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Abstract 
As shown in former papers, the nonadiabatic Heisenberg model presents a 
novel mechanism of Cooper pair formation which is not the result of an at-
tractive electron-electron interaction but can be described in terms of quan-
tum mechanical constraining forces. This mechanism operates in narrow, 
roughly half-filled superconducting bands of special symmetry and is evi-
dently responsible for the formation of Cooper pairs in all superconductors. 
Here we consider this new mechanism within an outer magnetic field. We 
show that in the magnetic field the constraining forces produce Cooper pairs 
of non-vanishing total momentum with the consequence that an electric cur-
rent flows within the superconductor. This current satisfies the London equa-
tions and, consequently, leads to the Meissner effect. This theoretical result is 
confirmed by the experimental observation that all superconductors, whether 
conventional or unconventional, exhibit the Meissner effect. 
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1. Introduction 

The nonadiabatic Heisenberg model [1] (NHM) emphasizes the picture of 
strongly correlated atomic-like electrons in nearly half-filled narrow energy 
bands. Within the NHM, the appertaining localized states are consequently 
represented by symmetry-adapted and optimally localized Wannier functions. In 
some metals, these Wannier functions must be chosen spin-dependent in order 
that they are both symmetry-adapted and optimally localized [2]. An energy 
band with such spin-dependent Wannier functions is called “superconducting 
band” because only metals possessing a narrow, roughly half-filled supercon- 
ducting band experimentally prove to be (conventional, high- cT  or other) 
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superconductors, see the Introduction of Ref. [2]. This observation can be 
interpreted straightforwardly within the NHM [3]. Within this model, the 
formation of Cooper pairs is not the result of an attractive electron-electron 
interaction but may be described in terms of quantum mechanical constraining 
forces operating in superconducting bands. There is evidence that these 
constraining forces are necessary for the Hamiltonian of the system to possess 
superconducting eigenstates, see, e.g., Section 6 of Ref. [4]. This applies to all 
superconductors, whether conventional or unconventional. 

Also within the NHM, the formation of Cooper pairs is mediated by bosons, 
which, however, bear the crystal spin angular momentum 1⋅ . More precisely, 
the electrons couple to the energetically lowest boson excitations of the crystal 
that possess the crystal-spin angular momentum 1⋅  and are sufficiently stable 
to transport it through the crystal [5]. This distinguishes the theory of supercon- 
ductivity within the NHM from the standard theory. The superconducting 
transition temperature cT  is determined by the excitation energy of the 
crystal-spin-1 bosons mediating the pair formation. As is well-known, the 
kinetic energy of particles is not changed by constraining forces (and, hence, 
they can easily be overlooked). Thus, also in a superconducting band, cT  is 
determined by the standard theory of superconductivity. In particular, in the 
isotropic elemental superconductors (often referred to as “conventional” super- 
conductors) pure phonons are able to carry crystal-spin-1 angular momentum [5] 
[6]. Thus, the transition temperature of the elemental superconductors is still 
defined by the Bardeen-Cooper-Schrieffer theory [7]. 

The aim of this paper is to provide evidence that the constraining forces 
causing the formation of Cooper pairs in superconducting bands are also 
responsible for the Meissner effect. When superconductors are cooled below 
their transition temperature cT , they not only lose their electrical resistance but 
also create currents which completely oppose an applied magnetic field. This 
second effect was discovered 1933 by Meissner and Ochsenfeld [8] and is 
generally referred to as Meissner-Ochsenfeld effect or, shortly, Meissner effect. 
J.E. Hirsch [9] argued that a mechanism proposed to explain superconductivity 
must also explain the Meissner effect because this effect is observed in all 
superconductors. We show that the mechanism of Cooper pair formation 
defined within the NHM meets this strict requirement of Hirsch. 

However, we do not explain the Meissner effect but we restrict ourselves to 
derive the London equations [10] which are generally believed to explain the 
Meissner effect [11] (though they are partially called into question by Hirsch, see 
Section 6). In the following Section 2, we briefly explain the mechanism of 
Cooper pair formation within the NHM. In particular, we outline the important 
role of both constraining forces and the time-inversion symmetry in the 
formation of Cooper pairs. In Section 4.1, we define the “inner time-inversion” 
within an external magnetic field, in Section 4.2 we will derive Equation (19) 
giving the total momentum of a Cooper pair in an outer magnetic field, and in 
Section 5 we shall derive the London equations. 
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2. Cooper-Pair Formation in a Superconducting Band 

The mechanism of the Cooper pair formation in a narrow, roughly half-filled 
superconducting band has been described in a former paper [3]. In this section 
we give a short overview of the features of this mechanism necessary for an 
understanding of the Meissner effect. For a more detailed summary see Section 3 
of Ref. [4]. 

2.1. Superconducting Band in the Absence of a Magnetic Field 

First we assume no outer magnetic field to be present. The Bloch functions of a 
superconducting band can be unitarily transformed into optimally localized 
spin-dependent Wannier functions which are adapted to the symmetry of the 
electron system [2]. In this context, the “symmetry of the electron system” also 
comprises the time-inversion symmetry. The NHM defines atomic-like electrons 
with localized states represented by these spin-dependent Wannier functions. As 
a consequence of their spin dependence, the spin directions of the Bloch states 
are k dependent in the ground state of a narrow, roughly half-filled supercon- 
ducting band (this striking feature of the Bloch electrons suggests interpreting 
superconductivity as “k space magnetism” [12]). The Bloch functions ( ), , ,q tϕk m r  
are labeled, as usual, by the wave vector k and the band index q, but no longer by 
the electron spin s since the spin direction is k dependent. They are rather 
labeled by the “crystal spin” m defined within the NHM [2] [3]. 

In a system with k dependent spin directions the electrons couple to crystal- 
spin-1 boson excitations in order that the total crystal-spin angular-momentum 
is conserved during the ever-present scattering processes in the electron system, 
see Section 3.2 of Ref. [4]. At low temperatures, the electrons try to occupy a 
state in which the electrons alone satisfy the conservation of spin-angular 
momentum. The only fixed spin directions in a superconducting band are those 
of a Bloch state ( ), , ,q tϕk m r  and its time-inverted state,  

( ) ( ), , , ,, , ,q qt K tϕ ϕ− − =k m k mr r                   (1) 

since both states have exactly opposite spin directions. K denotes the operator of 
time inversion. 

At low temperatures, the electrons form Cooper pairs consisting in each case 
of a Bloch state and its time inverted state. When all the electrons of the 
superconducting band form Cooper pairs with zero total spin-angular momen- 
tum, the conservation of spin angular-momentum is satisfied in the electron 
system alone, see the group-theoretical substantiation in Section 3.2 of Ref. [4]. 

The mechanism of Cooper pair formation can be described in terms of 
constraining forces produced by the crystal-spin-1 boson excitations, see Section 
3.3 of Ref. [4]. As illustrated in Figure 3 of Ref. [13], these constraining forces 
behave like classical constraining forces produced by springs: Let   be the 
Hilbert space spanned by the electron states in the superconducting band and 

0  the subspace of   in which all the electrons form Cooper pairs. Assume 
all the electrons of the superconducting band initially to be in 0 . Whenever 
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two electrons are scattered out of 0 , a crystal-spin-1 boson pair is excited 
which can only be reabsorbed when the electrons are scattered in such a way that 
again they lie in 0 . Hence, the crystal-spin-1 bosons behave like “springs” that 
push the electrons back into 0 . So we may speak of “spring-mounted” Cooper 
pairs. 

2.2. Superconducting Band in an Outer Magnetic Field 

Now assume an outer magnetic field to be switched on. An absolutely consistent 
mathematical description of superconductivity in an outer magnetic field would 
require to show that the spin-dependent Wannier functions in a superconduct- 
ing band may be chosen symmetry-adapted even in the presence of an outer 
magnetic field, as it has been carefully established [2] for the field-free case. 
Though the symmetry of the Bloch and Wannier functions is, in principle, 
known in magnetic fields [14] [15] [16], this would be a complicated and, as I 
believe, physically needless task. Instead, we should keep in mind that the 
spin-dependent Wannier functions represent localized electron states that really 
exist in the material. These localized states clearly are adapted the symmetry of 
the electron system. For this reason we can assume that the spin-dependent 
Wannier functions in a superconducting band may be chosen adapted to the 
symmetry of the electron system even in the presence of an outer magnetic field. 
In this context, the symmetry of the electron system comprises the inner time- 
inversion symmetry as shall be defined in Section 4.2. 

3. The Hamiltonian in an Uniform Magnetic Field 

The Hamiltonian of an electron in a solid state and in a uniform external 
magnetic field has the form  

( )
21 ,

2
e V

m c
 = + + 
 

p A r                    (2) 

where  

kin
e
c

= −p p A                           (3) 

is the operator of the generalized momentum, m is the electron mass, e the 
proton charge, ( )V r  is the periodic potential, kinp  is the so-called “kinetic 
momentum”, and A  denotes the operator of the vector potential [17] [18]. An 
additional term standing for the energy of the electron spins in the magnetic 
field is neglected. 

The translation operators in the magnetic field may be written as  

( ) e ,iT − ⋅= R pR                           (4) 

where R  is a lattice vector and p  is the generalized momentum given in 
Equation (3) [14]. Since the translation operators ( )T R  commute with   
[14],  

( ) , 0,T =  R                           (5) 
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we may label the eigenfunctions of   by the generalized impulse p  and write  

( ) ( ), , , , , ,, , ,q q qt E tϕ ϕ=p m p m p mr r                   (6) 

as it was already performed by Onsager to interpret the de Haas-van Alphen 
Effect [19]. q still is the band index and t is the spin coordinate. Just as in the 
field-free case, m  does not stand for the electron spin but denotes the crystal 
spin since the spin direction depends on p  in a narrow, roughly half-filled 
superconducting band. 

4. Cooper Pairs within an Outer Magnetic Field 
4.1. The Inner Time-Inversion 

Consider a superconducting sample within an external magnetic field generated 
by Helmholtz coils fare away from the sample. As is well-known, the electron 
system within the sample is invariant under time inversion only if additionally 
the magnetic field B  and, hence, the vector potential A  is inverted,  

1 ,K K− = −A A                           (7) 

where K  denotes the operator of time inversion, see, e.g., Ref. [18]. This 
important phenomenon can be understood already in classical physics: in a 
magnetic field, the Lorentz force generates within the sample a circular motion 
of the electrons. An inversion of the time of the system produces a circular 
motion of the opposite direction of rotation. In a fixed magnetic field, however, 
the Lorentz force generates in any case circular motions of the same sense of 
rotation. Hence, a time inverted circular motion of the electrons may exist only 
in the inverted magnetic field. Thus, an inversion of the time requires that the 
experimentalist additionally reverses the polarity of the battery connected with 
the Helmholtz coils. Hence, K  is not a symmetry operation of the electron 
system. 

This problem has been overcome for special sheared solids [20] and for 
reversible microscopic systems [21]. In the present paper, however, we do not 
consider the standard time-inversion represented by K  connected with the 
complete system consisting of both the superconducting sample and the 
Helmholtz coils. Instead, we see the superconducting sample as an inner isolated 
system within a fixed magnetic potential A  produced by the outer Helmholtz 
coils. We define an operator K  inverting the time τ  within the inner 
electron system,  

,τ τ→ −                             (8) 

without changing the outer magnetic field,  
1 .K K− =A A                           (9) 

Thus, this operator K  of the “inner time inversion” has the same effect as 
K  [22] on the kinetic momenta kinp , the spins s and the positions r of the 
inner electrons,  

1 ,kin kinK K− = −p p                         (10) 
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1 ,K K− = −s s                           (11) 
1 .K K− =r r                            (12) 

In contrast to the standard time inversion K , however, it does not invert the 
sense of rotation of the circular motions produced by the outer Lorentz force. 
Also K  is an anti-linear operator because it complies with the conditions given 
in Section 26 in the textbook of E. P. Wigner [22]. 

4.2. The Total Momentum of a Cooper Pair 

With Equation (3) the Hamiltonian may be written as  

( ) ( )21
2 kin V

m
= +p r                      (13) 

showing immediately that K  commutes with  ,  
1 ,K K− =                          (14) 

if we continue to neglect the energy of the electron spins in the magnetic field. 
From this result follows the significant insight that the inner time-inversion K  
is a symmetry operation of the inner electron system. 

As argued in Section 2.2, the magnetic Wannier functions are adapted to the 
inner time-inversion just as they are adapted to the standard time inversion in 
the field-free case. As a consequence, the operator K  acts on the crystal spin m 
in the same way as it acts on the spin s,  

1 ,K K− = −m m                        (15) 

as it has been shown for the zero-field case in Section 7.3.1 of Ref. [2]. 
Since the operator K  commutes with  , K  transforms an eigenstate 

( ), , ,q tϕ p m r  of   into a new eigenstate of  ,  

( ) ( ), , , ,, , ,q qt K tϕ ϕ′ − =p m p mr r                  (16) 

associated with the same energy, where  
1 .K K−′ =p p                        (17) 

With Equations (3) , (9) and (10) we obtain  

.kin
e
c

′ = − −p p A                       (18) 

Remember that the direction of the electron spins depends on p in a narrow, 
roughly half-filled superconducting band. Just as in the field-free case, the 
constraining forces produced by the crystal-spin-1 excitations generate Cooper 
pairs with exactly vanishing total spin-angular momentum. Equation (11) 
ensures that the spins of the two electrons occupying the states ( ), , ,q tϕ ′ −p m r  
and ( ), , ,q r tϕ p m  in Equation (16) are exactly anti-parallel. Consequently, these 
two states (and only these two states) can form Cooper pairs. (The basic 
Equation (125) of Ref. [2] ensuring a vanishing total spin-angular momentum is 
satisfied even in an outer magnetic field if we replace k  by p , −k  by ′p , 
and K  by K  in the derivation of this equation.) 
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Hence, in a magnetic field, the total momentum cp  of the two electrons 
forming a Cooper pair in a superconducting band does not vanish, but has the 
value  

2 .c
e

c
′= + = −p p p A                      (19) 

This equation gives the exact total momentum of a Cooper pair within an 
outer magnetic field. It shall be interpreted in the following Section 5. 

5. The London Equations 
Equation (19) shows that the kinetic momenta of the two Bloch states forming a 

Cooper pair cancel each other. However, the term 
2e
c

− A  indicates that the  

Lorentz force still is active and forces the two electrons to perform a circular 
motion with the same sense of rotation each. Because the two electrons move on 
different orbitals, the probability to meet an electron at a certain position r is 
different for the two electrons and, hence, their average total kinetic momentum 

,c kinp  at r needs not vanish. Thus, the electron pair with the momentum cp  
may produce a r  dependent electrical current cj  which is defined by the 
symmetry of the system. 

To determine cj , we rewrite Equation (19) as  

c
e e
c c

= − −p A A                        (20) 

showing that cp  has the form given in Equation (3) if we interpret one of the 
addends as the average kinetic momentum  

,c kin
e
c

= −p A                        (21) 

of an one-electron state. 
Due to this interpretation (21) , the operator  

( ) e ciT − ⋅= R pR                         (22) 

becomes a translation operator commuting with  , and, hence, the one- 
electron state with the momentum cp  becomes an eigenstates of  . 
Consequently, an electrical current represented by this state has physical reality. 

Thus, the contribution of one Cooper pair to the electric current amounts to  
2

, .c c kin
e e
m mc

= = −j p A                    (23) 

cj  is invariant under the inner time-inversion K  because it is originally 
defined by Equation (19), i.e., by the outer vector potential A. 

Equation (23) is the result of this paper. It contains both London equations 
[10] in a compact form, see Equation (1.8) in the textbook of M. Tinkham [11]. 

6. Conclusions 

This paper provides evidence that the constraining forces causing the formation 
of Cooper pairs in narrow, roughly half-filled superconducting bands are also 
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responsible for the Meissner effect. In the framework of the nonadiabatic 
Heisenberg model, the Meissner effect is an intrinsic part of superconductivity. 

Hirsch [9] argues that neither BCS theory nor London electrodynamic theory 
describes superconductivity. But, he adds that parts of both BCS theory and 
London theory are undoubtedly correct. From my point of view, I can confirm 
this strong statement of Hirsch. However, I specify that BCS theory as well as 
London theory are correct if the constraining forces operating in narrow, 
roughly half-filled superconducting bands are present. 
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