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Details on the classification scheme with the

CBA

In the main text we presented the steps of the circuit-breaking algorithm
applied to our network model, represented schematically in Fig 6, Subfigs A-
C. The final step of the algorithm, needed to obtain all steady-state coordi-
nates for all variables of the system, requires the calculation of the zeros of the
circuit-characteristics c(κ, θi) for all sample points θi. This condition is given
by Equation (7) in the main manuscript.

For the rescaled and normalized model (see Additional file 2)
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this translates into finding the intersection of two one-dimensional functions
of κ in the particular example:
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as can be easily verified by looking at equation (1d) of the ODE model (1).
The steady states of the other three state variables as function of κ and of the
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model parameters are given by the following expressions:
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In equation (3a) the function h(κ, θi) represents the Hill function

h(κ, θi) =
κm

κm + (gα4/s3)m
. (4)

Equation (2) is solved numerically. The set of solutions {κ̄} corresponds to
the steady state coordinates of variable z3.
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