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A Bayesian framework for ode model calibration

In a Bayesian parameter estimation framework, every quantity-of-interest
is described in terms of a probability distribution. This framework allows to
propagate variability in the data to uncertainties in model predictions and is il-
lustrated in Figure 1. The framework is initialized by encoding prior knowledge
about parameters 6 in a prior probability distribution p(6), which is most often
simply a uniform distribution within finite boundaries. Data are interpreted in
this framework as samples from a parametrized stochastic process, which de-
fines the likelihood function p(y|f). In our framework, we employ stochastically
embedded ODE models, i.e. we assume that the underlying process can be de-
scribed in a deterministic way (the ODE model) and measurements are disrupted
by measurement errors (the error model, also called noise model). The likeli-
hood function is used to update our prior knowledge about model parameters
and to transform it into a posterior distribution p(6]y), which is a distribution of
the model parameters conditional on the data. This is obtained via exploiting
Bayes’ Theorem. This posterior distribution can in principle be transformed
into posterior predictive distributions p(gly) for any quantity-of-interest g, like
e.g. marginals of individual parameters, model states, event times, or discrete
features emerging from the model’s behavior such as quasi-bistability.

In the particular framework of ODE model parameter estimation, we face the
problem that the posterior distribution is not available in closed form. Thus,
it is investigated via generating respresentative samples, which is realized via
constructing a Markov chain that converges to the desired target distribution.

Data pre-processing /
- data as numerical values |

/ N\
» / \\ -
, - >6, , > y()
Prior probability p(8)  stochastic model Posterior distribution Posterior predictive
- Likelihood p(datal6) p(6|data) distribution p(y(t)|data)

Figure 1: Schematic of a Bayesian learning framework.
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Figure 2: Schematic of Markov chain Monte Carlo sampling.

There are numerous algorithms available for this (for more details and historical
work we refer to [1, 2, 3]). The working principle of such an MCMC algorithm is
shown in Figure 2. Situated at 6, the Markov chain proposes a new parameter set
0’, which is accepted with a probability that takes the ratio of the values of the
target density at 6 and 6’ into account (Figure 2 left). If the chain is converged,
the set of accepted samples represent the target distribution (Figure 2 right).
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