖x− y‖ < r} (3.18)

and prove following two lemmata:

Lemma 3.2. Let Ω ⊂ R2 be a domain with finite measure. Then holds

|Ωβ| ≥ |BRe(Ω)(0)| − |BRe(Ω)−β(0)| ≥ βRe(Ω)π (3.19)

for all β ∈ (0,Re(Ω)], where Ωβ := {x ∈ Ω | δe(x) < β}. The first inequality becomes an
equality if Ω = Br(0) for any r > 0.

2These projections have infinite dimension and in the literature one can find explicit formula for the
integral kernels Pk,B , see [Pou15].
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3 Melas-type bounds for the Laplacian with magnetic field

Proof. First of all we know that Re(Ω) is finite and that there exists a point p ∈ Ω such
that BRe(Ω)(p) ⊆ Ω, which is discussed in Section A.3.

Without loss of generality we can assume that BRe(Ω)(0) ⊆ Ω because the Lebesgue
measure is translation invariant with respect to the Euclidean distance. Let us change
into polar coordinates and consider (x1, x2) = r(cos(ϕ), sin(ϕ)) := Φ(r, ϕ) ∈ R2 for
r > 0, ϕ ∈ [0, 2π). For each points (x1, x2) converted to polar coordinates, we define for
a fixed angle ϕ the following

bϕ := inf{t > 0 | t(cos(ϕ), sin(ϕ)) /∈ Ω}.

Since |Ω| has finite volume, the set {ϕ ∈ [0, 2π) | bϕ = ∞} is a null set, which means
that bϕ exists almost everywhere. Because of BRe(Ω)(0) ⊆ Ω, we immediately get

Re(Ω) ≤ bϕ for all ϕ ∈ [0, 2π). (3.20)

Now we put

Ω(Φ) := {(x1, x2) ∈ Ωβ | ∃(r, ϕ) ∈ (0,∞)× [0, 2π) such that (x1, x2) = Φ(r, ϕ)}.

Obviously we have Ωβ ⊇ Ω(Φ). Now we define the set

Aβ := {(x1, x2) ∈ R2 | ∃(r, ϕ) ∈ E(β) such that (x1, x2) = Φ(r, ϕ)}, (3.21)

where

E(β) := (bϕ − β, bϕ)× [0, 2π).

For a geometrical interpretation of the construction of Aβ we refer to Figure 3.1. Since
bϕ(cos(ϕ), sin(ϕ)) ∈ ∂Ω and δe(x) ≤ ‖x− y‖ for all y ∈ ∂Ω, it is easy to check that the
following holds

Ω(Φ) ⊇ Aβ.

Now we compute the volume of the set on the right-hand side by changing into polar
coordinates and use (3.20) to obtain

|Aβ| =
∫ 2π

0

∫ bϕ

bϕ−β
r dr dϕ ≥

∫ 2π

0

∫ Re(Ω)

Re(Ω)−β
r dr dϕ = |BRe(Ω)(0)| − |BRe(Ω)−β(0)|.

(3.22)

The right-hand side becomes βπ(2Re(Ω)−β), which immediately gives the lower bound
on (0,Re(Ω)] and the result.

For the next Lemma we define the translation of Ω with respect to the point p ∈ R2 by

Ω + p := {x ∈ R2 | ∃y ∈ Ω such that x = y + p}.
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Figure 3.1: On the construction of Aβ.

(a) Let Ω be given by the grey-colored area. At the origin O we center the largest Euclidean ball
which still fits into Ω. Its radius is given by Re(Ω).

(b) The set Aβ is described here by the grey-colored area. For the construction we consider all
lines emanating from the origin. Let us consider for a moment the line going through the origin,
P1 and P2. On this line there exists a closest point to the origin such that this point lies on ∂Ω,
in the image described by P1. We parametrize then the convex combination of P1 and P2, where
P2 is chosen such that ‖P1 − P2‖e = β. We do this procedure for any line emanating from the
origin and take Aβ to be the union of all these convex combinations, which obviously is a subset
of Ωβ . We stress that the double-headed arrows in that image are all of the length β.

Lemma 3.3. Let 0 < β ≤ Re(Ω). Under the assumptions of Lemma 3.2 it holds∫
Aβ+p

|u(x)|2 dx ≤ β2

∫
Ω

|(i∇+A(x))u(x)|2 dx,

for all u ∈ C∞0 (Ω), where Aβ is defined in (3.21) and p ∈ R2 has to be chosen such that
BRe(Ω)(p) ⊆ Ω.

Proof. Let u ∈ C∞0 (Ω) and assume first of all that p = (0, 0). We take the integral on
the left-hand side and change into polar coordinates. With regard to the definition of
Aβ in (3.21), we arrive at∫

Aβ
|u(x)|2 dx =

∫ 2π

0

∫ bϕ

bϕ−β
|u(r, ϕ)|2r dr dϕ.

In the proof of Lemma 3.2 we discussed that the set {ϕ ∈ [0, 2π) | bϕ = ∞} is a null
set since |Ω| has finite volume. Hence bϕ is almost everywhere finite. For u ∈ C∞0 (Ω)

35



3 Melas-type bounds for the Laplacian with magnetic field

we have u(bϕ, ϕ) = 0 for almost every ϕ ∈ [0, 2π) and apply then the following Hardy
inequality ∫ bϕ

bϕ−β
|u(r, ϕ)|2r dr ≤ β2

∫ bϕ

bϕ−β
|∂ru(r, ϕ)|2r dr,

which is valid if

sup
bϕ−β≤τ≤bϕ

(∫ τ

bϕ−β
s ds

)(∫ bϕ

τ

1

s
ds

)
≤ β2

4
(3.23)

holds true, see [OK90, Theorem 1.14]. This is an easy computation if we use the
monotonicity of the identity function. Afterwards we change back into our former
coordinates to obtain ∫

Aβ
|u(x)|2 dx ≤ β2

∫
Ω

|∇u(x)|2 dx.

The inequality above is translation invariant. Thus, we get rid of the assumption p =
(0, 0) and obtain ∫

Aβ+p

|u(x)|2 dx ≤ β2

∫
Ω

|∇u(x)|2 dx.

Since we know that |u| ∈ H1
0 (Ω), see [FH10, Prop. 2.1.2], we get∫

Aβ+p

|u(x)|2 dx ≤ β2

∫
Ω

(∇|u(x)|)2 dx.

An application of the diamagnetic inequality stated in (3.6) yields the result.

Proof of Theorem 3.1: We will follow the same notation as in [KW15]. Let H(A) be
the Friedrichs extension of the quadratic form (3.2) with

H(A)φj = λj(Ω,A)φj

for j ∈ N. The functions φj are assumed to be an orthonormal basis in L2(Ω). We put

fk,j(x) :=

∫
Ω

Pk,B(x, y)φj(y) dy

and consider

Tr(H(A)− λ)− =
∑

j:λj(Ω,A)<λ

(
λ‖φj‖2

L2(Ω) − ‖(i∇+A)φj‖2
L2(Ω)

)
.

36



3.4 Proof of the main results

We extend these functions by φj(x) = 0 for x ∈ Ωc to apply the spectral theorem
of H(A,R2). Since we do not know whether φj lies in the domain of H(A,R2) we
must approximate φj by C∞0 (Ω) functions with respect to the quadratic form (3.2). An
application of Fatou’s lemma yields then

Tr(H(A)− λ)− ≤
∑

j:λj(Ω,A)<λ

∞∑
k=1

(
λ‖fk,j‖2

L2(R2) − ‖(i∇+A)fk,j‖2
L2(R2)

)
≤

∑
j:λj(Ω,A)<λ

∞∑
k=1

(λ−B(2k − 1))+ ‖fk,j‖
2
L2(R2)

=
∞∑
k=1

(λ−B(2k − 1))+

(
∞∑
j=1

‖fk,j‖2
L2(R2) −R(λ, k)

)
.

(3.24)

We recall that a± := (|a| ± a)/2 for a ∈ R, and we set

R(λ, k) :=
∑

j:λj(Ω,A)≥λ

‖fk,j‖2
L2(R2). (3.25)

We use Parseval’s identity and the properties of the integral kernels of Pk,B stated in
(3.17) to obtain

∞∑
j=1

‖fk,j‖2
L2(R2) =

∫
R2

∞∑
j=1

∣∣∣〈Pk,B(x, ·), φj(·)〉L2(Ω)

∣∣∣2 dx

=

∫
R2

∫
Ω

|Pk,B(x, y)|2 dy dx =

∫
Ω

Pk,B(y, y) dy =
B

2π
|Ω|.

(3.26)

The next step is to give a lower bound for R(λ, k). We see by (3.26) that

R(λ, k) =
B

2π
|Ω| −

∑
j:λj(Ω,A)<λ

‖fk,j‖2
L2(R2)

=

∫
R2

∫
Ω

∣∣Pk,B(x, y)−
∑

j:λj(Ω,A)<λ

fk,j(x)φj(y)
∣∣2 dy dx.

Let p ∈ R2 be chosen such that BRe(Ω)(p) ⊆ Ω. Then, we use the following inclusion
Ω ⊇ Aβ + p, where Aβ is defined in (3.21), apply |a− b|2 ≥ 1

2
|a|2 − |b|2 for a, b ∈ C and

use again the properties of the integral kernels Pk,B, stated in (3.17). The translation
invariance of the Lebesgue measure yields then

R(λ, k) ≥ B

4π
|Aβ| −

∫
R2

∫
Aβ+p

∣∣ ∑
j:λj(Ω,A)<λ

fk,j(x)φj(y)
∣∣2 dy dx

≥ B

4
βRe(Ω)−

∫
R2

∫
Aβ+p

∣∣ ∑
j:λj(Ω,A)<λ

fk,j(x)φj(y)
∣∣2 dy dx.

(3.27)
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3 Melas-type bounds for the Laplacian with magnetic field

The last estimate is due to (3.22) and Lemma 3.2. The remaining negative term can be
estimated by an application of Lemma 3.3 since the linear combination of φj still lies in
the form domain of H(A), yielding∫

R2

∫
Aβ+p

∣∣ ∑
j:λj(Ω,A)<λ

fk,j(x)φj(y)
∣∣2 dy dx ≤ β2

∫
R2

∑
j:λj(Ω,A)<λ

λj(Ω,A)|fk,j(x)|2 dx.

Now we use again (3.26) to obtain

β2

∫
R2

∑
j:λj(Ω,A)<λ

λj(Ω,A)|fk,j(x)|2 dx ≤ β2λ

∫
R2

∞∑
j=1

|fk,j(x)|2 dx = λβ2 B

2π
|Ω|.

We take this estimate for (3.27), which gives the following lower bound

R(λ, k) ≥ B

4
βRe(Ω)− λβ2 B

2π
|Ω| = B

4
β

(
Re(Ω)− λβ 2

π
|Ω|
)
. (3.28)

We set

β =
Re(Ω)π

4|Ω|λ
. (3.29)

To verify that this is possible, we take (3.7), which yields λ1(Ω,A) ≥ 2π/|Ω|. We use
that estimate to obtain for λ ≥ λ1(Ω,A)

β =
Re(Ω)π

4|Ω|λ
≤ Re(Ω)π

4|Ω|λ1(Ω,A)
≤ Re(Ω)

8
≤ Re(Ω). (3.30)

Hence the lower bound on R(λ, k) becomes

R(λ, k) ≥ Re(Ω)2πB

32|Ω|λ
. (3.31)

We take (3.31) and (3.26) so that the inequality in (3.24) becomes

Tr(H(A)− λ)− ≤
∞∑
k=1

(λ−B(2k − 1))+

(
B

2π
|Ω| − Re(Ω)2πB

32|Ω|λ

)
.

In [KW15, Proposition 3.3] it was shown that

∞∑
k=1

(λ−B(2k − 1))+ ≤
λ2

4B
, λ ≥ 0,

which finally yields the result of Theorem 3.1.
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Chapter 4

Spectral estimates for the
Heisenberg Laplacian

In this chapter we study Riesz means of the eigenvalues of the Heisenberg Laplacian
subject to Dirichlet boundary conditions on bounded domains of the first Heisenberg
group H. We obtain an inequality with a sharp leading term and an additional lower
order term, improving the result of A. M. Hansson and A. Laptev in [HL08].

4.1 Introduction

Let Ω ⊂ H be a bounded domain. We consider the Heisenberg Laplacian on L2(Ω) with
Dirichlet boundary conditions formally given by

A(Ω) := −X2
1 −X2

2 ,

where we recall
X1 := ∂x1 +

x2

2
∂x3 , X2 := ∂x2 −

x1

2
∂x3 . (4.1)

More precisely, A(Ω) is the unique self-adjoint operator associated with the closure of
the quadratic form

a[u] :=

∫
Ω

(
|X1 u(x)|2 + |X2 u(x)|2

)
dx, (4.2)

initially given on u ∈ C∞0 (Ω). Note that

[X2, X1] = ∂x3 =: X3 .

We recall that the left-invariant vector fields X1, X2, X3 form a basis of the Heisenberg
algebra and that the first Heisenberg group H is given by R3 equipped with the following
group law

(x1, x2, x3) � (y1, y2, y3) :=
(
x1 + y1, x2 + y2, x3 + y3 − 1

2
(x1y2 − x2y1)

)
. (4.3)
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4 Spectral estimates for the Heisenberg Laplacian

The subelliptic estimate proved in [Fol73] shows that

‖u‖2
1/2 ≤ c

(
a[u] + ‖u‖2

L2(Ω)

)
, u ∈ C∞0 (Ω) (4.4)

holds for some c > 0, where the norm on the left-hand side denotes the Sobolev norm of
order 1/2, see (2.4). Hence the domain of the closure of a[·] is continuously embedded in

H
1/2
0 (Ω). Since the embedding H

1/2
0 (Ω) → L2(Ω) is compact, see [DNPV12], it follows

that the spectrum of A(Ω) is purely discrete. We denote by {λk(Ω)}k∈N the nonde-
creasing sequence of the eigenvalues of A(Ω) and by {vk}k∈N the associated sequence of
orthonormalized eigenfunctions;

A(Ω) vk = λk(Ω) vk, ‖vk‖L2(Ω) = 1. (4.5)

Recently A. M. Hanson and A. Laptev proved in [HL08, Thm. 2.1] that

Tr( A(Ω)− λ)− =
∑
k∈N

(λ− λk(Ω))+ ≤
|Ω|
96

λ3, λ > 0. (4.6)

Here the eigenvalues λk(Ω) are repeated according to their finite multiplicities and |Ω|
denotes the three-dimensional Lebesgue measure of Ω. Moreover, it is also shown in
[HL08] that the constant 1

96
on the right-hand side of (4.6) is sharp. Indeed, this follows

from the asymptotic equation

lim
λ→∞

λ−3 Tr( A(Ω)− λ)− =
|Ω|
96

, (4.7)

see [HL08, Cor. 2.8].
The aim of this chapter is to improve (4.6) by adding to its right-hand side a negative

term of lower order in λ. In other words, we are going to show for all λ > 0 that

Tr( A(Ω)− λ)− ≤
|Ω|
96

λ3 − C(Ω)λα, (4.8)

where C(Ω) is a positive constant which depends only on Ω and α ∈ (0, 3). In our main
result, see Theorem 4.1, we will prove inequality (4.8) with α = 2 and give an explicit
expression for the constant C(Ω). This is in the spirit of Melas-type improvements,
which was discussed in Section 1.2. In particular, our main result improves inequality
(4.6) in a similar way in which [KW15] improves inequality (1.6).

However, the method that we employ in the present chapter is different from the one
used in [KW15] since it does not rely on a Hardy inequality involving the distance to the
boundary. In fact, as far as we know an analog of such an inequality for the Heisenberg
Laplacian with explicit constants is not known. Instead we exploit the properties of
the Carnot-Carathéodory metric, which is connected to the Heisenberg Laplacian in a
natural way, see Section 2.3 for details.
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4.1 Introduction

In addition we will prove that the order of the remainder term in (4.8) can be further
improved if we consider cylindrical domains of the type Ω = ω× (a, b), where ω ⊂ R2 is
a bounded domain and a, b ∈ R are such that a < b. In particular, Theorem 4.8 implies
for cylinders with convex cross-section ω that

Tr(A(Ω)− λ)− ≤ max

{
0,
|Ω|
96

λ3 − λ2+ 1
4

27 · 35/2

|Ω|
Re(ω)3/2

}
, λ > 0, (4.9)

where Re(ω) is the Euclidean inradius of ω, see Corollary 4.9. We mention that this
result and the identity in (1.4) can be used to obtain estimates for Riesz means of order
greater than one as well.

At last we consider the counting function of the Heisenberg Laplacian

N(λ,Ω) :=
∑

k:λk(Ω)<λ

1.

In [HL08] A. M. Hansson and A. Laptev proved the following Weyl-type asymptotics
for the counting function, meaning

lim
λ→∞

λ−2N(λ,Ω) =
|Ω|
32
. (4.10)

The question arises whether there exist domains such that the limit (4.10) yields a
uniform bound as well. We say that Ω satisfies Pólya’s inequality, in the spirit of
[Pól61], if

N(λ,Ω) ≤ λ2 |Ω|
32
, λ ≥ 0. (4.11)

In Section 1.1 we have already discussed that for the eigenvalue counting function of
the Laplacian with Dirichlet boundary conditions tiling domains satisfy an inequality
of the form (1.3). However, we mentioned in Section 3.1 that in the class of bounded
domains the eigenvalue counting function of the Laplacian in the presence of a constant
magnetic field does not fulfill an inequality which reflects the leading term in Weyl’s
law, even in the class of tiling domains. In this chapter we construct domains such that
Pólya’s inequality holds true for the counting function of the Heisenberg Laplacian, see
Theorem 4.10.

This chapter is organized as follows. The main results are announced in Section
4.2. In Section 4.3 and in particular in Theorem 4.12, we present some auxiliary results
concerning the properties of balls with respect to the Carnot-Carathéodory metric. The
proof of the Melas-type bound is given in Section 4.4. The construction of domains
satisfying Pólya’s inequality is given in Subsection 4.2.4. In Section 4.5 we proof the
improvement on cylinders under the additional assumption that the Euclidean Hardy
inequality on the cross-section ω has to be valid. In the closing section we establish a
similar improvement on general domains. However for this result we need the validity
a Hardy inequality with respect to the Carnot-Carathéodory metric on Ω, which in
comparison to the previous condition is more restrictive.
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4 Spectral estimates for the Heisenberg Laplacian

4.2 Main results

4.2.1 Preliminaries

For a fixed point x ∈ H we denote its Euclidean length by ‖x‖e. We recall that dC(x, y)
denotes the Carnot-Carathéodory metric (in the sequel C-C metric) between two given
points x, y ∈ H, which was introduced in Section 2.3. Let

Cr(0) = {x ∈ H : dC(x, 0) < r}

be the ball centered at the origin with radius r > 0 with respect to the C-C metric. Let
us introduce the distance from a fixed point x ∈ Ω to the boundary of Ω with respect
to the C-C metric

δC(x) := inf
y∈∂Ω

dC(x, y). (4.12)

When needed, we extend the function δC(·) on H; for points lying in x ∈ Ωc we set
δC(x) = 0. In addition we denote the inradius of Ω with respect to the C-C metric by

R(Ω) := sup
x∈Ω

δC(x) (4.13)

and the diameter of Ω by

D(Ω) := inf{l > 0| ∃a ∈ Ω such that Ω ⊆ Cl/2(a)}.

4.2.2 Melas-type bounds

With the above notation at hand we can state our main result.

Theorem 4.1. Let Ω ⊂ H be a bounded domain. Then

Tr(A(Ω)− λ)− ≤ max

{
0,
|Ω|
96

λ3 − λ2 R(Ω)8

150|Ω|D(Ω)2π4

}
(4.14)

holds true for all λ > 0.

Remark 4.2. Equation (4.7) implies that

Tr(A(Ω)− λ)− =
|Ω|
96

λ3 + o(λ3) λ→∞. (4.15)

So far the order of the remainder term in (4.15) is not known.

Remark 4.3. The identity in (1.4) and equation (4.14) can be used to obtain estimates
for Riesz means of orders greater than one as well.
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4.2 Main results

Remark 4.4. We stress that the term in the asymptotic identity (4.15) cannot be
considered as a phase space volume of the Heisenberg Laplacian because a change of
variables yields∫

Ω

∫
R3

(
λ− (ξ1 +

1

2
x2ξ3)2 − (ξ2 −

1

2
x1ξ3)2

)
+

dξ dx =

∫
Ω

∫
R3

(
λ− ξ2

1 − ξ2
2

)
+

dξ dx.

Since the right-hand side is unbounded, the phase-space volume does not exist.

Remark 4.5. When Ω = R3, then the spectrum of A(Ω) is continuous and contains no
discrete eigenvalues. The integrated density of states of A(R3) was calculated in [Str96,
Thm. 6.1].

The upper bound in (4.6) is equivalent, by means of the Legendre transform, to the
Li-Yau type lower bound

n∑
k=1

λk(Ω) ≥ 8
√

2

3
|Ω|−

1
2 n

3
2 n ∈ N, (4.16)

see [HL08, Cor. 2.10]. In the same way Theorem 4.1 implies an improvement of (4.16).
We use Corollary A.3, stated in the appendix, to (4.14) and obtain:

Corollary 4.6. For any n ∈ N it holds

n∑
k=1

λk(Ω) ≥ 8
√

2

3
|Ω|−

1
2 n

3
2 +

16R(Ω)8

75|Ω|2D(Ω)2π4
n . (4.17)

4.2.3 Spectral estimates on cylinders

For cylindrical domains of the type Ω = ω × (a, b), where ω ⊂ R2 is a bounded domain
and a, b ∈ R are such that a < b, we can improve the result of Theorem 4.1. In the
sequel we will decompose the vector x = (x′, x3) ∈ R3 and assume the following:

Assumption 4.7. Let ω ⊂ R2 be a bounded domain such that the constant

c−2 := inf
u∈C∞0 (ω)\{0}

∫
ω
|∇x′u(x′)|2 dx′∫

ω
|u(x′)/δe(x′)|2 dx′

, (4.18)

is positive, where ∇x′ := (∂x1 , ∂x2) and

δe(x
′) := dist (x′, ∂ω)

is the Euclidean distance from x′ ∈ ω to the boundary of ω.
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4 Spectral estimates for the Heisenberg Laplacian

Clearly, the constant c is the best constant in Hardy’s inequality∫
ω

u(x′)2

δe(x′)2
dx′ ≤ c2

∫
ω

|∇x′u(x′)|2 dx′, u ∈ C∞0 (ω). (4.19)

We recall that for simply connected ω holds 2 ≤ c ≤ 4, and for convex ω we get the
sharp constant c = 2, which was already discussed in Section 1.3. To state the main
result for cylinders we need the following geometrical quantities: the Euclidean inradius
of ω is given by

Re(ω) := sup
x′∈ω

δe(x
′).

We define for any β ∈ (0,Re(ω)] the set

ωβ := {x′ ∈ ω | δ(x′) < β} .

Then, we introduce the quantity

l(ω) := (b− a) inf
0<β≤R(ω)

|ωβ|
β
, (4.20)

where |ω| is the two-dimensional Lebesgue measure. In Lemma 3.2 we have already seen
that l(ω) > 0. The main result for cylindrical domains is then given by the following
Theorem:

Theorem 4.8. Let Ω := ω × (a, b) and let c be defined by (4.18). Then

Tr(A(Ω)− λ)− ≤ max

{
0,
|Ω|
96

λ3 − λ
2c+5
c+2

(1 + 2/c)

96
l(ω)

2c+2
c+2 |Ω|−

c
c+2 (4c+ 4)−

2c+2
c+2

}
(4.21)

holds for all λ ≥ 0.

Note that the order of the remainder term is larger than λ2 for any c > 0, which for
large eigenvalues is an improvement of Theorem 4.1.

Corollary 4.9. Let Ω := ω × (a, b). If ω is convex, then

Tr(A(Ω)− λ)− ≤ max

{
0,

1

96
|Ω|λ3 − λ2+ 1

4
1

27 · 35/2

|Ω|
Re(ω)3/2

}
holds for all λ ≥ 0.

Proof. In case that ω is convex we have c = 2 in (4.18) , see e.g. [Dav99]. In addition,

we know that |ω
β |
β

is uniformly bounded on (0,Re(ω)] by

(b− a)
|ωβ|
β
≥ (b− a)

|ω|
Re(ω)

=
|Ω|

Re(ω)
,

see Theorem A.6 in the appendix. Hence we simplify the constant in Theorem 4.1 and
obtain the result.
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4.2 Main results

For the improvement on general domains we need the Hardy inequality with respect
to the Hardy weight δC(·), which is discussed in Section 4.6.

4.2.4 Pólya’s inequality

In this subsection we construct bounded domains such that Pólya’s inequality is satisfied
for the eigenvalue counting function of the Heisenberg Laplacian.

Theorem 4.10. Let ∅ 6= Ω ⊂ H be a bounded domain of the form

(ω × R) ∩H+ ∩H−,

where ω ⊂ R2 is a bounded tiling domain, H+, H− are half-space such that ∂H+ and
∂H− are parallel and ∂H+ 6= ∂H−, then

N(λ,Ω) ≤ |Ω|
32
λ2, for all λ ≥ 0.

Proof. First of all we denote by h(x) := (hx1, hx2, h
2x3) the Heisenberg dilation for any

h > 0. Since the Heisenberg Lapalcian is left-invariant with respect to the group law of
H and invariant with respect to the dilation h(·), we get:

N(λ,Ω) = N(λ, v � Ω), for all v ∈ H, (4.22)

N(λ, h(Ω)) = N(h2λ,Ω), for all h > 0. (4.23)

Without loss of generality we assume that Ω := ω × (a, b) with a < b because of the
left-invariance of the Heisenberg Laplacian and the boundedness of Ω. Thus let ω be a
tiling domain in R2. Then we know that there exist congruent copies of ω such that⋃

β∈N

ωβ = R2, with ωβ1 ∩ ωβ2 = ∅ for β1 6= β2. (4.24)

We first observe that for fixed v := (v1, v2, v3) we obtain for the set v � (ω × (a, b)) the
following

{
(x, y, z) ∈ H |∃(ω1, ω2, ω3) ∈ ω × (a, b) with

 x = v1 + ω1

y = v2 + ω2

z = ω3 + v3 − 1/2v1ω2 + 1/2v2ω1

}

=
{

(x, y, z) ∈ H |∃(ω1, ω2, ω3) ∈ ω × (a, b) with

 x = v1 + ω1

y = v2 + ω2

z = ω3 + v3 − 1/2v1y + 1/2v2x

}
=
{

(x, y, z) ∈ H |∃(ω1, ω2) ∈ ω with

(
x = v1 + ω1

y = v2 + ω2

)}
∩ {(x, y, z) ∈ H | b ≥ z − v3 + 1/2v1y − 1/2v2x}
∩ {(x, y, z) ∈ H | a ≤ z − v3 + 1/2v1y − 1/2v2x},

(4.25)
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4 Spectral estimates for the Heisenberg Laplacian

Note that the top and the bottom of v � (ω × (a, b)) are parallel to each other, and if
v1 = v2 = 0, we have only a translation in the z-direction. At that point we do the
following procedure: we take copies of ω × (a, b) with respect to the Heisenberg group
law such that their projections onto the x1-x2 hyperplane are congruent and pairwise
disjoint copies of ω to cover R2 up to a set of measure zero. This is possible since (4.24)
is assumed. Then we use (4.25) to translate these domains along the x3-direction for
v1 = v2 = 0. This yields iso-spectral copies of Ω, denoted by Ωβ, such that⋃

β∈N

Ωβ = H, with Ωβ1 ∩ Ωβ2 = ∅ for β1 6= β2. (4.26)

At that point we mimic Pólya’s proof in [Pól61].

ω

Figure 4.1: An example of a tiling domain.

The Heisenberg cube of length L is denoted by WL := {x = (x1, x2, x3) ∈ H | |x1| ≤
L, |x2| ≤ L, |x3| ≤ L2}. For the domain h(Ω) we can construct in the same way as above
iso-spectral copies of h(Ω). For α ∈ N let Ωα be the countable set of congruent copies of h(Ω)
covering H up to a set of measure zero. Further A = {α ∈ N |Ωα ∩WL−2hd 6= ∅}. The number
d ist the diameter of Ω with respect to the Kaplan gauge, which was defined as

‖x‖4H := (x2
1 + x2

2)2 + 16x2
3

for x := (x1, x2, x3) ∈ H, and we set

d := sup
x,y∈Ω

‖(−x) � y‖H ⇒ sup
x,y∈Ωα

‖(−x) � y‖H = hd.

Thus we obtain

WL−2hd ⊆ ∪α∈AΩα ⊆WL, for 2hd < L.

Let Ω̃ be ∪α∈AΩα. Hence we get

|WL−2hd| ≤ |Ω̃| = #{α ∈ A}|h(Ω)| = #{α ∈ A}h4|Ω| .
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4.3 The volume near the boundary

Passing with Dirichlet boundary conditions from WL to Ω̃ and adding then Dirichlet boundary
conditions to all ∂Ωα, we claim by the variational principle

N(λ,WL) ≥ N(λ, Ω̃) ≥ N(⊕α∈A(λ,Ωα))

= #{α ∈ A}N(λ, h(Ω)) = #{α ∈ A}N(h2λ,Ω).

Thus we get

λ−2N(λ,WL) ≥
(
#{α ∈ A}h4

) (
h2λ

)−2
N(h2λ,Ω)

≥ |WL−2hd|
|Ω|

(
h2λ

)−2
N(h2λ,Ω).

If we keep γ = h2λ > 0 fixed and pass to λ→ +∞ with respect to the number h =
√
γλ−1 → 0,

Weyl’s law, see (4.10), for the Heisenberg Laplacian on the cube WL implies then

|WL|
32
≥ |WL|
|Ω|

γ−2N(γ,Ω),

which yields the desired result.

4.3 The volume near the boundary

The goal of this section is to prove a bound on the Lebesgue measure of the set

Ωβ :=
{
x ∈ Ω

∣∣ δC(x) < β
}
, (4.27)

for a given β ∈ (0,R(Ω)]. We start by proving that δC(·) is continuous with respect to
the Euclidean metric.

Lemma 4.11. Let Ω be a bounded domain in H. The function δC(·) is continuous with
respect to the Euclidean distance on H.

Proof. We show that

|δC(x)− δC(y)| ≤ dC(x, y) (4.28)

holds for x, y ∈ H. Once the above inequality is established, the continuity of δC(·) with
respect to the Euclidean distance will follow by (2.15). We recall that we set δC(x) = 0
for x ∈ Ωc. Let x 6= y. The case x, y ∈ Ωc is trivial. For the case x ∈ Ωc and y ∈ Ω,
we know that δC(x) = 0. Let use denote by φ(t) the arc of a geodesic connecting x and
y, which exists in view of Proposition 2.1. This curve is continuous and must intersect
the boundary of Ω. Therefore exists b ∈ Dom(φ) such that φ(b) ∈ ∂Ω. This gives

dC(x, y) ≥ dC(φ(b), y) ≥ δC(y) = |δC(y)− δC(x)|. (4.29)
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4 Spectral estimates for the Heisenberg Laplacian

It remains to prove the claim in the case x, y ∈ Ω. Without loss of generality we assume
that δC(x) > δC(y). Since d is continuous, see (2.15) and ∂Ω compact, there exists a
z ∈ ∂Ω such that δC(y) = dC(z, y). Thus we get

|δC(x)− δC(y)| = δC(x)− δC(y) ≤ dC(x, z)− dC(y, z) ≤ dC(x, y). (4.30)

The last inequality follows by the triangle inequality. Then we use (2.15) again and
know that for any compact set K ⊂ H there exists a constant M > 0 such that

|δC(x)− δC(y)| ≤M−1‖x− y‖1/2
e

for all x, y ∈ K, yielding the result.

After these prerequisites we need the following result, which will be needed for the proof
of Theorem 4.1.

Theorem 4.12. Let Ω ⊂ H be a bounded domain. Then the inequality

|Ωβ| ≥ β
16 R(Ω)4

5π2D(Ω)
. (4.31)

holds true for all β ∈ (0,R(Ω)].

Proof. First of all let us fix the parameter β with 0 < β ≤ R(Ω). Because Ω is
compact and δC(·) is continuous on H, see Lemma 4.11, there exists an x ∈ Ω such
that CR(Ω)(x) ⊆ Ω. We know that the Lebesgue measure and dC(·, ·) are left-invariant
with respect to the group law of the Heisenberg group. Hence we translate Ω in such a
way that x is the origin of its translated copy. This means that

CR(Ω)(0) ⊆ Ω. (4.32)

Now we construct a subset of Ωβ using the formula of the geodesics in (2.9). Therefore
we consider the map

x =

(
cos(θ)− cos(kt+ θ)

k
,
sin(kt+ θ)− sin(θ)

k
,
tk − sin(kt)

2k2

)
= Φ(t, k, θ) (4.33)

with t ∈ [0, 2π
|k| ] , θ ∈ [0, 2π) and k ∈ [−π/D(Ω), π/D(Ω)]. We stress that the set,

parametrized by Φ, is geometrically speaking a subset of the C-C ball C2D(Ω)(0). For
fixed k, θ we define

a := inf
{
t > 0

∣∣ ϕ(t) /∈ Ω
}
, (4.34)

which is well-defined since ϕ(0) = 0 ∈ CR(Ω)(0) ⊆ Ω and Ω ⊆ CD(Ω)(0). It follows that
ϕ(a) ∈ ∂Ω. From CR(Ω) ⊆ Ω we obtain

R(Ω) ≤ a. (4.35)
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4.3 The volume near the boundary

Now we define the set

Ω(Φ) :=
{
x ∈ Ωβ

∣∣ ∃ (t, k, θ) ∈ E(α, β) such that x = Φ(t, k, θ)
}
, (4.36)

where

E(a, β) := (a− β, a)×
[
− π

D(Ω)
,

π

D(Ω)

]
× [0, 2π).

Note that the map Φ : E(a, β) → H is injective, see Proposition 2.1. That means that
Ωβ ⊇ Ω(Φ).

Now we consider the restriction of the curve ϕ on the interval [a − β, a]. Notice
that this curve connects the point ϕ(a − β) with ϕ(a) ∈ ∂Ω. Moreover, in view of
the definition of a, this curve is still a horizontal curve, lying in Ω. Therefore by the
definition of the C-C metric the following estimate holds

dC(ϕ(t), ϕ(a)) ≤ a− t < β ∀ t ∈ (a− β, a).

From ϕ(a) ∈ ∂Ω we obtain δC(ϕ(t)) ≤ dC(ϕ(t), ϕ(a)) < β for all t ∈ (a − β, a), which
means that ϕ(t) ∈ Ωβ for any t ∈ (a− β, a). It follows then

Ωβ ⊇ Ω(Φ) =
{

Φ(t, k, θ) ∈ H
∣∣ (t, k, θ) ∈ E(a, β)

}
=: Eβ. (4.37)

The set Eβ is interpreted geometrically in Figure 4.2. The inclusion in (4.37) and the
formula (2.12) imply

|Eβ| ≥
∫ 2π

0

∫ π/D(Ω)

−π/D(Ω)

∫ a

a−β

2− kt sin(kt)− 2 cos(kt)

k4
dt dk dθ. (4.38)

Since a ≤ D(Ω) because of Ω ⊆ CD(Ω)(0), we have |tk| ≤ π. In order to obtain a suitable
lower bound on the integral on the right-hand side of (4.38) we notice that

f(τ) = 2− τ sin(τ)− 2 cos(τ) (4.39)

is nondecreasing on [0, π]. Indeed, this follows from the fact that f(0) = f ′(0) = 0 and
f ′′(τ) ≥ 0 on [0, π]. Since |kt| ≤ π, and f is nondecreasing, we use (4.35) to get

|Eβ| ≥
∫ 2π

0

∫ π/D(Ω)

−π/D(Ω)

∫ R(Ω)

R(Ω)−β

2− kt sin(kt)− 2 cos(kt)

k4
dt dk dθ

≥ 2

∫ 2π

0

∫ π/D(Ω)

0

∫ R(Ω)

R(Ω)−β

2− kt sin(kt)− 2 cos(kt)

(tk)4
t4 dt dk dθ.

(4.40)

In the same way as we have proved the monotonicity of f it follows that the function

2− x sin(x)− 2 cos(x)

x4
(4.41)
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4 Spectral estimates for the Heisenberg Laplacian

Figure 4.2: On the construction of Eβ.

(a) Let Ω be given by the grey-colored area. At the
origin O we center the largest C-C ball which still
fits into Ω. Its radius is given by R(Ω).

(b) In this picture we constructed a larger C-C ball with radius 2D(Ω) centered at the origin, which
is described by the outer dotted line. We take the parametrization of that ball and obtain geodesics
emanating from the origin, depicted in that image by dashed lines. The problem in that parametrization
is that there exist geodesics which do not cross the boundary of Ω, see for example the geodesic
connecting the origin with P . In view of the proof of Theorem 4.1 , we need the intersection points
with the boundary since in Subsection 4.4.3 we establish a Hardy-type inequality on Eβ . Hence we
take only those geodesics which cross ∂Ω and compute then the first intersection point of that geodesic
with ∂Ω, see for instance the points A,B,C. Let us fix for a moment a geodesic which intersects ∂Ω,
for instance the one containing A in our picture, and compute the point A′ which lies on that geodesic
connecting the origin with A and which has the following property: dC(A,A′) = β. The part of the
geodesic between A and A′ is an arc. We then obtain for every geodesic emanating from the origin
which reaches ∂Ω, such a piece of arc, and take Eβ to be the union of them.
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4.4 Proof of the Melas-type bound

is nonincreasing on (0, π]. Hence

|Eβ| ≥ 16

D(Ω)π2

∫ R(Ω)

R(Ω)−β
t4 dt = β

16

5π2D(Ω)

R(Ω)5 − (R(Ω)− β)5

β
. (4.42)

The quotient (R(Ω)5 − (R(Ω)− β)5)β−1 on the right-hand side is nonincreasing in β on
(0,R(Ω)]. This together with (4.37) yields then

|Ωβ| ≥ |Eβ| ≥ β
16 R(Ω)4

5π2D(Ω)
.

Remark 4.13. We stress that from geometrical point of view the construction of Eβ in
Theorem 4.12 and Aβ in Lemma 3.2 are based on the same idea. The difference is that
in the Euclidean case it is always possible to extend a geodesic such that it becomes an
infinite ray which still is a geodesic. This is not possible with geodesics on H.

Remark 4.14. The same technique in Theorem 4.12 yields also a lower bound in the
Euclidean case Rn with respect to the Euclidean metric and inradius. In that case the
lower bound does not depend on the diameter, and the proof is much easier because the
determinant of the spherical coordinates is obviously monotonically increasing in the
radial part for any fixed angle. We have proved this result for the case n = 2 in Lemma
3.2.

4.4 Proof of the Melas-type bound

In order to find a representation of the spectral decomposition of the Heisenberg Lapla-
cian, we introduce the Fourier transform in the x3-direction;

F3 u(x′, ξ3) :=
1√
2π

∫
R

e−ix3ξ3 u(x′, x3) dx3, (4.43)

where x′ := (x1, x2) and x := (x′, x3) ∈ H. Then

F3 A(Ω)F∗3 =
(

i∂x1 −
x2

2
ξ3

)2

+
(

i∂x2 +
x1

2
ξ3

)2

= (i∇x′ + ξ3A(x′))
2
, (4.44)

where A(x′) := 1
2
(−x2, x1). Hence for each fixed ξ3 ∈ R the right-hand side is the

Landau Hamiltonian in L2(R2) associated with the constant magnetic field ξ3. Its
eigenvalues are given by the Landau levels {|ξ3|(2k− 1)}k∈N. We denote by Pk,ξ3 the
orthogonal projection in L2(R2) onto the Landau level |ξ3|(2k− 1). In Section 3.3 we
already discussed well-known properties of these orthogonal projections.
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4 Spectral estimates for the Heisenberg Laplacian

Hence for any u such that F3 u(·, ξ3) belongs to the domain of (i∇x′ + ξ3A(x′))2 we
have

F3 A(Ω)u(x′, ξ3) =
∞∑

k=1

|ξ3|(2k− 1)

∫
R2

Pk,ξ3(x
′, y′)F3 u(y′, ξ3) dy′ . (4.45)

Proof of Theorem 4.1. We split the proof into three steps. In the first one we derive
the sharp leading term with an additional negative term. The appearing negative term
will be treated in the second part of the proof. The last part of the proof is dedicated
to the proof of an auxiliary result needed in step two.

4.4.1 The sharp leading term

In the sequel we will decompose a vector x ∈ H as

x = (x′, x3) = (x1, x2, x3). (4.46)

We extend the eigenfunctions vj(x) of A(Ω) by zero for x ∈ Ωc and write

Tr(A(Ω)− λ)−

=
∑

j:λj(Ω)<λ

λ‖vj‖2
L2(Ω) −

∥∥(∂x1 + 1
2
x2∂x3

)
vj
∥∥2

L2(R3)
−
∥∥(∂x2 − 1

2
x1∂x3

)
vj
∥∥2

L2(R3)

=

∫
R

∑
j:λj(Ω)<λ

λ
(
‖F3 vj(·, ξ3)‖2

L2(R2) −
∥∥(i∂x1 − 1

2
x2ξ3

)
F3 vj(·, ξ3)

∥∥2

L2(R2)

)
dξ3

−
∫
R

∑
j:λj(Ω)<λ

∥∥(i∂x2 + 1
2
x1ξ3

)
F3 vj(·, ξ3)

∥∥2

L2(R2)
dξ3.

We apply the spectral decomposition in (4.45) and use Fatou’s lemma to obtain the
following estimate for the trace:

Tr(A(Ω)− λ)− ≤
∫
R

∑
j:λj(Ω)<λ

∞∑
k=1

(λ− |ξ3|(2k− 1))‖fj,k,ξ3‖
2
L2(R2) dξ3, (4.47)

where

fj,k,ξ3(x
′) :=

∫
R2

Pk,ξ3(x
′, y′)F3vj(y

′, ξ3) dy′

=
1√
2π

∫
Ω

Pk,ξ3(x
′, y′) e−iy3ξ3vj(y

′, y3) dy′ dy3

=
1√
2π

〈
Pk,ξ3(x

′, ·) e−iξ3·, vj(·)
〉
L2(Ω)

.
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4.4 Proof of the Melas-type bound

Next we estimate the right-hand side of (4.47) further by considering the positive part
of (λ− |ξ3|(2k− 1)). This gives

Tr(A(Ω)− λ)− ≤
∫
R

∞∑
k=1

(λ− |ξ3|(2k− 1))+

∞∑
j=1

‖fj,k,ξ3‖
2
L2(R2) dξ3

−
∫
R

∞∑
k=1

(λ− |ξ3|(2k− 1))+

∞∑
j:λj(Ω)≥λ

‖fj,k,ξ3‖
2
L2(R2) dξ3.

(4.48)

Since the sequence {vj}j∈N is an orthonormal basis in L2(Ω) we can use Parseval’s
identity to evaluate the sum over j. Taking into account (3.17) we obtain

∞∑
j=1

‖fj,k,ξ3‖
2
L2(R2) =

1

2π

∫
R2

∞∑
j=1

∣∣∣〈Pk,ξ3(x
′, ·) e−iξ3·, vj(·)

〉
L2(Ω)

∣∣∣2 dx′ =
|ξ3|
4π2
|Ω|. (4.49)

This allows us to calculate the first term on the right-hand side of (4.48). Then we have∫
R

∞∑
k=1

(λ− |ξ3|(2k− 1))+

∞∑
j=1

‖fj,k,ξ3‖
2
L2(R2) dξ3

=
|Ω|
2π2

∞∑
k=1

∫ ∞
0

(λ− ξ3(2k− 1))+ ξ3 dξ3 =
|Ω|λ3

12π2

∞∑
k=1

1

(2k − 1)2
=
|Ω|
96

λ3 ,

where we have used the identity

∞∑
k=1

1

(2k − 1)2
=
π2

8
. (4.50)

Putting together the above estimates and using (4.48) we get

Tr(A(Ω)− λ)− ≤
|Ω|
96

λ3 −
∫
R

∞∑
k=1

(λ− |ξ3|(2k− 1))+

∑
j:λj(Ω)≥λ

‖fj,k,ξ3‖
2
L2(R2) dξ3.

(4.51)

On the right-hand side we thus have the sharp leading term and an additional negative
term. The latter will be treated in the next step.

4.4.2 The negative lower order term

The next step is to establish a suitable lower bound on

Q(λ, k, ξ3) :=
∑

j:λj(Ω)≥λ

‖fj,k,ξ3‖
2
L2(R2). (4.52)
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4 Spectral estimates for the Heisenberg Laplacian

Using equation (4.49) we rewrite the series as follows;

Q(λ, k, ξ3) =
|ξ3|
4π2
|Ω| −

∑
j:λj(Ω)<λ

‖fj,k,ξ3‖
2
L2(R2) (4.53)

=
1

2π

∫
R2

∫
Ω

∣∣∣Pk,ξ3(x
′, y′) e−iy3ξ3 −

∑
j:λj(Ω)<λ

〈
Pk,ξ3(x

′, ·) e−iξ3·, vj(·)
〉
L2(Ω)

vj(y)
∣∣∣2 dy dx′.

To estimate the right-hand side form below we consider the set

Eβ :=
{

Φ(t, k, θ) ∈ H
∣∣ (t, k, θ) ∈ (a− β, a)× (−π/D(Ω), π/D(Ω))× [0, 2π)

}
. (4.54)

Note that in view of (4.37) we have

Ω ⊇ Ωβ ⊇ Eβ .

We use the following inequality

|z − w|2 ≥ 1

2
|z|2 − |w|2, z, w ∈ C (4.55)

and equation (3.17) to obtain

Q(λ, k, ξ3) ≥ |ξ3|
8π2

∣∣∣Eβ
∣∣∣

− 1

2π

∫
R2

∫
Eβ

∣∣∣ ∑
j:λj(Ω)<λ

〈
Pk,ξ3(x

′, ·) e−iξ3·, vj(·)
〉
L2(Ω)

vj(y)
∣∣∣2 dy dx′.

In the end of the proof of Theorem 4.12 we have shown that

|Eβ| ≥ β
16

5D(Ω)π2
R(Ω)4 (4.56)

for all β ∈ (0,R(Ω)]. Hence

Q(λ, k, ξ3) ≥ β
2|ξ3|

5D(Ω)π4
R(Ω)4

− 1

2π

∫
R2

∫
Eβ

∣∣∣ ∑
j:λj(Ω)<λ

〈
Pk,ξ3(x

′, ·) e−i·ξ3 , vj(·)
〉
L2(Ω)

vj(y)
∣∣∣2 dy dx′.

At this point we have to estimate the negative integral from above. Note that the linear
combination of vj lies in d[a]. Therefore we can use the inequality∫

Eβ
|u|2 dx ≤ β2

∫
Ω

|∇H u|2 dx, u ∈ d[a], (4.57)
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4.4 Proof of the Melas-type bound

which is proved in Subsection 4.4.3. Assuming for the moment that (4.57) holds true
we get

1

2π

∫
R2

∫
Eβ

∣∣∣ ∑
j:λj(Ω)<λ

〈
Pk,ξ3(x

′, ·) e−iξ3·, vj(·)
〉
L2(Ω)

vj(y)
∣∣∣2 dy dx′

≤ β2

2π

∫
R2

∫
Ω

∣∣∣ ∑
j:λj(Ω)<λ

〈
Pk,ξ3(x

′, ·) e−iξ3·, vj(·)
〉
L2(Ω)
∇H vj(y)

∣∣∣2 dy dx′.

Integration by parts and the fact that the eigenfunctions vj are mutually orthogonal
yield

1

2π

∫
R2

∫
Eβ

∣∣∣ ∑
j:λj(Ω)<λ

〈
Pk,ξ3(x

′, ·) e−iξ3·, vj(·)
〉
L2(Ω)

vj(y)
∣∣∣2 dy dx′

≤ β2

2π

∫
R2

∫
Ω

∑
j:λj(Ω)<λ

λj(Ω)
∣∣∣〈Pk,ξ3(x

′, ·) e−iξ3·, vj(·)
〉
L2(Ω)

vj(y)
∣∣∣2 dy dx′

≤ β2 λ

2π

∫
R2

∑
j:λj(Ω)<λ

∣∣∣〈Pk,ξ3(x
′, ·) e−iξ3·, vj(·)

〉
L2(Ω)

∣∣∣2 dx′ .

Finally we sum over all j and use (4.49) to obtain∫
R2

∑
j:λj(Ω)<λ

∣∣∣〈Pk,ξ3(x
′, ·) e−iξ3·, vj(·)

〉
L2(Ω)

∣∣∣2 dx′ ≤ |ξ3||Ω|
2π

. (4.58)

Summarizing these estimates we arrive at the following lower bound on Q:

Q(λ, k, ξ3) ≥ β
2|ξ3|

5D(Ω)π4
R(Ω)4 − β2 |ξ3|

4π2
|Ω|λ = β

|ξ3|
8π2

(
16R(Ω)4

5D(Ω)π2
− 2β|Ω|λ

)
. (4.59)

Now we set

β :=
4R(Ω)4

5|Ω|D(Ω)π2
λ−1. (4.60)

We have to show that with this choice β ≤ R(Ω) holds true. By (4.16) we get

1

λ1(Ω)
≤ 3

8
√

2
|Ω|1/2 ≤ |Ω|1/2, (4.61)

and Theorem 4.12 yields for β = R(Ω) and Ω = C1(0) the following

8

5π2
≤ |C1(0)|. (4.62)
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4 Spectral estimates for the Heisenberg Laplacian

Both inequalities in combination with Proposition 2.1(e) yield

β ≤ 4R(Ω)4

5|Ω|1/2 D(Ω)π2
=

4|CR(Ω)(0)|
5|Ω|1/2 D(Ω)π2|C1(0)|

≤
|CR(Ω)(0)|1/2

2 D(Ω)
. (4.63)

From the fact that |B1(0)| ≤ 1, see e.g. [Sac11], we thus deduce that

β ≤
|CR(Ω)(0)|1/2

D(Ω)
=

R(Ω)2|B1(0)|1/2

D(Ω)
≤ R(Ω) (4.64)

as required. Hence we may insert (4.60) into (4.59), which yields

Q(λ, k, ξ3) ≥ |ξ3|λ−1 4R(Ω)8

25|Ω|D(Ω)2π6
. (4.65)

Finally we estimate the sum of the negative integral of (4.51)

Tr(A(Ω)− λ)− ≤
|Ω|
96

λ3 − λ−1 4R(Ω)8

25|Ω|D(Ω)2π6

∫
R

∞∑
k=1

(λ− |ξ3|(2k− 1))+ |ξ3| dξ3 (4.66)

and calculate the integral on the right-hand side by using the following substitution
ξ3(2k − 1) = s and (4.50):

2
∞∑

k=1

∫ ∞
0

(λ− ξ3(2k− 1))+ξ3 dξ3 =
∞∑

k=1

2

(2k− 1)2

∫ ∞
0

s(λ− s)+ ds =
π2λ3

24
.

This yields then inequality (4.14). It thus remains to prove (4.57).

4.4.3 Proof of inequality (4.57)

Without loss of generality we assume that u ∈ C∞0 (Ω). With the help of (2.12) and
(4.54) we change the coordinates and obtain∫

Eβ
|u(x)|2 dx =

∫ 2π

0

∫ π/D(Ω)

−π/D(Ω)

∫ a

a−β
|u(t, k, θ)|2 f(tk)

k4
dθ, (4.67)

where f is defined in (4.39). We can assume that k is positive. Otherwise we substitute
k by −k and use that f(·) is even. We know that u(a, k, θ) = 0 by definition of a, see
(4.34), for all k ∈ [−π/D(Ω), π/D(Ω)] and θ ∈ [0, 2π). We recall that a ≤ D(Ω), f(·) is
increasing on [0, π] and |tk| ≤ π, see the proof of Theorem 4.12. Then we easily show
that

sup
a−β≤τ≤a

∫ τ

a−β
f(sk) ds

∫ a

τ

1

f(sk)
ds ≤ sup

a−β≤τ≤a
(τ − a+ β)(a− τ) =

β2

4
. (4.68)
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In view of [OK90, Theorem 1.14] we thus conclude that∫ 2π

0

∫ π/D(Ω)

−π/D(Ω)

∫ a

a−β
|u(t, k, θ)|2f(tk)

k4
dtdk dθ

≤ β2

∫ 2π

0

∫ π/D(Ω)

−π/D(Ω)

∫ a

a−β
|∂tu(t, k, θ)|2 f(tk)

k4
dtdk dθ.

(4.69)

Let us now turn to the coordinate system (x1, x2, x3). Keeping in mind the parametriza-
tion (2.9) we get∫

Eβ
|∂tu|2 dx ≤

∫
Ω

|∂x1u ∂tx1 + ∂x2u ∂tx2 + ∂x3u ∂tx3|2 dx. (4.70)

From the differential equation (2.5) of the geodesics; 2∂tx3(t) = x2(t)∂tx1(t)−∂tx2(t)x1(t),
it further follows that∫

Eβ
|∂tu|2 dx ≤

∫
Ω

|∂tx1X1u+ ∂tx2X2 u|2 dx. (4.71)

The cross terms will be estimated with the help of the Cauchy-Schwarz inequality and
2ab ≤ a2 + b2, a, b,∈ R. This gives

2|〈 ∂tx1X1u, ∂tx2X2u〉L2(Ω)| ≤ ‖∂tx2X1u‖2
L2(Ω) + ‖∂tx1X2u‖2

L2(Ω). (4.72)

Now we collect all the above estimates to arrive at∫
Eβ
|u|2 dx ≤ β2

(
‖∂tx1X1u‖2

L2(Ω) + ‖∂tx2X1u‖2
L2(Ω)

)
+ β2

(
‖∂tx2X2u‖2

L2(Ω) + ‖∂tx1X2u‖2
L2(Ω)

)
.

(4.73)

From (2.9) we see that ∂tx1 = sin(kt+θ) and ∂tx2 = cos(kt+θ), which implies inequality
(4.57) and completes the proof of Theorem 4.1.

4.5 Proof of spectral estimates on cylinders

We have seen in Theorem 4.1 that for a bounded domain Ω ⊂ H we improved the sharp
bound for the eigenvalue sum by adding a term of the form −λ2C(Ω), where C(Ω) is a
positive constant only depending on the geometry of Ω. However, Theorem 4.8 shows
that the growth order of the negative remainder term can be further improved if we
assume additional conditions on Ω .

In this section we give the proof of Theorem 4.8. First of all we need the following
Lemma, which holds since Assumption 4.7 is assumed to be true, and Ω ⊂ H is of the
form Ω = ω × (a, b) with a bounded domain ω ⊂ R2 and a < b.
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4 Spectral estimates for the Heisenberg Laplacian

Lemma 4.15. Let Ω := ω × (a, b) ⊂ H and let c be given by (4.18). Then∫ b

a

∫
ωβ
|u(x′, x3)|2 dx′ dx3 ≤ c2+ 2

cβ2+ 2
c ‖A(Ω)u‖L2(Ω)

∥∥A(Ω)1/c u
∥∥
L2(Ω)

(4.74)

holds for all u ∈ Dom(A(Ω)) and any β > 0, where ωβ := {x′ ∈ ω | δe(x′) < β}.

Proof. This inequality is true because of Theorem A.1, which can be found in the
appendix. We check briefly the assumptions. For this purpose we note that the Eikonal
equation holds true

|X1δe(x
′)|2 + |X2δe(x

′)|2 = |∂x1δe(x′)|2 + |∂x2δe(x′)|2 = 1

for almost every x′ ∈ ω. We can not prove that δe ∈ d[a], where d[a] is the form domain
of the closure of (4.2) but taking a closer look on the proof of Theorem A.1, we only
have to use the following: if u ∈ d[a], then uδe ∈ d[a] for all u ∈ d[a]. This holds since
δe ∈ H1

0 (ω).
Still we have to proof that (A.5) holds; in particular, we have to show that for all

u ∈ d[a] holds∫ b

a

∫
ω

|u(x′, x3)|2

δe(x′)2
dx′ dx3 ≤ c2

∫
Ω

(
|X1 u(x)|2 + |X2 u(x)|2

)
dx. (4.75)

Let u be in C∞0 (Ω). In addition let us denote by F3 the Fourier transform in x3-direction,
which is a unitary map in L2(R). Because Ω is a cylinder, the function |F3u(x′, ξ3)| lies
in H1

0 (ω) for fixed ξ3 ∈ R. Therefore we can apply inequality (4.19) to get∫ b

a

∫
ω

|u(x′, x3)|2

δe(x′)2
dx′ dx3 =

∫
R

∫
ω

(
|F3u(x′, ξ3)|

δe(x′)

)2

dx′ dξ3

≤ c2

∫
R

∫
ω

(∇x′|F3u(x′, ξ3)|)2
dx′ dξ3,

where ∇x′ := (∂x1 , ∂x2). Now we set

A(x′) :=
1

2
(−x2, x1), (4.76)

and apply the diamagnetic inequality which states that

|∇|ψ|| ≤ |(i∇+ A)ψ| a. e. (4.77)

holds for all ψ ∈ H1(ω), see e.g. [LL01]. This gives∫
R

∫
ω

(∇x′|F3u(x′, ξ3)|)2
dx′ dξ3 ≤

∫
R

∫
ω

|(i∇x′ + ξ3A(x′))F3u(x′, ξ3)|2 dx′ dξ3.

Integration by parts in the x3-direction yields the inequality for u ∈ C∞0 (Ω). A density
argument completes the proof of inequality (4.75) and yields the result of the Lemma.
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4.5 Proof of spectral estimates on cylinders

Proof of Theorem 4.8: Since Ω satisfies the assumptions of Theorem 4.1, we can follow
the proof of the latter. From Subsection 4.4.1, in particular from equation (4.51), we
infer that

Tr(A(Ω)− λ)− ≤
|Ω|
96

λ3 −
∫
R

∞∑
k=1

(λ− |ξ3|(2k− 1))+ Q(λ, k, ξ3) dξ3. (4.78)

with Q(λ, k, ξ3) =: Qλ given by (4.52). We consider then for β ∈ (0,Re(Ω)) the set

Ωβ := {x := (x′, x3) ∈ Ω | δe(x′) < β}. (4.79)

Obviously it holds Ωβ ⊆ Ω. Hence equations (4.53) and (4.55) imply that

Qλ ≥
|ξ3| |Ωβ|

8π2
− 1

2π

∫
R2

∫
Ωβ

∣∣∣ ∑
j:λj(Ω)<λ

〈
Pk,ξ3(x

′, ·) e−iξ3·, vj(·)
〉
L2(Ω)

vj(y)
∣∣∣2 dy dx′.

Since Ω = ω × (a, b) we get further

Qλ ≥
|ξ3|
8π2

(b− a) |ωβ|

− 1

2π

∫
R2

∫ b

a

∫
ωβ

∣∣∣∣∣∣
∑

j:λj(Ω)<λ

〈
Pk,ξ3(x

′, ·)e−i·ξ3 , vj(·)
〉
L2(Ω)

vj(y
′, y3)

∣∣∣∣∣∣
2

dy′ dy3 dx′.

Next we estimate the negative integral. Note that the linear combinations of vj lies in
Dom(A(Ω)). Therefore we may apply Lemma 4.15 and obtain

1

2π

∫
R2

∫ b

a

∫
ωβ

∣∣∣∣∣∣
∑

j:λj(Ω)<λ

〈
Pk,ξ3(x

′, ·)e−i·ξ3 , vj(·)
〉
L2(Ω)

vj(y
′, y3)

∣∣∣∣∣∣
2

dy′ dy3

 dx′

≤ c2+2/cβ2+2/cλ1+1/c 1

2π

∫
R2

 ∑
j:λj(Ω)<λ

∣∣∣〈Pk,ξ3(x′, ·)e−i·ξ3 , vj(·)
〉
L2(Ω)

∣∣∣2
 dx′

≤ c2+2/cβ2+2/cλ1+1/c 1

2π

∫
R2

(∫
Ω

|Pk,ξ3(x′, y′)|
2

dy′ dx3

)
dx′

= c2+2/cβ2+2/cλ1+1/c |Ω|
4π2
|ξ3|,

which yields the following lower bound on Qλ:

Qλ ≥
|ξ3|
8π2

(b− a)
∣∣ωβ∣∣− c2+2/cβ2+2/cλ1+1/c |Ω|

4π2
|ξ3|

≥ |ξ3|
8π2

β
(
l(ω)− 2c2+2/cβ1+2/cλ1+1/c|Ω|

)
.
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4 Spectral estimates for the Heisenberg Laplacian

Now we set

β1+2/c =
l(ω)

c2+2/cλ1+1/c(4 + 4/c)|Ω|
,

see (4.20) for l(ω), which is possible for λ ≥ λ1(Ω) because of

β1+2/c ≤ 1

c2+2/cλ1(Ω)1+1/c(4 + 4/c)Re(ω)
≤ Re(ω)1+2/c

4
.

The last inequality was obtained by applying Lemma 4.15 to u = v1 and β = Re(ω).
Summing up we thus arrive at

Qλ ≥
|ξ3|
4π2

λ−
c+1
c+2 l(ω)

2c+2
c+2 |Ω|−

c
c+2 (1 + 2/c)(4c+ 4)−

2c+2
c+2 = λ−

c+1
c+2 G(Ω) |ξ3|,

where

G(Ω) :=
l(ω)

2c+2
c+2

4π2
|Ω|−

c
c+2 (1 + 2/c)(4c+ 4)−

2c+2
c+2 .

This in combination with (4.78) gives

Tr(A(Ω)− λ)− ≤
|Ω|
96

λ3 −G(Ω)λ−
c+1
c+2

∫
R

∑
k:λ>|ξ3|(2k−1)

(λ− |ξ3|(2k− 1))|ξ3| dξ3.

To finish the proof we calculate in the same way as in the beginning of the proof:

∞∑
k=1

∫ ∞
0

(λ− ξ3(2k− 1))+ξ3 dξ3 =
∞∑

k=1

1

(2k− 1)2

∫ ∞
0

s(λ− s)+ ds =
π2 λ3

48
.

This gives the estimate stated in Theorem 4.8.

4.6 Improved spectral estimates on general domains

We have seen in Theorem 4.8 that for domains of the form Ω = ω × (a, b) with convex
cross-section ω the growth order of the negative lower order term in Theorem 4.1 can
be further improved. Indeed, we can extend this to general bounded domains assuming
a more restrictive condition; we have to assume the validity of a Hardy inequality with
respect to the C-C metric:

Assumption 4.16. Let Ω ⊂ H be a bounded domain. We assume that there exists a
constant c ∈ [2,∞) such that∫

Ω

|u(x)|2

δC(x)2
dx ≤ c2

∫
Ω

(
|X1 u(x)|2 + |X2 u(x)|2

)
dx (4.80)

holds for all u ∈ C∞0 (Ω).
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4.6 Improved spectral estimates on general domains

We will discuss this assumption in the next chapter in detail and state only the most
important properties. If Ω has a C1,1 regular boundary, then Assumption 4.16 holds
true, even though an explicit constant is not known, see [DGP09, Thm.4.1 and p.120].
We will see later that if c = 2, then (4.80) is sharp. Now, we can state the improved
version of Theorem 4.1 for general domains.

Theorem 4.17. Let Ω ⊂ H be a bounded domain and let

σ(Ω) := inf
0<β≤R(Ω)

|Ωβ|
β

.

Under Assumption 4.16 we have

Tr(A(Ω)− λ)− ≤ max

{
0,
|Ω|
96

λ3 − 1 + 2/c

96
σ(Ω)

2c+2
c+2 (4c+ 4)

−2c−2
c+2 |Ω|

−1
1+2/cλ2+ 1

c+2

}
.

Note that the quantity σ(Ω) is strictly positive because of Theorem 4.12. The proof
of Theorem 4.17 is verbatim the same as the proof of Theorem 4.8; we only have to
replace δe by δC . For the sake of completeness we give the proof and therefore need the
following Lemma:

Lemma 4.18. Under Assumption 4.16 it holds∫
Ωβ
|u(x)|2 dx ≤ c2+2/cβ2+2/c‖A(Ω)u‖L2(Ω)

∥∥A(Ω)1/cu
∥∥
L2(Ω)

(4.81)

for all u ∈ Dom(A(Ω)), where Ωβ := {x ∈ Ω | δC(x) < β}.

Proof. We check the assumptions of Theorem A.1, stated in the appendix, which implies
then the result. In [MC01, Thm. 3.1] was shown that the Eikonal equation holds

|X1 δC(x)|2 + |X2 δC(x)|2 = 1 a.e. x ∈ Ω. (4.82)

In the proof of Theorem 5.20 we show that δC ∈ d[a]. Assumption 4.16 yields then the
validity of (A.5), yielding the result.

Proof of Theorem 4.17. Since Ω satisfies the assumptions of Theorem 4.1, we can follow
the proof of the latter. From Subsection 4.4.1, in particular from equation (4.51), we
infer that

Tr(A(Ω)− λ)− ≤
|Ω|
96

λ3 −
∫
R

∞∑
k=1

(λ− |ξ3|(2k− 1))+ Q(λ, k, ξ3) dξ3. (4.83)

with Q(λ, k, ξ3) given by (4.52). For β ∈ (0,R(Ω)) we consider the set

Ωβ := {x ∈ Ω | δC(x) < β}. (4.84)
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4 Spectral estimates for the Heisenberg Laplacian

Obviously it holds Ωβ ⊆ Ω. Hence equations (4.53) and (4.55) imply that

Q(λ, k, ξ3) ≥ |ξ3| |Ωβ|
8π2

− 1

2π

∫
R2

∫
Ωβ

∣∣∣ ∑
j:λj(Ω)<λ

〈
Pk,ξ3(x

′, ·) e−iξ3·, vj(·)
〉
L2(Ω)

vj(y)
∣∣∣2 dy dx′.

(4.85)

An application of Lemma 4.18 yields∫
R2

∫
Ωβ

∣∣∣ ∑
j:λj(Ω)<λ

〈
Pk,ξ3(x

′, ·) e−iξ3·, vj(·)
〉
L2(Ω)

vj(y)
∣∣∣2 dy dx′

≤ c2+2/cβ2+2/cλ1+1/c

∫
R2

∑
j:λj(Ω)<λ

∣∣∣〈Pk,ξ3(x
′, ·) e−iξ3·, vj(·)

〉
L2(Ω)

∣∣∣2 dx′

≤ c2+2/cβ2+2/cλ1+1/c |ξ3|
2π
|Ω|.

(4.86)

For the last inequality we used (4.49). Inserting this result into (4.85) and using the
definition of |Ωβ|, we find that

Q(λ, k, ξ3) ≥ |ξ3|σ(Ω)

8π2
β − c2+2/cβ2+2/cλ1+1/c |ξ3|

4π2
|Ω|

=
|ξ3|
8π2

β
(
σ(Ω)− 2c2+2/cβ1+2/cλ1+1/c|Ω|

)
holds true uniformly in k, where

σ(Ω) = inf
0<β≤R(Ω)

|Ωβ|
β
.

From Theorem 4.12 we know that σ(Ω) > 0. Hence upon setting

β := σ(Ω)
1

1+2/c (4 + 4/c)
−1

1+2/c c−1− 1
1+2/c |Ω|

−1
1+2/cλ

−1−1/c
1+2/c , (4.87)

we obtain

Q(λ, k, ξ3) ≥ |ξ3|
4π2

(1 + 2/c)σ(Ω)
2c+2
c+2 (4c+ 4)

−2c−2
c+2 |Ω|

−1
1+2/cλ−1+ 1

c+2 ∀ k ∈ N. (4.88)

However, as in the proof of Theorem 4.1 we have to verify that β given by (4.87) with
λ ≥ λ1(Ω) satisfies β ≤ R(ω). An application of Lemma 4.18 for u = v1 and β = R(Ω)
yields 1 ≤ R(Ω)2+2/cc2+2/cλ1(Ω)1+1/c. The latter inequality shows that

β1+2/c ≤ σ(Ω)(4 + 4/c)−1c−2−2/c|Ω|−1λ1(Ω)−1−1/c

≤ σ(Ω)(4 + 4/c)−1R(Ω)2+2/c|Ω|−1

≤ (4 + 4/c)−1R(Ω)1+2/c ≤ R(Ω)1+2/c
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4.6 Improved spectral estimates on general domains

holds for all λ ≥ λ1(Ω)−1 and therefore justifies the choice of β in (4.87). The result in
Theorem 4.17 now follows by inserting the lower bound (4.88) in (4.83), evaluating the
integral in ξ3 and then the series in k as in the proof of Theorem 4.1.

Example 4.19. Let us consider Ω = Ch(0) := {x ∈ H | dC(x, 0) < h} for h > 0. In
[Yan13] it was shown that Assumption 4.16 holds true for Ch(0) with the constant c = 2.
Theorem 4.17 and the lower estimate for σ(Ω) in Theorem 4.12 yield

Tr(A(Ω)− λ)− ≤ max

{
0,
|Ω|
96

λ3 − 1

48π3

(
2

15

) 3
2

h9/2|Ω|−
1
2λ2+ 1

4

}
.
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Chapter 5

Hardy inequalities for the
Heisenberg Laplacian on convex
bounded polytopes

In this chapter we prove a Hardy-type inequality for the gradient of the Heisenberg
Laplacian on open bounded convex polytopes on the first Heisenberg Group. The inte-
gral weight of the Hardy inequality is given by the distance function to the boundary
measured with respect to the Carnot-Carathéodory metric. The constant depends on
the number of hyperplanes given by the boundary of the convex polytope which are not
orthogonal to the hyperplane x3 = 0.

5.1 Introduction

We recall the first Heisenberg group, which is given by R3 equipped with the group law

(x1, x2, x3) � (y1, y2, y3) :=
(
x1 + y1, x2 + y2, x3 + y3 − 1

2
(x1y2 − x2y1)

)
, (5.1)

and the sub-gradient ∇H := (X1, X2) given by

X1 := ∂x1 +
x2

2
∂x3 , X2 := ∂x2 −

x1

2
∂x3 ,

for x := (x1, x2, x3) ∈ R3. In addition, we mention that the left-invariant vector fields
X1, X2, X3 := [X2, X1] = ∂x3 form a basis of the Heisenberg algebra on H and that the
Heisenberg Laplacian is given by

∆H := −X2
1 −X2

2 ,

64



5.1 Introduction

also called Kohn Laplacian. There is a considerable amount of literature concerning the
Hardy-type inequality∫

H

|u(x)|2

‖x‖4
H

(x2
1 + x2

2) dx ≤
∫
H
|∇H u(x)|2 dx u ∈ C∞0 (H \ {0}), (5.2)

where

‖x‖4
H := (x2

1 + x2
2)2 + 16x2

3 .

For the proof of (5.2) we refer to [GL90, AL11, NZW01], see also various improvements
obtained in [D’A04, Xia11]. The anisotropic norm ‖x‖H, which appears in (5.2), is
referred to in the literature as Korányi-Folland gauge or Kaplan gauge, see also Section
2.4. For the sake of brevity we will use the latter notation and call it Kaplan gauge.

In this chapter we deal with Hardy inequalities for the Heisenberg Laplacian on
bounded domains. In particular we consider the following problem; given a bounded
domain Ω ⊂ R3, we would like to find a constant c > 0 for which the inequality∫

Ω

|u(x)|2

δC(x)2
dx ≤ c2

∫
Ω

|∇H u(x)|2 dx, (5.3)

holds for all u ∈ C∞0 (Ω), where δC(x) is the Carnot-Carathéodory distance (C-C distance
in the sequel) between x and the boundary of Ω, see Subsection 5.2.1 and Section 2.3 for
its definition. With respect to the well-studied inequality (5.2), it is less known about
the validity of (5.3) especially if one is interested in explicit constants. In [DGP09]
D. Danielli, N. Garofalo and N. C. Phuc proved that for every Ω with a C1,1 regular
boundary there exists c > 0 such that (5.3) holds true. Later it was shown by Q.-H.
Yang [Yan13] that if Ω is a ball with respect to the C-C distance, then (5.3) holds with
c = 2.

The fundamental problem of deriving inequalities of the form (5.3) lies in the fact
that we a priori don’t know much about domains which are the most natural ones for
a Hardy inequality on H. In comparison to the Euclidean setting it is well-known that
if Ω is convex then ∫

Ω

|u(x)|2

dist(x, ∂Ω)2
dx ≤ 4

∫
Ω

|∇u(x)|2 dx (5.4)

holds for all u ∈ C∞0 (Ω), and the constant 4 is sharp independently of Ω, see e.g. [Anc86,
OK90, Dav99, MMP98, AW07, Avk10, HOHOL02] and Section 1.3.

In this chapter we prove that for open bounded convex polytopes (5.3) holds true,
and we obtain a constant depending only on the number of hyperplanes of ∂Ω which are
not orthogonal to the hyperplane x3 = 0. Under an additional geometrical assumption,
the constant in (5.3) for convex polytopes can be further improved, see Theorem 5.15.
It is even possible to show that for any c > 2 there exists a bounded convex domain
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5 Hardy inequalities for the Heisenberg Laplacian on convex bounded polytopes

such that (5.3) is fulfilled, which is an almost sharp result since we prove that for any
bounded domain Ω holds

inf
u∈C∞0 (Ω)\{0}

∫
Ω
|∇H u(x)|2 dx∫

Ω
|u(x)|2δC(x)−2 dx

≤ 1

4
. (5.5)

This shows that at least some convex domains are more compatible with the Heisenberg
group structure than we expect them to be.

In [LY08] J.-W. Luan and Q.-H. Yang proved on the half-space Ω := {x ∈ H|x3 > 0}
that for any u ∈ C∞0 (Ω) holds∫

Ω

x2
1 + x2

2

4x2
3

|u(x)|2 dx ≤ 4

∫
Ω

|∇Hu(x)|2 dx. (5.6)

This result was recently generalized by Larson [Lar16] to any bounded convex domain.
Under an additional convexity condition, where H(x) denotes the horizontal plane to
x, we can replace the weight on the left-hand side by

ω(x) := inf
y∈∂Ω∩H(x)

dC(x, y), (5.7)

see Theorem 5.1. This result turns out to be (5.6) for the case of the half-space.
This chapter is organized as follows. In the next section we introduce necessary

notations. Main results are formulated in Section 5.2 and the proof of each Theorem is
done in a separate section.

5.2 Main results

5.2.1 Preliminaries and notation

The horizontal plane to x := (x1, x2, x3) ∈ H is given by

H(x) :=
{
y ∈ H

∣∣ 〈 (−x2
2
, x1

2
, 1
)
, y − x

〉
= 0

}
,

=
{
y ∈ H

∣∣ x1y2 − x2y1 = 2(x3 − y3)
}
,

(5.8)

where 〈 ·, ·〉 is the Euclidean scalar product in R3.

Let us briefly recall the definition of the C-C distance dC(x, y). We call a Lipschitz
curve γ : [a, b]→ H parametrized by γ(t) = (γ1(t), γ2(t), γ3(t)) horizontal if

γ′(t) ∈ span

{(
1, 0,

γ2(t)

2

)
,

(
0, 1,−γ1(t)

2

)}
, for all t ∈ (a, b).

The C-C distance between x and y is then defined as

dC(x, y) := inf
γ

∫ b

a

√
γ′1(t)2 + γ′2(t)2 dt, (5.9)
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5.2 Main results

where the infimum is taken over all horizontal curves γ connecting x and y, see also
Section 2.3.

We define the C-C and Kaplan distance functions for a bounded domain Ω by

δC(x) := inf
y∈∂Ω

dC(x, y), δK(x) := inf
y∈∂Ω
‖(−y) � x‖H . (5.10)

If x ∈ Ωc, we set δK(x) := 0 and δC(x) := 0. With these prerequisites we can state the
main results.

5.2.2 Main results

Theorem 5.1. Let Ω ⊂ H be a bounded domain, and let the connected components of
H(x) ∩ Ω be convex for all x ∈ Ω. Then∫

Ω

|u(x)|2

ω(x)2
dx ≤ 4

∫
Ω

|∇H u(x)|2 dx (5.11)

holds true for all u ∈ C∞0 (Ω), where ω(·) is defined in (5.7) and it holds

ω(x) = inf
y∈∂Ω∩H(x)

‖(−y) � x‖H = inf
y∈∂Ω∩H(x)

√
(x1 − y1)2 + (x2 − y2)2. (5.12)

We call the weight ω(·) the reduced C-C distance. The proof of (5.11) is done in the
following way. We proof the Hardy inequality for each separate Xj, where the distance
function is given by the C-C metric generated by Xj for j ∈ {1, 2}. Then we apply the
hyperplane separation theorem in the same way as E. B. Davies did for the proof of
(5.4) for convex domains, see [Dav99].

Theorem 5.2. Let Ω ⊂ H be an open bounded convex polytope, and let m ∈ N be the
number of hyperplanes of ∂Ω which are not orthogonal to the hyperplane x3 = 0. Then
holds

1

5

(
33/2
√

2

cm
+ 1

)−4/3 ∫
Ω

|u(x)|2

δC(x)2
dx ≤

∫
Ω

|∇H u(x)|2 dx, (5.13)

for all u ∈ C∞0 (Ω), where cm is the unique positive number satisfying the following
identity

√
c2
m + 16

(
1 +

cm

33/2
√

2

)2/3

cm
4/3 =

1

27/33πm
.
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In addition, we proof that for cm holds the following

1

cm
≤ m8/9π8/93 · 219/9

√
2−4/3π−2/3 + 16

(
1 +

1

33/227/6π1/3

)2/3

, (5.14)

which yields a result with an explicit constant in (5.13).
The strategy of the proof of Theorem 5.2 consists of two steps. We use the same

idea as in the proof of Theorem 5.1 and proof a Hardy inequality on a bounded convex
polytope for each separate Xj, where the distance function is given by the C-C metric
generated by Xj for j ∈ {1, 2}. Then we take into account the following Hardy inequality∫

Ω

|u(x)|2

dC(x, 0)2
dx ≤

∫
Ω

|∇H u(x)|2 dx, (5.15)

for all u ∈ C∞0 (Ω), which was proved in [GK08, RS15, Yan13]. The sum of the weight
functions is then comparable to the distance function to the hyperplanes of the given
polytope with respect to the Kaplan gauge, which is equivalent to the distance function
with respect to the C-C metric.

We can improve the constant in Theorem 5.2 under an additional geometrical as-
sumption, which is discussed in Section 5.5. The main consequence of that result is the
following;

Theorem 5.3. For any ε > 0 there exists a bounded convex domain Ω such that∫
Ω

|u(x)|2

δC(x)2
dx ≤ (2 + ε)2

∫
Ω

|∇H u(x)|2 dx

for all u ∈ C∞0 (Ω).

The last result has an almost optimal constant since we prove that for any bounded
domain Ω holds

inf
u∈C∞0 (Ω)\{0}

∫
Ω
|∇H u(x)|2 dx∫

Ω
|u(x)|2δC(x)−2 dx

≤ 1

4
,

see Theorem 5.20.

5.3 Restricted C-C distance and its connection to

the Euclidean distance

5.3.1 The natural restriction of ∂Ω

In this section we show that the reduced distance ω(·), defined by (5.7), can be expressed
in terms of a simple explicit formula. In particular, we proof the following formulae:
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Theorem 5.4. Let Ω ⊂ H be open bounded, then holds

ω(x) = inf
y∈∂Ω∩H(x)

√
(x1 − y1)2 + (x2 − y2)2 = inf

y∈∂Ω∩H(x)
‖(−y) � x‖H,

for all x ∈ Ω.

Proof. Let x ∈ Ω and let y ∈ ∂Ω ∩ H(x). Consider the curve γ : [0, 1] → H given by
the parametrization γ(t) = (1 − t)x + ty, t ∈ [0, 1]. Obviously γ connects x and y.
Moreover, since y ∈ H(x) we obtain that γ is horizontal. Indeed, we verify that the
following identity holds

γ′(t) = (y1 − x1)

(
1, 0,

γ2(t)

2

)
+ (y2 − x2)

(
0, 1,−γ1(t)

2

)
for all t ∈ (0, 1). The first two rows are easily verified. For the third one we start with
the right-hand side and get for x := (x1, x2, x3) and y := (y1, y2, y3) the following

(y1 − x1)
(1− t)x2 + ty2

2
− (y2 − x2)

(1− t)x1 + ty1

2

=
1− t

2
((y1 − x1)x2 − (y2 − x2)x1) +

t

2
((y1 − x1)y2 − (y2 − x2)y1)

=
1− t

2
(y1x2 − y2x1) +

t

2
(−x1y2 + x2y1) =

y1x2 − y2x1

2
= y3 − x3.

The last equality holds because y ∈ H(x), see (5.8). By definition of the C-C distance,
see equation (5.9), it thus follows that

dC(x, y) ≤
√

(x1 − y1)2 + (x2 − y2)2. (5.16)

Using y ∈ ∂Ω ∩H(x) we see that√
(x1 − y1)2 + (x2 − y2)2 = ‖(−y) � x‖H. (5.17)

Then we apply Lemma 2.2 to obtain the following chain of inequalities

dC(x, y) ≤
√

(x1 − y1)2 + (x2 − y2)2 = ‖(−y) � x‖H ≤ dC(x, y). (5.18)

Taking the infimum over y ∈ ∂Ω ∩H(x) yields the result.

5.3.2 The Hardy inequality involving ω

We need the following auxiliary result.
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5 Hardy inequalities for the Heisenberg Laplacian on convex bounded polytopes

Lemma 5.5. Let Ω be a bounded domain in H. Then holds∫
Ω

(
|u(x)|2

d1(x)2
+
|u(x)|2

d2(x)2

)
dx ≤ 4

∫
Ω

|∇H u(x)|2 dx (5.19)

for all u ∈ C∞0 (Ω), where the distances d1(x) and d2(x) are given by

d1(x) := inf
s∈R
{|s| > 0 |x+ s(1, 0, x2/2) /∈ Ω}, (5.20)

d2(x) := inf
s∈R
{|s| > 0 |x+ s(0, 1,−x1/2) /∈ Ω}. (5.21)

Proof. Let u ∈ C∞0 (Ω). First we show that∫
Ω

|u(x)|2

d1(x)2
dx ≤ 4

∫
Ω

|X1u(x)|2 dx. (5.22)

To this end we define the following coordinate transformation

F (t, ϕ, θ) :=


x1(t, ϕ, θ) = t+ ϕ,

x2(t, ϕ, θ) = θ,

x3(t, ϕ, θ) = tθ/2,

(5.23)

where (t, ϕ, θ) ∈ A := {(t, ϕ, θ) ∈ R3 | θ 6= 0}. It can be easily checked that F : A 7→
Ran(A) is a diffeomorphism and that the determinant of F is equal to θ/2. For a given
x ∈ Ωc we set u(x) = 0. If x = F (t, ϕ, θ) for fixed θ ∈ R \ {0} and ϕ ∈ R, we see
that there exists a constant c ∈ R such that F (c, ϕ, θ) = x̂ ∈ ∂Ω and such the following
identity is satisfied d1(x) = dC(x, x̂). By {aj}j∈N we denote the increasing sequence
such that F (aj, ϕ, θ) ∈ ∂Ω. Such a sequence exists since Ω is bounded and open. Thus
for a fixed x = F (t, ϕ, θ) ∈ Ω we immediately see that there exists a k ∈ N such that

d1(F (t, ϕ, θ)) = dC(F (t, ϕ, θ), F (ak, ϕ, θ))

= dC(F (t, ϕ, θ), F (t, ϕ, θ) + (ak − t)(1, 0, θ/2)).

We use Proposition 2.1 b) to arrive at

d1(F (t, ϕ, θ)) = dC((0, 0, 0), (−t+ ak, 0, 0)) = |ak − t|.

The last equality holds because of the formula for the geodesics in (2.10). By the last
observation we apply then the transformation F to find out that to prove (5.22) it
suffices to show that∫

R

∫
R

∞∑
j=1

∫ aj+1

aj

|u(t, ϕ, θ)|2

δj(t)2
dt
|θ|
2

dθ dϕ

≤ 4

∫
R

∫
R

∞∑
j=1

∫ aj+1

aj

|∂tu(t, ϕ, θ)|2 dt
|θ|
2

dθ dϕ,

(5.24)
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where δj(t) := inf(aj+1 − t, t− aj). Hence the one-dimensional Hardy inequality in the
t-direction then implies that (5.24) holds true, which in turn yields (5.22). It remains
to prove ∫

Ω

|u(x)|2

d2(x)2
dx ≤ 4

∫
Ω

|X2u(x)|2 dx. (5.25)

This is done in the same way as (5.22) replacing the transformation of (5.23) by

F̃ (t, ϕ, θ) :=


x1(t, ϕ, θ) = θ,

x2(t, ϕ, θ) = t+ ϕ,

x3(t, ϕ, θ) = −tθ/2,
(5.26)

for (t, ϕ, θ) ∈ A. Summing up (5.22) and (5.25) then completes the proof.

Proof of Theorem 5.1. Let us consider the result of Theorem 5.4 and choose a :=
(a1, a2, a3) ∈ ∂Ω ∩H(x) such that

ω(x) = inf
y∈∂Ω∩H(x)

√
(x1 − y1)2 + (x2 − y2)2 =

√
(x1 − a1)2 + (x2 − a2)2. (5.27)

The existence of such a is guaranteed by the compactness of Ω and the continuity of
the distance. We know that all connected components of H(x) ∩ Ω are convex. For
fixed x ∈ Ω lying in a given convex component, the corresponding a ∈ ∂Ω∩H(x) must
lie in the same convex component as x. Otherwise the identity in (5.27) could not
hold. Therefore we assume without loss of generality that H(x)∩Ω consists of a single
connected convex component. Next we apply the hyperplane separation theorem, which
implies that the hyperplane

T :=

 y ∈ H
∣∣ 〈x1 − a1

x2 − a2

0

,
y1 − a1

y2 − a2

y3

〉 = 0

 (5.28)

separates H(x)∩Ω from the point a ∈ ∂Ω∩H(x). We consider Lemma 5.5 and compute
the intersection point of the line c(s) = x+s(1, 0, 1/2x2)t for s ∈ R with the hyperplane
(5.28). This yields

s = −(x1 − a1)2 + (x2 − a2)2

x1 − a1

. (5.29)

With respect to the distance d1(x) in Lemma 5.5, we get with the hyperplane separation
theorem

d1(x) ≤ (x1 − a1)2 + (x2 − a2)2

|x1 − a1|
.

71



5 Hardy inequalities for the Heisenberg Laplacian on convex bounded polytopes

Now we do the same computation for d2(x) and obtain

d2(x) ≤ (x1 − a1)2 + (x2 − a2)2

|x2 − a2|
. (5.30)

Altogether we get

1

d1(x)2
+

1

d2(x)2
≥ (x2 − a2)2

((x1 − a1)2 + (x2 − a2)2)2
+

(x1 − a1)2

((x1 − a1)2 + (x2 − a2)2)2
=

1

ω(x)2
.

We recall that the point a ∈ ∂Ω ∩H(x) was chosen such that the following holds true
ω(x) =

√
(x1 − a1)2 + (x2 − a2)2, which proves inequality (5.11).

Remark 5.6. For p ≥ 2 it is possible to get an Lp version of Theorem 5.1 as well. In
Lemma 5.5 we use the Lp version of the one-dimensional Hardy inequality, which holds
for p > 1. Then we mimic the last proof and apply for p ≥ 2 Jensen’s inequality

(a2 + b2)p/2 = 2p/2(a2/2 + b2/2)p/2 ≤ 2p/2−1(ap + bp),

for a, b > 0.

5.3.3 Some properties of ω

Since it seems that ω(·) is rather natural on H, we check that the assumptions of
Theorem 5.1 are preserved by the Heisenberg group structure. Therfore we define

a� Ω := {y ∈ H | ∃z ∈ Ω such that y = a� z}.

Proposition 5.7. Let a ∈ H. Let Ω ⊂ H be such that every connected component of
H(x)∩Ω is convex for all x ∈ Ω, then every connected component of (a� Ω)∩H(y) is
convex for all y ∈ a� Ω.

Proof. Since hyperplanes are convex we only have to show that a� Ω is convex if Ω is
convex. This is a simple proof since

(1− λ)(a� z1) + λ(a� z2) = a� ((1− λ)z1 + λz2) (5.31)

holds for z1, z2, a ∈ H.

The distance ω(·) is also compatible with the natural dilation on the Heisenberg group.
We recall that

Φh(x) := hx = (hx1, hx2, h
2x3) (5.32)

for x := (x1, x2, x3) ∈ H and h > 0. Thus we define

h(Ω) :=
{
x ∈ H

∣∣ ∃y ∈ Ω such that x = hy
}
. (5.33)
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Proposition 5.8. Let Ω ⊂ H be open bounded and let the connected components of
H(y) ∩ Ω be convex for all y ∈ Ω. For any h > 0 holds then that the connected
components of H(x) ∩ h(Ω) are convex for all x ∈ h(Ω).

Proof. Let us assume that there exist x1 and x2 ∈ h(Ω) ∩ H(x) for fixed x ∈ h(Ω).
Because H(x) is a hyperplane we know that the convex combination of x1 and x2 lies
in H(x). Thus we only have to show that this convex combination lies in h(Ω). By
definition there exist y1, y2, y ∈ h(Ω) such that x1 = hy1, x2 = hy2 and x = hy. We
know that H(x) ∩ Ω is convex, thus holds

Φh−1 ((1− λ)x1 + λx2) = (1− λ)y1 + λy2 ∈ H(y) ∩ Ω

for all λ ∈ [0, 1]. We see that it is sufficient to prove Φh(H(y) ∩Ω) ⊆ H(x) ∩ h(Ω). Let
z ∈ Φh(H(y) ∩ Ω), thus there exists q ∈ H(y) ∩ Ω such that z = hq. Obviously is then
z ∈ h(Ω). We use that h−1z ∈ H(y), which is equivalent to z ∈ H(hy). Since hy = x,
we obtain the result.

Remark 5.9. In Lemma 4.15 we proved for a bounded convex domain of the form
Ω := D × (a, b) ⊂ H that following inequality holds∫ b

a

∫
D

|u(x′, x3)|2

δe(x′)2
dx′ dx3 ≤ 4

∫
Ω

(
|X1 u(x)|2 + |X2 u(x)|2

)
dx u ∈ C∞0 (Ω),

where x := (x′, x3) ∈ D × (a, b) for fixed a < b. Although the Hardy weight measures
the two-dimensional Euclidean distance to ∂D, it coincides with the the C-C distance
to ∂D, which is shown in the next result.

Proposition 5.10. Let us consider the set Ω := D × R ⊆ H, where ∅ 6= D ⊆ R2, then
holds

inf
y∈Ω

dC(x, y) = inf
y∈Ω∩H(x)

dC(x, y) = inf
(y1,y2)∈D

√
(x1 − y1)2 + (x2 − y2)2

for all x := (x1, x2, x3) ∈ Ω.

Proof. First of all we note that Ω ∩H(x) 6= ∅ for all x ∈ H, which is easy to check by
using the definition of H(x), see (5.8). The proposition obviously holds true for x ∈ Ω.
Thus let us assume x /∈ Ω. We know that there exists a sequence yn := (αn, βn, γn) ∈ Ω
such that

inf
y∈Ω
‖(−y) � x‖H = lim

n→∞
‖(−yn) � x‖H

= lim
n→∞

4

√
((x1 − αn)2 + (x2 − βn)2)2 + 16(x3 − γn +

1

2
(αnx2 − βnx1))2
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Let us choose γ̃n ∈ R such that

x3 − γ̃n +
1

2
(αnx2 − βnx1) = 0 (5.34)

is fulfilled. We define ỹn := (αn, βn, γ̃n) and see that

inf
y∈Ω
‖(−y) � x‖H = lim

n→∞
‖(−ỹn) � x‖H (5.35)

holds since obviously ỹn lies in Ω. Because (5.34) is fulfilled, we see that ỹn ∈ H(x), see
(5.8). Therefore we obtain

inf
y∈Ω∩H(x)

√
(x1 − y1)2 + (x2 − y2)2 = inf

y∈Ω∩H(x)
‖(−y) � x‖H ≤ inf

y∈Ω
‖(−y) � x‖H.

Then we obtain with Theorem 5.4 the following chain of inequalities

inf
y∈Ω∩H(x)

dC(x, y) = inf
y∈Ω∩H(x)

‖(−y) � x‖H ≤ inf
y∈Ω
‖(−y) � x‖H ≤ inf

y∈Ω
dC(x, y) .

The last inequality was an application of Lemma 2.2. Obviously holds

inf
y∈Ω

dC(x, y) ≤ inf
y∈Ω∩H(x)

dC(x, y),

which immediately yields

inf
y∈Ω∩H(x)

dC(x, y) = inf
y∈Ω

dC(x, y) = inf
y∈Ω∩H(x)

√
(x1 − y1)2 + (x2 − y2)2.

Hence we only have to show that

inf
y∈Ω∩H(x)

√
(x1 − y1)2 + (x2 − y2)2 = inf

(y1,y2)∈D

√
(x1 − y1)2 + (x2 − y2)2,

which can be shown in the same way as the proof of the previous identity; the only
thing we have to take into account is that Ω is of the form Ω = D × R.

5.4 Proof of the Hardy inequalities for open boun-

ded convex polytopes

In this section we give the proof of Theorem 5.2. First we have to give some lower
estimates for the Kaplan distance function to hyperplanes. Therefore we need the
following:
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Lemma 5.11. Let p > 0 and q ∈ R \ {0}. Consider

z3 + pz = q,

for z ∈ R. Then there exists a unique real solution for which holds

|z| ≥ |q
1/3|
3

(
1 +

p
√
p

|q|3
√

3

)−2/3

.

Proof. First we consider the case q > 0. Then Cardano’s formula gives the unique real
solution

z =
(
q/2 +

√
q2/4 + p3/27

)1/3

+
(
q/2−

√
q2/4 + p3/27

)1/3

=
1

3

∫ q/2+
√
q2/4+p3/27

−q/2+
√
q2/4+p3/27

s−2/3 ds ≥ q

3

(
q/2 +

√
q2/4 + p3/27

)−2/3

≥ q

3

(
q +

√
p3/27

)−2/3

The case q < 0 will be treated in the same way.

Proposition 5.12. Let x ∈ H and a > 0. We consider

Π := {y ∈ H| n1y1 + n2y2 + n3y3 = c},

where n1, n2, n3, c ∈ R and n3 6= 0. For the case (−2n2/n3 + x1)2 + (2n1/n3 + x2)2 ≤
a| − c/n3 + x3 + x1n1/n3 + x2n2/n3| it holds(

inf
y∈Π
‖(−y) � x‖H

)2

≥ 4| − c/n3 + x3 + x1n1/n3 + x2n2/n3|
33

(
1 +

a

33/2
√

2

)−2

,

and for (−2n2/n3 +x1)2 + (2n1/n3 +x2)2 ≥ a|− c/n3 +x3 +x1n1/n3 +x2n2/n3| it holds(
inf
y∈Π
‖(−y) � x‖H

)2

≥ 4| − c/n3 + x3 + x1n1/n3 + x2n2/n3|2

(−2n2/n3 + x1)2 + (2n1/n3 + x2)2

(
33/2
√

2

a
+ 1

)−4/3

.

Remark 5.13. In Proposition 5.10 we already proved that δC(·) can be expressed as
ω(·) on Ω if ∂Ω is a hyperplane which is orthogonal to the hyperplane x3 = 0. This is
not true for other hyperplanes.

Let us assume Ω := {(x1, x2, x3) ∈ H |x3 6= 0}. The hy-
perplane in our picture is then ∂Ω. The apexes of the
cones are the origin. Proposition 5.12 in combination
with Lemma 2.2 yields a constant ca > 0 such that for
points lying in the interior of the double cone we have
δC(x) ≥ ca

√
δe(x), where δe(·) is the Euclidean distance

function to ∂Ω. For points lying outside of the double
cone, we have δC(x)2 ≥ ca4x

2
3(x2

1 + x2
2)−1 = caω(x)2.
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Proof of Proposition 5.12 : First of all we consider the case n1 = n2 = c = 0 and n3 = 1.
Let y := (y1, y2, y3) ∈ H such that y3 = 0 and fix x := (x1, x2, x3) ∈ H with x3 6= 0. We
set z1 := y1 − x1 and z2 := y2 − x2 and consider

‖(−y) � x‖4
H = ((y1 − x1)2 + (y2 − x2)2)2 + 16(y3 − x3 − 1/2y1x2 + 1/2y2x1)2

= (z2
1 + z2

2)2 + 16(−x3 − 1/2z1x2 + 1/2z2x1)2.
(5.36)

Then we compute the minimum of the right-hand side in dependence of x. We assume
that x1 6= 0 since x1 = 0 is a null set, and δK is continuous because of (2.15) and Lemma
2.2. The derivatives with respect to y1 and y2 yield then

(z2
1 + z2

2)4z1 − x216(−x3 − 1/2z1x2 + 1/2z2x1) = 0,

(z2
1 + z2

2)4z2 + x116(−x3 − 1/2z1x2 + 1/2z2x1) = 0.
(5.37)

Since x1 6= 0 we easily deduce that z2
1 + z2

2 6= 0 and obtain

z1 =
−z2x2

x1

.

Inserting this in (5.36) yields

‖(−y) � x‖4
H = z4

2

(x2
2 + x2

1)2

x4
1

+ 16

(
−x3 + 1/2z2

x2
2 + x2

1

x1

)2

. (5.38)

We compute the critical points with respect to y2 and obtain

‖(−y) � x‖4
H = z4

2

(x2
2 + x2

1)2

x4
1

+ z6
2

(x2
2 + x2

1)2

x6
1

, (5.39)

where z2 is the unique real solution of

z3
2 + 2z2x

2
1 =

4x3x
3
1

x2
2 + x2

1

, p := 2x2
1, q :=

4x3x
3
1

x2
2 + x2

1

.

Using the estimate in the previous Lemma we obtain

|z2| ≥
1/3
√

4|x3|1/3|x1|
3 1/3
√
x2

1 + x2
2

(
1 +

x2
1 + x2

2

|x3|33/2
√

2

)−2/3

. (5.40)

For the case x2
1 + x2

2 ≤ a|x3| we use

‖(−y) � x‖4
H ≥ z6

2

(x2
2 + x2

1)2

x6
1

,

76



5.4 Proof of the Hardy inequalities for open bounded convex polytopes

and (5.40) to get (
inf

y∈H,y3=0
‖(−y) � x‖H

)2

≥ 4|x3|
33

(
1 +

a

33/2
√

2

)−2

.

For the case x2
1 + x2

2 ≥ a|x3| we use (5.40) again for

‖(−y) � x‖4
H ≥ z4

2

(x2
2 + x2

1)2

x4
1

,

which yields

(
inf

y∈H,y3=0
‖(−y) � x‖H

)2

≥ 4|x3|2

(x2
2 + x2

1)

(
33/2
√

2

a
+ 1

)−4/3

,

To obtain the result for a general hyperplane we consider

inf
y∈Π
‖(−y) � x‖H = inf

y∈Π
‖(−(v � y)) � (v � x)‖H = inf

(−v)�q∈Π
‖(−q) � (v � x)‖H,

where q := (q1, q2, q3) ∈ H, and v ∈ H is set

v :=
1

n3

(−2n2, 2n1,−c) .

Then (−v) � q ∈ Π is equivalent to q3 = 0, which yields the result.

Proof of Theorem 5.2: Let us assume that Ω is an open bounded convex polytope. Let
m ∈ N be the number of hyperplanes of ∂Ω, which are not orthogonal to the hyper-
plane y3 = 0. We denote these hyperplanes by Πj for 1 ≤ j ≤ m. Thus there exist
n1,j, n2,j, n3,j, cj ∈ R such that

Πj := {y ∈ H| n1,jy1 + n2,jy2 + n3,jy3 = cj},

where n3,j 6= 0 for 1 ≤ j ≤ m. By nj ∈ R3 we denote the unit normal of Πj. We use
Lemma 5.5 and inequality (5.15) to obtain∫

Ω

(
1

d1(x)2
+

1

d2(x)2
+

1

m

m∑
j=1

1

dC(x, aj)2

)
|u(x)|2 dx ≤ 5

∫
Ω

|∇H u(x)|2 dx (5.41)

for u ∈ C∞0 (Ω), where

aj :=
1

n3,j

(2n2,j,−2n1,j, cj) .
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The aim is to give a pointwise estimate for the weights on the left-hand side from below.
We take b ∈ ∂Ω such that δK(x) = ‖(−b) � x‖H, which exists since ∂Ω is compact and
δK is continuous.

The first case is b ∈ Πj for a fixed j. Since Ω is convex we compute the intersection
point with respect to d1(x) with Πj as well as the intersection point with respect to
d2(x) with Πj. The hyperplane separation theorem yields then

1

d1(x)2
+

1

d2(x)2
≥ 1

4

(−2n2,j + x1n3,j)
2 + (2n1,j + x2n3,j)

2

| − cj + 〈x, nj〉|2
.

Let a > 0. We use Proposition 5.12 for the case (−2n2,j/n3,j+x1)2 +(2n1,j/n3,j+x2)2 ≥
a| − c/n3 + x3 + x1n1/n3 + n2x2/n3| and get

1

d1(x)2
+

1

d2(x)2
≥

(
33/2
√

2

a
+ 1

)−4/3(
inf
y∈Πj
‖(−y) � x‖H

)−2

.

For the case (−2n2,j/n3,j +x1)2 +(2n1,j/n3,j +x2)2 ≤ a|−c/n3 +x3 +x1n1/n3 +n2x2/n3|
we use Lemma 2.2

1

m

m∑
k=1

1

dC(x, ak)2
≥ 1

πm

1

‖(−aj) � x‖2
H

≥ 1

πm
√
a2 + 16

| − c/n3 + x3 + x1n1/n3 + n2x2/n3|−1,

and then again Proposition 5.12 yields

1

m

m∑
k=1

1

dC(x, ak)2
≥ 1

4 · 33πm
√
a2 + 16

(
1 +

a

33/2
√

2

)−2(
inf
y∈Πj
‖(−y) � x‖H

)−2

.

We choose a > 0 such that

1

4 · 33πm
√
a2 + 16

(
1 +

a

33/2
√

2

)−2

=

(
33/2
√

2

a
+ 1

)−4/3

,

which obviously exists. The positive constant which fulfills that equation is denoted by
cm. If we summarize our estimates the weight function in (5.41) is then bounded from
below by(

33/2
√

2

a
+ 1

)−4/3(
inf
y∈Πj
‖(−y) � x‖H

)−2

≥

(
33/2
√

2

a
+ 1

)−4/3

‖(−b) � x‖−2
H ,

where we used b ∈ Πj. We recall that b was chosen such that δK(x) = ‖(−b) � x‖H.
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The second case is b := (b1, b2, b3) ∈ ∂Ω when the hyperplane which contains b, is
orthogonal to the hyperplane x3 = 0. We denote that hyperplane by Π. Because of the
orthogonality condition, the hyperplane is parametrized by

Πj := {y ∈ H| (b1 − x1)(y1 − b1) + (b2 − x2)(y2 − b2) = 0}.

We use the hyperplane separation theorem again and compute the intersection points
of d1(x), d2(x) with Πj obtaining

1

d1(x)2
+

1

d2(x)2
≥ (b1 − x1)2

((b1 − x1)2 + (b2 − x2)2)2
+

(b2 − x2)2

((b1 − x1)2 + (b2 − x2)2)2

=
1

(b1 − x1)2 + (b2 − x2)2
≥ 1

‖(−b) � x‖2
H
.

At that point we use that b was chosen, such that δK(x) = ‖(−b) � x‖H is fulfilled.
Summarizing our estimates we arrive at(

33/2
√

2

a
+ 1

)−4/3 ∫
Ω

|u(x)|2

δK(x)2
dx ≤ 5

∫
Ω

|∇H u(x)|2 dx,

where Lemma 2.2 finally yields the result.

Proof of inequality (5.14): Let us assume that cm > 0 fulfills

√
c2
m + 16

(
1 +

cm

33/2
√

2

)2/3

cm
4/3 =

1

27/33πm
.

It can be easily seen that

cm ≤ (4mπ)−1/3 ≤ (4π)−1/3.

Thus we get the following estimate

1

27/33πm
≤
√

(4π)−2/3 + 16

(
1 +

(4π)−1/3

33/2
√

2

)2/3

(4mπ)−1/9cm,

which yields

cm
−1 ≤ m8/9π8/93 · 219/9

√
2−4/3π−2/3 + 16

(
1 +

1

33/227/6π1/3

)2/3

.
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5.5 Convex polytopes with improved constants

In this section we prove that for some open bounded convex polytopes the constant in
Theorem 5.2 can be improved. We discuss that behavior in detail for convex cylinders.
At the end we show for the smallest constant c > 0 satisfying (5.3) that 2 ≤ c, which is
a similar result compared to the setting in the Euclidean case, which was discussed in
Section 1.3.

5.5.1 The improved version

Assumption 5.14. Let Ω be an open bounded convex polytope. Let m ∈ N denote the
number of hyperplanes of ∂Ω which are not orthogonal to the hyperplane x3 = 0. We
denote these hyperplanes by Πj for 1 ≤ j ≤ m. Thus there exist n1,j, n2,j, n3,j, cj ∈ R
such that

Πj := {y ∈ H| n1,jy1 + n2,jy2 + n3,jy3 = cj},

where n3,j 6= 0 for 1 ≤ j ≤ m. We assume that there exists a constant a > 0 such that
for all x ∈ Ω and all j ∈ {1, . . . ,m} holds

(−2n2,j/n3,j + x1)2 + (2n1,j/n3,j + x2)2 ≥ a| − c/n3 + x3 + x1n1/n3 + n2x2/n3|.
(5.42)

Theorem 5.15. Under Assumption 5.14 it holds(
33/2
√

2

a
+ 1

)−4/3 ∫
Ω

|u(x)|2

δC(x)2
dx ≤ 4

∫
Ω

|∇H u(x)|2 dx (5.43)

for all u ∈ C∞0 (Ω).

Proof. We use Lemma 5.5 to obtain∫
Ω

(
1

d1(x)2
+

1

d2(x)2

)
|u(x)|2 dx ≤ 4

∫
Ω

|∇H u(x)|2 dx (5.44)

for u ∈ C∞0 (Ω) and proceed in the same way as in the proof of Theorem 5.2. We treat
only the case b ∈ Πj with δK(x) = ‖(−b) � x‖H since the other one is verbatim the
same. By nj we denote the unit normal to Πj. Again we use the hyperplane separation
theorem and get

1

d1(x)2
+

1

d2(x)2
≥ 1

4

(−2n2,j + x1n3,j)
2 + (2n1,j + x2n3,j)

2

| − cj + 〈x, nj〉|2
.

Under Assumption 5.14 we use Proposition 5.12, yielding

1

4

(−2n2,j + x1n3,j)
2 + (2n1,j + x2n3,j)

2

| − cj + 〈x, nj〉|2
≥
(

33/2

a2−1/2
+ 1

)−4/3(
inf
y∈Πj
‖(−y) � x‖H

)−2

.

Since b ∈ Πj we use Lemma 2.2 and get the result.
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Remark 5.16. The last result can be extended to any convex bounded Ω as long as
there exists a constant a > 0 such that for any hyperplane which is not orthogonal to
x3 = 0 and which separates Ω from points lying on its boundary, inequality (5.42) must
hold.

5.5.2 Convex cylinders

We discuss briefly that there are domains, satisfying Assumption 5.14. Therefore we
consider domains of the form Ω = D × (α, β), where D ⊂ R2 is a bounded convex
domain and α < β. This domain is not a polytope but the hyperplanes which separate
the points lying in b ∈ ∂D × (α, β) are orthogonal to the hyperplane x3 = 0. Thus the
proof of Theorem 5.15 goes through and we get;

Corollary 5.17. Let Ω = D× (α, β) such that α < β and D ⊂ R2 is a bounded convex
domain. For fixed a > 0 we assume that for all x ∈ Ω holds

x2
1 + x2

2 ≥ a| − α + x3|, and x2
1 + x2

2 ≥ a| − β + x3|.

Then holds for all u ∈ C∞0 (Ω)(
33/2
√

2

a
+ 1

)−4/3 ∫
Ω

|u(x)|2

δC(x)2
dx ≤ 4

∫
Ω

|∇H u(x)|2 dx. (5.45)

Proof of Theorem 5.3: Let a > 0 be fixed. We consider the following domain Ωa :=
B1(pa) × (0, 1), where B1(pa) is the two-dimensional Euclidean ball with radius one
centered at pa := (

√
a + 1, 0). We check briefly the conditions of Corollary 5.17, where

α = 0 and β = 1. Let (x1, x2) ∈ B1(pa), then we have |x1−
√
a−1| < 1 and immediately

get x1 ≥
√
a, yielding

x2
1 ≥ a ≥ ax3 = a| − α + x3|, x2

1 ≥ a ≥ a(1− x3) = a| − β + x3|

since x3 ∈ (0, 1). Thus for Ωa inequality (5.45) holds, where the constant depends only
on a > 0.

5.5.3 On the sharp constant

We recall that we set δC(x) = 0 for x ∈ Ωc and prove the following:

Lemma 5.18. Let Ω be a bounded domain in H and let α ≥ 1
2
. Then there exists a

constant C(α) > 0 only depending on α such that

|max{δC(x)α − β, 0} −max{δC(y)α − β, 0}| ≤ C(α)dC(x, y)1/2

for any x, y ∈ H and β ≥ 0.
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5 Hardy inequalities for the Heisenberg Laplacian on convex bounded polytopes

Proof. We only have to prove the inequality for the case β = 0. For the case β > 0, we
use then

|max{δC(x)α − β, 0} −max{δC(y)α − β, 0}| ≤ |δC(x)α − δC(y)α|,

which holds for all x, y ∈ H. Let K ⊂ R+ be a compact set. For the following function
f(u) = uα there exists a constant M > 0 such that |f ′(u)| ≤ Mu−1/2 for all u ∈ K.
Thus we easily deduce for b > a that

|bα − aα| ≤
∫ b

a

|f ′(t)| dt ≤ 2M |
√
b−
√
a| ≤ 2M |a− b|1/2, for all a, b ∈ K. (5.46)

At that point we mimic the proof of Lemma 4.11 for the function δαC(·). The cases
x, y ∈ Ωc and x ∈ Ωc, y ∈ Ω are verbatim the same and the trivial ones. Thus let us
assume x, y ∈ Ω. Without loss of generality we assume that δC(x) > δC(y). Since d(·, ·)
is continuous, see (2.15) and ∂Ω compact, there exists a z ∈ ∂Ω such that δC(y) =
dC(z, y). Thus we get

|δC(x)α − δC(y)α| = δC(x)α − δC(y)α ≤ dC(x, z)α − dC(y, z)α.

Then we use (5.46) to arrive at.

|δC(x)α − δC(y)α| ≤ 2M |dC(x, z)− dC(y, z)|1/2 ≤ 2MdC(x, y)1/2. (5.47)

The last inequality follows by the triangle inequality.

Lemma 5.19. Let Ω be a bounded domain in H. For any α ≥ 1
2

and β > 0 the function

f(α,β)(x) := max{δC(x)α − β, 0}

is weakly differentiable with respect to X1 and X2 on H with

X1fα,β(x) = αχA(α,β)
(x)δC(x)α−1X1δC(x),

X2fα,β(x) = αχA(α,β)
(x)δC(x)α−1X2δC(x),

where χA(α,β)
(·) is the characteristic function of A(α,β) := {x ∈ Ω | δC(x)α ≥ β}.

Proof. Without loss of generality we consider only the case X1. We must show that
there exists a function v ∈ L1

loc(Ω) such that∫
Ω

X1u(x) f(α,β)(x) dx = −
∫

Ω

u(x)v(x) dx (5.48)

holds for any u ∈ C∞0 (H). Since we extended δC(·) by zero to the whole space, we
can integrate over H. We know that f(α,β)(·) is bounded on any compact set, and an
application of the dominated convergence theorem yields then∫

H
X1u(x)f(α,β)(x) dx = lim

h→0

(∫
H

u(x+ hx̃)

h
f(α,β)(x) dx−

∫
R3

u(x)

h
f(α,β)(x) dx

)
,

(5.49)

82



5.5 Convex polytopes with improved constants

where x̃ := (1, 0, x2/2). We make the change of variables x+ hx̃ 7→ x to obtain∫
H
X1u(x)f(α,β)(x) dx = lim

h→0

(∫
H
u(x)

f(α,β)(x− hx̃)

h
dx−

∫
R3

u(x)

h
f(α,β)(x) dx

)
= − lim

h→0

(∫
H
u(x)

f(α,β)(x− hx̃)− f(α,β)(x)

−h
dx

)
.

In the proof of Lemma 4.11 we showed that

|δC(x)− δC(y)| ≤ dC(x, y), for all x ∈ H.

We take that inequality and use [MC01, Theorem 2.5] to obtain that the following limit

lim
h→0

δC(x− hx̃)− δC(x)

−h
=: X1δC(x)

exists almost everywhere on H since (2.15) holds. Next we know by Lemma 5.18 in
combination with (2.15) that the function f(α,β) is absolutely continuous on H. Thus
we use the fundamental theorem of calculus to obtain

|f(α,β)(x− hx̃)− f(α,β)(x)| ≤
∫ h

0

|∂tf(α,β)(x− tx̃)| dt

≤ α

∫ h

0

χA(α,β)(x− tx̃)δα−1
C (x− tx̃)|X1δC(x− tx̃)| dt,

which holds almost everywhere on H. At that point we use that δC(·) is bounded since
Ω is bounded, and then we take χA(α,β)(x − tx̃)δ−1

C (x − tx̃) ≤ β−1/α into account to

obtain a constant M̃ > 0 independent of h such that

|f(α,β)(x− hx̃)− f(α,β)(x)| ≤ M̃

∫ h

0

1 · |X1δC(x− tx̃)| dt ≤ M̃h.

For the last inequality we used the Cauchy-Schwarz inequality and the Eikonal equation.
We stress that the last inequality holds almost everywhere on H. Hence, with an
application of the dominated convergence we arrive at∫

H
X1u(x)f(α,β)(x) dx = −

(∫
H
u(x) lim

h→0

f(α,β)(x− hx̃)− f(α,β)(x)

−h
dx

)
.

Since we know that δC is almost everywhere differentiable on H, we compute the deriva-
tive and obtain the desired result. The case of X2 is treated in the same way.

Theorem 5.20. Let Ω ⊂ H be a bounded domain. Then holds

inf
u∈C∞0 (Ω)\{0}

∫
Ω
|∇H u(x)|2 dx∫

Ω
|u(x)|2δC(x)−2 dx

≤ 1

4
. (5.50)
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Proof. Let d[a] be the set of functions, which are given by the closure of∫
Ω

|X1 u(x)|2 + |X2 u(x)|2 dx

initially given on C∞0 (Ω). It suffices to construct a sequence un ∈ C∞0 (Ω) such that

lim
n→∞

∫
Ω
|∇H un(x)|2 dx∫

Ω
|un(x)|2δC(x)−2 dx

=
1

4
. (5.51)

To this end we consider the sequence

ũn(x) = δC(x)1/2+1/n, n ∈ N.

and recall that δC(·) satisfies the Eikonal equation

|∇H δC(x)|2 = 1, for a.e. x ∈ Ω, (5.52)

see [MC01, Thm 3.1]. Moreover, from (2.15) we know that

M‖x− y‖e ≤ dC(x, y) ≤M−1‖x− y‖1/2
e . (5.53)

holds for some M > 0 and all x, y ∈ Ω. With the coarea formula one can easily prove
that ∫

Ω

δe(x)2/n−1 dx <∞, δe(x) := inf
y∈∂Ω
‖x− y‖e

because δe(·) is a Lipschitz function on R3 even when we set δe(·) := 0 on Ωc. Hence
the integral

∫
Ω
δC(x)2/n−1 dx <∞, and using (5.52) we easily find that∫

Ω
|∇H ũn(x)|2 dx∫

Ω
|ũn(x)|2δC(x)−2 dx

=

(
1

2
+

1

n

)2

∀ n ∈ N. (5.54)

At that point let us assume for a moment that fα,β ∈ d[a] for any β > 0 and α > 1
2
, see

Lemma 5.19 for the definition. Then we prove that f(α,β) → δαC for β → 0 in L2(Ω). We
use Lemma 5.19 and the Eikonal equation to arrive at∥∥∇H(f(α,β) − δαC)

∥∥
2

= α2

∫
Ω

δC(x)2α−2(1− χA(α,β)(x)) dx.

Since α > 1
2

we use the dominated convergence theorem and obtain that δαC ∈ d[a] for
any α > 1

2
.

Thus the only thing left to prove is fα,β ∈ d[a] for any β > 0 and α > 1
2
. The idea

is basically the same as the one to prove that the Euclidean distance function can be
approximated by C∞0 (Ω) functions with respect to the gradient of the Laplacian. For
the sake of completeness we state the proof here. Let us consider a function j : R3 → R
satisfying the following conditions:
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1. j ∈ C∞0 (R3),

2. j(x) ≥ 0 for all x ∈ R3,

3. j(x) = 0 for ‖x‖H ≥ 1,

4.
∫
R3 j(x) dx = 1.

For ε > 0, we set

jε(x) :=
1

ε4
j
(
ε−1(x)

)
, ε−1(x) := (ε−1x1, ε

−1x2, ε
−2x3),

and define the convolution operator with respect to H by

Jεu(x) := jε ∗ u(x) :=

∫
R3

jε(x� (−y))u(y) dy, for u ∈ L1
loc(R3).

From [Fol16, Prop. 2.39] we know that for any u ∈ Lp(R3) we have

‖Jεu‖p ≤ ‖u‖p, 1 ≤ p ≤ ∞

where ‖·‖p denotes Lp-norm.
Now we prove for fixed 1 ≤ p <∞ that Jεu→ u with respect to ‖·‖p for ε→ 0. Let

us fix u ∈ L1(R3). Since C∞0 (R3)) is dense, we take ϕ ∈ C∞0 (R3) such that ‖u− ϕ‖p < δ.
Then we get

‖Jεu− u‖p ≤ ‖Jε(u− ϕ)‖p + ‖Jεϕ− ϕ‖p + ‖ϕ− u‖p < 2δ + ‖Jεϕ− ϕ‖p.

For ε < 1 we know that there exists a compact set K ⊂ R3 with supp(Jεϕ − ϕ) ⊆ K
since ϕ has compact support, (5.53) and Lemma 2.2 hold. Thus we get the following

‖Jεϕ− ϕ‖p ≤ |K|
1/p sup

x∈K
|Jεϕ(x)− ϕ(x)|

= |K|1/p sup
x∈K
|
∫
R3

jε(x� (−y))(ϕ(y)− ϕ(x)) dy|

≤ |K|1/p sup
||x�(−y)||H<ε

|(ϕ(y)− ϕ(x))|.

We know that ϕ ∈ C∞0 (R3), and therefore ϕ is uniform continuous on R3 because of
(5.53) . This yields ‖Jεϕ− ϕ‖p → 0 for ε→ 0, implying that ‖Jεu− u‖p → 0 for ε→ 0.
The sequence to approximate fα,β is then given by

vε(x) := Jεfα,β(x) =

∫
A(α,β)

jε(x� (−y))(δC(y)α − β) dy.
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We stress that we can integrate over A(α, β) ∩Bε/M(x), where we set Bε/M(x) := {y ∈
R3 | ‖x− y‖e <

ε
M
} since (5.53) holds. Again we apply (5.53) to prove that

A(α, β) ⊆ {y ∈ Ω | δe(y) > β2/αM2},

where δe(y) := dist(∂Ω, y) in the Euclidean sense. Hence, we immediately get for ε <
M3β2/α

3
that the function vε ∈ C∞0 (Ω). At that point we use the dominated convergence

theorem to obtain

X1vε(x) =

∫
A(α,β)

X1jε(x� (−y))(δC(y)α − β) dy

=−
∫
A(α,β)

Y1jε(x� (−y))(δC(y)α − β) dy =

∫
A(α,β)

jε(x� (−y))Y1(δC(y)α − β) dy,

where Y1 := ∂y1+ 1
2
y2∂y3 . For the last equality we used Lemma 5.19. Hence we know that∥∥X1vε −X1f(α,β)

∥∥
p
→ 0 for ε→ 0 and show the same for X2, yielding that f(α,β) ∈ d[a]

for α > 1
2

and β > 0.
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Appendix A

Miscellaneous results

For the sake of completeness we give here proofs of theorems which are important for
this thesis and appear only in modified versions in the literature. However we do not
make any claim to originality. Throughout the appendix we assume that n ∈ N.

A.1 Boundary estimates for differential operators

We have seen in Section 4.5 and 4.6 that the growing order of the lower order term in
a Melas-type bound can be further improved if we assume a Hardy inequality. The key
was a straightforward generalization of the result in [Dav00] by E. B. Davies, which
was pointed out by R. Frank in [KW15]. In [Dav00] E. B. Davies studied second
order elliptic operators with Dirichlet boundary conditions on bounded domains and
proved L2 boundary decay estimates for the corresponding eigenfunctions. Although the
Heisenberg Laplacian is a subelliptic operator, Davies’ result is valid for this operator,
too. Therefore in this section we extend Davies’ L2 boundary decay estimate to a wider
class of differential operators. At the end of this section we discuss briefly differential
operators with magnetic field as well.

A.1.1 Boundary estimates for vector fields

Let Ω ⊂ Rn be a bounded domain. A vector field X on Ω is a real-valued first order
partial differential operator of the form

X =
n∑
j=1

aj(x)∂xj (A.1)

where ∂xj denote the partial derivatives and aj : Ω → R are Lipschitz continuous
functions. Let m ∈ N and X1, . . . , Xm be vector fields, then we consider the sum-of-
squares differential operator with respect to Dirichlet boundary conditions on Ω, denoted
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A Miscellaneous results

by

A(Ω) := −
m∑
j=1

X2
j + V, (A.2)

where V ∈ L1
loc(Ω) is a non-negative potential. The vector fields are of the form

Xj :=
n∑
k=1

aj,k(x)∂xk , (A.3)

satisfying the additional condition ∂xkaj,k(x) = 0 for all k ∈ {1, . . . , n}. We choose
A(Ω) =: A to be the Friedrichs extension, which is the self-adjoint operator in L2(Ω)
associated to the closure of the quadratic form

a[u] :=

∫
Ω

|∇Au(x)|2 + V |u(x)|2 dx (A.4)

initially given on C∞0 (Ω), where the gradient of A is given by ∇A := (X1, . . . , Xm), d[a]
is the domain of (A.4) and D(A) is the domain of A.

For a given real-valued function δ ∈ d[a] with |∇Aδ| ≤ 1 almost everywhere on Ω,
we assume that there exists a constant c > 0 such that∫

Ω

|u(x)|2

δ(x)2
dx ≤ c2

(∫
Ω

|∇Au(x)|2 + V |u(x)|2 dx

)
(A.5)

holds for all u ∈ C∞0 (Ω). In spirit of [Dav00] we say that A satisfies Hardy’s inequality
with respect to δ. The following result extends E. B. Davies’ result [Dav00, Theorem 4]
to the operator A:

Theorem A.1. Let Ω be a bounded domain, c ≥ 2 be given by (A.5), δ ∈ d[a] satisfying
|∇Aδ| ≤ 1 and δ > 0 on Ω, and for fixed j ∈ {1, . . . ,m} we assume ∂xkaj,k(x) = 0 for
all k ∈ {1, . . . , n}. Then∫

Ωβ

|u(x)|2

δ(x)2
dx ≤ c2+ 2

cβ
2
c ‖Au‖L2(Ω)

∥∥A1/c u
∥∥
L2(Ω)

(A.6)

holds for all u ∈ Dom(A) and any β > 0, where Ωβ := {x ∈ Ω | δ(x) < β}. Hence∫
Ωβ
|u(x)|2 dx ≤ c2+ 2

cβ2+ 2
c ‖Au‖L2(Ω)

∥∥A1/c u
∥∥
L2(Ω)

(A.7)

any β > 0.
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A.1 Boundary estimates for differential operators

If we choose A to be the Laplacian without potential for m = n and δ as the
Euclidean distance function to the boundary, then we obtain the condition of the well-
known Hardy inequality for the Laplacian, which was discussed in Section 1.3. From
geometrical point of view this kind of inequality is extendable to a huge class of sum-
of-squares differential operators.

The vector field (A.1) has a geometrical interpretation. We consider the vector
(a1(x), . . . , an(x))t as an element of the tangential space at the point x. The natural
distance function is then given by the Carnot-Carathéodory metric generated by the
vector fields of the considered sum-of-squares differential operator. Hence, we assume
that the vector fields fulfill the Hörmander finite rank condition, which guarantees the
connectivity between any two points by piecewise smooth curves lying in the span of the
vector fields, see for instance [Mon02]. We recall that A is then a subelliptic operator if
m < n, see [Hör66, Ego75]. In [DGP09] D. Danielli, N. Garofalo and N. C. Phuc studied
several inequalities of Hardy-Sobolev type in Carnot-Carathéodory spaces and proved
for a class of sum-of-squares differential operators the validity of (A.5) for suitable Ω,
where δ is the distance function to the boundary of Ω with respect to the Carnot-
Carathéodory metric. We stress that under additional conditions on the vector fields
the Eikonal equation

|∇Aδ| = 1 (A.8)

holds almost everywhere on Ω, see [MC01, Thm. 3.1]. We have already seen that the
Heisenberg Laplacian is an operator which satisfies (A.5) for certain domains and (A.8),
as well.

Proof of Theorem (A.1): We follow the proof of [Dav00, Theorem 4]. Let us fix u ∈
Dom(A) and set

ϕ(x) := (max{δ(x), β})−1/c.

for x ∈ Ω and β > 0. First we check that ϕu ∈ d[a]. Since u ∈ Dom(A) ⊆ d[a], ϕ ∈ d[a],
we get∫

Ω

|∇A(ϕ(x)u(x))|2 dx ≤ 2

∫
Ω

|ϕ(x)∇Au(x)|2 dx+ 2

∫
Ω

|∇Aϕ(x)|2|u(x)|2 dx.

We use ϕ ≤ β−1/c and |∇Aδ| ≤ 1 to obtain then that ϕu ∈ d[a]. Thus we may use (A.5)
to get

c−2

∫
Ω

|ϕ(x)u(x)|2

δ(x)2
dx ≤

∫
Ω

|ϕ(x)∇Au(x) + u(x)∇Aϕ(x)|2 dx+

∫
Ω

V |u(x)ϕ(x)|2 dx

= 〈ϕ2∇Au, ∇Au〉+ 〈u, |∇Aϕ|2u〉+
1

2
〈∇Au, u∇A(ϕ2)〉

+
1

2
〈u∇A(ϕ2), ∇Au〉+ 〈V uϕ, uϕ〉,
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where we denote by 〈 ·, ·〉 the scalar product in L2(Ω). An integration by parts and the
condition ∂xkaj,k(x) = 0 for all k ∈ {1, . . . , n} yield

c−2

∫
Ω

|ϕ(x)u(x)|2

δ(x)2
dx ≤ Re〈ϕ2u, Au〉+ 〈u, |∇A ϕ|2u〉. (A.9)

Next we will estimate the first term on the right hand side. To this end we use (A.5),
which gives

δ−2 ≤ c2A

in the operator sense. Then, by the Heinz inequality [Dav80, Lemma 4.20], which is
applicable since c ≥ 2, we get

ϕ4 ≤ (δ−2)2/c ≤
(
c2A
)2/c

.

Since A−1/c is bounded in L2(Ω) we obtain∥∥ϕ2A−1/c
∥∥ ≤ c2/c,

where ‖ · ‖ stands for the operator norm in L2(Ω). Hence

|〈Au, ϕ2u〉| = |
〈
Au, ϕ2A−1/cA1/cu

〉
|

≤ ‖Au‖L2(Ω)c
2/c
∥∥A1/cu

∥∥
L2(Ω)

.

So we arrive at

c−2

∫
Ω

|ϕ(x)u(x)|2

δ(x)2
dx ≤ ‖Au‖L2(Ω)c

2/c
∥∥A1/cu

∥∥
L2(Ω)

+ 〈u, |∇Aϕ|2u〉. (A.10)

On the other hand, |∇Aδ| ≤ 1 implies that

|∇Aϕ(x)|2 ≤ c−2δ(x)−2/c−2χ{δ(x)≥β}(x),

where χ{δ(x)>β}(·) is the characteristic function of the set {x ∈ Ω | δ(x) ≥ β}. Inserting
the above identity into (A.10), we obtain∫

{x∈Ω|δ(x)<β}

|u(x)|2

δ(x)2
dx ≤ β2/c‖Au‖L2(Ω)c

2+2/c
∥∥A1/cu

∥∥
L2(Ω)

. (A.11)

The other result now follows from the estimate∫
{x∈Ω|δ(x)<β}

|u(x)|2 dx ≤ β2

∫
{x∈Ω|δ(x)<β}

|u(x)|2

δ(x)2
dx.
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A.1.2 The magnetic case

Here we briefly discuss that Davies’ result holds for vector fields with magnetic fields,
too. We discuss here a more general case; we consider partial differential operator of
the form

X =
n∑
j=1

aj(x)∂xj + ibj(x) (A.12)

where aj, bj : Ω → R are Lipschitz continuous functions. We call this differential
operator a generalized vector field. Let m ∈ N and X1, . . . , Xm be generalized vector
fields, then we consider the sum-of-squares differential operator with respect to Dirichlet
boundary conditions on Ω, denoted by

Ab(Ω) := −
m∑
j=1

X2
j,b + V, (A.13)

where V ∈ L1
loc(Ω) is a non-negative potential. The vector fields are of the form

Xj,b :=
n∑
k=1

aj,k(x)∂xk + ibj,k(x), (A.14)

satisfying the additional condition ∂xkaj,k(x) = 0 for all k ∈ {1, . . . , n}. If all the
bj,k do not depend on k for any 1 ≤ j ≤ m and m = n, then the vector potential
B(x) := n(b1,k(x), . . . , bn,k)

t describes a magnetic field in Rn. The differential operator
Xj,0 is defined as Xj,b such that all bj,k = 0.

We choose Ab(Ω) =: Ab to be the Friedrichs extension, which is the the self-adjoint
operator in L2(Ω) associated with the closure of the quadratic form

ab[u] :=

∫
Ω

|∇Abu(x)|2 + V |u(x)|2 dx (A.15)

initially given on C∞0 (Ω), where the gradient of Ab is given by ∇Ab := (X1,b, . . . , Xm,b),
d[ab] is the domain of (A.15) and D(Ab) is the domain of Ab. The operator A0 is
defined as Ab such that all bj,k = 0 for j ∈ {1, . . . ,m} and k ∈ {1, . . . , n}, which yields
an operator of the form (A.2).

We still assume that (A.5) and (A.8) are fulfilled for the operator A0, not for Ab.
We will see in the proof of the next theorem that the diamagnetic inequality extends
the result of the previous subsection for A0 to Ab.

Corollary A.2. Let Ω be an open bounded domain, c ≥ 2 be given by (A.5) with
respect to A0, d[a0] = d[ab], δ ∈ d[a0] satisfying |∇A0δ| ≤ 1 and δ > 0 on Ω, and for
fixed j ∈ {1, . . . ,m} we assume ∂xkaj,k(x) = 0 for all k ∈ {1, . . . , n}. Then∫

Ωβ

|u(x)|2

δ(x)2
dx ≤ c2+ 2

cβ
2
c ‖Ab u‖L2(Ω)

∥∥∥A1/c
b u

∥∥∥
L2(Ω)

(A.16)
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holds for all u ∈ Dom(Ab) and any β > 0, where Ωβ := {x ∈ Ω | δ(x) < β}. Hence∫
Ωβ
|u(x)|2 dx ≤ c2+ 2

cβ2+ 2
c ‖Ab u‖L2(Ω)

∥∥∥A1/c
b u

∥∥∥
L2(Ω)

(A.17)

any β > 0.

Proof. First of all we consider u ∈ d[a0] = d[ab], then we prove that |u| ∈ d[a0]. There-
fore we recall [LL01, Thm. 6.17]

∂xj |u(x)| =

{
Re
(
u(x)
|u(x)|∂xju(x)

)
if u(x) 6= 0,

0 if u(x) = 0.

Since all aj,k(x) and bj,k are real-valued functions, we obtain

〈Xj,0|u|, Xj,0|u|〉 =
n∑
k=1

n∑
k̃=1

〈
aj,k∂xk |u|, aj,k̃∂xk̃ |u|

〉
=
〈

Re
(
u(x)
|u(x)|

∑n
k=1 aj,k∂xku(x)

)
, Re

(
u(x)
|u(x)|

∑n
k̃=1 aj,k̃∂xk̃u(x)

)〉
=
〈

Re
(
u(x)
|u(x)|Xj,bu

)
, Re

(
u(x)
|u(x)|Xj,bu

)〉
≤ 〈Xj,bu, Xj,bu〉

(A.18)

If we sum over all j, we get |u| ∈ d[a0]. Let us skip back to the proof of Theorem (A.1).
Inequality (A.9) and a density argument yield for all f ∈ d[a0]

c−2

∫
Ω

|ϕ(x)f(x)|2

δ(x)2
dx ≤ Re〈∇A0(ϕ

2f), ∇A0f〉+ Re〈V ϕ2f, f〉

+ 〈 f, |∇A0 ϕ|2f〉,

where ϕ(x) := (max{δ(x), β})−1/c since ϕ2 · f ∈ d[a0]. At this point we assume u ∈
D(Ab) ⊂ d[ab] = d[a] and set f(x) = |u(x)|. Then we apply (A.18) and use integration
by parts to arrive at

c−2

∫
Ω

|ϕ(x)u(x)|2

δ(x)2
dx ≤ Re〈ϕ2u, Abu〉+ 〈u, |∇A0 ϕ|2u〉.

The rest is done in the same way as the proof of Theorem (A.1).

A.2 The Legendre transform

We consider the Legendre transform of a function f : [0,∞) → R, which is defined for
p ≥ 0, by

f ?(p) := sup
x≥0

(px− f(x)).
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A.2 The Legendre transform

We assume that the supremum of f ?(p) exists for all p ≥ 0, which is valid for instance
if f is a convex, non-negative function.

In the Chapters 3 and 4 we saw that the Legendre tranformation transforms in-
equalities for Riesz means of order one into inequalities for the eigenvalue sum. Let us
assume that we have an inequality of the following form∑

j:λj<x

(x− λj) ≤ f(x)

for all x ≥ 0, where {λj}j∈N is a positive, nondecreasing and unbounded sequence. The
Legendre transform turns this inequality into

sup
x≥0

(
px−

∑
j:λj<x

x+
∑
j:λj<x

λj
)
≥ f ?(p), p ≥ 0. (A.19)

We show that the left-hand side is bounded from above by

(p− [p])λ1 +

[p]∑
j=1

λj,

for all p > 0, where [p] := min{k ∈ Z|k ≥ p}. Let us fix p > 0 and consider x ≥ 0 such
that λk ≤ x < λk+1 for k ∈ N.

First of all we assume that k < [p] and use λk ≤ x < λk+1 to obtain

px−
∑
j:λj<x

x+
∑
j:λj<x

λj = (p− [p])x+ ([p]− k)x−
[p]∑

j=k+1

λj +

[p]∑
j=1

λj

≤ (p− [p])x+

[p]∑
j=1

λj ≤ (p− [p])λ1 +

[p]∑
j=1

λj.

The case k = [p] is trivial. Thus we assume that k > [p] and get

px−
∑
j:λj<x

x+
∑
j:λj<x

λj = px− kx+
k∑

j=[p]+1

λj +

[p]∑
j=1

λj

≤ px− kx+ (k − [p])λk +

[p]∑
j=1

λj

≤ (p− [p])x+

[p]∑
j=1

λj ≤ (p− [p])λ1 +

[p]∑
j=1

λj.

The last case 0 ≤ x < λ1 is trivial. Thus (A.19) yields the following:
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Corollary A.3. Let {λj}j∈N be a positive, nondecreasing and unbounded sequence such
that for all x ≥ 0 holds ∑

j∈N :λj<x

(x− λj) ≤ f(x),

where f : [0,∞)→ R. Then holds for all n ∈ N

n∑
j=1

λj ≥ sup
x≥0

(nx− f(x)).

A.3 The inradius for domains with infinite volume

For x ∈ Ω, we consider the following

δe(x) := inf
y∈∂Ω
‖x− y‖e, Re(Ω) := sup

x∈Ω
δe(x),

where ‖x‖e is the Euclidean length of x in Rn. The quantity Re(Ω) is called the inradius.

Proposition A.4. Let ∅ 6= Ω ⊂ Rn be a domain such that |Ω| <∞. Then there exists
a point p ∈ Ω such that

BRe(Ω)(p) ⊆ Ω, (A.20)

where BRe(Ω)(p) := {y ∈ Rn : ‖p− y‖e < Re(Ω)}.

Proof. This proposition is trivial if Ω is bounded because Ω is then compact and δe(·)
continuous since one can easyily check that

|δe(x)− δe(y)| ≤ ‖x− y‖e, y, x ∈ Rn,

where δe(x) := 0 for x ∈ Ωc.
Let us assume that Ω is an unbounded domain with |Ω| <∞. Since Ω is a nonempty

domain, one can easily check that ∂Ω 6= ∅. First of all we show that

Re(Ω) = sup{R > 0 | ∃a ∈ Ω such that BR(a) ⊆ Ω}. (A.21)

Let R > 0 and a ∈ Ω such that BR(a) ⊆ Ω. It follows then

R ≤ δe(a) ≤ Re(Ω).

Taking the supremum yields the first inequality. For the next one we take the sequence
δe(xn) → Re(Ω) for n → ∞ with xn ∈ Ω. We show that Bδe(xn)(xn) ⊆ Ω for all n ∈ N.
Let us assume that there exists an n ∈ N such that there exists a point x ∈ Bδe(xn)(xn)
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A.3 The inradius for domains with infinite volume

which does not lie in Ω. Then we consider the convex combination ϕ(t) = (1− t)xn+ tx
for t ∈ [0, 1] and know that there exists a t̃ ∈ (0, 1) such that ϕ(t̃) ∈ ∂Ω. We obtain
then

δe(xn) ≤
∥∥xn − ϕ(t̃)

∥∥
e
≤ ‖xn − x‖e < δe(xn),

yielding a contradiction. Thus Bδe(xn)(xn) ⊆ Ω holds for all n ∈ N and we know that
(A.21) holds.

Since |Ω| <∞, we see that Re(Ω) <∞ because (A.21) holds. In addition we obtain
a sequence of Rn and an such that for all n ∈ N holds

BRn(an) ⊆ Ω (A.22)

with Rn → Re(Ω) for n→∞. Without loss of generality we assume that Rn is strictly
increasing. We show that an is a bounded sequence. Let us assume that an is unbounded.
Then we obtain

∞⋃
n=1

BR1(an) ⊆
∞⋃
n=1

BRn(an) ⊆ Ω.

We can find as subsequence nk of an such that BR1(ank) are disjoint for all k ∈ N
because an is unbounded, which contradicts |Ω| < ∞. Thus, we know that an and Rn

are bounded, meaning that

A :=
⋃
n∈N

BRn(an)

is bounded, too. Obviously we get then by A ⊆ Ω the following

Rn ≤ sup
x∈A

δe(x) ≤ sup
x∈Ω

δe(x) = Re(Ω).

Taking the limit we obtain that the inradius of Ω is the same as the one of A. Since A
is bounded, we know that there exists a point p ∈ Rn such that

BRe(Ω)(p) ⊆ A ⊆ Ω,

which gives the proof.

Remark A.5. Proposition A.4 also holds if we replace the Euclidean distance by the
C-C metric dC induced by some vector fields on Rn under the following assumption:
the generated C-C metric must fulfill that any two points lying in Rn are connected
by a (not necessarily unique) geodesic and that for any given compact set K ⊂ Rn the
identity function (K, ‖·‖e) 7→ (K, dC) is Hölder continuous.
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A.4 On the volume of convex domains

Let Ω ⊆ Rn be open bounded and convex. In this section we give a uniform bound on
the volume of points lying in the outer parallel set of Ω. Hence we define the following
quantities

Ωβ := {x ∈ Ω | δe(x) < β}, δe(x) := inf
y∈∂Ω
‖x− y‖e

for any β ∈ (0,Re(Ω)], where Re(Ω) := supx∈Ω δe(x) denotes the inradius of Ω. The
n-dimensional Lebesgue measure of Ω is denoted by |Ω|. In this section we want to
prove the following:

Theorem A.6. Let Ω ⊆ Rn be an open bounded convex set. Then we have

|Ωβ|
β
≥ |Ω|

Re(Ω)

for all β ∈ (0,Re(Ω)].

This result was stated the first time in [KW15, Lemma 4.2]. However, it was pointed
out by S. Larson that a mistake appeared in the proof. The authors used that if Ω has
smooth boundary the inner parallel set {x ∈ Ω | δe(x) ≥ β} has smooth boundary as
well, which generally is not true, not even in the convex case, see [Lar15]. S. Larson
also explained an alternative proof, which is presented here:

Proof of Theorem (A.6): First of all let us denote by Hn−1 the (n − 1)-dimensional
Hausdorff measure on Rn. Let us recall the Eikonal equation

|∇δe(x)| = 1, for a.e. x ∈ Ω

which in combination with the coarea formula yields

|Ωβ| =
∫ β

0

Hn−1({x ∈ Ω|δe(x) = t}) dt (A.23)

Hence, we know that |Ωβ| is absolutely continuous on [0,Re(Ω)] and therefore almost
everywhere differentiable on [0,Re(Ω)]. Let us consider the function f(β) := |Ωβ|β−1

and compute its derivative

f ′(β) =
Hn−1({x ∈ Ω|δe(x) = β})β −

∫ β
0
Hn−1({x ∈ Ω|δe(x) = t}) dt

β2
.

Since Ω is convex, we know that {x ∈ Ω|δe(x) ≥ β} is convex, too. Thus for β1 < β2 we
get

{x ∈ Ω|δe(x) ≥ β2} ⊆ {x ∈ Ω|δe(x) ≥ β1}.
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From [Web94, p. 295] we know that for two convex compact domains with A ⊆ B the
surface area of A is less equal than the surface area of B. From [Fed69, p.271] we know
that the surface area and the (n − 1)-dimensional Hausdorff measure of the boundary
of convex sets match up to a multiple constant. Thus for β1 < β2 we obtain

Hn−1({x ∈ Ω|δe(x) = β2}) ⊆ Hn−1({x ∈ Ω|δe(x) = β1}).

An immediate consequence is then that f ′(β) ≤ 0 almost everywhere on [0,Re(ω)].
Let us fix a ∈ (0,Re(Ω)]. We can easily prove using (A.23) that the function f(β) is
absolutely continuous on [a,Re(Ω)]. Thus, we can apply the fundamental theorem of
calculus and use the negativity of f ′(β) almost everywhere on [a,Re(Ω)] to prove that
the function f(β) is decreasing on [a,Re(Ω)]. Hence, we immediately obtain

|Ωa|
a
≥ |Ω|

Re(Ω)

for any a ∈ (0,Re(Ω)], yielding the desired result.
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[Hör66] Lars Hörmander, Pseudo-differential operators and non-elliptic boundary
problems, Ann. of Math. (2) 83 (1966), 129–209.

[Hör67] , Hypoelliptic second order differential equations, Acta Math. 119
(1967), 147–171.

[How80] Roger Howe, On the role of the Heisenberg group in harmonic analysis,
Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 2, 821–843.

[HS96] P. D. Hislop and I. M. Sigal, Introduction to spectral theory, Applied Math-
ematical Sciences, vol. 113, Springer-Verlag, New York, 1996, With appli-
cations to Schrödinger operators.

[Ivr80] V. Ja. Ivrii, The second term of the spectral asymptotics for a Laplace-
Beltrami operator on manifolds with boundary, Funktsional. Anal. i
Prilozhen. 14 (1980), no. 2, 25–34.

[Ivr98] Victor Ivrii, Microlocal analysis and precise spectral asymptotics, Springer
Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

[KMP06] Alois Kufner, Lech Maligranda, and Lars-Erik Persson, The prehistory of
the Hardy inequality, Amer. Math. Monthly 113 (2006), no. 8, 715–732.

[Koh05] J. J. Kohn, Hypoellipticity and loss of derivatives, Ann. of Math. (2) 162
(2005), no. 2, 943–986, With an appendix by Makhlouf Derridj and David
S. Tartakoff.
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espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–
60.
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