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German Abstract - Zusammenfassung

Das Ziel von Shape from Shading (SfS) ist die Rekonstruktion der 3-D Oberflächentiefe
innerhalb einer Szene durch die Verwendung der Intensitätsvariationen aus einem
einzelnen 2-D Eingabebild, wobei Informationen über die Oberflächenreflexion,
Beleuchtungs- und Kamerabedingungen gegeben sind. Für dieses klassische Problem
in Computer Vision wurden im wesentlichen zwei Klassen von Ansätzen entwickelt:
eine Klasse basiert auf partiellen Differentialgleichungen (PDGls) während die
andere sich auf Variationsansätze stützt.

Im allgemeinen beinhalten PDGl-basierte Ansätze fortgeschrittenere Modellan-
nahmen wie etwa die perspektivische Projektion oder weitergehende Reflexion.
Sie reagieren allerdings empfindlicher auf Bildrauschen und fehlende Information.
Darüberhinaus wurde bis jetzt – trotz des Fortschritts hinsichtlich weitergehen-
derer Modellannahmen – kein Verfahren vorgestellt, welches allgemeine Beleuch-
tungsszenarien im Hinblick auf die Position der Lichtquelle berücksichtigt.

Im Gegensatz zu PDGl-basierten Ansätzen beinhalten Variationsansätze für
gewöhnlich eher einfache Modellannahmen wie etwa die orthografische Projektion
oder Lambertsche Reflexion. Andererseits sind sie durch ihren Glattheitsterm robust
unter Bildrauschen und fehlender Information.

Die Hauptdefizite von bestehenden Variationsansätzen setzen sich zusammen
aus: (i) Einige Methoden verwenden approximierte Oberflächennormalen für per-
spektivisches SfS (PSfS), indem sie sich der Normalen aus der orthografischen
Projektion bedienen. (ii) Weiterhin dominieren indirekte Strategien: im ersten Schritt
werden die Oberflächennormalen unter Verwendung von Hilfsvariablen gewonnen.
Anschließend wird die Tiefe durch die Integration der Normalen mit Hilfe der
Integrierbarkeits-Nebenbedingung rekonstruiert.

In Anbetracht der Haupteigenschaften und Defizite beider Klassen von Ansätzen
liefert die vorliegende Arbeit Beiträge sowohl zu PDGl-basierten Verfahren als auch
zu Variationsansätzen, jeweils im Hinblick auf Aspekte der Modellierung und der
Numerik.

Bei den PDGl-basierten Ansätzen stellen wir ein neues PSfS-Modell basierend
auf allgemeinen Beleuchtungsgleichungen (ABGls) vor, das durch Hamilton-Jacobi
Gleichungen (HJGls) beschrieben wird. Anders als bisherige Modelle kann unser



German Abstract - Zusammenfassung

vorgestelltes Modell tatsächlich mit allgemeinen Beleuchtungsszenarien im Hinblick
auf die Position einer Lichtquelle umgehen. Zusätzlich erweitern wir das Modell
so, dass es auch mit nicht-Lambertschen Objekten zurechtkommt. Abgesehen von
der Modellierungsseite entwickeln wir ein numerisches Schema, das auf der Fast-
Marching-Methode (FM) aufbaut, welche als eine der effizientesten Methoden zu
Lösung der HJGls gilt. Unser Schema erlaubt es uns, auf effiziente Weise Lösungen
für die vorgestellten ABGls zu erhalten, indem die zu Beginn der Berechnung
gegebene Information an kritischen Punkten auf die verbleibenden, d.h. die noch zu
berechnenden Bereiche, ausgebreitet wird.

Im Bereich der Variationsansätze setzen wir unser Energiefunktional für PSfS
unter Verwendung einer direkten Tiefenparametrisierung und eines kanten-erhaltend-
en Regularisierers zusammen. Unsere Methode ist ein voll perspektivischer und
direkter Ansatz: die verwendeten Oberflächennormalen werden aus der perspektivis-
chen Projektion hergeleitet anstatt sie den orthografischen Modellen zu entlehnen.
Da unsere Modelle direkt unter Verwendung der Tiefe optimiert werden, können
wir darüber hinaus auf zusätzliche Schritte wie etwa die Integration von Gradien-
tenfeldern und zusätzliche Terme wie etwa die Integrabilitätsbedingung verzichten
– im Gegensatz zu existierenden Variationsansätzen. Auf der Seite der Numerik
stellen wir für die Optimierung ein alternierendes explizites Schema vor, um mit den
hyperbolischen Eigenschaften des Datenterms, welcher auf Grund der hochgradig
nicht-konvexen Energie in eine grob-nach-fein Strategie eingebettet ist, umzugehen.
Weiterhin entwickeln wir ein hyperbolisches Warping-Schema, um die Beschränkun-
gen der Zeitschrittweite und die starke Nichtlinearität des vorgenannten expliziten
Schemas zu überwinden, indem wir einen Linearisierungsansatz, welcher auf einem
verzögerten Upwind-Schema und einer verzögerten Diffusivitätsmethode fußt, in
einen Gauß-Newton-artigen grob-nach-fein Löser einbetten. Unser Schema erzielt
nicht nur einen signifikanten Geschwindigkeitsschub, sondern bietet verglichen mit
traditionellen expliziten Lösern auch einen substantiellen Nutzen im Falle starker
Regularisierung oder hochauflösender Bilddaten.
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Shape from Shading (SfS) aims at reconstructing the 3-D surface depth in a scene
using intensity variations from a single 2-D input image with information given on
surface reflectance, illumination and camera conditions. For this classical problem
in computer vision, mainly two classes of approaches have been developed in the
field: One is based on partial differential equations (PDEs) and the other relies on
variational methods.

In general, PDE-based methods have more advanced model assumptions such
as the perspective projection and advanced reflectance. However, they are more
sensitive to noise and missing information. Moreover, despite the progress with the
advanced model assumptions no model has been proposed so far to consider general
illumination scenarios in terms of the position of a light source.

In contrast to PDE-based approaches, variational methods usually make relatively
simple model assumptions such as the orthographic projection and Lambertian
reflectance. But they are robust with respect to noise and missing information
because of the smoothness term. The main shortcomings of existing variational
methods are: (i) Some methods use approximated surface normals for perspective SfS
(PSfS) by borrowing normals from orthographic models. (ii) In addition, indirect
strategies are dominant: As a first step, surface normals are obtained using auxiliary
variables. Then, as a subsequent step the depth is reconstructed by integrating the
normals with the integrability constraint.

Being aware of these main properties and shortcomings of each approach, the
present thesis makes contributions to both PDE-based and variational approaches,
each of which with respect to modelling and numerical aspects.

For PDE-based approaches, we propose a novel PSfS model called generalised
brightness equations (GBEs) described by Hamilton-Jacobi equations (HJEs). In contrast
to existing models, our proposed model can actually handle general illumination
scenarios in terms of the position of a light source. Furthermore, we extend the
model in a way that it can also manage non-Lambertian objects. Apart from the
modelling side, we develop a numerical scheme based on the fast marching (FM)
method which is known to be one of the most efficient methods for solving HJEs. Our
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scheme allows to obtain solutions efficiently to the proposed GBEs by propagating
the initial information at critical points to the remaining computational domain.

For variational methods, we construct our energy functional for PSfS by making
use of a direct depth parametrisation and an edge-preserving regulariser. Our
method is a full perspective and direct approach: The employed surface normals in
our models are derived from the perspective projection instead of borrowing from
orthographic models. Moreover, since our models are optimised with respect to the
depth directly, neither a subsequent step such as the integration of gradient fields
nor an additional term such as integrability constraint is required in contrast to most
existing variational methods. On the numerical side, we propose an alternating
explicit scheme as an optimisation strategy to deal with the hyperbolic properties of
the data term, which is embedded into a coarse-to-fine framework due to highly non-
convex energy. Furthermore, we develop a hyperbolic warping scheme to overcome
the time step size constraint and the strong nonlinearity of the aforementioned
explicit-type scheme by embedding a linearisation approach based on a lagged
upwind scheme and lagged diffusivity method into a Gauß-Newton type coarse-
to-fine solver. Our scheme not only achieves a significant speedup but also offers a
substantial benefit for a large amount of regularisations as well as high resolution
images compared to traditional explicit solvers.



Chapter 1

Introduction

The world that we live in consists of numerous objects, each of which has its own
shape. In daily life, we encounter many situations where we have to interact with
these objects via our visual system by looking at them, by recognising them and
by responding to them accordingly, e.g. when observing the surface of the moon
through a telescope. One can note that during the detection and recognition of
an object our brain has actually demonstrated the capability of implicitly inferring
the 3-D surface shape of an object from a 2-D retinal image without making any
serious efforts. This type of perception is, however, still by no means trivial for
computers despite all sophistications with considerable technological advancement
[99]. Therefore, a clear understanding of this process constitutes an integral part for
enhancing the quality of computer vision systems.

The aforementioned inference process is known as Shape from Shading (SfS) and
aims at extracting the 3-D depth information of an object (shape) relying on the light
intensity variations from a single 2-D grey value image (shading), provided that the
information on the surface reflectance, the camera and the illumination conditions
is available, see Figure 1.1. During the recovery process, only the shading plays a
crucial role as a cue upon the typical assumption that a surface patch facing towards
the light source in a scene receives more energy and thereby appears brighter than
the one facing away from the source.

Given the fact that this monocular cue based strategy, unlike other 3-D reconstruc-
tion methods such as stereo or multi-view, does not depend on texture information,
it can be an appealing alternative, particularly when the setup of two or multiple
cameras is not allowed possibly due to space constraints or a wide baseline. This
distinct advantage leads naturally to an enormous diversity of applications in a wide
variety of fields, ranging from large scale problems like astronomy [102, 214] and
terrain analysis [40, 183, 205, 266] to small scale ones including, but not limited to,
dentistry [3], endoscopy [167, 171, 237, 270], document restoration [60, 278, 279, 280],
reconstruction of archaeological finds [84], and quality control in manufacturing
industry [74, 81, 169]. Consequently, SfS has been one of the fundamental problems
in computer vision for almost a half-century [79, 87, 234, 281].
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(a) Input: Shading. (b) Output: Shape.

Figure 1.1. The Shape from Shading (SfS) problem.

1.1 Perspective Shape from Shading: An Overview
In this section, we provide a brief overview of approaches to solve the problem and
how they have made progress with special emphasis on modelling assumptions. To
this end, we focus mainly on two classes of approaches following the classification
in [281]: One approach is to make use of partial differential equations (PDEs), the
other one is the usage of variational methods. For both classes, we are particularly
interested in perspective SfS (PSfS) methods which correspond to relatively modern
and realistic approaches [79].

1.1.1 PDE-based Methods
This section gives an insight into PDE-based SfS methods by having a look at the
most important related work in the field.

Basic Idea of PDE-based Methods

Typically, the SfS problem is formulated by the so-called brightness equation (or
image irradiance equation) [116] which describes the relationship between the
obtained grey value image and the surface profiles of an object by incorporating the
surface normal vectors in consideration of illumination conditions. Since the 1970’s
when Horn had proposed to solve the image irradiance equation by propagating
the depth information at brightest points of an input image to the rest of the
computational domain [116], most PDE-based methods have followed the same
fundamental principle for reconstruction [79, 281]. On this account, PDE-based
methods are also called propagation methods despite all the differences in each model.
The points with maximal grey value called singular points (or critical points) are
of great importance in this approach not only from a theoretical viewpoint, e.g. for
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an ambiguity analysis [44, 78, 172] or for mathematical concepts such as viscosity
solutions [63, 64], but also for the development of efficient algorithms, e.g. the fast
marching (FM) algorithm [230].

Related Work

Classical PDE-based Methods. According to [79], it was the Dutch astronomer
Van Diggelen who first attempted to use photometric cues for surface reconstruction
in the 1950’s [250]. Rindfleisch, then, proposed the first solution in the 1960’s,
where he used photometric properties of a surface to extract the profile of lunar
topography [214]. Subsequently, Horn coined the term “Shape from Shading” for
this problem, and formulated the problem as nonlinear first-order PDEs [116, 117]
by generalising the solution by Rindfleisch based on so-called characteristic strips
expansions [79, 116, 281]. Since most approaches in this period had been designed for
applications in astronomy 1 [120, 127, 185, 265], the following simplified assumptions
have been dominant for almost three decades [79, 281]: (i) The camera performs a
simple orthographic projection, (ii) a light source is placed at infinity, and (iii) the
object under consideration has Lambertian surface.

PDE-based Perspective Shape from Shading. As stated in [281], the reconstruction
results of orthographic SfS models were still not compelling until the end of the 1990’s,
even if novel notions such as viscosity solutions [219] and level set formulations
[136, 139] were introduced to resolve inherent difficulties of the problem, e.g. the
existence and the uniqueness of solutions.

However, the situation has been entirely turned around when a realistic perspective
camera projection became the de facto standard in the modelling process around
the late 1990’s and early 2000’s [60, 71, 171, 194, 236]. The perspective projection
offers a clear advantage when an object is relatively close to the camera, e.g. in
endoscopy or dentistry. Since a traditional orthographic camera model cannot
capture the perspective effects appropriately in such cases, it constitutes the primary
source of errors in the reconstruction as Tankus and his colleagues have shown in
[235, 236, 238].

Aside from the perspective projection, Deguchi and Okatani have considered
two more factors for a realistic modelling in endoscopy: the position of a light
source at the projection centre of a camera and the light attenuation term [71, 171]. In
view of the relatively small size of an endoscope head, the light source position
was approximated by the optical centre of a camera. Furthermore, the employed
physics motivating a quadratic fall-off term provided a good description of a scenario
when a camera flash is turned on in mostly dark surroundings. The solution to
the resulting image irradiance equation was obtained by the extended method of

1SfS is sometimes known as “photoclinometry” outside computer vision community.
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Kimmel et al. [139] which is based on a level set approach [182]. By taking advantage
of the same modelling assumptions as in [71, 171], Prados and Faugeras, afterwards,
have obtained a brightness equation described by a hyperbolic type of PDE, where
the solution was attained by propagating the initial depth on critical points with
the efficient fast marching algorithm [195]. As discussed in [193, 195], the light
attenuation term from the inverse square law plays a significant role in resolving
the convex/concave ambiguity to a large extent, although some ambiguities are still
present [44]. The work of Prados and Faugeras [195] has been further extended
by incorporating advanced non-Lambertian reflectance models such as Oren-Nayar
[178, 179, 180, 181] or the Phong reflectance [189].

Apart from considering advanced reflection models, there have been other
aspects of investigations as well. For instance, Bruvoll and Reimers have used a radial
parametrisation for describing a surface in Cartesian coordinates by considering
the light attenuation term [49]. In this case, the solution was obtained in triangular
meshes using the extended FM method of Kimmel and Sethian [137].

Table 1.1. An overview of progress in PDE-based SfS models.

camera
projection

position of
a light source

surface
reflectance

light
attenuation references

orthographic infinity Lambertian [148] – [116, 194, 196, 219]
orthographic infinity Oren-Nayar [178] – [203, 204, 223]
orthographic infinity Wolff [267, 268] – [203, 204]
orthographic infinity Wolf-Nayar-Oren [269] – [203, 204]
orthographic infinity Ward [263] – [7]
perspective infinity Lambertian [148] – [60, 194, 196, 236]
perspective optical centre Lambertian [148] ✓ [49, 71, 171, 195]
perspective optical centre Oren-Nayar [178] ✓ [6]
perspective optical centre Wolf-Nayar-Oren [269] ✓ [7]
perspective optical centre Phong [189] ✓ [258]

perspective not optical centre Lambertian [148] ✓ this work [93]
perspective not optical centre Oren-Nayar [178] ✓ this work [130]

Shortcomings of Existing PDE-based Methods

For an overview, we have summarised the current status of PDE-based SfS methods
in Table 1.1. While considerable progress has been made by combining a realistic per-
spective camera model, advanced reflectance models as well as the light attenuation
term, there have been no attempts so far to consider general illumination scenarios in
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terms of the position of a light source, i.e. a point light source not being at the optical
centre of the camera:

(i) When it comes to the modelling side, the standard assumption of recent PSfS on
the position of a light source cannot hold per construction, e.g. a flash attached
to a digital camera cannot be in the optical centre.

(ii) Apart from the modelling side, an efficient numerical strategy is required to
propagate the information at singular points in the general scenario.

This suggests that it is highly desirable to construct a new model by relaxing the
current PSfS assumptions as well as to develop an associated numerical algorithm.

1.1.2 Variational Methods
As in the case of PDE-based methods, we now present a brief review of variational
PSfS methods by paying close attention to recent developments in the field.

Basic Idea of Variational Methods

While PDE-based methods aim to determine the solution of the brightness equation
directly, the solution of variational methods is obtained as the minimiser of an
associated energy functional. This functional typically comprises a data term and
a smoothness term: The brightness constraint formulated by the image irradiance
equation is contained in the data term, which ensures the similarity between the
input image and the reprojected solution. The role of the smoothness term is to
impose regularity constraints on the solution candidates attained from the data term
by retrieving information from the neighbourhood, so that the final reconstruction
reveals the desired properties. The main strength of variational methods lies in their
robustness and their adaptability: Even though some noise is present or some piece
of information is missing in the input data, variational methods show robustness
by taking advantage of the neighbouring information due to the smoothness term
[131, 132, 160]. Moreover, in contrast to PDE-based methods no information at
singular points is required for initialisation [79, 270]. Hence, variational methods can
be applied to most general cases [79]. Besides, the entire optimisation framework can
be adjusted accordingly for different situations, e.g. when further constraints such as
integrability on solutions are required to be enforced [89], which is sometimes even
infeasible for PDE-based methods.

Related Work

Classical Variational Methods. Although Horn had proposed the solution strategy
to the brightness equation by means of PDE-based methods [116], these approaches
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were not very common for over two decades [281]. The main reasons for this
situation were: On the one hand, the classical mathematical framework cannot
handle appropriately the brightness equation formulated by nonlinear first order
PDEs [14], e.g. existence and uniqueness of solutions. On the other hand, another
difficulty comes from the selection of unknowns and the parametrisations of surfaces
in brightness equations. As in [89, 119], the gradient field related to the surface
normal vectors had been selected as unknowns in most early work. This leads
necessarily to an underdetermined system because there are two unknowns (the
gradient entries) for one grey value. Since the depth is not computed directly, the
variables for the gradient are typically called auxiliary variables [281]. In order to
overcome the difficulty of being underdetermined, variational methods became an
appealing alternative framework to using PDE-based methods. Although several
methods had been proposed since the first variational model of Ikeuchi and Horn
[125], the employed modelling assumptions had still remained to be simple as in
the case of PDE-based approaches: an orthographic camera projection, a distant light
source at infinity and the Lambertian reflectance model. The focus was rather on
enforcing meaningful constraints such as integrability [89] instead of formulating
appropriate brightness equations relying on more realistic assumptions such as
a perspective camera projection. Moreover, the smoothness term had typically
regularised the surface normals instead of the depth itself due to the selection of
unknowns. There had also been methods for direct reconstruction which require
no integration of surface normals as a subsequent step for final depth recovery,
e.g. Leclerc and Bobick [149] by considering a discrete formulation and a conjugate
gradient and Vogel et al. [257] by making use of a second order smoothness term.
However, all these methods have been restricted to the orthogonal camera model.
Not surprisingly, results were often rather limited in terms of quality or approaches
even failed in practice, which is not different from the case of PDE-based methods
[281].

Variational Perspective Shape from Shading. For exploiting the strengths of
both the perspective projection and variational methods, researches have recently
considered approaches which embed PSfS models into an appropriate variational
framework. However, only few works can be found in literature based on this recent
idea. They may be classified into two groups: indirect and direct estimation methods.

In [278], Zhang and colleagues have formulated the model by means of the
brightness equation with Cartesian parametrisation using auxiliary variables and
imposed smoothness and integrability constraints. Since the light source is assumed
to be far away from the scene, the light attenuation term is not taken into account. The
solution was only obtained for gradient fields, which need to be further integrated.
Moreover, initialisation of the algorithm relied actually on that of PDE-based methods.
Afterwards, Wu et al. have proposed a model using a Cartesian parametrisation in



1.1 Perspective Shape from Shading: An Overview 7

view of the light attenuation term assuming that two point light sources are close to
the projection centre of a camera [270]. The solution strategy also relied on indirect
methods by repeatedly integrating surface normals during the minimisation process.
Furthermore, both approaches have utilised their surface normals from orthographic
projection based methods relying on the work of Horn and Brooks [119]. Hence, this
makes the resulting models only applicable as long as only weak perspective effects
are dominant.

In contrast, Abdelrahim et al. have adopted an approach [1], where the Cartesian
surface depth has been directly reconstructed by penalising the surface normals
using initialisation based on PDE-based methods and the homogeneous smoothness
term that does not allow to retain edge structures of an object. This necessarily
entails the integrability constraint as an additional term in the model.

Linearisation Methods. In the class of variational methods, there exists a strategy
which makes use of linear approximations for the brightness equations containing
reflectance functions. This strategy refers to linearisation methods [281] and is
primarily focused on the numerical aspect. However, in contrast to PDE-based or
other variational approaches this strategy has not been preferred since the results
had already been unsatisfactory without linearisation [281].

The first approach using this strategy dates back to the late 1980’s by Pentland
[186], where he applied a linear approximation to the reflectance function with
respect to the surface gradient and obtained a solution by means of the Fourier
transform of the linearised function. Afterwards, Tsai and Shah had first discretised
the gradient fields and then approximated the brightness equation by applying the
discretised gradient as well as the Taylor expansion with respect to the depth [247],
where the solution was attained by the Jacobi iteration method. Recently, Barron
and Malik have proposed a method [22] that jointly estimates shape, illumination
and albedo using a linearisation as well as the statistics of natural images [86, 123]
within a stochastic optimisation framework. Nevertheless, all these approaches were
developed in the context of an orthogonal projection.

The only two works that considered a linearisation approach for perspective
SfS were proposed by Lee and Kuo [150, 151]. However, these two methods
are specifically designed for a surface approximated by triangular elements and
no explicit regularisation was reported. Moreover, none of the aforementioned
methods has respected the hyperbolic nature of the brightness equation by employing
appropriate upwind type schemes such as [219] for discretising the occurring gradient
field. However, it is well known that such schemes are particularly important for
developing a stable numerical method [229].
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Shortcomings of Existing Variational Methods

As we have conducted for PDE-based methods, we compile the features of existing
variational SfS models in Table 1.2 to identify shortcomings:

(i) From a modelling standpoint, no single model contains all useful features
listed in Table 1.2. For instance, the work of Wu et al. [270] had considered
general illumination scenarios in terms of the position of a light source but an
orthographic surface normal was used for the perspective model. Besides, most
approaches belong to the class of indirect methods that require a subsequent
step for reconstruction. Moreover, an edge-preserving smoothness term has not
even been mentioned for PSfS in the literature.

(ii) From an algorithmic side, no scheme has been proposed to handle both non-
convex models and the hyperbolic properties of the data term. Moreover, concerning
the initialisation some approaches still rely on PDE-based methods [1, 278].
However, this, in fact, is obviously against the spirit of variational framework,
which states that the optimisation approach is applicable to most general cases
according to [79].

Therefore, it is desirable to design a unified variational model for PSfS that can
reconstruct the parametrised depth directly without requiring the explicit integrability
constraint or repeated integration steps. When it comes to the numerical side,
an efficient optimisation scheme should be developed which can deal with the
underlying non-convex model as well as the hyperbolic data term. Moreover, the
scheme should not be susceptible to any specific initialisation such as the one from
the PDE-based methods as in [1, 278] and should not require any relatively accurate
initial depth for meaningful results at the same time.

1.2 Contributions
The main goal of this thesis is to establish a mathematical model and to provide
an appropriate algorithmic solution in the field of perspective Shape from Shading
by taking the current state-of-the-art into account with respect to each of the two
types of methods in Section 1.1: PDE-based approaches and variational methods. In
this section, we state our contributions of this thesis which have been presented at
conferences or have appeared in form of a book chapter: [93] and [130] as well as
[129] for PDE-based methods, [131], [132] and [160] for variational methods.

1.2.1 PDE-based Methods
Our contributions to PDE-based approaches are twofold: One is for the modelling
side and the other is for the numerical one.
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Modelling Aspect

On the modelling side of PDE-based methods, in consideration of a quadratic
light attenuation factor we first construct our mathematical model in a spherical
coordinate system based on the Lambertian reflectance supposing that a point
light source is not at the optical centre of a camera. Moreover, we further advance
the field by successfully merging the two paths of research – advanced reflectance
models and an arbitrary light position. This finally allows flexibility to handle general
illumination scenarios with non-Lambertian objects. The resulting mathematical
model is delineated by a set of Hamilton-Jacobi equations (HJEs) belonging to a special
class of PDEs whose solution should be understood in the viscosity sense [63, 64].
We call the derived novel image irradiance equations generalised brightness equations
(GBEs).

Aside from our novel model, by investigating the Oren-Nayar based standard
PSfS model of Ahmed and Farag [6] with respect to Osher’s criterion [182, 200, 248]
we provide a theoretical justification in terms of the safe range of the roughness
parameter for applying the FM method to the model, which has been chosen so far
only on a purely heuristic basis; see [256].

Numerical Aspect

On the numerical side of PDE-based methods, we design an adapted fast marching
scheme which is a specifically tailored variant of the FM for the derived model.
This algorithm extends the usual FM method in such a way that it can handle the
general-type HJEs in a spherical coordinate system for the Cartesian input data by
an iterative correction step as well as the bilinear interpolation and it can also find a
solution in the viscosity sense at the same time.

1.2.2 Variational Methods
For variational methods, we also have made contributions to the field regarding both
modelling and numerical aspects.

Modelling Aspect

On the modelling side, we first consider a variational model for perspective SfS
using a radial depth parametrisation based on the PDE-based model of Prados and
Faugeras [195]. Subsequently, we construct another variational model by changing
the parametrisation from a radial depth to a Cartesian one. Both models incorporate
an edge-preserving smoothness term which has not been applied to variational PSfS
so far as well as a correct surface normal which is, in some models, not the case, e.g.
the work of Zhang et al. [278] and Wu et al. [270], see Table 1.2. Moreover, both
approaches are full direct methods for reconstruction since the unknown in each of
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our model is the depth itself and all actions are directly taken on the depth. This
suggests that our methods do not yield gradient fields that need to be integrated
in a subsequent step as in [45, 89, 125]. Furthermore, in contrast to [1, 278] no
integrability constraints are required in the model because the condition is already
contained in the smoothness term, cf. Table 1.2. Besides, our models are equipped
with a mechanism to exclude unreliable regions such as noise or missing information
through a confidence function, where the smoothness term takes the control and fills
in information retrieved from the neighbourhood. One of the main advantages by
changing the parametrisation from the radial depth to the Cartesian one is that the
Cartesian depth based model allows a geometrically more meaningful interpretation
of the smoothness induced by the regulariser since an object of constant depth
describes a plane instead of a sphere on which the radial depth based model rely. In
addition, the Cartesian depth based model has the potential to be combined with
different cues such as stereo [216], multi-view stereo [271, 273], or scene flow [24, 25],
where the depth is typically described in the same way.

Numerical Aspect

On the numerical side, we propose a novel optimisation scheme based on a hi-
erarchical graduated optimisation strategy [9, 10, 211]. In order to deal with the
arising non-convex energy, we embed an alternating explicit scheme based on the
upwind discretisation [219] into a coarse-to-fine minimisation framework, where
the employed alternating explicit scheme achieves considerable speedup compared
with the traditional explicit scheme. Furthermore, this approach brings another
advantage on the initialisation such that our method does not necessarily rely on
a specific initialisation strategy any more, e.g. on PDE-based methods as the SfS
approaches in [1, 278].

Linearisation Methods. Regarding linearisation methods, we develop a hyperbolic
warping scheme, i.e. an efficient numerical algorithm based on our variational PSfS
model that can resolve not only nonlinearity but also non-convexity. To obtain a linear
approximation, we introduce an incremental computation as in [48, 254] and apply
different methods to each term in view of structures at hand: For the data term,
we make use of the Taylor approximation after employing the lagged upwind type
discretisation [219] by respecting the hyperbolic nature of the data term, which is
typically not the case for usual linearisation methods such as [247]. To resolve the
nonlinearity in the smoothness term which actually arises in the argument of a
function, we utilise the lagged diffusivity method [48, 51, 253, 254] that deals with a
nonlinear problem as a series of linear ones by means of a fixed point iteration. For the
non-convexity of the problem, we embed the derived lagged upwind discretisation
scheme into a Gauß-Newton type multi-resolution optimisation framework as in
our variational approach. The resulting scheme achieves a speedup by more than
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three orders of magnitude compared with the aforementioned alternating explicit
scheme, which thereby allows our algorithm to handle considerably larger image
sizes efficiently. Aside from the efficiency, the essential feature that distinguishes our
hyperbolic warping scheme from other explicit methods lies in the feasibility of a
large amount of regularisation without being affected by time step constraints. This
makes our algorithm more robust with respect to corrupt data with noise or missing
information in an effective way. Moreover, we propose a method to compute the
arising derivatives of the reflectance function in the data term numerically during
the linearisation process. Evidently, the proposed method has the full potential to
be extended in a straightforward way to more advanced reflection models such as
the Oren-Nayar model for the rough surfaces [178] or the Phong model for specular
reflections [189]. This demonstrates the high versatility of our hyperbolic warping
scheme: it can be applied to other existing variational SfS models which typically
utilise the explicit schemes as the de facto standard, or it can be extended to the
aforementioned advanced reflectance models as well as it can be integrated as a
module for a joint work with different depth cues such as stereo or multi-view due
to the Cartesian depth based parametrisation. A recent variational method that
combines SfS and stereo already makes use of our hyperbolic warping strategy [161].
Hence, the proposed numerical scheme is a promising candidate for a standard tool
in variational perspective SfS.

1.3 Outline
Let us now provide a synopsis of this thesis that consists of two parts by covering
the main subjects of each chapter: Part I is pertinent to PDE-based methods and
Part II is germane to variational methods, each of which contains three chapters, see
Figure 1.2 for the structure of the work. As we proceed, we also indicate our other
contributions to which no attention has been drawn yet in Section 1.2. Moreover,
the complete publication list is compiled in Chapter B that also contains works not
considered in this thesis.

Part I begins with Chapter 2 which lays the foundation of the mathematical
background that is imperative for understanding modern PDE-based PSfS methods
including this work. The central topic of Chapter 2 consists of the Hamilton-Jacobi
equations since they are the ones that describe brightness equations for PSfS in
PDE-based methods. Since this special type of PDEs, in general, does not admit a
solution in the classical sense, we consider a notion of solutions different from the
classical one which is called viscosity solutions [63, 64]. Within this mathematical
framework, we also look into upwind schemes [219] which form the basis of the fast
marching (FM) method [110, 226, 249] – one of the most efficient numerical solvers
for HJEs – and which are used throughout the work not only in the PDE-based
methods but also in variational methods.
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Part I

Part I: PDE-based Methods

Part II

Part II: Variational Methods

Chapter 2

Chapter 3 Chapter 4

Chapter 5

Chapter 6 Chapter 7

Figure 1.2. Structure of present work: The dependency graph type notation is used
in “Chapter A→ Chapter B” which denotes that the notions or parts of contents in
Chapter A are helpful for comprehending the ones in Chapter B.

Chapter 3 concerns three important modern PSfS models: One is that of Prados
and Faugeras [195] using the Lambertian surface model [148], another is that of
Ahmed and Farag [6] incorporating the Oren-Nayar reflectance model [178], and the
other is that of Vogel et al. [258] employing the Phong reflectance assumption [189].
Except for the designated reflectance functions, all three models make the same
following assumptions on modelling the brightness equations: a perspective camera
projection, a point light source being at the optical centre of a camera, and the light
attenuation term following the inverse square law. After reviewing the basics of
modelling components, we derive all three models in the form of HJEs and discuss
important properties of the derived models. This mainly encompasses the role of
the employed light attenuation term which is linked to the types of Hamiltonian,
the discussion of convex/concave ambiguities and the significance of critical points
w.r.t. both theoretical and practical aspects including the initialisation method for
applying FM methods. In this respect, we carry out an in-depth analysis with respect
to critical points for the Phong PSfS model [258] in [42], which shows how the model
behaves around the critical points and how the model convexity is affected that
plays a role for the application of the FM method. Furthermore, we investigate
the Oren-Nayar PSfS model [6] in [129] by analysing the model with respect to the
Osher’s criterion [182, 200, 248] along with the roughness parameter. This gives a
theoretical justification for the appropriate range of the roughness parameter for the
use of the FM method, which was selected so far on a purely empirical basis; see
[256].

Subsequently in Chapter 4, we construct our two generalised PSfS models [93, 130]
that were presented at the International Conference on Scale Space and Variational
Methods (SSVM) and the British Machine Vision Conference (BMVC) by making
use of the spherical surface parametrisation along with the light fall-off term. The
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Lambertian surface is employed for the former model and the Oren-Nayar reflectance
for the latter one, both of which can handle general illumination scenarios even
when a point light source is not at the optical centre. Apart from the generalised
models, we account for our customised FM algorithm: how the algorithm should
be initialised by taking advantage of the spherical coordinate system and how the
update process in the algorithm should be realised for dealing with Cartesian input
data in the spherical coordinate system.

Turning to Part II, we focus on a novel variational method for PSfS under the
standard assumptions: the Lambertian surface and a light source being at the optical
centre of a camera as well as the light attenuation factor. This approach is based on
our work [131] that was presented at the International Conference on Scale Space
and Variational Methods. The main goal of Chapter 5 is to provide fundamentals of
variational methods on which the pertinent chapters can rely and to establish a basis
model for variational PSfS for further development. To this end, we first elaborate
on the calculus of variations covering Euler-Lagrange equations which are the key
ingredients for optimising established variational PSfS models. Then, we build our
radial depth based variational PSfS model. The data term of this model incorporates
the brightness equation of Prados and Faugeras [195] that we have introduced in
Chapter 3. On top of that, the noticeable properties of this model come from the
smoothness term that has the capability: (i) to preserve an edge by means of the
subquadratic penaliser, (ii) to deal with the noise or missing information with the
help of a confidence function, and (iii) to require no additional term in the model to
respect the integrability constraint.

In contrast to Chapter 5, the next two chapters are involved with the Cartesian
depth based PSfS instead of the radial depth based one. In Chapter 6 which
is based on work that has been published as a book chapter [132], we derive a
variational PSfS model in terms of the Cartesian depth and develop an appropriate
optimisation algorithm via a coarse-to-fine strategy in order to deal with the arising
non-convex energy. By still retaining all the desirable properties from the radial
depth based model [131], e.g. robustness against corrupt data due to noise or missing
information, our Cartesian depth based model has another attractive feature, i.e. the
parametrisation in terms of the Cartesian depth, which can be shared with other
methods such as stereo for building a joint framework. Moreover, using an alternating
explicit scheme brings a considerable speedup compared with the standard explicit
scheme. Apart from the speedup, our novel scheme is not affected by a specific type
of initialisation methods since it uses a multi-resolution optimisation framework as
stated in Section 1.2.2.

Although the numerical method presented in Chapter 6 can deal with the non-
convexity of the energy, the difficulty of the nonlinearity has not been resolved
yet. In Chapter 7, we therefore consider our hyperbolic warping scheme [160] that
has been presented at the German Conference on Pattern Recognition (GCPR). By
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introducing incremental computations, the nonlinearity is handled by applying
an upwind type Taylor approximation to the data term and the lagged diffusivity
method [48, 51, 253, 254] to the smoothness term, respectively. Hence, the resulting
novel scheme, on the one hand, allows a speedup of more than three orders of
magnitude in comparison to the alternating explicit scheme. On the other hand, a
large amount of regularisations becomes feasible because the presented algorithm
is not affected by the time step size any more. This makes it possible to deal with
high-resolution images in contrast to a rather slow alternating explicit scheme.

Finally, Chapter 8 closes this work by summarising contents and giving some
comments along with an outlook on potential improvements.





Part I

PDE-based Approaches





Chapter 2

Mathematical Background on PDE-based Approaches

Partial differential equations are one of the common tools when it comes to the
modelling of recent state-of-the-art methods for perspective Shape from Shading
[6, 49, 93, 130, 195, 236, 259]. However, in general, it is not so trivial to find a solution
of such PDEs. In particular, PDEs called Hamilton-Jacobi equations do not have a
solution in the classical sense [14]. Furthermore, when looking for a weak solution
from an extended solution candidate set to resolve the problem of existence, the
uniqueness of the solution becomes another issue [14, 142]. All this requires a solid
theoretical framework that can deal with such difficulties.

In this chapter, we provide the essential mathematical background for solving
PDE-based SfS models. To this end, we focus on the notion of viscosity solutions
[63, 64] with the help of a 1-D eikonal equation. This modern notion of solutions
not only allows to obtain the desired properties of the solutions but it also lays the
foundation for developing a special numerical algorithm: the fast marching method.
This method is known to be the most efficient approach for solving the considered
type of Hamilton-Jacobi equations in the viscosity sense [229].

This chapter is organised as follows: In Section 2.1, we first describe Hamilton-
Jacobi equations for SfS in the context of PDEs by extracting their main features.
Afterwards, in Section 2.2 we introduce modern notions of viscosity solutions for
HJEs with respect to well-posedness and we compare them with other notions of
solutions including vanishing viscosity solutions. Finally, we elaborate on the basic
idea of fast marching methods in Section 2.3.

2.1 Hamilton-Jacobi Equations

PDEs arise in many areas of physical science, since they are extremely useful
mathematical tools for modelling physical phenomena. Hamilton-Jacobi equations
belong to the family of PDEs and are also pervasive, especially in classical mechanics
and geometrical optics. In this context, it is not surprising that there are several ways
to define, derive, and interpret HJEs. As an example, one way to interpret HJEs is
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considering them as a special case of Hamilton-Jacobi-Bellman equations (HJBEs)
that are central to optimal control theory [16].

Among others, we follow the approach in [12] by defining HJEs as a special type
of PDEs: first1 order nonlinear PDEs. To understand the terminology, let us first
define PDEs according to [82].

2.1.1 Partial Differential Equations
A partial differential equation is, in general, defined as an equation which describes the
relationship between an unknown function of two or more variables and some of its
partial derivatives [82].

Definition 2.1.1 (Partial Differential Equations). For a fixed integer k ≥ 1 and an
open subsetΩ of Rn , a k-th order partial differential equation is an expression of the
form

F
(
x , u (x) ,D u (x) , . . . ,Dk−1 u (x) ,Dk u (x)) � 0 , (2.1)

where
F : Ω ×R ×Rn

× . . . ×Rnk−1
×Rnk (2.2)

is given and
u : Ω→ R (2.3)

is the unknown function.

The order of the PDE (2.1) in Definition 2.1.1 refers to the order of the highest-order
derivative being present in the equation. The notation Dk u (x) in (2.1) is used in
terms of multi-index [82, 209, 222]. This means that Dk u(x) with a non-negative
integer k is the set of all partial derivatives of order k and is thereby defined as

Dk u (x) :� {Dγ u (x) ; |γ| � k} , (2.4)

where
Dγ :� ∂

γ1

∂xγ1
1
· · ·
∂γn

∂xγn
n

�
∂|γ|

∂xγ1
1 · · · ∂xγn

n
�: ∂xγ1

1 · · · ∂xγn
n . (2.5)

The multi-index γ in (2.5) has the form of n-tuple

γ �
�
γ1, . . . , γn

�
(2.6)

and each component γi in (2.6) is a non-negative integer. Moreover, the order |γ| is
defined by

|γ| � γ1 + · · · + γn . (2.7)

1While there also exist second order HJEs in literature, e.g. [100, 101], we restrict ourselves to the
first order case in this thesis. This approach is based on, e.g. [16, 63, 64, 155].
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Let us have a look at a more concrete example with k � 1. In this case, we can
possibly have n different multi-indices as follows:

γ � (1, 0, 0, . . . , 0)
γ � (0, 1, 0, . . . , 0)

...

γ � (0, 0, 0, . . . , 1) .

(2.8)

Moreover, by plugging (2.8) into (2.5) one can obtain

(
D(1,0,0,...,0),D(0,1,0,...,0), . . . ,D(0,0,0,...,1)) (2.5)

�

(
∂
∂x1
,
∂
∂x2
, . . . ,

∂
∂xn

)
. (2.9)

Then, applying the result (2.9) to the function u and arranging as a vector yields a
gradient vector Du

Du (x) �
(
∂u
∂x1
, . . . ,

∂u
∂xn

)⊤
. (2.10)

At this point, one can realise that HJEs are related to (2.10) since they are first order.
In a similar way, for k � 2 one can obtain the Hessian matrix

D2u (x) �



∂2u
∂x1 ∂x1

· · ·
∂2u
∂x1 ∂xn

...
. . .

...

∂2u
∂xn ∂x1

· · ·
∂2u
∂xn ∂xn



∈ Rn×n . (2.11)

This can be further extended in a straightforward way for the case of higher
dimensions. For compact notations, we often abbreviate ∂u

∂xi
as uxi .

As mentioned previously, another characterisation of HJEs are nonlinear PDEs.
To this end, we introduce the definition of linear PDEs from [82] before discussing
nonlinear PDEs.

Definition 2.1.2 (Linear Partial Differential Equations). The PDE in (2.1) is called
linear if it has the form ∑

|γ|⩽k

aγ(x)Dγu(x) � f (x) (2.12)

for given functions aγ with |γ| ⩽ k and f . The linear PDE is called homogeneous if
f � 0, and inhomogeneous if f , 0.
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One should note that for the expressions of the form (2.12) the following properties
of linearity hold [190, 231]

D(u + v) � Du +Dv and D(c u) � cDu , (2.13)

where u and v denote unknown functions, c ∈ R is a constant, and the differential
operatorD has the form of

D �

∑
|γ|⩽k

aγ(x)Dγ . (2.14)

One famous example of linear PDEs is the Laplace’s equation (heat equation) [82]

∆u �

n∑
i�1

uxi xi � 0 . (2.15)

Let us have a look how this PDE follows the linearity in terms of Definition 2.1.2. If
we restrict ourselves to the 2-D case of (2.15) for simplicity, i.e. n � 2, three cases of
order are involved to write (2.15) in terms of (2.12), i.e. k � 2, k � 1, and k � 0. As
we have performed in (2.9), by (2.4) and (2.5) we can obtain

γ � (2, 0) , a(2,0) � 1 , D(2,0) (2.5)
� ∂x2

1
γ � (1, 1) , a(1,1) � 0 , D(1,1) (2.5)

� ∂x1 ∂x2

γ � (0, 2) , a(0,2) � 1 , D(0,2) (2.5)
� ∂x2

2

(2.16)

for k � 2. In the same way, we have

γ � (1, 0) , a(1,0) � 0 , D(1,0) (2.5)
� ∂x1

γ � (0, 1) , a(0,1) � 0 , D(0,1) (2.5)
� ∂x2

(2.17)

for k � 1 and
γ � (0, 0) , a(0,0) � 0 (2.18)

for k � 0, respectively. Therefore, by putting all cases together the Laplace’s equation
(2.15) has the form of �

∂x2
1 + ∂x2

2
�

u (x) � 0 , (2.19)

and it is a linear PDE according to the Definition 2.1.2. Moreover, one can also note
that the form (2.19) satisfies the linear properties in (2.13).

In this context, one may consider, in a natural way, nonlinear PDEs as PDEs
that do not have the form of (2.12). Since the size of the class of nonlinear PDEs
is enormous, the k-th order PDE (2.1) is, among others, called fully nonlinear if it
depends nonlinearly upon the highest-order derivatives of u [82].
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A famous example of a fully nonlinear PDE is the eikonal2 equation [82] from
geometrical optics, which is a special case of HJEs,

|Du | � 1 . (2.20)

Since there is no way to express (2.20) in the form of (2.12) based on the property of
the Euclidean norm

|Du | � √(Du)⊤Du (2.21)

and the first order derivatives behave nonlinearly with respect to (2.13), one can
confirm that (2.20) is fully nonlinear PDE. With the same line of reasoning, one can
find another example, the minimal surface equation [82]

div *
,

Du

(1 + |Du |2)1/2
+
-
� 0 (2.22)

to be a fully nonlinear PDE as well.
So far, we have seen the characterisations of HJEs: first order and fully nonlinear

PDEs. Furthermore, one classifies HJEs into two types: eikonal-type and general-type
HJEs.

HJEs of eikonal-type depend only on Du. Based on the fact that Du in (2.20)
denotes a gradient vector as indicated in (2.10), the eikonal equation (2.20) takes the
form

H(x ,∇u(x)) � 0 , (2.23)

where H : Ω ×Rn
→ R with Ω ⊂ Rn and H is called eikonal-type Hamiltonian.

In this context, the Hamiltonian of general-type HJEs relies not only on ∇u but
also on u and hence has the form of

H(x , u(x),∇u(x)) � 0 , (2.24)

where H : Ω ×R ×Rn
→ R with Ω ⊂ Rn is called general-type Hamiltonian.

2.2 Well-Posedness and Notions of Solutions
So far, we have classified HJEs as PDEs that are nonlinear and of first order. However,
it still is, in general, a difficult task to actually find solutions of problems described
by PDEs, even when they are restricted to HJEs.

In this context, to specify the meaning of “finding a solution of a PDE” and
to provide a guidance for the study of PDEs by asking fundamental theoretical
questions, the French mathematician Hadamard introduced the concept of well-

2The term “eikonal” stems from the Greek word “εικων” which means image.
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posedness [104, 105]. A mathematical problem is called well-posed if it fulfils the
following conditions:

Definition 2.2.1 (Well-Posedness).

(i) There exists a solution of the problem;

(ii) There is at most one solution of the problem;

(iii) The solution depends continuously on the given data;

If one or more of these conditions do not hold, the problem is called ill-posed.

The first condition concerns the existence of solutions and deals with regularity
requirements i.e. differentiability (or smoothness) of solutions [82, 142]. These
requirements can actually provide us important information when looking for a
solution, i.e. the search space of a function class. Moreover, an answer to the
existence of solutions may be different depending on the degree of regularity, e.g. if
a continuous solution u ∈ C0 is sufficient or if an infinitely many times differentiable
solution u ∈ C∞ is necessary.

With respect to this matter, we consider a simple 1-D eikonal equation with
Dirichlet boundary condition (DBC) from geometrical optics as an example. It is
given by




|u′(x)| � 1 in Ω ,

u(x) � 0 on ∂Ω ,
(2.25)

where u′ :� du
dx , Ω � (−1, 1) and ∂Ω � {±1}.

When one tries to find a solution to (2.25) at least in the class C1, all efforts being
made turn out to be in vain because such solution does not exist. To show the
validity of the statement, i.e. the non-existence of solutions in C1, one can make use of
“proof by contradiction” [14]. We, therefore, assume for the time being that at least
one such solution exists. Since the solution is assumed to be in C1, it must satisfy
Rolle’s theorem in calculus [11]. This basically states that a one-time continuously
differentiable real-valued function attaining the same values at two different points,
i.e. u(±1) � 0 for (2.25), must have a critical point (or a stationary point), i.e. a point
where the first derivative disappears and thereby the slope of the tangent line at the
point is equal to 0, somewhere in-between these two distinct points, i.e. (−1, 1). Such
points, however, cannot exist on the grounds that the first derivative in that interval is
already given by the problem (2.25). This contradiction justifies the original assertion
that a solution belonging to the class C1 does not exist.

Since a solution does not exist in C1, we expand the search space from C1 to C0.
Then, one can find infinitely many solution candidates to (2.25) including all possible
sawtooth-shaped functions that are composed of lines whose slopes are either 1, −1,
or both of them, as shown in Figure 2.1. One may, therefore, realise that the existence



2.2 Well-Posedness and Notions of Solutions 25

of solution candidates can be achieved by allowing solutions that are less regular.
These solution candidates are called weak or generalised solutions [82, 142, 152].

u+(x) = 1− |x|

u−(x) = |x| − 1

−1 0 1
x

1

−1

Figure 2.1. Solution candidates for the 1-D eikonal equation (2.25).

However, as can be observed in Figure 2.1 weak solutions come usually with the
issue of uniqueness. Therefore, to single out a meaningful solution more information
is needed or more conditions have to be imposed on the problem: e.g. when one
needs to find a “distance” from the boundary points, from either 1 or −1, the proper
solution to (2.25) can be attained as [142]

u(x) � dist(x , ∂Ω) :� inf
y∈∂Ω

|x − y | � 1 − |x | . (2.26)

Concerning the third component in Definition 2.2.1, it basically states that the
behaviour of solutions depends continuously on the initial conditions or input data.
In other words, a small change in the data or in the conditions results in a small
change in the solution as well. This property is of great importance in practice: e.g.
one expects to compute a robust solution, albeit the input data can be perturbed
with noise.

As a consequence, each component of well-posedness in Definition 2.2.1 is useful
to provide a strategy how one can solve a PDE. In this respect, the modern notion of
viscosity solutions proposed by Crandall and Lions plays a significant role in the
context of HJEs [63, 64, 65] and second order PDEs [66].

Since “viscosity solutions” are actually obtained as limits of the “vanishing
viscosity method” [18], we first have a look at “vanishing viscosity solutions” in the
next section before we go into “viscosity solutions” in Section 2.2.3. This approach is
also helpful to distinguish how qualitatively different they are from each other.



26 Mathematical Background on PDE-based Approaches

2.2.1 Vanishing Viscosity Method

The idea behind the vanishing viscosity method [16, 64, 82, 142, 155] is actually
based on a technique first proposed in hydrodynamics [260]. Since, in general, a
first order nonlinear PDE does not have a classical solution as previously shown,
one tries to find a weak solution of a slightly modified problem by introducing an
artificial viscosity term into the original formulation.

There are two advantages of this approach: On the one hand, the modified
problem can be turned into the original one when the weight parameter ε of the
viscosity term becomes 0. On the other hand, a sufficiently smooth and unique
solution to the modified problem may be attained for each ε , 0.

Since this method is not only helpful for understanding the general definitions
of “viscosity solutions” in [63] but also one of the reasons that “viscosity solutions”
are called as such, we look into how the idea is realised by applying the method to
the 1-D eikonal equation. To this end, instead of applying the vanishing viscosity
method directly to (2.25) we deal with the following equivalent but differentiable
formulation as in [142]




(u′(x))2 � 1 in Ω ,

u(x) � 0 on ∂Ω ,
(2.27)

where Ω � (−1, 1) and ∂Ω � {±1}.

There are two possibilities to add an artificial viscosity term εu′′ε (x)with 0 < ε ≪ 1
to (2.27): One is a positive one +εu′′ε (x) and the other is a negative one −εu′′ε (x).
Therefore, one can obtain the following expressions:




(u′ε(x))2 − 1 � ε u′′ε (x) in Ω ,

uε(x) � 0 on ∂Ω ,
(2.28)

and



(u′ε(x))2 − 1 � −ε u′′ε (x) in Ω ,

uε(x) � 0 on ∂Ω ,
(2.29)

where Ω � (−1, 1) and ∂Ω � {±1}.

As shown in [224] based on the theory presented in [98], there exists a classical
solution for the problem (2.28) and the solution is unique. Obviously, this statement
also holds for (2.29) because of the structure of the formulation. In the next section,
we will find these unique vanishing viscosity solutions for (2.28) and (2.29) which
we call u+

ε and u−ε , respectively.
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Vanishing Viscosity Solution u+
ε

The solution u+
ε to (2.28) can be obtained by applying the change of variable

vε(x) � u′ε(x). In order to achieve that, one may first suppose u′ε(0) � 0 by respecting
the symmetric structure of (2.28) as suggested in [142]. This leads to




(vε(x))2 − 1 � ε v′ε(x) , x ∈ (−1, 1)
vε(x) � 0 , x ∈ {0} . (2.30)

In (2.30), one can observe that vε(x) cannot be 1 or −1 owing to ε , 0. Moreover,
based on vε(0) � 0 in (2.30), one may further assume that

vε(x) ∈ (−1, 1) . (2.31)

At this moment, we are in a position to proceed to find a solution. In what follows,
we drop the dependence of x in (2.30) for a compact presentation.

First, we rearrange (2.30) as

− ε v′ε � 1 − v2
ε . (2.32)

Then, by replacing v′ε in (2.32) with dvε
dx and utilising the method of separation of

variables, one is able to obtain

− ε v′ε � −ε
dvε
dx

� 1 − v2
ε ⇔

dvε
1 − v2

ε

� −
1
ε

dx . (2.33)

Applying the partial fraction decomposition to (2.33) further leads to

dvε
1 − v2

ε

�
dvε

(1 − vε)(1 + vε) � −
1
ε

dx ⇔
1
2

( 1
1 − vε

+
1

1 + vε

)
dvε � −

1
ε

dx . (2.34)

When integrating both sides of (2.34) with the assumption (2.31), one can attain

1
2

∫ ( 1
1 − vε

+
1

1 + vε

)
dvε �

∫
−

1
ε

dx ⇔
1
2 ln

(1 + vε
1 − vε

)
� −

1
ε

x + c1 , (2.35)

where c1 ∈ R
+ denotes a constant. The constant c1 can be determined by plugging

vε(0) � 0 from (2.30) into (2.35), which gives us

c1 � 0 . (2.36)

As a consequence, (2.35) becomes

1
2 ln

(1 + vε
1 − vε

)
� −

1
ε

x ⇔ ln
(1 + vε

1 − vε

)
� −

2
ε

x ⇔
1 + vε
1 − vε

� e−
2 x
ε . (2.37)
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Rearranging (2.37) with respect to vε then leads to

vε �
−1 + e−

2 x
ε

1 + e−
2 x
ε

�
e

x
ε (−1 + e−

2 x
ε )

e
x
ε (1 + e−

2 x
ε ) �

−e
x
ε + e−

x
ε

e
x
ε + e−

x
ε

� −
e

x
ε − e−

x
ε

e
x
ε + e−

x
ε
. (2.38)

With the hyperbolic functions

sinh x �
ex
− e−x

2 and cosh x �
ex + e−x

2 , (2.39)

the result of (2.38) can be further simplified to

vε(x) � − e
x
ε − e−

x
ε

e
x
ε + e−

x
ε
� −

(
e

x
ε −e−

x
ε

2

)
(

e
x
ε +e−

x
ε

2

) � −
sinh

� x
ε

�

cosh
� x
ε

� � − tanh
( x
ε

)
. (2.40)

In order to calculate uε from (2.40), we replace u′ε with duε
dx and apply the separation

of variables to (2.40) as in (2.33). This leads to

u′ε � − tanh
( x
ε

)
⇔

duε
dx

� −
sinh

� x
ε

�

cosh
� x
ε

� ⇔ duε � −
sinh

� x
ε

�

cosh
� x
ε

� dx (2.41)

Since cosh
� x
ε

�
is an even function and cosh

� x
ε

�
> 0 in (−1, 1), integrating both sides

of (2.41) results in
∫

duε � −

∫
sinh

� x
ε

�

cosh
� x
ε

� dx ⇔ uε � −ε ln
(
cosh

( x
ε

))
+ c2 . (2.42)

Moreover, the boundary condition in (2.28) delivers the information about the
arbitrary constant of integration c2 in (2.42). Therefore, one can attain

uε(±1) (2.28)
� 0 � −ε ln

(
cosh

(1
ε

))
+ c2 ⇔ c2 � ε ln

(
cosh

(1
ε

))
. (2.43)

By putting together the result of (2.42) as well as that of (2.43), one can eventually
find a solution u+

ε ∈ C(Ω) ∩ C2(Ω) to the problem (2.28) as

u+
ε (x) � −ε ln

(
cosh

( x
ε

))
+ ε ln

(
cosh

(1
ε

))
� −ε

(
ln

(
cosh

( x
ε

))
− ln

(
cosh

(1
ε

)))
� −ε ln *

,

cosh
� x
ε

�

cosh
� 1
ε

� +
-

(2.39)
� −ε ln *.

,

e
x
ε +e−

x
ε

2

e
1
ε +e−

1
ε

2

+/
-
� −ε ln

(
e

x
ε + e−

x
ε

e
1
ε + e−

1
ε

)
. (2.44)
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Limiting Process of Vanishing Viscosity Solution u+
ε . Let us now have a look

how the obtained solution u+
ε behaves as ε → 0. To this end, we first consider the

case if x ∈ (0, 1) and reformulate the solution (2.44) as

u+
ε (x) � −ε ln

(
e

x
ε + e−

x
ε

e
1
ε + e−

1
ε

)
� −ε ln *.

,

e
x
ε

(
1 + e−

2 x
ε

)
e

1
ε

(
1 + e−

2
ε

) +/
-
� −

1� 1
ε

� ln *
,

e
x−1
ε *

,
1 + e−

2 x
ε

1 + e−
2
ε

+
-

+
-

� −
1� 1
ε

� *
,
ln e

x−1
ε + ln *

,
1 + e−

2 x
ε

1 + e−
2
ε

+
-

+
-
� −

1� 1
ε

� *
,

x − 1
ε

+ ln *
,

1 + e−
2 x
ε

1 + e−
2
ε

+
-

+
-

� (1 − x) − 1� 1
ε

� ln *
,

1 + e−
2 x
ε

1 + e−
2
ε

+
-
. (2.45)

Then, the limiting process of (2.45) yields

lim
ε→ 0

u+
ε (x) (2.45)

� lim
ε→ 0

*
,
(1 − x) − 1� 1

ε

� ln *
,

1 + e−
2 x
ε

1 + e−
2
ε

+
-

+
-
� (1 − x) − lim

ε→ 0
*
,

1� 1
ε

� ln *
,

1 + e−
2 x
ε

1 + e−
2
ε

+
-

+
-︸                        ︷︷                        ︸

→ 0

� 1 − x . (2.46)

The case when x ∈ (−1, 0) can be handled in an analogous way. By keeping the
negative x in mind, we rewrite the solution (2.44) as

u+
ε (x) � −ε ln

(
e

x
ε + e−

x
ε

e
1
ε + e−

1
ε

)
� −ε ln *.

,

e−
x
ε

(
e

2 x
ε + 1

)
e

1
ε

(
1 + e−

2
ε

) +/
-
� −

1� 1
ε

� ln *
,

e−
x+1
ε *

,
e

2 x
ε + 1

1 + e−
2
ε

+
-

+
-

� (x + 1) − 1� 1
ε

� ln *
,

e
2 x
ε + 1

1 + e−
2
ε

+
-
. (2.47)

This gives the limiting process

lim
ε→ 0

u+
ε (x) (2.47)

� (x + 1) − lim
ε→ 0

*
,

1� 1
ε

� ln *
,

e
2 x
ε + 1

1 + e−
2
ε

+
-

+
-︸                       ︷︷                       ︸

→ 0

� x + 1 . (2.48)

In case of x � 0, both (2.46) and (2.48) converge to the same value 1.

In Figure 2.2(a), we have plotted the graph of u+
ε depending on the several values

of ε. This shows that the behaviour of the approximate solution (2.44) is in full
accordance with our analysis of the limiting process, cf. (2.46) and (2.48). Since the
artificial viscosity term εu′′ε (x) in (2.28) introduces small diffusion around 0, i.e. in
the interval xε depending on ε shown in Figure 2.2(b), one can observe a smoothing
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effect in this region. As a consequence, one obtains a difference around 0 between
the desired solution u+(x) and the vanishing viscosity solution u+

ε (x), see Figure
2.2(b). However, as ε decreases to 0, it can be observed that the interval xε is reduced
to 0 and the approximate solution u+

ε (x) approaches u+(x), see Figure 2.2(a).
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(a) Graphs of u+
ε (x) depending on ε.

u+
ε (x)

xε

u+(x) = 1− |x|

−1 0 1
x

1

(b) Graphs of u+
ε (x) and u+(x).

Figure 2.2. The vanishing viscosity method for the problem (2.30).

Vanishing Viscosity Solution u−ε

From the structure of the solution u+
ε , one can also note that the vanishing viscosity

solution u+
ε for the problem (2.28) becomes invalid when the sign of the artificial

viscosity term in (2.28) is modified from ε u′′ε (x) to −ε u′′ε (x), i.e. if one considers
(2.29). As we have carried out for the problem (2.28), it can be verified that the
solution u−ε to the problem (2.29) is given by

u−ε (x) � ε ln
(

e
x
ε + e−

x
ε

e
1
ε + e−

1
ε

)
. (2.49)

Limiting Process of Vanishing Viscosity Solution u−ε . As ε → 0, the analysis of
u−ε can be performed in a straightforward way, since the solution u−ε is only different
up to a sign when compared with u+

ε , cf. (2.44) and (2.49). This yields

u−ε (x) � (x − 1) − 1� 1
ε

� ln *
,

1 + e−
2 x
ε

1 + e−
2
ε

+
-
⇒ lim

ε→ 0
u−ε (x) � x − 1 (2.50)

for x ∈ (0, 1) and

u−ε (x) � − (x + 1) − 1� 1
ε

� ln *
,

e
2 x
ε + 1

1 + e−
2
ε

+
-
⇒ lim

ε→ 0
u−ε (x) � −(x + 1) (2.51)
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for x ∈ (−1, 0), respectively. Moreover, both (2.50) and (2.51) converge to the same
value −1 if x � 0. The corresponding graph of u−ε with several values of ε and the
limit of the vanishing viscosity solution, i.e. u−, are shown in Figure 2.3(a) and 2.3(b),
respectively.
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(a) Graphs of u−ε (x) depending on ε.
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(b) Graphs of u−ε (x) and u−(x).

Figure 2.3. The vanishing viscosity method for the problem (2.29).

Important Properties of Vanishing Viscosity Solutions

So far we have studied the vanishing viscosity method using the 1-D eikonal equation.
Based on our analysis one can note that there is a distinct feature in this method:
Changing the sign of the artificial viscosity term in the problem leads to a different
solution. This feature can be explained from the viewpoint of local extrema. In this
respect, the important observation suggests that the solution to the problem (2.28)
admits no local minima in the interval (−1, 1). In a symmetric way, the solution to
the problem (2.29) accepts no local maxima in the same interval.

In order to verify the former statement, we suppose for the time being that u0
ε is a

solution to the problem (2.28) and it attains a local minimum at x0
ε. Then, for every

ε > 0 in view of the first- and second-order optimality conditions with respect to the
local minimum, we obtain the following relationship

du0
ε(x)

dx

�����x�x0
ε

� 0 and
d2u0

ε(x)
dx2

�����x�x0
ε

> 0 . (2.52)

Plugging this condition into the problem (2.28) leads to the contradiction

0 − 1 � −1 , ε
d2u0

ε(x)
dx2

�����x�x0
ε

> 0 . (2.53)

As a consequence, one can confirm that the solution to the problem (2.28) does not
admit any local minimum. Moreover, this fact is also supported by the solution in
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(2.44) that we have computed for the same problem. Furthermore, it is clear that
using the analogous line of reasoning one can also validate the latter statement, i.e.
the problem (2.29) does not accept any local maximum.

In fact, the same feature, i.e. that changing the sign of the problem leads to a
different solution and solutions do not admit local maxima or minima depending on
the problem, also appears in viscosity solutions with different characterisations, as
we shall discuss in Section 2.2.3.

2.2.2 One-Sided Differentials
For viscosity solutions [63, 65], one needs a mathematical framework that should
have the capability of dealing with non-differentiable points. To this end, instead
of going directly into definitions of viscosity solutions, we introduce definitions of
one-sided differentials [16, 17, 65] (or sometimes called semi-differentials) which are
composed of super- and subdifferentials.

Definition 2.2.2 (One-sided Differentials). For a scalar function u : Ω ⊂ Rn
→ R,

(i) the superdifferential D+u at a point x is defined as

D+u(x) �



p ∈ Rn : lim sup
y→x

u(y) − u(x) − p · (y − x)
|y − x | ⩽0




(2.54)

and analogously

(ii) the subdifferential D−u at a point x is defined as

D−u(x) �
{

q ∈ Rn : lim inf
y→x

u(y) − u(x) − q · (y − x)
|y − x | ⩾0

}
. (2.55)

From a geometrical point of view, the vector p ∈ Rn defined in (2.54) is called a
superdifferential when a hyperplane y 7→ u(x) + p · (y − x) touches the graph of u
from above at a point x [41, 142]. In Figure 2.4(a) the possible superdifferential set p
at x � 0 is illustrated for the non-differentiable 1-D function u(x) � 1 − |x |. Since the
hyperplane corresponds to a line in 1-D, the vector p in (2.54) represents the slope of
the line in this case. In a similar way, the vector q ∈ Rn defined in (2.55) is called
a subdifferential when a hyperplane y 7→ u(x) + q · (y − x) touches the graph of u
from below at a point x, see Figure 2.4(b). One can note that one-sided differentials
are defined even if functions contain a non-differentiable point x � 0.

Superdifferential of u(x) � 1 − |x |. In order to comprehend how the one-sided
differentials in Definition 2.2.2 can handle a non-differentiable function, we first
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u(x) = 1− |x|

−1 0 1
x

0 < p 6 1

p = 0

−1 6 p < 0

(a) Superdifferential of u(x) � 1 − |x | at x � 0.

u(x) = |x| − 1

−1 0 1
x

0 < q 6 1

q = 0

−1 6 q < 0

(b) Subdifferential of u(x) � |x | − 1 at x � 0.

Figure 2.4. Geometrical interpretations of one-sided differentials for non-
differentiable functions in 1-D.

apply the definition of the superdifferential (2.54) to the non-differentiable function
u(x) � 1 − |x |. To this end, we reformulate the function u(x) � 1 − |x | as

u(x) �



x + 1 , x < 0 ,
−x + 1 , x ⩾ 0 ,

(2.56)

and proceed with case distinctions: i.e. x � 0, x > 0 and x < 0.
The first case we consider is x � 0. If x � 0, there are two options for y to

approach x � 0, i.e. either from the right side, y > 0, or from the left side, y < 0.
For y > 0 and x � 0, we arrive at

lim sup
y→x

u(y) − u(0) − p
�
y − 0

�

|y − 0| ⩽ 0
(2.56)
⇐⇒ lim sup

y→x

−y − p y
y

⩽ 0

⇔ lim sup
y→x

−(1 + p) y
y

⩽ 0 ⇔ −(1 + p) ⩽ 0 ⇔ p ⩾ −1 . (2.57)

For y < 0 and x � 0, we come to

lim sup
y→x

u(y) − u(0) − p
�
y − 0

�

|y − 0| ⩽ 0
(2.56)
⇐⇒ lim sup

y→x

y − p y
−y

⩽ 0

⇔ lim sup
y→x

(1 − p) y
−y

⩽ 0 ⇔ −(1 − p) ⩽ 0 ⇔ p ⩽ 1 . (2.58)

As a consequence, from the results (2.57) and (2.58) we can obtain the superdif-
ferential p ∈ [−1, 1] if x � 0 for the non-differentiable function u(x) � 1 − |x |. This
suggests that the slope of the tangent plane at x � 0 touching from above can vary in
the range from −1 to 1, which exactly corresponds to the geometric interpretation
shown in Figure 2.4(a).
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We turn our attention to the case x > 0. If x > 0, there are still two choices when
y approaches x: either from right (x < y) or from left (y < x).

Taking the case 0 < x < y ⇔ y − x > 0 into consideration gives

lim sup
y→x

u(y) − u(x) − p
�
y − x

�

|y − x | ⩽ 0
(2.56)
⇐⇒ lim sup

y→x

−y + x − p (y − x)
(y − x) ⩽ 0

⇔ lim sup
y→x

−(1 + p) (y − x)
(y − x) ⩽ 0 ⇔ −(1 + p) ⩽ 0 ⇔ p ⩾ −1 . (2.59)

For 0 < y < x ⇔ −(y − x) > 0, we have

lim sup
y→x

u(y) − u(x) − p
�
y − x

�

|y − x | ⩽ 0
(2.56)
⇐⇒ lim sup

y→x

−y + x − p (y − x)
−(y − x) ⩽ 0

⇔ lim sup
y→x

−(1 + p) (y − x)
−(y − x) ⩽ 0 ⇔ (1 + p) ⩽ 0 ⇔ p ⩽ −1 . (2.60)

From the results (2.59) and (2.60), it follows that the superdifferential is p � {−1}
if x > 0 for the function (2.56). Since the function (2.56) is differentiable for x > 0,
the result of the superdifferential coincides with that of the classical derivative.

As with the case x > 0, we move on to the case x < 0. If x < 0, there are two
possibilities when y moves closer to x, either from right (x < y) or from left (y < x).

In consideration of the case x < y < 0⇔ y − x > 0 we arrive at

lim sup
y→x

u(y) − u(x) − p
�
y − x

�

|y − x | ⩽ 0
(2.56)
⇐⇒ lim sup

y→x

y − x − p (y − x)
(y − x) ⩽ 0

⇔ lim sup
y→x

(1 − p) (y − x)
(y − x) ⩽ 0 ⇔ (1 − p) ⩽ 0 ⇔ p ⩾ 1 . (2.61)

The case of y < x < 0⇔ −(y − x) > 0 allows us to obtain

lim sup
y→x

u(y) − u(x) − p
�
y − x

�

|y − x | ⩽ 0
(2.56)
⇐⇒ lim sup

y→x

y − x − p (y − x)
−(y − x) ⩽ 0

⇔ lim sup
y→x

(1 − p) (y − x)
−(y − x) ⩽ 0 ⇔ −(1 − p) ⩽ 0 ⇔ p ⩽ 1 . (2.62)

In view of (2.61) and (2.62), we thus receive the superdifferential p � {1} when
x < 0 for the function (2.56). As in the case of x > 0, the superdifferential is a
singleton since the function (2.56) is also differentiable when x < 0.
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By taking all the cases into account, we can summarise the result of the superdif-
ferential for the non-differentiable function (2.56) as

D+u(x) �



1 , x < 0 ,
[−1, 1] , x � 0 ,
−1 , x > 0 .

(2.63)

The graph of (2.63) is displayed in Figure 2.5(a). As can be observed in Figure 2.5(a),
the superdifferential of the function (2.56) is actually in accordance with the classical
derivatives when the function is differentiable. However, the difference is made
when the function is not differentiable, i.e. at the point x � 0, by admitting set-valued
derivatives although there does not exist a derivative in the classical sense.

Subdifferential of u(x) � 1 − |x |. As we have carried out for the superdifferential
(2.54), the definition of the subdifferential (2.55) is applied to the non-differentiable
function (2.56) by making use of case distinctions: i.e. x � 0, x > 0 and x < 0.

The first case we consider is when x � 0. If x � 0, there are two options for y to
approach x � 0, i.e. either from the right side (y > 0) or from the left side (y < 0).

For y > 0 and x � 0, we obtain

lim inf
y→x

u(y) − u(0) − q
�
y − 0

�

|y − 0| ⩾ 0
(2.56)
⇐⇒ lim inf

y→x

−y − q y
y

⩾ 0

⇔ lim inf
y→x

−(1 + q) y
y

⩾ 0 ⇔ −(1 + q) ⩾ 0 ⇔ q ⩽ −1 . (2.64)

For y < 0 and x � 0, we have

lim inf
y→x

u(y) − u(0) − q
�
y − 0

�

|y − 0| ⩾ 0
(2.56)
⇐⇒ lim inf

y→x

y − q y
−y

⩾ 0

⇔ lim inf
y→x

(1 − q) y
−y

⩾ 0 ⇔ −(1 − q) ⩾ 0 ⇔ q ⩾ 1 . (2.65)

As a consequence, from the results (2.64) and (2.65) we can obtain the superdif-
ferential q � ∅ if x � 0 for the non-differentiable function u(x) � 1 − |x |. In contrast
to the superdifferential (2.63), one can notice that the subdifferential (2.55) does
not admit any values for the function (2.56) at x � 0. This is because, as indicated
previously, a subdifferential exists when a hyperplane is tangent from below to
the graph of the function (2.56) at a point x � 0. However, as can be seen from
Figure 2.4(a), this is not possible. Since the function (2.56) does not accept any local
minimum, this can also be explained in terms of local extrema, which states that a
local minimum is characterised by a subdifferential and a local maximum is described



36 Mathematical Background on PDE-based Approaches

by a superdifferential [16, 41, 63]. Subdifferentials, subderivatives, and subgradients
that generalise the concept of classical derivatives are extensively investigated in
convex analysis literature such as [112, 113, 114, 217].

Let us continue with the case x > 0. As in the case of the superdifferential, there
are two cases to consider: 0 < x < y and 0 < y < x.

For 0 < x < y ⇔ y − x > 0, we obtain

lim inf
y→x

u(y) − u(x) − q
�
y − x

�

|y − x | ⩾ 0
(2.56)
⇐⇒ lim inf

y→x

−y + x − q (y − x)
(y − x) ⩾ 0

⇔ lim inf
y→x

−(1 + q) (y − x)
(y − x) ⩾ 0 ⇔ −(1 + q) ⩾ 0 ⇔ q ⩽ −1 . (2.66)

For 0 < y < x ⇔ −(y − x) > 0, we attain

lim inf
y→x

u(y) − u(x) − q
�
y − x

�

|y − x | ⩾ 0
(2.56)
⇐⇒ lim inf

y→x

−y + x − q (y − x)
−(y − x) ⩾ 0

⇔ lim inf
y→x

−(1 + q) (y − x)
−(y − x) ⩾ 0 ⇔ (1 + q) ⩾ 0 ⇔ q ⩾ −1 . (2.67)

From the results (2.66) and (2.67), one can confirm that the superdifferential is
given by q � {−1} for the function (2.56) for x > 0. Since the function (2.56) is
differentiable for x > 0, the result is not different from the classical derivatives and
that of the superdifferential given in (2.63).

As with the case x > 0, we proceed with the case x < 0. If x < 0, there are still
two possibilities when y approaches x, either from right (x < y) or from left (y < x).

For x < y < 0⇔ y − x > 0, we reach

lim inf
y→x

u(y) − u(x) − q
�
y − x

�

|y − x | ⩾ 0
(2.56)
⇐⇒ lim inf

y→x

y − x − q (y − x)
(y − x) ⩾ 0

⇔ lim inf
y→x

(1 − q) (y − x)
(y − x) ⩾ 0 ⇔ (1 − q) ⩾ 0 ⇔ q ⩽ 1 . (2.68)

Taking the case y < x < 0⇔ −(y − x) > 0 into consideration yields

lim sup
y→x

u(y) − u(x) − q
�
y − x

�

|y − x | ⩾ 0
(2.56)
⇐⇒ lim sup

y→x

y − x − q (y − x)
−(y − x) ⩾ 0

⇔ lim sup
y→x

(1 − q) (y − x)
−(y − x) ⩾ 0 ⇔ −(1 − q) ⩾ 0 ⇔ q ⩾ 1 . (2.69)
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Therefore, one can observe that the superdifferential is given by q � {1} if x < 0 for
the function (2.56) by virtue of (2.68) and (2.69). In an analogous way, one can find
the subdifferential for the same function (2.56) for x > 0, i.e. q � {−1}.

By putting all the cases together, one can finally obtain the subdifferential for the
non-differentiable function (2.56) as

D−u(x) �



1 , x < 0 ,
∅ , x � 0 ,
−1 , x > 0 .

(2.70)

The graph of (2.70) is displayed in Figure 2.5(b). As mentioned already, the important
property of a subdifferential characterising a local minima explains the empty set at
x � 0 in (2.70). Except the point at x � 0, the result of the subdifferential is equivalent
to that of the superdifferential (2.63) and that of the classical derivative, as one may
expect.

D+u(x)

0
x

1

−1

(a) Superdifferential D+u(x).

D−u(x)

0
x

−1

1

(b) Subdifferential D−u(x).

Figure 2.5. One-sided differentials for the non-differentiable function u(x) � 1 − |x |.

So far, we have performed the computations of one-sided differentials for the
non-differentiable function u(x) � |x | − 1 which is shown in Figure 2.4(a). If we
carry out the same procedure for the non-differentiable function u(x) � |x | − 1 that
is shown in Figure 2.4(b), the following subdifferential

D−u(x) �



−1 , x < 0 ,
[−1, 1] , x � 0 ,
1 , x > 0 ,

(2.71)
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as well as the following superdifferential

D+u(x) �



−1 , x < 0 ,
∅ , x � 0 ,
1 , x > 0 .

(2.72)

are obtained. The graph of the result in (2.71) and (2.72) is displayed in Figure 2.6(a)
and 2.6(b), respectively. Since the non-differentiable convex function u(x) � |x | − 1
admits a local minimum at x � 0 it is not surprising to end up with the empty set for
the superdifferential.

D−u(x)

0
x

−1

1

(a) Subdifferential D−u(x).

D+u(x)

0
x

−1

1

(b) Superdifferential D+u(x).

Figure 2.6. One-sided differentials for the non-differentiable function u(x) � |x | − 1.

We have so far explored the important attributes of one-sided differentials by
investigating non-differentiable functions in 1-D. However, as shown in [16] these
main properties still hold in higher dimensions as well: For a function u ∈ C0(Ω)
with x ∈ Ω, (i) super- and subdifferential are closed (possibly empty) subsets of Rn ;
(ii) if u is differentiable at x, then both super- and subdifferential are equivalent
to the classical derivative; (iii) if for some x both super- and subdifferential are
non-empty sets, then u is differentiable at x; (iv) for some non-differentiable points
x, a subdifferential characterises a local minimum while a superdifferential admits
only a local maximum.

2.2.3 Viscosity Solutions
As we have previously encountered in the case of the 1-D eikonal equation (2.25),
it is well known that HJEs, in general, do not admit classical solutions and thus
are ill-posed in the sense of Hadamard [105]. Hence, in an attempt to tackle the
difficulties of existence and uniqueness, serious effort was made before the notion
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of viscosity solutions by Crandall and Lions [62, 63, 65] was introduced in the early
1980s.

In this context, it should still be worth mentioning an important work to appreciate
the mathematical advances in those times. In 1975, the Russian mathematician
Kružkov has acquired generalised solutions and established the existence and
uniqueness results for eikonal-type HJEs by imposing constraints on weak solutions
relying upon Fermat’s and Huygens’ principles from geometrical optics [146]. In
fact, as we shall discuss in Section 2.3, it turns out that these physical principles play
the fundamental role even in developing an efficient numerical method such as the
fast marching algorithm [226]. This suggests that physically meaningful constraints
can help to find weak solutions not only for problems themselves but also for relaxed
formulations.

In this section, we look into definitions of viscosity solutions by one-sided
differentials from the previous section and investigate what properties they have and
how they are useful especially when functions have points that are not differentiable
in the classical sense by applying them to the 1-D eikonal equation (2.25). The key
difference between viscosity solutions [63, 65] and vanishing viscosity solutions
lies in the fact that viscosity solutions do not require solutions to be everywhere
differentiable but only to be continuous, i.e. C0, in contrast to the case of vanishing
viscosity solutions as shown in Section 2.2.1.

For a given eikonal-type Hamilton-Jacobi equation with DBC




H(x ,∇u(x)) � 0 in Ω

u(x) � φ(x) on ∂Ω ,
(2.73)

a continuous viscosity solution u ∈ C0 to (2.73) is defined as follows.

Definition 2.2.3 (Continuous Viscosity Solution). A continuous function u ∈ C0 is
a continuous viscosity solution of the equation (2.84) in Ω if the following conditions
are satisfied:

(i) (Viscosity subsolution) H(x , p) ⩽ 0 ∀ x ∈ Rn , ∀p ∈ D+u,

(ii) (Viscosity supersolution) H(x , q) ⩾ 0 ∀ x ∈ Rn , ∀q ∈ D−u,

where D+ and D− denote the super- and subdifferential in (2.54) and (2.55), respec-
tively.

In Definition 2.2.3, one can notice that continuous viscosity solutions extend
the concept of a gradient in (2.73) from the classical sense to the more general one
that can handle non-differentiable problems. In order to grasp how continuous
viscosity solutions are selected from solution candidates shown in Figure 2.1, we
find a solution to the 1-D eikonal equation (2.25) in the viscosity sense by applying
the above definition.
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Viscosity Solution for the Hamiltonian H(x ,∇u(x)) � 1 − |∇u(x)|
To this end, we first make use of the following Hamiltonian

H(x ,D±u(x)) � 1 − |D±u(x)| , (2.74)

where D±u(x) denotes the one-sided differentials at a point x, i.e. D+u(x) for the
superdifferential in (2.54) and D−u(x) for the subdifferential in (2.55), respectively.

While there are infinitely many solution candidates for the problem (2.25) as
shown in Figure 2.1, it turns out within this mathematical framework that the
pointwise minimum solution candidate

u−(x) � |x | − 1 (2.75)

is the only viscosity solution to (2.25) with the Hamiltonian (2.74).

Viscosity Subsolution. To validate this statement, we examine if (2.75) satisfies
the criterion of the viscosity subsolution in Definition 2.2.3. From (2.72), which is
the superdifferential of (2.75), one can infer

0 ⩾ 1 −
�
D+u−(x)� �




0 , x < 0 ,
∅ , x � 0 ,
0 , x > 0 .

(2.76)

This confirms that (2.75) fulfils the requirement for the viscosity subsolution in the
interval (−1, 1) \ {0}.

Viscosity Supersolution. As a next step, we check whether (2.75) meets the condi-
tion for the viscosity supersolution in Definition 2.2.3. Since the viscosity supersolu-
tion incorporates the subdifferential, the equation (2.71), i.e. the subdifferential of
(2.75), brings us to

0 ⩽ 1 − |D−u−(x)| �



0 , x < 0 ,
[0, 1] , x � 0 ,
0 , x > 0 .

(2.77)

Based on the fact that a viscosity solution must satisfy both requirements for the
viscosity subsolution and the viscosity supersolution according to Definition 2.2.3,
one can conclude that (2.75) is a viscosity solution in the interval (−1, 0)∪ (0, 1), given
the results in (2.76) and (2.77). From this fact, it can also be noticed that viscosity
solutions are not required to be defined everywhere but they are actually defined
“almost everywhere” in mathematical terms [35, 107, 264]. The graph of the viscosity
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solution to (2.75) with the Hamiltonian (2.74) is shown in Figure 2.7, which illustrates
the almost everywhere solution not being defined at x � 0.

u−(x) = |x| − 1

−1

0
1

x

−1

u(x)

Figure 2.7. A viscosity solution to (2.25) with the Hamiltonian (2.74).

Uniqueness of a Solution. To verify the uniqueness of the solution (2.75) to the
1-D eikonal equation (2.25) with the Hamiltonian (2.74), we inspect whether the
pointwise maximum solution candidate

u+(x) � 1 − |x | (2.78)

complies with the Definition 2.2.3.
To see if (2.78) qualifies for the viscosity subsolution, we proceed as carried

out for (2.76) but this time with the different superdifferential (2.63), which is the
superdifferential of (2.78). Then, we can attain

0 ⩾̸ 1 −
�
D+u+(x)� �




0 , x < 0 ,
[0, 1] , x � 0 ,
0 , x > 0 .

(2.79)

The result (2.79) shows that the solution candidate (2.78) fails to be a viscosity
subsolution at the point x � 0 on account of Definition 2.2.3. Therefore, it cannot
be a viscosity solution regardless of the fulfilment of the supersolution criterion.
Moreover, it can be observed that a viscosity solution to (2.25) with the Hamiltonian
(2.74) does not admit local maxima by the properties of superdifferential discussed
in Section 2.2.2. Whenever a solution candidate has at least one local maximum, e.g.
those with dashed lines in Figure 2.1, these solution candidates are filtered out by
the requirement for the viscosity supersolution as shown here. As a consequence,
this procedure leaves only one solution candidate (2.75) from Figure 2.1, which
is actually the only viscosity solution to the 1-D eikonal equation (2.25) with the
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Hamiltonian (2.74). Since we have mainly focused here on elaborating the idea of
the uniqueness of viscosity solutions by means of an example problem, we refer to
[16, 17, 126, 142, 155] and the references therein for mathematically more rigorous
treatment.

Viscosity Solution for the Hamiltonian H(x ,∇u(x)) � |∇u(x)| − 1

To solve (2.25), one may realise that there is an alternative to use the Hamiltonian
(2.74). We, therefore, turn our attention to investigate whether the viscosity solution
(2.75) is preserved when we utilise the different Hamiltonian

H(x ,D±u(x)) � |D±u(x)| − 1 . (2.80)

It turns out that the equation (2.75) is not a viscosity solution any more when the
different Hamiltonian is used. To justify this, we simply check the condition for the
viscosity supersolution. When we incorporate (2.71), i.e. the subdifferential of (2.75),
we can observe the expected result

0 ⩽̸ |D−u−(x)| − 1 �




0 , x < 0 ,
[−1, 0] , x � 0 ,
0 , x > 0 .

(2.81)

By the previous discussion, this suggests that a viscosity solution with the
Hamiltonian (2.80) does not accept local minima. Then, it can be expected that
the pointwise maximum solution candidate (2.78) should be singled out from the
solution set portrayed in Figure 2.1 since other solution candidates are rejected by
the requirement for the viscosity supersolution. By validating (2.78) to be both a
viscosity subsolution and a viscosity supersolution, we can attest that (2.78) is a
viscosity solution.

Viscosity Subsolution. To justify that (2.78) is a viscosity subsolution, we show
from (2.63), i.e. the superdifferential of (2.78), that (2.78) is in accordance with the
definition of viscosity subsolution

0 ⩾
�
D+u+(x)� − 1 �




0 , x < 0 ,
[−1, 0] , x � 0 ,
0 , x > 0 .

(2.82)
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Viscosity Supersolution. In a similar way, by (2.70), i.e. the subdifferential of (2.78),
one confirms that (2.78) is a viscosity supersolution

0 ⩽
�
D−u+(x)� − 1 �




0 , x < 0 ,
∅ , x � 0 ,
0 , x > 0 .

(2.83)

As a result, (2.78) is a viscosity solution in the interval (−1, 0)∪ (0, 1) and thereby the
assertion follows. The graph of the viscosity solution for the 1-D eikonal equation
(2.25) with the Hamiltonian (2.80) is shown in Figure 2.8. When the Hamiltonian
(2.80) is incorporated, it can be noted that the viscosity solution in Figure 2.8 coincides
with the distance function (2.26) except one point x � 0, see u+(x) � 1− |x | displayed
in Figure 2.1.

u+(x) = 1− |x|

−1 0 1
x

1

u(x)

Figure 2.8. A viscosity solution to (2.25) with the Hamiltonian (2.80).

In what follows, we summarise some important attributes of viscosity solutions
that are usually different in the classical sense: (i) Making use of the different Hamil-
tonian for the same problem leads, in general, to different viscosity solutions. In other
words, viscosity solutions are generally not preserved with a different Hamiltonian.
(ii) As can be noticed in Figure 2.7 and 2.8, viscosity solutions do not need be defined
everywhere but almost everywhere, possibly except for some points. (iii) Since the
framework of viscosity solutions is capable of handling non-differentiable points by
one-sided differentials, viscosity solutions do not require solutions to be everywhere
differentiable but only to be continuous almost everywhere. When comparing
the quality from the vanishing viscosity solutions with those from the viscosity
solutions, there is a big difference especially around the point x � 0 (see Figure
2.2 and 2.3 for vanishing viscosity solutions and Figure 2.7 and 2.8 for viscosity
solutions, respectively). Concerning the role of the point x � 0, where solutions are
not defined, we defer the matter to Section 3.5.3.
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Finally, this framework can also be extended to the general-type Hamiltonian
(2.24). For a given general-type Hamilton-Jacobi equation with DBC




H(x , u(x),∇u(x)) � 0 in Ω

u(x) � φ(x) on ∂Ω,
(2.84)

a continuous viscosity solution u ∈ C0 to an equation (2.84) is defined as follows.

Definition 2.2.4 (Continuous Viscosity Solution). A continuous function u ∈ C0 is
a continuous viscosity solution of the equation (2.84) in Ω if the following conditions
are satisfied:

(i) (Viscosity subsolution) H(x , u(x), p) ⩽ 0 ∀ x ∈ Ω, ∀p ∈ D+u,

(ii) (Viscosity supersolution) H(x , u(x), q) ⩾ 0 ∀ x ∈ Ω, ∀q ∈ D−u,

where D+ and D− denote the super- and subdifferential in (2.54) and (2.55), respec-
tively.

2.3 Fast Marching Methods
In many scientific areas, e.g. geophysics, electrodynamics and optics, estimating
the arrival time of a wavefront described by an eikonal equation based on Fermat’s
and Huygens’ principle [39, 115] plays a significant role. For finding a solution
to an eikonal equation there are mainly two categories of strategies, namely time-
consuming iterative algorithms, e.g. [219], and efficient non-iterative ones. In this
section, we focus on efficient non-iterative approaches. For this type of methods,
among others, Tsitsiklis proposed an optimal control based approach [249] which
makes use of the Dĳkstra’s shortest path algorithm [73]. Helmsen et al. [110] and
Sethian [226] derived the same idea in a different way by utilising the upwind
discretisation of Rouy and Tourin [219]. The term “fast marching” method [226, 229,
230] was coined by Sethian and it refers to a specifically designed efficient numerical
algorithm to solve an eikonal equation in the viscosity sense with an upwind scheme
[219] by tracking the propagation of a wavefront in a systematic way and exploiting
a heap data structure [225] for speedup.

2.3.1 A Motivational Example
In order to understand the basic idea of the FM method, we consider the following
concrete scenario: Suppose that a company plans to begin broadcasting a local
radio programme in a flat area and wants to know where to place how many signal
amplification systems in order to synchronise with the original signal before it
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officially starts a business. To this end, a test signal, which is assumed to be a plane
wave, is sent out with a constant speed from its station and thereby a wavefront of the
electromagnetic wave is spreading out in the normal direction to the wavefront. In
addition, receiving antenna systems are placed at regular grid points to measure the
first arrival time of the wavefront of the original signal. The situation is illustrated in
Figure 2.9.

F

F

F

F

F

F

F

F
initial wavefront

Figure 2.9. An illustration of the concrete example. A transmitted wavefront of
an initial signal expands outwards with a constant speed F > 0. Assuming that
a broadcasting station is located at green nodes and the arrival time inside the
wavefront is already known to be 0. However, the arrival time at the red nodes is yet
unknown.

As discussed in [229], the aforementioned scenario can be formulated by the
basic relationship of a moving object in classical mechanics [85]. In 1-D, this reads as

dx � F dT ⇔ 1 � F
dT
dx
, T(x0) � 0 (2.85)

where dx denotes a travelled distance, F ∈ R+ stands for a constant speed, x0 an
initial location of a wavefront, and dT amounts to be the elapsed time. In 2-D, the
equation (2.85) is extended to




|∇T | F � 1 in Ω \ Γ0

T � 0 on Γ0
, (2.86)

where T : x ∈ Ω ⊂ R2
→ R+ is the elapsed time between the first arrival of the

wavefront at grid node x and sending out at the signal at the station, F : R2
→ R+

stands for a constant speed at the grid point x, and Γ0 ⊂ R2 denotes the initial
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location of the wavefront. Although we rather focus on the 2-D case for the example,
the same procedure may be applied to higher dimensional problems as well. As a
result, the arrival time T of the front motion is described by a solution to the eikonal
equation (2.86), which is also a boundary value problem [229].

2.3.2 Approximation by an Upwind Scheme

As previously mentioned, for a numerical approximation of (2.86), there are mainly
two approaches of work: an iterative method such as [219] and a non-iterative one,
e.g. [138, 227, 282]. In spite of some differences in detail, all these methods actually
share one important principle: they strive to select the proper direction from which
the wavefront is coming by retrieving information from those grid points where the
wavefront has just been shortly before. Having this in mind, we first investigate the
main properties of the method by Rouy and Tourin [219] and thereby may have an
insight into other approaches such as [138, 227, 282].

For the discretisation we may define a grid point xi in terms of an index set i and
grid size h as

xi :�
�
xi , y j

�⊤
�

�
i · h1, j · h2

�⊤
, (2.87)

where xi ∈ Ωh ⊂ Ω ⊂ R2, i :� (i , j)⊤ ⊂ Z2, h :� (h1, h2)⊤ ⊂ R2+ with fixed grid sizes
h1 and h2 in x- and y-direction, respectively. Since the grid size h is constant in each
direction, a grid point xi can be determined by an index i by assuming that the index
i is well-defined in the computational domain Ωh .

In this respect, one discretisation for the eikonal equation (2.86) can be realised
by a first-order upwind scheme as in [219]. This reads√

T̂2
x + T̂2

y �
1

Fi , j
, (2.88)

where T̂x and T̂x represent the upwind discretisation in x- and y-direction that are
defined by

T̂x � max
(
D−x

i , j T,−D+x
i , j T, 0

)
(2.89)

and
T̂y � max

(
D−y

i , j T,−D+y
i , j T, 0

)
, (2.90)

respectively. The term D−x
i , j T in (2.89) denotes a backward difference approximation

at (i , j)⊤ in x-direction with a grid size h1

D−x
i , j T �

Ti , j − Ti−1, j

h1
. (2.91)
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Analogously, D+x
i , j T in (2.89) stands for a forward difference

D+x
i , j T �

Ti+1, j − Ti , j

h1
. (2.92)

In a similar way, for the y-direction the same notations are applied with a grid size
h2. Therefore, a backward difference D−y

i , j T in (2.90) is given by

D−y
i , j T �

Ti , j − Ti , j−1

h2
(2.93)

and a forward difference D+y
i , j T in (2.90) is denoted by

D+y
i , j T �

Ti , j+1 − Ti , j

h2
, (2.94)

respectively. In what follows, we provide the underlying rationale for this specific
type of numerical scheme in both 1-D and 2-D.

1-D case

Let us have a look on some properties of the employed scheme (2.88) in 1-D, i.e.
(2.89) with (2.91) and (2.92). To this end, suppose Ti , j is an unknown approximate
solution and consider how one can select a proper upwind scheme by means of two
neighbours in x-direction. In view of two adjacent nodes of (i , j)⊤, one needs to
deal with three arrival times, i.e. Ti−1, j , Ti , j and Ti+1, j . When one sorts these in an
ascending order, the following six cases may occur:

(i) Ti−1, j < Ti , j < Ti+1, j , (ii) Ti−1, j < Ti+1, j < Ti , j ,

(iii) Ti , j < Ti−1, j < Ti+1, j , (iv) Ti , j < Ti+1, j < Ti−1, j ,

(v) Ti+1, j < Ti , j < Ti−1, j , (vi) Ti+1, j < Ti−1, j < Ti , j .

Case (i) and (v). The case (i) represents the situation that a wavefront reaches the
grid point (i − 1, j)⊤ first then moves towards (i + 1, j)⊤ through (i , j)⊤. Hence, the
front motion propagates from left to right and thereby the backward difference D−x

i , j
of (2.91) is the proper selection, see Figure 2.10(a). This means that the discrete
eikonal equation (2.88) is reduced to√(

D−x
i , j T

)2
�

1
Fi , j

(2.95)
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and a physically meaningful solution to (2.95) satisfies the condition described in
the case of (i). The detailed analysis with a geometric interpretation for this case
is deferred to the discussion of the complete 2-D case. With the same logic but the
opposite direction, the case (v) gives the forward difference D+x

i , j as a proper decision,
see Figure 2.10(b).

Case (ii) and (vi). For the case (ii) and (vi), i.e. when both Ti−1, j and Ti+1, j are less
than Ti , j , the smaller value is selected as an upwind direction, see Figure 2.10(c).
Therefore, the case (ii) corresponds to the first argument in (2.89) since

Ti−1, j < Ti+1, j < Ti , j

⇐⇒ Ti−1, j − Ti , j < Ti+1, j − Ti , j < 0

⇐⇒
Ti−1, j − Ti , j

h1
<

Ti+1, j − Ti , j

h1
< 0

⇐⇒
Ti , j − Ti−1, j

h1
> −

(
Ti+1, j − Ti , j

h1

)
> 0

(2.91)
⇐⇒

(2.92)
D−x

i , j T > −D+x
i , j T > 0 .

(2.96)

Analogously, the case (vi) corresponds to the second argument in (2.89) because

Ti+1, j < Ti−1, j < Ti , j

⇐⇒ Ti+1, j − Ti , j < Ti−1, j − Ti , j < 0

⇐⇒
Ti+1, j − Ti , j

h1
<

Ti−1, j − Ti , j

h1
< 0

⇐⇒
Ti+1, j − Ti , j

h1
< −

(
Ti , j − Ti−1, j

h1

)
< 0

(2.91)
⇐⇒

(2.92)
D+x

i , j T < −D−x
i , j T < 0

⇐⇒ −D+x
i , j T > D−x

i , j T > 0 .

(2.97)

Especially in this case, one may notice that the actual difference is D+x
i , j T, see the

slope between Ti , j and Ti+1, j in Figure 2.10(c). This suggests that the role of the
max operator in (2.89) is to select a correct direction for the upwind discretisation
[43, 44, 132]. However, one should note that the original sign must be restored if the
forward direction is selected. This corresponds to

Tx ≈



D+x
i , j T if T̂x � −D+x

i , j T ,

T̂x otherwise ,
(2.98)
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and

Ty ≈



D+y
i , j T if T̂y � −D+y

i , j T ,

T̂y otherwise ,
(2.99)

respectively.

Case (iii) and (iv). The cases (iii) and (iv) describe the situation that a wavefront
passed by a node (i , j)⊤ earlier than (i − 1, j)⊤ or (i + 1, j)⊤. However, this does not
make sense since a solution at (i , j)⊤ is already given before a decision for an upwind
direction is made by neighbouring nodes. Furthermore, one may notice that the max
operator in (2.88) does not accept locally convex solutions, see Figure 2.10(d).

arrival time T

T(i−1,j)

T(i,j)

T(i+1,j)

(a) Case (i).

arrival time T

T(i−1,j)

T(i,j)

T(i+1,j)

(b) Case (v).

arrival time T

T(i−1,j)

T(i,j)

T(i+1,j)

(c) Case (ii) and (vi).

arrival time T

T(i−1,j)

T(i,j)

T(i+1,j)

(d) Case (iii) and (iv).

Figure 2.10. Arrival time T at (i − 1, j)⊤, (i , j)⊤ and (i + 1, j)⊤. The arrival time of
green nodes are known but that of red ones are not.

As a consequence, this type of an upwind scheme satisfies the causality [229, 230,
231], which means that a new arrival time computed only by already known upwind
values from neighbours must be greater than the ones of adjacent nodes. Moreover,
the presented 3-point based upwind scheme is stable since it does not introduce new
local extrema during computations. This property of the scheme is called monotone
[38, 92, 152, 153, 229].

2-D Case

Let us turn our attention to the 2-D case. To this end, as in [154] we provide a
geometric interpretation to the solutions of (2.88) by constructing it with an upwind
scheme [219]. Since there are four neighbouring nodes to consider in the 2-D case, we
limit ourselves to the left half-plane with respect to (i , j)⊤ for the sake of simplicity.
Nevertheless, the other half can be handled in a similar way.

First, one simple scenario occurs when the wavefront is approaching (i , j)⊤ in
solely one direction as in 1-D. If this is the case, there are three possibilities for an
upwind direction as shown in Figure 2.11. By the discussion in 1-D, the following
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decisions can be made: D−x
i , j for the case in Figure 2.11(a), −D+y

i , j for the case in Figure
2.11(b), and D−y

i , j for the case in Figure 2.11(c).

Since the case of Figure 2.11(a) actually corresponds to the case (i) in 1-D, from
(2.95) one can obtain the following relationship√(

D−x
i , j T

)2
�

1
Fi , j

(2.91)
�⇒

(
Ti , j − Ti−1, j

h1

)2
�

1
F2

i , j

⇐⇒ Ti , j � Ti−1, j ±
h1
Fi , j
. (2.100)

However, in view of the geometry in Figure 2.11(a), the arrival time of the wavefront
at (i , j)⊤ can be obtained by

Ti , j � Ti−1, j +
h1
Fi , j
, (2.101)

with the grid distance h1 in x-direction and the constant speed Fi , j . At this point,
one can observe that the solution Ti , j � Ti−1, j −

h1
Fi , j

in (2.100) is physically unfeasible
based on the causality and thereby excluded from the solution.

i − 1 i i + 1

j − 1

j

j + 1

(a) Ti−1, j < Ti , j .
i − 1 i i + 1

j − 1

j

j + 1

(b) Ti , j+1 < Ti , j .
i − 1 i i + 1

j − 1

j

j + 1

(c) Ti , j−1 < Ti , j .

Figure 2.11. Upwind directions for one-direction movement of the wavefront (pure
horizontal or vertical movement). The solid line denotes the planar wavefront and
the dashed arrow corresponds to the direction of the movement. The arrival time of
green nodes are known but that of red ones are not.

If the motion of the wavefront involves two directions for an upwind side, we
have to make case distinctions for an analysis. To begin with, we investigate the
situation that the planar wavefront is coming to (i , j)⊤ from the northwest direction.
In this case, the wavefront can take three feasible routes in the quadrant, see Figure
2.12(a), 2.12(b) and 2.12(c). Since the correct decisions on upwind directions for
the northwest quadrant are D−x

i , j and −D+y
i , j , the discrete eikonal equation (2.88) is
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reduced to (
D−x

i , j T
)2

+

(
−D+y

i , j T
)2

�
1

F2
i , j

(2.91)
⇐⇒

(2.94)

(
Ti , j − Ti−1, j

h1

)2
+

(
−

Ti , j+1 − Ti , j

h2

)2
�

1
F2

i , j

.

(2.102)

i − 1 i i + 1

j − 1

j

j + 1

(a) Ti−1, j � Ti , j+1 < Ti , j .
i − 1 i i + 1

j − 1

j

j + 1

(b) Ti , j+1 < Ti−1, j < Ti , j .
i − 1 i i + 1

j − 1

j

j + 1

(c) Ti−1, j < Ti , j+1 < Ti , j .

Figure 2.12. Different cases of the arrival time T at (i − 1, j)⊤, (i , j)⊤ and (i , j + 1)⊤
when the movement of the wavefront are not purely vertical or horizontal.

For the case of Ti−1, j � Ti , j+1 < Ti , j as in Figure 2.12(a), one can compute the
arrival time as

Ti , j � Ti−1, j +
|AC |
Fi , j
, (2.103)

where |AC | denotes the shortest length between the planar wavefront and (i , j)⊤
depicted in Figure 2.13(a). Based on the area of the triangle, the distance |AC | can be
computed by

h1 h2 � |AC |
√

h2
1 + h2

2 ⇔ |AC | � h1 h2√
h2

1 + h2
2

. (2.104)

For the case of Ti , j+1 < Ti−1, j < Ti , j as shown in Figure 2.12(b), one can draw the
following connections: The elapsed time of the wavefront for the line segment AC in
Figure 2.13(b) amounts to be

Ti , j � Ti , j+1 +
h2 cos β

Fi , j
⇔

Ti , j − Ti , j+1

h2
Fi , j � cos β . (2.105)
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h1

h2
A

i − 1 i

C j

j + 1

(a) Figure 2.12(a).

h1

h2

A

B

α
β

i − 1 i

C j

j + 1

(b) Figure 2.12(b).

Figure 2.13. The close-up view for the northwest quadrant in Figure 2.12.

In an analogous way, the travel time for |BC | corresponds to

Ti , j � Ti−1, j +
h1 cos α

Fi , j
⇔

Ti , j − Ti−1, j

h1
Fi , j � cos α . (2.106)

Then, based on the trigonometric identity

cos β � cos
(
π
2 − α

)
� sin α (2.107)

as well as
sin2 α + cos2 α � 1 , (2.108)

plugging (2.105) and (2.106) into (2.108) yields the exact same quadratic equation
(2.102) whose solution can be expressed in an analytic form. Rearranging (2.102)
with respect to the unknown T(i , j) leads to

a T2
i , j + b Ti , j + c � 0 , (2.109)

where
a :� h2

1 + h2
2 , (2.110)

b :� −2
�
Ti−1, j h2

2 + Ti , j+1 h2
1

�
, (2.111)

c :� h2
2 T2

i−1, j + h2
1 T2

i , j+1 −
h2

1 h2
2

F2
i , j

. (2.112)
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Since the discriminant D of (2.109) is given by

D � b2
− 4 a c

(2.110)
�

(2.111)
4

�
Ti−1, j h2

2 + Ti , j+1 h2
1

�2
− 4

�
h2

1 + h2
2

� *.
,

h2
2 T2

i−1, j + h2
1 T2

i , j+1 −
h2

1 h2
2

F2
i , j

+/
-

� 4
(
T2

i−1, j h4
2 + 2 Ti−1, j Ti , j+1 h2

1 h2
2 + T2

i , j+1 h4
1

)
− 4 *.

,
h2

1 h2
2 T2

i−1, j + h4
1 T2

i , j+1 −
h4

1 h2
2

F2
i , j

+ h2
1 h2

2 T2
i , j+1 + h4

2 T2
i−1, j −

h2
1 h4

2

F2
i , j

+/
-

� 4 *.
,

h2
1 h2

2
�
h2

1 + h2
2

�

F2
i , j

− h2
1 h2

2
�
Ti−1, j − Ti , j+1

�2+/
-

� 4 h2
1 h2

2
*.
,

h2
1 + h2

2

F2
i , j

−
�
Ti−1, j − Ti , j+1

�2+/
-
, (2.113)

the real solution of (2.109) does not exist when the following condition holds true

D < 0
(2.113)
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(since it is unknown which one is larger than the other between Ti−1, j and Ti , j+1)
⇒ Ti−1, j � +∞ or Ti , j+1 � +∞ . (2.114)
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Therefore, a solution of (2.109) has the form of

Ti , j �




Ti−1, j +
h1
Fi , j
, if Ti−1, j < Ti , j+1 and D < 0 ,

Ti , j+1 +
h2
Fi , j
, if Ti−1, j > Ti , j+1 and D < 0 ,

−b +
√

D
2 a

, D > 0 ,

(2.103) , D � 0 (for the special case Ti−1, j � Ti , j+1) ,

(2.115)

where a and b are referred to (2.110) and (2.111), respectively. It can be noticed
that the condition for non-existence of real solutions given in (2.114) actually points
out either purely horizontal or vertical movement of the wavefront, see (2.101) and
Figure 2.11. It is, furthermore, clear that this procedure can be applied to other
quadrants as well as to the case of Figure 2.12(c) in a straightforward way.

To present a solution, we first rewrite (2.88), for the purpose of compact notations,
as

2∑
n�1

max
(T − Tn

hn
, 0

)2
�

1
F2 , (2.116)

where T :� Ti , j , F :� Fi , j ,
T1 � min

�
Ti−1, j , Ti+1, j

�
, (2.117)

and
T2 � min

�
Ti , j−1, Ti , j+1

�
. (2.118)

Then, one can formulate a solution for the whole quadrants by making case distinc-
tions. Although there are the following six cases to handle in total

(i) T > T1 > T2 , (ii) T > T2 > T1 , (iii) T1 > T > T2 ,

(iv) T2 > T > T1 , (v) T1 > T2 > T , (vi) T2 > T1 > T ,

one does not need to deal with the cases (v) and (vi) on the grounds that they are
physically infeasible as discussed in the 1-D case, see Figure 2.10.

For the case T > max(T1, T2) which represents both (i) and (ii), the larger solution
of the quadratic equation

2∑
n�1

(T − Tn

hn
, 0

)2
�

1
F2 (2.119)

is the desired solution. It is given by

T �
bFM +

√
DFM

aFM
, (2.120)
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where

aFM �
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2
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FM−aFM cFM . (2.121)

Besides, the case (iii) T1 > T > T2 yields the solution

T � T2 +
h2
F

(2.122)

and the case (iv) T2 > T > T1 suggests

T � T1 +
h1
F
. (2.123)

One can note that the solutions (2.122) and (2.123) cover purely vertical and horizontal
wavefronts, respectively. According similar formulations that are only valid for
special cases, i.e. h1 � h2 � 1 or h1 � h2 � h, are described in [138, 282] and extended
to higher dimensions in [282].

So far we have seen that the upwind scheme by Rouy and Tourin [219] fulfils the
causality condition which plays a prime role in the FM algorithm. At this moment,
we are in a position to proceed with the algorithm itself.

2.3.3 The Fast Marching Algorithm
The main idea behind the FM algorithm is to provide a specific way of traversing
grid points once by classifying them into three classes, i.e. known, trial and far. Since
a one-sided upwind-type scheme is employed during the computation, the causal
relationship is secured at the same time. The algorithm is composed of mainly
two parts: One part is the initialisation of the algorithm and the other part is the
marching of the wavefront.

Initialisation

We begin with the initialisation part which is performed in three steps [229]: As a
first step, all initial points are labelled as known and the value is fixed with T(i , j) � 0.
The initial points refer to the locations where the information of the arrival time is
available. In the aforementioned concrete example, these coincide with the grid
points where stations are placed, see the green points in Figure 2.9. The label known
is flagged as green in Figure 2.14(a) and denoted as set G in Algorithm 2.1.

In the second step, all neighbours of known points are tagged as trial unless their
states are known. The neighbours of a grid point x0 :� (xi0 , y j0)⊤ are defined as

N(x0) :� {(xi0−1, y j0)⊤, (xi0+1, y j0)⊤, (xi0 , y j0−1)⊤, (xi0 , y j0+1)⊤} . (2.124)
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The label trial is indicated by the blue points in Figure 2.14(a). They are denoted as
set B in Algorithm 2.1.

For the third step, all the remaining nodes are marked as far and the value of
the far nodes is assigned by Ti , j � +∞. These correspond to red vertices in Figure
2.14(a) and the set R in Algorithm 2.1. The Lines 1–10 in Algorithm 2.1 summarise
the initialisation part.

From the viewpoint of the value, one may notice that each label of a node has the
meaning as follows: Once a point is labelled as known or G in Algorithm 2.1, the
value remains unmodified. However, the arrival time of a point tagged as trial or B
in Algorithm 2.1 may be modified afterwards. The value of a point marked as far or
R in Algorithm 2.1 has not been computed yet.

Marching of the Front Motion

Subsequently, the marching process of the wavefront constitutes the rest of the
algorithm, which is realised by the following loop [229]:

(i) Find a point with the smallest value from the trial nodes, which is called “E” in
Figure 2.14(b).

(ii) Change the label of the point “E” from trial to known, see Figure 2.14(c).

(iii) Modify the state of all neighbours of “E” into trial unless their states are known,
see Figure 2.14(d).

(iv) Update the arrival time for all trial neighbours of “E” by solving (2.86).

(v) Go back to step (i) until the states of all nodes are known.

In contrast to the iterative approach by Rouy and Tourin [219], this loop basically
provides a guidance how to visit a grid node once and update the arrival time
without violating the causality. For this purpose, it is required to have a strategy to
plan for the next move of the wavefront depending on the current state of each trial
node. Since the arrival time in the trial class is computed by adjacent known points
but is not fixed yet, Step (i) offers a criterion, i.e. to select the node with the minimum
value, relying upon the Fermat’s principle [39, 115]. The principle is sometimes
called “principle of least time” which states that a ray of light takes the shortest path
between two points and traverses the route in the least time. In this context, the
selection process in Step (i) suggests that the wavefront leaving the known nodes first
arrives at the node with the minimum value in the trial class, see Figure 2.14(b). At
this moment, the state of the node with the minimum value can be changed from
trial to known and its adjacent nodes belonging to the far class are moved to trial
one, see Figure 2.14(c) and 2.14(d). Afterwards, the arrival time of all trial nodes is
updated by solving (2.86) and this procedure continues until the state of all nodes
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(a) Initialisation.

E

(b) Marching step (i).

E

(c) Marching step (ii).

E

(d) Marching step (iii).

Figure 2.14. The fast marching algorithm.

are known. The Lines 11–18 in Algorithm 2.1 summarise the marching part in the
FM.

Since the upwind type scheme employed in (2.86) guarantees the causality, all
updated values including the minimum in the trial class are greater than those in
the known class. This implies that there is no need to revisit a node to ensure the
causality. Moreover, when a min-heap data structure [225] is utilised for tracing
a node with a minimum value in trial class the computational complexity of the
algorithm amounts to be O(N log N) with N being the number of nodes [229].
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Algorithm 2.1. The fast marching algorithm.
Input: mesh points {xi}, initial points {x0}
Output: arrival time map T : Ωh → R

/* initialisation */
1 G ,B ,R ←− ∅
2 foreach x0 ∈ Ωh do
3 G ←− G ∪ {x0} /* G: label known */
4 T(x0)←− 0

5 foreach x0 ∈ Ωh do
6 ifN(x0) < G then
7 B ←− B ∪N(x0) /* B: label trial */

8 foreach xi ∈ Ωh \ (G ∪ B) do
9 R ←− R ∪ {xi} /* R: label far */

10 T(xi)←− +∞

/* marching */

11 while G , Ωh do
12 xmin ←− argminxi∈B

T(xi)
13 B ←− B \ {xmin}
14 G ←− G ∪ {xmin}
15 ifN(xmin) < G then
16 B ←− B ∪N(xmin)

/* update */
17 foreach xi ∈ B do
18 Tnext(xi)←− Tcurrent(xi) /* by solving (2.88) */

2.4 Summary
In this chapter, we have studied the essential mathematical background for PDE-
based approaches to SfS. After we have characterised important properties of HJEs,
vanishing viscosity methods and the modern notion of viscosity solutions have been
introduced by the example of the eikonal equation to deal with difficulties of HJEs
regarding their well-posedness. Furthermore, we have seen the basic ideas behind
the FM method including the underlying principles of upwind schemes and the
specific grid-visiting algorithm for finding a solution of the eikonal equation in the
viscosity sense and for achieving computational efficiency, respectively. In the next
chapter, we have a look at PDE-based SfS models.



Chapter 3

PDE-based Shape from Shading Models

In this chapter, we investigate important PDE-based SfS models including Lambertian
as well as non-Lambertian ones with respect to mathematical aspects explained in
the previous chapter. Since every solution algorithm comes with its own advantages
and constraints, it is inevitable in this context to gain insights of models as well
as their model-specific attributes in order to apply solution algorithms to these
PDE-based models appropriately.

To this end, we first review essential modelling components for modern PDE-
based SfS in Section 3.1. These include a perspective camera, Lambertian and non-
Lambertian surface models as well as a brightness equation with a light attenuation
term. Afterwards in Section 3.2, we derive the perspective Lambertian SfS model
of Prados and Faugeras [195] by combining the light attenuation term and the
Lambertian reflectance with a perspective camera model. In Section 3.3 and 3.4, we
then derive more advanced perspective non-Lambertian SfS models by substituting
the Phong and the Oren-Nayar reflectance for the Lambertian model. This leads to
the perspective Phong SfS model of Vogel et al. [258] and the perspective Oren-Nayar
SfS model of Ahmed and Farag [6], respectively. Finally, Section 3.5 closes this
chapter with a discussion of the major properties of PDE-based SfS models. Besides
the type of Hamiltonian and potential ambiguities, this discussion also includes the
important role of critical points.

3.1 Modelling Components
In this section, we look into indispensable modelling elements for SfS problems:
a perspective camera model, Lambertian and non-Lambertian surface reflectance
functions, and a brightness equation along with a light attenuation factor.

3.1.1 Camera Model
A camera model describes how to map a 3-D point onto a 2-D point on the image
plane. Two models are mainly employed for SfS: the perspective and the ortho-
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graphic projection. In this section, we focus on the pinhole camera model [109]
that incorporates the perspective projection. The somewhat simpler orthographic
projection that approximates the perspective projection for distant objects is not
relevant for this thesis and hence not discussed in detail.

The Pinhole Camera Model

As illustrated in Figure 3.1, the pinhole camera model depicts a perspective projection
in such a way that a point P � (X,Y, Z)⊤ in 3-D camera coordinates is mapped to
its associated projected point p � (x , y)⊤ in 2-D image coordinates. The projection
Π : P ∈ R3

7→ p ∈ R2 is performed along the straight line that passes through the
optical centre C, i.e. CP. Furthermore, by means of the theorem of intersecting lines,
one can derive the following relationship

x
X

�
y
Y

�
f

Z
, (3.1)

where the last equality appears because the distance between the principal point c
and the optical centre C is f. Then, the perspective projection can be expressed as

P :�


X
Y
Z


7→ p :�

[
x
y

]
(3.1)
�



f
X
Z

f
Y
Z



(3.2)

Since all the points on the extended line of CP, which can be understood as the
trajectory of the optical ray, are mapped to the same point p on the image plane, this
is an example of a many-to-one mapping. Moreover, it can be noted that the projected
point p � (x , y) has lost the depth information originally contained in P.

Homogeneous Coordinates. Since the relationship expressed in (3.2) is a nonlinear
transformation that involves divisions, it is somewhat cumbersome to deal with it.
To cope with the situation, we consider homogeneous coordinates [213] which allow to
work with the perspective geometry in terms of linear mappings.

To this end, by appending the element 1 to a given vector x ∈ Rn we take one
more coordinate element into account along with a scaling factor w , 0. Therefore,
the transformation from Euclidean to homogeneous coordinates is given by

H : Rn
7→ Rn+1

x � (x1, . . . , xn)⊤ 7→ x̃ � w (x1, . . . , xn , 1)⊤ .
(3.3)

Since the effect of the one-to-many mapping is already encoded in (3.3) by the scaling
factor w , 0, this mapping forms the basis for the projective geometry, which is
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Figure 3.1. The pinhole camera model for perspective projection. C denotes the
optical centre of a camera and c the principal point which is the intersection between
the image plane and the optical axis. Moreover, f indicates the focal length of the
camera which is the distance between the optical centre and the image plane.

a generalisation of the Euclidean geometry. Moreover, it is obvious that the back
transformation can be obtained by the division with the last element

H−1 : Rn+1
7→ Rn

x̃ � (x̃1, . . . , x̃n , x̃n+1)⊤ 7→ x �

(
x̃1

x̃n+1
, . . . ,

x̃n

x̃n+1

)⊤
.

(3.4)

Please note that homogeneous coordinates containing zero as the last element, i.e.
(x̃1, . . . , x̃n , 0)⊤, cannot be represented in Euclidean coordinates. They refer to points
at infinity.

Let us now consider how to turn the nonlinear mapping (3.2) into a linear one
using homogeneous coordinates. To this end, we make use of the projected point p
in (3.2) with a scaling factor w � Z. Then, by reformulating (3.2) in homogeneous
coordinates we obtain

P̃ :�



X
Y
Z
1



7→ Z


x
y
1

︸︷︷︸
�: p̃

�



f 0 0 0
0 f 0 0
0 0 1 0

︸          ︷︷          ︸
�: M



X
Y
Z
1

︸︷︷︸
P̃

⇔ Z p̃ � M P̃ , (3.5)
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where the matrix M ∈ R3×4 is called the projection matrix. Please note that the linear
transformation (3.5) between two homogeneous coordinate points p̃ and P̃ holds up
to a scale factor Z and only when the origin of the image coordinate coincides with
that of the principal point. Therefore, we have to take the offset of the principal point
into account for a general case.

Camera Calibration Matrix. In order to describe a more general case of the projec-
tion, we consider the principal point offset in terms of pixel coordinates. To this end,
we assume that the origin of the pixel coordinate system is placed at the lower left
corner of the image plane as shown in Figure 3.1 and the involved coordinate axes
are orthogonal to each other, which makes the skew factor zero [109]. This yields the
relationship

i � c1 +
x
h1

and j � c2 +
y
h2
, (3.6)

where (c1, c2)⊤ stands for the position of the principal point in terms of pixel
coordinates and h1 and h2 denote the pixel size in x- and y-direction, respectively
[109]. By means of the homogeneous coordinates, the equation (3.6) can then be
rewritten as



i
j
1


�



f/h1 0 c1

0 f/h2 c2

0 0 1

︸                ︷︷                ︸
�: K

1
f



x
y
f


, (3.7)

where K is called the camera calibration matrix and it contains the information on
intrinsic parameters. It allows to convert the metric 2-D image coordinates (x , y)⊤
into the pixel coordinates (i , j)⊤.

Once the camera calibration matrix K is known, the models described in image
coordinates that we will see in Chapter 5 and 6 can be expressed in terms of pixel
coordinates using corresponding coordinate transformations. We provide more
details about this matter in Appendix A.

3.1.2 Basics on Radiometry

After we have reviewed the camera model, let us now turn to some basics on
radiometry before we go into surface reflectance models. To this end, we begin with
the relationship between the image brightness and the surface radiance. According
to [118], the image formation process is fundamentally governed by the following
relationship

Ei �
π
4

(
d
f

)2
(cos ν)4 Ls , (3.8)
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where Ei denotes image irradiance, Ls surface radiance, d the diameter of the lens, f
the focal length, and ν is the angle between the optical axis and the line of sight to a
surface point of a corresponding image point.

Besides, we assume that there is a single point light source and no interreflections
occur in a scene. Then, the bidirectional reflectance distribution function (BRDF)
[122] that depends on the properties of an object surface determines the ratio of the
surface radiance Ls to the irradiance of the surface Es [118, 171, 193]. The radiance
Ls refers to the measurement at a point of the surface in the viewing direction V
with the surface normal N, see Figure 3.2. This relationship is given by

Ls � F
�
θi , θr , ϕr

�
Es , (3.9)

where Ls denotes the radiance of the surface, F the BRDF, and Es the irradiance
of the surface. Moreover, there are three angles included in the BRDF (3.9): First,
θi represents the angle between the direction to the light source L and the surface
normal N. Second, θr stands for between the viewing direction V and the surface
normal N. Third, ϕr is the azimuth angle between L and V, see Figure 3.2. Then,
one can obtain the image irradiance equation in terms of the BRDF by plugging (3.9)
into (3.8)

Ei �
π
4

(
d
f

)2
(cos ν)4 F

�
θi , θr , ϕr

�
Es . (3.10)

N

V

camera

r
L

point light source

φr

θr
θi

object surface

Figure 3.2. Local coordinate system on the object surface, cf. [118, 171, 193]. Here, r
denotes the distance between the surface point and the light source.

3.1.3 Surface Reflectance
Based on the radiometry in the previous section, we review some surface reflectance
models. The surface reflectance specifies how incoming light energy is reflected when
it falls onto the surface. Evidently, it depends heavily on the material properties of
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the surface. Although there are many different reflection models, one can categorise
them into two groups: Lambertian and non-Lambertian reflection models. While
the first ones correspond to a pure diffuse reflection model, the latter ones have
additional features such as specular effects. In this section, after reviewing the main
properties of the Lambertian reflectance, we look into the Phong model and the
Oren-Nayar reflectance as representatives for typical non-Lambertian cases.

Lambertian Reflectance

The Lambertian reflectance, which is named after Johann Heinrich Lambert, is
designed to capture perfect diffuse reflection [148], i.e. it assumes an ideal matte
surface without specular highlights. The main properties of the Lambertian surface
are twofold: (i) When incident light falls on a small surface area, the reflected light is
scattered in all directions without any preference, see Figure 3.3(a). This property
makes an ideal Lambertian surface equally bright from all viewing directions. (ii) This
type of surface follows Lambert’s cosine law which states that the amount of reflected
light intensity is directly proportional to the cosine factor of the angle θ between the
surface normal and the incident light, see Figure 3.3(b). As a consequence, when an
incident ray comes directly from the direction of the surface normal the reflected
light attains maximum intensity, which is the case θ � 0 in Figure 3.3(b).

incident
light

directions of
reflected light

(a) Perfect diffuse reflection.

incident
light

surface
normal

intensities of
reflected light

θ

(b) Lambert’s cosine law.

Figure 3.3. Properties of the Lambertian surface.

Let us now consider how to formulate the image irradiance for the Lambertian
reflectance model with a distant light source. In terms of the radiometry, the main
property of the Lambertian surface is the constant BRDF [118, 193]. According to
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[178], it follows
Ls �

ρ

π
Es , (3.11)

where ρ denotes an albedo that is usually assumed to be uniform for the Lambertian
model. This albedo has a dimensionless nature and refers to the ratio between the
reflected energy by the surface and the incident light. Based on the Lambert’s cosine
law, we describe the irradiance Es of the surface point as

Es � I0 cos θi , (3.12)

where I0 is the intensity of the light source. Then, we formulate the following image
irradiance for the Lambertian reflectance model by combining (3.10), (3.11) and (3.12)

Ei �
1
4

(
d
f

)2
(cos ν)4︸              ︷︷              ︸

�: µ

I0 ρ cos θi � µ I0 ρ cos θi , (3.13)

where µ denotes a constant coefficient related to the parameters of imaging system.
Since the cosine factor cos θi can be encoded by (N · L) and all the other parameters
are assumed to be known, the image irradiance in (3.13) can be reformulated as
follows [193]

I � ρ (N · L) , (3.14)

where I :� Ei/(µ I0) denotes the image irradiance scaled by the known parameters of
the imaging system, N � n/|n| the surface normal vector, · the dot product between
two vectors, and L a normalised light direction vector, respectively.

Non-Lambertian Reflectance

Among many non-Lambertian reflectance models, we focus on two particular models
in the context of this thesis: the Phong model [189] that includes specular reflections
and the Oren-Nayar model [178, 181] that allows to model rough surfaces.

Phong Reflectance. One of the simplest non-Lambertian reflectance model is the
Phong model [189] which was applied to SfS by Vogel et al. [258]. The main property
of a Phong-type surface is that the reflectance is modelled by three components:
ambient, diffuse and specular reflections.

The ambient component can be understood as background light surrounding
an environment of an object, which is ubiquitous in the scene. In practice, it is,
therefore, often assumed to be uniform for all pixels [255]. The diffuse part comes
from Lambertian reflections which have been previously discussed. According
to [189], the specular reflection term is influenced by the factor

�
cosφ

�α, where φ
denotes the angle between the viewing direction and the direction of the perfectly
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reflected incident light and α stands for the parameter which depends on the material
of a surface, see Figure 3.4. The perfectly reflected light refers to the case when
the incident angle amounts to be the same as the reflected one, e.g. in a mirror.
Furthermore, a large value for α suggests that a surface has mirror-like properties.
The intensity of the specular reflection decays fast as the angle of the reflection
deviates from that of the perfect reflection.

Then, by putting all three components together, the image irradiance I of a scene
is given by [159]

I � ka Ia︸︷︷︸
ambient

+

n∑
l�1

*..
,

kd Il cos (θi)l︸          ︷︷          ︸
diffuse

+ ks Il
�
cosφl

�α︸           ︷︷           ︸
specular

+//
-
, (3.15)

where n is the number of light sources, (θi)l the angle between the incident light
from the l-th light source and the surface normal, and φl the angle between the
perfectly reflected light by the l-th light source and the viewing direction. In addition,
Ia stands for the intensities of the ambient component of the light sources and Il
denotes the intensities induced by the l-th light source [159], respectively. Besides,
the constant coefficients ka , kd , and ks determine the ratio of ambient, diffuse, and
specular components, respectively. As indicated by the summation over lights in
(3.15), the brightness equation (3.15) for Phong-type surfaces can also be applied to
scenes with multiple light sources.

diffuse
intensities

incident
light

surface
normal

perfectly
reflected light

viewing
direction

θi θi
ϕ

Figure 3.4. Scene geometry for Phong-type surfaces.

Oren-Nayar Reflectance. Let us now summarise the main properties of a second
non-Lambertian reflectance model: the Oren-Nayar surface reflectance [178, 181]
which is employed in the SfS model by Ahmed and Farag [6].
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The Oren-Nayar surface reflectance is primarily designed for rough surfaces in
consideration of masking, shadowing and interreflection effects [178, 179, 180, 181].
Similar to the microfacet based model of Torrance and Sparrow [245], this reflectance
model assumes that a surface is a collection of long symmetric V-cavities and each
V-cavity is composed of two Lambertian facets that are facing each other, see Figure
3.5. While the model of Torrance and Sparrow describes the specular reflection
for rough surfaces, the Oren-Nayar model regards its facets as Lambertian. The
difference between the Lambertian and the Oren-Nayar reflectance is made in that
the viewing direction does have influence on the brightness of the Oren-Nayar
surface because of surface roughness [178] although it does not affect the reflected
intensities of the Lambertian surface, see Figure 3.3(a) and 3.7. Since a facet based
V-cavity plays a significant role in the modelling of surface roughness, we have a
closer look at some properties of the facet with respect to a surface geometry.

To this end, an example of a surface patch is illustrated in Figure 3.5. One can
observe in this example that three V-cavities and thereby three pairs of symmetric
plane facets constitute a surface patch whose area is dA. However, in practice each
facet area da is supposed to be very small compared to the area dA of the surface
patch, which means da ≪ dA. Furthermore, each facet area da is assumed to be
much larger than the wavelength λ of the incident light. In other words, the following
holds:

λ2
≪ da ≪ dA . (3.16)

Under this assumption, the principles of geometrical optics can be safely applied.

V-cavity

facet

dA

da

n̂
â

θa

Figure 3.5. Surface model for the Oren-Nayer reflectance. dA denotes the area of a
surface patch and da a facet area. The global surface normal which is perpendicular
to the bottom plane is described by n̂, a facet normal is denoted by â, and θa stands
for the angle between n̂ and â.

Then, the slope of a facet can be characterised by the angle θa between a facet
normal â and the global surface normal n̂ as can be seen in Figure 3.5. Evidently,
a Lambertian surface is attained when all facets are aligned flat, i.e. in case θa � 0.
In addition, the orientation of the facet in a global setting can be described by an
azimuth angle ϕ as in Figure 3.6.
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φr

φi

θr
θi

x̂
ŷ

ẑ

ŝ = (θi, φi) v̂ = (θr , φr)

dωr

dA

Figure 3.6. Oren-Nayar surface patch. The normalised light source direction is
denoted by L � (θi , ϕi) depending on a polar angle θi and an azimuth angle ϕi . In a
similar way, the normalised viewer direction V � (θr , ϕr) is defined. Besides, dωr
stands for the solid angle subtended by a small surface patch in a reflected light
direction whose unit is steradian (sr). dA denotes a patch as shown in Figure 3.5.

Since da ≪ dA, one has to deal with a large number of facets for a surface patch.
Following Torrance and Sparrow, this can be modelled with a slope area probability
distribution P(θa , ϕa)

P(θa , ϕa) � N(θa , ϕa) da cos θa , (3.17)

where the distribution N(θa , ϕa) denotes the number of facets per unit surface area
for the facet normal â � (θa , ϕa).

When all V-cavities with the same slope θa are uniformly distributed in the
orientation of ϕa , the single parameter θa for the facet slope controls the aforemen-
tioned distribution (3.17). In this case, the facet distribution can be simplified as
N(θa , ϕa) � N(θa) and the slope area probability distribution can also be reduced to
P(θa , ϕa) � P(θa) with respect to the global surface normal n̂. This type of surface is
called an isotropic rough surface. If the slope area distribution follows a Gaussian
with zero mean, the standard deviation σ of the normal distribution parametrises
the global roughness of the surface and this is a more general case than the isotropic
one [178]. Then, it can be noticed that a Oren-Nayar surface becomes a Lambertian
surface when the surface is smooth, i.e. σ � 0. In this context, the Oren-Nayar case
can be understood as a generalisation of the Lambertian case.

We have seen so far the modelling of rough surfaces relying on facet based
V-cavities and the characterisation of roughness by the slope area distribution of the
surface geometry as well as the relationship to the Lambertian reflectance. Besides
these attributes, there is actually another important factor to take into account for
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computing the radiance of a Oran-Nayar surface as discussed in [178]: the viewing
direction.

In order to see the impact of this aspect, we assume that light falls onto one single
Lambertian V-cavity, see Figure 3.7(a). There are mainly two possibilities to place a
camera sensor in the scene: either on the same side as the light direction, see Figure
3.7(c), or on the opposite side as shown in Figure 3.7(b). Since the light in terms of
photons hits the right facet more effectively in Figure 3.7(a), a light detector aligned
as in Figure 3.7(c) receives more reflected energy than the one in Figure 3.7(b). This
phenomenon can be encoded as a small azimuth angle (ϕr − ϕi) in terms of the
BRDF geometry given in Figure 3.6.

light direction

darker brighter

(a)

viewing direction

darker brighter

(b)

viewing direction

darker brighter

(c)

Figure 3.7. Influence of viewing directions on radiance: The radiance of the V-cavity
increases when the viewer moves towards the illumination direction (solid lines for
the incident light and dashed lines for the reflected light), cf. [170, 178].

Considering shadowing and masking effects with Gaussian slope area distribution,
the total radiance of a surface patch can be consequently determined as an aggregate
of all radiances contributed by each facet for the Oren-Nayar surface. According to
[178], this reads

Ls
�
θr , θi , ϕr − ϕi , σ

�
�

ρ

π
I0 cos θi

�
A + B sin α tan β max

�
0, cos

�
ϕr − ϕi

���
, (3.18)

where Ls denote the reflected radiance and I0 represents the irradiance when the
facet faces towards the direction of the light source, i.e. L � â. Moreover, A and B
stand for two factors that depend on the Gaussian facet statistics that are given by

A � 1 − 0.5 σ2

σ2 + 0.33
and B � 0.45 σ2

σ2 + 0.09
⩾ 0 . (3.19)

The parameter σ denotes the standard deviation of the Gaussian distribution and
it is used as a measure of the surface roughness. In this context, ρ denotes the
surface albedo, θi represents the angle between the surface normal and light source
direction, θr stands for the angle between the surface normal and camera direction,
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ϕi is the angle between the light source and the reference direction on the surface,
ϕr denotes the angle between the camera and the reference direction on the surface,
and the two variables α and β defined by

α � max (θi, θr) and β � min (θi, θr) (3.20)

stand for the maximum and minimum of the angles θi and θr, respectively. An
adapted scene geometry of Figure 3.6 with reference to SfS including all above
mentioned angles in (3.18) is provided in Figure 3.8.

Surface
normal

Camera:
reflected light (I)

Point light source:
incident light (Li)

φr

φi

θr
θi

Reference direction on the surface

dA

Figure 3.8. Adapted scene geometry of Oren-Nayar reflectance for SfS. dA denotes a
patch shown in Figure 3.5.

3.1.4 Brightness Equation with Light Attenuation Term

In modern SfS, a physics-motivating light attenuation term plays an important role
from both modelling and theoretical viewpoints [171, 195].

Since the process of taking photographs is nothing more than a physical phe-
nomenon that a camera sensor captures (photon) energy reflected by a surface after
it is radiated from the energy source, the process should obey the inverse square
law of physics. This suggests that the distance r between the light source and the
object surface plays an important role, see Figure 3.2. The basic principle is that
when an object is far away from an energy source it receives less energy depending
on the distance between the object and the energy source. An illustration is given
in Figure 3.9 describing the situation: A point light source is placed at the position
P and it emits the energy E outwards evenly. Moreover, S1 and S2 are concentric
spheres sharing the centre P and their radii are given by r1 and r2, respectively.
Then, one can observe that surface area enclosing sphere grows quadratically with
increasing radius. As a consequence, the energy per constant surface area decreases
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quadratically with increasing radius. This gives

E
4πr2

1
>

E
4πr2

2
. (3.21)

For SfS, this light attenuation term actually helps to model a camera with a flash

P

r1

r2

S1
S2

Figure 3.9. Inverse square law: S1 and S2 represent concentric spheres that share the
centre P. Each radius of the sphere S1 and S2 is denoted by r1 and r2, respectively. A
point light source is positioned at P and radiates energy E per unit time.

in a very dark space such as in endoscopy [171, 195]. Furthermore, it also helps to
resolve the convex/concave ambiguity [195], which we will discuss in Section 3.5.3.

As a consequence, for a Lambertian surface with a uniform albedo and light
attenuation term one obtains the following brightness equation (image irradiance
equation)

I �
ρ

r2 (N · L) , (3.22)

where r denotes the distance from the light source to the surface point, ρ the albedo,
· the scalar product, N the surface normal vector, L the normalised light direction,
and | · | the Euclidean norm. Please note that the only difference between (3.14) and
(3.22) is the fall-off term 1/r2.

3.2 Perspective Lambertian SfS Model
After discussing the image irradiance equation with the light attenuation term, we
are in the position to derive the perspective Lambertian PDE-based SfS model of
Prados and Faugeras [195]. It is based on the following modelling assumptions [171]:
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a point light source is located at the optical centre of a perspective camera and the
surface reflectance is Lambertian with a uniform albedo. Furthermore, the light
attenuation effect by the inverse square law that we have discussed in Section 3.1.4 is
taken into account.

3.2.1 Surface Parametrisation under Perspective Projection

To parametrise a surface, we consider the scene scenario depicted in Figure 3.10.
For a point m � (x , y ,−f)⊤ on the image plane (image coordinate (x , y)⊤), the
corresponding point on the surface S is parametrised in terms of multiples u(x) of
the focal length f in the direction of m, which yields m′. Since the two vectors m and
m′ share the same starting point, i.e. the optical centre, the vector m′ can be expressed
in terms of image coordinate x � (x , y)⊤ by the ratio between the focal length f and
the Euclidean distance from the optical centre to the point m � (x , y ,−f)⊤ on the
image plane. One thus obtains the relationship

m′ (x) � Q (x)


x
y
−f

︸ ︷︷ ︸
�m(x)

, (3.23)

where Q(x) denotes a spatially varying factor which is given by

Q(x) � f√|x |2 + f2
. (3.24)

As a consequence, the unknown surface S : Ωx → R3, which is parameterised in
terms of the radial depth u, can be described as

S (x , u(x)) �



Q(x) u(x)


x
y
−f



�������
x :�

�
x , y

�⊤
∈ Ωx



, (3.25)

where x � (x , y)⊤ ∈ Ωx is the position of the rectangular image domain Ωx ⊂ R2

and f denotes the focal length of the camera.

3.2.2 Brightness Equation with Lambertian Reflectance

In order to express the brightness equation (3.22) under this radial surface parametri-
sation, we have to compute each component of the brightness equation based on the
surface parametrisation (3.25).
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(x, y)-axis

z-axis

f > 0

point light sourceoptical centre
u

image plane
×

m = (x, y,−f)⊤

×

m′ = f√
x2+y2+f2

m

surface S

×

S(x, y) = u(x, y)m′

Figure 3.10. An illustration of 2-D cross-section of a 3-D scene for a surface
parametrisation of the model by Prados et al. [195].

Surface Normal

Since the direction of the surface normal vector is perpendicular to the tangent plane
of the corresponding surface point as shown in Figure 3.11, one can derive it from
the surface parametrisation (3.25) by making use of vector calculus.

First, we take partial derivatives of (3.25) in x- and y-direction with respect to the
image coordinates. This yields

Sx �



(u + x ux) − Q2 x2 u
f2

y ux −
Q2 u y x
f2

−f ux +
Q2 u x
f



, Sy �



uy x −
Q2 u y x
f2

�
uy y + u

�
−

Q2 y2 u
f2

−f uy +
Q2 u y
f



. (3.26)
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n = Sx × Sy

Sx Sy

Figure 3.11. Illustration of a surface normal. Sx and Sy represent partial derivatives
of the surface S in x- and y-direction, respectively. The vector n denotes surface
normal which is orthogonal to the tangent plane spanned by Sx and Sy . The normal
direction is determined by the right-hand rule.

By taking the cross product of the two vectors in (3.26) we can obtain the direction of
surface normal vector n(x) as

n(x) � Sx × Sy �



f ux
f uy

x ux + y uy


−

Q2

f



x u
y u
−f u


(3.27)

and its Euclidean norm

|n (x)| �
√
f2 |∇u (x)|2 + (∇u (x) · x)2 + u (x)2 Q (x)2 . (3.28)

The corresponding surface normal vector is then given by N � n (x) / |n (x)|.

Light Direction

Since the light source is positioned at the optical centre of the camera as in Figure
3.10, the normalised light direction L can be expressed as

L (x) � Q
f



−x
−y
f


. (3.29)

Computation of N · L

Since the surface normal vector and the light direction vector are available in (3.27)
and (3.29), respectively, the computation N · L in (3.22) can be carried out in the
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following way

N · L (3.29)
�

n (x)
|n (x)| ·

Q
f



−x
−y
f



(3.27)
�

Q
|n (x)| f

*.
,



f ux
f uy

x ux + y uy


−

Q2

f



x u
y u
−f u



+/
-
·



−x
−y
f



�
Q

|n (x)| f
Q2 u
f

*...
,

x2
+ y2︸  ︷︷  ︸

�|x |2
+f2

+///
-

�
Q u
|n (x)| . (3.30)

PDE Formulation of the Brightness Equation

In order to attain the brightness equation with the light attenuation term in (3.22),
the distance r between the light source and a surface point is required. By means of
the surface parametrisation (3.25), this distance r is given by

r � f u . (3.31)

Since all necessary elements in (3.22) are available at this moment and the albedo
ρ in (3.22) is furthermore assumed to be uniform (ρ � 1), plugging the result (3.30)
with (3.28) as well as (3.31) into (3.22) yields

I(x) � 1
f2 u(x)2

Q (x) u (x)
|n (x)| �

1
f2 u(x)2

Q(x) u(x)√
f2 |∇u(x)|2 + (x · ∇u(x))2 + Q(x)2 u(x)2

�
1

f2 u(x)2
Q(x)√

f2
�����
∇u(x)
u(x)

�����

2
+

(
x ·
∇u(x)
u(x)

)2
+ Q(x)2

. (3.32)

3.2.3 Hamiltonian for the Perspective Lambertian SfS

Moreover, the surface S is always assumed to be in front of the camera according
to [193]. This makes u in (3.32) strictly positive. By using the following change of
variables

v :� ln u ⇒ ∇v �
∇u
u

⇔ ∇u � u ∇v , (3.33)

the brightness equation (3.32) then becomes

I(x) � 1
f2 u(x)2

Q(x)√
f2 |∇v(x)|2 + (x · ∇v(x))2 + Q(x)2

. (3.34)



76 PDE-based Shape from Shading Models

Since
v :� ln u ⇔ ev

� u ⇔ e−2 v
� u−2 , (3.35)

one can finally obtain the following perspective Lambertian SfS model [195]

HPF (x , v(x),∇v(x)) � 0 , (3.36)

with

HPF (x , v(x),∇v(x)) :�
I(x) f2

Q(x)
√
f2 |∇v(x)|2 + (x · ∇v(x))2 + Q(x)2 − e−2 v(x) . (3.37)

The main properties of this model can be summarised as: (i) The PDE (3.36) is a
general-type HJE based on (2.24). (ii) To solve the equation (3.36), boundary values
must be provided. (iii) The solution to the HJE (3.36) should be understood in the
viscosity sense [63] that we have seen in Section 2.2.3. (iv) Partial well-posedness can
also be achieved in the viscosity framework [44, 67, 195]. (v) In order to solve the
perspective Lambertian SfS model (3.36), proper discretisation methods such as the
upwind scheme [219] must be considered that respect the hyperbolic nature of the
HJEs. We discuss more details of the properties of this model in Section 3.5.

3.3 Perspective Phong SfS Model

In this section, we derive the perspective Phong SfS model according to Vogel et
al. [258]. For most modern perspective non-Lambertian SfS models, e.g. [6, 7, 258],
model assumptions for scene geometries are borrowed from the Lambertian case
[195] and only the surface reflectance function is replaced with a non-Lambertian
one. Therefore, the surface normal (3.27) and the light direction (3.29) that we have
derived in Section 3.2 remain unchanged.

3.3.1 Brightness Equation with Phong Reflectance

To obtain the brightness equation for the perspective Phong SfS model of Vogel et al.
[258], we employ the Phong reflectance [189] for the brightness equation with a light
attenuation term. Under this condition, the brightness equation without the fall-off
term (3.15), becomes

I � ka Ia︸︷︷︸
ambient

+

n∑
l�1

1
r2

l

*..
,

kd Il cos (θi)l︸         ︷︷         ︸
diffuse

+ ks Il
�
cosφl

�α︸          ︷︷          ︸
specular

+//
-
. (3.38)
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Since the model [258] deals with the case of a single point light source, (3.38) can be
further reduced to

I � κa Ia +
1
r2

�
kd I0 cos θi + κs I0

�
cosφ

�α�
. (3.39)

In addition, when the point light source lies at the optical centre of the camera, we
can observe in Figure 3.4 that the incident light direction coincides with the viewing
direction. Then, we can obtain the relationship

φ � 2θi . (3.40)

This allows us to rewrite the brightness equation (3.39) with only one angle θi as

I � ka Ia +
1
r2

�
kd I0 cos θi + ks I0 (cos 2θi)α�

. (3.41)

Since cos θ in (3.41) can be reformulated as the scalar product between the unit
surface normal vector and the normalised light direction vector, one can have

cos θi � N · L , (3.42)

where N �
n(x)
|n(x)| with n being computed as in (3.27) and L is the normalised light

direction vector given in (3.29). Furthermore, by relying on the trigonometric identity

cos 2θi � 2 (cos θi)2 − 1 (3.43)

with (3.42) one can attain the brightness equation for the Phong-type surfaces as

I � ka Ia +
1
r2

(
kd I0 (N · L) + ks I0

(
2 (N · L)2 − 1

)α)
, (3.44)

which is an equivalent form of (3.41). Then, plugging corresponding expressions
into this brightness equation yields

I (x) � ka Ia +
1

f2u (x)2
*
,

kd I0
u (x)Q (x)
|n (x)| + ks I0 *

,
2
(

u (x)Q (x)
|n (x)|

)2
− 1+

-

α

+
-
, (3.45)

where |n (x) | and Q (x) are defined as previously in (3.28) and (3.24), respectively.

3.3.2 Hamiltonian for the Perspective Phong SfS

In order to obtain a more compact formulation, one may apply the technique of
change of variables. To this end, we first multiply f2 |n(x)|

u(x)Q(x) on both sides of (3.45) and
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move the terms on the right hand side to the left one. This gives

(I (x) − ka Ia) f
2 |n (x)|

Q (x) u (x) −
kd I0

u (x)2 −
|n (x)| ks I0

u(x)3Q(x)
(

2u(x)2Q(x)2
|n(x)|2 − 1

)α
� 0 . (3.46)

Since the surface S is also assumed to be in front of the camera for the model (3.46),
u in (3.46) is strictly positive. We then apply the change of variables (3.33) to (3.28),
which yields

|n (x)| �
√
f2 |u (x)∇v (x)|2 + (u (x)∇v (x) · x)2 + u (x)2 Q (x)2

⇔
|n (x)|
u (x) �

√
f2 |∇v (x)|2 + (∇v (x) · x)2 + Q (x)2 �: W (x) . (3.47)

By replacing corresponding parts in (3.46) with (3.47) and (3.35) we can, finally,
attain the perspective SfS Phong model [258]

HVBW(x , v(x),∇v(x)) � 0 (3.48)

with

HVBW(x , v(x),∇v(x)) :�

J(x)W (x) − kd I0 e−2 v(x)
− ks I0 e−2 v(x)W (x)

Q (x)
(

2 Q (x)2
W (x)2 − 1

)α
, (3.49)

where
J(x) � (I (x) − ka Ia) f

2

Q (x) . (3.50)

In the light of (2.24), it can be noted that the Hamiltonian HVBW(x , v(x),∇v(x)) in
(3.48) is of general-type as well. Furthermore, in the perspective Phong-type SfS
[258] the cosine value in the specular term is usually substituted by zero when

cos θ �
2 Q(x)2
W(x)2 − 1 < 0 . (3.51)

3.4 Perspective Oren-Nayar SfS Model

For the perspective Oren-Nayar SfS model of Ahmed and Farag [6], we proceed as
performed in the case of Phong reflectance. We replace the Phong reflectance with
the Oren-Nayar surface [178, 179]. Again, the assumptions on the scene geometry
remain unchanged: A single point light source is placed at the centre of the camera.
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3.4.1 Brightness Equation with Oren-Nayar Reflectance

By taking the light attenuation factor 1/r2 into account based on the inverse square
law, the brightness equation (3.18) for Oren-Nayar surface is turned into

Ls
�
θr , θi , ϕr − ϕi , σ

�
�

1
r2
ρ

π
I0 cos θi

�
A + B sin α tan βmax

�
0, cos

�
ϕr − ϕi

���
,

(3.52)

where ρ denotes a uniform albedo as in (3.14). Furthermore, the two facet statistics
A and B and the two angle variables α and β in (3.52) are defined as in (3.19) and
(3.20), respectively.

By exploiting the assumptions on the scene geometry, one obtains the following
relationship [6] from the scene geometry in Figure 3.6

θr � θi � α � β :� θ and ϕr − ϕi � 0 , (3.53)

which suggests that the viewing direction for the camera is aligned with the direction
of the light. Then, substituting (3.53) for θi , α, β and ϕr − ϕi in (3.52) yields

Ls (θ, σ) �
( ρ
π

I0

)
︸ ︷︷ ︸

�: η

A cos θ + B sin2 θ

r2 , (3.54)

where η is a constant depending on the light intensity, surface albedo as well as other
parameters related to a camera as indicated in [6]. As a last step, by replacing Ls/η
with I in (3.54) one can obtain the image irradiance equation for the Oren-Nayar SfS
in [6]

I
(3.54)
:� Ls

η
�

A cos θ + B sin2 θ

r2 , (3.55)

where A and B are defined as in (3.19).

3.4.2 Hamiltonian for the Perspective Oren-Nayar SfS

As we have previously derived the HJE (3.48) for the perspective Phong SfS model
[258], we turn the brightness equation (3.55) into a PDE by exploiting the computation
result in (3.30) and the relationship (3.42) based on (3.53).
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To this end, we first reformulate the Oren-Nayar brightness equation (3.55) with
trigonometric identities and substitute (N · L) for cos θ in (3.55), which gives

I �
1
r2

�
A cos θ + B sin2 θ

�
�

1
r2

�
A cos θ + B

�
1 − cos2 θ

��

(3.42)
�

1
r2

[
A (N · L) + B

(
1 − (N · L)2)]

. (3.56)

Then, replacing (N · L) in (3.56) with (3.30) yields

I (x) (3.30)
�

1
r2


A

(
Q (x) u (x)

|n (x)|
)
+ B *

,
1 −

(
Q (x) u (x)

|n (x)|
)2

+
-


. (3.57)

Before we further develop the expression (3.57), we take care of necessary
computations beforehand. For the first part in (3.57), with the result of (3.28) one
can derive that

Q (x) u (x)
|n (x)|

(3.28)
�

Q (x) u (x)√
f2 |∇u (x)|2 + (∇u (x) · x)2 + u (x)2 Q (x)2

. (3.58)

By dividing the right hand side of (3.58) with Q (x), we obtain

Q (x) u (x)
|n (x)| �

u (x)√[
f2 |∇u (x)|2 + (∇u (x) · x)2]

Q−2 (x) + u (x)2
. (3.59)

Then, the result (3.59) can be more compactly formulated as

Q (x) u (x)
|n (x)|

√
|x |2 + f2

�
u (x)√

P (x ,∇u (x)) + u (x)2
(3.60)

with
P (x ,∇u (x)) :�

[
f2 |∇u (x)|2 + (∇u (x) · x)2]

Q−2 (x) . (3.61)

For the second part in (3.57), one can derive the following with simple algebraic
manipulations

1 −
(

Q (x) u (x)
|n (x)|

)2
(3.60)
� 1 −

*..
,

u (x)√
P (x ,∇u (x)) + u (x)2

+//
-

2

�
P (x ,∇u (x)) + u (x)2 − u (x)2

P (x ,∇u (x)) + u (x)2 �
P (x ,∇u (x))

P (x ,∇u (x)) + u (x)2 . (3.62)
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Plugging (3.31), (3.60), and (3.62) into (3.57) yields

I (x) � 1
f2 u (x)2

*..
,
A

u (x)√
P (x ,∇u (x)) + u (x)2

+ B
P (x ,∇u (x))

P (x ,∇u (x)) + u (x)2
+//
-

�
1

f2 u (x)2
*..
,
A

u (x)
√

P (x ,∇u (x)) + u (x)2
P (x ,∇u (x)) + u (x)2 + B

P (x ,∇u (x))
P (x ,∇u (x)) + u (x)2

+//
-
. (3.63)

By rearranging (3.63) one can finally attain the HJE for the perspective Oren-Nayar
SfS [6]

HAF(x , u(x),∇u(x)) � 0 , (3.64)

where

HAF(x , u(x),∇u(x)) :� f2 u (x)2 I (x) (P (x ,∇u (x)) + u (x)2)
− A u (x)

√
P (x ,∇u (x)) + u (x)2 − B P (x ,∇u (x)) (3.65)

with the same facet statistics being defined in (3.19). One can note that the Hamilto-
nian HAF in (3.64) is of general-type (3.64) according to (2.24).

As for the case of Phong SfS, we apply the variable transformations in (3.33) to
(3.61) in order to obtain a more compact formulation by supposing that S is placed
in front of the camera. Then, we have

P(x ,∇u(x)) � [
f2 |∇u (x)|2 + (∇u (x) · x)2]

Q−2 (x)
(3.33)
�

[
f2 |u (x)∇v (x)|2 + (u (x)∇v (x) · x)2]

Q−2 (x) . (3.66)

Since we have assumed u > 0, (3.66) can be rewritten as

P(x ,∇u(x))
u(x)2 �

[
f2 |∇v (x)|2 + (∇v (x) · x)2]

Q−2 (x) �: M (x ,∇v (x)) . (3.67)

At this point, we can reformulate the HJE (3.64) in a way that we exploit the result of
(3.67)

f2 u2 I (x) �
P(x ,∇u) + u2�

− A u
√

P(x ,∇u) + u2 − B P(x ,∇u) � 0

⇔ f2 u2 I (x) u2
(

P(x ,∇u)
u2 + 1

)
− A u2

√
P(x ,∇u)

u2 + 1 − B
P(x ,∇u)

u2 u2
� 0 . (3.68)
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By means of the result in (3.67), this becomes

(3.68)
(3.67)
⇐⇒
u2 > 0
f2 u2 I (x) (M (x ,∇v) + 1) − A

√
M (x ,∇v) + 1 − B M (x ,∇v) � 0

(3.35)
⇐⇒ f2 e2 v I (x) (M (x ,∇v) + 1) − A

√
M (x ,∇v) + 1 − B M (x ,∇v) � 0

⇐⇒ f2 e2 v I (x) (M (x ,∇v) + 1) − (
A

√
M (x ,∇v) + 1 + B M (x ,∇v)) � 0

⇐⇒ f2 e2 v I (x) M (x ,∇v) + 1
A

√
M (x ,∇v) + 1 + B M (x ,∇v) − 1 � 0 (3.69)

Then, one attains the perspective Oren-Nayar SfS model [6]

HAF (x , v (x) ,∇v (x)) � 0 (3.70)

with

HAF (x , v (x) ,∇v (x)) :�

f2 I (x) M (x ,∇v (x)) + 1
A

√
M (x ,∇v (x)) + 1 + B M (x ,∇v (x)) − e−2 v(x) . (3.71)

We have, so far, derived the perspective Lambertian SfS model by Prados and
Faugeras [195] and the perspective non-Lambertian models associated with the
Oren-Nayar and the Phong reflectance by Ahmed and Farag [6] and Vogel et al. [258],
respectively.

3.5 Properties of PDE-based SfS Models
In this section, we discuss important properties of the previously introduced PDE-
based SfS models such as the type and the convexity of underlying Hamiltonians as
well as appropriate algorithms for solving them, especially the FM method. As we
will see, these properties are closely related with each other. Moreover, we investigate
possible ambiguities and discuss appropriate boundary conditions.

3.5.1 Types of Hamiltonians
When it comes to PDE-based SfS models, there are mainly two categories for
classification: In view of (2.23) and (2.24) a model may have either an eikonal-type
Hamiltonian or one of general-type. An overview of the most prominent PDE-based
models of the last years can be found in Table 3.1 and Table 3.2 respectively.

In general, relative early PDE-based models with simple assumptions on the
scene geometry such as an orthographic camera projection with a distant light source
usually have an eikonal-type Hamiltonian, see “RT92 [219]” and “PFR02 [197]” in
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Table 3.1. Employing a perspective camera projection instead of an orthographic
one does not affect the type of the Hamiltonian – as can be seen in “CCDG04 [60]”
and “TSY04 [237]” listed in Table 3.1 as well as from the unification model [196]
combining both orthographic and perspective projections with different light source
positions.

Table 3.1. Comparison of PDE-based Shape from Shading models without the light
attenuation term.

RT92 [219] PFR02 [197] CCDG04 [60] TSY04 [237]
camera projection orthographic orthographic perspective perspective

light source infinity infinity infinity infinity
surface Lambertian Lambertian Lambertian Lambertian

Hamiltonian eikonal-type eikonal-type eikonal-type eikonal-type
light attenuation – – – –

convexity convex convex convex convex

By comparing the list of models in Table 3.2 with the ones in Table 3.1, one can
note that the position of the light source is moved from infinity to the optical centre.
To handle the scenario, the models in Table 3.2 have employed the light attenuation
term. This term actually makes a difference in the type of the Hamiltonian. As can
be observed in (3.36), this is because the unknown v, i.e. the log transformation of
u from (3.31), eventually appears in the resulting Hamiltonian which is associated
with the brightness equation via the light fall-off term.

In order to solve SfS problems described by HJEs, depending on the type of
Hamiltonian a set of appropriate algorithms with necessary information, e.g. initial
conditions or boundary conditions, can be derived.

3.5.2 Fast Marching Methods for PDE-based SfS Models

In this section, we provide an exposition on numerical methods to solve the HJEs
representing PDE-based SfS models that we have seen so far depending on the type
as well as the convexity of the Hamiltonians. As primary algorithmic strategy, we
focus on the fast marching method along with an initialisation and its applicability
to the models. However, we also mention other methods as well as model-specific
variants including related work in the field.
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Table 3.2. Comparison of PDE-based perspective Shape from Shading
models with the light attenuation term.

PF05 [195] AF06 [6] VBW08 [258]
camera projection perspective perspective perspective

light source optical centre optical centre optical centre
surface type Lambertian Oren-Nayar Phong
Hamiltonian general-type general-type general-type

light attenuation ✓ ✓ ✓
convexity convex non-convex 1 convex 2

1 assumed to be non-convex [6]
2 convexity depends on the value of the specular exponent [42]

Fast Marching Methods for Eikonal-type Hamiltonians

Convexity for FM Method. Let us discuss the convexity of the Hamiltonian which
is a requirement for applying the FM method. As we have seen in Section 2.3.3, the
FM method computes a solution by tracking the movement of the initial wavefront.
This suggests that the FM method is designed to assign larger values to grid points
as time elapses since the wavefront moves in one direction, e.g. outwards. This
principle is encoded in terms of convexity of Hamiltonians with respect to the second
argument in (2.23), i.e. the gradient of unknown. This property can be understood
in a way that the model must allow to compute the depth in one direction in order to
use the FM method, e.g. from closer points to farther ones. As long as the convexity
of the Hamiltonian is satisfied, the FM method can be applied not only to the ones
listed in Table 3.1 but also to the ones with the form of eikonal-type HJEs in (2.23),
e.g. [79, 281].

Initialisation with Critical Points. Apart from the convexity of Hamiltonian, there
is one difficulty for applying the FM method to eikonal-type HJEs: Information on
starting points must additionally be provided. Moreover, it is essentially associated
with local extrema, i.e. critical points or singular points, where, in general, as shown
in Section 2.2.3 viscosity solutions are not defined. In this context, the initialisation
procedure for the FM method can be interpreted as providing adequate information
at critical points. Then, the FM method makes use of the initial depth as source of
information and makes it spread to the remaining computational domain by means
of the upwind scheme.



3.5 Properties of PDE-based SfS Models 85

However, concerning eikonal-type SfS models with the FM method, not all
approaches reveal explicitly how critical points are identified and initial depth values
are assigned accordingly, e.g. [262]. In this context, especially for real-world images
one follows the strategy in [237] for an initialisation: a human viewer identifies
brightest points in the input image and assigns them arbitrarily the same depth value.
This procedure, however, may suffer from convex/concave ambiguities even in the
viscosity framework, since the same brightest grey value may represent different
starting points as well as surface profiles and thereby lead to different reconstructions
as can be observed in Figure 3.12. We will discuss more about this matter in more
detail in Section 3.5.3.

Direct Computation. Regarding the properties of the FM method, one should note
that the FM method allows to compute the surface depth directly for eikonal-type
Hamiltonians if the information on singular points is available. Hence, one needs
no further steps or restrictions to reconstruct the surface such as the integration of
gradient fields or integrability constraints [89]. In fact, this makes the FM approach
different from the propagation method with characteristic strips from early days
[116, 173, 174, 177]. For such a method with characteristic strips, another time variable
is necessary to derive the Hamiltonian system in addition to auxiliary variables for a
depth gradient. Once a solution for systems of the differential equations is obtained,
the resulting gradient field must be integrated along the characteristic curves which
provides the information on the surface profiles [116, 174, 177].

Comparison with Iterative Methods. For eikonal-type Hamiltonians, an iterative
method with the upwind discretisation [219] may be an alternative to the FM method,
if proper boundary conditions are given. Although both the FM method by Sethian
[228] and the iterative method by Rouy and Tourin [219] strive for a solution in the
viscosity sense, the FM method is much faster than the iterative method. Aside from
the computational efficiency, the starting point of the computation is different as
well, i.e. the location where the initial information is given. In the example (2.25),
the iterative scheme by Rouy and Tourin [219] starts at the boundary points, (−1, 0)⊤
and (1, 0)⊤, whereas the local extremum (0, 1)⊤ is the initial point for the FM method
by Sethian [228, 229].

FM in Optimal Control Based Approaches. The FM method can also be applied
to optimal control based propagation approaches [75, 76, 175, 176]. To that end, one
has to derive a cost function associated with the original eikonal-type HJEs and
find a minimal cost, e.g. by relying on the dynamic programming principle [31].
This can be understood in the context of HJBEs [16], where recent development of
semi-Lagrangian [59] based FM methods can be utilised [67, 68, 83, 246].
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Fast Marching Methods for General-type Hamiltonians

In general, the FM method can also be applied to general-type HJEs as long as the
associated Hamiltonians are convex. Since it is, however, not so trivial to verify the
convexity of Hamiltonians, the employed algorithms are usually model specific:
Assuming that the scene geometry stays unchanged (a point light source being
placed at the optical centre of a perspective camera), the convexity of Hamiltonians
is influenced by the properties of the incorporated surface reflectance model. Let us
have a look how the FM method is applied to different models with respect to the
convexity of Hamiltonians.

Perspective Lambertian SfS. For the perspective Lambertian SfS model (3.36), the
FM method is not directly applied to the model described by the HJE but to the
associated HJBE based on that the Hamiltonian of the model is convex [193, 195].
Therefore, this approach utilises an optimal control based formulation relying on
the dynamic programming principle [31, 249].

Perspective Phong SfS. Regarding the perspective Phong SfS model (3.48), an
iterative method with the upwind scheme [219] is employed in [258], since the model
convexity had not been investigated by the time. Afterwards, the FM method had
been used for the same model in [259] but without any theoretical justifications until
we have investigated the model with respect to critical points and convexity in [42].
Based on [42], it turns out that the model (3.48) is conditionally convex depending
on the value of the specular exponent α. However, as long as the Hamiltonian
is convex for the employed value of the specular exponent, the FM method is an
appropriate choice for the model (3.48), e.g. [259]. One can also note that the regula
falsi method is used as a root finding strategy to update radial depth values at “trial”
points in [259]. To apply the FM method to general-type HJEs, this type of strategy
is necessary because it is difficult to solve analytically the corresponding nonlinear
equations for the update procedure.

Perspective Oren-Nayar SfS. Concerning the perspective Oren-Nayar SfS model in
(3.70), a Lax-Friedrichs sweeping scheme [133], i.e. a stabilised scheme for hyperbolic
PDEs, is employed in [6]. This method is suitable for both convex and non-convex
Hamiltonians. However, one can also find a work in the literature which makes
use of the FM method for the model without investigating the model convexity, e.g.
[256]. To clear up the situation, we provide an in-depth analysis of the model in
[129] with respect to Osher’s criterion [182, 200, 248]. This criterion gives a theoretical
justification whether the FM method can be applied to the model without directly
investigating the convexity. Our findings in [129] show that the applicability of
the FM method can be determined by the range of the roughness parameter σ and



3.5 Properties of PDE-based SfS Models 87

the value used in [256] is actually within the safe range which is based on Osher’s
criterion.

Initialisation with Critical Points. As indicated in the eikonal-type case, the
information on critical points plays a key role for the FM method but such information
is, in general, not available in practice. One way to approximate the radial depth at
such points is to plug ∇v � 0 into the model (3.36) at the brightest points [193]. This
corresponds to

I(x) f2

Q(x)
√

Q(x)2 � e−2 v(x)
⇔ I(x) f2

� e−2 v(x)
⇔ v(x) � −1

2 ln
�
I(x) f2�

. (3.72)

Since the light attenuation term (3.31) is integrated in (3.36), the brightest pixels are
supposed to be closest points from the light source. The approximation in (3.72),
therefore, accounts for finding critical points, i.e. closest points from the light source,
in terms of the radial depth v in the scene. The same strategy can also be used to
initialise other general-type Hamiltonians [93, 130, 259].

Boundary Conditions

When dealing with PDE-based methods, one necessarily needs to consider some
kind of boundary conditions for finding a solution [79]. From different types of
boundary conditions, the selection depends primarily on the available information
of a problem at hand. Let us discuss three main boundary conditions for SfS that
can usually be encountered in literature: Dirichlet boundary conditions, Neumann
boundary conditions (NBCs), and “state constraint” boundary conditions.

Dirichlet Boundary Conditions. Dirichlet boundary conditions refer to the case
when specific values are prescribed at boundary points. Obviously, this type of
BCs can be applied if the surface depth at boundaries is known a priori (or at
least presumed to be known). Otherwise, there requires another way to impose
this condition. Especially when it comes to PDE-based SfS models described by
general-type HJEs, e.g. [6, 195], one way to realise this BC in practice is to make use
of the depth information at singular points (or critical points) [193, 255]. As can
be seen in (3.72), one can obtain an analytical expression (at least by means of an
approximation) for the depth at those points. This suggests that the depth at singular
points is already included in the model and is consequently encoded as DBCs. In
other words, singular points can be understood as boundary points and their depth
information corresponds to DBCs. Hence, in this case BCs do not necessarily indicate
actual image boundaries, i.e. upper, lower, left or right.
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Neumann Boundary Conditions. While DBCs assign certain values along bound-
aries, Neumann boundary conditions only specify the derivative of outward normal.
Thus, this type of BCs can be used when the level set of the surface are perpendicular
to the boundary (or at least assumed as such) [79]. One can also note that imposing
NBCs may lead to different reconstructions in comparison to the case with DBCs
since the derivative is translation invariant w.r.t. the depth.

State Constraint Boundary Conditions. Aside from DBCs and NBCs, “state con-
straint” boundary conditions are used as well in SfS, see e.g. [193, 195, 199]. This
type of BCs can be realised by means of DBCs, i.e. by assigning +∞ (or very large
values in practice) on the boundary [193, 195, 255]. Interestingly, the state constraint
boundary conditions have actually the same effect as that of NBCs if the upwind
schemes in (2.89) and (2.90) are employed [255]. To verify the statement, we consider
the right boundary of a domain. By the state boundary condition, the upwind
scheme in (2.89) becomes

T̂x � max
(

Ti , j − Ti−1, j

h1
,−

+∞− Ti , j

h1
, 0

)
, (3.73)

which makes the second argument never being selected. When applying NBCs to
(2.89), one obtains

T̂x � max
(

Ti , j − Ti−1, j

h1
,−

Ti , j − Ti , j

h1
, 0

)
, (3.74)

which makes the second argument zero. Therefore, both (3.73) and (3.74) have the
same effect within this type of discretisations. The large value on the boundary
serves as a barrier which guarantees that no outside information flows into the
interior of a computational domain.

Since the state constraint BCs do not require specific values or normal derivatives,
they are sometimes referred to the method “without image boundary data” as in
[193, 195, 199]. However, this interpretation is somewhat misleading because they
have exploited the depth information at singular points. Based on our discussion
in DBCs, which states that singular points are, in fact, boundary points and their
depth values are DBCs, they have actually used DBCs even though the terms are not
explicitly mentioned.

3.5.3 Ambiguities

It is well-known from early days that SfS problems suffer from several types of
ambiguities and thereby solutions for the problem are, in general, not unique. This,
in other words, indicates that there are more than one surface profiles ending up
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with the same grey values as those of the input image. In this context, serious efforts
were made to analyse difficulties, to somehow circumvent this ill-posed property, or
to strive for achieving uniqueness results at least partially [29, 30, 46, 67, 143, 144,
145, 173, 174, 177, 187, 196].

Bas-relief Ambiguity

One ambiguity is the bas-relief1 ambiguity described by Belhumeur et al. [29, 30].
This ambiguity is concerned with interrelationship between collimated parallel light
beams by a distant light source and a rather flat surface such as coins or carving
work in sculpture under the orthographic camera projection.

In [29, 30], it is mathematically shown that there is an equivalence class of Lam-
bertian surfaces with which only one image can be obtained under the orthographic
projection with a distance light source. Furthermore, these different surface profiles
in the same class are connected with one another through the generalised bas-relief
(GBR) transformation [29, 30] belonging to the class of affine transformations.

This ambiguity, further, implicates that the information on the light direction of a
scene and the albedo of a surface is crucial for reconstructing a surface unambiguously.
In particular, when it comes to SfS, these difficulties account for the assumptions in
[195], which states that all parameters of the light source and the camera as well as
the albedo of a surface are assumed to be available.

Convex/Concave Ambiguity

Besides the bas-relief ambiguity, among others the convex/concave ambiguity is one of
the most notorious ambiguities not only for computer vision [242] but also psychology
as well as cognitive science [141, 206, 207]. Let us have a look how this phenomenon
occurs. To this end, we assume that a light source is positioned at a distant location
(ideally at infinity), only collimated light, i.e. parallel beams, falls onto an object
having matte surface with a uniform albedo, and an orthographic camera projection
is carried out for the scene geometry. Then, as we have already seen in (3.22), the
light intensity depends only upon the normalised surface normal vector N and the
light direction L. As a consequence, one cannot distinguish between the two different
surfaces in Figure 3.12, since both surface profiles have the same grey values owing
to the same angle θ. Furthermore, a model that cannot tell a surface as in Figure
3.12 apart, cannot distinguish between the surface profiles in Figure 3.13.

To understand the situation from the viewpoint of the model, we consider the
following brightness equation by Rouy and Tourin [219]

|∇u(x)| �
√

1
I(x)2 − 1 . (3.75)

1also called low-relief or shallow-relief
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Figure 3.12. Convex/concave ambiguities.

incident light

(a)

incident light

(b)

Figure 3.13. Different surface profiles generating same grey values.

From (3.75), it can be observed that being u a solution to (3.75) makes u + c with
c ∈ R another solution due to the gradient operator. Moreover, −u must necessarily
be a solution as well because of the Euclidean norm, which manifests itself as the
convex/concave ambiguity.

Singular Points

Eikonal-type Hamiltonians. Another source of the ambiguity comes from singular
points [78, 172, 193, 219]. Singular points refer to the ones with maximal intensity, i.e.
I(x) � 1, and by (3.14) one can notice that this phenomenon occurs when the surface
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normal is parallel to the light direction. If such points exist, from (3.75) one attains

|∇u(x)| � 0 . (3.76)

Since there are several surface profiles that meet this condition, e.g. extrema or an
inflection point, an additional condition is necessary to determine a meaningful
solution. In this respect, one may consider a pointwise maximum solution in the
viscosity sense, see Figure 2.8 for instance. This explains that the uniqueness result
obtained in [219] is valid except singular points. However, to obtain a complete
surface profile additional information on the shape at singular points must be
available as suggested in [78, 172, 174, 177]. This means that the type of singular
points has to be classified into the following classes: convex, concave or saddle
[78, 172, 173, 174, 177].

General-type Hamiltonians. In contrast to the case of eikonal-type Hamiltonians,
general-type model is helpful for resolving convex/concave ambiguities to some
degree [193, 195]. This is because the general-type Hamiltonians in [6, 195, 258]
contain the physics motivated light attenuation term formulated by the radial distance
and this term makes a farther object from a light source receive less energy. Hence,
the models containing the light fall-off term cannot have a concave surface as in
Figure 3.12(b) at singular points by construction. However, this “change of type” for
Hamiltonians does not ensure that all difficulties are resolved completely. Regarding
the uniqueness, there are the following constraints especially for singular points
according to [44]: (i) A solution at singular points must be determined. (ii) The
solution at singular points must be smooth. (iii) If the value of the solution increases
when moving away from such singular points, then the solution can be determined
uniquely. In the light of (i) and (ii) the initialisation performed in (3.72), therefore,
can be interpreted as finding an approximate smooth solution at singular points.
Moreover, in view of (iii) one can note that the FM-based algorithm such as [259] is
a proper strategy to solve a problem based on the properties of the FM method as
discussed in Section 2.3.

3.6 Summary
In this chapter, we have investigated important PDE-based SfS models with respect
to several aspects. After reviewing necessary modelling ingredients for SfS, by
employing the perspective camera projection, Lambertian surface reflectance, and a
brightness equation with the light attenuation term we have derived the perspective
Lambertian SfS model [195] which forms the basis for other advanced models in
the field. Subsequently, by incorporating Phong and Oren-Nayar reflectance we
have derived two non-Lambertian models: One is the perspective Phong SfS model
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[258] the other is the perspective Oren-Nayar SfS model [6], respectively. Finally, we
have looked into important model properties such as the type of Hamiltonians that
is related to the possible choice of numerical algorithms, e.g. the FM method. In
addition, we have also discussed the convexity of Hamiltonians as well as ambiguity
issues including the significant role of singular points.



Chapter 4

Generalised Perspective Shape from Shading Models

In the previous chapter, we have extensively studied various aspects of modern
PDE-based SfS models: Starting with the essential modelling components we have
derived the standard perspective SfS models [6, 195, 258] with Lambertian reflectance
[195] as well as the corresponding non-Lambertian models based on the Phong [189]
and the Oren-Nayar reflectance [6]. Moreover, we have discussed the properties of
these models along with suitable FM methods – with special emphasis on critical
points. However, as shown in Table 3.2 these standard models have a serious
limitation when it comes to the position of the light source: The light source is
assumed to be placed at the optical centre of the camera, which is often not the case
by construction, e.g. in the case of a flash device in photography.

In this chapter, we relax this unrealistic assumption and extend the standard
perspective SfS models from Chapter 3 in such a way that the resulting model
can handle a flexible scene geometry with respect to the position of the light
source. Moreover, we show by the example of the Oren-Nayar reflectance that
such models can also be derived from non-Lambertian surfaces. In order to handle
critical points effectively in such general scenarios, we formulate the resulting
generalised brightness equations as HJEs in terms of spherical coordinates instead
of Cartesian ones. Therefore, solutions to these models still can be understood in
the viscosity sense that we have covered in Section 2.2.3. Furthermore, we also
develop a highly efficient numerical algorithm to deal with the resulting set of
highly nonlinear complex HJEs in spherical systems. This FM-based algorithm is
specifically customised: On the one hand, it takes full advantage of the efficient grid
traversing scheme from the FM method [227]. On the other hand, it is able to take
care of general-type Hamiltonians by adding a correction step to the iterative regula
falsi framework and thereby to attain solutions in the viscosity sense.

To this end, we first parameterise a surface for flexible light positions in terms of
spherical coordinates in Section 4.1. Afterwards, with the spherical parametrisation
we derive generalised brightness equations by incorporating the Lambertian surface
and the Oren-Nayar reflectance in Section 4.2 and 4.3, respectively. In Section 4.4, we
then provide an exposition on the adapted FM scheme. Subsequently, we present
experimental results by making use of synthetic and real-world images in Section
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4.5. The models described in this chapter are based on the papers [93, 130] that were
presented at SSVM and BMVC.

4.1 Surface Parametrisation for Arbitrary Light Source
Positions

As can be noticed in Table 3.1 and 3.2 as well as [79, 200], PDE-based perspective SfS
models typically have a fixed position of the light source: it is either located at infinity
or at the optical centre of the camera. However, when it comes to application dealing
with realistic scenarios, this scene geometry is considerably restricted because the
assumption is quite limited and thereby often violated, which may lead to suboptimal
results. Therefore, we now take a more flexible scene geometry into account that
is depicted in Figure 4.1. As one can see, the position of the light source can be
anywhere in the scene.

In order to deal with this case, we have to select a proper measurement system
with respect to critical points, i.e. the brightest points which have minimal distance
to a light source. The important principle is that brightest points must be identified
as closest points to the light source. This suggests that the depth parametrisation
must contain the information of the distance with respect to the light source. If a
light source is located at the optical centre of the camera, this parametrisation can
be performed by placing the origin at the position of the light source in Cartesian
coordinates, see Figure 4.2. The same rule applies to the case of a flexible scene
geometry: By assigning the origin to the position of the light source and parametrising
the distance from the light source, one can achieve the goal, see Figure 4.3. However,
since the realisation of this procedure in the Cartesian system leads to complex
formulations, we consider this parametrisation in spherical coordinate system.

In order to gain full benefits of the spherical coordinate system, one needs to
parametrise the entire SfS model in these coordinates. As we will see later on, we
also have to adapt the FM method such that it works in spherical coordinates. In the
following, we show how to parametrise all components of the brightness equation
with Lambertian reflectance model as well as the Oren-Nayar reflectance. To this
end, we assume a uniform albedo, i.e. ρ � 1.

4.1.1 Surface Representation in Spherical Coordinates

In this section, we express a vector representing a surface point and its gradient in
terms of a spherical coordinate system. To this end, we follow the conventions in
Figure 4.4, where the vector r is represented in both coordinates.

First, let us derive a relationship between the Cartesian and the spherical systems
for a point. By supposing that the vector r points to the surface point S � (X,Y, Z)⊤
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incident light

b
light source

L = (0, 0, 0)⊤
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Figure 4.1. Cross section of a 3-D model for perspective SfS with arbitrary position
of the light source. The distance between the light source L and the point S on the
surface is denoted by r given in (3.22).

in Figure 4.1, we obtain

S :�
−→
LS � [X,Y, Z]⊤ �: r :� r er with r �

√

X2 + Y2 + Z2 , (4.1)
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(a) Light source being at optical centre.
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×

B, M

object

light source
camera

brightest point (B) = closest point (M)

(b) Depth parametrisation from the light source.

Figure 4.2. When the light source is placed at the optical centre of the camera.

(a) Light source not being at optical
centre.

b

+

u

light

camera

B
M

brightest point (B) = closest point (M)

object

(b) Depth parametrisation from the light source.

Figure 4.3. When the light source is not placed at the optical centre of the camera.

where er represents the basis vector in the direction from the position of the light
source to the surface point. Hence, it has the form

er �
1

√

X2 + Y2 + Z2
(X,Y, Z)⊤ (4.1)

�
1
r
(X,Y, Z)⊤ (4.2)
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and will be derived in spherical coordinates. Applying trigonometric identities to
(4.1) further leads to

S
(4.1)
� r �



X
Y
Z


�



r cos
(
π
2 − θ

)
cosϕ

r cos
(
π
2 − θ

)
sinϕ

r sin
(
π
2 − θ

)


�



r sin θ cosϕ
r sin θ sinϕ

r cos θ



, (4.3)

where
�
θ, ϕ

�⊤
�

(
arccos Z

√

X2 + Y2 + Z2
, arctan Y

X

)⊤
. (4.4)

It can be noted that the surface point in (4.3) is described in terms of world coordinates
in comparison to Chapter 3, cf. (3.25). The relationship between image and world
coordinates can be obtained based on Figure 4.1. This is given by

x − o1
X − o1

�
y − o2

Y − o2
�
−f

Z − o3
. (4.5)

X

Y

Z

r

r

φ

θ

eθ

eφ

er

Figure 4.4. Spherical coordinate system: er , eφ and eθ stand for orthonormal basis
vectors with respect to each direction in the spherical system. The distance between
the light source L and the point S on the surface in Figure 4.1 corresponds to r.
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Gradient and Basis Vectors in Spherical Coordinates

Let us now proceed to establish a relationship with respect to the gradient between
spherical and Cartesian coordinates. To this end, we express the gradient in the
spherical coordinates as an operator form using the chain rule. This yields

∂
∂r

�
∂X
∂r
∂
∂X

+
∂Y
∂r
∂
∂Y

+
∂Z
∂r
∂
∂Z
, (4.6)

∂
∂θ

�
∂X
∂θ

∂
∂X

+
∂Y
∂θ
∂
∂Y

+
∂Z
∂θ
∂
∂Z
, (4.7)

and
∂
∂ϕ

�
∂X
∂ϕ

∂
∂X

+
∂Y
∂ϕ

∂
∂Y

+
∂Z
∂ϕ

∂
∂Z
. (4.8)

Moreover, by plugging all the computations of partial derivatives based on (4.3) we
reformulate these expressions as a compact form. This is given by



∂
∂r
∂
∂θ
∂
∂ϕ



�



∂X
∂r

∂Y
∂r

∂Z
∂r

∂X
∂θ

∂Y
∂θ

∂Z
∂θ

∂X
∂ϕ

∂Y
∂ϕ

∂Z
∂ϕ





∂
∂X
∂
∂Y
∂
∂Z



(4.3)
�



sin θ cosϕ sin θ sinϕ cos θ

r cos θ cosϕ r cos θ sinϕ −r sin θ

−r sin θ sinϕ −r sin θ cosϕ 0

︸                                                    ︷︷                                                    ︸
�: B



∂
∂X
∂
∂Y
∂
∂Z



. (4.9)

Therefore, we can reformulate the Cartesian gradient in (4.9) in terms of spherical
coordinates as



∂
∂X
∂
∂Y
∂
∂Z



�

�: B−1︷                                                             ︸︸                                                             ︷


sin θ cosϕ 1
r

cos θ cosϕ 1
r sin θ

�
− sinϕ

�

sin θ sinϕ 1
r

cos θ sinϕ 1
r sin θ cosϕ

cos θ 1
r
(− sin θ) 0





∂
∂r
∂
∂θ
∂
∂ϕ



� er

(
∂
∂r

)
+ eθ

1
r

(
∂
∂θ

)
+ eϕ

1
r sin θ

(
∂
∂ϕ

)
, (4.10)
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where each column vector of B−1 serves as a basis vector

er �



sin θ cosϕ
sin θ sinϕ

cos θ


, eθ �



cos θ cosϕ
cos θ sinϕ
− sin θ


, eϕ �



− sinϕ
cosϕ

0


. (4.11)

These basis vectors can also be obtained by using rotation matrices as follows: We
first rotate the vector (0, 0, r)⊤ by an angle θ about Y-axis. Subsequently, we further
rotate the previously rotated vector by an angle ϕ about Z-axis. These series of
actions can be expressed by applying two rotational matrices to the vector (0, 0, r)⊤
sequentially, i.e. first RY (θ) and then RZ

�
ϕ

�
. This reads

r � RZ
�
ϕ

�
RY (θ)



0
0
r


�



cosϕ cos θ − sinϕ cosϕ sin θ
sinϕ cos θ cosϕ sinϕ sin θ
− sin θ 0 cos θ





0
0
r


, (4.12)

where the two matrices

RZ
�
ϕ

�
�



cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1


, RY (θ) �



cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


(4.13)

represent rotations around the Z- and Y-axis by an angle ϕ and an angle θ, respec-
tively.

Since the properties of rotation matrices are still preserved after series of matrix
multiplications [13], one can validate the orthonormal properties of these basis
vectors:

eθ · eϕ � eθ · er � eϕ · er � 0 and |eθ | � |eϕ | � |er | � 1 . (4.14)

Moreover, these basis vectors have the following properties with respect to derivatives

∂ er

∂θ
�



cos θ cosϕ

cos θ sinϕ

− sin θ



(4.11)
� eθ ,

∂ er

∂ϕ
�



− sin θ sinϕ

sin θ cosϕ

0



(4.11)
� sin θ eϕ (4.15)

as well as the properties of the right-handed coordinate system (er , eθ , eϕ)
eθ × eϕ � er , eϕ × er � eθ , er × eθ � eϕ . (4.16)

These properties are used for computing the direction of surface normal in the next
section.



100 Generalised Perspective Shape from Shading Models

4.2 Lambertian SfS Model in Spherical Coordinates

In order to obtain a brightness equation in terms of the spherical coordinate system,
we perform computations on each element of the brightness equation by means of
basis vectors (4.11) as well as the radial vector (4.1). To this end, we first deal with
the direction of surface normal n in (3.22). For the computations of a surface normal
vector in a spherical system, we adopt the same strategy as we have performed for
the Cartesian case in Section 3.2.2. Since the surface parametrisation vector r in (4.1)
is orthogonal to both θ- and ϕ-direction as shown in (4.14), the direction of surface
normal can be determined by taking a cross product between the partial derivatives
of r with respect to θ and ϕ. In this case, one can note that a tangent plane is spanned
by rϕ and rθ instead of Sx and Sy , cf. Figure 3.11. Then, using the spherical surface
representation we obtain the direction of surface normal as

n �
∂S
∂ϕ
×
∂S
∂θ

(4.3)
�
∂ r
∂ϕ
×
∂ r
∂θ

(4.1)
�
∂ (r er)
∂ϕ

×
∂ (r er)
∂θ

�

(
∂ r
∂ϕ

er + r
∂ er

∂ϕ

)
×

(
∂ r
∂θ

er + r
∂er

∂θ

)
�

(
∂ r
∂ϕ

er ×
∂ r
∂θ

er

)
+

(
∂ r
∂ϕ

er × r
∂ er

∂θ

)
+

(
r
∂ er

∂ϕ
×
∂ r
∂θ

er

)
+

(
r
∂ er

∂ϕ
× r
∂ er

∂θ

)
�
∂ r
∂ϕ
∂ r
∂θ

(er × er)︸   ︷︷   ︸
�0

+ r
∂ r
∂ϕ

(
er ×

∂ er

∂θ

)
+ r
∂ r
∂θ

(
∂ er

∂ϕ
× er

)
+ r2

(
∂ er

∂ϕ
×
∂ er

∂θ

)

� r
∂ r
∂ϕ

(
er ×

∂ er

∂θ

)
+ r
∂ r
∂θ

(
∂ er

∂ϕ
× er

)
+ r2

(
∂ er

∂ϕ
×
∂ er

∂θ

)
(4.15)
� r

∂ r
∂ϕ

(er × eθ) + r
∂ r
∂θ

�
sin θ eϕ × er

�
+ r2 �

sin θ eϕ × eθ
�

(4.16)
� r

∂ r
∂ϕ

eϕ + r sin θ ∂ r
∂θ

eθ − r2 sin θ er . (4.17)

Once we have the surface normal direction, by exploiting orthonormal properties it
is not difficult to express its Euclidean norm as

|n|2 � n · n � r2


(
∂ r
∂ϕ

)2
+ sin2 θ

(
∂ r
∂θ

)2
+ r2 sin2 θ



⇔ |n| � r

√(
∂ r
∂ϕ

)2
+ sin2 θ

(
∂ r
∂θ

)2
+ r2 sin2 θ . (4.18)

Now, we are in the position to evaluate the expression n · L which will be used to
derive the generalised brightness equation in the next section. Based on Figure 4.1,
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the light direction L is given by
L � − er . (4.19)

Hence, using the surface normal vector (4.17) and the light direction (4.19) we obtain

n · L �

(
r
∂ r
∂ϕ

eϕ + r sin θ ∂ r
∂θ

eθ − r2 sin θ er

)
· (− er) � r2 sin θ . (4.20)

This computation result will be used in the next section for deriving the generalised
Lambertian brightness equation.

4.2.1 Generalised Lambertian Brightness Equation

At this point, we have all the necessary components at hand for computing the
brightness equation in spherical coordinates. Plugging all computed expressions
into the brightness equation yields

I �
1
r2

(
n
|n| · L

)
⇐⇒ r2 I |n| − n · L � 0

(4.18)
⇐⇒

(4.20)
r3 I

√(
∂ r
∂ϕ

)2
+ sin2 θ

(
∂ r
∂θ

)2
+ r2 sin2 θ − r2 sin θ � 0

⇐⇒ r4 sin θ I

√
1

r2 sin2 θ

(
∂ r
∂ϕ

)2
+

1
r2

(
∂ r
∂θ

)2
+ 1 − r2 sin θ � 0

⇐⇒ I

√
1

r2 sin2 θ

(
∂ r
∂ϕ

)2
+

1
r2

(
∂ r
∂θ

)2
+ 1 − 1

r2 � 0 . (4.21)

Since the term inside the square root of (4.21) corresponds to the gradient with
respect to φ and θ in the spherical system, we finally attain the following compact
generalised Lambertian brightness equation [93]

HGBE-L (θ,∇r, r) � 0 , (4.22)

where the Hamiltonian H is defined by

HGBE-L (θ,∇r, r) � I
√
|∇r |2 + 1 − 1

r2 . (4.23)
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The gradient ∇ in (4.23) must be understood in terms of spherical systems [49] based
on the relationship (4.10). This means that

∇r :� ∇θ r � ∇(θ,ϕ) r �
1
r

(
∂ r
∂θ

)
eθ +

1
r sin θ

(
∂ r
∂ϕ

)
eϕ . (4.24)

As in the Cartesian case, the model (4.22) also takes the form of general-type
Hamiltonian. In this context, solutions to the HJE (4.22) can also be understood in
the viscosity sense [63].

4.3 Oren-Nayar SfS in Spherical Coordinates
After we have derived the general brightness equation in spherical coordinates for the
Lambertian case, let us now discuss how this idea can be extended to non-Lambertian
surface models. In this context, we consider the surface models of Oren-Nayar as an
example. To this end, based on (3.52) and (3.55) we define the image intensity I as
the ratio between the reflected light radiance and the irradiance of the light source
with the uniform albedo ρ. This yields

I :� Ls( ρ
π

I0

) �
π
ρ

Ls

I0
. (4.25)

By combining the result (4.25) and (3.52), we obtain the following brightness equation
[6] with the Oren-Nayar surface reflectance

I �
1
r2 cos θi

�
A + B sin α tan β max

�
0, cos(ϕr − ϕi)��

, (4.26)

where A and B depend on the Gaussian facet statistics via the roughness parameter
(standard deviation) σ. Besides, two angle variables α and β are defined as in (3.19)
and (3.20), respectively.

For general scene geometry, it can be noted that the brightness equation (4.26)
depends on several angles instead of one, as in the case of the limited scene geometry
(3.55). As already observed in Figure 3.7, this is due to the fact that the viewing
direction plays actually a prominent role for the image irradiance when dealing with
Oren-Nayar reflectance, cf. Figure 3.3(a).

In this context, to establish a relationship between the scene geometry illustrated
in Figure 4.1 and the Oren-Nayar BRDF geometry including several angles depicted
in Figure 3.6 and 3.8, we adhere to the following conventions on the angles in the
Oren-Nayar brightness equation (4.26): θi represents the angle between the surface
normal vector N and the light source direction L, θr stands for the angle between
the surface normal vector N and the camera direction V, ϕi is the angle between
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the projection of the light source direction L and the x-axis onto the (x , y)-plane,
ϕr denotes the angle between the projection of the viewing direction V and the
x-axis onto the (x , y)-plane, and the two variables α and β select the maximum and
minimum between the angles θi and θr , respectively.

4.3.1 Generalised Oren-Nayar Brightness Equation
To derive a generalised Oren-Nayar brightness equation, all the terms in the brightness
equation (4.26) should be formulated in terms of spherical coordinates as we have
conducted for the Lambertian case in Section 4.2. However, since the difference
between the Lambertian surface and the Oren-Nayar one is made only in the
reflectance not in the scene geometry, most expressions from Section 4.2 can be
readily used for the Oren-Nayar case. Hence, what remains to be computed is the
viewing direction v of the camera and the trigonometric terms.

Viewing Direction

From Figure 4.1, the viewing direction corresponds to

v �
−→
SC �

−→
LC −

−→
LS . (4.27)

By means of the spherical basis vectors, we reformulate the viewing direction vector
as

v (4.1)
�

�
v1 er + v2 eθ + v3 eϕ

�
− r er � (v1 − r) er + v2 eθ + v3 eϕ (4.28)

where

v1 �

√
o2

1 + o2
2 + o2

3 , v2 � arctan
( o2

o1

)
, v3 � arccos

*..
,

o3√
o2

1 + o2
2 + o2

3

+//
-
. (4.29)

Hence, the normalised viewing vector V of (4.28) is given by

V �
v
|v|

(4.28)
�

(v1 − r) er + v2 eθ + v3 eϕ√
(v1 − r)2 + v2

2 + v2
3

. (4.30)

Trigonometric Terms

Now we are in the position to express all the trigonometric terms in the Oren-Nayar
brightness equation (4.26) with reference to the spherical system because we know
at this point all necessary elements: the surface normal vector N, the light direction
L, as well as the viewing direction V.
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Term cos θi . Since θi represents the angle between the surface normal (4.17) and
light source direction (4.19) based on Figure 3.8, its cosine can be described as

cos θi � N · L �
n
|n| · L

(4.17)
�

(4.19)

(
r
∂ r
∂ϕ

eϕ + r sin θ ∂ r
∂θ

eθ − r2 sin θ er

)
· (−er)

|n|
(4.18)
�

r2 sin θ

r

√(
∂ r
∂ϕ

)2
+ sin2 θ

(
∂ r
∂θ

)2
+ r2 sin2 θ

�
r2 sin θ

r2 sin θ

√
1

r2 sin2 θ

(
∂ r
∂ϕ

)2
+

1
r2

(
∂ r
∂θ

)2
+ 1

(4.24)
�

1√|∇r |2 + 1
. (4.31)

Term cos θr . This term can be handled in an analogous manner to the case of cos θi .
Since θr stands for the angle between the surface normal and camera direction based
on Figure 3.8, we can formulate the term cos θr as

cos θr � N ·V �
n
|n| ·

v
|v|

(4.17)
�

(4.30)

(
r

(
∂ r
∂ϕ

)
eϕ + r sin θ

(
∂ r
∂θ

)
eθ − r2 sin θ er

)
·

�(v1 − r) er + v2 eθ + v3 eϕ
�

|n| |v|

(4.18)
�

r
(
∂ r
∂ϕ

)
v3 + r sin θ

(
∂ r
∂θ

)
v2 − r2 (v1 − r) sin θ

r |v|
√(
∂ r
∂ϕ

)2
+ sin2 θ

(
∂ r
∂θ

)2
+ r2 sin2 θ

�

r2 sin θ
(

v3
r sin θ

(
∂ r
∂ϕ

)
+

v2
r

(
∂ r
∂θ

)
− (v1 − r)

)

r2 sin θ |v|
√

1
r2 sin2 θ

(
∂ r
∂ϕ

)2
+

1
r2

(
∂ r
∂θ

)2
+ 1

(4.24)
�

1
|v|√|∇r |2 + 1

(
v3

r sin θ

(
∂ r
∂ϕ

)
+

v2
r

(
∂ r
∂θ

)
− (v1 − r)

)
︸                                             ︷︷                                             ︸

�: Wcos θr

�
Wcos θr

|v|√|∇r |2 + 1
. (4.32)
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Term sin θi and Term sin θr . Once we have the cosine terms determined by the
angle θi as well as the angle θr , respectively, the corresponding sine terms can be
obtained with the help of trigonometric identities. This is given by

sin θi �
√

1 − cos2 θi
(4.31)
�

√√√
1 − *

,
1√|∇r |2 + 1

+
-

2

�
|∇r |√|∇r |2 + 1

(4.33)

and

sin θr �
√

1 − cos2 θr
(4.32)
�

√√√
1 − *

,

Wcos θr

|v|√|∇r |2 + 1
+
-

2

�

√
|v|2 �|∇r |2 + 1

�
−W2

cos θr

|v|2 (|∇r |2 + 1) �

√
|v|2 (|∇r |2 + 1

)
−W2

cos θr

|v| √|∇r |2 + 1
. (4.34)

Term sin α and Term tan β. In addition to the cosine terms from the incident and
viewing angles, we also need the terms sin α and tan β in the Oren-Nayar brightness
equation (4.26). According to (3.20), these are defined as

sin α (3.20)
� sin (max (θi, θr)) and tan β (3.20)

� tan (min (θi, θr)) . (4.35)

Since we have already derived the sine and the cosine expressions with respect to
each angle θi and θr , the tangent function in (4.35) can be obtained by the properties
of trigonometric functions.

Term cos(ϕr − ϕi). At this point, what finally remains to be computed is the
expression cos

�
ϕr − ϕi

�
in the Oren-Nayar brightness equation (4.26). As shown in

Figure 3.6 and 3.8, the angle
�
ϕr − ϕi

�
in the expression represents the difference of

two azimuth angles that are projected onto the (x , y)-plane by the light direction L
and the viewing direction V. To distinguish the projected vectors from the original
one, we define the projected vectors of L and V as L̂ and V̂, respectively. Then, the
computation cos

�
ϕr − ϕi

�
can be realised by substituting π2 for θ in the orthonormal

basis vectors (4.11). This means that we use only the (x , y)-plane related elements
in (4.1) and (4.29), respectively. As a result, from the light direction we obtain the
projected light vector L̂ as

L̂ (4.19)
� −êr

(4.11)
�(
θ �

π
2
) −



cosϕ
sinϕ

0


. (4.36)
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In a similar way, from the viewing direction (4.28) we obtain the projected viewing
vector v̂ as

v̂ (4.28)
� (v̂1 − r̂) êr + v̂2 êθ + v̂3 êϕ

(4.11)
�(
θ �

π
2
) (v̂1 − r̂)



cosϕ
sinϕ

0


+ v̂2



0
0
−1


+ v̂3



− sinϕ
cosϕ

0



�



(v̂1 − r̂) cosϕ − v̂3 sinϕ
(v̂1 − r̂) sinϕ + v̂3 cosϕ

−v̂2


with |v̂| �

√
(v̂1 − r̂)2 + v̂2

2 + v̂2
3 , (4.37)

where r̂ and v̂1, v̂2, v̂3 denote the projected version onto (x , y)-plane of r (4.1) and v
(4.29), respectively. These correspond to

r̂
(4.1)
�

√

X2 + Y2 (4.3)
�

√
r2 sin2 θ

�
cos2 ϕ + sin2 ϕ

�
� r sin θ (4.38)

and

v̂1
(4.29)
�

√
o2

1 + o2
2 , v̂2

(4.29)
� arccos

*..
,

0√
o2

1 + o2
2

+//
-
�
π
2 , v̂3

(4.29)
� arctan

( o2
o1

)
. (4.39)

Therefore, taking a dot product between the projected light vector and the projected
viewing vector yields

L̂ · V̂ � L̂ · v̂
|v̂| � cos

�
ϕr − ϕi

�
�

r̂ − v̂1
|v̂| . (4.40)

Derivation of Hamilton-Jacobi Equations with Oren-Nayar Reflectance

At this point, all necessary computations for deriving the Oren-Nayar brightness
equation (4.26) are available in terms of spherical coordinates. This leaves the last
step to obtain the generalised brightness equation: case distinctions. In contrast
to the brightness equation with Lambertian surface, this step is necessary because
the brightness equation of the Oren-Nayar surface (4.26) is described by several
trigonometric terms of polar and azimuth angles as well as min and max operators.

Case I. First, we deal with the case (θi ⩾ θr) and (ϕr − ϕi) ∈ [0, π2 ) ∪ (3
2π, 2π]. If

the angles are in the given range, by the properties of the trigonometric functions
the following implication holds

max
�
0, cos

�
ϕr − ϕi

��
� cos

�
ϕr − ϕi

�
(4.41)
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and

sin α (4.35)
� sin (max (θi, θr)) � sin θi , tan β (4.35)

� tan (min (θi, θr)) � tan θr . (4.42)

Then, by plugging (4.41) and (4.42) into the brightness equation (4.26) we obtain

I �
1
r2 cos θi

(
A + B cos

�
ϕr − ϕi

�
sin θi

sin θr

cos θr

)
⇔ r2 I � A cos θi + B cos

�
ϕr − ϕi

�
cos θi sin θi

sin θr

cos θr
. (4.43)

Moreover, replacing the trigonometric terms in (4.43) with corresponding formula-
tions given in (4.31), (4.33), (4.34), and (4.40) further leads to the following HJE

(4.43)⇔ A (N · L) + B
(
L̂ · V̂

) (N · L)
√

1 − (N · L)2
√

1 − (N ·V)2
(N ·V) − r2 I � 0

⇔
A√|∇r |2 + 1

+

B
(
L̂ · V̂

)
√|∇r |2 + 1

|∇r |√|∇r |2 + 1

√
|v|2 (|∇r |2 + 1

)
−W2

cos θr

|v| √|∇r |2 + 1
Wcos θr

|v|√|∇r |2 + 1

− r2 I � 0

⇔
A√|∇r |2 + 1

+
B (L̂ · V̂) |∇r |
|∇r |2 + 1

√
|v|2 (|∇r |2 + 1

)
−W2

cos θr

Wcos θr

− r2 I � 0 . (4.44)

Special Case of Case I. Before we turn to the second case, we describe the standard
setting, i.e. the light source being located at the optical centre of the camera for the
perspective Oren-Nayar SfS [6]. We have seen the Cartesian formulations of this
model in Section 3.4. This situation describes if θi � θr and ϕi � ϕr and is actually a
special case of Case I. Hence, in view of (3.53) and (4.42) we obtain the following
relationship

sin α (3.53)
�

(4.42)
sin θ , tan β (3.53)

�
(4.42)

tan θ . (4.45)

In addition, the same azimuth angle implies

max
�
0, cos

�
ϕr − ϕi

��
� max (0, cos 0) � 1 . (4.46)

The expressions (4.45) and (4.46) allows us to reformulate the brightness equation
(4.26) as

I �
1
r2

�
A cos θ + B sin2 θ

�
. (4.47)
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Consequently, by applying (4.31) and (4.33) to (4.47) we attain the following HJE

(4.47)⇔ A cos θ + B sin2 θ − r2 I � 0

⇔
A√|∇r |2 + 1

+ B *
,

|∇r |√|∇r |2 + 1
+
-

2

− r2 I � 0

⇔
A√|∇r |2 + 1

+
B |∇r |2
|∇r |2 + 1

− r2 I � 0 . (4.48)

Case II. For the second case, we consider when θi < θr and (ϕr − ϕi) ∈ [0, π2 ) ∪(3
2π, 2π]. Since the only difference for the second case is for the inequality of normal

angles, i.e. instead of θi ⩾ θr we assume θi < θr , the implication for the first case
(4.41) still remains valid:

max
�
0, cos

�
ϕr − ϕi

��
� cos

�
ϕr − ϕi

�
. (4.49)

However, the expression (4.42) has different result for this case

sin α (4.35)
� sin (max (θi, θr)) � sin θr , tan β (4.35)

� tan (min (θi, θr)) � tan θi . (4.50)

As a result, the brightness equation becomes

I �
1
r2 cos θi

(
A + B cos

�
ϕr − ϕi

�
sin θr

sin θi

cos θi

)
⇔ r2 I � A cos θi + B cos

�
ϕr − ϕi

�
sin θr sin θi . (4.51)

As carried out for the first case, plugging the corresponding expressions into the
brightness equation (4.51) gives the HJE

(4.51)⇔ A (N · L) + B
(
L̂ · V̂

) √
1 − (N ·V)2

√
1 − (N · L)2 − r2 I � 0

⇔
A√|∇r |2 + 1

+ B
(
L̂ · V̂

) |∇r |√|∇r |2 + 1

√
|v|2 (|∇r |2 + 1

)
−W2

cos θr

|v| √|∇r |2 + 1
− r2 I � 0

⇔
A√|∇r |2 + 1

+
B (L̂ · V̂) |∇r |
|v| (|∇r |2 + 1)

√
|v|2 (|∇r |2 + 1

)
−W2

cos θr
− r2 I � 0 . (4.52)

Case III. The rest case covers the range of the azimuth angle
�
ϕr − ϕi

�
∈ [π2 , 3

2π].
This suggests that the value of the cosine function is negative. Therefore, we obtain

max
�
0, cos

�
ϕr − ϕi

��
� 0 . (4.53)
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This turns the brightness equation into

I �
1
r2 A cos θi . (4.54)

Hence, from (4.54) we attain the following HJE using the computation result in (4.31)

(4.54)⇔ r2 I − A (N · L) � 0

⇔ r2 I −
A√|∇r |2 + 1

� 0

⇔ r2 I
√
|∇r |2 + 1 − A � 0

⇔ I
√
|∇r |2 + 1 − A

r2 � 0 . (4.55)

One should note that this HJE becomes the generalised brightness equation with the
Lambertian reflectance if the roughness parameter is σ � 0, cf. (4.23).

We have made case distinctions so far depending on the values of the involved
trigonometric functions in the Oren-Nayar brightness equation (4.26). In what
follows, we summarise the result of these case distinctions for an overview. This
includes the implications of the trigonometric terms after applying the min and
max operators within the specified range of the indicated angles. Moreover, we
also state the corresponding generalised brightness equation according to the case
dependent trigonometric terms as well as the associated Hamilton-Jacobi equation
with a Hamiltonian.

Case I: (θi ⩾ θr) and
�
ϕr − ϕi

�
∈

�
0, π2

�
∪

� 3
2π, 2π

�

1. Azimuth angle implication: max
�
0, cos

�
ϕr − ϕi

��
� cos

�
ϕr − ϕi

�

2. Polar angle implication: sin α � sin θi , tan β � tan θr

3. Brightness equation: I �
1
r2 cos θi

(
A + B cos

�
ϕr − ϕi

�
sin θi

sin θr

cos θr

)
4. Hamilton-Jacobi equation: HGBE-ON (θ,∇r, r) � 0 with Hamiltonian

HGBE-ON (θ,∇r, r) � A√|∇r |2 + 1
+

B (L̂ · V̂) |∇r |
|∇r |2 + 1

√
|v|2 (|∇r |2 + 1

)
−W2

cos θr

Wcos θr

−r2 I
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Special Case of Case I: (θi � θr) and
�
ϕr � ϕi

�

1. Azimuth angle implication: max
�
0, cos

�
ϕr − ϕi

��
� 1

2. Polar angle implication: sin α � sin θ , tan β � tan θ
�
θ :� θi � θr � α � β

�

3. Brightness equation: I �
1
r2

�
A cos θ + B sin2 θ

�

4. Hamilton-Jacobi equation: HGBE-ON (θ,∇r, r) � 0 with Hamiltonian

HGBE-ON (θ,∇r, r) � A√|∇r |2 + 1
+

B |∇r |2
|∇r |2 + 1

− r2 I

Case II: (θi < θr) and
�
ϕr − ϕi

�
∈

�
0, π2

�
∪

� 3
2π, 2π

�

1. Azimuth angle implication: max
�
0, cos

�
ϕr − ϕi

��
� cos

�
ϕr − ϕi

�

2. Polar angle implication: sin α � sin θr , tan β � tan θi

3. Brightness equation: I �
1
r2 cos θi

(
A + B cos

�
ϕr − ϕi

�
sin θi

sin θr

cos θr

)
4. Hamilton-Jacobi equation: HGBE-ON (θ,∇r, r) � 0 with Hamiltonian

HGBE-ON (θ,∇r, r) � A√|∇r |2 + 1
+

B (L̂ · V̂) |∇r |
|v| (|∇r |2 + 1)

√
|v|2 (|∇r |2 + 1

)
−W2

cos θr
−r2 I

Case III: For any θi , θr and
�
ϕr − ϕi

�
∈

�
π
2 ,

3
2π

�

1. Azimuth angle implication: max
�
0, cos

�
ϕr − ϕi

��
� 0

2. Polar angle implication: No influence

3. Brightness equation: I �
1
r2 A cos θi

4. Hamilton-Jacobi equation: HGBE-ON (θ,∇r, r) � 0 with Hamiltonian

HGBE-ON (θ,∇r, r) � I
√
|∇r |2 + 1 − A

r2
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So far, we have derived and lined up the brightness equations as well as the
corresponding HJEs for each case. As can be observed, the HJEs for the general scene
geometry with Oren-Nayar surface, i.e. (4.44), (4.48), (4.52), and (4.55), are much
more complex than that of the Lambertian surface (3.70) and actually contain the
Lambertian one as a special case as previously indicated. From the listed HJEs, it can
be noticed that they all belong to the general-type of Hamiltonian by taking (2.24)
into account, where the notion of viscosity solutions is required. In the next section,
we present a FM-based algorithm for solving these HJEs.

4.4 Adapted Fast Marching Scheme for Spherical Coor-
dinates

In this section, we derive an efficient numerical scheme for solving the general-type
of HJEs that we have obtained in Section 4.2.1 for the Lambertian reflection model
and in Section 4.3.1 for the Oren-Nayar reflection model with a flexible position of
the light source.

In order to gain computational efficiency of the modern viscosity framework [63],
we count on the FM method [229] that we have reviewed in Section 2.3. Given the
fact that the FM method has been recognised as one of the most efficient solution
algorithms for this kind of PDEs, we extend the adapted FM method [259], which
is described in Cartesian coordinates. Therefore, the resulting scheme becomes
a specifically tailored variant of the FM method that can handle general-type of
Hamiltonians in a spherical system for a Cartesian input image. However, the
fundamental principles of the adapted FM method remain unchanged even in a
spherical system.

4.4.1 Initialisation

Based on the discussions in Section 3.5.2, the information of starting points must
be provided for FM-based methods. Therefore, as a first step we determine critical
points on the surface by identifying brightest pixels in the input image and use
these pixels as seed points. As pointed out in Section 4.1, it should be noted that
these brightest points are actually the closest points in a spherical coordinate system
with the origin at the light source. While this would be possible with the same
parametrisation and Cartesian coordinates, the resulting equations would be much
more complex.

Consequently, the approximate solutions r at those locations can be computed
by applying the first-order optimality condition ∇r � 0 to the given HJEs without
taking the information of neighbouring pixels into account. The same procedure
has previously been applied for the Cartesian case in (3.72). Moreover, it can also be
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noted that this initialisation procedure is useful not only for finding critical points
on the surface but also for partial well-posedness [44, 67, 195] with respect to the
discussions on ambiguities of models in Section 3.5.3.

4.4.2 Update Process in Fast Marching Scheme
Once critical points are identified, we can let the radial depth information at critical
points propagate to neighbouring grid points by updating depth values there relying
on the update process of the FM method. This update process continues successively
until all grid nodes have been visited and have a green label “known” as shown in
Figure 2.14. Besides, this process is carried out with respect to the spherical grid
(θ, ϕ) instead of the Cartesian one (X,Y). On that account, the decision how the
depth values of “trial” nodes can be updated should be made first, i.e. neighbouring
nodes in terms of FM terminology as in Section 2.3.3.

In order to update the radial depth, the corresponding HJEs must be solved
at adjacent nodes. Since these HJEs are of general-type, we cannot directly find a
solution like the eikonal equation that we have seen in Section 2.3. For this reason,
we apply the regula falsi method as a root-finding algorithm and solve the nonlinear
equation iteratively. For discretising the HJEs, the standard upwind scheme [219], i.e.
(2.89) and (2.90), can be employed respecting the hyperbolic properties of the HJEs.
This approach was previously realised with the Phong reflectance [259] and with
the Oren-Nayar reflectance [256] for the restricted scene geometry in the Cartesian
coordinate system, respectively.

During the iteration by the regula falsi method, it is inevitable to estimate the
grey values of the input image at subpixel locations and to update accordingly
based on the fact that the input image I(X(θ, ϕ, r),Y(θ, ϕ, r)) is first given in terms
of Cartesian coordinates. The computation of the radial depth r is influenced by
(X,Y)⊤ via the relationship (4.4) and (4.1). To take care of the situation, we evaluate
the image brightness at subpixel positions by means of bilinear interpolation and
update this image intensity at each iteration as a correction step within the iterative
regula falsi framework. The iterations come to an end if the residual of successive
results drops below a certain threshold.

4.4.3 Benefits of Adapted Fast Marching Method
Let us briefly summarise two major advantages of our adaptive FM-based approach.

Direct Computation of Radial Depth

On the one hand, one can compute the radial depth r directly in the viscosity sense
with this method. Once the update process is over for all grid nodes, the result that
we have attained corresponds to the one that we desired for. No further steps or
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constraints for surface reconstruction are required such as integration of gradient
fields along with integrability constraints [89], which are often necessary in early
work, e.g. [116]. One can also note that the direct computation is possible because of
the combination between the general-type Hamiltonians from the modelling side
and the construction of the iterative regula falsi framework that can actually handle
the general-type HJEs from the numerical side.

Efficiency

On the other hand, one can gain the full efficiency that is directly inherited from
the FM algorithm [229] with this approach. As we have seen in Section 2.3.3, this
specific grid traversing strategy which starts from critical points and complies with
Fermat’s principle allows to compute a solution on each node by visiting it only once.
During the computation, the only extra cost comes from the update process of the
FM method because we have to solve complex nonlinear equations on each node
with respect to the spherical system and this involves the iterative correction of the
input grey values given by the typical Cartesian coordinates as we have pointed out.
Thus, one can achieve high efficiency with the adapted FM method when it comes
to PDE-based SfS models for the general scene geometry described by HJEs. The
statement is valid not only for the model with the basic Lambertian surface but also
for the model with the sophisticated Oren-Nayar one as well as potential models
with other realistic reflectance functions.

4.5 Experimental Evaluation
In this section, we evaluate the perspective SfS method for the general scene geometry,
first with a Lambertian surface, then with a Oren-Nayar type one. To this end, we
consider both synthetic and real-world images.

4.5.1 Lambertian Surface
For the Lambertian surface, we first reconstruct the surface of a vase by applying
the adapted FM method to our generalised brightness equation for Lambertian
reflectance (4.22), which is equivalent to the Eq. (4.55) with σ � 0. The vase
input image and the ground truth surface are displayed in Figure 4.5(a) and 4.5(b),
respectively. From the shading patterns in Figure 4.5(a), one can infer that the light
comes from the upper left corner on the scene. For the grid size in ϕ- and θ-direction,
we have used the same value in both directions, i.e. hϕ � hθ �: ∆ϕθ � 0.002 (max of
∆ϕθ � 0.755).

The computation result using our generalised model is shown in Figure 4.5(c).
As can be clearly observed, the attained shape reconstruction is very close to that



114 Generalised Perspective Shape from Shading Models

of the ground truth in Figure 4.5(b). However, when we make use of the standard
SfS model (3.36) with grid spacing h1 � h2 �: ∆h1h2 � 0.001465 (max of ∆h1h2 � 1.5),
i.e. the one with the light source being at the optical centre, by means of the same
brightest points in the Cartesian system, the reconstruction quality seems to be rather
poor as presented in Figure 4.5(d). This evidently demonstrates that the general
brightness equation (4.22) has the capability of handling the flexible scene geometry
and plays a crucial role in practice especially when the location of the light source is
not close enough to the optical centre. This also follows our discussions in Section
4.1.

(a) Vase input image. (b) Ground truth. (c) Generalised
Model.

(d) Standard Model.

Figure 4.5. Reconstruction of the Vase with our generalised model for Lambertian
surface. The employed grid sizes are ∆ϕθ � 0.002 for the generalised model and
∆h1h2 � 0.001465 for the standard one, respectively.

Subsequently, we carry out a second experiment on a real-world image. The
input image in Figure 4.6(a) is taken from a sculpture showing the head of a frog
and there is a slight tilt of the light direction towards the right centre on the scene.
The reconstructions are presented in Figure 4.6(b) and 4.6(c). Since our generalised
model reconstructs a surface from the viewpoint of the light source, our computation
results are reasonable. In fact, this implies that there exist certain limitations in
practice on the difference of locations between a light source and the optical centre of
a camera, although our general model is flexible enough to handle various scenarios
with respect to the light positions.

Concerning the efficiency of our adapted FM method, the runtime amounts to
approximately 40 seconds for a high resolution grid size 1024 × 1024. As indicated
in Section 4.4.3, most overhead in this runtime does not come from the size of the
input image but from the iterative correction step of the radial depth in the regula
falsi framework.
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(a) Frog input image. (b) Generalised Model. (c) Generalised Model, rotated view.

Figure 4.6. Reconstruction of the Frog with our generalised model for Lambertian
surface. The employed grid spacing is ∆ϕθ � 0.002.

4.5.2 Oren-Nayar Surface

For evaluating the quality and robustness of our advanced model, we have applied
the set of HJEs in Section 4.3.1 to endoscopic images provided by [94]. However,
experiments with such real-world images are highly challenging [204, 238] since
typically not all model parameters are available. Although the information on the
position of the optical centre of the camera with reference to the light source is
absolutely essential to our advanced model and moreover our model can actually
handle flexible scenarios regarding light positions, typical data sets do not provide
this important parameter, since it is, in general, not necessary for standard SfS models
based on the restricted geometry [6, 171, 195, 258]. This, therefore, makes us estimate
the relative position of the camera to the light source roughly by relying on the
visual inspection of the images. In this context, we have chosen the position of the
camera in a way that it is close by but not negligibly adjacent to the origin. Since in
Section 4.5.1 we have demonstrated with the Lambertian surface that our generalised
model which is capable of handling flexible scene geometry can gain significant
advantages over a standard approach [93], let us focus on in this section the other
two important aspects of our approach: the visual quality of the reconstruction as
well as its robustness with respect to parameter variations.

In our first experiment, we investigate how grid resolutions in spherical coordi-
nates influence on the quality of the reconstruction. To this end, we have applied
our specifically tailored variant of FM method in Section 4.4 to the image of gastric
antrum shown in Figure 4.7(a) by changing resolutions in spherical coordinate
systems. During the computation, the roughness parameter σ �

π
6 is used for

the Oren-Nayar surface and the distance between two grid points in both ϕ- and
θ-direction is the same constant value as in the Lambertian case, i.e. hϕ � hθ �: ∆ϕθ.
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Figure 4.7 shows the different reconstruction qualities from lower to higher
resolutions. While it is obvious that the reconstruction with a higher resolution
demonstrates the considerable enhancement on the visual quality compared with
that of lower ones, it should also be noted that the actual quality of the reconstruction
has an upper bound, i.e. the resolution of the input image. During the update process
within our FM framework, the input image is iteratively reevaluated at subpixel
locations even though one makes use of finer meshes by refining the grid. Since
we have placed the light source at the origin in our coordinate system as indicated
previously, the computation is performed with reference to the light source. This
makes the reconstruction have a slightly different inclined viewpoint comparing to
that of the input image.

(a) Input image
(115 × 106).

(b) ∆ϕθ � 0.025. (c) ∆ϕθ � 0.0175. (d) ∆ϕθ � 0.0125. (e) ∆ϕθ � 0.0075.

Figure 4.7. Impact of grid resolutions on the quality of reconstructions. Reconstruc-
tion of gastric antrum with our generalised model for Oren-Nayar surface. The
employed roughness parameter is σ � π

6 .

In a second experiment, we look into how robust and stable our approach is subject
to the selection of the roughness parameter σ for the Oren-Nayar reflectance model.
Therefore, we have computed the reconstructions by applying our method to four
different endoscopic images with different values of σ. The input images are displayed
in Figure 4.8(a), 4.9(a), 4.10(a), and 4.11(a), each of which is denoted by the duodenum,
the oesophagus, the papilla of Vater, and the stomach of lining, respectively. The
corresponding reconstructions with different values of the roughness parameter σ
are placed side by side according to each input image.

From the reconstructions, one can observe that the model yields reasonable
results by showing important structures in the scene such as creases on the bottom
in Figure 4.8, extruded region in Figure 4.9, a branched ridge in Figure 4.10 as well
as the curved shape of the object and several valleys in Figure 4.11. Apart from the
visual quality, the model behaves in a well-posed way with respect to the model
parameter σ in the sense that the reconstructions are stable and continuously depend
on it. This feature is particularly useful for SfS when it comes to real-world data
sets without the information on parameter values, since one still has to estimate and
specify the unknown values as well as adjust them accordingly.
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(a) Input image(211×208). (b) σ � π
6 . (c) σ � π

4 . (d) σ � π
2 .

(e) Input image
(cropped, 106 × 78).

(f) σ � π
6 . (g) σ � π

4 . (h) σ � π
2 .

Figure 4.8. Reconstruction of the duodenum with a mesh width ∆ϕθ � 0.0125 and a
grid size 504 × 504.

(a) Input image (586 × 502). (b) σ � π
6 . (c) σ � π

4 . (d) σ � π
2 .

Figure 4.9. Reconstruction of the oesophagus with a mesh width ∆ϕθ � 0.0125 and
a grid size 504 × 504.

(a) Input image (210 × 160). (b) σ � π
6 . (c) σ � π

4 . (d) σ � π
2 .

Figure 4.10. Reconstruction of the papilla of Vater with a mesh width ∆ϕθ � 0.0125
and a grid size 504 × 504.
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(a) Input image (80 × 71). (b) σ � π
6 . (c) σ � π

4 . (d) σ � π
2 .

Figure 4.11. Reconstruction of the stomach lining with a mesh width ∆ϕθ � 0.0125
and a grid size 504 × 504.

4.6 Summary
In this chapter, we have addressed two important issues for PDE-based perspective SfS
approaches: One is on the position of the light source for flexible scene settings and
the other is on the combination between the general scene geometry and the advanced
non-Lambertian reflectance model. By introducing a spherical parametrisation in
spherical coordinates for exploiting critical points, we have achieved the goals and
thereby described the whole model in the form of HJEs. Moreover, we have designed
an adapted FM method specifically for the general model to gain full efficiency as
well as functionality and it allows to reconstruct even a high resolution image with a
reasonable runtime. Finally, we have confirmed that the derived model is able to
cope with general scenarios by demonstrating experimental results.
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Chapter 5

Variational Perspective Shape from Shading

In the first part, we have focussed on PDE-based methods for perspective shape
from shading within the modern framework of viscosity solutions [63] that we have
seen in Section 2.2.3. Although these approaches can enjoy the benefit of partial
well-posedness [44, 67, 195] as pointed out in Chapter 3, an issue on the robustness
with the methods still may arise from various scenarios especially when it comes to
noise [162] or missing information. To address this issue, variational approaches can
be an attractive option, since they can provide the desired property by relying on
smoothness terms which have been demonstrated to be highly effective in a wide
range of image processing and computer vision problems, e.g. image segmentation
[52, 168], optical flow [48, 121], denoising [220].

In this chapter, we therefore turn our attention to variational methods. To this
end, we investigate the major limitations of existing variational models: Most models
are either based on the simple orthographic projection or they select surface normals
as unknowns [119], which necessarily requires auxiliary variables as well as an
integrability constraint [89] and thereby leads to the two-step reconstruction strategy
instead of a direct estimation. While there are some models incorporating the
perspective projection in variational methods [270, 278], these models have used
the orthographic surface normal for the perspective case. In this case, the resulting
models are only valid for weak perspective effects and some brightness equation
become unnecessarily complex. Other perspective models still need an additional
term for the integrability constraint [1]. A final important aspect is the preservation of
surface edge during the reconstruction. This aspect, however, has not been addressed
at all in the literature so far.

Being aware of all these shortcomings, we construct a direct variational method
for perspective SfS by means of a discontinuity-preserving second-order smoothness
term. This method offers a substantially higher degree of robustness compared to
existing PDE-based approaches.

This chapter is based on the paper [131] that was presented at SSVM and is
organised as follows: Section 5.1 provides fundamentals on variational methods
including the calculus of variations as well as the corresponding Euler-Lagrange
equations. In Section 5.2, we then derive a variational model with Lambertian
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surface reflectance under the perspective camera projection in consideration of
the aforementioned shortcomings. Section 5.3 deals with a suitable minimisation
strategy along with discretisations for the established model. Finally, we present
experimental results in Section 5.4, which demonstrate the effectiveness of the
presented variational method especially when it comes to scenarios with noise or
partially missing information.

5.1 Mathematical Background on Variational Methods
The main idea of variational methods is to compute the solution of a problem as
minimiser of a suitable energy functional. This energy functional penalises deviations
from previously made assumptions such that the minimiser is the solution that fits
the assumptions best. In our case, the energy takes the following general form

E(u) �
∫
Ω

L
�
x , u (x) ,Du (x) ,D2u (x)� dx . (5.1)

Here, u : Ω → R stands for the sought scalar function, L is the Lagrangian which
contains the assumptions Ω ⊂ Rn denotes an n-dimensional bounded open subset
of Rn , and Du and D2u represent the gradient vector and the Hessian as defined
in (2.10) and (2.11), respectively. The order of derivatives of the Lagrangian L in
(5.1) may vary according to the requirements of the problem. In order to construct
a Lagrangian L for the perspective SfS problem, we consider a 2-D model with
derivatives up to second order.

Before we move on to variational SfS models, we first discuss how the energy
functional E in (5.1) can be minimised. This inevitably entails the calculus of variations
[58, 95] which we discuss in the next section.

5.1.1 Calculus of Variations
Calculus of variations is a branch of mathematics concerned with the problem of
optimising functionals. This mathematical framework offers a necessary condition
called Euler-Lagrange (EL) equations 1 which must be satisfied by such minimiser of a
given functional. However, the condition is not sufficient in that all local extrema as
well as inflection points meet the requirements, too. If the given energy functional is
strictly convex, a unique minimiser may be found. The role of this criterion is similar
to that of the first-order necessary condition for optimality in standard differential
calculus, i.e. the first derivatives with respect to variables of a given function must
vanish at extrema. In order to understand the idea how the EL equations are derived,

1This optimality condition is named after two influential mathematicians in honour of their
contributions to the field: Leonhard Euler (1707–1783) and Joseph-Louis Lagrange (1736–1813).



5.1 Mathematical Background on Variational Methods 123

we first look into the simplest case: a 1-D first-order functional. Then, we consider
the second-order case in 2-D – the case we are actually interested in.

Euler-Lagrange Equation for 1-D First-order Lagrangians

The requirement to be a minimiser states that for a given functional

E (u) �
∫ xb

xa

L (x , u (x) , u′ (x)) dx , (5.2)

a smooth function u : [xa , xb]→ R must fulfil the EL equation

∂L
∂u
−

d
dx

(
∂L
∂u′

)
� 0 (5.3)

with natural boundary conditions
∂L
∂u′

� 0 (5.4)

at xa and xb . Here, u′ denotes ∂u
∂x .

To verify the statement, we suppose that u is a differentiable minimiser for the
functional E in (5.2). Furthermore, to characterise the minimiser with respect to
other functions we embed the minimiser u into a family of general functions u(x , ε)
by constructing

u (x , ε) :� u (x) + ε η (x) �: u (x) + δu (x) , (5.5)

where ε ∈ R denotes a constant parameter, η : [xa , xb]→ R stands for a differentiable
perturbation function. Here, the second term δu is called a variation of the minimiser
u [58] from which the name of “calculus of variations” originates. The perturbation
function η is assumed to be arbitrary in the interval (xa , xb).

Based on the construction (5.5), one can observe that the minimiser u of (5.2)
is attained when ε � 0 for an arbitrary perturbation function η. Thus, the energy
functional E in (5.2) can be regarded as a scalar valued function Φ depending on the
parameter ε. This yields

Φ (ε) :� E (u (x , ε)) (5.5)
� E

�
u + ε η

�
, (5.6)

Besides, since Φ has a minimum when ε � 0, we know that

0 � Φ′ (0) � dΦ (ε)
dε

�����ε�0

(5.6)
�

d
dε

E
�
u + ε η

� �����ε�0
. (5.7)
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By means of (5.2) with (5.5), we can rewrite (5.7) as

0 (5.2)
�

(5.5)

d
dε

∫ xb

xa

L
�
x , u + ε η, u′ + ε η′

�
dx

������ε�0

. (5.8)

Given the fact that only the integrand L is under the influence of the differential
operator d

dε and ε is independent of x in (5.8), the Leibniz rule allows to take the
differential operator inside the integral sign and apply directly to the Lagrangian
function L. This leads to

0 �

∫ xb

xa

d
dε

L
�
x , u + ε η, u′ + ε η′

�
dx

������ε�0

. (5.9)

Since only the second and the third argument in (5.9) depend on ε by virtue of (5.6),
i.e. u (·, ε) and u′ (·, ε), respectively, applying the chain rule to (5.9) further yields

0 �

∫ xb

xa

(
∂L (x , u , u′)
∂u

∂u
∂ε

+
∂L (x , u , u′)
∂u′

∂u′

∂ε

)
dx

������ε�0

(5.5)
�

∫ xb

xa

(
∂L (x , u , u′)
∂u

η +
∂L (x , u , u′)
∂u′

η′
)

dx
������ε�0

�

∫ xb

xa

*
,

∂L
�
x , u , u′

�

∂u
η +
∂L

�
x , u , u′

�

∂u′
η′ +

-
dx . (5.10)

In addition, integrating the second term in (5.10) by parts gives∫ xb

xa

∂L
∂u′
η′ dx �

[
∂L
∂u′
η

] xb

xa

−

∫ xb

xa

d
dx

(
∂L
∂u′

)
η dx . (5.11)

By substituting (5.11) for the second term in (5.10), it follows that

0 �

∫ xb

xa

(
∂L
∂u
−

d
dx

(
∂L
∂u′

))
η dx +

[
∂L
∂u′
η

] xb

xa

. (5.12)

Hence, for (5.12) to be valid with all perturbation functions η, each term must vanish
irrespective of η according to the fundamental lemma of calculus of variations [58].
This corresponds to the EL equation (5.3) for the first term and the natural boundary
conditions (5.4) for the second term, which follows the assertions. One can further
note that the EL equation (5.3) is a second-order ordinary differential equation (ODE).
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Shortest Path Example. In order to see how calculus of variations with EL equations
can be applied, we consider a simple problem for finding the shortest path between
two points on a plane. The answer to this problem is already known as the straight
line between the two points which we call A and B, see Figure 5.1.

To this end, we first establish an energy functional for this problem. By means of
the Pythagorean theorem, one may describe an arc length between two points as
[50, 95] ∫ xb

xa

√
1 + u2

x dx , (5.13)

where ux �
∂u
∂x .

From the perspective of calculus of variations, the shortest path between the
two points on a plane is equivalent to the minimiser of the functional (5.13). As
previously indicated, the minimiser has to satisfy the EL equation (5.3). Hence, we
compute the associated one. Since the Lagrangian for (5.13) does not depend on u,
the EL equation amounts to be

d
dx

(
∂E
∂ux

)
� 0 ⇔

d
dx

(
ux

�
1 + u2

x
�− 1

2
)
� 0 . (5.14)

Applying the chain rule to the right hand side of (5.14) yields

d
dx

(
ux

�
1 + u2

x
�− 1

2
)
� uxx

�
1 + u2

x
�− 1

2
+ ux

(
−

1
2

�
1 + u2

x
�− 3

2
)
(2 ux) uxx

�
uxx

�
1 + u2

x
� √

1 + u2
x

!
� 0 . (5.15)

Then, from (5.15) one can notice that the numerator uxx must be 0 based on the
positiveness of the denominator. This suggests that a first-order polynomial fulfils
the condition (5.15) and the slope and the intercept may be determined when the
coordinates of two points are given as in Figure 5.1. As a consequence, calculus of
variations confirms that a straight line is the geodesic path between two points on a
plane.

When we interpret the situation geometrically, the minimal path u between the
two points on a plane is clearly a straight line as shown in Figure 5.1(a). However,
if a path is not geodesic, the route necessarily bends, which leads to curved lines
such as u1 and u2 in Figure 5.1(a). One may note that the family of functions (5.5)
contains these curves with different values of the ε , 0 as well as the geodesic path
u with ε � 0. Then, the role of the EL equation is preventing even slight deviations
from the straight line, i.e. to keep the variations from arising with respect to the
minimiser in (5.5) such as δu1 and δu2 in Figure 5.1(a). This makes the quantity δu
always disappearing and thereby the path stays on the optimal track.
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This shows that there is a different focus on the change of rate between calculus of
variations and differential calculus: By changing the parameter ε close to 0, calculus
of variations concerns variations of a family of functions with respect to a fixed
function for a given perturbation function at a fixed point. The fixed function and
the fixed point correspond to u and x0 in Figure 5.1(a). Since the function family has
been constructed by the assumed minimiser u as in (5.5), the EL equations provide a
condition to avoid function variations as previously indicated.

However, differential calculus concerns the change rate of a given function with
respect to a change of a given point in x-direction for 1-D. In Figure 5.1(b), the change
rate of functions u, u1 and u2 is illustrated by ∆u, ∆u1, ∆u2 as the value of x changes
from x0 to x0 + ∆x. This suggests that differential calculus is capable of considering
only a single function at a time instead of a family of functions.

u(x)

x

u

u2

u1

x0

A

B

δu1

δu2

(a) Calculus of variations.

u(x)

x
x0 x0 + ∆x

A

B

∆u2

∆u1

∆x

∆u

(b) Differential calculus.

Figure 5.1. Comparisons by geometrical interpretations between calculus of varia-
tions and differential calculus.

Extension to 2-D Second-order Lagrangians

Let us now turn to 2-D second-order Lagrangians. Since the variational SfS models
that we are dealing with in this chapter as well as in the next one are of this type, we
are especially interested in this case.

For 2-D second order Lagrangians, EL equations with corresponding natural
boundary conditions can be derived by repeated integration by parts and the Gauss’s
theorem [58] along with the fundamental lemma of calculus of variations. Hence,
for an energy functional of the form

E (u) �
∫
Ω

L
�
x , y , u , ux , uy , uxx , ux y , uyx , uy y

�
dx dy , (5.16)
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the variation of the functional (5.16) can be attained as

0 �

∫
Ω

(
Lu −

∂
∂x

Lux −
∂
∂y

Luy

+
∂2

∂x2 Luxx +
∂2

∂x∂y
Lux y +

∂2

∂y∂x
Luyx +

∂2

∂y2 Luy y

)
η dx dy

+

∫
∂Ω

n1

(
Lux −

∂
∂x

Luxx −
∂
∂y

Lux y

)
η dx dy

+

∫
∂Ω

n2

(
Luy −

∂
∂x

Luyx −
∂
∂y

Luy y

)
η dx dy

+

∫
∂Ω

(
Luxx n1 + Lux y n2

)
ηx dx dy

+

∫
∂Ω

(
Luyx n1 + Luy y n2

)
ηy dx dy .

(5.17)

Therefore, the EL equation can be described by the following fourth-order PDE

0 � Lu −
∂
∂x

Lux −
∂
∂y

Luy +
∂2

∂x2 Luxx +
∂2

∂x∂y
Lux y +

∂2

∂y∂x
Luyx +

∂2

∂y2 Luy y (5.18)

with the natural boundary conditions on ∂Ω

0 � n⊤



Lux −
∂
∂x

Luxx −
∂
∂y

Lux y

Luy −
∂
∂x

Luyx −
∂
∂y

Luy y



, (5.19)

where n stands for an outer normal vector (n1, n2)⊤. This even holds for an arbitrary
η at the boundary, i.e. for the case of η , 0 on ∂Ω. To ensure that the equality in
(5.17) holds, by supposing ∇η , 0 one must further impose the conditions

n⊤
[
Luxx

Lux y

]
� 0 , n⊤

[
Luyx

Luy y

]
� 0 (5.20)

with the outer normal vector n � (n1, n2)⊤.

5.1.2 Regularisation by Smoothness Terms

So far we have reviewed how to compute EL equations depending on different types
of Lagrangians. In this section, we consider the role of the regularisation to form an
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energy functional for SfS problems in a way that the variational framework we have
seen in Section 5.1.1 can be utilised.

Since the nature of SfS problems is inherently ill-posed as other problems in
computer vision [32, 192], e.g. optical flow [48, 121], image segmentation [52, 168],
multi-view reconstructions [4], the construction of energy functionals for SfS typically
follows the structure of Tikhonov regularisation [243, 244]. The cornerstone of the
regularisation theory lies in that the aforementioned ill-posed problems may be
reformulated in such a way that an appropriate solution to the problem can be found,
which approximates the given data best in an admissible solution set depending on
the requirements for the problems at hand. Moreover, the reformulation may be
realised by imposing some meaningful constraints such as smoothness (regularities)
on the given problems [32, 158, 192]. Then, the desired solution can be attained by
minimising the formulated energy functional with the help of calculus of variations.

In this context, energy functionals for SfS are usually composed of two parts: the
data term and the smoothness term as can be observed e.g. from [131, 132, 160, 257, 270].
Therefore, one may represent the general form of energy functionals for SfS as

E (u) �
∫
Ω

(
ED (·,Dn u (x) , ·)︸               ︷︷               ︸

data term

+ α ES
�
·,Dn+1u (x) , ·�︸                  ︷︷                  ︸

smoothness term

)
dx , (5.21)

where Ω ⊂ R2 denotes a 2-D rectangular image domain, x � (x , y)⊤ ∈ Ω describes a
data point in 2-D, Dn represents an n-th order differential operator such as (2.10)
and (2.11), α is a regularisation parameter, and ED and ES stand for a data term and
a smoothness term, respectively.

In the energy functional (5.21), the role of the data term is to ensure that a solution
is as close to the given data as possible in the sense of a predefined measure, e.g. a
norm. For SfS problems, a brightness equation usually takes the place of the data
term, which is called the “brightness constraint” according to [233, 281]. Therefore,
the main properties of the energy functional for the problem are characterised by
this data term, e.g. whether the perspective projection is considered or the light
attenuation term is taken into account, etc.

For the smoothness term, it can be noted that the order of the differential operator
is often selected at least one order higher than that of the data term. This is based
on the fact that using the same derivative order as in the data term would directly
lead to competing assumptions. Moreover, as shown in [131, 132, 160] the robust
behaviour of variational methods is actually attributed to the smoothness term that
is capable of exerting the filling-in effect guided by information of neighbouring data
points. One can note that this feature is particularly useful especially when it comes
to missing information and noise in the given data. In this context, the regularisation
parameter α ∈ R+ thereby permits to control the degree of smoothness for solutions.
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5.2 Variational Shape from Shading Models
Before we turn to our novel variational approach, let us first look into the shortcomings
of existing models in Section 5.2.1. Afterwards, by taking the limitations from existing
models into account we construct our variational perspective SfS model [131] in
Section 5.2.2.

5.2.1 Shortcomings of Existing Models for Variational SfS
In order to establish a model for variational SfS, there are three main components
involved [79]: (i) the selection of parametrisations, (ii) a functional that has to be
minimised, (iii) minimisation methods. Let us first discuss the parametrisation in
terms of the surface normal. Its drawbacks will motivate the direct depth as a better
choice for the parametrisation.

Selection of Parametrisations and Functionals for Variational SfS

Since reconstructions are obtained as a minimiser of the energy functional in
variational methods, the selection of the parametrisation for the data term plays
a key role on the formation of functionals. However, the intuitive choice of the
parametrisation, i.e. the depth itself, has hardly been used in the literature except for
[149, 257]. Instead, many variational models usually take two auxiliary variables p
and q as the parametrisation [69, 70, 89, 119, 233, 278], which are defined by

p :� ∂u
∂x

and q :� ∂u
∂y

(5.22)

with the unknown depth u. These variables typically represent surface normal vectors
in the orthographic projection, since for a surface parametrisationS �

�
x , y , u

�
x , y

��⊤
its normal vector can be computed by

Sx × Sy �
∂
∂x



x
y
u


×
∂
∂y



x
y
u



(5.22)
�



1
0
p


×



0
1
q


�



−p
−q
1


. (5.23)

This particular selection of the parametrisation is attributed to the brightness equation
described by the reflectance map [122] that formulates the scene radiance as a function
of surface orientations instead of the depth itself.

One should note that the surface normals given in (5.23) are only valid for an
orthographic projection and not for a perspective one. The main difference comes
from whether the cross derivatives ∂y

∂x and ∂x
∂y disappear or not. Contrary to the

orthographic case, these cross derivatives, in general, do not vanish in the perspective
projection. This is because the line from the optical centre to the surface point
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through the corresponding mapping point on the image plane is not parallel to the
z-axis, see Figure 3.10. This suggests that the strategy of deriving surface normals by
simply substituting the orthographic normals for perspective ones as in [270, 278]
turns out to be not completely correct. In this context, it is not surprising if such
methods yield poor results under the strong influence of perspective distortions.

The selection of the parametrisation is also related to the form of functionals. If the
surface normals are the parametrisation, the computed normals must be integrated
for reconstruction. To this end, the integrability constraint must be enforced [89] in a
way that the constraints are directly combined as an additional term in the energy
functional [69, 119, 233, 278]. Then, the energy functional takes the form of

E
�
p , q

�
�

∫
Ω

ED
�
x , p (x) , q (x)�︸                 ︷︷                 ︸
data term

dx + αs

∫
Ω

ES
�
∇p (x) ,∇q (x)�︸                  ︷︷                  ︸

smoothness term

dx

+ αi

∫
Ω

EI

(
∂p (x)
∂y

,
∂q (x)
∂x

)
︸                  ︷︷                  ︸

integrability constraint

dx , (5.24)

where ED , ES, and EI represent the data term, the smoothness term, and the
integrability constraint term, respectively, αs denotes the regularisation parameter
and αi is called integrability factor [79].

Apart from the additional term of the integrability constraint, the energy func-
tional (5.24) also contains the smoothness term affecting the gradient of auxiliary
variables, which is difficult to interpret. In addition, dedicated integration algo-
rithms of normal fields must be utilised for reconstruction, e.g. [5, 80, 92, 202].
As a consequence, a direct parametrisation is desirable. It contains no auxiliary
variables, requires no additional term of integrability constraint and no extra steps
for reconstruction.

5.2.2 Variational Perspective SfS Model

Being aware of the aforementioned shortcomings, let us now consider our novel
variational approach for perspective SfS [131] by embedding a PDE-based perspective
SfS model into the variational framework. To this end, we make use of the brightness
equation based on the PDE-based perspective SfS model of Prados and Faugeras
[195] for the data term and incorporate the second-order smoothness term which was
proposed in the context of orthographic SfS by Vogel et al. [257]. By rearranging the
brightness equation, we can obtain the following new model for variational perspective
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SfS [131]

E (v (x)) �
∫
Ω

{ED (x , v (x) ,∇v (x))}2︸                        ︷︷                        ︸
data term

+ α ES
�
D2 v (x)�︸         ︷︷         ︸

smoothness term

dx , (5.25)

where v denotes the unknown radial depth, ED stands for the data term defined by

ED (x , v (x) ,∇v (x)) � f2 I (x) W (x) −Q (x) e−2 v(x) (5.26)

with
W (x) �

√
f2 |∇v (x)|2 + (x · ∇v (x))2 + Q (x)2 (5.27)

and Q(x) being defined as in (3.24). In addition, ES represents the smoothness term
defined by

ES (·) � ∥·∥2
F , (5.28)

where ∥ · ∥F denotes the Frobenius norm. Then, based on that x �
�
x , y

�⊤
∈ Ω ⊂ R2

is a 2-D position vector in the rectangular image plane, one can obtain the following
expression for the smoothness term in (5.25)

ES
�
D2 v (x)� (5.28)

�
�
D2 v (x)�2

F
(2.11)
�



[
vxx vx y

vx y vy y

]

2

F

� (vxx)2 + 2
�
vx y

�2
+

�
vy y

�2
, (5.29)

where the integrability constraint vx y � vyx is considered. Since the data term ED
contains already the first order term ∇v, a second-order smoothness term is used
based on the discussion in Section 5.1.2. Besides, α ∈ R+ in (5.25) is a regularisation
parameter that determines the amount of smoothness for solutions as described in
Section 5.1.2. The variational model (5.25) has the following notable features:

(i) The model takes the full perspective camera projection along with correct
surface normals into consideration, since the data term is derived from the
PDE-based perspective SfS model [195].

(ii) One can estimate the unknown radial depth v directly by minimising the
energy functional with respect to v, because the parametrisation has been
selected accordingly in contrast to other (orthographic) approaches, for instance
[45, 89, 119, 125]. These aforementioned approaches adopt the two-step
strategies for reconstruction based on that the data terms in the models rely
on the brightness equation described by the reflectance map [122] and thereby
surface normals denoted by auxiliary variables had been selected as the
parametrisation. Hence, after finding the surface normals as the minimiser in
the associated variational model, the integration step of the computed normal
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fields, e.g. depth from gradient field [119] or similar methods such as [5, 80, 92],
is inevitable, as pointed out in Section 5.2.1.

(iii) The solution of the model satisfies the integrability constraint per construction
in that the smoothness term (5.29) has encoded the condition into the model
compactly by means of vx y � vyx and the minimiser is found in terms of v.
Therefore, no extra form of constraints are required in the model contrary to
the case of (5.24).

Model Extensions

Aside from the listed attributes, we consider extensions of the basis model (5.25) in
two possible ways within the variational framework.

Confidence Function. On the one hand, we extend the model in such a way that it
has the capability of decomposing the computational domain into two parts once the
locations of corrupted regions have been recognised a priori e.g. by a noise or texture
detector or by a background segmentation algorithm. To this end, we introduce a
binary confidence function c : x ∈ Ω ⊂ R2

→ {0, 1} into the basis model. Then, the
extended model takes the form

E (v) �
∫
Ω

c (x) {ED (x , v ,∇v)}2
+ α (1 − c (x)) ES

�
D2 v

�
dx , (5.30)

where the confidence function c(x) is given by

c (x) �



1 , x ∈ (Ω \ Γ) ,
0 , x ∈ Γ .

(5.31)

It can be noted that the confidence function makes the decision whether the data
term or the smoothness term is in operation. Therefore, as long as the information
is reliable, i.e. c(x) � 1 with x ∈ (Ω \ Γ), the reconstruction is carried out only by
the data term since the smoothness term is switched off in Γ. If this is not the case,
i.e. c(x) � 0 with x ∈ Γ, the smoothness term fills in information in the unreliable
domain Γ under the guidance of adjacent regions. This attribute is highly beneficial
especially when it comes to real-world data [61, 131].

Edge-preserving Smoothness Term. On the other hand, we extend the basis model
by incorporating an edge-preserving smoothness term, since a quadratic regulariser
such as (5.29) usually leads to oversmoothed solutions [54, 173, 174, 191, 283].

To overcome the problem, one needs a regulariser that enables to smooth the
region selectively depending on the structures [15, 252]: Strong diffusion may be
applied within planar regions, where relatively small variations occur. However, the
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diffusion effect must be as minimal as possible at the boundaries of these regions
that correspond to edge structures with high curvatures [157].

Since subquadratic regularisation turns out to be an appropriate choice for this
situation [15, 53, 54, 96, 97, 239, 252], by means of such smoothness terms the basis
model can be extended to the edge-preserving one [131]

E (v) �
∫
Ω

{ED (x , v ,∇v)}2
+ α ES

�
D2 v

�
dx , (5.32)

where the smoothness term ES is given by the Charbonnier regulariserΨ [54]

ES
�
D2 v

�
:� Ψ

(�
D2z

�2
F

)
(5.29)
� Ψ

(
v2

xx + 2 v2
x y + v2

y y

)
�: Ψ

�
s2�

� 2 λ2

√
1 +

s2

λ2 (5.33)

with s �
�
D2v

�
F and the contrast parameter λ.

One should note that the Frobenius norm of the Hessian of the radial depth
corresponds to a curvature measure. The subquadratic regulariser is designed such
that the associated diffusivity decreases and thereby preserves edge structures as
the curvature measure increases. The contrast parameter λ plays a role in a way that
a small amount of the parameter strongly influences on retaining edges but becomes
less effective as the value of λ increases. This type of edge-preserving regulariser
has been widely adopted not only in SfS [257] but also in various contexts, e.g. image
denoising [156, 215], optical lithography [81] as well as motion estimation [72].

5.3 Minimisation

In Section 5.2.2, we have constructed a mathematical model for perspective SfS in
the variational framework. Once a model is established, the formulated energy
functional must be minimised in order to reconstruct a surface as indicated in Section
5.1. In this section, we devote ourselves to the minimisation of the energy functionals
from the previous section.

5.3.1 The Base Case

First, we turn to the basis model (5.25). Since the unknown radial depth v(x)
corresponds to the minimiser of the given energy functional, the solution must
satisfy the associated Euler-Lagrange equation according to “calculus of variations.”

Since the basis model belongs to the class of 2-D second-order Lagrangian, the EL
equation can be computed with corresponding natural boundary conditions. This
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yields the following EL equation in Ω

0 �
�
E2

D + α ES
�

v −
∂
∂x

�
E2

D + α ES
�

vx
−
∂
∂y

�
E2

D + α ES
�

vy

+
∂2

∂x2
�
E2

D + α ES
�

vxx
+ 2 ∂2

∂x∂y
�
E2

D + α ES
�

vx y
+
∂2

∂y2
�
E2

D + α ES
�

vy y
.

(5.34)

with the boundary conditions on ∂Ω

0 � n⊤



�
E2

D + α ES
�

vx
−
∂
∂x

�
E2

D + α ES
�

vxx
−
∂
∂y

�
E2

D + α ES
�

vx y

�
E2

D + α ES
�

vy
−
∂
∂x

�
E2

D + α ES
�

vx y
−
∂
∂y

�
E2

D + α ES
�

vy y



, (5.35)

as well as

n⊤


�
E2

D + α ES
�

vxx�
E2

D + α ES
�

vx y


� 0 � n⊤



�
E2

D + α ES
�

vx y�
E2

D + α ES
�

vy y


, (5.36)

where n � (n1, n2)⊤ denotes the outer normal vector.

Euler-Lagrange Equation

When dealing with the EL equation (5.34), one can attain the following formulation
by rearranging the terms on the right hand side with respect to the contributions of
the data term and the smoothness term

0 �
�
E2

D

�
v −
∂
∂x

�
E2

D

�
vx
−
∂
∂y

�
E2

D

�
vy

+

� 0︷        ︸︸        ︷
∂2

∂x2
�
E2

D

�
vxx

+2

� 0︷           ︸︸           ︷
∂2

∂x∂y
�
E2

D

�
vx y

+

� 0︷        ︸︸        ︷
∂2

∂y2
�
E2

D

�
vy y

+ [α ES]v︸  ︷︷  ︸
� 0

−
∂
∂x

[α ES]vx︸        ︷︷        ︸
� 0

−
∂
∂y

[α ES]vy︸        ︷︷        ︸
� 0

+
∂2

∂x2 [α ES]vxx
+ 2 ∂2

∂x∂y
[α ES]vx y

+
∂2

∂y2 [α ES]vy y
(5.37)

by means of
∂2

∂x∂y
�
E2

D + α ES
�

vx y
�
∂2

∂y∂x
�
E2

D + α ES
�

vx y
. (5.38)
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Dropping the zero contribution terms gives the equivalent form of the EL equation

0 �
�
E2

D

�
v −
∂
∂x

�
E2

D

�
vx
−
∂
∂y

�
E2

D

�
vy

+
∂2

∂x2 [α ES]vxx
+ 2 ∂

2

∂x∂y
[α ES]vx y

+
∂2

∂y2 [α ES]vy y
. (5.39)

One can note that the terms ∂
∂x

�
E2

D

�
vx

and ∂
∂y

�
E2

D

�
vy

do not disappear, because the
data term depends on both v and ∇v. This is significantly different from other
models in computer vision, e.g. optical flow estimation [48, 72].

The computation results from the data terms in (5.39) correspond to
�
E2

D

�
v � 2 ED [ED]v

(5.26)
� 4 Q e−2 v ED , (5.40)

∂
∂x

�
E2

D

�
vx

� 2 f2
(
Ix ζ1

ED

W
+ I [ζ1]x

ED

W
+ I ζ1

[ ED

W

]

x

)
, (5.41)

∂
∂y

�
E2

D

�
vy

� 2 f2
(
Iy ζ2

ED

W
+ I [ζ2]y

ED

W
+ I ζ2

[ ED

W

]

y

)
, (5.42)

with
ζ1 :� f2 vx + (∇v · x) x and ζ2 :� f2 vy + (∇v · x) y . (5.43)

Besides, the contributions from the smoothness term yield the biharmonic operator

∆2v � ∇
4v � vxxxx + 2 vxx y y + vy y y y . (5.44)

Then, this leads to the compact form of the EL equation

�
E2

D

�
v −
∂
∂x

�
E2

D

�
vx
−
∂
∂y

�
E2

D

�
vy︸                                   ︷︷                                   ︸

data term (reaction)

+ α
�
2∆2 v

�

︸   ︷︷   ︸
smoothness term (diffusion)

� 0 , (5.45)

where the fourth-order diffusion process results from the second-order smoothness
term.

Boundary Conditions

As conducted for the EL equation, we handle the boundary conditions, i.e. (5.35)
and (5.36). Since the computation results of the second condition can be used for the
first one, we proceed in reverse order.
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To compute the second condition, we make use of
�
E2

D + α ES
�

vxx
� 2 α vxx ,

�
E2

D + α ES
�

vx y
� 2 α vx y ,

�
E2

D + α ES
�

vy y
� 2 α vy y .

(5.46)
Moreover, by means of the positive α we obtain

n⊤
[
vxx

vx y

]
� 0 , n⊤

[
vx y

vy y

]
� 0 (5.47)

with an outer normal vector n � (n1, n2)⊤.
To deal with the first condition (5.35), we develop the term row by row and use

the result of the second condition. This leads to

0 � n⊤



�
E2

D

�
vx
−
∂
∂x

[α ES]vxx
−
∂
∂y

[α ES]vx y

�
E2

D

�
vy
−
∂
∂x

[α ES]vx y
−
∂
∂y

[α ES]vy y



� n⊤


�
E2

D

�
vx
− 2 α

�
vxxx + vx y y

�
�
E2

D

�
vy
− 2 α

�
vx yx + vy y y

�


(5.48)

with an outer normal vector n � (n1, n2)⊤.

5.3.2 The Extension Cases

Based on the previous section, we derive EL equations along with boundary
conditions for the extended models.

Model with Confidence Function

Euler-Lagrange Equation. When it comes to the model with the confidence func-
tion (5.30), we integrate the confidence function c into the EL equation of the basis
model based on the assumption that the confidence on each pixel is already available
at the preprocessing step. This gives(�

c E2
D

�
v −
∂
∂x

�
c E2

D

�
vx
−
∂
∂y

�
c E2

D

�
vy

)
+ 2 α (1 − c) �

∆2 v
�
� 0 . (5.49)

As previously indicated, this EL equation suggests that the fourth-order diffusion
process by the biharmonic operator is active for reconstruction in the unreliable
regions, i.e. when c � 0. This effect allows to fill in the information from the
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neighbourhood and thereby further leads to dense reconstructions even if no data is
available at some locations.

Boundary Conditions. Aside from the EL equation, the boundary conditions can
be adapted accordingly. Since the confidence function acts as a scaling factor in
the integrated EL equation, the second condition (5.47) is not affected. The other
condition (5.48) is changed by the factor (1 − c), which reads

0 � n⊤


�
c E2

D

�
vx
− 2 α (1 − c) �

vxxx + vx y y
�

�
c E2

D

�
vy
− 2 α (1 − c) �

vx yx + vy y y
�

. (5.50)

Model with Edge-preserving Smoothness Term

Euler-Lagrange equation. To derive the associated EL equation with the edge-
preserving model extension (5.32), we need to compute the derivatives for the
smoothness term accordingly. Since the smoothness term involves the subquadratic
penaliser, applying the chain rule toΨ(s2) yields

�
Ψ

�
s2��

vxx
�
∂Ψ

�
s2�

∂s2
∂s2

∂vxx

(5.29)
� 2Ψ′

�
s2�

vxx , (5.51)

�
Ψ

�
s2��

vx y
�
∂Ψ

�
s2�

∂s2
∂s2

∂vx y

(5.29)
� 2Ψ′

�
s2�

vx y , (5.52)

�
Ψ

�
s2��

vy y
�
∂Ψ

�
s2�

∂s2
∂s2

∂vy y

(5.29)
� 2Ψ′

�
s2�

vy y , (5.53)

where s :� ∥D2v∥F is defined as in (5.29) and the derivative of the penaliser function
Ψ′(s2) denotes

Ψ′
�
s2�

�
∂

∂s2Ψ(s2) � 1√
1 +

s2

λ2

. (5.54)

Hence, by plugging the derivative result of the smoothness term into the EL equation
for the base case one can obtain the corresponding EL equation

�
E2

D

�
v −
∂
∂x

�
E2

D

�
vx
−
∂
∂y

�
E2

D

�
vy

+ 2 α
(
∂2

∂x2
�
Ψ′

�
s2�

vxx
�
+ 2 ∂2

∂x∂y
�
Ψ′

�
s2�

vx y
�
+
∂2

∂y2
�
Ψ′

�
s2�

vy y
�)

� 0 .
(5.55)

It can be noted that the Charbonnier diffusivity Ψ′(s2), i.e. the amount of
smoothing, decreases as the value of s2 increases. This suggests that the desired
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edge-preserving effect can be achieved, since the smoothing effect is reduced when
an edge structure is recognised by high curvature, i.e. locations with high values of
s2. Furthermore, the EL equation for the edge-preserving case (5.55) can be reduced
to the one for the base case (5.45), when the subquadratic penaliser becomes the
quadratic oneΨ(s2) � s2 withΨ′(s2) � 1.

Boundary Conditions. Concerning the boundary conditions, the second condition
remains the same because it is only influenced by the smoothness term and all
elements have the same positive common factorΨ′(s2). Moreover, the other condition
can also be adapted for the smoothness term. This leads to

0 � n⊤



�
E2

D

�
vx
− 2 α ∂

∂x
�
Ψ′

�
s2�

vxx
�
− 2 α ∂

∂y
�
Ψ′

�
s2�

vx y
�

�
E2

D

�
vy
− 2 α ∂

∂x
�
Ψ′

�
s2�

vx y
�
− 2 α ∂

∂y
�
Ψ′

�
s2�

vy y
�



(5.56)

with an outer normal vector n � (n1, n2)⊤.

5.3.3 Discretisation

For minimising an energy functional, there are mainly two categories of approaches:
One method is to discretise the associated EL equations to the original energy
functional. Since this approach requires to compute EL equations explicitly as a
necessary condition to the minimiser and thereby does not deal with the energy
functional directly, it is called first optimise then discretise approach or indirect method
[33, 111, 261]. The other one is to minimise the energy functional directly by finding
the optimal condition for the corresponding discrete energy instead of using EL
equations. Therefore, this type of optimisation method is called first discretise then
optimise approach or direct method [33, 111, 261]. Both methods are different from each
other in that they deal with EL equations explicitly or not but they rely on the same
principle for a minimiser whose first variations or gradient vector should vanish.

To deal with the variational models for perspective SfS, we follow a hybrid
approach: we apply the indirect method for the data term and the direct method for
the smoothness term. This strategy offers a considerable advantage in that we do
not need to deal with the boundary conditions explicitly, which are quite difficult
to discretise: Since the data term has a hyperbolic nature and the information
propagates from the critical points that are actually inside the computational domain,
the differentiation of the discrete energy of the smoothness term with respect to all
pixels allows to provide a proper discretisation including the correct handling of the
boundary conditions. The direct approach fulfils the natural boundary conditions
implicitly without requiring boundary conditions explicitly [77, 201, 202].
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Data Term. When discretising the first order derivative ∇v from the contributions
of the data term in the derived EL equations, we respect the hyperbolic nature of the
HJE and employ an upwind discretisation [219]. Moreover, when a second-order or
mixed derivative terms arise during the computation, we follow the discretisation
strategy as subsequently specified.

Smoothness Term. For discretising the contributions from the smoothness term,
we make use of a central difference scheme based on the nature of the regulariser.
Moreover, we only deal with the edge-preserving case, since this case covers the
basic case as well. Hence, we consider the smoothness term∫

Ω

Ψ
(
v2

xx + 2 v2
x y + v2

y y

)
dx . (5.57)

To discretise (5.57), we use the following approximations

(vxx)i , j ≈
1
h2

1

�
vi+1, j − 2 vi , j + vi−1, j

�
�: (v̂xx)i , j (5.58)

and �
vy y

�
i , j ≈

1
h2

2

�
vi , j+1 − 2 vi , j + vi , j−1

�
�:

�
v̂y y

�
i , j (5.59)

for the second-order derivatives vxx and vy y , respectively. Regarding the mixed
derivative term vx y , utilising the central difference approximation for both x- and
y-direction yields

vx y ≈
1

4 h1 h2

�
vi+1, j+1 − vi−1, j+1 − vi+1, j−1 + vi−1, j−1

�
�:

�
v̂x y

�
i , j . (5.60)

Then, we can state the discrete version of the continuous smoothness term as

(
ÊS

)
i , j

�

b y+n y−1∑
j�b y

bx+nx−1∑
i�bx

Ψ
((v∗∗)2i , j) , (5.61)

where (v∗∗)2i , j stands for

(v∗∗)2i , j :� (v̂xx)2i , j + 2
�
v̂x y

�2
i , j +

�
v̂y y

�2
i , j . (5.62)

Furthermore, as illustrated in Figure 5.2, bx stands for the number of left and right
boundary pixels in x-direction, b y denotes the number of upper and lower boundary
pixels in y-direction, and nx and n y the number of pixels of the input image in x-
and y-direction, respectively.
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Differentiation of the Discrete Energy for Smoothness Term

For obtaining a minimiser of the discrete energy, its differentiation at each point
must vanish. This means

∂
(
ÊS

)
k ,l

∂vk ,l

!
� 0 , ∀ k , l ∈ Ω , (5.63)

where k ∈ [bx , bx + nx − 1] and l ∈ [b y , b y + n y − 1].
One should note that this expression usually takes a different form depending

on the grid position due to the implicit boundary conditions. Hence, we make use
of the characteristic function as well as running indices (k , l)⊤ ∈ N2 to formulate
this optimality condition in a compact way. In particular, this approach allows to
describe not only the influence of neighbouring grid positions but also the suitable
range when the running indices (k , l)⊤ correspond to each subscript of the argument
in the discrete energy. Since the discrete energy of the smoothness term contains
ten arguments, there are ten cases to consider. To this end, we define the following
expression

Ψ′k ,l :� Ψ′
((v∗∗)2k ,l) . (5.64)

Case 1: (k , l)⊤ � (i + 1, j)⊤. In this case, the three terms from the approximation of
the second-order derivative in x-direction are involved. This yields the form

2 χ[bx+2,bx+nx−1][b y ,b y+n y−1] Ψ′k−1,l
vk ,l − 2 vk−1,l + vk−2,l

h4
1

�: C1 , (5.65)

where χ denotes the characteristic function. Moreover, the ranges of k and l can be
obtained by{ (bx ⩽ k − 2) ∧ (k ⩽ bx + nx − 1) ,

b y ⩽ l ⩽ b y + n y − 1
⇔

{
bx + 2 ⩽ k ⩽ bx + nx − 1 ,
b y ⩽ l ⩽ b y + n y − 1 ,

(5.66)

since the leftmost node (k − 2, l)⊤ and the rightmost one (k , l)⊤ must be inside the
computational domain Ω, see Figure 5.2.

Case 2: (k , l)⊤ � (i , j)⊤. In the same way as the first case, we obtain

− 4 χ[bx+1,bx+nx−2][b y ,b y+n y−1] Ψ′k ,l
vk+1,l − 2 vk ,l + vk−1,l

h4
1

�: C2 . (5.67)
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Figure 5.2. The grid structure of the domain Ω and the boundaries ∂Ω.

The proper scope of k and l is given by{ (bx ⩽ k − 1) ∧ (k + 1 ⩽ bx + nx − 1) ,
b y ⩽ l ⩽ b y + n y − 1

⇔

{
bx + 1 ⩽ k ⩽ bx + nx − 2 ,
b y ⩽ l ⩽ b y + n y − 1 ,

(5.68)

based on the fact that the leftmost node and the rightmost one correspond to (k−1, l)⊤
and (k + 1, l)⊤, respectively.

Case 3: (k , l)⊤ � (i − 1, j)⊤. This case is not any different from the first two ones
except the relative positions of the arguments. Therefore, we obtain

2 χ[bx ,bx+nx−3][b y ,b y+n y−1] Ψ′k+1,l
vk+2,l − 2 vk+1,l + vk ,l

h4
1

�: C3 . (5.69)
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Apart from no constraints for l as in the first two cases, the leftmost node (k , l)⊤
and the rightmost one (k + 2, l)⊤ must stay inside the domain Ω. This yields the
condition for k and l{ (bx ⩽ k) ∧ (k + 2 ⩽ bx + nx − 1) ,

b y ⩽ l ⩽ b y + n y − 1
⇔

{
bx ⩽ k ⩽ bx + nx − 3 ,
b y ⩽ l ⩽ b y + n y − 1 .

(5.70)

Case 4: (k , l)⊤ � (i+1, j+1)⊤. This case incorporates the four terms approximating
the first-order derivative. This leads to

χ[bx+2,bx+nx−1][b y+2,b y+n y−1] Ψ′k−1,l−1
vk ,l − vk−2,l − vk ,l−2 + vk−2,l−2

4 h2
1 h2

2
�: C4 . (5.71)

In this case, the range of variables for k and l are bounded by the lowest leftmost
node (k − 2, l − 2)⊤ and the right uppermost one (k , l)⊤:{ (bx − 2 ⩽ k) ∧ (k ⩽ bx + nx − 1) ,�

b y − 2 ⩽ l
�
∧

�
l ⩽ b y + n y − 1

� ⇔

{
bx + 2 ⩽ k ⩽ bx + nx − 1 ,
b y + 2 ⩽ l ⩽ b y + n y − 1 .

(5.72)

Case 5: (k , l)⊤ � (i − 1, j + 1)⊤. As in the previous case, we can attain the following
form for this case

− χ[bx ,bx+nx−3][b y+2,b y+n y−1] Ψ′k+1,l−1
vk+2,l − vk ,l − vk+2,l−2 + vk ,l−2

4 h2
1 h2

2
�: C5 . (5.73)

It can be observed that the left and right bounds are determined by k and k + 2.
When it comes to the y-direction, l − 2 and l decide the lower and upper bounds. In
view of bounds on both directions, the suitable ranges for k and l are given by{ (bx ⩽ k) ∧ (k + 2 ⩽ bx + nx − 1) ,�

b y − 2 ⩽ l
�
∧

�
l ⩽ b y + n y − 1

� ⇔

{
bx ⩽ k ⩽ bx + nx − 3 ,
b y + 2 ⩽ l ⩽ b y + n y − 1 .

(5.74)

Case 6: (k , l)⊤ � (i + 1, j − 1)⊤. In the same way as the previous one, we can derive
the following form for this case

− χ[bx+2,bx+nx−1][b y ,b y+n y−3] Ψ′k−1,l+1
vk ,l+2 − vk−2,l+2 − vk ,l + vk−2,l

4 h2
1 h2

2
�: C6 . (5.75)

The appropriate ranges of k and l are determined by{ (bx ⩽ k − 2) ∧ (k ⩽ bx + nx − 1) ,�
b y ⩽ l

�
∧

�
l + 2 ⩽ b y + n y − 1

� ⇔

{
bx + 2 ⩽ k ⩽ bx + nx − 1 ,
b y ⩽ l ⩽ b y + n y − 3 .

(5.76)
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Case 7: (k , l)⊤ � (i − 1, j − 1)⊤. When compared with the “Case 6,” this case is only
different in k for which we have already obtained in “Case 5.” This gives

χ[bx ,bx+nx−3][b y ,b y+n y−3] Ψ′k+1,l+1
vk+2,l+2 − vk ,l+2 − vk+2,l + vk ,l

4 h2
1 h2

2
�: C7 . (5.77)

The constraints on the ranges of k and l are imposed by{ (bx ⩽ k) ∧ (k + 2 ⩽ bx + nx − 1) ,�
b y ⩽ l

�
∧

�
l + 2 ⩽ b y + n y − 1

� ⇔

{
bx ⩽ k ⩽ bx + nx − 3 ,
b y ⩽ l ⩽ b y + n y − 3 .

(5.78)

Case 8: (k , l)⊤ � (i , j + 1)⊤. This case concerns the approximation of the second-
order derivative in y-direction which has the same structure as the “Case 1” except
the direction. This gives

2 χ[bx ,bx+nx−1][b y+2,b y+n y−1] Ψ′k ,l−1
vk ,l − 2 vk ,l−1 + vk ,l−2

h4
2

�: C8 . (5.79)

Moreover, we can obtain the ranges of k and l by exploiting the symmetric structures.

Case 9: (k , l)⊤ � (i , j)⊤. The structure of this case is the same as the second one
and only the role of indices is changed. As a result, we have

− 4 χ[bx ,bx+nx−1][b y+1,b y+n y−2] Ψ′k ,l
vk ,l+1 − 2 vk ,l + vk ,l−1

h4
2

�: C9 . (5.80)

As indicated in the previous case, the ranges of k and l can be attained by exchanging
the intervals of k and l in “Case 2.”

Case 10: (k , l)⊤ � (i , j − 1)⊤. When it comes to the last case, the third case is the
counterpart of this one. Therefore, we have

2 χ[bx ,bx+nx−1][b y ,b y+n y−3]Ψ′k ,l+1
vk ,l+2 − 2 vk ,l+1 + vk ,l

h4
2

�: C10 . (5.81)

The ranges of k and l can be attained by switching the roles of both indices in the
third case based on the symmetric structures.

As a consequence, by putting all the cases together we can reformulate the
optimality condition as

0 �

∂
(
ÊS

)
k ,l

∂vk ,l
�

10∑
p�1

Cp , ∀ (k , l)⊤ ∈ Ω . (5.82)
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Moreover, we also obtain the stencil notation given in Table 5.1 by rearranging the
whole terms from all cases and grouping coefficients with respect to the relative
positions.

Table 5.1. The 5 × 5 stencil diagram with the Charbonnier diffusivity (5.54). The
circled numbers refer to the case where the terms come from and thereby they share
the same colour.
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5.3.4 Numerical Solution
Once discretisations from both the data and the smoothness term are obtained,
the solution of the EL equations can be reformulated as the steady state of the
corresponding evolution equation in artificial time. To this end, we apply the Euler
forward time discretisation method

vt ≈
vn+1

− vn

τ
, (5.83)
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where τ denotes the time step size. Then, we obtain the following explicit scheme

vn+1
− vn

τ
� −

�
ELn

D + α ELn
S

�
⇔ vn+1

� vn
− τ

�
ELn

D + α ELn
S

�
, (5.84)

where ELn
D and ELn

S denotes the corresponding discretisations by means of the
indirect method for the data term and the direct method for the smoothness term,
respectively. These discretisations can be applied to the derived Euler-Lagrange
equations which are evaluated at time step n.

Concerning the stability of the explicit scheme, the highly intricate nonlinear
contributions from the data term cause difficulties in procuring a stability constraint
for the whole terms, although the eigenvalues of the biharmonic operator are
available and thereby can provide the information on the time step size τ to secure
the numerical stability for the smoothness term. On this account, for numerical
experiments the time step size τ has been selected in such a way that the total energy
is decreasing and the reconstruction look visually appealing.

5.4 Experimental Results

In this section, we present our experimental results by investigating various aspects
on the variational perspective SfS model in Section 5.2.2.

5.4.1 Influence of Regularisations

The first experiment concerns the influence of the homogeneous and edge-preserving
smoothness terms on the reconstruction. In order to demonstrate the impact of
the smoothness term, we first perform the reconstruction without the smoothness
term, which is equivalent to α � 0 according to (5.25). To this end, we have used
the classical vase input image shown in Figure 5.3(a) that has been rendered with a
perspective camera model. For the explicit scheme (5.84), we apply the time step size
τ � 10−1 with 2000 iterations by employing the initialisation method as explained in
(3.72).

The corresponding reconstruction is given in Figure 5.3(b), where the legend
indicates colour-coded Cartesian depth values. It clearly shows that the object surface
is separated from the background owing to the substantial difference of the grey
value between them. This suggests that, despite the methodological difference from
PDE-based approaches, variational methods are capable of giving similar results, if
the smoothness term is turned off.
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(a) Input image (128 × 128). (b) Reconstruction with α � 0.

Figure 5.3. Reconstruction without the smoothness term.

Homogeneous versus Edge-preserving Regularisation

Let us now compare the results between the homogeneous and the edge-preserving
regularisation. To this end, we turn on the smoothness term (5.29) and increase the
regularisation parameter α in (5.25) from 10−4 to 10−1. The corresponding results
are exhibited in Figure 5.4(a) – 5.4(d). It can be observed that the reconstruction of
the object becomes stronger connected to the background plane as the smoothness
parameter α increases. As previously mentioned in Section 5.2.2, this is because
the employed regulariser (5.29) is everywhere homogeneous and non-adaptive and
thereby causes the oversmoothing effect at the border between an object and the
background.

To cope with the situation, we can apply the edge-preserving smoothness term
(5.32). By comparing the results with the results of homogeneous regulariser in
Figure 5.4(d), one can notice that the reconstruction with the Charbonnier regulariser
in Figure 5.5(b) can retain the discontinuity at the object boundary – for the same
value of the regularisation parameter α � 0.1. This effect has been achieved by
reducing the diffusivity at high curvature regions based on the discussions in Section
5.2.2. For the experiment, the runtime amounts to be approximately 20 seconds.

5.4.2 Influence of Confidence Function
The next experiment demonstrates the impact of the confidence function that is
employed in the model (5.30). To this end, we have taken Figure 5.6(a) as an input
image containing the corrupt region that is marked black inside the object. Since this
degraded region corresponds to Γ in (5.31), we can make use of the binary confidence
function (5.31) shown in Figure 5.6(b) for reconstruction. Moreover, by comparing
the black region in Figure 5.6(a) with that of the confidence function in Figure 5.6(b)
it can be noted that the black area in the confidence function has been extended by
means of a morphological erosion filter such that no spoiled data is included and



5.4 Experimental Results 147

(a) Homogeneous smoothness with α � 10−4. (b) Homogeneous smoothness with α � 10−3.

(c) Homogeneous smoothness with α � 10−2. (d) Homogeneous smoothness with α � 10−1.

Figure 5.4. Influence of the homogeneous regulariser for reconstruction.

(a) No edge preservation (α � 0.1). (b) Edge preservation (α � 0.1, λ � 10−5).

Figure 5.5. Influence of the edge-preserving regulariser.

potential difficulties with derivatives at the boundaries between Ω \ Γ and Γ are be
avoided.

Figure 5.6(c) and 5.6(d) demonstrate the reconstruction without and with the
smoothness term, respectively. As can be noticed in Figure 5.6(c), the reconstruction
without the smoothness term cannot achieve an appropriate result in the region
Γ. In contrast to that, as shown in Figure 5.6(d), one obtains a reasonable and
smoothly inpainted object surface in the region Γ, when utilising the smoothness
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term equipped with the confidence function (5.31). As pointed out in Section 5.2.2,
this accounts for the filling-in effect of the smoothness term in the region Γ by
propagating information from neighbouring pixels. For the region Ω \ Γ, however,
the data term still plays the dominant role in the reconstruction.

(a) Input image (690 × 590). (b) Confidence function.

(c) Reconstruction with α � 0. (d) Reconstruction with α � 0.2.

Figure 5.6. Impact of confidence function: Inpainting a reconstruction. Employed
parameters are: Time step size τ � 10−1, 2500 iterations. The runtime is 890 seconds.

Moreover, we further investigate the inpainting capability of the model with
respect to more challenging images containing difficult structures such as kinks
and ridges as shown in Figure 5.7(a). The inpainted reconstructions through the
homogeneous regulariser with the confidence function depending on the regions
are displayed in Figure 5.7(d), 5.7(f) and 5.7(h), respectively. Given the fact that
particularly important and meaningful features have been removed from the input
data, the interpolated surface still demonstrates compelling results when compared
with the one without the confidence function, cf. Figure 5.7(c), 5.7(e), and 5.7(g).

5.4.3 Robustness with Respect to Noise

In this section, we look into the robustness of our variational approaches with
respect to noise. To this end, we make the unspoiled original image in Figure 5.8(a)
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deteriorated by adding 5 % salt and pepper noise and Gaussian noise with standard
deviation σ � 20 as shown in Figure 5.8(b) and 5.9(b), respectively.

The reconstruction results without and with the confidence function in the pres-
ence of salt and pepper noise are exhibited in Figure 5.8(d) and 5.8(e), respectively.
While the computed solution without confidence function in Figure 5.8(d) clearly
demonstrates that the surface seems to be bumpy with many holes and fluctuations
according to the noise pattern, the one with confidence function produces a signifi-
cantly better outcome by harnessing the smoothness term. This is realised in a way
that the confidence function excludes the noisy pixels that have been previously
identified by their brightness and the smoothness term fills in missing information.

Regarding Gaussian noise, the estimated surfaces are placed side by side as
displayed in Figure 5.9, i.e. the one in the absence of the smoothness term and the
one with the regulariser. It can be clearly observed that the estimations with the
smoothness term, show a denoising effect and provides robust results w.r.t. the
reconstruction, see Figure 5.9(d), 5.9(f), and 5.9(h). However, as shown in Figure
5.9(c), 5.9(e), 5.9(g), the reconstruction without the regulariser suffers from irregular
oscillations since the noisy pixels cannot be properly handled. This suggests that
variational approaches offer a clear advantage over PDE-based ones, especially when
it comes to the noise. The reason for this is the smoothness term that is not available
in PDE-based methods.

5.5 Summary
In this chapter, we have developed a first variational approach for perspective shape
from shading by combining the Hamilton-Jacobi equation of the recent PDE-based
approach described in Chapter 3 as the data term with a homogeneous second-order
smoothness term. Furthermore, we have extended the basis model by introducing a
spatially varing confidence function and an edge-preserving smoothness term in
order to eliminate unreliable information and to retain edge structures, respectively.
Afterwards, we have presented experimental results, which show the advantages
of the smoothness term for perspective SfS: Not only does it deliver a substantially
better performance in various noisy situations, but it also opens up the possibility to
inpaint the information for missing or corrupted data.
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(a) Input image (690 × 590). (b) Confidence function.

(c) Without confidence function for (∗). (d) With confidence function for (∗).

(e) α � 0.3. (f) Reconstruction at region (∗∗).

(g) α � 0.3. (h) Reconstruction at region (∗ ∗ ∗).

Figure 5.7. Interpolation with the confidence function and the smoothness term.
Employed parameters are: Time step size τ � 10−1, 25000 iterations, α � 0.3. The
runtime is 9200 seconds.
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(a) Original image (690 × 590). (b) 5 % salt and pepper noise. (c) Confidence function.

(d) α � 0.3 without confidence function. (e) α � 0.3 with confidence function.

Figure 5.8. Reconstruction under salt and pepper noise. Employed parameters are:
Time step size τ � 10−1, 5000 iterations. Runtime: 1720 seconds.



152 Variational Perspective Shape from Shading

(a) Original image (690 × 590). (b) Gaussian noise with σ � 20.

(c) α � 0. (d) α � 0.3.

(e) Close-up view of (*) with α � 0. (f) Close-up view of (*) with α � 0.3.

(g) Close-up view of (**) with α � 0. (h) Close-up view of (**) with α � 0.3.

Figure 5.9. Reconstruction under Gaussian noise. Employed parameters are: Time
step size τ � 10−1, 5000 iterations. The runtime is 1830 seconds.



Chapter 6

Variational Perspective SfS with Cartesian Depth Pa-
rametrisation

In the previous chapter, we have constructed a first variational model for perspective
shape from shading whose parametrisation is based on the radial depth by making
use of the PDE-based model from Section 3.2. Although this approach offers the
robustness of a variational method with respect to noise and missing information,
the model introduced in Chapter 5 has two main shortcomings: On the one hand, the
data term of the model is not formulated in a way that the reprojection error can be
evaluated from a photometric viewpoint. On the other hand, the employed surface
parametrisation makes the interpretation of the employed regularisation difficult
from a geometric viewpoint. Aside from the modelling side, the optimisation process
still depends on the information on the critical points for initialisation.

In this chapter, we establish a variational model for perspective shape from
shading as well as design a corresponding optimisation strategy in consideration of
the aforementioned issues: (i) First, we build a direct variational model by deriving a
brightness equation for the data term in terms of the Cartesian depth and by utilising a
subquadratic edge-preserving regulariser for the smoothness term. The change of the
surface parametrisation from the radial depth to the Cartesian one gains considerable
advantages in that it allows to regularise the Cartesian depth in the smoothness term
directly. At the same time, since deviations for the brightness equation are penalised
directly, the interpretation of the model becomes more intuitive and meaningful
from a photometric and geometrical standpoint when compared with the case of
the radial depth parametrisation. Moreover, the Cartesian depth parametrisation
can also be beneficial for combining with other reconstruction methods, e.g. multi-
view stereopsis [271, 273], because such models usually formulate the depth in
axis-aligned coordinates. (ii) Apart from the model, we also develop a hierarchical
graduated minimisation method by embedding an alternating explicit scheme into a
coarse-to-fine framework to find a suitable minimiser of the originally non-convex
energy. The proposed algorithm demonstrates not only the robustness with respect
to various initialisation strategies but it also dramatically accelerates the convergence
speed without considerably sacrificing the reconstruction quality when compared
with the traditional explicit scheme.
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This chapter is based on work that has been published as a book chapter [132].
Its outline is as follows: Based on the derivation of a PDE-based SfS model by means
of the Cartesian depth parametrisation in Section 6.1, we formulate a corresponding
variational model by embedding the PDE-based model into the data term and
complementing an edge-preserving regulariser for the smoothness term in Section
6.2. Afterwards, we provide details on the coarse-to-fine minimisation framework
including the approximation strategy as well as the alternating explicit scheme in
Section 6.3. Finally, an extensive evaluation of our approach in various scenarios is
carried out in Section 6.4.

6.1 PDE-based Model with Cartesian Depth Parametri-
sation

In this section, we derive a novel PDE-based SfS model for perspective SfS which is
parametrised with respect to the Cartesian depth. To this end, we make standard
assumptions on the SfS model as in [195]: A point light source is placed at the
optical centre of a camera under perspective projection and the surface reflectance
is Lambertian with uniform albedo. In the following section, this model is then
embedded into a variational framework.

6.1.1 Cartesian Depth Parametrisation of the Surface

To derive the desired Cartesian depth parametrisation of the surface, we establish a
relationship between the Cartesian depth and the radial one that we have used in
Section 3.2.1. Since the negative Cartesian depth z is equivalent to the third element
of the radial depth parametrisation in (3.25). It can be described by

z (x) (3.25)
�

f√
|x |2 + f2

u(x) f (3.24)
� Q(x) u(x) f , (6.1)

where the spatially varying factor Q is defined as in (3.24).
Hence, the radial depth factor u can be described in terms of z. This in turn

allows us to turn the radial depth parametrisation of the surface S in (3.25) into the
Cartesian one as follows

S (x , z(x)) (3.25)
� Q(x) u (x)



x
y
−f



(6.1)
� Q(x)

(
z(x)
fQ(x)

) 

x
y
−f


�



z(x) x
f

z(x) y
f

−z (x)



. (6.2)
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In the surface parametrisation (6.2), the unknown is now directly expressed as z(x),
which measures the actual Euclidean distance along Z-axis between the surface
point S and its projected counterpart S′ onto the X − Y plane, see Figure 6.1.

X Y

Z
optical centre

&

point light source

x y

ji

image plane

S (x, z (x))

z(x)

S ′

f

surface

Figure 6.1. Perspective view of the Cartesian depth parametrisation.
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This is contrary to the standard SfS case [195], where the unknown is expressed
in terms of the radial depth r given in (3.31) or multiples thereof as we have seen in
Section 3.2.1. The connection between the Cartesian depth z and the radial one r in
(3.31) is depicted in Figure 6.2.

f > 0

point light sourceoptical centre

image plane




x
y
−f


Q(x)




x
y
−f




Z-axis

(X, Y)-axes

surface S

S (x, u(x)) = Q(x) u(x)




x
y
−f




Cartesian depth z(x) > 0

u

Figure 6.2. Relation between the radial depth factor u(x) (quotient between green
and blue distance) that denotes the depth in multiples of the focal length f and the
Cartesian depth z(x) (red distance).

6.1.2 Brightness Equation with Cartesian Depth Parametrisation
Once we have derived the parametrisation of the surface, we can reformulate each
component of the brightness equation with the light attenuation term (3.22) in terms
of the Cartesian depth.

Surface Normal

To derive the brightness equation in terms of the Cartesian depth, we first compute
the surface normal vector with the parametrisation (6.2). As shown in Section 3.2.2,
this can be achieved by taking the cross product between the two partial derivatives
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of the parametric surface (6.2) in x- and y-direction based on the vector calculus.
Since the corresponding derivatives are given by

Sx(x , z ,∇z) �



zx x + z
f

zx y
f

−zx



, Sy(x , z ,∇z) �



zy x
f

zy y + z
f

−zy



, (6.3)

the surface normal can be obtained as

n (x , z ,∇z) � Sx(x , z ,∇z) × Sy(x , z ,∇z) �



zx z
f

zy z
f

z [(∇z · x) + z]
f2



. (6.4)

It can be noted that the surface normal in (6.4) has been attained in terms of the
2-D image coordinate x and y, see Figure 6.1. Alternatively, one can also compute the
normal vector by relating the surface (6.2) with the 3-D coordinates (X,Y, Z(X,Y))
as shown in Figure 6.1. This leads to the form

S (X(x , z),Y(x , z), Z(X(x , z),Y(x , z))) �



X(x , z)
Y(x , z)

Z(X(x , z),Y(x , z))



:�



z x
f

z y
f

−z



. (6.5)

Then, by means of the chain rule

∂X
∂Y

�
∂X
∂x
∂x
∂Y
,

∂Y
∂X

�
∂Y
∂y
∂y
∂X

(6.6)

the tangent vectors to the surface can be attained as

SX(x , z ,∇z) �



1
zx y

z + zx x

−
zx f

z + zx x



, SY(x , z ,∇z) �



zy x
z + zy y

1

−
zy f

z + zy y



. (6.7)
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Taking the cross product between these two tangent vectors yields the normal vector
n̂ with the following relation

n̂(x , z ,∇z) � SX(x , z ,∇z) × SY(x , z ,∇z) � f2

(z + zx x)(z + zy y) n(x , z ,∇z) . (6.8)

Since X- and Y-direction are parallel to x- and y-direction on the image plane,
respectively, the result given in (6.8) corresponds to what we have anticipated: the
direction of the new derived normal n̂ is not different from that of n and the only
difference has been made up to scale, see Figure 6.1. Moreover, this actually makes
their normalised vectors n

|n| and n̂
|n̂| equivalent. However, one should note that the

cross derivatives in (6.6) still do not vanish for the perspective projection, as discussed
for the case of 2-D image coordinate x and y in Section 5.2.1. Therefore, the strategy
adopted by [270, 278] is not on the right track for proper derivation, which is merely
substituting the entries of the surface normal from the orthographic model such as
[120] for the perspective case instead of recomputing the surface normal.

Light Direction

Concerning the normalised light direction L in (3.22), the formulation in (3.29) can
still be applied because the light position still remains at the origin, which is also the
optical centre at the same time, and the surface parametrisation does not influence
its direction.

PDE-based Model with Cartesian Depth Parametrisation

At this point, we have all components at hand for deriving the new PDE-based model.
By inserting the surface normal (6.4) and the light direction (3.29) in the brightness
equation (3.22) with uniform albedo ρ � 1, we can acquire the perspective SfS model
in terms of the Cartesian depth parametrisation [132]

I −
Q3

z
√
f2 |∇z |2 + [(∇z · x) + z]2

� 0 . (6.9)

Since the model (6.9) can still be classified as a general-type HJE, the PDE (6.9)
shares the essential properties with the model (3.36). In other words, the listed
five properties of (3.36) in Section 3.2.2 are also be valid for (6.9) with the Cartesian
depth z instead of the radial one. Please note that the proposed model resembles the
PDE-based approach in [279] that also makes use of the Cartesian depth. However,
in contrast to the approach in [279], the proposed approach incorporates the light
attenuation term based on the inverse square law.
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6.2 Variational Model with Cartesian Depth Parametri-
sation

So far we have acquired a PDE-based model for perspective SfS with Cartesian
depth parametrisation. Let us now construct a variational model by embedding the
PDE-based model into a variational approach.

6.2.1 Variational Model
To establish a corresponding variational model, we make use of the PDE (6.9) for
the quadratic data term and the same subquadratic regulariser as in (5.33) for the
smoothness term. Then, the energy functional to be minimised for computing the
Cartesian depth z has the form of

E (z) �
∫
Ωx

c(x) {ED (x , z ,∇z)}2︸              ︷︷              ︸
data term

+ α ES(D2 z)︸    ︷︷    ︸
smoothness term

dx , (6.10)

where ED and ES denote the data term and the smoothness term, respectively.
The role of the quadratic data term ED in (6.10) is to make sure that the computed

Cartesian depth z satisfies the photometric constraints, i.e. the brightness equation,
in the squared sense. Hence, it is given by

ED (x , z ,∇z) � I (x) − Q(x)3
z W (x , z ,∇z) (6.11)

with
W (x , z ,∇z) �

√
f2 |∇z |2 + [(∇z · x) + z]2 . (6.12)

Moreover, the smoothness term ES has the form

ES
�
D2 z

�
� Ψ

(�
D2 z

�2
F

)
(5.29)
� Ψ

(
z2

xx + 2 z2
x y + z2

y y

)
�: Ψ

�
s2�
. (6.13)

Aside from the change of parametrisation from the radial depth to the Cartesian one,
the basic principles for the smoothness term and the confidence function remain
unchanged as in the previous chapter.

6.2.2 Model Properties
In this section, we discuss the distinctive features of the variational model (6.10)
which is directly parametrised in terms of the Cartesian depth. The first feature (i)
comes from the fact that we use the brightness equation directly. Moreover, the listed
features in (ii)–(iv) are attributed to the parametrisation using the Cartesian depth
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instead of the radial one and the properties from (v) to (viii) are basically inherited
from the use of the variational framework in [131] that we have seen in Section 5.2.2.

(i) The variational model (6.10) takes already the perspective camera projection
into account as in the case of (5.25), because the data term in (6.10) is based
on the HJE (6.9). However, unlike (5.26) the data term (6.11) is expressed
with respect to the photometric reprojection error measured by deviations
between the grey values of the input image and the computed intensity with
the estimated Cartesian depth based on the reflection and the camera model.
Therefore, the penalisation addresses directly brightness inconsistencies, which
makes the deviations interpretable from a photometric viewpoint.

(ii) The change of parametrisation from the radial depth to the Cartesian one
has influence not only on the data term but also on the regularisation of the
smoothness term. In particular, an object of constant depth describes a plane
instead of a sphere as in the model based on the radial depth. Hence, the
model allows a geometrically more meaningful interpretation of the smoothness
induced by the regulariser.

(iii) The Cartesian parametrisation can have real benefits when it comes to a
combination with different cue modules, e.g. stereo [216], or scene flow [24, 25].
Based on the fact that the same parametrisation has usually been applied
to such approaches, the variational model (6.10) can share the Cartesian
depth as a common unknown with such models and thereby easily form a
joint framework to exploit the full strength of SfS, e.g. shading based depth
refinement [271, 272, 273].

(iv) Apart from the benefits of integrating other depth cues, the new parametri-
sation can also offer a considerable advantage when multi-view scenarios are
considered, e.g. [25, 271, 273]. Evidently, the model (6.10) can easily be ex-
tended to such situations because view conversions among different cameras
are simpler to deal with than the case with the radial depth which is derived
from the projected parametrisation on the half-sphere [162, 195].

(v) The confidence function in the data term of (6.10) gives the feasibility to set
aside unreliable regions where the smoothness term steps in and takes the
essential role in the reconstruction process by propagating information from
the vicinity, which is particularly useful when it comes to texture, noise, or
missing data. This is an exclusive feature that only variational methods can
provide, since PDE-based approaches are solely based on the given data, e.g.
[7, 8, 49, 195, 237], and hence do not offer any means to handle such situations
effectively.
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One can note from (6.10) that contrary to our previous model in (5.30) a fixed
quantity of regularisation is assured during the reconstruction even if a pixel
does not belong to the corrupt area. This is based on the observation that in
the presence of noise the regularisation has an overall positive influence on the
quality of the reconstruction as we show in Section 6.4.

(vi) As indicated previously, the employed subquadratic regulariser does have
the capability of preserving edges in spite of the smoothing effect caused by
regularisers, whereas most existing approaches for variational SfS do not offer
this feature, e.g. [1, 89, 119, 125, 257, 270, 278].

(vii) Since the depth z has been selected as the parametrisation for the energy
functional (6.10), finding a minimiser of the energy makes the direct estimation
possible. Please note that most variational methods except [257] follow two-step
strategies as in [45, 89, 125]: (i) As a first step, the surface normals should be
obtained since the variational models have chosen them as unknowns, which
typically introduce auxiliary variables. (ii) Once the normals are computed, as
a second step they should be integrated to determine the depth map by means
of, for instance, [5, 80, 92].

(viii) The aforementioned two-step reconstruction procedure via surface normal
integration requires an integrability constraint, because the normals may not be
integrable. Since the energy (6.10) is minimised with respect to z by exploiting
zx y � zyx as in the smoothness term (5.33), the acquired solution by our model
satisfies the constraint per construction. If the integrability condition is not
integrated as in our model, other necessary means must be devised to enforce
integrability of solutions, either through an extra integrability term [1] or
through a dedicated energy functional [89].

The listed notable features and the differences between the model (6.10) and other
perspective variational approaches are compared in Table 6.1. It also shows how
models have advanced recently. It can be noted that our variational model (6.10)
overcomes existing limitations in the literature from a modelling viewpoint.

6.3 Minimisation
In this section, we proceed with the minimisation strategy for the energy functional
(6.10). To this end, we derive the associated Euler-Lagrange equation as well as
the corresponding boundary conditions. Subsequently, we approximate the spatial
derivatives for the data term using the upwind type method and formulate the
associated EL equation based on the approximate energy. Finally, we discuss its
discretisation.
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Table 6.1. Comparison of variational models for perspective Shape from Shading.

Zhang et al. [278] Wu et al. [270] Abdelrahim et al. [1] this work [131] this work [132]

assumptions

camera projection perspective perspective perspective perspective perspective

surface type Lambertian Lambertian Lambertian Lambertian Lambertian

light source position distant close to
optical centre distant optical centre optical centre

features

selection of unknowns Cartesian
depth

Cartesian
depth

Cartesian
depth

radial
depth

Cartesian
depth

parametrisation Cartesian
depth

Cartesian
depth

Cartesian
depth

radial
depth

Cartesian
depth

reprojection error
as data term ✓ ✓ ✓ – ✓

regularisation Cartesian
depth

Cartesian
depth

Cartesian
surface normal

radial
depth

Cartesian
depth

light attenuation factor – ✓ ✓ 3 ✓ ✓

correct surface normal – – ✓ 4 ✓ ✓

no auxiliary variables – – ✓ ✓ ✓

no integrability term – – 2 – ✓ ✓

direct estimation 1 – – ✓ ✓ ✓

edge preservation – – – ✓ ✓

1 depth is computed without using extra variables for surface normals
2 integrability constraint realised through repeated integration of surface normals
3 factor not explicitly formulated in terms of the Cartesian depth
4 based on the derivation in [2]

6.3.1 Euler-Lagrange Equations

Following the calculus of variations [58], a minimiser of the energy functional in (6.10)
has to fulfil the corresponding Euler-Lagrange equation along with the boundary
conditions, cf. Section 5.1.1. Exploiting the structural similarities between the radial
depth based model in Section 5.3, and the Cartesian model (6.10), we obtain the
following EL equation in Ω

0 �
�
c E2

D + α ES
�

z −
∂
∂x

�
c E2

D + α ES
�

zx
−
∂
∂y

�
c E2

D + α ES
�

zy

+
∂2

∂x2
�
c E2

D + α ES
�

zxx
+ 2 ∂2

∂x∂y
�
c E2

D + α ES
�

zx y
+
∂2

∂y2
�
c E2

D + α ES
�

zy y

(6.14)
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with the boundary conditions on ∂Ω given by

0 � n⊤



�
c E2

D + α ES
�

zx
−
∂
∂x

�
c E2

D + α ES
�

zxx
−
∂
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�
c E2

D + α ES
�

zx y

�
c E2
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�
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−
∂
∂x

�
c E2

D + α ES
�

zx y
−
∂
∂y

�
c E2

D + α ES
�

zy y



, (6.15)

as well as

n⊤


�
c E2

D + α ES
�

zxx�
c E2

D + α ES
�

zx y


� 0 , n⊤



�
c E2

D + α ES
�

zx y�
c E2

D + α ES
�

zy y


� 0 . (6.16)

Simplifications

Euler-Lagrange Equation. As carried out in Section 5.3.1, we further simplify the
EL equation (6.14) by rearranging the terms with respect to the data term and the
smoothness term in consideration of the zero contributions. Hence, from (6.14) we
obtain

0 �
�
c E2

D

�
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∂
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�
c E2

D

�
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�
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D

�
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∂2
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D
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+ 2
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D
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∂y2
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D
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≡ 0
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−
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∂
∂y

[α ES]zy︸        ︷︷        ︸
≡ 0

+
∂2

∂x2 [α ES]zxx
+ 2 ∂2

∂x∂y
[α ES]zx y

+
∂2

∂y2 [α ES]zy y

�
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c E2

D

�
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∂
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�
c E2

D

�
zx
−
∂
∂y

�
c E2

D

�
zy

)
+
∂2

∂x2 [α ES]zxx
+ 2 ∂2

∂x∂y
[α ES]zx y

+
∂2

∂y2 [α ES]zy y
, (6.17)

where we exploited that

∂2

∂x ∂y
�
c E2

D + α ES
�

zx y
�
∂2

∂y ∂x
�
c E2

D + α ES
�

zx y
. (6.18)

Since the information on the confidence function c is assumed to be accessible at
the preprocessing stage, it may be directly integrated into the EL equation (6.17)
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as indicated in Section 5.3.2. The first three terms in (6.17) including ∂
∂x

�
E2

D

�
zx

and
∂
∂y

�
E2

D

�
zy

comprise the contributions for the data term. This is because the data term
(6.11) encoding the brightness constraint depends not only on the Cartesian depth
z but also on its gradient ∇z, cf. (5.34). Please note that the latter two terms do
not appear when auxiliary variables, i.e. p :� zx and q :� zy , are used for surface
normals as in [270, 278].

Let us now give details on the contributions of the data term. They can be
computed as

�
E2

D

�
z � 2 ED [ED]z

(6.11)
� 2

(
I −

Q3

z W

) (
Q3

z2 W
+

Q3

z W2 [W]z

)
� 2

(
I −

Q3

z W

)
Q3

z W

(1
z
+
∇z · x + z

W2

)
, (6.19)
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2 ED [ED]zx
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(6.11)
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2
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z W

)
Q3

z W2 [W]zx

]

x

� 2
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z W

)
Q3
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f2 zx + [∇z · x + z] x
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x
, (6.20)

and

∂
∂y

�
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D

�
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�

[
2 ED [ED]zy

]
y

(6.11)
�

[
2

(
I −
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z W

)
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z W2 [W]zy

]

y

� 2
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I −
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z W

)
Q3

z W3
�
f2 zy + [∇z · x + z] y

�]

y
. (6.21)

Concerning the contribution from the smoothness term, due to the same structure,
one can utilise (5.51), (5.52), and (5.53) by substituting the Cartesian depth z for the
radial one v. This yields

∂2

∂x2 [ES]zxx
� 2 ∂

2

∂x2
�
Ψ′

�
s2�

zxx
�
, (6.22)

2 ∂2

∂x ∂y
[ES]zx y

� 4 ∂2

∂x ∂y
�
Ψ′

�
s2�

zx y
�
, (6.23)

∂2

∂y2 [ES]zy y
� 2 ∂

2

∂y2
�
Ψ′

�
s2�

zy y
�
, (6.24)

where the Charbonnier diffusivityΨ′(s2) � 1/
√

1 + s2/λ2 is defined as in (5.54) with
s �

�
D2z

�
F. Hence, the final EL equation (6.17) is obtained by plugging (6.22), (6.23),
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and (6.24) into (6.17), which reads
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(6.25)

Boundary Conditions. Regarding the boundary conditions given in (6.15) and
(6.16), we may proceed as conducted in Section 5.3.2. As a result, the compact form
of (6.15) is given by

0 � n⊤
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(6.26)

with an outer normal vector n � (n1, n2)⊤.
Since the condition (6.16) is only influenced by the smoothness term and shares

the positive common factorΨ′(s2), it can be simplified to

n⊤
[
zxx

zx y

]
� 0 , n⊤

[
zx y

zy y

]
� 0 . (6.27)

6.3.2 Approximation of Spatial Derivative for Data Term

To find a minimiser of the energy functional (6.10), we follow the “first approximate
then optimise” scheme [33, 111, 261]. Since we have already applied this strategy
to the smoothness term for the radial depth case, we focus on the data term. For
approximating the spatial derivatives zx and zy in the data term (6.11), we employ
the upwind type scheme based on (2.89) in view of the underlying hyperbolic nature
but with similar formulations as in [247]. This reads

z̃x � max (D−x z ,−D+x z , 0) , (6.28)

where the backward and forward difference approximations are given by

D
−x z �

z
�
x , y

�
− z

�
x − h1, y

�

h1
, (6.29)

and

D
+x z �

z
�
x + h1, y

�
− z

�
x , y

�

h1
(6.30)
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with grid sizes h1 and h2 in x- and y direction, respectively. By comparing (6.29) and
(6.30) with (2.91) and (2.92), it can be noted that the representations of neighbouring
positions of z(x , y) corresponding to zi , j in backward and forward difference schemes
are replaced with z(x − h1, y) and z(x + h1, y). The same procedure can be applied
to the y-direction in a straightforward way. This leads to

z̃y � max (D−y z ,−D+y z , 0) , (6.31)

where the backward and forward difference approximations are given by

D
−y z �

z
�
x , y

�
− z

�
x , y − h2

�

h2
, (6.32)

and

D
+y z �

z
�
x , y + h2

�
− z

�
x , y

�

h2
. (6.33)

This corresponds to the y-direction counterparts of (2.90), cf. (2.93) and (2.94).
Moreover, as in (2.98) and (2.99) the actual sign of the forward difference must be
restored when the second argument is selected in (6.28) and (6.31) [44, 132]:

zx ≈

{
−z̃x if z̃x � −D+x z ,

z̃x otherwise , zy ≈

{
−z̃y if z̃y � −D+y z ,

z̃y otherwise . (6.34)

By plugging the approximations of the spatial derivatives, i.e. (6.28) and (6.31), into
the data term (6.11), we obtain the following formulation for the approximate data
term

ED (x , z (x) ,∇z (x)) ≈ ED (x , {z (x + h)}) (6.35)

where
h :� {−h2,−h1, 0, h1, h2} (6.36)

with
0 � (0, 0)⊤ , h1 � (h1, 0)⊤ , h2 � (0, h2)⊤ . (6.37)

In contrast to the original data term (6.11), the approximate version (6.35) depends
only upon z instead of the gradient ∇z by incorporating values of neighbouring
positions due to the gradient approximations in (6.28) and (6.31).

6.3.3 Euler-Lagrange Equation with Approximate Energy

Based on the approximation of the data term (6.35), we derive Euler-Lagrange
equation. To this end, we consider contributions from the data term and the
smoothness term, respectively. Moreover, this investigation forms a basis not only
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for the discretisation in the next section but also for our linearisation approach in
Chapter 7.

Data Term

Since the approximation of the data term (6.35) contains five arguments with z, its
EL equation corresponds to

ELD �
�
c (x) E2

D (x , {z (x)})�z(x)
+

�
c (x + h1) E2

D (x + h1, {z (x + h1)})�z(x)
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+

�
c (x − h2) E2

D (x − h2, {z (x − h2)})�z(x) . (6.38)

Concerning the structure of this EL equation, it can be noted that the contributions
from the gradient related terms ∂

∂x [·] and ∂
∂y [·] in (6.14) are substituted by those

of the corresponding four terms, i.e. [· (x + h1)]z(x), [· (x − h1)]z(x), [· (x + h2)]z(x),
[· (x − h2)]z(x). This is because the first order derivatives are not present in the
approximated version of the data term (6.35). Instead, it may contain the four
adjacent positions due to the upwind approximation for the hyperbolic nature. In
what follows, we look into contributions of each term to the derivative with respect
to z(x) depending on the selected difference.

First Term. For the first term of the EL equation (6.38), we have
�
c (x) E2
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where the notations in (6.39) are defined by
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��
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�

(6.37)
ED (x , {z (x + h)}) . (6.41)

For compact notations, we denote the superscript to be the central point of the
approximation which is highlighted as light green in Figure 6.3. Besides, the
corresponding adjacent positions of the central point in x- and y-direction are
marked as light purple and light red, respectively. In this case, one should note that



168 Variational Perspective SfS with Cartesian Depth Parametrisation

both selections of the forward and the backward difference in each x- and y-direction
have influences on the derivatives with respect to z(x).

Exy D
Ex
− y

D

Ex
+ y

DExy+ D

Exy− D

x

x − 2 h1

x − h1

x + h1

x + 2 h1

y − 2 h 2y − h 2
y + h 2

y

y + 2 h 2

Figure 6.3. Points of interest for the approximation of Ex y
D . The central point of

concern is denoted as light green and corresponding neighbouring points in x- and
y-direction are coloured in light purple and light red, respectively. In this case, both
selections of the forward and the backward difference in both x- and y-direction
have influences on the derivative with respect to z(x).

Second Term. Turning to the second term in (6.38), the central point for approxima-
tion becomes (x + h1, y)⊤ which can be expressed as Ex+y

D by following the notations
in (6.39), see Figure 6.4. This gives

�
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where the notations in (6.42) are defined by
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As can be observed in Figure 6.4, z(x) appears if the backward difference in x-
direction is selected. This makes the backward difference in x-direction influence on
the derivative with respect to z(x).

Exy D

Ex
+2 y

D

Ex
− y

D

Ex
+ y

DExy+ D

Exy− D
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D

x

x − 2 h1

x − h1

x + h1

x + 2 h1

y − 2 h 2y − h 2
y + h 2

y

y + 2 h 2

Figure 6.4. Points of interest for the approximation of Ex+y
D . The same colour

scheme is applied as in Figure 6.3: Light green for the central point of interest, light
purple and light red for corresponding neighbouring points in x- and y-direction,
respectively. In this case, only the selection of the backward difference in x-direction
has influence on the derivative with respect to z(x).

Third Term. In an analogous way, we proceed to the third term where the central
point for the approximation corresponds to Ex−y

D , see Figure 6.5. This yields
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where the notations in (6.45) are defined by

cx−y
� c

�
x − h1, y

�
� c (x − h1) , zx−y

� z
�
x − h1, y

�
� z (x − h1) , (6.46)

and

Ex−y
D � ED

�
x − h1, y , z

�
x − h1, y

�
, z

�
x − 2 h1, y

�
, z

�
x , y

�
,

z
�
x − h1, y − h2

�
, z

�
x − h1, y + h2

��

(6.36)
�

(6.37)
ED (x − h1, {z (x − h1 + h)}) . (6.47)

In this case, z(x) appears if the forward difference in x-direction is selected as can be
observed in Figure 6.4. Hence, the backward difference in x-direction has influence
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on the derivative with respect to z(x). So far we have taken care of x-direction. The
extension to y-direction is straightforward.

Exy D
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D Ex
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y − 2 h 2y − h 2
y + h 2

y

y + 2 h 2

Figure 6.5. Points of interest for the approximation of Ex−y
D . The same colour

scheme is applied as in Figure 6.3: Light green for the central point of interest, light
purple and light red for corresponding neighbouring points in x- and y-direction,
respectively. In this case, only the selection of the forward difference in x-direction
has influence on the derivative with respect to z(x).

Fourth Term. For the fourth term in (6.38), the central point for approximation is
Ex y+

D as shown in Figure 6.6. This leads to
�
c (x + h2) E2

D (x + h2)�z(x) � c (x + h2) �
E2

D (x + h2)�z(x)
� 2 cx y+

Ex y+

D

[
Ex y+

D

]

zx y
, (6.48)

where the notations in (6.48) are given by

cx y+

� c
�
x , y + h2

�
� c (x + h2) , zx y+

� z
�
x , y + h2

�
� z (x + h2) , (6.49)

and

Ex y+

D � ED
�
x , y + h2, z

�
x , y + h2

�
, z

�
x − h1, y + h2

�
, z

�
x + h1, y + h2

�
,

z
�
x , y

�
, z

�
x , y + 2 h2

��

(6.36)
�

(6.37)
ED (x + h2, {z (x + h2 + h)}) . (6.50)
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One can note that this case actually corresponds to the counterpart in y-direction
for the second term. Hence, the selection of the backward difference in y-direction
affects the differentiation with respect to z(x), see Figure 6.6.

Exy D
Ex
− y

D

Ex
+ y

DExy+ D

Exy− D
Ex
− y+

D

Ex
+ y+

DExy+2

D

x

x − 2 h1

x − h1

x + h1

x + 2 h1

y − 2 h 2y − h 2
y + h 2

y

y + 2 h 2

Figure 6.6. Points of interest for the approximation of Ex y+

D . The same colour
scheme is applied as in Figure 6.3: Light green for the central point of interest, light
purple and light red for corresponding neighbouring points in x- and y-direction,
respectively. In this case, only the selection of the backward difference in y-direction
has influence on the derivative with respect to z(x).

Fifth Term. In a similar way, one can obtain the following formulation for Ex y−

D

�
c (x − h2) E2

D (x − h2)�z(x) � c (x − h2) �
E2

D (x − h2)�z(x)
� 2 cx y− Ex y−

D

[
Ex y−

D

]
zx y , (6.51)

where the notations in (6.51) are defined by

cx y−
� c

�
x , y − h2

�
� c (x − h2) , zx y−

� z
�
x , y − h2

�
� z (x − h2) , (6.52)

and

Ex y−

D � ED
�
x , y − h2, z

�
x , y − h2

�
, z

�
x − h1, y − h2

�
, z

�
x + h1, y − h2

�
,

z
�
x , y − 2 h2

�
, z

�
x , y

��

(6.36)
�

(6.37)
ED (x − h2, {z (x − h2 − h)}) . (6.53)

Based on the case of the third term, the selection of the forward difference in
y-direction makes contributions to the derivative with respect to z(x), see Figure 6.7.
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Exy D
Ex
− y

D

Ex
+ y

DExy+ D

Exy− D
Ex
− y−

D

Ex
+ y−

D

Exy−2

D x

x − 2 h1

x − h1

x + h1

x + 2 h1

y − 2 h 2y − h 2
y + h 2

y

y + 2 h 2

Figure 6.7. Points of interest for the approximation of Ex y−

D . The same colour
scheme is applied as in Figure 6.3: Light green for the central point of interest, light
purple and light red for corresponding neighbouring points in x- and y-direction,
respectively. In this case, only the selection of the forward difference in y-direction
has influence on the derivative with respect to z(x).

Smoothness Term. So far we have considered the contributions from the data term.
Let us now focus on the ones from the smoothness term. Regarding the smoothness
term, the structure in Section 5.3.3 stays basically unchanged since we follow “the
first approximate then optimise” scheme based on the standard central difference
type approximation. This leads to

ELS �

[
Ψ

((sx y)2)]
zx y � Ψ′

((sx y)2) [(sx y)2]
zx y

� 2Ψ′
h2

1

((sx y)2) (zxx)x y
+ 4Ψ′h1 h2

((sx y)2) �
zx y

�x y
+ 2Ψ′

h2
2

�(sx y)2� �
zy y

�x y

(6.54)

where

Ψ′
h2

1

((sx y)2) �

Ψ′
((sx y)2)

h2
1

, (6.55)

Ψ′h1 h2

((sx y)2) �

Ψ′
((sx y)2)

16 h1 h2
, (6.56)

Ψ′
h2

2

((sx y)2) �

Ψ′
((sx y)2)

h2
2

, (6.57)
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and
(zxx)x y

�
zx+y

− 2 zx y + zx−y

h2
1

, (6.58)

�
zx y

�x y
�

zx+y+

− zx−y+

− zx+y− + zx−y−

4 h1 h2
, (6.59)

�
zy y

�x y
�

zx y+

− 2 zx y + zx y−

h2
2

. (6.60)

As in the data term, the superscript denotes the central point for the approximation
and the subscript stands for the derivatives. The Charbonnier diffusivity Ψ′ is
defined as in (5.64). Therefore, we have

Ψ′
((sx y)2) �

1√
1 +

(sx y)2
λ2

(6.61)

with the following curvature measure

(sx y)2 (6.13)
:�

�(zxx)x y�2
+ 2

(�
zx y

�x y)2
+

(�
zy y

�x y)2
. (6.62)

Moreover, one can note that the constant factors in (6.55) – (6.57) come from the term
[(sx y)2]zx y in (6.54), cf. Section 5.3.3.

As a consequence, by putting all contributions together from the data term and
the smoothness term and taking out the common factor 2 we finally obtain the
following expression for the EL equation

0 � ELD + ELS

� cx y Ex y
D

�
Ex y

D

�
zx y + cx+y Ex+y

D

[
Ex+y

D

]

zx y
+ cx−y Ex−y

D

[
Ex−y

D

]
zx y (6.63)

+ cx y+

Ex y+

D

[
Ex y+

D

]

zx y
+ cx y− Ex y−

D

[
Ex y−

D

]
zx y

+ α
(
Ψ′

h2
1

((sx y)2) (zxx)x y
+ 2Ψ′h1 h2

((sx y)2) �
zx y

�x y
+Ψ′

h2
2

�(sx y)2� �
zy y

�x y
)
.

6.3.4 Discretisation

Based on the approximation in the previous section, let us now discuss how to
minimise the discrete energy. Since being a minimiser means that the first derivative
of the discrete energy with respect to zi , j must vanish at each point (i , j)⊤, this
condition is formulated as

0 !
�
∂Ei , j

∂zi , j
∀i , j ∈ Ω , (6.64)
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where Ei , j denotes a discrete version of the energy given in (6.10).

To obtain the discrete energy, we discretise the data term by applying the upwind
scheme from (2.89) and (2.90) in view of the underlying hyperbolic nature. For the
smoothness term, a central difference approximation can be utilised. Then, taking
derivatives of the acquired discrete energy with respect to zi , j for all i , j in the
computational domainΩ leads to a proper discretisation for the optimality condition
(6.64). In principle, this corresponds to the EL equation (6.63). Moreover, it can be
noted that the computations for the smoothness term in Section 5.3.3 can be directly
used here owing to the same structure by substituting the Cartesian depth z for the
radial one v. As a consequence, what remains to be handled is only the contributions
from the data term for which the discrete energy takes the form

ÊD �

b y+n y−1∑
j�b y

bx+nx−1∑
i�bx

*.
,
Ii , j −

Q3
i , j

zi , j Wi , j

+/
-

2

�:
b y+n y−1∑

j�b y

bx+nx−1∑
i�bx

{(ED)i , j

}2
, (6.65)

where Qi , j and Wi , j describe the discrete version of (3.24) and (6.12), respectively.
They are given by

Qi , j �
f√

|xi , j |2 + f2
(6.66)

and

Wi , j �

√
f2 ����D

x
i , j z

����
2
+

[(
Dx

i , j z
)
· xi , j + zi , j

]2
, (6.67)

where
Dx

i , j z �

(
Dx

i , j z ,D y
i , j z

)⊤
(6.68)

with
Dx

i , j z :� χ+x
i , j

(
D+x

i , j z
)
+ χ−x

i , j

(
D−x

i , j z
)

(6.69)

and
D y

i , j z :� χ+y
i , j

(
D+y

i , j z
)
+ χ

−y
i , j

(
D−y

i , j z
)
. (6.70)

The characteristic function χ+x
i , j in (6.69) denotes that the forward difference is selected

at a point (i , j)⊤ in x-direction. In an analogous way, χ−x
i , j denotes the backward

difference is selected at a point (i , j)⊤ in x-direction. This convention can be extended
to y-direction in a straightforward way: χ+y

i , j is for the selection of the forward
difference and χ−y

i , j is for the selection of the backward difference, respectively. One
should note that this selection process is described by the max operator in the
upwind scheme, cf. (2.89) and (2.90). Moreover, the case for no contributions in
both directions corresponding to the gradient being zero is also covered by both
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characteristic functions being zero. The discussion of this case will be given in next
Section.

Differentiation of the Discrete Energy for Data Term

When differentiating the discrete energy (6.65) with respect to zi , j , due to the upwind
properties there are five ways to make contributions:

1. If the discrete energy (6.65) is evaluated at (i , j), then both selections of the
forward and the backward difference make contributions.

2. If the discrete energy (6.65) is evaluated at (i+1, j), then the backward difference
in x-direction makes contributions.

3. If the discrete energy (6.65) is evaluated at (i − 1, j), then the forward difference
in x-direction makes contributions.

4. If the discrete energy (6.65) is evaluated at (i , j+1), then the backward difference
in y-direction makes contributions.

5. If the discrete energy (6.65) is evaluated at (i , j − 1), then the forward difference
in y-direction makes contributions.

One can note that these cases, in fact, refer to the five terms in (6.38) that we have
derived for the approximate energy in the previous section. Hence, the derivative
of the discrete energy (6.65) with respect to zi , j at each point (i , j)⊤ ∈ Ω can be
described as

[{(ED)i , j

}2]

zi , j

� 2 (ED)i , j


−

Q3
i , j

zi , j Wi , j

 zi , j

(6.71)

+ 2 (ED)i+1, j


−

Q3
i+1, j

zi+1, j W−x
i+1, j

 zi , j

+ 2 (ED)i−1, j


−

Q3
i−1, j

zi−1, j W+x
i−1, j

 zi , j

+ 2 (ED)i , j+1


−

Q3
i+1, j

zi , j+1 W−y
i , j+1

 zi , j

+ 2 (ED)i , j−1


−

Q3
i−1,l

zi , j−1 W+y
i , j−1

 zi , j

,

where the subscript denotes an evaluation point, ±x and ±y in the superscript refer
to the forward and the backward difference in x- and y-direction, respectively.

Let us now take a closer look at each term in (6.71) regarding on the selection in
each direction and what implications they have.
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First Term. Concerning the first term of (6.71), we investigate which cases are
covered with respect to the selection in each direction. If the backward difference
in x-direction is chosen, all three cases are possible in y-direction, i.e. forward,
backward and no contributions. We formulate these cases as

W−x
i , j �

{
W−x ,+y

i , j ,W−x ,−y
i , j ,W−x ,y0

i , j

}
, (6.72)

where W−x
i , j denotes the selection of the backward difference in x-direction with

no specification in y-direction and W−x ,±y
i , j indicates the selection of the backward

difference in x-direction combined with the forward and backward difference in
y-direction, respectively. In addition, W−x ,y0

i , j represents the case of the selection of
the backward difference in x-direction and no contribution in y-direction. Each of
these cases is illustrated in Figure 6.8. One should note that no contributions in
y-direction means that a wavefront arrives locally concurrently at points (i−1, j−1)⊤,
(i−1, j)⊤, (i−1, j+1)⊤ and thereby the information propagates purely in x-direction,
see Figure 6.8(b). Moreover, this result can be extended in a straightforward way
when the forward difference in x-direction is chosen. This yields

W+x
i , j �

{
W+x ,+y

i , j ,W+x ,−y
i , j ,W+x ,y0

i , j

}
. (6.73)

If no contribution is made in x-direction, there are two ways to propagate the
information purely in y-direction, i.e. by means of either forward or backward
difference. This gives

Wx0
i , j �

{
Wx0 ,+y

i , j ,Wx0 ,−y
i , j

}
. (6.74)

Therefore, by putting all these together, Wi , j in the first term of (6.71) can have one
of the aforementioned choices. This is described by

Wi , j � W−x
i , j ∪W+x

i , j ∪Wx0
i , j

�

{
W−x ,+y

i , j ,W−x ,−y
i , j ,W−x ,y0

i , j

}
∪

{
W+x ,+y

i , j ,W+x ,−y
i , j ,W+x ,y0

i , j

}
∪

{
Wx0 ,+y

i , j ,Wx0 ,−y
i , j

}
. (6.75)

Please note that the case of no contributions in both directions Wx0 ,y0
i , j is not listed

in (6.75). This is because the case of Wx0 ,y0
i , j corresponds to critical points, i.e. when

∇z � 0, and thereby the information at those points must be obtained from the
model not from neighbouring points.

Second Term. Since the second term is evaluated at a point (i + 1, j)⊤, only the
backward difference in x-direction makes contributions when differentiating the
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(a) Contributions from both x- and y-direction.
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i,j W+x,y0

i,j

Wx0,−y
i,j
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i,j

i − 2 i − 1 i i + 1 i + 2

j − 2

j − 1

j
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j + 2

(b) Contributions from one direction.

Figure 6.8. Illustration of information propagation depending on the selection of
upwind directions at a grid point (i , j)⊤. The same colour scheme is used as in
Figure 6.3: The central point of concern is denoted as light green and corresponding
neighbouring points in x- and y-direction are coloured in light purple and light
red, respectively. The arrow indicates the propagation direction of information (or
wavefront) in each case.

discrete energy with respect to zi , j . This gives

W−x
i+1, j �

{
W−x ,+y

i+1, j ,W
−x ,−y
i+1, j ,W

−x ,y0
i+1, j

}
. (6.76)

As in the first term, case distinctions are made in y-direction: forward, backward
and no contributions, see Figure 6.9.

Third Term. In an analogous way to the second term, the backward difference has
influence on the derivative with respect to zi , j when the discrete energy is evaluated
at a point (i − 1, j)⊤. This gives the following cases

W−x
i−1, j �

{
W+x ,+y

i−1, j ,W
+x ,−y
i−1, j ,W

+x ,y0
i−1, j

}
. (6.77)

As in the second term, each case of (6.77) is depicted in Figure 6.10.

Fourth Term. Based on that the fourth term corresponds to the second term in
y-direction, only the backward difference in y-direction makes contributions to the
derivative with respect to zi , j when the discrete energy is evaluated at (i , j + 1)⊤, see



178 Variational Perspective SfS with Cartesian Depth Parametrisation
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i+1,j

i − 2 i − 1 i i + 1 i + 2

j − 2

j − 1

j

j + 1

j + 2

(a) Contributions from both x- and y-direction.
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j

j + 1

j + 2

(b) No contribution in y-direction.

Figure 6.9. Illustration of information propagation depending on the selection of
upwind directions at a grid point (i+1, j)⊤. In this case, only the backward difference
in x-direction makes contributions.
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i−1,j
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i−1,j
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(a) Contributions from both x- and y-direction.
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i−1,j

i − 2 i − 1 i i + 1 i + 2

j − 2
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j

j + 1

j + 2

(b) No contribution in y-direction.

Figure 6.10. Illustration of information propagation depending on the selection of
upwind directions at a grid point (i − 1, j)⊤. In this case, only the forward difference
in x-direction makes contributions.

Figure 6.11. Therefore, we obtain

W−y
i , j+1 �

{
W−x ,−y

i , j+1 ,W
+x ,−y
i , j+1 ,W

x0 ,−y
i , j+1

}
. (6.78)
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(a) Contributions from both x- and y-direction.
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(b) No contribution in x-direction.

Figure 6.11. Illustration of information propagation depending on the selection
of upwind directions at a grid point (i , j + 1)⊤. In this case, only the backward
difference in y-direction makes contributions.

Fifth Term. Since this case is the counterpart of the third term in y-direction, only
the forward difference in y-direction makes contributions to the differentiation of
the discrete energy evaluated at (i , j − 1)⊤ see Figure 6.12. This yields

W+y
i , j−1 �

{
W−x ,+y

i , j−1 ,W
+x ,+y
i , j−1 ,W

x0 ,+y
i , j−1

}
. (6.79)

Explicit Scheme

After the discretisation is performed, the solution of the EL equation (6.63) can be
expressed as the steady state evolution equation in artificial time by means of the
Euler forward time discretisation method

zt ≈
zn+1

− zn

τ
(6.80)

with τ being a time step size. Therefore, we can obtain the explicit scheme

zn+1
− zn

τ
� −

�
ELn

D + α ELn
S

�
⇔ zn+1

� zn
− τ

�
ELn

D + α ELn
S

�
, (6.81)

where ELn
D and ELn

S denote the discretisation of the data term and the smoothness
term in the optimality condition (6.64) evaluated at time n, respectively.
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(a) Contributions from both x- and y-direction.
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(b) No contribution in x-direction.

Figure 6.12. Illustration of information propagation depending on the selection of
upwind directions at a grid point (i , j − 1)⊤. In this case, only the forward difference
in y-direction makes contributions.

It can be noted that the discretisation in (6.81) adapts itself during the iterations
depending on the selection of the direction guided by the employed upwind scheme
as shown in (6.75). In this context, this can be understood as a lagged discretisation
approach.

Coarse-to-fine Approach

The underlying structure of the energy functional (6.10) is more challenging to
handle than that of the radial depth based model (5.32), since the unknown z and
the term W in (6.12) which contains its gradient ∇z occur in the denominator of the
data term (6.11), cf. (5.26) and (6.11). This makes the optimisation problem highly
non-convex and thereby it may happen that the explicit scheme (6.81) gets trapped
in one of multiple local minima, e.g. the point ẽ ℓ−1 in Figure 6.13(a).

To deal with the difficult situation, we make use of a coarse-to-fine approach
that is based on the homotopy continuation method [9, 10, 211]. The basic idea of
this approach is as follows: By prescribing a parameter, we may reformulate the
original optimisation problem into a family of multiscale representations, which
allows to describe the original non-convex energy as different degrees of energy
families depending on the resolution level. Since the simplified problem with the
corresponding energy has a specific form in a way that it progressively deforms
to the original one as the grid is refined, solutions from the previous coarser level
serve as an initialisation for more difficult optimisation problems at the next finer
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Figure 6.13. Coarse-to-fine approach: Multi-resolution representations of the
problem.

scales by tracking all the solutions along the way. On this account, solving the family
of problems sequentially from the lowest resolution allows one to obtain a global
solution (or at least the one that is very close to a desired endpoint solution), see
Figure 6.13(a). This strategy is helpful to escape from poor local minima because
the local high frequency details are usually smoothed out at coarser resolutions
and thereby the optimisation process at that level is more manageable than at finer
ones. Besides, this type of hierarchical graduated optimisation method lays down
the fundamental principle of some global non-convex optimisation algorithms such
as graduated non-convexity (GNC) [36] , which is actually the discrete counterpart of
the continuation method, and mean field annealing (MFA) [34], which corresponds to
a deterministic approximation of simulated annealing [140], and has been employed
successfully in various domains of applications [164, 165, 166], e.g. blur kernel
computation [166], optical flow estimation [47, 48, 72, 232, 274] as well as shape
estimation [19, 20, 21, 43, 240, 241].

This type of coarse-to-fine scheme not only seeks to overcome the difficulties
of non-convexity but it also offers another advantage regarding the initialisation
for variational SfS. As indicated in [270], the quality of reconstruction for most
variational SfS algorithms depends largely upon a good initialisation which has
usually been selected to be very close to a true solution and may be derived from
either PDE-based approaches [1, 278] or surface integration methods [270]. However,
as we will demonstrate in Section 6.4 the coarse-to-fine optimisation framework
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that we have incorporated belongs to a global method [211] and thereby makes the
reconstruction result hardly susceptible to the selection of the initial depth map
as long as sufficiently many resolution layers are used. This evidently becomes
another benefit of our approach, since our approach does not require any a priori
information on initialisation for reconstruction in contrast to other variational
methods. Nevertheless, to only accelerate the convergence of the algorithm we may
initialise the depth as we have carried out in (3.72). This can be realised by plugging
∇z � 0 into the data term (6.11) and solving the resulting equation with respect to z

ED (x , z , 0) � 0 ⇒ z �

√
Q(x)3
I(x)

(3.24)

⩽
1√
I(x) . (6.82)

Since the attained initial depth in (6.82) has not taken the surface orientation into
consideration, it is only affected by the inverse square law in view of (3.22) and
thereby serves as a local upper bound in the sense that the surface depth value grows
from the initial value to the negative z-direction.

In order to apply the coarse-to-fine scheme, we define the subsampling factor
η between two adjacent layers of resolution for generating image pyramids as
illustrated in Figure 6.13(b). The downsampling factor η has been selected in the
range η ∈ (0.5, 1). As an immediate effect of the subsampling, it can be observed
that the grid size in each direction increases as multiple downsampling operations
are preformed. This is based on that the number of pixels has been reduced and
yet the size of the original image plane remains unchanged during the process, see
Figure 6.13(b). Therefore, the grid size hℓ1 and hℓ2 in each direction at level ℓ can be
expressed as

hℓ1 � h1 · η
−ℓ and hℓ2 � h2 · η

−ℓ (6.83)

with the original gird size h1 and h2 in x- and y-direction, respectively. The case
ℓ � 0 and ℓ � ℓmax in (6.83) correspond to the original and the lowest resolution
layer, respectively.

The growth of the grid size by the subsampling process makes also a considerable
impact on the regularisation and the key observation is that the fourth-order
derivatives given in (6.22), (6.23), and (6.24), make the amount of the contribution
by the smoothness term behave asymptotically according to 1/h4. By means of the
Landau symbol, this may be formulated as

α [ES (h)](ℓ�0) � αO(h−4) , (6.84)

where [ES (h)](ℓ�0) stands for the contributions of the smoothness term in the case
of the original resolution at level ℓ � 0 and O denotes the big-O notation as in [56].
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Moreover, from (6.83) it can be noticed that

hℓ
(6.83)
� h · η−ℓ ⇒ h−4 ℓ

� h−4
· η4 ℓ (6.85)

⇒ O
�
h−4 ℓ� (6.85)

� O
�
h−4
· η4 ℓ�

� O
�
h−4�

O
�
η4 ℓ� . (6.86)

Then, the amount of the contributions from the smoothness term at coarser levels,
i.e. for the case of ℓ , 0, corresponds to

α
�
ES

�
hℓ

��
(ℓ>0) � αO

�
h−4ℓ� (6.86)

� αO
�
h−4�

O
�
η4 ℓ� . (6.87)

By comparing the result (6.87) with (6.84), it can be realised that the regularisation at
lower resolution layers is less influential than that of the original scales by the factor
O

�
η4 ℓ�. To neutralise the undesired effect, we adjust the regularisation weight at

each level ℓ as
αℓ � η−4 ℓ

· α , (6.88)

which ensures the same amount of regularisation for all layers.
Aside from the adaptation of the regularisation parameter, the effect of the

subsampling process also requires to adjust the camera calibration matrix K in
(3.7) depending on the level ℓ, since the principal point offset in terms of the pixel
coordinates is influenced as well. Hence, in consideration of (6.83) at level ℓ the
camera calibration matrix Kℓη can be described by

Kℓη �



ηℓ 0 0
0 ηℓ 0
0 0 1

︸        ︷︷        ︸
� diag(ηℓ ,ηℓ ,1)



f/h1 0 c1

0 f/h2 c2

0 0 1

︸                ︷︷                ︸
(3.7)
� K

�



ηℓ (f/h1) 0 ηℓ c1

0 ηℓ (f/h2) ηℓ c2

0 0 1


. (6.89)

Alternating Explicit Scheme for Data Term

Based on our experiments, it turned out that the additional contributions of the
data term given in (6.20) and (6.21) which are induced by the depth gradient ∇z
from (6.12) are the source of a bottleneck for the minimisation and forbids us to
select a large time step size τ for fast convergence of the explicit scheme (6.81). As a
result, this inevitably entails several thousands or even millions of iterations for the
minimisation process. However, in contrast to the case of the smoothness term there
is, in fact, no control mechanism to make a trade-off between the main contribution
term (6.19) and the additional terms (6.20) and (6.21) accordingly. Hence, to cope
with the situation we adopt the following minimisation strategy in each resolution
layer, which we call alternating explicit scheme: For a fixed number of iterations n, we
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first carry out n/2 iterations only with the term (6.19) and subsequently conduct the
rest n/2 iterations with all terms, i.e. (6.19), (6.20) and (6.21), see Figure 6.14.

Since the omitted terms (6.20) and (6.21) are based on second-order derivatives
which are usually responsible for the stagnation of the optimisation process these
additional terms are not as influential as the main term (6.19) for the convergence.
On this account, this actually offers us an option to select min(h−2

1 , h
−2
2 ) times larger

time step size for the first n/2 iterations and thereby computation time has been
reduced by four orders of magnitude in our experiments. Moreover, as we will
demonstrate in Section 6.4 the optimisation only with the simplified scheme shows
reasonable results in most tests, which suggests that the simplified scheme can be
interpreted as another way of optimisation strategy by excluding high frequency
related terms for the hyperbolic type of energy functional such as (6.10) within the
coarse-to-fine framework.

(6.19) (6.19)
(6.20) and (6.21)

(6.19), (6.20) and (6.21)

(6.19)

n iterations

n
2 iterations n

2 iterations

Alternating Explicit Scheme

Full Explicit Scheme

Simplified Explicit Scheme

Figure 6.14. Comparison of the alternating explicit scheme with full and simplified
schemes. In these schemes, the smoothness term contributions from (6.22) – (6.24)
are always used.

6.4 Experimental Evaluation

In this section, we present our experimental evaluations on the Cartesian depth
based variational perspective SfS model (6.10).
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6.4.1 Test Images and Evaluation Metrics

For the assessment of our approach, we have used four synthetic images along with
their ground truth data which are depicted in Figure 6.15. Moreover, these test
images have been generated in such a way that they satisfy the model assumptions
for (6.10), i.e. Lambertian surface reflectance with uniform albedo and illumination
condition under the inverse square law.

The first image Sombrero in Figure 6.15(a) has been generated from the following
parametric surface equation

Z (X,Y) � 0.5
sin (r (X,Y))

r (X,Y) + 1.7 with r (X,Y) �
√
(10 X)2 + (10 Y)2 (6.90)

and rendered according to the brightness equation (3.22) with uniform albedo ρ � 1.
The size of the rendered image and the employed intrinsic parameters containing
information on the focal length, the grid size as well as the principal point are listed
in Table 6.2. For creating test images the Stanford Bunny and Dragon shown in Figure
6.15(b) and 6.15(c), we have used the open-source software Blender [37] and the 3-D
models of the Stanford 3-D scanning repository [210]. Thereby, the information on
the Z-buffer of the rendering path and the intrinsic parameters on the camera can be
retrieved. As before, the rendering has been performed conforming to the brightness
equation(3.22) and the size of the rendered image as well as intrinsic parameters are
listed in Table 6.2. The last image Suzanne in Figure 6.15(d) has been obtained with
the same procedure as before with the 3-D model provided by the software and the
corresponding parameters are also given in Table 6.2. In addition, 8-bit greyscale
quantisation has been employed to store all test images.

Table 6.2. Specifications of test images including intrinsic parameters.

image size focal length grid size principal point

Sombrero 256 × 256 f � 1 h1 � h2 �
1

200 c � (128, 128)⊤
Stanford Bunny 256 × 256 f � 35 h1 �

1
8 , h2 �

9
128 c � (128, 128)⊤

Dragon 256 × 256 f � 35 h1 �
1
8 , h2 �

9
128 c � (128, 128)⊤

Suzanne 512 × 256 f � 35 h1 �
1

16 , h2 �
9

128 c � (256, 128)⊤

Since the ground truth data is available for these synthetic images, we take
two error measures into account as evaluation criteria: the first one with respect
to the reconstructed surface and the second one with regard to the reprojected
image. The first error measure we look into is the relative surface error (RSE) which
represents how close the reconstructed surface S is to the ground truth one Sgt by



186 Variational Perspective SfS with Cartesian Depth Parametrisation

(a) Sombrero. (b) Stanford Bunny. (c) Dragon. (d) Suzanne.

Figure 6.15. Synthetic test images.

measuring a pointwise Euclidean distance between the two surfaces and comparing
the measurement with that of the ground truth shape. This error metric is given by

RSE �

√∑
Ωi

|S (x (i)) − Sgt (x (i))|√∑
Ωi

|Sgt (x (i))|
. (6.91)

It can be noted that the normalisation factor in (6.91) makes the error measure
relative to the ground truth shape in contrast to an absolute type measure and useful
for comparison between surfaces of different scales, which is often the case in
computer vision. The second error measure we consider is the relative image error
(RIE) which shows how close the reprojected image I is to the given input image
Igt by measuring the pointwise Euclidean distance between the two images and
comparing the measurement with that of the input image. Hence, this error measure
concerns the photometric aspect of the reprojected image and is defined as

RIE �

√∑
Ωi

|I (x (i)) − Igt (x (i))|√∑
Ωi

|Igt (x (i))|
. (6.92)

As in the case of the RSE in (6.91), in order to make a comparison feasible between
images of different greyscales the normalisation in (6.92) is carried out with respect
to the intensity of the input image.

6.4.2 Results on Synthetic Test Images

To keep the number of parameters minimal, we have selected the following predefined
set of parameters, unless stated otherwise: a subsampling factor η � 0.8 for the
coarse-to-fine approach, n � 106 solver iterations on each resolution level and a
contrast parameter λ � 10−3. Furthermore, the stated time step size τ in the different
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experiments refers to the simplified explicit scheme. For the case of the full explicit
scheme, the time step size becomes min(h2

1 , h
2
2) times smaller.

For evaluating the reconstruction quality of the Cartesian Depth based perspective
SfS algorithm, as a first experiment we have applied it to the aforementioned test
images in Figure 6.15. Moreover, we investigate the performance between a quadratic
and a subquadratic penalisers. The reconstruction results and reprojected images
paired with the corresponding ground truth data are listed in Figure 6.17, 6.18, 6.19,
and 6.20. The depth is visualised according to the colour map displayed in Figure
6.16, where red is encoded as near to the camera, blue as far, and green in between.
Moreover, the surface error map is provided in Figure 6.21, where the intensity of
red denotes error magnitudes above 1 % and white indicates error magnitudes below
1 %.

near far

Figure 6.16. Colour-coded depth visualisation: Red indicates near to the camera,
blue as far, and green in between.

As can be observed in Figure 6.17 – 6.20, the computed depth as well as the
corresponding reprojected images are highly consistent with the ground truth data,
which is also confirmed by the surface error maps in Figure 6.21. In fact, it shows
only subtle discrepancy for a rather small area in each case except the Sombrero,
which is not displayed because the complete error map belongs to the class of “under
1 %.”

Concerning the comparison between a quadratic and a subquadratic penaliser,
according to Table 6.3 the subquadratic regulariser (5.33) shows better performance
on the reconstruction quality than that of quadratic one in terms of the previously
defined error measures except the Sombrero, in which case a relatively smooth surface
leads to the lowest RSE value.

Influence of Regularisation

In order to investigate the effect of the regularisation on the quality of the recon-
struction and its reprojection, as a second experiment we have applied different
amount of smoothness by changing the value of the regularisation parameter α
for the test image Sombrero under the fixed parameter setting with τ � 0.001 and
n � 104. The graphical chart in Figure 6.22 illustrates how both error measures have
behaved with respect to different values of the parameter α. As can be noticed,
there appears a spike in the reprojection error (RIE) for a fairly modest amount of
regularisation, which is, nevertheless, still under 3 %, but afterwards the value has
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(a) Input image. (b) Reprojected image. (c) Ground truth depth. (d) Computed depth.

Figure 6.17. Results on Sombrero. Employed parameters are: α � 7.5×10−5, τ � 10−2,
n � 106.

(a) Input image. (b) Reprojected image. (c) Ground truth depth. (d) Computed depth.

Figure 6.18. Results on Stanford Bunny. Employed parameters are: α � 7.5 × 10−5,
τ � 10−3, n � 106.

(a) Input image. (b) Reprojected image. (c) Ground truth depth. (d) Computed depth.

Figure 6.19. Results on Dragon. Employed parameters are: α � 7.5 × 10−8, τ � 10−3,
n � 106.

decreased abruptly and remained under 2 %. However, for a similar amount of
regularisation, the actual reconstruction error RSE which is directly measured from
the estimated surface is reduced by nearly three times from 4.4 × 10−2 to 1.7 × 10−2.
Given the fact that typical surfaces often exhibit a certain degree of local smoothness,
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(a) Input image. (b) Ground truth depth.

(c) Reprojected image. (d) Computed depth.

Figure 6.20. Results on Suzanne. Employed parameters are: α � 10−7, τ � 10−3,
n � 106.

(a) Stanford Bunny. (b) Dragon. (c) Suzanne.

Figure 6.21. Surface error. Red indicates errors above 1 percent, where the intensity
encodes error magnitudes. White denotes errors below 1 percent. The Sombrero is
not shown, since the error is below 1 percent everywhere.

this outcome is not entirely surprising. This may also explain that a certain degree
of regularisation has, in general, a positive effect on the quality of the estimation.

Independence of Initialisation

In Section 6.3.4, we have discussed the coarse-to-fine scheme along with the initialisa-
tion method for variational SfS. Since this type of hierarchical graduated optimisation
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Table 6.3. Comparison of performance between quadratic and subquadratic penaliser.
Best results for each test image are listed with boldface. Employed parameters are
the same as in Figure 6.17, 6.18, 6.19 and 6.20.

quadratic subquadratic
RSE RIE RSE RIE runtime

Sombrero 0.00208 0.00694 0.00318 0.00209 29113s
Stanford Bunny 0.00546 0.00015 0.00439 0.00007 23969s
Dragon 0.01376 0.00028 0.01376 0.00028 25350s
Suzanne 0.00392 0.00011 0.00251 0.00002 48395s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·10−4
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RSE
RIE

Figure 6.22. Influence of different amount of regularisation in terms of the surface
related error (RSE) and the reprojection error (RIE) for the Sombrero in Figure 6.17.

strategy is a global strategy, it requires no specific knowledge of the initialisation
[211]. To confirm this statement, as a third experiment we study the impact of the
initialisation on the quality of the reconstruction as well as its reprojection. To this
end, we have used the Stanford Bunny in Figure 6.15(b) whose ground truth depth
belongs to the range z ∈ [1, 2] and considered the following three initial surfaces
as initialisations for our coarse-to-fine scheme: One is a plane with z � 1 which is
relatively close to the ground truth data, another is also a plane with z � 10 which,
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however, is comparatively far away from the solution, and the other is the upper
bound surface based on the discussions on (6.82) at the lowest resolution level. The
results on the initial error and the one after n � 106 iterations are compared in Table
6.4.

As can be seen, there is a substantial difference between the two planes in terms
of both error measures at the initial stage. After sufficient iterations, however, the
initial gap has disappeared and surfaces of the same quality have been reconstructed
from both planes with respect to the previously defined evaluation metrics, RSE and
RIE. Apart from the surfaces with the planes, the upper bound initialisation from
(6.82) has shown the same effect. Hence, this experiment shows that embedding the
estimation process into a coarse-to-fine framework to avoid local minima for a highly
non-convex energy functional is also useful to make the estimation less dependent on
the initialisation. This is in full accordance with the continuation method [9, 10, 211].

Table 6.4. Impact of different initialisations on the reconstruction quality and
reprojection accuracy for the Stanford Bunny. Employed parameters are: α � 7.5×10−5,
τ � 10−3, 106 iterations.

initial error after computation
RSE RIE RSE RIE

plane (z � 1) 0.25804 1.63174 0.00439 0.00007
plane (z � 10) 6.41960 0.97373 0.00439 0.00007
based on (6.82) 0.37712 0.74363 0.00439 0.00007

Comparison of Numerical Schemes

In this experiment, we assess the performance of the three different numerical
schemes that have been elaborated in Section 6.3.4: the alternating explicit scheme,
the simplified explicit scheme, and the full explicit scheme, cf. Figure 6.14. To this
end, we have conducted two experiments by applying the aforementioned three
numerical schemes to downsampled versions of the test images in Figure 6.15: On the
one hand, with the same stopping time which corresponds to “number of iterations
× time step size”, on the other hand with the same number of iterations. The final
results of both studies are reported side by side in Table 6.5 and 6.6.

For the same stopping time test, the full explicit scheme shows superior quality
to the other ones with respect to both error measures in most cases according to
Table 6.5. Since the number of iterations is not predefined in this setting, the full
explicit scheme must perform considerably more iterations than the other schemes
to reach the same stopping time on account of the restricted time step size based
on the discussions in Section 6.3.4. While this evidently helps to lower the error
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measures considering that more optimisation steps have been taken, it requires an
enormous amount of runtime. Since the runtime of the full explicit scheme is up to
four orders of magnitude higher than those of the other schemes even for such small
size images, there are severe limitations in practice regarding the applicability to
larger image sizes.

When it comes to the same number of iterations, the alternating scheme as well
as the simplified one show clearly a better performance than the full scheme in most
cases as presented in Table 6.6. This suggests that excluding the gradient related
terms has turned out to be particularly rewarding not only for fast convergence but
also for the minimisation itself. And yet, it does not lead to a considerable sacrifice
of the quality.

Table 6.5. Comparison of different numerical schemes for equal numerical stopping
time t � 10 with t � n × τ. Error measures and runtimes refer to smaller versions of
the four test images. The same parameters are applied as in Figure 6.17 – 6.20 except
for n, which is given by n � t/τ.

alternating scheme simplified scheme full scheme
RSE RIE RSE RIE RSE RIE

Small Sombrero 0.01823 0.01920 0.01820 0.02048 0.00785 0.00527
(128 × 128) (runtime: 30s) (runtime: 15s) (runtime: 178021s)
Small Stanford Bunny 0.00659 0.00151 0.00667 0.00257 0.00576 0.00097
(128 × 128) (runtime: 303s) (runtime: 150s) (runtime: 4278s)
Small Dragon 0.01667 0.00267 0.01673 0.00620 0.01526 0.00205
(128 × 128) (runtime: 308s) (runtime: 149s) (runtime: 4304s)
Small Suzanne 0.00899 0.00514 0.01055 0.01909 0.01022 0.00203
(128 × 96) (runtime: 223s) (runtime: 111s) (runtime: 2384s)

Reconstruction with Inpainting

In this experiment, we investigate the inpainting capability of the smoothness term
which is a clear advantage of variational methods in comparison to PDE-based
approaches. To this end, using the Stanford Bunny in Figure 6.15(b) we have generated
two degraded versions of the test image with corresponding confidence functions: a
perforated version and a sliced one, as depicted in Figure 6.23(a) and 6.23(e) as well
as the corresponding confidence functions in Figure 6.23(b) and 6.23(f), respectively.
The estimated depth values and the reprojected images are visualised in Figure 6.23
and the corresponding error measures are given in Table 6.7. It can be observed that
the degraded regions in the input data have been filled in by the smoothness term
based on the information from adjacent data points and thereby no considerable
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Table 6.6. Comparison of different numerical schemes for equal number of iterations.
Results refer to the smaller versions of the four test images as in Table 6.5. The same
parameters have been used as in Figure 6.17 – 6.20 except for n, which is given by
n � 107.

alternating scheme simplified scheme full scheme
RSE RIE RSE RIE RSE RIE

Small Sombrero 0.02357 0.00082 0.02392 0.00659 0.00358 0.00319
Small Stanford Bunny 0.00390 0.00001 0.00378 0.00004 0.00489 0.00047
Small Dragon 0.00572 0.00001 0.00562 0.00001 0.00964 0.00170
Small Suzanne 0.00319 0.00002 0.00320 0.00001 0.00505 0.00056

differences have been made in the reconstruction when comparing both results with
the ground truth data in Figure 6.18(c). The evaluation reported in Table 6.7 also
verifies the quality of the reconstructions: All error measures are under 1 % and
especially for the perforated case even the same RSE has been achieved as for the
original version of the input image.

(a) Perforated version. (b) Confidence function. (c) Computed depth. (d) Reprojected image.

(e) Sliced version. (f) Confidence function. (g) Computed depth. (h) Reprojected image.

Figure 6.23. Experimental results on the deteriorated versions of the Stanford Bunny
shown in Figure 6.15(b). The first row refers to the perforated version and the second
to the sliced version. For both cases, employed parameters are: α � 7.5 × 10−5,
τ � 10−3, n � 106.
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Table 6.7. Evaluation of the inpainting effect for degraded versions of the Stanford
Bunny. Same parameters as in Figure 6.18, i.e. α � 7.5 × 10−5, τ � 10−3, n � 106.

perforated version
Figure 6.23(a)

sliced version
Figure 6.23(e)

original version
Figure 6.15(b)

RSE 0.00439 0.00509 0.00439
RIE 0.00039 0.00249 0.00007

Comparison with PDE-based Approach

As a next experiment, we demonstrate the robustness of our variational method
with respect to the noise by comparing the results with the PDE-based approach of
Vogel et al. [259] in terms of the previously defined error measures. While the work
by Vogel et al. [259] constitutes an extension to the baseline model by Prados and
Faugeras [195] since it employs the Phong reflectance, we consider only a version
with the Lambertian surface reflectance as well as the corresponding scheme which
is essentially based on the efficient fast marching method that we have seen in Section
2.3.3. Moreover, we apply both algorithms to two images to demonstrate between
advantages and disadvantages of each method: the one without noise and the other
with noise. To this end, using the Stanford Bunny in Figure 6.15(b) we have added
Gaussian noise with standard deviation σ � 20 for generating a noisy image. The
outcomes from each case are reported in Table 6.8 and 6.9, respectively.

Concerning the scenario without noise, both methods have shown, in general, a
superb performance, i.e. in most cases error values under 1 % with respect to both
evaluation metrics. Nevertheless, when we take a closer look on Table 6.8 which
is the test case without noise, the following underlying tendency of each method
can be revealed: Whereas the PDE-based approach has shown better performance
in terms of the surface related error (RSE), the variational method has obtained
superior results with reference to the reprojection error (RIE). In fact, based on
the discussions in Section 5.1.2 the role of each term in variational framework
accounts for the phenomenon: The data term attempts to minimise the inconsistency
of the photometric reprojection, which naturally leads to relatively lower image
related error (RIE). However, at the same time the regulariser and the coarse-to-fine
scheme necessarily induce some form of smoothness in the reconstruction, which is
responsible for comparatively higher surface related error (RSE).

The previous situation turns completely around when it comes to noisy data,
since our variational method can exploit not only the smoothness term but also the
independence of the initialisation that we have observed in Table 6.4: (i) As we have
seen in Section 5.4.3, the increased impact of the regulariser with a comparatively
higher value of α can suppress the unreliable oscillations from noisy data, which
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makes possible to obtain a smooth surface, cf. the value α between Table 6.8 and
6.9. (ii) Concurrently, in contrast to the PDE-based approach by Vogel et al. [259]
the hierarchical initialisation through the coarse-to-fine scheme does not have to
rely entirely on the inaccurate information on the critical points of noisy data,
which also makes the algorithm robust. Consequently, both effects make a sharp
contrast in the reconstruction quality as presented in Table 6.9: While the RSE for
the variational method lies in the range between 1 and 5 %, the same error measure
for the PDE-based approach is much higher, i.e. 12 to 20 %. Besides the reported
error measures, the computed depth of the Stanford Bunny by each method in Figure
6.24(c) and 6.24(d) supports the outcome of the error measures as well.

Table 6.8. Comparison between the Cartesian depth parametrised variational method
and the PDE-based approach of Vogel et al. [259] with Lambertian reflectance model,
which corresponds to the baseline model of Prados and Faugeras [195]. The same
parameters are employed as in Figure 6.17 – 6.20.

PDE-based approach
Vogel et al. [259]

variational method
Ju et al. [132]

RSE RIE RSE RIE
Sombrero 0.00301 0.00495 0.00318 0.00209
Stanford Bunny 0.00266 0.00154 0.00439 0.00007
Dragon 0.00422 0.00255 0.01376 0.00028
Suzanne 0.00253 0.00082 0.00251 0.00002

(a) Noisy input image. (b) Ground truth. (c) Variational method. (d) PDE-based method.

Figure 6.24. Computed depth for the noisy version of the Stanford Bunny (Gaussian
noise with σ � 20). For our variational method, the employed parameters are:
α � 1.0, τ � 10−5, n � 106.
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Table 6.9. Performance under noise. Comparison between our variational method
and the PDE-based approach of Vogel et al. [259] with Lambertian reflectance model
(� baseline model of Prados et al. [195]). Gaussian noise of standard deviation
σ � 20. Error measures are given in terms of the relative surface error (RSE) and the
relative image error (RIE). The applied parameters are as follows: Sombrero (α � 0.1,
τ � 10−5, n � 106), Stanford Bunny (α � 1.0, τ � 10−5, n � 106), Dragon (α � 1.0,
τ � 10−5, n � 106), Suzanne (α � 1.0, τ � 5 × 10−6, n � 106).

PDE-based approach
Vogel et al. [259]

variational method
Ju et al. [132]

RSE RIE RSE RIE
Noisy Sombrero 0.19530 0.27254 0.05118 0.13239
Noisy Stanford Bunny 0.10973 0.17347 0.03235 0.15279
Noisy Dragon 0.12240 0.19409 0.05395 0.18767
Noisy Suzanne 0.12134 0.16783 0.01256 0.14302

6.4.3 Results on Real World Images
So far we have conducted all experiments with synthetic images that we have
generated in Section 6.4.1. In order to investigate how the algorithm behaves with
real world data, we use the real face images provided by Prados et al. [198] in this
experiment. According to the authors, these photos were taken by a digital camera
with a built-in flash in a relatively dark place, so that the assumptions made on
the scene including the illumination as well as the light attenuation should not be
severely violated. We have performed an experiment with two images, i.e. the one
with closed eyes in Figure 6.25(a) and the other with open eyes in Figure 6.25(e). The
employed intrinsic parameters are f � 5.8 mm for the focal length and h1 � h2 � 0.018
mm for the grid size. The reconstruction results of the two real test images have been
rendered from three different viewpoints and are shown in Figure 6.25. While for
both test images we obtain visually realistic reconstructions, for the second image
with open eyes in Figure 6.25(e) one can notice the inpainting effect on the eye region,
where a confidence function has been defined in order to mask them out based on
that the assumption on the Lambertian surface does not hold there.

6.5 Summary
In this chapter, we have proposed a novel variational model for perspective shape
from shading by employing the Cartesian depth parametrisation. The established
model is characterised by numerous attractive features that distinguishes it from other
existing variational methods. Besides, it also has demonstrated good reconstruction
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(a) Real test image 1. (b) View 1. (c) View 2. (d) View 3.

(e) Real test image 2. (f) View 1. (g) View 2. (h) View 3.

Figure 6.25. Reconstruction with real world images. Three different views are
rendered based on the estimated depth. For both cases, employed parameters are:
α � 7.5 × 10−5, τ � 5 × 10−3, n � 2 × 105.

results for synthetic as well as real-world data which have even been corrupted, for
instance, by noise. To deal with the resulting highly non-convex energy functional,
we have developed a hierarchical graduated optimisation method by embedding an
alternating explicit scheme into a coarse-to-fine framework. This makes the proposed
algorithm robust with respect to the initialisation by not requiring any specific a
priori information such as depth on critical points. At the same time, it leads to a far
less computation time comparing with the case of a standard explicit scheme. Apart
from aforementioned advantages on theoretical and practical aspects, our method
can serve as a fundamental building block for perspective shape from shading in a
variational framework. This offers the potential to combine with other reconstruction
cues in computer vision such as stereo or multi-view stereopsis, see e.g. [161] the
recent work of Maurer et al. at BMVC 2016.





Chapter 7

An Efficient Linearisation Approach

In the previous chapter, we have established a variational model for perspective
shape from shading based on the Cartesian depth parametrisation instead of the
radial depth based one in Chapter 5. In addition to the modelling side, we have
also designed a hierarchical optimisation framework to minimise the resulting non-
convex energy with the alternating explicit scheme. Although the aforementioned
variational model retains many distinctive features as explained in Section 6.2.2, the
employed multi-resolution based minimisation algorithm still suffers from the huge
number of iterations for meaningful reconstructions due to the slow convergence
of the explicit scheme. In particular, the limitation to small time step sizes brings
various consecutive problems in practical applications: For high resolution images,
the computation time based on the explicit scheme may increase drastically, which
often turns out to be infeasible. Besides, an increased amount of regularisation for
noisy or missing data entails a further drastic fall-off of the time step size, which
makes the scheme exceedingly inefficient or impractical even for small images.

In this chapter, being aware of the aforementioned difficulties we introduce an
efficient linearisation approach for our Cartesian depth based variational model
[132] that we have studied in the previous chapter. To that end, we construct
our numerical scheme in a way that it embeds a linear approximation based fixed
point iteration with the upwind scheme [219] as well as the lagged diffusivity
method [48, 254] into a Gauß-Newton type multi-resolution optimisation framework
[9, 10, 36, 211]. This highly specialised scheme is, therefore, not only useful to
minimise the underlying non-convex energy, but also able to respect the inherent
hyperbolic properties of the data term, as well as to deal with the arising nonlinearity
from the incremental computations [48, 254]. In addition, since our linearised
scheme does not rely on a parameter of the numerical time step size any more,
the reconstruction of high resolution images with a large amount of regularisation
becomes feasible, which is particularly useful in the case of noisy data or data with
missing information. Moreover, we make use of a numerical differentiation method
for evaluating the derivatives expressions of the reflectance model in the data term
during the linearisation process. Hence, the employed method can also be applied
to the cases of advanced reflection models such as the Oren-Nayar model for rough
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surfaces [178, 179] and the Phong model for specular ones [189]. The considerable
effort that we have made turns out to be well rewarded: On the one hand, a speedup
by more than three orders of magnitude can be achieved when compared with the
computation time of the alternating explicit scheme in [132] for the same synthetic
test images. On the other hand, good reconstructions can be obtained within a
reasonable runtime for noisy data sets, degraded images, and high resolution images.

This chapter is based on the paper of Maurer et al. [160] that was presented at
GCPR and the structure is organised as follows: In Section 7.1, we describe our
efficient linearisation approach called hyperbolic warping scheme by providing
enough details to follow the idea for each building block. Then, we present
comprehensive evaluation results of our algorithm in Section 7.2.

7.1 Hyperbolic Warping Strategy

In this section, we consider how to efficiently minimise the Cartesian depth based
energy functional (6.10) that we have proposed in Chapter 6. As we have already
discussed in Section 6.3, the hyperbolic nature of the data term (6.11) induced by the
gradient ∇z has mainly caused difficulties in the efficient computation as well as the
non-convexity. Hence, to overcome the situation we develop an efficient linearisation
approach called hyperbolic warping scheme based on the work [48, 219, 247].

In order to construct the numerical scheme, we linearise the Euler-Lagrange
equation (6.63) that is associated with the energy functional described by the upwind
approximation in Section 6.3.2. Then, we derive our numerical scheme by making
use of two nested fixed point iterations and an incremental computation within
a coarse-to-fine framework inspired by the method of Brox et al. [48] for optical
flow computation. While our linearisation approach is based on the three main
components of Brox et al. [48], i.e. the two fixed point iterations, the incremental
computation by means of the linearisation and the coarse-to-fine optimisation
framework, the resulting scheme is to a large extent different due to the hyperbolic
nature of our data term.

7.1.1 Fixed Point Iteration

In order to find a solution to the EL equation in (6.63), we introduce a fixed point
iteration with respect to z by adopting a semi-implicit scheme for the contributions
from the data term and an implicit scheme for the contributions from the smoothness
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term with the iteration index k. This yields the formulation

0 � cx y Ex yk+1
D

[
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]
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D

[
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D

]
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D

[
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]
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[
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]
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, (7.1)

whose solution amounts to be zk+1. Concerning the initialisation of z, the strategy
discussed in (6.82) can be employed [132, 160]. Please note that the major sources
of nonlinearity in (7.1) are comprised of Ex yk+1

D in the data term and the diffusivity
functions Ψ′

h2
∗∗

with respect to its argument sx yk+1 in the smoothness term whose
subscript is defined by

h2
∗∗ � {h2

1 , h1 h2, h2
2} . (7.2)

7.1.2 Incremental Computation and Linearisation
As a stepping stone to acquire the appropriate linear representation for the formu-
lation in (7.1), we make use of the incremental computation method in [48, 254] by
reformulating the expression zk+1 as

zk+1
� zk

+ dzk . (7.3)

This suggests that the new depth zk+1 at a time step k + 1 can be computed as the
sum of the known depth zk from an old time step k and the unknown increment dzk

from the current computation.
We now turn to the nonlinearity of (7.1) with the incremental formulation (7.3) but

deal with the contributions from the data term and the smoothness term separately:
Taylor expansion for the data term and lagged diffusivity method [254] for the
smoothness term.

Taylor Approximation for Data Term.

To resolve the nonlinearity of the data term, we make use of the Taylor approximation.
To this end, we first substitute the incremental formulation (7.3) for zk+1 in (7.1). For
the terms containing the time step k + 1 in (7.1), i.e. Ex yk+1

D and Ex±y±k+1
D , by means

of the superscript notations in Section 6.3.3 this corresponds to

Ex yk+1
D � ED
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x , y , zx yk

+ dzx yk , zx−yk
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+ dzx y−k , zx y+k
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)
, (7.4)
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Ex−yk+1
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respectively, cf. (6.41), (6.47), (6.44), (6.50), and (6.53). Subsequently, by applying
the first order Taylor expansion to the terms at a time step k + 1 with respect to the
corresponding terms at a time step k, one can obtain the expressions

Ex yk+1
D � Ex yk

D +

[
Ex yk

D

]
zx yk dzx yk

+

[
Ex yk

D

]
zx− yk dzx−yk (7.9)

+

[
Ex yk

D

]
zx+ yk dzx+yk

+

[
Ex yk

D

]
zx y−k dzx y−k

+

[
Ex yk

D

]
zx y+k dzx y+k ,

Ex−yk+1
D � Ex−yk

D +

[
Ex−yk

D

]
zx yk dzx−yk

+

[
Ex−yk

D

]
zx−2 yk dzx−2 yk (7.10)

+

[
Ex−yk

D

]
zx yk dzx yk

+

[
Ex−yk

D

]
zx− y−k dzx−y−k

+

[
Ex−yk

D

]
zx− y+k dzx−y+k ,

Ex+yk+1
D � Ex+yk

D +

[
Ex+yk

D

]

zx+ yk
dzx+yk

+

[
Ex+yk

D

]

zx yk
dzx yk (7.11)

+

[
Ex+yk

D

]

zx+2 yk
dzx+2 yk

+

[
Ex+yk

D

]

zx+ y−k
dzx+y−k

+

[
Ex+yk

D

]

zx+ y+k
dzx+y+k ,

Ex y−k+1
D � Ex y−k

D +

[
Ex y−k

D

]
zx y−k dzx y−k

+

[
Ex y−k

D

]
zx− y−k dzx−y−k (7.12)

+

[
Ex y−k

D

]
zx+ y−k dzx+y−k

+

[
Ex y−k

D

]
zx y−2k dzx y−2k

+

[
Ex y−k

D

]
zx yk dzx yk



7.1 Hyperbolic Warping Strategy 203

and
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respectively.
Then, by plugging these approximations into the contributions from the data term

in the optimality condition (7.1) and rearranging the resulting terms with respect to
corresponding unknown dz depending on the central point of approximations, one
can attain the form

ELD � ex yk
D dzx yk

+
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(x̄ ȳ) ∈ND(x y)

e x̄ ȳk
D dz x̄ ȳk

+ rx yk , (7.14)

where ex yk
D denotes the coefficient of dzx yk given in Table 7.1, (x̄ ȳ) ∈ ND(x y)

represents the neighbouring positions of (x , y)⊤ for the data term where the approx-
imations are performed. This corresponds to
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Moreover, e x̄ ȳk
D depicts the coefficients of corresponding dz x̄ ȳk that is also provided

in Table 7.1, and rx yk is for the rest terms that are not involved with the unknown
dz∗∗k , which amounts to
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It should be noted that Table 7.1 only indicates the situation when all coefficients
are fully occupied. However, this is not the case for the data term, since the employed
upwind type approximation in Section 6.3.3 selects only one direction between the
forward and the backward at the centre of the approximation for x- and y-direction,
respectively. This necessarily makes one coefficient disappear in each direction,
e.g. considering x-direction in (7.10) either

[
Ex−yk

D

]
zx−2 yk or

[
Ex−yk

D

]
zx yk must vanish

owing to the aforementioned upwind property. In this context, the four coefficients
at position x y±2 and x±2 y in Table 7.1 have no contributions: As an example,
we consider the case at position x−2 y in Table 7.1. The contribution of this case
comes from the approximation at the central point x−y, i.e. the selection between[
Ex−yk

D

]
zx−2 yk and

[
Ex−yk

D

]
zx yk based on the upwind property. If the former term is
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chosen, the latter term becomes zero or if the latter term is chosen the former term
becomes zero. In both cases, the multiplication of these two terms vanish. Since this
property is valid for other positions, i.e. x+2 y, x y−2 and x y+2, the assertion follows.

Table 7.1. The weight matrix based on the coefficients ex y
D and e x̄ ȳk

D of dzx yk and
dz x̄ ȳk for the expression in (7.14) when it is fully occupied. The circled numbers
refer to the expressions (7.9) – (7.13) from which the corresponding terms originate
and thereby they share the same colour.
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Lagged Diffusivity Fixed Point Iteration for Smoothness Term.

For the contributions from the smoothness term, we also replace zk+1 with the
incremental formulation (7.3) as performed for the data term. This turns the
contributions from the smoothness term in (7.1) into
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Since the curvature measure (7.18) described by the incremental formulation is
contained as an argument of the diffusivity functions in (7.17), this also causes
nonlinearity. To overcome the difficulty, we adopt the lagged diffusivity method
[51, 253, 254] which is sometimes known as the Kačanov method [134]. The basic
idea of this approach is that solving a nonlinear problem as a series of linear ones by
means of the fixed point iteration [108, 254]. The method has been widely used to
solve nonlinear problems arising in various field [90, 91, 135] including optical flow
computations [48].

On this account, by introducing a second fixed point iteration with an iteration
index n accompanied by the initialisation dzx yk ,n�0 � 0 we apply the Kačanov method
to the contributions from the smoothness term given in (7.17) and reformulate the
derivative expressions as the corresponding ones in terms of the central point of
approximations. This yields

ELS � αΨ′s
x ykn

[
zx ykn+1

+ dzx ykn+1
]
, (7.19)

whereΨ′s x ykn denotes the diffusivity of a preceding time step n at the approximation
point (x , y)⊤ given by
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)2)
.

Please note that we use the bracket expressions [·] in (7.19) to stress that they are
not the argument of Ψ′s x ykn . Besides, because of the reformulation of the second
derivative terms the diffusivity now involves 4-th order terms

h4
∗∗ � {h4

1 , h
2
1 h2

2 , h
4
2} (7.21)

instead of the second order ones in contrast to (7.17). Moreover, one can note that
we make use of the term dzx ykn for the argument of the diffusivity function in (7.18)
and dzx ykn+1 for other smoothness term related contributions to enforce the lagged
diffusivity. By following the notations in (7.14), this leads to

ELS � αΨ′s
x ykn

[
zx ykn+1

+ dzx ykn+1
]

(7.22)

+ α
∑

(x̄ ȳ) ∈NS(x y)
Ψ′s

x̄ ȳkn
[
z x̄ ȳkn+1

+ dz x̄ ȳkn+1
]
,

As in (7.19), the bracket expressions here also indicate that they are not the argument
of Ψ′s x ykn . For other notations, we follow the conventions from the data term.
Therefore,

�
x̄ ȳ

�
∈ NS(x y) stands for the involved neighbouring positions of (x , y)⊤
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for the approximation of the smoothness term as provided in Table 5.1. This
corresponds to

�
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�
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�
x y

�
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. (7.23)

Moreover,Ψ′s x̄ ȳkn denotes the corresponding diffusivity weight. It can be noticed
from (7.22) that the nonlinearity with respect to its argument is not present any more
since the diffusivity (7.20) has been already evaluated from the old time step n.

Once the nonlinear property in the smoothness term is sorted out, we combine
both contributions from the data term and the smoothness term, i.e. (7.14) and (7.22).
To this end, we also utilise dzkn+1 for the data term related contributions (7.14) in
view of the employed lagged diffusivity for the smoothness term related ones (7.22).
This yields
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The full version of (7.24) with the linearised expressions of the data term is given by
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(
Ex+yk

D +

[
Ex+yk

D

]

zx+ yk
dzx+ykn+1

+

[
Ex+yk

D

]

zx yk
dzx ykn+1

+

[
Ex+yk

D

]

zx+2 yk
dzx+2 ykn+1

+

[
Ex+yk

D

]

zx+ y−k
dzx+y−kn+1

+

[
Ex+yk

D

]

zx+ y+k
dzx+y+kn+1

)
cx+y

[
Ex+yk

D

]

zx yk
(7.27)
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+

(
Ex y−k

D +

[
Ex y−k

D

]
zx y−k dzx y−kn+1

+

[
Ex y−k

D

]
zx− y−k dzx−y−kn+1

+

[
Ex y−k

D

]
zx+ y−k dzx+y−kn+1

+

[
Ex y−k

D

]
zx y−2k dzx y−2kn+1

+

[
Ex y−k

D

]
zx yk dzx ykn+1

)
cx y−

[
Ex y−k

D

]
zx yk (7.28)

+

(
Ex y+k

D +

[
Ex y+k

D

]

zx y+k
dzx y+kn+1

+

[
Ex y+k

D

]

zx− y+k
dzx−y+kn+1

+

[
Ex y+k

D

]

zx+ y+k
dzx+y+kn+1

+

[
Ex y+k

D

]

zx yk
dzx ykn+1

+

[
Ex y+k

D

]

zx y+2k
dzx y+2kn+1

)
cx y+

[
Dx y+k

]
zx yk (7.29)

+ α
(
Ψ′

h4
1

x ykn
[
zx ykn+1

+ dzx ykn+1
]
+ 2Ψ′

h2
1 h2

2

x ykn
[
zx ykn+1

+ dzx ykn+1
]

+Ψ′
h4

2

x ykn
[
zx ykn+1

+ dzx ykn+1
])
. (7.30)

One can note that the expressions in (7.25) – (7.29) came from the terms in (7.9) –
(7.13), respectively.

Iterative Methods

To find a solution of (7.24), we consider iterative methods since a direct approach
by inverting the system matrix constructed from (7.24) is, despite its sparsity,
computationally expensive or even infeasible due to severe restrictions on resources
based on its huge size (nx × n y)2, where nx and n y denote the number of pixels
in x- and y-direction, respectively. In this respect, by reformulating the expression
(7.24) as

0 �

(
ex yk

D + αΨ′s
x ykn

)
dzx ykn+1

+ αΨ′s
x ykn zx ykn+1

+ rx yk (7.31)

+

∑
(x̄ ȳ)∈ND(x y)

e x̄ ȳk
D dz x̄ ȳkn+1

+

∑
(x̄ ȳ)∈NS(x y)

Ψ′s
x̄ ȳkn

[
z x̄ ȳkn+1

+ dz x̄ ȳkn+1
]
,

at each iteration step we solve the following equation for the sought depth increment
dzx ykn+1

0 �

(
ex yk

D + αΨ′s
x ykn

)
dzx ykn+1

+ αΨ′s
x ykn zx ykn+1

+ rx yk
+ ND + NS

⇒ dzx ykn+1
� −
αΨ′s

x ykn zx ykn+1 + rx yk + ND + NS

ex yk
D + αΨ′s

x ykn
:� dz̃x ykn+1 , (7.32)
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where

ND �

∑
(x̄ ȳ)∈N−D (x y)

e x̄ ȳk
D dz x̄ ȳkn+1

+

∑
(x̄ ȳ)∈N+

D (x y)
e x̄ ȳk

D dz x̄ ȳkn (7.33)

and

NS �

∑
(x̄ ȳ)∈N−S (x y)

Ψ′s
x̄ ȳkn

[
z x̄ ȳkn+1

+ dz x̄ ȳkn+1
]

(7.34)

+

∑
(x̄ ȳ)∈N+

S (x y)
Ψ′s

x̄ ȳkn
[
z x̄ ȳkn+1

+ dz x̄ ȳkn
]
.

In these expressions,
�
x̄ ȳ

�
∈ N

−

{D ,S}(x y) and
�
x̄ ȳ

�
∈ N

+

{D ,S}(x y) denote the set of
neighbours that have been already updated and will be updated, respectively.

Since the neighbouring positions
�
x̄ ȳ

�
∈ N

−

{D ,S}(x y) in (7.33) and (7.34) have
made use of the already updated values at time step k , n + 1, this corresponds to the
so-called Gauß-Seidel method [163, 221, 251] . In this case, the update rule is simply
given by

dzx ykn+1
� dz̃x ykn+1 . (7.35)

To further accelerate the convergence speed, we rewrite this update rule as

dzx ykn+1
� dzx ykn

+

(
dz̃x ykn+1

− dzx ykn
)

(7.36)

and introduce a relaxation factor ω to the particular direction
�
dz̃x ykn+1

− dzx ykn�

that provides the information how the value dzx ykn have to be updated. This yields

dzx ykn+1
� dzx ykn

+ ω
(
dz̃x ykn+1

− dzx ykn
)

⇔ dzx ykn+1
� (1 − ω) dzx ykn

+ ω dz̃x ykn+1 . (7.37)

When the relaxation factor ω is in the range ω ∈ (1, 2), this method is called the
successive over-relaxation (SOR) method [88, 275, 276]. One can note that this SOR
method obtains a solution by extrapolating the Gauß-Seidel method (7.35), which
has the form of a weighted average between the value dzx ykn at time step k , n and
the already updated value dz̃x ykn+1 at time step k , n + 1 by the Gauß-Seidel method.
Moreover, the SOR method (7.37) can be reduced to the Gauß-Seidel method (7.35)
when ω � 1, as expected.

7.1.3 Coarse-to-fine Scheme
As the last building block for the hyperbolic warping strategy, we take advantage
of the multi-scale optimisation framework in the spirit of the continuation method
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and graduated non-convexity as discussed in Section 6.3.4: The first fixed point
iteration of (7.1) is embedded into a coarse-to-fine scheme as in [48, 132] to cope
with the non-convexity of the approximated energy (6.35). This strategy helps not
being trapped in local minima during the minimisation process and thereby leads to
a minimiser in a global context, see Figure 6.13(a). To this end, we introduce two
parameters: One is η ∈ (0, 1) that describes the downsampling factor between two
consecutive resolution levels as in Figure 6.13(b), the other is κ for specifying the
fixed point iteration numbers within one resolution layer. Then, the solution can
be computed by only accumulating the increment at each level from coarsest to the
original resolutions. This is given by

z(ℓ�0) � z(ℓmax) +
ℓmax∑
m�0

dz(ℓmax−m) , (7.38)

where the subscript denotes the resolution level and ℓmax corresponds to the coarsest
resolution level given by the downsampling factor ηℓmax , cf. Figure 7.1.

z(`+1)

dz(`+1)

z(`) = z(`+1)+ dz(`+1)

dz(`)

z(`−1) = z(`)+ dz(`)

level `+ 1

level `

level `− 1

coarser

finer

Figure 7.1. Coarse-to-fine scheme with incremental computation. The subscript
denotes the resolution level.
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7.1.4 Computation Method

As previously pointed out, for evaluating the linearised terms Ex∗y∗k+1
D in (7.9),

(7.10), (7.11), (7.12) and (7.13) the upwind type approximations in Section 6.3.2 are
employed, cf. Line 5 in Algorithm 7.1. For computing the expressions

[
Ex∗y∗k

D

]
zx yk

in (7.1), we take numerical derivatives by inducing a predefined small amount of
perturbations ±h3 on a current estimate of zk and re-evaluate the corresponding
terms. This procedure actually allows to apply the standard central difference scheme
in differentiating

[
Ex∗y∗k

D

]
with respect to zx yk as follows:

[
Ex yk

D

]
zx yk �

ED
�
x , zk (x) + h3

�
− ED

�
x , zk (x) − h3

�

2 h3
, (7.39)

[
Ex−yk

D

]
zx yk �

ED
�
x − h1, zk (x − h1) + h3

�
− ED

�
x − h1, zk (x − h1) − h3

�

2 h3
, (7.40)

[
Ex+yk

D

]

zx yk
�

ED
�
x + h1, zk (x + h1) + h3

�
− ED

�
x + h1, zk (x + h1) − h3

�

2 h3
, (7.41)

[
Ex y−k

D

]
zx yk �

ED
�
x − h2, zk (x − h2) + h3

�
− ED

�
x − h2, zk (x − h2) − h3

�

2 h3
, (7.42)

and
[
Ex y+k

D

]

zx yk
�

ED
�
x + h2, zk (x + h2) + h3

�
− ED

�
x + h2, zk (x + h2) − h3

�

2 h3
(7.43)

with the notations in (6.37), see Line 6 in Algorithm 7.1. One should note that the
term B in the above expressions contains only selected upwind approximations. For
solving the sparse linear system (7.31) efficiently, the SOR method in (7.37) is applied.
Concerning the smoothness term, we have used the central difference method in the
context of “first discretise then optimise” scheme as shown in Table 5.1, see Line 10
in Algorithm 7.1. The important building blocks for the computation method are
compiled in Algorithm 7.1.

As previously indicated, this hyperbolic warping scheme allows to compute the
depth map by accumulating only the increment at each resolution level on top of
the initial depth at the coarsest layer by relying on the coarse-to-fine optimisation
framework and the lagged diffusivity fixed point iteration. However, it may happen
that erroneous increments from a suboptimal linear approximation could mislead
the computation and thereby compromise the reconstruction quality. In order to
prevent the situation, before adding the new increment to the depth map (Line 20 in
Algorithm 7.1) we adopt an insurance policy in a way that the obtained increments
during the fixed point iterations as well as SOR should stay within a predefined limit
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dzlimit such that |dzkn
ℓ | ⩽ dzlimit. Otherwise, the increment is replaced with the closest

values in the interval boundaries, see Line 14–17 in Algorithm 7.1.

Algorithm 7.1. A pseudocode of the hyperbolic warping scheme for variational
perspective Shape from Shading.

/* initialisation */
1 i ←− 1, k ←− 1, n ←− 0, ℓ ←− ℓmax
2 zk
ℓ ←− initialise_z /* (6.82) */

/* coarse-to-fine scheme */
3 for ℓ � ℓmax downto 0 do

/* fixed point iteration (7.1) at each level */
4 for k � 1 to κ do
5 Ek+1

D ← compute_Linearisation_in_DT
�
zk
ℓ , E

k
D

�
/* (7.9) – (7.13) */

6
�
Ek

D

�
zk
ℓ
← compute_Derivatives_in_DT (zk

ℓ , h3) /* (7.39) – (7.43) */

/* lagged diffusivity fixed point iteration */

7 dzkn
ℓ ←− 0 /* increment initialisation */

8 for n � 0 to nmax do
9 eD , r ←− compute_DT_Weights

(
Ek+1

D ,
�
Ek

D

�
zk

)
/* (7.31) */

10 Ψ′s
kn
←− compute_ST_Weight

�
zkn
ℓ , dzkn

ℓ

�
/* Table 5.1 */

/* SOR method for the linear system (7.31) */
11 for i � 1 to SOR_iteration_Number do
12 dzkni

ℓ ← SOR
(
zkn
ℓ , dzkn

ℓ , α, ω, eD , c , r,Ψ′s
kn

)
/* (7.37) */

13 dzkn
ℓ ←− dzkni

ℓ

/* for avoiding erroneous increments */

14 if dzknmax
ℓ > dzlimit then

15 dzknmax
ℓ ←− dzlimit

16 if dzknmax
ℓ < −dzlimit then

17 dzknmax
ℓ ←− −dzlimit

18 zk+1
ℓ ←− zk

ℓ + dzknmax
ℓ

19 zk
ℓ−1 ←− zk

ℓ
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7.2 Experimental Evaluation

In this section, we evaluate our hyperbolic warping algorithm that we have developed
so far. For a fair comparison with the method without linearisation from the previous
chapter, we take the same synthetic images in Figure 6.15 as well as the same error
measures: the RSE in (6.91) that describes how close the estimated 3-D surface
to the ground truth one and the RIE in (6.92) is. This indicates how well the
reprojected image of the reconstructed surface matches the input image. Whereas
our linearised algorithm involves several parameter values, they are mainly from
solver related matters such as the number of iterations and thereby no fine-tuning
process is required. Hence, we apply a predefined setting to the whole experiments:
a downsampling factor η � 0.9, κ � 5 fixed point iterations per resolution, nmax � 9
nonlinear update for lagged diffusivity fixed point iteration, 10 SOR iterations, a
depth increment limit dzlimit � 0.01, h3 � 10−12 for numerical differentiation of ED
in the data term, a relaxation parameter ω � 1.8 and a contrast parameter λ � 10−3.
Furthermore, the full confidence value one (c � 1) is assigned to the region for
reconstruction but zero confidence is used at the background of the input images.

7.2.1 Impact of the Smoothness Term

One distinctive feature which distinguishes our hyperbolic warping scheme given
in Algorithm 7.1 from the explicit scheme that we have seen in Chapter 6 is the
feasibility of a large amount of regularisation. The freedom of choice with respect
the amount of the smoothness α comes from the fact that our linearised algorithm is
not influenced by the time step size τ any more to guarantee convergence, which
actually makes a key difference compared with the explicit type schemes employed
in (6.81), cf. Figure 6.14.

The first experiment concerns how the quality of reconstruction is affected as
the regularisation parameter α grows progressively. The reprojected images of the
corresponding estimations depending on the different values of α are displayed in
Figure 7.2 along with the input image. The result demonstrates that a large degree
of regularisation induces a strong smoothing effect on the reconstruction. This is
supported by a rather flattened surface with not much details, as can be observed in
Figure 7.2(d). It can be noted that the employed values of α in Figure 7.2(c) and 7.2(d)
are much higher than the one used in Figure 6.18 or other ones in Section 6.4.2, all of
which have used with the explicit scheme. The amount of regularisations used in
Figure 7.2(c) and 7.2(d) would not be feasible with the explicit scheme. This property
does not only play an important role when it comes to noisy data, but it also offers a
possibility to determine the level of detail (LoD) [55] of the reconstruction.
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(a) Input image. (b) α � 1. (c) α � 20. (d) α � 100.

Figure 7.2. Impact of the smoothness term subject to the different values of α for the
Stanford Bunny test image.

7.2.2 Comparison with Other Methods

In this section, we compare our hyperbolic warping scheme with other methods: the
PDE-based approach by Vogel et al. [259] with the Lambertian reflectance whose
baseline model corresponds to the method of Prados and Faugeras [195] and our
variational approach (explicit scheme) from the previous chapter. In order to explore
different aspects of each method, i.e. strengths and weaknesses, not only the normal
test images in Figure 6.15 but also corrupted versions containing Gaussian noise with
σ � 20 are utilised for experiments and the computed error measures are compiled
in Table 7.2.

With normal test images, both error measures of our linearised approach remain
under 1 % (except in case of the Dragon), although the values are somewhat higher
than those of other methods. The result also suggests that each method has its
own advantages with respect to error measures: The PDE-based approach delivers
better performance in term of the RSE, since it does not regularise the depth itself.
Regarding the RIE, in contrast, the variational method [132] shows better quality
considering that the penalisation is actually brought into effect on the data term in an
attempt to neutralise the discrepancy between the input image and the reprojected
one from the estimated depth.

Turning to the noisy data, however, it can be noticed that our linear approximation
method outperforms the other approaches in both error measures. Besides, the
outcome also indicates that both variational methods offer the distinct advantage
of robustness against noise due to the regularisation. This is not the case for the
PDE-based method that moreover rely on the singular points whether the data is
noisy or not. This explains the substantially lower error values for both variational
methods and comes to full agreement with the discussions in Section 6.4.2.

Moreover, the advantage of our linearised scheme is that it does not require a time
step size as indicated in Section 7.2.1. Hence, contrary to the case of the alternating
explicit scheme from the previous chapter no such a vast number of iterations is



214 An Efficient Linearisation Approach

necessary for convergence. On this account, the severe restrictions on the choice of a
relatively small amount of regularisations have been lifted. This supports the use
of different values of α in Table 7.2 comparing with the explicit scheme, where the
parameters have been optimised for the predefined iteration number n � 106.

Table 7.2. Comparison between our linearised approach and two other methods: the
PDE-based method of Vogel et al. [259] and the alternating explicit scheme in Chapter
6. Error measures are given in terms of RSE and RIE for the four test images in Figure
6.15 as well as corresponding corrupted versions with Gaussian noise (σ � 20). The
employed parameters of our approach are: Sombrero (α � 0.003), Stanford Bunny
(α � 0.08), Dragon (α � 0.2), Suzanne (α � 0.04), Noisy Sombrero (α � 0.02), Noisy
Stanford Bunny (α � 3), Noisy Dragon (α � 1), Noisy Suzanne (α � 2). For the method
of Vogel et al. the same parameters have been utilised as in the original paper.

Vogel et al. [259] alternating explicit hyperbolic warping
RSE RIE RSE RIE RSE RIE

Sombrero 0.00301 0.00495 0.00318 0.00209 0.00768 0.00925
Stanford Bunny 0.00266 0.00154 0.00439 0.00007 0.00928 0.00327
Dragon 0.00422 0.00255 0.01376 0.00028 0.02904 0.02333
Suzanne 0.00253 0.00082 0.00251 0.00002 0.00696 0.00224
Noisy Sombrero 0.19530 0.27254 0.05118 0.13239 0.01542 0.03851
Noisy Stanford Bunny 0.10973 0.17347 0.03235 0.15279 0.01359 0.12285
Noisy Dragon 0.12240 0.19409 0.05395 0.18767 0.03391 0.17732
Noisy Suzanne 0.12134 0.16783 0.01256 0.14302 0.00826 0.12038

To show the value of the built-in smoothness term in variational methods, we
further conduct an experiment with the noisy data by applying an extra pre- and post-
processing step to the PDE-based method and our linearisation scheme, respectively.
To this end, as a pre-processing step we adopt a total variation (TV)-based image
denoising method [220] and for post-processing a depth smoothing technique by
means of a second order smoothness term corresponding to our regulariser in (5.33).
The outcome of this experiment is presented in Table 7.3. It shows the advantage
of the built-in regularisation of variational methods by the fact that our linearised
algorithm obtains better results even without the aforementioned steps while the
quality of the reconstruction with the PDE-based method of Vogel et al. [259] has
been considerably improved especially from a noise reduction process that had
performed before the computation.



7.2 Experimental Evaluation 215

Table 7.3. Comparison of the methods between Vogel et al. [259] and our hyperbolic
warping approach with noisy data by means of an additional pre-processing step
(image denoising) or post-processing step (depth smoothing).

Vogel et al. [259] hyperbolic warping
original

RSE
with pre-

processing
with post-
processing

original
RSE

with pre-
processing

with post-
processing

Noisy Sombrero 0.19530 0.02008 0.19197 0.01542 0.01741 0.01538
Noisy Stanford Bunny 0.10973 0.01434 0.06164 0.01359 0.01470 0.01357
Noisy Dragon 0.12240 0.04623 0.08226 0.03391 0.03322 0.03390
Noisy Suzanne 0.12134 0.01245 0.06169 0.00826 0.00917 0.00824

7.2.3 Reconstruction with Inpainting

The experiment in this section investigates the inpainting functionality of the
smoothness term (6.13). Whereas the same experiment has been performed in the
previous chapter, an implicit restriction is imposed on domain size for inpainting
due to the nature of the employed algorithm in the work: Since the explicit schemes
inevitably require significantly more iterations to fill in large regions, which thereby
takes huge amount of computation time, the domain size has been selected relatively
small, cf. Figure 6.23.

However, our hyperbolic warping scheme can provide an inpainting result for
comparatively large regions at marginal cost with respect to runtime. To confirm
this statement, we run our algorithm with the degraded input image given in Figure
7.3(a), where the domain size for inpainting is substantially larger than those in the
previous chapter and zero confidence (c � 0) is assigned to the region to be filled
in. Based on the reprojected image in Figure 7.3(b), one can see that our scheme
allows to obtain a high quality reconstruction even with a large fraction of missing
information. This is also supported by the error measure (RSE � 0.00793), which is
comparable to the case with complete data (RSE � 0.00696) according to Table 7.2.
However, a moderate smoothing effect may be noticed at some inpainted regions,
where the surface contains abrupt transitions of depth, e.g. the border between outer
and inner part of the ear, the area between the heart-shaped nose and the mouth,
and the upper part of the eyeball.

7.2.4 High-resolution Image

To demonstrate the main advantage of our linearised algorithm over other variational
SfS methods with explicit schemes such as [131, 132], we make use of the high-
resolution image Blunderbuss Pete in Figure 7.4(a) for reconstruction. Since the
shortcoming of a very small time step size – which makes numerous iterations
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(a) Degraded input image. (b) Reprojected image with α � 0.5.

Figure 7.3. Inpainting experiment with the Suzanne image.

necessary for convergence in the explicit schemes – is overcome in our case, a
speedup of three orders of magnitude with respect to runtime can be achieved for
small size images as shown in Table 7.4. Moreover, a reconstruction can be attained
with a reasonable computation time for the high-resolution image, which is obviously
not the case with explicit schemes. When it comes to solely runtime, however, the
PDE-based method shows clearly better performance, since the FM-based numerical
scheme only needs to visit each point once and the overhead for the update process
is marginal. This is actually the price that we have to pay when robustness of
variational methods becomes essential part of an algorithm.

Apart from the reasonable computation time, the quality of reconstruction is still
highly competitive when compared with that of the PDE-based approach: As shown
in Figure 7.4(b), it is not easy to distinguish the reprojected image of our approach
from the input image in Figure 7.4(a) without the difference plot provided in Figure
7.4(c) (RIE � 0.03414). Nevertheless, some difficulties may arise at wrinkles or folded
regions with sudden changes of grey values for the reprojected image as well as
at transition regions such as cloak around the legs, the knee and the torso for the
reconstruction (RSE � 0.02930), cf. Figure 7.4(g) and 7.4(h). Although the method of
Vogel et al. [259] shows a better performance in terms of the reprojection error (RIE
� 0.00067), the reconstruction has, in general, similar error patterns, e.g. at the cloak,
except some regions such as the knee and the torso (RSE � 0.01593).

7.3 Summary

In this chapter, we have developed an efficient numerical method for variational
perspective SfS by means of a linearisation of the reflectance model. When compared
with the standard explicit schemes, the proposed approach makes it possible to
achieve a speedup by more than three orders of magnitude without significantly
compromising the quality of the reconstruction. Aside from the speedup, a large
amount of regularisation becomes feasible without considerably sacrificing the com-
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Table 7.4. Comparison of runtime: Vogel et al. [259], alternating explicit scheme and
hyperbolic warping approach.

Vogel et al. [259] alternating explicit hyperbolic warping
Sombrero (256 × 256) 1s 29113s 17s
Stanford Bunny (256 × 256) 1s 23969s 11s
Dragon (256 × 256) 1s 25350s 12s
Suzanne (512 × 256) 2s 48395s 21s
Blunderbuss Pete (1080 × 1920) 33s infeasible 340s

(a) Input image. (b) Reprojected image
for our method.

(c) Difference plot for
Figure 7.4(b).

(d) Reprojected image
for PDE-based method.

(e) Difference plot for
Figure 7.4(d).

(f) Ground truth depth. (g) Our reconstruction. (h) Difference plot for
Figure 7.4(g).

(i) PDE-based
reconstruction.

(j) Difference plot for
Figure 7.4(i).

Figure 7.4. Reprojected image and colour-coded depth map of the Blunderbuss Pete
test image (3-D model by BenDasie). Red in difference plots indicates errors above 1
%, where the intensity encodes the error magnitude. White denotes errors below 1
%.

putation time. This feature is considered to be indispensable for the robustness of the
algorithm, in particular, when it comes to corrupt data with noise or missing infor-
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mation. Furthermore, the employed numerical derivatives for the linearisation of the
reflectance model can be extended to advanced reflection models in a straightforward
way. Besides, the proposed strategy is highly versatile: it can be applied to other
existing variational SfS models which are typically based on explicit schemes as the
de facto standard, it can be combined with the aforementioned advanced reflectance
models or it can be integrated as a building block for incorporating different depth
cue modules such as stereo due to the Cartesian depth based parametrisation, see
Maurer et al. BMVC 2016 [161]. As a consequence, the proposed numerical scheme is
eligible as a promising candidate to become a standard tool in variational perspective
SfS.



Chapter 8

Summary & Outlook

The goal of this thesis has been set as to investigate perspective SfS from modelling
and algorithmic viewpoints subject to the specified methods. In this chapter, we
encapsulate our major contributions by emphasising flexibility and efficiency with
respect to each approach: PDE-based methods and variational methods.

8.1 Summary of Contributions
Let us now summarise our contributions of each approach with respect to modelling
and numerical viewpoints.

8.1.1 PDE-based Methods
When it comes to PDE-based methods, our primary concern has been to consider a
relaxed assumption on the position of a point light source, i.e. the case of not being
located at the optical centre of a camera.

Modelling Side

To this end, we first have derived our generalised brightness equation using the
Lambertian reflectance model in Chapter 4. Furthermore, by employing the Oren-
Nayar surface reflectance model [178] we have constructed a model that has the
capability of jointly handling both more general illumination scenarios and non-
Lambertian objects at the same time. The established models are described by HJEs
in a spherical coordinate system such that critical points can be determined for the
initialisation of the FM method.

Numerical Side

Aside from the flexibility of the modelling side, we have achieved the efficiency
by customising the traditional FM method in a way that our adapted FM scheme
satisfies special requirements for our model. This adaptation process leads naturally
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to the distinct features of our scheme: (i) In contrast to the traditional FM methods,
our adapted FM scheme is able to deal with a general-type of HJEs by means of the
Regula-Falsi method while the initial depth information identified by critical points
is being propagated to the remaining computational domain. (ii) Furthermore, our
scheme can also deal with the computation in a spherical system for the Cartesian
input data. This interdependence requires the reevaluation at subpixel positions,
which is resolved by incorporating bilinear interpolation. We have demonstrated the
usability of our approach by applying it to real-world endoscopic test images.

8.1.2 Variational Methods
As far as variational methods are concerned, the prime subject has been to obtain
a unified model containing all preferred features listed in Table 1.2 as well as a
corresponding algorithm for minimising the associated energy.

Modelling Side

For variational methods, we first have derived a radial depth based variational
model based on the brightness equation of Prados and Faugeras [195] in Chapter 5.
Subsequently, by changing the parametrisation from the radial depth to a Cartesian
one we have constructed a novel Cartesian depth based variational PSfS model in
Chapter 6. When compared with existing variational models, our models have
several noticeable features that stand out: (i) Our variational models are accom-
panied by an edge-preserving smoothness term. Hence, despite the regularisation
effect, the employed subquadratic regulariser allows to preserve edges during the
reconstruction, which is usually not the case for existing approaches, see Table 1.2.
(ii) Our approaches have used the correct surface normal for the perspective SfS
model instead of simply replacing with that of the orthographic one, e.g. Zhang
et al. [278] and Wu et al. [270]. (iii) Moreover, our approaches belong to direct
estimation methods because the established models are minimised with respect
to the parametrised depth directly. Therefore, no further steps are required for
reconstruction such as the integration of surface normals unlike most variational
methods with two steps strategies [45, 89, 125]. (iv) Aside from the direct estimation,
our model satisfies the integrability constraints per construction without requiring
an additional term in comparison to usual variational methods, e.g. [1, 278]. (v) The
confidence function in our model allows to rule out the corrupt data due possibly
to noise or missing information and to fill in the information from the vicinity by
taking advantage of the smoothness term. (vi) Since our Cartesian depth model is
designed in a way that the reprojection error in the data term and the Cartesian depth
in the smoothness term are penalised directly, the deviations of respective terms
become photometrically and geometrically interpretable. (vii) Our model with the
Cartesian depth parametrisation offers the full potential to be an individual module
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for being integrated with different cue methods, e.g. stereo [216], multi-view stereo
[271, 273], or scene flow [24, 25], where the Cartesian depth becomes a common
parametrisation.

Numerical Side

On the algorithmic side, we have developed a novel optimisation strategy in the light
of the graduated non-convex approach [36]. Since our scheme contains an alternating
explicit scheme based on the upwind discretisation [219] that is embedded into a
coarse-to-fine optimisation framework, it can handle the arising non-convex energy
by respecting the hyperbolic nature of the data term. During the optimisation
process, the alternating explicit scheme can deal with the lagging property from
the data term more efficiently than typical explicit schemes do, which leads to a
considerable speedup. In addition, our scheme does not require any particular
initialisation methods, e.g. PDE-based methods as in [1, 278]. We also have shown
quality reconstructions as well as benefits of our numerical scheme with synthetic
and real-world images.

Linearisation Methods. In order to further enhance the efficiency of our proposed
optimisation strategy in variational methods, we have developed an efficient lineari-
sation method called the hyperbolic warping scheme in Chapter 7. Inspired by the
work of Brox et al. [48] that can handle both non-convexity and nonlinearity for optical
flow computations, our scheme is constructed in a way that both difficulties and the
hyperbolic nature of the data term are considered at the same time. To deal with
the nonlinearity, we apply the Taylor approximation method to the data term by
means of the lagged upwind discretisation and the lagged diffusivity fixed point
iteration method [48, 254] to the smoothness term, respectively, after introducing
an incremental computation [48, 254]. To resolve the non-convexity, the derived
linearised approach is embedded into a graduated hierarchical optimisation scheme.
The resulting scheme shows a speedup by more than a factor of three orders of
magnitude when compared with the alternating explicit scheme. Furthermore, we
have computed the arising derivatives numerically when linearising the reflectance
model in the data term, which can be extended to advanced reflectance models in a
straightforward way. Finally, our efficient linearised scheme does not suffer from
the constraints on the relatively small time step size of the explicit scheme. Since
the restrictions are lifted, our scheme is particularly beneficial in cases even when
an explicit scheme is usually not feasible, e.g. for inpainting large missing parts or
for encouraging a large amount of regularisation in view of severe noise. We have
substantiated the advantages of our approach by applying it to a synthetic image
containing large missing parts as well as to a high-resolution image.
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8.2 Outlook

The present work can further be extended in some ways such that the quality of
reconstructions could be improved.

In our variational and linearisation methods, only Lambertian reflectance model
has been used. However, the Lambertian surface model sometimes cannot capture
important properties of a surface appropriately especially when a surface contains
significantly different properties than those of a matte surface, e.g. specular effect
or roughness. In those cases, our framework can be extended to non-Lambertian
reflectance models such as Phong or Oren-Nayar surface reflectance for better ap-
proximation of surface characteristics, which should be a straightforward extension.

Moreover, we have considered a subquadratic penaliser in variational methods.
Although we have made use of a nonlinear edge-preserving regulariser, it has only
isotropic effect on along and across edges. Therefore, an edge-enhancing anisotropic
regulariser could also be considered for retaining important structures effectively.
In this regard, Hafner et al. [106] have made use of the edge-enhancing regulariser
of Perona and Malik [188] across the edges and the edge-preserving penaliser of
Charbonnier et al. [54] along the edges, respectively, in the context of denoising and
focus fusion.

Furthermore, SfS methods could be combined with different reconstruction
modules that rely on texture information, e.g. stereo. In fact, the correspondence
based reconstruction methods depend heavily on texture information, where SfS
methods actually have disadvantages. Hence, we could make use of stereo methods
in textured regions and SfS in texture-free areas for exploiting both advantages. Our
recent work, i.e. Maurer et al. BMVC 2016 [161] which belongs to one of the very first
work in this direction, shows highly promising results.

Another aspect for future work would be generalisations of assumptions on
modelling components. Among others, most illumination scenarios in SfS have
been usually limited to a point light source whose position must be known: it is
positioned far away [61, 116], at the optical centre of a camera [6, 195, 259] or close to
a camera. Apart from the light source, the albedo in the surface reflectance model is
typically assumed to be uniform [61, 281]. Since these restrictions prevent SfS from
being applied to more general settings, it is desirable to design an approach that can
handle such cases. First approaches in this direction show promising results as well,
see Maurer et al. BMVC 2016 [161].

In this context, spherical harmonics [58] turns out to be a useful tool for describing
global illumination effect [26, 27, 28, 208]. Recently, Huang and Smith have applied the
method to SfS for describing more complex illumination scenarios [124]. Moreover,
Barron and Malik have used spherical harmonics in the intrinsic image problem
[23, 103] for recovering scene properties by jointly estimating the reflectance, the
illumination and the shape [20, 22]. However, most approaches are still restricted
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to a distant light source combined with Lambertian reflectance model under the
orthographic camera projection [20, 22, 212, 218, 284]. Hence, it is natural to consider
the perspective camera projection and non-Lambertian reflectance models for using
spherical harmonic illuminations.

However, despite all the progress, real-world scenarios with uncontrolled settings
remain still highly challenging, e.g. considering natural illumination [22, 128, 147, 184].
Therefore, it would be great when this work could encourage further contributions
to open problems in the field.
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Appendix A

Intrinsic Parameters

In Chapter 3, we have derived the standard PDE-based perspective SfS models
with Lambertian, Phong and Oren-Nayar surface reflectance in terms of image
coordinates, i.e. (3.37), (3.49) and (3.71). Moreover, we have proposed and considered
two variational models in Chapter 5 and 6, i.e. (5.32) and (6.10), along with their
minimisation process in terms of image coordinates as well. However, the image
is usually provided with pixel information and each coordinate system actually
represents an image in a different way: a metric unit, e.g. mm, is used for image
coordinates (x , y)⊤ and pixel indices for pixel coordinates (i , j)⊤, where the conversion
factor from image to pixel coordinates corresponds to 1/h1 and 1/h2 in each direction,
respectively. In this section, we deal with the radial depth based variational model
(5.32) and the Cartesian depth based one (6.10) in terms of pixel coordinates to
establish a connection between the two coordinate systems and its minimisation
process. In this process, we take into account the intrinsic camera parameters
including the principal point offset that we have discussed in Section 3.1.1. It should
be noted that this transformation is compulsory and does not serve any specific
purposes, e.g. exploiting the computational benefits or the different representations
of the same information such as the spherical coordinates in Chapter 4.

In the SfS community, there are several ways to follow the convention irrespective
of PDE-based or variational methods: The most common way is to make directly use
of the metric values of x and y with pixel indices and corresponding grid sizes h1
and h2, e.g. [131, 195, 238, 270, 277]. One drawback of this method is a subsequent
step that is required to take care of the principal point offset because it is usually not
considered explicitly in the modelling. In this case, difficulties may arise in retrieving
the correct information on intrinsic parameters such as grid sizes. In some cases,
however, there can be also found work incorporating explicit modelling about the
matter, e.g. either by means of the normalised variables according to the principal
point offset [278] or using the camera calibration matrix as part of the projection
matrix directly [1].
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A.1 Coordinate Transformation

To express both models in terms of pixel coordinates, based on (3.7) we make use
of the following transformation between image coordinates x � (x , y)⊤ and pixel
coordinates i � (i , j)⊤



i
j
−1


� K

1
f



x
y
−f


⇒



x
y
−f


� f K−1



i
j
−1


, (A.1)

where h1 and h2 are grid spacing in each direction and K−1 is given by

K−1
�



h1/f 0 −c1 (h1/f)
0 h2/f −c2 (h2/f)
0 0 1


(A.2)

with the principal point (c1, c2)⊤ given in terms of pixel coordinates. It can be noted
that in contrast to (3.7) the sign of the third component in homogeneous coordinate
representation is negative since the image plane is placed at z � −f as shown in
Figure 6.1. By plugging (A.2) into (A.1), one can express the transformation from
pixel coordinates to image coordinates as

x (i) �
[
x(i)
y( j)

]
�

[
h1 0
0 h2

] [
i
j

]
−

[
c1 h1
c2 h2

]
. (A.3)

A.2 Standard PDE-based Models in Pixel Coordinates

Once we have the relationship (A.3) between the image and pixel coordinates,
we can reformulate the aforementioned PDE-based perspective SfS models as the
expressions in terms of pixel coordinates. For the Lambertian case, i.e. the brightness
equation (3.36) with the Hamiltonian (3.37), this corresponds to

HPF (x , v (x (i)) ,∇v (x (i))) � 0 , (A.4)

where

HPF (x , v (x (i)) ,∇v (x (i))) �
I (x (i)) f2

Q (x (i))
√
f2 |∇v(x (i))|2 + (x · ∇v (x (i)))2 + Q (x (i))2 − e−2 v(x(i)) . (A.5)
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In the same way, we can formulate the Phong brightness equation (3.48) associated
with the Hamiltonian (3.49) and the term (3.50) in pixel coordinates. This yields

HVBW (x (i) , v (x (i)) ,∇v (x (i))) � 0 , (A.6)

where

HVBW (x (i) , v (x (i)) ,∇v (x (i))) :� (A.7)

J (x (i)) W (x (i)) − κd Ed e−2 v(x(i))
− e−2 v(x(i))W (x (i)) κs Es

Q (x (i))
(

2 Q (x (i))2
W (x (i))2 − 1

)α
with

J (x (i)) � (I (x (i)) − κa Ia) f2

Q (x (i)) . (A.8)

The same procedure can be extended to the Oren-Nayar brightness equation
(3.70) with the corresponding Hamiltonian (3.71) in a straightforward way. This
gives

HAF (x (i) , v (x (i)) ,∇v (x (i))) � 0 , (A.9)

where

HAF (x (i) , v (x (i)) ,∇v (x (i))) :� (A.10)

f2 I (x (i)) M (x (i) ,∇v (x (i))) + 1
A

√
M (x (i) ,∇v (x (i))) + 1 + B M (x (i) ,∇v (x (i))) − e−2 v(x(i)) .

A.3 Variational Models in Pixel Coordinates

For variational methods, the principle remains the same. By making use of the
established relationship (A.3) and change of variable theorem [57], we can reformulate
the original energy functionals (5.32) and (6.10) which are expressed in terms of
image coordinates as the one with pixel coordinates. This reads

E (v (x (i))) � h
∫
Ωi

ED (x , v (x (i)) ,∇v (x (i)))︸                            ︷︷                            ︸
data term

+ α ES
�
D2 v (x (i))�︸             ︷︷             ︸

smoothness term

di , (A.11)

and

E (z (x (i))) � h
∫
Ωi

c (x (i)) ED(x (i) , z(x (i)),∇z(x (i)))︸                              ︷︷                              ︸
data term

+α ES(D2 z(x (i)))︸            ︷︷            ︸
smoothness term

di ,

(A.12)
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where the defined pixel domain Ωi is obtained by the corresponding transformation
Ωi � x−1(Ωx) and h :� h1 h2 denotes the conversion factor that comes from the effect
of change of variables. By means of the determinant of the Jacobian J, this factor is
given by

|det (J (x (i)))| �
����������

det
*....
,



∂x
∂i

∂y
∂i

∂x
∂ j

∂y
∂ j



+////
-

����������

(A.3)
�

�����
det

( [
h1 0
0 h2

]) �����
� h1 h2 . (A.13)

This result shows that the minimiser of the energy (A.11) and (A.12) in terms of
pixel coordinates is not influenced by the coordinate transformation because the
substitution factor is a constant and hence only leads to a global scaling of the energy.

A.4 Euler-Lagrange Equations in Pixel Coordinates
As we have derived the Euler-Lagrange equations in image coordinates, let us
compute the associated Euler-Lagrange equations to (A.11) and (A.12) in pixel
coordinates.

First, we consider the radial depth based model (A.11). Since the radial depth
based model (5.32) in image coordinates has the same structure as (A.11) in pixel
coordinates except the constant substitution factor h � h1 h2, its associated Euler-
Lagrange equation (5.55) in image coordinates has the same structure in pixel
coordinates as well. This gives

0 �

(
[ED]v −

∂
∂i

[ED]vi
−
∂
∂ j

[ED]v j

)
+ α

(
∂2

∂i2 [ES]vii
+ 2 ∂

2

∂i∂ j
[ES]vi j

+
∂2

∂ j2 [ES]v j j

)
(A.14)

with boundary conditions

0 � n⊤
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(A.15)

and

n⊤i

[
vii

vi j

]
� 0 , n⊤i

[
vi j

v j j

]
� 0 , (A.16)

where ni � (ni , n j)⊤ stands for the outer normal vector.
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Moreover, the same idea can also be extended to the Cartesian depth based model
(A.12) in a straightforward way. Hence, based on the structure of the Euler-Lagrange
equation (6.17) in image coordinates we obtain

0 �

(
[c ED]z −

∂
∂i

[c ED]zi
−
∂
∂ j

[c ED]z j

)
+ α

(
∂2
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∂i ∂ j
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)
(A.17)

with the boundary condition

0 � n⊤i
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and

n⊤i

[
zii

zi j

]
� 0 , n⊤i

[
zi j

z j j

]
� 0 , (A.19)

where ni � (ni , n j)⊤ stands for the outer normal vector.
During the derivations of the Euler-Lagrange equations and their associated

boundary conditions in pixel coordinates, i.e. (A.14) and (A.17) as well as (A.15) and
(A.18), we have used the following relationships between derivatives in pixel and
image coordinates based on (A.3)

∂
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The equivalence of the Euler-Lagrange equations with corresponding boundary
conditions between two coordinate systems suggests that all derivations and state-
ments in image coordinates remain still valid in pixel coordinates. Therefore, the
implementation of the optimality condition which is derived in image coordinates
can also be realised in pixel coordinates by means of the discretisation methods in
Section 5.3.3 and 6.3.4 through the coordinate transform given in (A.3). However,
it should be noted that first transforming pixel coordinates into image coordinates
and subsequently conducting the minimisation process in image coordinates is
conceptually the proper way.
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