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Additional file 4:
Details on the MCMC sampling procedure

In order to sample from the posterior distribution described in Additional
file 3, all numerical calculations were run on MATLAB R2014b (64 bit). The model
and data were managed using the toolboxes SBPD and SBTOOLBOX2. SBTOOLBOX2
with the CVODE integrator from SUNDIALS was employed for the integration of
the ODE system. Absolute and relative error tolerances of the integrator were
set to options.abstol=1e-10 and options.reltol=1e-10.

In the first step we intended to find good starting values for the Markov
chains and appropriate boundaries for the parameter’s prior distributions. As
described, all parameters except K were sampled in the log space, to cover
several orders of magnitudes. Since K describes the decay or switching time
in the input, which is expected from the EGF control experiments to lie ap-
proximately between 5 and below 10 minutes, we used a uniform distribution
with fixed boundaries [4, 8] min for this parameter directly. The boundaries
for the other distributions were set heuristically via a trial and error proce-
dure. Therefore, in a first step we optimized the posterior distribution several
times with different prior boundaries and adapted the boundaries accordingly
to ensure that parameter regions with very high likelihood values are not trun-
cated by the prior distribution. Maximization of p(θ|y) was done by minimizing
− log p(θ|y) using the Matlab built-in function fmincon. Tolerances on the con-
straint violation and function value were set to OPTIONSfmincon.TolFun=1e-6

and OPTIONSfmincon.TolCon=1e-6, respectively. To account for possible multi-
ple local minima a multistart algorithm with uniformly distributed initial values
was used.

Equipped with a convenient estimate θ̂MAP from this procedure (listed in

Table 1), boundaries were set to [10θ̂
MAP−2, 10θ̂

MAP+2] for subsequent MCMC
sampling [1].

For the implementation the mcmcstat toolbox with the method option ’DRAM’
was used. To achieve convergence a warm-up period of 5 · 105 samples was car-
ried out prior to the sampling of a parameter chain of length 3 · 106. Four
independent chains were initialized using as starting points different parame-
ter estimates with small objective function values. Convergence for the overall
chain was assessed with the Gelman-Rubin-Brooks diagnostic using the func-
tion mpsrf, which returns a potential scale reduction factor R. For testing of
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Table 1: Estimated MAP parameter values.
θ log k+1 log k+2 log k+3 log k+4 log k−1 log k−2
θ̂MLE -5.7324 7.3475 7.8110 2.3365 -0.0865 6.2055

θ log k−3 log k−4 log kFn log kFp log g K

θ̂MLE 6.8132 -0.4295 17,8312 -5.9037 -5.8563 5.6202

the individual chains the Geweke method was applied. Both diagnostics are
implemented in mcmcstat [2].

The mean acceptance rate over the four chains was 11% in a first sampling
trial. Convergence diagnostics showedR = 1.0264 for the Gelman-Rubin-Brooks
method, but bad p-values for two chains with the Geweke method. To improve
the sample quality a second sampling was carried out with initial parameters
chosen from a sub-sample of the first run. The acceptance rate was improved
to 20%. All chains passed the convergence test with a p-value of at least 0.8.
Overall chain testing resulted in an improved value of R = 1.0051.

The estimates of the marginal distributions of the parameters from this
second run are shown in Additional file 5. Highest and lowest indicated values
on the abscissa correspond to lower and upper boundaries of the respective prior
distributions. Estimates of the MAPs and the means are indicated by dashed
gray lines and gray lines, respectively. It can be seen that most of these 1D
marginals show a large variance, indicating that these are only vaguely defined,
and that the data do not contain much information about these individual
parameters. This is indeed not unusual in case of quantitative models and only
few datapoints with high measurement noises. Only the distributions of the
parameters k−1 and k−4 have significantly lower variances than the respective
prior distributions, indicating a high sensitivity of the model output on these
parameters.
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