
Mining Software Repositories for

Coupled Changes

Von der Fakultät für Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart zur Erlangung der
Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Jasmin Ramadani
aus Tetovo, Mazedonien

Hauptberichter: Prof. Dr. Stefan Wagner

Mitberichter: Prof. Dr. Barbara Russo

Tag der mündlichen Prüfung: 19.09.2017

Institut für Softwaretechnologie

2017

2

Contents

1 Introduction 19
1.1 Motivation . 19
1.2 Problem Statement . 22
1.3 Research Objective . 22
1.4 Contribution . 23
1.5 Thesis Outline . 25

1.5.1 Previously Published Material 26

2 Background 29
2.1 Software Repositories . 29

2.1.1 Version Control Systems 29
2.1.2 Issue Tracking System 30
2.1.3 Software Documentation 31

2.2 Coupled File Changes . 31
2.2.1 Atomic Change Sets 32
2.2.2 Related Changes 32

3

2.2.3 Heuristics . 34
2.2.4 Mapping Between Commits and Issues 35

2.3 System Packages . 37
2.4 Data Mining . 38

2.4.1 Mining Frequent Itemsets 39
2.4.2 FP-Growth Algorithm 40
2.4.3 Data Mining Framework 46

2.5 Developers’ Feedback . 46
2.5.1 Types of Feedback 47
2.5.2 Surveys . 47
2.5.3 Interviews . 47
2.5.4 Observation . 48

2.6 Software Maintenance . 48
2.6.1 Maintenance Categories 49
2.6.2 Maintenance Activities 50
2.6.3 Search for Task Relevant Information Sources . 50
2.6.4 Developer Expertise Profiles 51

3 State of the Art 53
3.1 Logical Couplings . 53

3.1.1 Granularity . 53
3.1.2 Data Sources . 54
3.1.3 Commit Messages 54
3.1.4 Change Set Heuristics 55

3.2 Mining Repositories . 56
3.2.1 Techniques . 56
3.2.2 Algorithms . 56

3.3 Developers’ Feedback . 57
3.3.1 Couplings and Feedback 57

4 Contents

3.3.2 Video Materials and Feedback 57
3.4 Assessment of Maintenance Tasks 58
3.5 Help Seeking During Maintenance Tasks 60
3.6 System Packages . 61
3.7 Developer’s Expertise . 61

3.7.1 Expertise Identification Based on The Contri-
bution . 61

3.7.2 Expertise Identification Based on The Devel-
oper Roles . 62

3.7.3 Expertise Identification Based on Software Repos-
itory Analysis . 63

3.8 Recommender Tools . 64

4 Coupled File Change Suggestions 67
4.1 Coupled File Changes . 68
4.2 Obtaining Coupled File Changes 68

4.2.1 Data Extraction . 69
4.2.2 Data Preparation 70
4.2.3 Mining Coupled Files 71

4.3 Obtaining Repository Attributes 71
4.3.1 Extracting Commit Attributes Set 72
4.3.2 Extracting Issue Attributes Set 73
4.3.3 Extracting Documentation Attributes Set 73

4.4 Building Coupled Changes Suggestions 74
4.4.1 Database Structure 74
4.4.2 Data Joining . 74
4.4.3 Coupled Change Suggestions Example 77

4.5 Developer Expertise Profiles Based on Coupled Packages 80

Contents 5

5 Theory on the Use of Coupled File Change Suggestions 83
5.1 Use of Coupled File Change Suggestions 84

5.1.1 Interestingness of Coupled File Change Sug-
gestions . 84

5.1.2 Usefulness of Coupled File Change Suggestions 84
5.2 Theory Building Description 85

5.2.1 Constructs . 86
5.2.2 Propositions . 92
5.2.3 Explanations . 94
5.2.4 Scope of the Theory 98
5.2.5 Theory Testing . 98

6 Mining Related Change sets in Git: A Quasi-Experimental
Study 101
6.1 Introduction . 101
6.2 Experimental Design . 103

6.2.1 Research Questions 103
6.2.2 Hypotheses . 104
6.2.3 Experimental Variables 105
6.2.4 Experiment Design 105
6.2.5 Objects . 106
6.2.6 Experiment Instruments 107
6.2.7 Data Collection Procedure 107
6.2.8 Analysis Procedure 109

6.3 Results and Discussion . 113
6.3.1 Descriptive Statistics 113
6.3.2 Influence of the time between the commits

and the branching on the relatedness 115

6 Contents

6.3.3 Influence of time between the commits on the
relatedness . 117

6.3.4 Influence of the branching on the relatedness . 118
6.3.5 Influence of the time between the commits

and branching on the relatedness across projects119
6.4 Threats to Validity . 120
6.5 Conclusion . 122

7 Interestingness of Coupled File Changes: A Case Study 123
7.1 Introduction . 123
7.2 Case Study Design . 124

7.2.1 Research Questions 124
7.2.2 Case Selection . 126
7.2.3 Data Collection Procedure 126
7.2.4 Ethical Considerations 130
7.2.5 Analysis Procedure 131
7.2.6 Validity Procedure 134

7.3 Results and Discussion . 134
7.3.1 Case Description 135
7.3.2 Number of Couplings (RQ 1) 136
7.3.3 Interestingness of Coupled Changes (RQ 2) . . 137
7.3.4 Influence of Developer Experience on Interest-

ingness (RQ 3) . 137
7.3.5 Influence of Developer Involvement in the Project

on Interestingness (RQ 4) 138
7.3.6 Interestingness of Additional Information (RQ

5) . 139
7.3.7 Influence of Developer Experience on Interest-

ingness of Additional Information (RQ 6) . . . 140

Contents 7

7.3.8 Validation and Theory 142
7.3.9 Discussion . 144
7.3.10 Evaluation of Validity 147

7.4 Conclusion . 148

8 Usefulness of Coupled File Changes: A Controlled Ex-
periment Study 151
8.1 Introduction . 151
8.2 Experimental Design . 152

8.2.1 Study Goal . 153
8.2.2 Research Questions 153
8.2.3 Hypotheses . 154
8.2.4 Experiment Variables 155
8.2.5 Experiment Design 157
8.2.6 Objects . 157
8.2.7 Subjects . 158
8.2.8 Materials, Procedure and Environment 158
8.2.9 Selection of Change Author 160
8.2.10 Selection of Coupled Files 160
8.2.11 Classification of Issues 162
8.2.12 Definition of Tasks 163
8.2.13 Tasks and Coupled File Changes 164
8.2.14 Solution of Tasks 165
8.2.15 Maintenance Activities 166
8.2.16 Data Collection Procedure 166
8.2.17 Data Analysis Procedure 170
8.2.18 Execution Procedure 173

8.3 Results and Discussion . 175
8.3.1 Participants . 175

8 Contents

8.3.2 Issues Classification 176
8.3.3 Usefulness of Coupled File Changes 177
8.3.4 Usefulness of software repository attributes . . 185
8.3.5 Threats to Validity 189

8.4 Conclusion . 192

9 Coupled File Changes Influence on Help Seeking: An
Exploratory Study 193
9.1 Introduction . 193
9.2 Experimental Design . 194

9.2.1 Study Goal . 194
9.2.2 Research Questions 194
9.2.3 Overview . 195
9.2.4 Data Analysis . 199

9.3 Results and Discussion . 200
9.3.1 Information Sources 200
9.3.2 Influence of Coupled Change Suggestions . . . 204

9.4 Threats to Validity . 206
9.5 Conclusion . 206

10 Mining System Packages for Developer Expertise: An
Exploratory Study 209
10.1 Introduction . 209
10.2 Case Study Design . 211

10.2.1 Research Questions 211
10.2.2 Case Selection . 211
10.2.3 Data Collection Procedure 212
10.2.4 Analysis Procedure 212

Contents 9

10.3 Results and Discussion . 215
10.3.1 Most frequent package couplings per devel-

oper (RQ1) . 215
10.3.2 Developer profiles (RQ2) 216
10.3.3 Discussion . 217

10.4 Threats to Validity . 217
10.5 Conclusion . 218

11 Tool Support 219
11.1 Concept and Design . 219

11.1.1 Components . 220
11.2 User Interface . 221

11.2.1 Activation . 223
11.2.2 Wizard . 223
11.2.3 Views . 224
11.2.4 Usage . 225

12 Conclusion 227
12.1 Summary . 227
12.2 Next Steps . 229

Bibliography 231

List of Figures 253

List of Tables 255

10 Contents

Zusammenfassung

Software-Repositories enthalten Informationen über den Entwick-
lungsverlauf eines Softwaresystems, die von den Entwicklern bei War-
tungsarbeiten genutzt werden können. Dazu gehören Daten im Versi-
onsverwaltungssystem, im Issue-Tracking-System und in den Doku-
mentationsarchiven. Eine der meistverwendeten Techniken zur Ana-
lyse von Software-Repositories ist Data Mining, wobei die Frequent-
Itemsets-Analyse häufig verwendet wird, um Gruppen von Dateien
zu definieren, die in der Vergangenheit häufig zusammen geändert
wurden. Diese Dateigruppen definieren wir als gekoppelte Dateien
oder Coupled Files.
Die meisten Studien über gekoppelte Dateiänderungen in Software-

Repositories beziehen Git-Versioning-Systeme nicht mit ein. Auch
wird darin das Feedback der Entwickler bezüglich der Nützlichkeit
der gekoppelten Dateiänderungen und deren Einfluss auf die War-
tungsaufgaben nicht berücksichtigt.
Das Hauptziel der vorliegenden Untersuchung besteht darin, Ent-

11

wickler bei ihren Wartungsaufgaben zu unterstützen, und zwar in
Form von Vorschlägen für mögliche Dateiänderungen, die auf frühe-
ren Änderungen im Git-Versionsverlauf der Software basieren. Wir
untersuchten die Extraktion gekoppelter Dateiänderungen durch Data
Mining mit Git und analysierten die Rückmeldung von Entwicklern
bezüglich der Interessantheit und Nützlichkeit der Vorschläge für
gekoppelte Dateiänderungen sowie deren Einfluss auf die Wartungs-
arbeiten.
Anhand einer Fallstudie in der Industrie extrahierten wir gekoppel-

te Dateiänderungen aus drei Git-Repositories. Basierend auf der in
dieser Fallstudie untersuchten Interessantheit und den Erkenntnissen
aus einer Reihe empirischer Studien zu Wartungsarbeiten stellten wir
eine Theorie auf über die Verwendung von Vorschlägen für gekoppel-
te Dateiänderungen bei Wartungsarbeiten. Diese Theorie wurde in
folgenden Studien getestet:
(1) Wir führten ein kontrolliertes Experiment durch, in dem wir

Heuristiken zum Gruppieren verwandter Änderungssätze in Git un-
tersuchten, aus denen wir relevante gekoppelte Dateiänderungen
extrahierten. (2) In einem Quasi-Experiment untersuchten wir die
Nützlichkeit gekoppelter Dateiänderungsvorschläge und deren Aus-
wirkung auf die Korrektheit der Lösung sowie den Zeitaufwand für
die Bearbeitung der Wartungsaufgaben. (3) In einer Explorationsstu-
die untersuchten wir, wie gekoppelte Dateiänderungsvorschläge die
Strategie der Entwickler beeinflussen, mit der sie Wartungsarbeiten
Hilfe suchen.
In einer Explorationsstudie erweiterten wir das Konzept gekoppel-

ter Dateiänderungen auf Paketebene und ermittelten verschiedene
Stufen von Entwickler-Kompetenz anhand der von den Entwicklern
bearbeiteten Systempakete.

12 Contents

Wir entwickelten ein Werkzeug auf Eclipse-Basis, das gekoppelte
Dateiänderungsvorschläge extrahiert, visualisiert und Entwicklern
bei Wartungsaufgaben zur Verfügung stellt.
Wir haben Heuristiken definiert um verwandte Änderungen in Git

zu gruppieren.
Mit der Frequent-Itemsets-Analyse gelang uns die Extraktion relati-

ver häufiger gekoppelter Dateiänderungen aus Git.
Die an der Fallstudie zur Interessantheit gekoppelter Dateien be-

teiligten Entwickler zeigten sich interessiert an dieser Art von Hilfe
während der Wartungsarbeiten.

Das Experiment zur Nützlichkeit von gekoppelten Dateiänderungs-
vorschlägen ergab, dass die Entwickler, die die Vorschläge nutzten,
ihre Aufgaben erfolgreicher bewältigten als diejenigen, die es nicht
taten.
Die Ergebnisse der Explorationsstudie zur Inanspruchnahme von

Hilfe bei Wartungsaufgaben zeigen, dass gekoppelte Dateiänderungs-
vorschläge auch den Bedarf an für die Wartungsaufgaben relevanten
externen Informationsquellen reduzieren und so den Wartungspro-
zess kompakter machen. Zudem wurde das Konzept der gekoppelten
Dateiänderungen erfolgreich eingesetzt, um Kompetenzprofile mit
unterschiedlichen Spezialisierungen zu erstellen, die auf den Änderun-
gen in den gekoppelten Systempaketen basieren. Die Rückmeldungen
der Entwickler zu dem Verfahren der gekoppelten Dateiänderungs-
vorschläge wurden als positiv identifiziert.
Unsere Theorie über den Einsatz gekoppelter Dateiänderungsvor-

schläge bei Wartungsaufgaben wurde erfolgreich getestet. Mit den
vorgeschlagenen Heuristiken ermittelten wir, dass die Gruppierung
der Änderungssätze in Git ihre Relevanz beeinflusst. Die Rückmel-
dungen der Entwickler zeigten, dass das Format und der Kontext

Contents 13

gekoppelter Dateiänderungsvorschläge sich auf deren Nützlichkeit
auswirken. Die Ergebnisse zeigen auch, dass gekoppelte Dateiän-
derungsvorschläge die Bearbeitung der Wartungsaufgaben und die
Strategien zum Suchen nach Hilfe positiv beeinflussen.
Die weitere Analyse von Kopplungen zwischen Teilen des Quell-

codes anhand großer Datensätze ermöglicht es, die Auswirkungen
gekoppelter Dateiänderungen auf die Wartung und die Qualität von
Software besser zu verstehen.

14 Contents

Abstract

Software repositories contain information about the history of a soft-
ware system which can be used by developers during maintenance
tasks. This includes the data in the versioning system, the issue track-
ing system and the documentation archives. One of the most used
techniques to analyze software repositories is data mining whereby
frequent itemsets analysis, has often been used to define sets of files
which changed frequently together in the past called coupled files.

Most of the studies on coupled changes from software repositories
do not involve Git versioning history. Further, developers’ feedback
on the usefulness of coupled file changes and their influence on the
maintenance tasks solution has been ignored.
The overall goal of this research is to help developers in their

maintenance tasks by suggesting potential file changes based on
previous modifications in the Git version history of a software product.
We investigated the process of extracting coupled file changes from

Git using data mining and analyzed the feedback of developers on the

15

interestingness and the usefulness of coupled file change suggestions
as well as their influence on maintenance tasks.
Using an industrial case study, we extracted coupled file changes

from three Git repositories. Based on their interestingness investigated
in this case study and the knowledge from a set of empirical studies
related to maintenance activities, we built a theory on the use of
coupled file change suggestions during maintenance tasks.
The theory we provided has been tested using following studies:

(1) We performed a controlled experiment where we investigated
heuristics for grouping related change sets in Git from which we
extract relevant coupled file changes. (2) We used a quasi-experiment
to explore the usefulness of coupled file changes suggestions and their
impact on the correctness of solution and the time needed to solve
maintenance tasks. (3) We performed an exploratory study on the
impact of coupled file change suggestions on developers’ strategy for
searching help during maintenance tasks.
Performing an exploratory study, we extended the concept of cou-

pled file changes on a package level and aggregated various levels of
developer expertise based on the functionalities of the system pack-
ages they have changed.
We have developed an Eclipse based tool to implement the extrac-

tion and visualization of coupled file change suggestions.
We identified the heuristics for grouping change sets based on the

developer and the time of commit influence their relatedness at most.
Implementing the frequent itemsets analysis, we successfully ex-

tracted relative frequent coupled file changes from Git.
The developers participating in the case study on the interestingness

of coupled files demonstrated to be interested for this kind of help
during maintenance tasks.

16 Contents

From the experiment on the usefulness of coupled file change
suggestions results, we recognize that using coupled file changes, the
developers managed to solve their tasks more successfully than those
not using these suggestions.
The outcomes of the exploratory study on the search for help during

maintenance tasks, show that coupled file change suggestions reduced
the need of external task relevant information sources which makes
the solving process compacter.
Additionally, in the exploratory study on the coupling of system

packages, we successfully used the concept of coupled file changes to
provide expertise profiles with different level of specialization based
on the changes in the coupled packages.
The feedback on the coupled file change suggestions approach by

the developers has been identified as positive.
We have successfully tested our theory on the use of coupled file

change suggestions during maintenance tasks. Using the proposed
heuristics we determined that the grouping of the change sets in Git
influences their relatedness. The developers’ feedback revealed that
the format and the context of coupled files influences their usefulness.
The results also show that coupled file change suggestions positively
influence maintenance tasks solution and the strategy for searching
help.
Further analysis of couplings between parts of the source code based

on large data sets, can be used to better understand the impact of
coupled file changes on the maintenance and the quality of software.

Contents 17

C
h
ap

te
r 1

Introduction

1.1 Motivation

Software development produces large amounts of data which is stored
in software repositories. Over time, this data becomes an useful source
of information about the software product. The rapidly increasing
amount of data in the repositories makes it difficult to maintain or
to extract useful information from it. This data is organized in Soft-
ware Repositories. This term has been defined as the data which
has been managed or generated by tools during software develop-
ment [Moc14].
Software repositories include various data sources like the version-

ing system, the issue tracking system and the documentation archives
of a software system.

19

Version control systems such as CVS1, Subversion2, Git3 or Mercu-
rial4 store information concerning the changed files like the time of
the change, the author of the changes and the file content before the
change happened. In versioning control systems like Git, the source
code changes are organized in a distributed fashion using commits
which represent the so called atomic change sets. The structuring of
changes in Git using commits as atomic change sets, the branching
usage, the specific time concept as well as the possibility to map the
commits with the issues, motivates us to investigate the process of
obtaining of coupled file changes from Git.
Software issues like features or bugs can be tracked using issue

tracking systems like JIRA5, Redmine6 or Bugzilla7. They include
information about current and previous issues and maintenance tasks.
The documentation archives of software projects contain informa-

tion related to the software development process, the design and the
organization of the system.
Software repositories contain hidden dependencies between source

code parts like classes, files or modules which are not structurally
related. These dependencies found in the version history of a software
product have been defined as logical dependencies [GHJ98] or evolu-
tionary couplings [BKPS97]. During time, various parts of the source
code are changed together several times across the system [GHJ98]
creating patterns of hidden dependencies which are not easy to find.

1Free Software Foundation, http://www.nongnu.org/cvs/
2The apache Software Foundation http://subversion.apache.org/
3Git-fast-version-control https://Git-scm.com/
4Mercurial source control managementhttps://www.mercurial-scm.org/
5JIRA Software, https://www.atlassian.com/software/jira
6Redmine Application, http://http://www.redmine.org/
7Bugzilla Software, https://www.bugzilla.org/

20 1 | Introduction

http://www.nongnu.org/cvs/
http://subversion.apache.org/
https://Git-scm.com/
https://www.mercurial-scm.org/
https://www.atlassian.com/software/jira
http://http://www.redmine.org/
https://www.bugzilla.org/

In a situation where the developer changes a part of the source
code and also changes another part shortly after, we say that we have
Coupled Changes. The notation of change couplings was introduced
in [FGP05] and later in [DGL08]. If the couplings are based on a file
level, we talk about Coupled File Changes.
Coupled file changes suggest source code modifications the de-

velopers may need to perform in other files of the system. These
modifications can contribute to solve their maintenance tasks more
successfully [Par].
The authors of previous source code changes may not be available

anymore. New or inexperienced developers working on maintenance
tasks on the system cannot be immediately productive. Their program-
ming experience and their knowledge of a specific system application
impact the productivity [Bec09; Cha08]. Experienced developers
either do not have the time or the conditions do not provide an op-
portunity to coach them [SH98].
Working on unfamiliar parts of the system requires an additional

knowledge which can lead to a situation where developers cannot
solve all tasks and need more effort to understand them [SLVA97].
Having suggestions about other previously changed files for similar

issues, can help developers to solve their maintenance tasks more
successfully. It would be interesting to examine the developers’ feed-
back on the acceptance and the usefulness of coupled file change
suggestions as well as their influence on maintenance tasks.
Coupled changes are not easy to recognize among the data in

the software repositories. To learn from the data and find useful
information in the version history, we need a technique to extract
coupled changes from it. One of themost popular techniques to extract
useful information from software repositories related to the changes

1.1 | Motivation 21

in the software is Data Mining. It has been defined as a process
of discovering interesting patterns in large data amounts [HMP05].
Having large amounts of data in software repositories from which
we can uncover useful information about the software system makes
data mining suitable for extracting coupled file changes.
The term Mining Software Repositories (MSR) has been defined

to describe investigations of software repositories using data min-
ing [KCM07].

1.2 Problem Statement

Several researchers have proposed approaches to identify logical
couplings from a software versioning history [BDO+13; KYM06;
YMNC04; ZWDZ04].
Current studies on mining software repositories include version

systems like CVS or Subversion. Git, as a very popular versioning
system has not been investigated in this context.
Existing studies focus on expert findings and ignore the feedback

of developers related to the acceptance and the usefulness of coupled
changes during maintenance tasks. Further, the influence of coupled
file change suggestions on the maintenance tasks solution and the
strategy of solving these tasks has not been directly investigated using
the developers’ feedback.

1.3 Research Objective

The overall aim of this research is to extract coupled file changes
extracted from Git which can help developers in the solving their
maintenance tasks.

22 1 | Introduction

First of all we explore the organization of source code changes in
Git, the relatedness and the grouping of changes from we can extract
relevant coupled file changes.
Further, we investigate the process of extracting files being fre-

quently changed together in the past from Git as well as the cor-
responding repository attributes from the version history, the issue
tracking system and the project documentation of a software system.
To be able to extract coupled files from the commits in the version

history using data mining, we need a technique and an algorithm
suitable to work with frequently occurring events like file changes.
We continue by investigating the feedback of the developers on

coupled file change suggestions. Using it, we crave to determine the
acceptance of the concept of coupled file changes as an additional
help during maintenance tasks. Further, we aim to determine the
usefulness of coupled files as well as their impact on the activities of
the developers during maintenance tasks.

1.4 Contribution

The main contributions of this research include the proposed method-
ology for mining coupled files from Git using frequent itemset analysis
and building coupled file change suggestions from Git version histo-
ries, as well as the definition and the successful testing of the theory
on the use of coupled file changes by exposing the factors that in-
fluence the acceptance of coupled file change suggestions and their
influence on maintenance tasks.
We explored Git relevant issues using a quasi-experiment on the

relatedness of change sets in Git [RW16d]. We use them as a source
for extracting relevant coupled file changes.

1.4 | Contribution 23

We provided coupled file change suggestions using frequent itemset
analysis based on the information gathered from the distributed ver-
sion histories of three software projects as presented in our industrial
case study [RW16b]. Here, we also explored developers’ feedback on
the interestingness of coupled file change suggestions.
Based on the constructs defined in the case study [RW16b] and

the knowledge from a set of empirical studies related to maintenance
tasks and activities, we built a theory on the use of coupled file change
suggestions during maintenance tasks. We tested the theory using
the following empirical studies:
(1) In [RW16d], performing a quasi-experiment, we investigated

heuristics for grouping related change sets from the version history
concerning important Git characteristics like the existence of com-
mits, their timing and branching status. We exposed that besides
the authorship, the commit time has a significant influence on the
relatedness.
(2) In [RW16a], we used a controlled experiment to explore the

usefulness of coupled change suggestions based on the participants’
solution of maintenance tasks. Their feedback determines that the
coupled file changes and a subset of proposed attributes are useful.
The analysis of their actions addresses a significant influence of the
use of coupled file change suggestions on the number of correctly
solved tasks, whereby the suggestions do not significantly reduce the
time needed to perform the tasks.
(3) In [RW17a], using an exploratory study, we investigated the

influence of coupled file change suggestions on the strategy of solv-
ing maintenance tasks. We found that the use of coupled change
suggestions influences the participants’ choice of information sources
to searching for help during their task solution. The choice of help

24 1 | Introduction

locations of the participants using coupled file change suggestions is
more compact and limited to the use of internal information sources
related to the IDE, they seldom use external information sources.
We extended the concept of coupled file changes on a package level

using an exploratory case study [RW17b]. Here the system packages
have been used to extract couplings. Based on these couplings of
packages frequently changed together, we aggregated developer pro-
files of expertise. We have managed to identify profiles including
various levels of functionalities behind the source modifications.
We also implemented the concept of coupled file change sugges-

tions using an Eclipse based plug-in tool which includes the process
of extracting commits from Git, their storage in a database, the per-
forming of data mining to extract coupled files and the visualizing of
coupled files and repository attributes. The tool has been designed
and conceptualized using the methodology presented in this work
and was developed as part of 5 student theses [Ala16; Cic15; Dem15;
Kau17; Leh15].

1.5 Thesis Outline

Chapter 1 defines the motivation, the problem statement, the research
objective and the contribution of this work.
The remaining chapters are organized as follows:
Chapter 2 describes the motivation to investigate coupled file changes
as well as the background of the methodology and the techniques
used to investigate coupled file change suggestions.
Chapter 3 includes the related work of this research where we cover
the current state of the art in the field of the analysis of version
histories and software maintenance aspects.

1.5 | Thesis Outline 25

Chapter 4 is in account of the methodology for extracting coupled file
changes and the corresponding repository attributes from Git as well
as the building of coupled file change suggestions.
Chapter 5 consists of the proposed theory on the use of coupled file
change suggestions covering the factors that influence the accep-
tance of coupled file change suggestions as well as their influence on
maintenance tasks.
Chapter 6 is based on the grouping related changes in Git from which
we can extract coupled file changes.
Chapter 7 concentrates on the feedback of the developers on the
interestingness of coupled file change suggestions during maintenance
tasks.
Chapter 8 involves the developers’ feedback on the usefulness and the
influence of coupled file change suggestions on maintenance tasks.
Chapter 9 covers the influence of coupled file change suggestions on
the strategy for searching for help during maintenance tasks.
Chapter 10 describes an extended approach of the concept of coupled
file changes using system packages to define developer expertise
profiles.
Chapter 11 covers the description of an Eclipse based tool for imple-
mentation and visualization of coupled file change suggestions.
Chapter 12 encloses the conclusions of this work as well as the poten-
tial future research steps.

1.5.1 Previously Published Material

The material covered in this work is based, in part on the following
publications where i am the first author:

• Are Suggestions of Coupled File Changes Interesting?: A case

26 1 | Introduction

study on the interestingness of coupled files, published in the
Proceedings of the 2016 International Conference on Evalua-
tion of Novel Software Approaches to Software Engineering
(ENASE) [RW16b].

• How Interesting Are Suggestions of Coupled File Changes for Soft-
ware Developers?: An extended version of [RW16b], published
in the 2016 Springer Communications in Computer and Infor-
mation Science series (CCIS) [RW16c].

• Which Change Sets in Git Repositories Are Related?: A quasi-
experiment on the relatedness of change sets in Git reposi-
tory, published in the Proceedings of the 2016 IEEE Interna-
tional Conference on Software Quality, Reliability and Security
(QRS) [RW16d].

• Are Coupled File Changes Suggestions Useful?: A controlled ex-
periment on the usefulness of coupled file changes during main-
tenance tasks, published in: PeerJ Computer Science Journal
Preprint [RW16a].

• How Do Coupled File Changes Influence How Developers Seek
Help During Maintenance Tasks?: An exploratory study on the
influence of coupled file changes on the strategy of develop-
ers seeking for help during maintenance tasks, published in
the Proceedings of the 2017 IEEE International Conference on
Software Quality, Reliability and Security (QRS) [RW17a].

• Mining Java Packages for Developer Profiles: An exploratory study
on extracting system package couplings for defining developer
expertise profiles, published in the Proceedings of the Workshop
on Industrial Applications of Artificial Intelligence (IAAI) at the

1.5 | Thesis Outline 27

2017 Conference on Database Systems for Business, Technology
and Web (BTW) [RW17b].

28 1 | Introduction

C
h
ap

te
r 2

Background

2.1 Software Repositories

2.1.1 Version Control Systems

Version control systems enclose information concerning the files been
changed, the time when the change happened, the author of the
change and the files content before the change [HLT09]. Two main
types of version control systems are used today: centralized version
control systems (CVCS) like CVS or Subversion and distributed ver-
sion control systems (DVCS) like Git or Mercurial. In CVCS, we have
a central repository with the version database where the developers
check out their projects on their local computers. DVCS have gained
an increased popularity lately. In DVCS, each team member has the
complete repository on his or her local machine called local repos-
itory. Git provides a copy of all files and a copy of the repository

29

we work with [Loe09]. If one file changes, the complete repository
changes [Ott]. The developers can clone remote repository or pull
data into their local repositories, commit the changes in it and then
push the changes on the remote repository again.
Git organizes the changed files in commits which represent so

called atomic changes. The commits are identified by their commit
ID hashes. An important attribute of Git is the way it handles with
the time of changes in the source code. Since Git does not track the
timestamps when the files were originally modified, it does not have a
central time concept, it tracks only the time of commit. Many version
control systems have a branching functionality. Branches are very
often used in Git. They allow the developers to create many lines of
development. Branching is used to separate commit changes from
each other. Some projects use branches for development, testing or
release [RKTC16]. Other maintain branches for bug fixes or adding
new features [WS08].
Versioning control systems maintain the source code history of

changes but also provide additional attributes [RD04]. Git provides
an extensive formatting support for the output of the log information.
Among various meta-data it provides information like commit ID,
commit message, commit author, commit date as well as the paths of
the files in the commits.

2.1.2 Issue Tracking System

Software change issues like features or bugs can be tracked using
issue tracking systems [FPG03b]. Issues contain specific information
about the problems we need to solve like the issue ID, issue description,
issue author, issue type, issue status and other attributes. Usually, the

30 2 | Background

issue tracking systems allow us to export the issues and their attributes
for further analysis.

2.1.3 Software Documentation

During software development, a large amount of documentation is
generated. The documentation can be used by developers as an in-
formation source during maintenance [Som02]. In the context of
investigating coupled files, we concentrate on the product documen-
tation which describes the developed software product. The software
documentation gathered during the development process represents
a rich source of information. The documentation can contain informa-
tion about the system architecture, a description of the functionalities
behind the classes, packages, features or application layers. It can
also represent a manual for using or administrating the system.
The content and the quality of the software documentation can

influence the use of coupled file changes by providing additional
information related to the changes in the version history.

2.2 Coupled File Changes

Structural dependencies between software elements can be expressed
using different abstraction levels. They can exist on architectural, de-
sign or implementation level [EKKM08]. However, hidden dependen-
cies between files or other artifacts that changed together frequently
also exist. For the first time they were introduced as evolutionary
couplings [BKPS97] or logical dependencies [GHJ98].
Developers change various source files with different frequency

during software development. The notation of change couplings was

2.2 | Coupled File Changes 31

introduced in [FGP05] and later in [DGL08]. Coupled file changes
describe a situation where the developer changes a particular file and
also changes another file afterwards. Extracting sets of files being
changed together by analyzing the version history of the software can
detect logical dependencies between these files. Developers can use
them during maintenance tasks.

2.2.1 Atomic Change Sets

In versioning systems such as Subversion or Git, commits represent so
called "atomic change sets". They include the sets of files which can
be used as sources to extract coupled file changes. Older versioning
systems like CVS, do not maintain this kind of change sets. The
information, which software artifacts were checked in together is
not available. Therefore, researchers investigate the change history
using the technique of fixed or sliding time windows [Ger04; GHJ98;
ZWDZ04].

2.2.2 Related Changes

To be able to extract relevant coupled file changes, firstly, we need
to group the committed change sets. The same set of coupled files
can be found in different commits performed on different occasions
by various developers. Although we deal with the same files, the
commit messages can describe different changes about unrelated
functionalities which are not relevant to group them (Table 2.1). Here
the commit messages describe totally different issues. This means
that also unrelated sets of files happen to be grouped together as
coupled file change suggestions. To avoid this, we need to identify

32 2 | Background

the related change sets out of which we can extract the coupled file
changes.
So what makes file changes related? The developers want relevant

suggestions. We assume that the coupled file change sets are related
if they are addressing the same issue either solving the issue in many
steps or repeating the change in several occasions.
The change set can have various granularity and composition across

different tasks [KYM06].

Table 2.1: Unrelated changes
Commit 1 Commit 2

synchronizing layouts done refs
#827

added highlighter to the connec-
tion anchors refs #347

Table 2.2: Related changes
Commit 1 Commit 2

began to adapt controller structure
refs #503

Adapt controller structure refs
#503

added icons to export wizard refs
#868

added new icons and new png filter
to export wizard refs #868

One task can be solved in several steps using more than one commit.
In case a task cannot be solved in a short time, the work on it can
be interrupted and continued at another time. The first example in
Table 2.2 shows that the task is addressed in two steps, the developer
started dealing with the controller structure in one occasion and

2.2 | Coupled File Changes 33

finished the changes later in another one.
The same change can be committed many times in different occa-

sions. The second example in Table 2.2, is related to the change set
commented as “added icons to export wizard” and the change set
commented as “added new icons and new png filter to export wizard”.
They represent file changes on the same functionality repeated in
different commits.

2.2.3 Heuristics

There are different heuristics for grouping file changes from versioning
systems that support atomic change sets [KMS07; KYM06]:

• Time: It groups all changes committed in a given time period,
usually a day. The changes in the software performed during
this time period by one or many different authors have been
considered to be related. All changes from the same author
or different authors that have been performed before or after
the defined time interval are rated as unrelated. The number
of different time intervals determines the number of change
set groups and by that influences the extraction of coupled
file changes. Grouping change sets from different developers
performed during the defined time period can result into group-
ing of changes that are not relevant and cover totally different
functionalities or issues.

• Developer: This heuristic groups the changes committed by a sin-
gle developer as related. This excludes the changes performed
by other developers from the change set group regardless of
the time of change. We have so many groups of related change
sets as we have developers on the project. This type of heuristic

34 2 | Background

allows us to extract a relatively high number of frequent coupled
file changes even for projects with a low number of developers.

• Time and Developer: This heuristics is a combination of the
previous two heuristics. It rates that the changes committed by
the same developer during the defined time period are related.
All changes from the same developer during various time periods
or in the same period but performed by different developers are
not related. The number of change set groups depends on the
number of developers and the time of commit. This heuristic
is very restrictive and is not convenient for projects having a
low number of developers or where they do not commit their
changes frequently. Due to this disadvantage, the number of
change sets can be insufficient to extract coupled file changes
from the repository.

2.2.4 Mapping Between Commits and Issues

The comments stored as commit messages in Git, contain a description
about the committed changes in the version system and describe
the change purpose [MHS+12]. However, commit messages do not
always deliver understandable textual content. The analysis of these
messages even with the help of natural language processing is not
always useful.
Every commit has a hash value which represents the commit ID. It is

an unique value which identifies all the commits in the database. The
issues are also identified by their keys or IDs. The use of merge points
to map the commit messages and the issues from the issue tracking
system is an useful practice today. Here, the commit messages contain
the issue IDs which identify a particular task, a feature or a bug. We

2.2 | Coupled File Changes 35

use the issue IDs to follow down the related commits. We distinguish
three cases of mapping commits and issues:

• 1-1: The first type is a mapping between one commit and one
issue (Figure 2.1). The commit and the issue included in this
set are not part of any other mappings.

• 1-n: The second type maps one commit to several issues which
is a rare case where the changes in the commit are used to solve
a group of similar issues (Figure 2.2).

• n-1: The third one is mapping many commits to one issue
(Figure 2.3). This is a frequently used mapping where an issue
has been solved in several commits.

Figure 2.1: 1 commit to 1 issue

36 2 | Background

Figure 2.2: 1 commit to n issues

Figure 2.3: n commits to 1 issue

2.3 System Packages

Developers usually organize their source code by grouping common
characteristics or functionalities. Files changing frequently together
are contained in system packages. We can track the changes in the
software by exploring the couplings between packages which can be
useful to discover areas of specific functionalities or expertise.
The decomposition of software into modules represents a benefit

in the software development [Par]. Packages have been considered
as program modules [Hau02]. They are also used to prevent conflicts
in the source code.
In Java, packages represent namespaces to organize classes and

2.3 | System Packages 37

interfaces as folders. The name of a package corresponds to a directory
structure where the classes are stored. For example, the package
com.astpa.ui is stored in the directory com/astpa/ui in the form of a
relative path. Hierarchical package names can be also constructed like:
com.astpa.ui and com.astpa.ui.viewer. They are treated as independent
packages.
There are two fundamental approaches for creating packages in

Java: packaging by feature and packaging by layer. Package by feature
reflects a set of features of the software [Sys13]. It organizes all the
classes related to a single feature into a single package or directory.
For example the following packages:
com.example.gridview.ui and com.example.menubar.ui identify two
features related to the user interface. Each package contains only
items which are related to a specific feature but not related to other
features. Package by layer reflects various application levels instead
of features. For example, the following packages:
com.example.controller.actions and com.example.dataacess.actions rep-
resent two different application layers.

2.4 Data Mining

Data Mining is one of the most popular techniques for investigating
software repositories. The term "Data Mining" has been used either
as synonym for knowledge discovery or to describe one of the steps of
this process. However, the broader definition of data mining is that it
is a process to discover interesting knowledge from large amounts of
data like databases or repositories [HMP05].

38 2 | Background

2.4.1 Mining Frequent Itemsets

The discovery of frequent item sets is a common datamining technique.
In the context of this work, it is often used to extract logical couplings
from the versioning history. It was originally presented to analyze
transaction data of customer buying behavior in supermarkets [AIS93].
Here, frequent sets are containing products which have often been
bought together [HMP05].
We use the procedure suggested in [Goe10] to formally describe
frequent itemsets:
Let J represents a set of items.
The couple T = {t i , I}, over J is a transaction identified by ti and I

is set of items from J.
We define D to be a database of transactions over J.
T supports a set X whereby, X ⊆ I which contains a subset of items.
The cover of the set X in D consists of the identifiers of the transactions
in D supporting X.
The number of transactions in the cover of X in D is the support of set
X in D.
The frequency of X in D is the probability that X can be found in a
transaction which is determined by dividing by the total number of
transactions in D.
We denote the item sets to be frequent if they have a support thresh-
old minsup greater than a minimum specified by the user:

0≤ minsupabs ≤ |D| (2.1)

If using frequencies of sets we have a relative frequency threshold:

0≤ minsuprel ≤ 1 (2.2)

2.4 | Data Mining 39

Having a database D of transactions over a set of items J and minsup
as minimal support threshold, we denote the collection of frequent
sets as F in D with respect to minsup as [HMP05]:

F(D, minsup) := {X ⊆ J |suppor t(X , D)≥ minsup} (2.3)

Let us have the following transactions as commits containing files
changed by developers as presented in Table 2.3:

Table 2.3: File Change Transactions
Transaction Itemset

t1 f1, f2, f3
t2 f1, f3, f5
t3 f1, f3, f8
t4 f2, f3, f6

From these transactions, we see that the items f1 and f3 have been
covered in three transactions: t1, t2 and t3 which means a support level
of 3 and frequency of 75%. The items f2 and f3 have been covered in
two transactions: t1and t4, with a support level of 2 and frequency of
50%. Having an user defined minimum support threshold of 3, we
conclude that the f1 and f3 represent a frequent itemset.

2.4.2 FP-Growth Algorithm

Various algorithms for mining frequent itemsets and association rules
have been proposed in literature [AS94; GG04; HMP05]. A classical
example is the Apriori method, which has been used in various stud-
ies [KYM06; ZWDZ04]. However, Apriori generates many itemset
candidates and scans the database many times for longer itemsets
candidates [HMP05]. Their generation and the need for multiple

40 2 | Background

database scans is considered expensive [TSK05].
As opposed to the Apriori, the FP-Growth algorithm allows frequent

items discovery without candidate item set generation. This algorithm
is considered to be faster and more memory efficient than the Apriori
algorithm [HPYM04].
FP-Growth scans the database only twice. This methods uses

partition and divide-and-conquer methods [HPYM04]. Firstly, it
compresses the frequent itemsets database into a data structure
called frequent pattern tree(FP-tree) and adds the relations between
the elements. Afterwards, the database is divided into conditional
databases related to the frequent items, whereby each of the condi-
tional databases is mined one by one to create the final set of frequent
items.
The FP-Tree construction is defined as follows [ZW14]:

1. Scan the database D and gathering the set of frequent items F.

2. Create the root of the FP-Tree ("root").

3. Scan D for the second time to create the transaction branches.

4. Generate the conditional pattern base and the conditional FP-
Tree for each frequent item.

The FP-Tree construction algorithm description is as follows [HPYM04]:

Input: The database D in the form of the FP-tree and the minimum
threshold minsup.
Output: The set of frequent patterns.
Method: Call FP-growth (Fp-tree, null)
Procedure: FP-growth (Tree, frequent itemset(α))
{

2.4 | Data Mining 41

1. if Tree contains a single path P

2. then for each combination (β) of the nodes in the path P do

3. generate pattern β ∪α with support= minsup of nodes in (β);

4. else for each item in the path ai in the header of Tree do {

5. generate pattern β=ai ∪α with support=ai .support;

6. construct the conditional pattern base of β and then the condi-
tional FP-tree of β (Treeβi

);

7. if Tree 6= 0

8. then call FP-growth (Treeβi
) }

}
Let us for example create the FP-tree for the files in Table 2.4:

Table 2.4: Transaction Items
ti Items
t1 f1, f2
t2 f2, f3, f4
t3 f1, f4
t4 f1, f2, f3, f5
t5 f1, f3, f4
t6 f1, f2, f3
t7 f1, f2, f3
t8 f1, f2, f4
t9 f1, f2, f5

• We scan the database to find the frequent items and their sup-
port. For our example we found the following set of items:
L =

�

{ f1 : 8} , { f2 : 7} , { f3 : 5} ,
�

f4 : 5
	

, { f5 : 2}
	

42 2 | Background

• We create the "root" of the FP-tree

• For each transaction in Table 2.4, we sort the items by descend-
ing order related to their support and create a branch of the
tree. Lets take the first transaction t1. It contains the items: f1
and f2, which construct the first branch of the tree as presented
in Figure 2.4.

Figure 2.4: FP-Tree after t1

• After the second transaction which contains the items f2, f3 and
f4, we have the tree branch as presented in Figure 2.5. We see
that the node f2 is found in both branches so we link them using
a dotted line.

Figure 2.5: FP-Tree after t2

• After the third transaction containing the items f1 and f4 we
have the tree branch as in Figure 2.6. This branch contains the
node f1 which is also included in the first branch so we increase
the count for this node to be 2.

2.4 | Data Mining 43

Figure 2.6: FP-Tree after t3

The complete tree for the transactions in Table 2.4 is presented
in Figure 2.7. It contains the final tree branches, the frequency
of occurrence of each node and the linking between the nodes.

Figure 2.7: FP-Tree

We start mining the tree for each frequent pattern as starting
suffix pattern, afterwards, we construct the conditional pat-
tern base and the sub-database which contains the prefix paths
which are found in the tree and occur together with the suffix
pattern. Further, we construct the conditional tree and then
recursively mine this tree and we concatenate the suffix patterns

44 2 | Background

and the frequent patterns from the conditional tree to perform
the pattern growth[HMP05].

For example, let us take the last suffix f5 and set a minimum support
of 2. From the set of frequent items we notice that the item f5 is
included in two branches of the FP-tree. The first one consists of the
elements (f1, f2, f3, f5) and the second of the elements: (f1, f2, f5).
The prefixes for the f5 suffix are: (f1, f2, f3 : 1) and (f1, f2 : 1).
The conditional FP-tree has only one path (f1, f2 : 1). We exclude the
item f3 for the reason that it has been found only once which is less
than the minimum support we set to be 2.
The single path combines the following frequent patterns for f5:
(f1, f5 : 2), (f2, f5 : 2) and (f1, f2, f5 : 2). For all the suffixes we have
the frequent patterns presented in (Table 2.5).

Table 2.5: Frequent Patterns
item pattern : support
f5 (f1, f5) :2, (f2, f5) :2, (f1, f2, f5) :2
f4 (f1, f4) :4, (f1, f2, f4) :2, (f2, f4):3,

(f1, f3, f4) :2, (f2, f3, f4) :2, (f3, f4):3
f3 (f1, f3) :4, (f1, f2, f3) :3, (f2, f4):3
f2 (f1,f2) :6
f1 (f2,f5) :6

FP-Growth has a higher performance then the Apriori algorithm,
however the main drawbacks is that the performance depends on
the compactness of the dataset [TSK05]. FP-Growth also has a large
memory usage for the tree compared to the dataset size [GZ05].

2.4 | Data Mining 45

2.4.3 Data Mining Framework

There are many frameworks and libraries to perform data mining on
the data from transactional databases. We use an open source pat-
tern mining framework called Sequential pattern mining framework
(SPMF) [VGG+14]. It contains data mining libraries implemented
in Java and includes a large set of data mining algorithms. It is spe-
cialized in pattern discovery in transactional databases like frequent
itemsets, sequential patterns and association rules mining [VGG+14].
It is a well documented Java based and cross platform framework.
We use the FP-Growth algorithm implementation in this framework
as a basis for the extraction of coupled file changes.

2.5 Developers’ Feedback

One of the main objectives of this research is to investigate the use
of coupled file changes by exploring developers’ feedback on the
interestingness and the usefulness of coupled files. Information can
be denoted as interesting from an objective and subjective point of view.
The first one relies on the structure of the data, whereby the second
depends on the user. The subjective interestingness of an information
depends on that if it is novel or unexpected and if the developer can
perform an action with it to his or her advantage [PM94]. Useful
means that information can help to achieve a goal defined by the user
or system [FPM92]. The usefulness is related to the user perception
of the performance when solving a task [ANT92].

46 2 | Background

2.5.1 Types of Feedback

To gain the feedback of developers on the concept of coupled changes,
we need a technique for a direct data collection. In this context, the
primary research gives the possibility to directly collect the data from
the source for qualitative and quantitative research. This data, called
"primary data" has been defined to be unknown and directly obtained
by the researcher [CPD05]. There are three common ways to conduct
primary research: survey, interviews and observation [Dri10].

2.5.2 Surveys

The participants are asked about their opinion using a set of questions
collected as questionnaires. Afterwards, the data can be compared
based on their responses. Here, the Likert-approach is the most
common used rating scale [CPD05]. The positive side of using surveys
is that we can involve people which are not physically available, so
the developers who worked on a project can be reached to gather
their opinion. One of the greatest challenges of this method is that
the participants may not understand the questions and therefore, may
not answer them carefully.

2.5.3 Interviews

Here, the researcher performs a discussion based on set of questions
using small groups of participants. They are asked questions to gain
their feedback whereby their response is noted or recorded for further
analysis. The strengths of the interview method is that interviews are
useful to gather broader feedback from the participants by adjusting
the questions according to the developer reaction. We can also use

2.5 | Developers’ Feedback 47

interviews to validate previous responses by participants using surveys.
However, the disadvantages of this method include the fact that
interviews last longer than surveys and it is more difficult to analyze
the answers.

2.5.4 Observation

The behavior of the participants involved in an experiment like their
actions or task responses can be directly observed and measured.
Usually the data is collected by noting or recording the participants’
behavior or by directly taking part in the observed activities. One of
the advantages of this method is that we do not rely of the answers of
the participants, we extract the information by analyzing what they
do. One of the challenges of this method is that it is more complex to
filter the relevant information and interpret participants’ feedback.

2.6 Software Maintenance

Our goal is to help developers in solving their maintenance tasks.
Software maintenance represents an event driven process [KTM+99].
The basic causes for maintenance work have been defined as process-
ing, performance or implementation failure in the software [Swa76].
It includes program or documentation changes to make the software
system perform correctly or more efficiently [SCR98].
Software maintenance has been defined in the IEEE 1219 Stan-

dard for Software Maintenance [IEE98] to be a software product
modification after delivery to remove faults, improve performance or
adapt the environment. In the ISO/IEC 12207 Life Cycle Processes
Standard [ISO95], the maintenance is described as a process where

48 2 | Background

the source code or the documentation modification is performed due
to a problem or improvement.

2.6.1 Maintenance Categories

Three different categories of maintenance have been defined [Swa76]:
corrective, adaptive and perfective. The ISO/IEC 14764 International
Standard for Software Maintenance [ISO00] updates this list with a
fourth category, the preventive maintenance, so we have the following
maintenance categories [Pig96]:

• Corrective Maintenance: This type of maintenance includes
corrections of errors in systems that should have never oc-
curred [BG10]. It includes design, source code and implemen-
tation error corrections.

• Adaptive Maintenance: It satisfies the changes related to new
requirements and includes the addition of new features to the
system. Software product modifications are performed to ensure
usability in changed environment.

• Perfective Maintenance: This involves changes in the system
which influence its efficiency. Also it includes software product
modifications to improve usability, maintainability or perfor-
mance.

• Preventive Maintenance: Here, the changes periodically have
been performed in the system to find problems and reduce
the possibility of future failures. It includes software product
modification to detect and remove failures before they become
effective.

2.6 | Software Maintenance 49

2.6.2 Maintenance Activities

The process of solving maintenance tasks includes the following ac-
tivities [BBC+96; NBD11]:

• Task understanding: Before taking any actions, developers need
to read the task description to understand the failure and pre-
pare for the source code changes.

• Change specification: During this step, developers locate the
source code they need to change, try to understand it and
specify the code changes.

• Change design: In this step, the developers perform the already
specified source code changes and debug the affected source
code.

• Change test: To specify the success of the code changes, devel-
opers perform an unit test of the solution.

2.6.3 Search for Task Relevant Information Sources

Developers working on maintenance tasks need to locate the part of
the code they have to edit during maintenance tasks. Facing a diffi-
culty or needing additional information for a task solution, developers
often seek for a relevant information on various locations [KMCA06].
There can be several types of relevance related to the source code.
They can seek for source code to find files or code locations for fur-
ther modifications [RGP11] or look for a code description to better
understand a part of the code they need to edit or try to find code
examples based on a similar situation or problem.
We have internal information sources like the IDE for example

Eclipse, including its search function, the source code window or

50 2 | Background

the package explorer. Also there are other external sources like the
software documentation, web search engines, source code examples
or programming tutorials.

2.6.4 Developer Expertise Profiles

The information about the role of the developers in the development
of a software project has been identified as fundamental [BNF14;
Job16]. During time a software system can grows and can become
difficult to identify which team member has the knowledge about
specific part of the system [FOMM10]. Not every developer knows
the software system in details [GKSD05].
During maintenance, the information about the authorship of soft-

ware modifications can be useful. Developers working on a project can
be differentiated based on their contribution to the functionalities of
the software. There are developers that commit a significant number
of commits to the system whereby others only contribute [ADG08].
Having this information which functionalities have been covered by a
particular developer can help selecting the person whose data can be
used during maintenance tasks.

2.6 | Software Maintenance 51

C
h
ap

te
r 3

State of the Art

3.1 Logical Couplings

A lot of scientific work has been dedicated to the investigation of soft-
ware repositories to find logical dependencies between software ele-
ments [BAY03; BKPS97; FGP05; GJK03]. For the first time, they were
introduced as evolutionary couplings between classes in [BKPS97]
and later as logical coupling between modules in [GHJ98].

3.1.1 Granularity

Logical couplings from version histories have been explored on various
granularity levels. One group of studies use fine granular couplings
where the coupled changes are identified between parts of files like
classes or methods [FGP05; RPL08; ZWDZ04]. Other studies explore
couplings based on a file level [KYM06; YMNC04]. Some studies

53

investigate couplings between features [FPG03a], modules or pack-
ages [BAY03; GHJ98].
In this work, the main approach of coupled changes relies on inves-

tigating couplings on a file level. Afterwards, we extend the scope of
the couplings on a package level.

3.1.2 Data Sources

Considering the investigated type of version control systems, the ma-
jority of the studies use centralized version controlled systems (CVCS),
typically CVS [CC05; ZWDZ04] or Subversion [KMS07; YMNC04] as
a data source.
To our knowledge, there are few studies on mining Git reposito-

ries [BRB+09; Car13; GAH15; RW]. These studies concentrate on
common challenges in mining Git and do not cover coupled changes.
Various studies combine more than one data source like version

control systems and issue tracking systems [CC05; DLR09; FPG03b;
WZKC11]. The data extracted from these sources is used to determine
the link between the source code revisions and bugs or issues.
We combine the data from three different sources to build coupled

file change suggestions: file changes and commit attributes from the
Git versioning system, issue attributes from the issue tracking system
and attributes from the documentation archives.

3.1.3 Commit Messages

Very few studies investigate characteristics of commitmessages. Mainly,
they concentrate on creating vocabulary terms [AKM08], the words
that appear in the messages [DNRN13] and sentiment analysis [GAL].
We use a set of commit attributes as a basic set and extend it with the

54 3 | State of the Art

issue attributes using the presence of a mapping between commits
and issues.

3.1.4 Change Set Heuristics

Various heuristics for grouping related change sets have been proposed
in the literature. Several heuristics based on the data source and
pruning technique are introduced in [HH04]. Here, entity data,
developer data and name similarity data are considered and pruned
by their frequency and recency to group and reduce the change sets.
Kagdi et al. in [KYM06] suggests three main heuristics for grouping

change sets. The time interval heuristic includes changes committed
by one or different committer in a predefined time period. This
heuristic organizes all the file changed during this time period in one
group. It considers the changes committed in a specific time period
as related. The committer heuristic groups the change sets from a
single developer in one group. This heuristic identifies the changes
committed by a specific developer as related. The combined time
interval+committer heuristic, includes the changes performed by a
single developer during a specific time period. It groups the changes
committed by a specific developer with an additional limitation for
the time of commit as related.
The proposed heuristics are evaluated classically using coverage,

precision and recall measures without regarding the developers’ feed-
back.
We use the committer as a fundamental heuristic to group the

related changes to build the coupled file changes for the reason that
it reported the highest coverage and precision values [KYM06]. We
also investigate two relevant factors: the time of the commits and the

3.1 | Logical Couplings 55

branching of the changes as important Git features for the relatedness
of the change sets.

3.2 Mining Repositories

Analyzing the used methodology, most of the studies investigating
software repositories use some kind of data mining for this pur-
pose [Ger04; HSCS08; KYM06; RD04; SLM03; YMNC04; ZWDZ04].
We use data mining to extract frequent file couplings from Git version
history for the reason that it has the capability to discover hidden
patterns from data and to extract and transform them in to an useful
information.

3.2.1 Techniques

Various data mining techniques have been used to investigate software
repositories. Some studies include the classification which places
the items into classes [SLM03]. Other use the clustering as mining
technique [VT06]. Here, the item classes are not known in advantage.
Often, the frequent itemsets mining technique is used to identify

changes in the version history that happened frequently together [KYM06;
YMNC04; ZWDZ04]. Our investigation includes extraction of frequent
sets of file changes from the software version history which conforms
the use of the frequent itemsets mining technique.

3.2.2 Algorithms

The Apriori algorithm [KYM06; ZWDZ04] and the FP-Growth al-
gorithm are among the most used algorithm to generate frequent
itemsets from version histories [YMNC04]. We extract the coupled

56 3 | State of the Art

file changes using the FP-Growth Tree algorithm which has proven to
have a higher performance than the Apriori algorithm.

3.3 Developers’ Feedback

3.3.1 Couplings and Feedback

To the best of our knowledge, there are very few studies investigating
how couplings align with developers’ opinions or feedback. A set of
feature coupling metrics on the structural and the semantic level have
been investigated in [RGP11]. The developers were asked if they find
these metrics to be useful. They show that feature couplings on a
higher level of abstraction than classes have been found to be useful.
Developers’ perceptions of couplings on class level were investigated

in [BDO+13]. Here the authors examine how class couplings captured
by semantic or logical measures align with the developers perception
of couplings. The semantic couplings have received the best rating of
all types of couplings.
The feedback of developers on the clusters of co-changed classes

from the version history has been investigated in [SVAA15]. They were
classified regarding their projection to the package as: encapsulated,
crosscutting and octopus reported as healthy designs, anomalies and
normally associated class distributions.

3.3.2 Video Materials and Feedback

A number of studies involve the use of observation as a type of feedback
on developer actions using captured videos. Developer actions in the
investigation of help seeking during maintenance have been described
in [KMCA06; LXPZ13]. Screen captured videos represent a method

3.3 | Developers’ Feedback 57

to record the interaction of developers and the IDE [BLX+15]. The
systematic approach of stages and concepts of selecting data from
videos have been described in [RFJS07].
The characteristics and constraints in transcribing and coding

videos have been investigated in [Jew12]. The application of vi-
sual grounded theory for multi-slice imaging has been presented
in [Kon11]. In [Ste08], the authors identify the problems in the
coding of video data using Grounded Theory for qualitative analysis.
They recommend practices to support video data analysis like per-
spectives and concepts. We follow the suggestions and focus on the
information sources before we transcribe the videos.
We focus on the developers’ feedback on the interestingness and

usefulness of coupled changes as well as on their impact on the task
solution and the developers’ strategy of seeking task relevant informa-
tion. We gain their feedback using surveys and interviews and analyze
it using the Grounded Theory method. We also use observation by
analyzing the videos of their actions during maintenance tasks.

3.4 Assessment of Maintenance Tasks

Various studies investigate the assessment and the estimation of
maintenance tasks. In [NBD11], the assessment and estimation of
various types of software maintenance tasks has been investigated.
In [RLR+12], they have assessed the correctness and the time du-
ration of maintenance tasks in model driven development context.
In [WA09], the researchers investigated the effect on the task order
on the maintainability of object oriented software like the correctness
and duration of maintenance tasks. In [SAPM14], evaluate the effects
of reactive programming on program comprehension where besides

58 3 | State of the Art

the programming skills they also explore the correctness and the time
required to solve tasks. The influence on software visualization on
the program comprehension based on the time and the correctness of
task solutions has been investigated in [CZD11; WLR11].
We also explore the correctness of maintenance task solutions and

the time of task completion for developers using coupled file change
suggestions compared to the developers not using the suggestions
during maintenance tasks.
The fault localization as technique for finding the location of defects

given the program failures has been investigated in many occasions.
In [KXLL16], the researchers explored the developers expectations
on fault localization. They reported the importance of data avail-
ability, granularity, reliability efficiency as well the need of an IDE
integration of fault localization techniques. The study on the use of a
spectra-based fault localization techniques in [XBLL16], shows that
the technique saves significantly saves debugging time. In [PO11], the
authors empirically investigated the usability of a technique for spec-
trum based fault localization, with and without using this technique
whereby the ranking and the search for defects has been identified as
important.
We do not localize faults or bugs, we provide suggestions for po-

tential file changes to solve an issue or a defined maintenance task.
The program comprehension including the understanding of the

structure of a program and the functional dependencies has been
investigated in [PA16]. They proposed a tool-set which improves the
location of software components needed to be inspected. In [PA14],
they introduced a spectrum based approach borrowed from fault
localization technique. Based on test case executions, it identifies
important components related to a given feature. In [LBB+10], they

3.4 | Assessment of Maintenance Tasks 59

investigated how developers navigate during debugging using mod-
ern programming environment proposing to include the information
foraging theory when searching and fixing a bug. The use of the
same theory has been proposed by in [FSP+13] to support devel-
oper activities for information seeking needed to understand software
engineering tasks.
We do not involve testing or debugging, we provide the coupled

files based on the changes stored in the version history.

3.5 Help Seeking During Maintenance Tasks

Several studies explored how developers seek for help during their
development or maintenance tasks. Software engineering work prac-
tices of developers have been investigated in [SLVA97]. Some help
seeking activities in software engineering both from static and dy-
namic perspective as well as relying on human factors have been
identified in [LXPZ13].
The authors in [KMCA06] describe the activities performed by de-

velopers in searching for task relevant information, the perception of
the information relevance relating as well as the task context variation.
In [WPXZ11], the researcher investigate the feature location process
during maintenance tasks by defining a three granularity levels of
hierarchy: actions, phases and patterns. In [RP09], the effectiveness
of ten feature location has been presented as a combination of textual,
dynamic and static analysis.
In our research, we examine the influence of coupled file changes

on the developers’ strategy of searching for help for their maintenance
tasks. We examine the used information sources, their relevance and
the source patterns for the developers using versus those not using

60 3 | State of the Art

coupled file changes suggestions.

3.6 System Packages

The information about the software components including the ex-
amined coupled file changes gives us the opportunity to investigate
logical couplings on a higher level like packages or modules.
There are several studies where the package information in the

project has been investigated. Robles et al. [RGMA06] studied the
characteristics of software including the packages, lines of codes or
the programming language. We do not describe the content of the
classes in the packages, we identify the approach how the source
code is divided in packages based on the features or layers.
The project analysis performed in [Hau02; SDMA07] involves de-

pendency analysis between the packages. In [DL06], the packages and
their relations have been visualized using artifacts and metrics and
their structural evolution. We investigate logical couplings between
the packages and not architectural dependencies.

3.7 Developer’s Expertise

3.7.1 Expertise Identification Based on The Contribution

The global approach in software development makes the identification
of experts for a given task to be important [TPF+14]. This includes
the developers’ skills and expertise levels related to a specific topic
like for example Java, web or testing, as well as software components
or tasks related to specific functionalities of a software product.
Various studies characterize developer’s expertise based on the

3.7 | Developer’s Expertise 61

authorship of the contribution in the source code. In [McD01], the
researchers present a recommendation system based on the Line 10
rule. Here the developer whose name shows up on line 10 of the
change log is recommended to ask for help. A developer is consid-
ered to be an expert if he or she is the last person having the file in
memory [RR13].
In [GKSD05], they measure the code ownership based on the infor-

mation who is the original developer. They asked how many develop-
ers worked on the system, which developer worked on which part of
the system and investigated behavioral patterns of the developers.
We identify the expertise using the authorship behind the source

code changes, however we do not concentrate on the files, we use the
packages behind these files.

3.7.2 Expertise Identification Based on The Developer Roles

In [MFH02], they identify that a core of 10-15 developers control the
code base and create more 80 % of the functionalities which leads to
a strict code ownership policy. The developers have been divided in
to core and non-core developers.
An empirical study about classification of developers in to core and

peripheral roles has been presented in [Job16]. Here, the researchers
use developer networks to model organizational structure of software
projects. In [BSS13], the authors statistically explore developers’
programming activity to create additional categories of developers
next to the core developers like active, occasional or rare developers
in order to understand the participation of different developers and
the structure of the development.
In [NYN+02], the researchers examine the evolution of an open

62 3 | State of the Art

source system, the project communities as well as their relations
to create evolution patterns. They also describe the roles of the
contributing developers to the project like passive, active, core and
other. In [BNF14], the authors create developer roles based on the
bugs or the source code contribution.
We do not classify specific developer roles, we aggregate their

expertise based on the functionalities of the changes in the source
code.

3.7.3 Expertise Identification Based on Software Repository Analysis

Developer profiles based on the developers’ technical knowledge,
organizational information and communication networks have been
proposed in [YR14]. Using data from versioning systems, interaction
history and issue tracking systems, the profiles have been determined
to be useful to collect information for recommending developers to
help on a task.
In [MM07], an approach for developer expertise using data from

versioning system has been presented. Here, the authors explore how
often the developer changed a particular file to show the structure of
the development team to make the communication easier.
In [SZ08], an approach has been proposed that recommends ex-

perts using mining of version archives based on the changes in the
methods.
In [ADG08] they use a classification of the source code tree in CVS

as a path to identify and visualize developers expertise for further
exploration of the repository. Another approach, presented in [AM07]
defines a three-way approach analyzing the committer of the code
in the source repository check-in logs, the author of the entries in

3.7 | Developer’s Expertise 63

the bug reports and the developers working on the modules which
contain changes on a file or package level.
We use the version history of the project, which in our case is the

Git repository to extract couplings between system packages to be
able to identify developers’ expertise which can be useful for solving
maintenance tasks.

3.8 Recommender Tools

There are several tools implementing logical couplings from versioning
histories using various levels of granularity and data sources. They
usually offer recommendations or warnings to the developers about
related or predicted changes.
ROSE [ZWDZ04] is an Eclipse based tool that recommends change

couplings from an existing CSV version archive. It operates at fine
granularity like functions or variables but also uses files. The tool
uses the Apriori algorithm to find frequent changes in the history to
recommend changes to the developer. The recommendations and
corresponding actions are produced automatically in Eclipse. In case
that the developer does not follow the recommended change, the tool
issues a warning.
The tool presented in [KYM06] extracts the changesets from the

repository logs. They have been grouped into sequences according to
a specific heuristic related to the time and the authorship of a commit.
The main use of SOFTCHANGE, a tool proposed in [Ger04] is to

help developers to understand the evolution of a software product.
The tool supports queries on changes in the past based on a file level. It
extracts the software changes from the version control system (CVS),
the issue tracking system (Bugzilla) and mailing lists. It provides

64 3 | State of the Art

graphical and statistical representations of the authors of the changes
and the files being modified together.
HIPIKAT [ČM03] is an Eclipse based tool that offers recommenda-

tions from a project’s development history for new developers relevant
to their tasks. This tool gathers information about the relations be-
tween documents of same or different type. It uses data sources like
mail archives and on-line documentation. It supports CVS, Bugzilla,
Newsgroups, Mailing Lists and the Project Web Site.
A tool for predicting source code changes by mining revision his-

tory association rule mining based on CVS version archives has been
proposed in [YMNC04]. It concentrates on the evaluation of the
usefulness of recommendations based on a file level.
Our tool implementation represents an Eclipse based plug-in which

operates on a file level scope and extracts coupled file changes from
Git as well as additional set of repository attributes related to these
couplings. It mines the file changes and recommends suggestions
about other files to be modified based on the versioning history.
It executes the frequent itemset analysis and presents the results

to the developer by visualizing the coupled file changes, the commit,
issue and documentation attributes as a part of the Eclipse IDE.

3.8 | Recommender Tools 65

C
h
ap

te
r 4

Coupled File Change
Suggestions

Couple file changes extracted from the version history represent
the basic elements of this research. The process of building cou-
pled file suggestions includes two main parts: obtaining coupled file
changes (Figure 4.1) and obtaining additional repository attributes
(Figure 4.2). We work with Git versioning systems which means
that we need to consider the specific organization of the source code
changes as well as the available options for extracting and formatting
the log data.

67

4.1 Coupled File Changes

Coupled file changes describe a situation where some developer
changed a particular file and also changed another file afterwards.
Let us have the following three commits: C1 = { f1, f2, f3, f6},
C2 =

�

f1, f3, f5, f7

	

and C3 =
�

f1, f2, f3, f4

	

. From these commits,
we can determine that f1 and f3 are found together. This means that
when the developers changed file f1, they also changed file f3. If
these files are found together frequently, it can help other persons by
suggesting that if they change f1, they should also change f3.

Figure 4.1: Obtaining Coupled File Changes

4.2 Obtaining Coupled File Changes

The process of obtaining coupled file changes consists of the extrac-
tion and grouping of change sets from Git, the data preparation for
database storage and the execution of the data mining algorithm to
extract the coupled file changes.

68 4 | Coupled File Change Suggestions

4.2.1 Data Extraction

4.2.1.1 Changeset Grouping Heuristics

We use a "developer based heuristic" to group file changes as proposed
in [KYM06]. It considers the file changes performed by a single
committer to be related. Using this heuristic, we group the sets
of files we use as a data source to extract the coupled files. We
account this heuristic for the reason it was defined for a repository that
supports atomic change sets [KYM06] and provided good coverage
and precision values. It also delivers a high number of coupled file
changes from projects not havingmany developers or when developers
do not commit their changes frequently.
We also investigated two additional heuristics in Chapter 6: "time

between the commits" and "branching status of the commits". How-
ever, for smaller projects and projects where developers do not often
commit, they would significantly decrease the number of change sets
we can work with. This can make very difficult to extract coupled file
changes from the repository.

4.2.1.2 Identifying Relevant Developers

We extract the information related to the changes in Git using ap-
propriate log commands1. They allow us to adjust the format of the
Git log output according to our needs. However, before executing
the log commands for extracting the changed files and the repository
attributes, we need to identify which developers’ data we include as
our source for the coupled file changes. For this purpose we filter the
developers having a minimum number of commits in Git.

1Git-Documentation https://Git-scm.com/docs/Git-log/

4.2 | Obtaining Coupled File Changes 69

https://Git-scm.com/docs/Git-log/

We have set a rule that we include only developers having 50 or
more commits. This user set threshold is important to be able to
generate relative frequent file change sets. This avoids reporting non
frequent itemsets or failures in the execution of the mining algorithm.
We do not include in the mining process developers having less than
the specified minimal number of commits.
For example, using the following command we can enlist the devel-

opers on the projects and the number of their commits:

1 Git shortlog -s -n --format=’%aN’ |sort -u

Here, the shortlog command summarizes the Git output using the "-s"
option, the "-n" option sorts the entries according to the number of
commits, the format option "%An" prints the author names and sort
"-u" includes only unique authors. This way we identify the developers
having committed enough commits to be included in the analysis.
After these adjustments are done, we can extract the commits con-

taining the changed files for each of the developers. For example for
the developer "John Doe", we can use the following Git log command
to extract the names of the committed files:

1 Git log --author="John Doe" --name -only

Here, we use the author and the name-only option which include
only the developer and the file name paths in their commits. The file
path represents the information we use to represent the coupled file
changes.

4.2.2 Data Preparation

After the data from the Git log has been generated, we have to prepare
the data for the mining process. The first step is to remove the outliers

70 4 | Coupled File Change Suggestions

in the change sets. This includes a removal of empty commits and
commits having only one entry. This will avoid algorithm execution
problems and does not corrupt the frequency value of the couplings.

4.2.3 Mining Coupled Files

For the process of extracting coupled file changes from Git, we have
chosen the frequent itemsets as data mining technique and use the
FP-Growth algorithm, a fast algorithm for frequent itemsets mining
without candidate generation. The implementation of this algorithm is
based on the SPMFmining framework defined in [VGG+14]. However,
this framework uses text files as input and output. The size of Git
repositories can rise very fast, so this can represent a risk so the
analysis can be slow or unable to be performed on an ordinary PC.
To improve the performance and extensibility for larger data sets,

we have provided a solution where the data is exported from Git
directly in a relational database. The data mining process is performed
on the database entries. The output of the data mining process is also
stored in a database to avoid the performance pitfall of using text
files. The tool implementation of the coupled file changes approach
is presented in Chapter 11.

4.3 Obtaining Repository Attributes

Besides obtaining coupled file changes from Git, we provide a set
of repository attributes from three different data sources: commit
attributes from the Git version history, issue attributes from the issue
tracking system and system structure information from the documen-
tation archives.

4.3 | Obtaining Repository Attributes 71

Figure 4.2: Obtaining Repository Attributes

4.3.1 Extracting Commit Attributes Set

Along with the extraction of the change sets from Git, we also perform
the extraction of commit attributes. We use a list of commit attributes
used in various versioning systems and describe the committed files
in Git: commit id, commit message, commit date and commit author.
The following command extracts all the commits, their attributes

and the changed files by a particular developer.

1 Git log --author="John Doe" --pretty=format:"@%h
##%an##%ad##%s\a" --name -only

In this command, we use the pretty=format option to be able to format
the output of the Git log according to our needs. This options include
the following user defined separators: ”α” for the start of the commit,
”##” for the delimiters between the attributes and ”\a” for the end
of the transaction. The last part of the command is the option which
enlists the file names in the commits. This command produces for
example the output presented in Figure 4.3.

72 4 | Coupled File Change Suggestions

Figure 4.3: Commit Export from Git

4.3.2 Extracting Issue Attributes Set

To enlist the issues and their attributes, we use a csv export from
the issue tracking system. The issues are described using a set of
issue attributes used in various issue tracking systems: issue ID, issue
description, issue author and issue time. An example is presented in
Table 4.1.

Table 4.1: Issues Export
Issue
ID

Issue Description Issue
Author

Issue Date

#533
The splash screen should include
a progress bar to show the data loading GA 19.06.2013

#869
All Tables in the PDF export should
have a consistent design BZ 12.06.2013

4.3.3 Extracting Documentation Attributes Set

In software product archives, we can find information describing the
structure of the product. We can add the file description as attribute
to describe the functionalities of the files or packages behind the file
paths. We add these attributes manually in a csv file and import them

4.3 | Obtaining Repository Attributes 73

in the database.

4.4 Building Coupled Changes Suggestions

4.4.1 Database Structure

Coupled file change suggestions consist of coupled files from the
Git versioning history and the available set of repository attributes.
The extracted data from the repository will be stored in a relational
database to make it available for further operations.
We define the structure of the database to include the files included

in the changed files, the commit, the issue and the documentation
attributes. In Figure 4.4, we present an entity relationship diagram
which represents the files, commits, issues and documentation as
entities. We have separated the commit attributes from the files. The
commits are mapped to the issues and the documentation describes
the files. The results of the mining process is stored in a database
table which includes the files and the involved commits identified by
their IDs.

4.4.2 Data Joining

After performing the mining process, we join the software repository
attributes to build the coupled file change suggestions (Figure 4.5).
The number and type of attributes depends on their availability and
the structure of the commits. Using specific Git log commands, we can
easily extract the commit attributes from the version control system
and join them to the coupled files based on the commit ID value
mapping.

74 4 | Coupled File Change Suggestions

Figure 4.4: Coupled Changes ER-Diagram

Assuming that the entries of the issue tracking system are available
and the commits are mapped with the issue IDs, we can join them to
the coupled files and the commit attributes to enrich the coupled file
change suggestions. To maintain the relation between the commits

Figure 4.5: Building Coupled File Change Suggestions

4.4 | Building Coupled Changes Suggestions 75

and the issues, we map them using the issue IDs found in the commit
messages. This mapping is based on the so called smart commits
which represent an useful and widely spread practice in the software
development. Many projects which use this kind of mapping can be
found on GitHub1 or other repository collections.
Let us take as example the commits and the issue in Figure 4.6.

Here, both commits are dealing with a similar functionality described
in both commit messages. However, not always the developer leave
useful or logical description of the commits, so using a mapping
of both commits to the issue number#513, we establish a relation
to be added in the coupled file change suggestions which gives the
information which issue these commits are solving.

Figure 4.6: Smart Commits

If the documentation archives are available and provide an informa-
tion related to the system structure like package or class description,
we can also add them to the coupled file changes and the other
attributes to build more complete suggestions.
For example an interesting information would be the package de-

scription for the files in the couplings to show their functionality as
presented in Table 4.2.

1GitHub https://Github.com/

76 4 | Coupled File Change Suggestions

https://Github.com/

Table 4.2: Package description
Package Package Description

astpa/controlstructure/figure
Classes related to the control
diagram visualization

astpa/model/hazacc/
Classes related to the
hazard action model

By joining all the repository attributes we create coupled file sug-
gestions to be presented to the developers working on maintenance
tasks.

4.4.3 Coupled Change Suggestions Example

An example of a simplified coupled file change suggestion is presented
in Table 4.3. The coupled change suggestion in this example offers
the following information enlisted in the sections 1-10.
(1) Provides a set of three files which represent the coupled files. This
set has been built based on the frequency of their co-occurrence in the
version history. We can see that the files: Accident.java, Hazard.java
and Actions.java were changed together.
Besides the set of coupled files, this coupled change suggestions offer
additional information based on the repository attributes provided in
the sections 2-10.
Sections 2-5 declare that the set of coupled files has been changed
in two commits by reporting their IDs (2), their author (3) and the
commit time (4). Both commit messages (5) include mapping to the
same issue ID meaning that they are related to this issue.
Based on this mapping we provide set of attributes of the issue (sec-
tions 6-9). From (6) we can read the ID of the related issue, the

4.4 | Building Coupled Changes Suggestions 77

description is provided in (7), the author is declared in (8) and the
date of the issues can be found in (9). In this example, we see that
the commits are related to an issue of modifying the copyright header
in the software system views.
The information in (10) describes the functionality of the classes for
the files in the coupling. This informs the developer that they are
dealing with the model views in the user interface of the software
system.
We expect that the coupled files and the additional attributes will

be useful for the developers in the solving of their maintenance tasks.
A theory on the use of coupled file change suggestions during

maintenance tasks is presented in Chapter 5.

78 4 | Coupled File Change Suggestions

Table 4.3: Coupled Change Suggestion
Coupled
Files
(1)

model/view/
Accident.java

model/view/
Hazzard.java

model/view/
ActionView.java

Commit ID
(2) 688a81a d3eed2e
Commit
Author
(3)

MD

Commit
Date
(4)

01.09.2013:
22:44:56

01.09.2013:
12:03:10

Commit
Message
(5)

Copyright header
in View Classes #462

Copyright header
in the Views #462

Issue
ID
(6)

#462

Issue
Description
(7)

Insert Team Information in the
copyright header for the views in the UI

Issue
Author
(8)

LB

Issue
Date
(9)

01.09.2013:09:34:20

File
Description
(10)

Class of the
model view

Class of the
model view

Class of the
model view

4.4 | Building Coupled Changes Suggestions 79

4.5 Developer Expertise Profiles Based on Coupled
Packages

Developers working on their maintenance tasks can use data from
other developers who worked previously on the system. They can
select whose data matches their tasks the best given their implemen-
tation expertise. Using profiles we can identify their expertise so the
developers working on this tasks can decide which other develop-
ers’ data can be useful. Defining developer profiles, we capture the
characteristics of their changes according to their contribution in the
source code.
During the process of extracting the coupled files, we can acquire

the information in which packages the changed files appear using the
content of the file paths. This allows us to extend the coupled file
changes approach on a package level and create package couplings
as presented in Table 4.4.
Instead of simply measuring the frequency of the changed pack-

ages by the developer to define the expertise behind the source code
changes, we dynamically investigate the couplings between system
packages. This way we can identify expertise profiles based on the
various sets of source code functionalities changed frequently together.

Table 4.4: Packages couplings
coupling 1 coupling 2
controller=> commands/policy=>
(1) commands/create (1) controlstructure
(2) components
figure
(3) controller/editPart/
commands/policy

80 4 | Coupled File Change Suggestions

The process of aggregating developer expertise profiles has been
previously defined in [SZ08]. Similarly, we use the changed packages
from the version history to aggregate expertise profiles of the develop-
ers using the coupled file changes approach as previously presented
in Figure 4.5.
Here we can identify which packages the developer changed most

frequently together. We rank the coupled packages and aggregate the
common functionalities behind them to build the expertise profile.

Table 4.5: Developer profiles
Developer1 packages profile
controlstructure/controller/
controlstructure/create
controlstructure/command/ control structure
controlstructure/controller/editParts/
controlstructure/policy/
Developer2 packages
ui/interfaces/ user interface+components
ui/grid
components/sds/

For example, lets suppose that a developer has a maintenance task
related to a change in the control structure of the application. He or
she looks up at the developers profiles to find the developer whose
most frequent package couplings are relevant for his or her task.
In Table 4.5, we have two developers, their most frequently changed

packages and their developer profiles. We see that the coupled pack-
ages for the first developer cover features related to various sub-
packages like controller, command or policy. This information does
not deliver a common functionality. Moving one level up, we see that
all these sub-packages belong to the same package, the control struc-

4.5 | Developer Expertise Profiles Based on Coupled Packages 81

ture. Having this common functionality, we aggregate the features
covered by the profile called control structure. We define the name of
the profile using the current package name.
The second developer profile describes the most frequently co-

changed packages related to the user interface which in this case are
not relevant for the specific task. Here we have two different function-
alities, user interface and components. For the first two sub-packages
in the second coupling presented in Table 4.5 called interfaces and
grid, we have a common packages called ui. This identifies that they
cover a common functionality related to the user interface. The third
package is related to the application component and identifies the
functionality called components. The first option to provide an ex-
pertise profile is to use the common functionality for the first two
packages and define the profile user interface. Another possibility is
from both functionalities covered in all three packages to define the
user interface + components profile.
The profiles can identify which developer contributed on related

source code modifications and functionalities. Furthermore, the exper-
tise profiles can be used as precedent step to enlist which developers’
data is suitable to be used to extract coupled file changes relevant for
specific maintenance tasks.

82 4 | Coupled File Change Suggestions

C
h
ap

te
r 5

Theory on the Use of
Coupled File Change

Suggestions

Besides extracting coupled file changes fromGit repositories and build-
ing coupled file change suggestions to be delivered to the developers
during maintenance, the objective of our research is to investigate
their use during maintenance tasks. For this purpose we build a the-
ory on the use of coupled file change suggestions using the feedback
of developers on the acceptance and the usefulness of coupled file
change suggestions as well as their influence on maintenance tasks.

83

5.1 Use of Coupled File Change Suggestions

Coupled changes suggestions can be delivered to the developers with
an intention to help them by proposing hints about other file changes
they need to perform, based on previous changes in the version system.
However, there is no guarantee thay will use this kind of help.

5.1.1 Interestingness of Coupled File Change Suggestions

The use of coupled file change suggestions depends on that if they
are accepted by the developers. Before we investigate their use, we
determine the level of acceptance of the concept of coupled files
using developers’ feedback on their interestingness. We define the
interestingness as a subjective measure derived from user expecta-
tions [McG05]. The subjective interestingness of an information relies
on that if it is novel or unexpected so that it brings an advantage for
the developer [PM94].
The interestingness of coupled file changes can be expressed using

the developers’ feedback. In our case study [RW16b], we performed
a survey with the developers to collect the feedback about their back-
ground and experience as well as their attitude towards the presented
concept of coupled file changes. Furthermore, in this case study, we
validated the outcomes of the surveys using interviews which provide
a possibility to transfer additional information from the developers
related to the acceptance of the coupled file changes concept.

5.1.2 Usefulness of Coupled File Change Suggestions

After determining the acceptance of coupled file change suggestions,
we explore if the developers have a benefit using them when solving

84 5 | Theory on the Use of Coupled File Change Suggestions

maintenance tasks. The usefulness is related to the performance
perception by the user when solving a task [ANT92]. An information is
useful if it can help to achieve an user or system defined goal [FPM92].
We operationalize the usefulness of coupled file changes by exploring
their benefits or influence on maintenance tasks using a controlled
experiment [RW16a]. Here, the basic indicators of their usefulness
are defined using a survey with the developers and an observation of
their actions during maintenance task solution.
Observing their maintenance activities we can directly measure the

influence of coupled file changes by evaluating the solution of the
maintenance tasks. Using observation as a direct method for collecting
information, we avoid the influence of the developers’ willingness to
provide their answers objectively.

5.2 Theory Building Description

Before we start building our theory, we need to describe the theory
building process. For that purpose we use the approach presented
in [SDAH08]. It characterizes the basic elements of the theory derived
from four archetype classes: Actor, Technology, Activity and System.
The theory building process is presented in Figure 5.1 and includes
the following steps:

• Defining of constructs: The first step involves the definition of the
main elements called constructs as well as the determination of
their sources.

• Establishing propositions: The second step includes the building
of relations between the constructs called propositions. To-
gether with the constructs, the propositions represent the basic

5.2 | Theory Building Description 85

elements of the theory.

• Constructing explanations: The third step engages the construct-
ing of the explanations to clarify the propositions and determine
the theory scope.

• Theory testing: Finally, after performing the steps above, we
describe the testability of the theory using empirical research.

Figure 5.1: Theory Building Steps

5.2.1 Constructs

The first step of the theory building involves the definition of the con-
structs as basic entities of our theory [SDAH08]. We build the theory
using the inductive approach whereby the constructs have been de-
fined using the knowledge from our case study [RW16b] presented in

86 5 | Theory on the Use of Coupled File Change Suggestions

Chapter 7 and a set of empirical studies as information sources related
to: coupled files [KMS07; KYM06; YMNC04; ZWDZ04]; grouping
of change sets [ABCO98; PSW11; PTL+11; WS02]; maintenance
tasks [CZD11; NBD11; RLR+12; WA09; WLR11] and help seeking
during maintenance [KMCA06; LXPZ13]. The sources of the con-
structs are presented in Figure 5.2.

Figure 5.2: Construct Sources

This approach of building constructs from multiple research studies
is inspired by the framework presented in [BSL99]. It defines the
building of a knowledge based on families of experiments. We use
phenomena investigated in various empirical studies to support the
validity and the relevance of the constructs and their relations in the
context of coupled file change suggestions.

5.2 | Theory Building Description 87

We propose the following list of constructs which represent the
basic elements of the theory including the factors that influence the
use of coupled file change suggestions as well as the maintenance
related aspects the suggestions are affecting:

C1 Coupled File Change Suggestions

C2 Coupled Files

C3 Format

C4 Context

C5 Repository Attributes

C6 Developer Heuristic

C7 Time Heuristic

C8 Branching Heuristic

C9 Task Solution Correctness

C10 Task Solution Time

C11 Help Location

C12 Help Searching Pattern

The first two constructs: Coupled File Change Suggestions (C1) and
Coupled Files (C2), have been investigated in previous empirical stud-
ies in the literature [KYM06; YMNC04; ZWDZ04].
Coupled file changes have been defined as sets of files that have

been previously changed together frequently. They represent logical
couplings on a file level. In Git, the commits represent the change
sets used to organize the changes from which we extract the coupled
files.

88 5 | Theory on the Use of Coupled File Change Suggestions

Coupled file change suggestions represent warnings to be delivered
to the developers when they edit a file included in a set of files being
changed together. Besides the coupled files, the suggestions also
include additional information extracted from software repositories.
The Format (C3) describes the content of coupled file change sug-

gestions. This involves the aspect how the information is organized
and presented to the users. For example, the simplest way is to pro-
vide a list containing the coupled files which however does not include
a high usability especially if we have large coupled files including
many files or when we have numerous couplings.
The Context (C4) of coupled file change suggestions depicts the

functionality these changes are related to. For example, besides the
set of changed files, we can provide an information about the involved
functionality by mapping a link between the commits containing the
coupled files and the issue to be solved. This way, the developers
receive a description to determine the background of the changes.
The context of the coupled files can be determined from the content
of the commit messages in Git or the textual description of a related
issue in the issue tracking system.
The Repository attributes (C5) represent a set of well-known at-

tributes from the versioning system, the issue tracking system and
the documentation archives. There are many repository attributes
provided in various versioning systems. In our case study [RW16b],
we have enlisted a set of common attributes used in Git: commit
id, commit message, commit date and commit author. We use issue
attributes found in various issue tracking systems: issue ID, issue de-
scription, issue author and issue time. We also include the class, file or
package description as attributes which describe the functionalities of
the files. The participants in the case study reported a subset of the

5.2 | Theory Building Description 89

most interesting attributes to be added to the coupled files as part of
the coupled file change suggestions.
These three constructs (C3, C4 and C5) have been defined in

our case study on the interestingness of coupled file change sug-
gestions [RW16b] by analyzing the questionnaires and the interviews
with developers. The study is described in Chapter 7.
For the reason Git is a distributed versioning system which uses

commits as atomic change sets, has a specific time management
and supports branching, we determine the constructs (C6, C7 and
C8) related to the grouping of change sets. The grouping process
is important in order to provide related changes meaning they deal
with common functionalities. This way we avoid grouping changes
having different context. For example related change sets can describe
several phases of a task solution whereby the developers split their
works in several commits. They can also include multiple changes on
the same set of files in several occasions until the requirements are
not satisfied and the developers deliver an acceptable solution.
The developer heuristic (C6) groups the change sets committed by a

single developer. The commit time heuristic groups the changes from
various developers performed during a predefined time period (C7).
Both heuristics support atomic change sets and have been proposed
in [KMS07; KYM06].
We add a third heuristic (C8) based on the branching status of the

commits in the versioning system. The branching patterns have been
previously investigated in [ABCO98; WS02]. In [PSW11; PTL+11],
the authors provide an overview of branching practices in software
development. This heuristic groups change sets as related if they
belong to the same commit branch in the versioning system.
The Correctness of maintenance task solutions (C9) and the Time

90 5 | Theory on the Use of Coupled File Change Suggestions

needed to solve them (C10) have been previously investigated in
a number of empirical studies using various scope like: comparing
different types of maintenance tasks [NBD11], model driven devel-
opment [RLR+12], ordering of maintenance tasks [WA09] and vi-
sualization of software systems [CZD11; WLR11]. The correctness
measures how well the developer solved the task. Usually, the re-
searchers use a scale which defines if the developer solved the task
completely, partially or did not solve it. The time needed to solve the
task is usually measured using time units like minutes or seconds.
We transfer the concepts of correctness and the time duration of

solving maintenance tasks in the context of the use of coupled file
change suggestions. For example, the researchers in [NBD11] explored
the correctness and the time of task solution to compare the results
for different types of maintenance tasks. We use the same variables to
compare the results between the developers using coupled file change
suggestions and those not using coupled file change suggestions.
In [LXPZ13], the researchers define task relevant information

sources and describe the process of help seeking during maintenance
tasks. The authors of another research [KMCA06], investigate where
the developers search for task relevant information and how they
navigate between these sources.
Based on these use of various task relevant information sources by

the developers during maintenance tasks, we define the constructs:
Help Location (C11) and Help Searching Patterns (C12) in the context
of the use of coupled file changes during maintenance tasks. Here,
the help location identifies the source of task relevant information
related to the functionality or the source code location of the needed
modification. We have internal and external information sources.
Internal information sources include the IDE functionalities which

5.2 | Theory Building Description 91

deliver information related to the source code the developer need
to change like the project explorer, the search functionalities and
the source code editor. External information sources represent the
documentation of the software product or external web sources like
search engines or web sites.

Figure 5.3: A Theory on the use of Coupled File Change Suggestions

5.2.2 Propositions

The second step in the theory building is the specification of propo-
sitions. The propositions represent the relationships between the
constructs [SDAH08]. They depict which factors influence the use of
coupled file change suggestions and how the use of these suggestions

92 5 | Theory on the Use of Coupled File Change Suggestions

influences maintenance task solutions (Figure 5.3). We define the
following propositions:

P1 The acceptance of the concept of coupled files influences the
use of coupled file change suggestions

P2 The acceptance of the provided format of coupled file change
suggestions influences their use.

P3 The acceptance of the provided context of coupled file change
suggestions influences their use.

P4 The acceptance of the provided set of repository attributes in-
fluences the use of coupled change suggestions

P5 The grouping of change sets based on the developer influences
the relevance of coupled change suggestions

P6 The grouping of change sets based on the time of commit influ-
ences the relevance coupled change suggestions

P7 The grouping of change sets based on the branching status
influences the relevance coupled change suggestions

P8 Coupled file change suggestions increase the correctness of
maintenance tasks

P9 Coupled file change suggestions reduce the time needed to solve
maintenance tasks

P10 Coupled file change suggestions influence the choice of help
search locations during maintenance tasks

P11 Coupled change suggestions influence the help searching pat-
tern during maintenance tasks

5.2 | Theory Building Description 93

5.2.3 Explanations

The third part of the theory building process is to explain the provided
constructs and propositions [SDAH08]. Using explanations, we clarify
the meaning of the constructs and describe the propositions. We
present the following explanations for the constructs and proposition
defined above:

E1 The proposition P1 defines the relation between the constructs:
Coupled Files (C2) and Coupled File Change Suggestions (C1).
The acceptance of the coupled files concept is of fundamental
importance for the use of coupled file change suggestions. If
developers find coupled file changes interesting and they rec-
ognize potential benefits from it during maintenance tasks, we
can expect that they will use the assistance of suggestions about
other potential files to be changed.

E2 The proposition P2 relates the constructs: Format (C3) and
Coupled File Change Suggestions (C1). It identifies that the use
of coupled file changes depends on the manner how they are
brought to the developers. The formatting of the provided con-
tent of the information and the visualization directly influences
if the developers will accept and use the suggestions.

E3 The proposition P3 links the constructs: Context (C4) and
Coupled File Change Suggestions (C1). Providing coupled file
changes related to a particular issue or the part of the source
code we needed to edit increases the possibility to be accepted.
Knowing the nature of the performed changes in the source
code can help the developers to determine if this changes are
relevant for their tasks.

94 5 | Theory on the Use of Coupled File Change Suggestions

E4 The proposition P4 involves the constructs: Repository Attributes
(C5) and Coupled File Change Suggestions (C1). In our research,
we use a number of common attributes from three information
sources: versioning system, issue tracking system and documen-
tation. These sources provides various meta-data or attributes.
However, not every attribute is relevant and can be useful to
help the developers. Having large set of attributes can over-
whelm the developer and decrease the usefulness. Flooding the
developer with information can be counterproductive. However,
presenting a small or inappropriate set of attributes can make
the coupled file change suggestions not interesting.

E5 The proposition P5 depicts the relation between the constructs:
Developer Heuristic (C6) and Coupled File Change Suggestions
(C1). Grouping the change sets by their author allows us to
define change set groups whereby each group includes commits
performed by the same author. Here, all changes performed by
the same developer are considered to be related. Grouping the
change sets by their author, can influence their relatedness. We
suppose that a single developer worked on a smaller diapason
of functionalities, compared to a set of different developers.

E6 The proposition P6 describes the relation between the con-
structs: Time Heuristic (C7) and Coupled File Change Suggestions
(C1). Using the time based heuristic, we can group the files
committed by different developers in a predefined time period.
All change sets performed by various developer during a time pe-
riod, are considered as related. Grouping source code changes
performed by various developers, can include changes which do
not have common functionalities. A combined heuristic, relates

5.2 | Theory Building Description 95

the changes performed by the same developer during a time
period. This combination can reduce the possibility of grouping
unrelated changes. However, it is very restrictive for smaller
projects and limits the number of coupled file changes we can
extract from the versioning history.

E7 The proposition P7 represents the relation between the con-
structs: Branching Heuristic (C8) and Coupled File Change Sug-
gestions (C1). This heuristic allows us to group the change sets
using the branching status. Branches are very often used in
Git. They allow the developers to separate the commit changes
from each other. This way, we can group the changes based
on the branches covering various features or issues. All change
sets which belong to the same branch, are considered to be re-
lated. Presuming that branches include common functionalities,
this kind of grouping can increase their relatedness. However,
having various branching concepts and strategies, can deliver
different levels of relatedness.

E8 The proposition P8 expresses the relation between the con-
structs: Task Solution Correctness (C9) and Coupled File Change
Suggestions (C1). This relation reveals that coupled file changes
influence the level of successfulness of the maintenance task
solutions. Offering hints about other possible parts of the sys-
tem where the developers need to perform their changes, can
increase the number of successfully solved tasks. It can lead to
more complete task solutions by reducing the chance to miss
a related change in another file which we need to modify in
order to solve their tasks.

E9 The proposition P9 describes the relation between the con-

96 5 | Theory on the Use of Coupled File Change Suggestions

structs: Task Solution Time (C10) and Coupled File Change Sug-
gestions (C1). It determines that the developers using coupled
file change suggestions solve their tasks faster. Using the pro-
vided coupled file change suggestions, the developers can reduce
the time needed to search for the files needed to be modified in
order to solve their tasks. This way, the suggestions can reduce
the time needed for delivering the solutions.

E10 The proposition P10 relates the constructs: Help Location (C11)
and Coupled File Change Suggestions (C1). Holding the informa-
tion about potential change locations in the software delivered
by the coupled file change suggestions, developers can select
different sources to search for help for their tasks than the
developers not using coupled file change suggestions. The sug-
gestions can influence where the developer looks for a task
relevant information. This can include searching for code ex-
amples or code explanations to help him or her to solve the
maintenance task. The suggestions can affect the need to use
IDE internal or external information to solve the tasks.

E11 The proposition P11 links the constructs: Help Searching Pattern
(C12) and Coupled File Change Suggestions (C1). Using coupled
file change suggestions, developers can use different patterns of
help sources. This means that coupled file change suggestions
can affect the sequence of actions to locate relevant information
during maintenance tasks. The searching sequence consisted
of various information sources, can lead us to the information
what kind of strategy the developers use to solve their tasks.

5.2 | Theory Building Description 97

Figure 5.4: Theory Testing

5.2.4 Scope of the Theory

Step four in the theory building is to determine the scope of the theory
for the defined archetype classes [SDAH08].
Regarding the technology, the scope of the theory is on the use of

coupled file change suggestions for developers working on mainte-
nance tasks. Related to the Actor archetype class, the scope is on
inexperienced developers on the project which need to perform a
modification on the system. The software system scope of the theory
relies on the source code stored in the Git version system where the
coupled files have been extracted. The scope on the activity includes
maintenance activities related to the task solution.

5.2.5 Theory Testing

After the theory has been built it needs to be tested. This includes the
process of empirical validation of the theory [SDAH08]. Our overall

98 5 | Theory on the Use of Coupled File Change Suggestions

empirical research strategy involves both quantitative and qualitative
research. Using a mixed method we perform empirical studies to
evaluate the propositions of our theory. The main parts of the testing
process are presented in Figure 5.4 are as follows:

• Grouping of change sets: The first part concentrates on the propo-
sitions about the relatedness of the change sets as sources for
extracting coupled files. We tested it using an empirical investi-
gation of the propositions regarding the constructs for grouping
change sets. We performed an experiment where we explored
the relatedness of the change sets grouped using the developer,
the time and the branching based heuristics performing logistic
regression. The experiment is presented in Chapter 6.

• Usefulness of coupled file change suggestions: We went beyond
the interestingness investigated in [RW16b] and we examined
in [RW16a] the usefulness of couple file change suggestions.
For this purpose we conducted a controlled experiment which
is described in Chapter 8. Here, we explored the feedback of
developers on the usefulness of coupled changes. We performed
a survey and analyzed the developers’ opinion on the coupled
files and each of the proposed attributes.

We have presented them coupled file change suggestions con-
sisted of coupled files and a set of repository attributes we de-
fined in the interestingness case study [RW16b]. We captured
their activities performed to solve a set of maintenance tasks
by recording their computer screens. We used the Grounded
Theory method to analyze the recorded videos, to determine
the influence of coupled file change suggestions on the task
solutions. The developers worked on real issues on the project

5.2 | Theory Building Description 99

used in the experiment.

Further, in this experiment, we tested how the use of coupled
change suggestions influences the number of successfully solved
tasks by dividing the developers in two groups: one using cou-
pled file change suggestions and another not using this kind of
help. Also, the time needed to solve the tasks has been com-
pared between both groups. The experiment is described in
Chapter 8.

• Impact of coupled file change suggestions: Using an exploratory
study [RW17a], we examined how coupled file change sugges-
tions influence the strategy the developers use to search for
help during maintenance. We investigated which information
sources the developers used by observing their actions. We com-
pared two groups: one that uses coupled file change suggestions
and another one not using these suggestions. We also explored
the produced patterns of both groups involving the information
sources used to find the relevant information for the tasks. This
study is presented in Chapter 9.

100 5 | Theory on the Use of Coupled File Change Suggestions

C
h
ap

te
r 6

Mining Related Change
sets in Git: A

Quasi-Experimental
Study

6.1 Introduction

In this study, we test the part of our theory on the use of coupled file
change suggestions related to heuristics for grouping of change sets
in Git.
Source code modifications can be performed on several occasions

to solve different issues or tasks. These changes in Git are organized

101

in change sets called commits. Coupled file changes can be extracted
from different change sets in the version history. However, not all of
them are related. We need to define related change sets to use them
as a data source to extract coupled files. To the best of our knowledge,
the relatedness of change sets from Git repositories has not been
previously investigated. The specific time concept for tracking the
changes and the branching as important Git features, have not been
previously investigated together to find related file change sets.
Although various CVCS support commits change sets having a time

and branching management of the committed changes like Git, the
fact that the developers in Git as DVCS work locally and then commit
and push their changes on a remote server motivates us to investigate
how these factors influence the relatedness of change sets in Git. The
relatedness of change sets is important for the reason that grouping
of unrelated change set can lead to irrelevant coupled file changes.
The aim of this research is to examine heuristics to group related file

change sets in a Git repository which are used to extracting coupled
file changes. We include Git characteristics like the time management
of the commits and their branch location.
We present a quasi-experiment where we extract related change

sets from Git repositories. Here, the basic idea is that change sets
are related if they are associated with the same functionality or issue.
To establish a relation between the commits and the issues we use a
mapping of commit messages with the issue IDs.
We measure the time between the commits and their branching

status. We investigate the influence of these two factors on their
relatedness using logistic regression.
We use Git repositories from five open source software project

repositories. Two of the projects have been developed at the University

102 6 | Mining Related Change sets in Git: A Quasi-Experimental Study

of Stuttgart. The other projects have been found on GitHub1.

6.2 Experimental Design

We select our metrics using the GQM approach [BCR94] and its
MEDEA extension [BMB02]. Our goal is to define a heuristic for
related change sets in Git. Our objective is to determine the relation of
the commit time and branching towards the relatedness of change sets.
The purpose is to measure the relatedness for different time commit
and branching values. Our viewpoint is as software developers and
the targeted environment is open source systems.

6.2.1 Research Questions

RQ1: Is there an influence of the time between the commits and
the existence of branching on the relatedness of file change sets?
This question is relevant to investigate since Git maintains the time
of commit of file changes and supports local and remote branching in
the development. This is our main research question. We investigate
the combination of these two factors on the relatedness of change
sets which leads us to the formulation of the heuristic we proposed.

RQ2: Is there an influence of the time between the commits on
the relatedness of file change sets? Here we refer to the first indi-
vidual factor, the commit time. We investigate different time periods
between the commits to find out if this influences their relatedness.

1https://github.com/

6.2 | Experimental Design 103

https://github.com/

RQ3: Is there an influence of the existence on branching on the
relatedness of file change sets? We concentrate on the second fac-
tor, the branching location. We investigate how the commit location
in the same or different branches takes effect on their relatedness.

RQ4: Is there any difference in the relatedness of the time be-
tween the commits and the branching on the relatedness of change
sets across projects. We investigate the spread out of the relatedness
for every repository individually to explore how it varies across the
projects.

6.2.2 Hypotheses

For RQ1 we define the following hypotheses:

H0.1: There is no influence of the time between the commits and
branching on the relatedness of file change sets.
HA.1: There is an influence of the time between the commits and
branching on the relatedness of file change sets.

To answer RQ2 we formulate these hypotheses:

H0.2: There is no influence of the time between the commits on the
relatedness of file change sets.
HA.2: There is an influence of the time between the commits on the
relatedness of file change sets.

For RQ3 we derive the hypotheses as follows:

104 6 | Mining Related Change sets in Git: A Quasi-Experimental Study

H0.3: There is no influence of the branching on the relatedness of file
changes-sets
HA.3: There is an influence of the branching on the relatedness of file
change sets.

6.2.3 Experimental Variables

6.2.3.1 Independent Variables

In this experiment, we define two independent variables: time between
commits and branching. The first independent variable, represents a
continuous numerical variable, measuring the time between a pair
of commits. We use calendar days as measure for this variable. The
second independent variable is dichotomous, having two categorical
states representing the branching status: are the commits in the same
branch or not.

6.2.3.2 Dependent Variables

There is one dependent variable, the relatedness of file changes. This
variable is also dichotomous and has two categorical values: related
and not related.

6.2.4 Experiment Design

The specific type of the variables directly influences the type of our
experiment design. We investigate the effects of two independent
variables (continuous and categorical) on a single dependent cate-
gorical variable as presented in Figure 6.1. Having either continuous
and/or categorical independent variables, we need a regression lay-
out [QK02]. If the dependent variable is categorical we use logistic

6.2 | Experimental Design 105

regression [GE04]. We have multiple independent variables measured
along with a single dependent variable so we use multiple logistic
regression for the analysis.

Figure 6.1: Experimental variables

6.2.5 Objects

The prerequisite to include the repositories for analysis is that most
of their commits must contain mappings to the issue IDs. We use Git
repositories of five different open-source software projects. The first
project, ASTPA1, is an Eclipse RCP application. The second, RIOT2

is a Java web services and Android project. Project number three is
Metrics3, a JavaScript library for visualizing time-series data. The

1http://sourceforge.net/projects/astpa/
2https://github.com/SE-Stuttgart/riot/
3https://github.com/mozilla/metrics-graphics

106 6 | Mining Related Change sets in Git: A Quasi-Experimental Study

http://sourceforge.net/projects/astpa/
https://github.com/SE-Stuttgart/riot/
https://github.com/mozilla/metrics-graphics

fourth project is Akka1, a toolkit for message-driven applications on
the JVM. Project number five is an Add-on builder for Firefox2. The
first two projects were found in the local GitLab on the University of
Stuttgart. The other projects are popular projects hosted on GitHub.

6.2.6 Experiment Instruments

We collect the log data from Git repositories using a self-developed
program written in Java. We use it to automatically extract the com-
mits, their attributes, like commit messages and commit times, as well
as the committed file. This data is stored in a relational database. We
use the SPMF3 data mining framework to generate the coupled file
changes. We have adjusted the framework to work with databases in-
stead of text files. The data analysis is performed using the statistical
software SPSS4.

6.2.7 Data Collection Procedure

We collect the information from the repository logs about the com-
mits, extract the coupled change files and store them in a relational
database. In the database, we enlist the coupled file changes for all
the developers in the projects. We choose randomly one set of coupled
file changes per developer and join the attributes like the commit IDs,
the time of commit and the commit message.

• Data extraction: First of all we extract the logs from the reposi-
tory. We gather the commits, the files changed and the attributes

1https://github.com/akka/akka
2https://github.com/mozilla/addon-sdk
3http://www.philippe-fournier-viger.com/spmf/
4http:

//www-01.ibm.com/software/analytics/spss/products/statistics/

6.2 | Experimental Design 107

https://github.com/akka/akka
https://github.com/mozilla/addon-sdk
http://www.philippe-fournier-viger.com/spmf/
http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www-01.ibm.com/software/analytics/spss/products/statistics/

for all the developers who committed the file changes and store
them in the database.

• Data Preparation: To make sure we have relative frequent cou-
plings and to avoid failures of the mining algorithm we need to
prepare the data. We exclude the empty commits, the commits
containing single entries and the commits which do not contain
references to the issue IDs in the commit messages. We do
not consider the data from those developers who did less than
50 commits. This filtering is performed to set a rule for the
minimum frequency of coupled file changes. In this case, we
set the minimum frequency to be 5. We set a minimum support
level of 10% meaning that we do not consider the file changes
found in less than 5 commits. This way we have a minimum
user-set degree of the frequency of coupled changes.

• Coupled changes randomization: For every developer we choose
a random set of coupled file changes. We join the appropriate
set of attributes to the coupled file changes. Using our scripts for
automated Git log extraction, we enlist the information about
the committer, commit time, commit message and files changed.

• Commit pairing: We take the chosen coupled file change and
pair all the commits where this change was detected. The pairs
are generated by combining all the change sets for a specific
coupled change. We start with the latest commits and continue
with previous commits. For example, if a set of files changed to-
gether was found in the commits with the IDs: 6c08c5a, e7c56dd,
cfc90b3 and 9d29bd5, we will examine the relatedness of all
the combined pairs of commits as presented in Table 6.1.

108 6 | Mining Related Change sets in Git: A Quasi-Experimental Study

Table 6.1: Commit Combinations
Commit1 Commit2
6c08c5a e7c56dd
6c08c5a cfc90b4
6c08c5a 8d29bd5
e7c56dd cfc90b4
e7c56dd 8d29bd5
cfc90b4 8d29bd5

6.2.8 Analysis Procedure

6.2.8.1 Commit Time Analysis

Every commit in Git has its own time stamp marking the time of
commit in the repository. We calculate the difference of time between
the paired commits for the investigated set of coupled file changes.
The time difference is stored in a data sheet for every commit pair
entry included in the analysis. We use calendar days as time units for
this measurement.

6.2.8.2 Branching Analysis

We analyze the placement of the commits considering their branching.
We leverage the branch of the investigated commit and compare its
position with the second commit in the pair. If they are found on
the same branch, we set the value of the branching variable to yes,
otherwise if they are committed in different branches, we denote it
as no.

6.2 | Experimental Design 109

6.2.8.3 Relatedness Analysis

To find related change sets, we analyze the messages content for all
possible pairs of commits where the file change coupling was found.
We parse the commit message text for mappings with issue IDs. For
the first commit in the pair, we look up the issue id in the commit
message text. Next, we repeat this for the second commit in the pair.
To determine if these two commits are related, we compare their IDs.
If in both commit messages, the references to the issues match, we
denote them as related. Commit pairs with different issue references
are classified as not related.

6.2.8.4 Logistic Regression Analysis

The analysis outcome of logistic regression is often coded as 0 or 1,
where 1 means that the outcome we are interested in is present, 0
that it is not present. If p represents the probability of outcome to be
1, the multiple regression model can be written as follows:

p̂ =
ex p(b0 + b1X1 + b2X2 ++...+ bpX p)

1+ ex p(b0 + b1X1 + b2X2 ++...+ bpX p)
(6.1)

here, p̂ is the expected probability that the outcome is present; X1-
X p are distinct independent variables and b0-bp are the regression
coefficients. The logistic regression model can be also written as
follows:

ln(
p̂

1− p̂
) = b0 + b1X1 + b2X2 ++...+ bpX p (6.2)

where the outcome is the expected log of the odds that the outcome
is present.

110 6 | Mining Related Change sets in Git: A Quasi-Experimental Study

We follow the procedure for statistical analysis with logistic regres-
sion presented by Schwab in [Sch03] which includes the determining
of the sample size, possible numerical problems, the relationship
between the combination of the independent variables and the depen-
dent variable, the relationship between the individual independent
variables and the dependent variables, the strength of logistic regres-
sion relationship and the logistic regression model validation.

• Sample size: The first step before we start with the regression
analysis is to determine the sample size requirements. The
minimum number of cases per independent variable is 10 using
the guideline provided by Hosmer and Lemeshow. Their work
presented in [HL00] represents the main source for logistic
regression.

• Numerical problems: To determine if we have numerical prob-
lems, we use the standard error value. A standard error larger
than 2, indicates numerical problems, such as multicollinearity
among the independent variables [Sch03].

• Relationship between the combination of the independent variables
and the dependent variable: This relationship is based on the
reduction on the likelihood for a model that does not contain
independent variables and a model that contains independent
variables [Sch03]. This difference in the likeliness is called the
model chi-square.

The significance test for the model chi-square is the statistical
evidence of the relationship between the combination of the in-
dependent variables and the dependent variable. It determines
if the null hypothesis for the combination of the predictors
should be accepted or rejected. Values equal or less than our

6.2 | Experimental Design 111

predetermined alpha level of significance, in our case set to
0.05, reject the null hypothesis.

• Relationship of individual independent variables to dependent
variables: This relationship is based on the statistical signifi-
cance of the Wald statistics called the Wald test. It determines
whether or not the value of the independent variable is statis-
tically significant. Values lower than a 0.05 support threshold
for the relationship. This will reject the null hypothesis for the
individual independent variable. The value of the B coefficient
represents the change in the odds for an event for an one-unit
change of the independent variable. We distinguish positive
and negative values. Positive values show that the event is more
likely to happen, while negative values decrease the odds. The
odds ratio identified by the Exp (B) is the exponentiation of
the B coefficient. We chose the Exp (B) representation for the
reason that the odds ratios can be interpreted easier than the B
coefficient, which is set in log units [Sch03].

• Strength of logistic regression relationship: It measures the by
chance accuracy of the regression. It is computed by calculating
the proportion of each of the cases in each group for the depen-
dent variable. We square and sum the proportions of cases in
each group to calculate the proportional by chance accuracy
rate. An improvement of 25% over the rate of accuracy achiev-
able by chance, satisfies the classification accuracy [Sch03] of
the relationship.

• Logistic regression model validation: This represent the valida-
tion strategy for the regression. We use 80-20 cross validation
strategy where we divide randomly the cases in two subsets.

112 6 | Mining Related Change sets in Git: A Quasi-Experimental Study

the first subset is the training sample containing 80 % of the
cases and an holdout sample containing 20 % of the cases. It
is required that the significance of the overall relationship and
the relationships of the individual predicting variables for the
training sample matches the significance results for the full data
set model.

6.3 Results and Discussion

The data study results are available at http://dx.doi.org/10.
5281/zenodo.49187.

6.3.1 Descriptive Statistics

The summary of the descriptive statistics for the experiment is pre-
sented in Table 6.2. From 1641 commit pairs from all five projects,
after the removal of commit messages without issue references, there
are 1218 left for analysis. We have 136 related and 1082 unrelated
pairs of commits. We also report the minimum, maximum, mean,
mode and standard deviation for the time between the related com-
mits. The minimum commit time difference between the related
change sets is 0 or in a single day. The maximum varies over the
5 projects between 4 and 25 days, whereby these values are very
rare and extreme. Calculating the mean, we found that the average
time difference between two related commits varies between 0.35
and 3.33 days. The overall value is around 2 days. The value of the
standard deviation varies between 0.933 and 6.457 days depending
on the project. The standard deviation value for all the related change
sets is around 3.17. Hence, we have a low spread of the commit dates

6.3 | Results and Discussion 113

http://dx.doi.org/10.5281/zenodo.49187
http://dx.doi.org/10.5281/zenodo.49187

for the related change sets. The mode shows that the most frequent
difference in the time of change for the related change sets is between
0 and 1 days. For the complete data set it is 0 days, which means that
most of the related change sets were committed together during one
day.
The relatedness distribution is presented in Table 6.3. For the time

between the commits, we have created two groups based on the mean
value which is 2 days. The first group includes the change sets where
the commit time difference is less or equal than 2 days. The second
group includes the change set where the commit time difference is
more than two days.

Table 6.2: Descriptive Statistics

Project ASTPA RIOT Metrics Akka
Mozilla
Addon All

Commit
pairs 520 149 70 201 365 1218

Commit pairs
related 36 48 20 20 12 136

Commit pairs
unrelated 484 191 50 81 266 1082

Time between the commits in days
min 0 0 0 0 0 0
max 15 25 11 4 22 25
mean 1.94 3.19 2.1 0.35 3.33 2.13
st.dev 2.714 4.088 3.478 0.933 6.457 3.17
mode 1 1 1 0 0 0

From 136 pairs of related change sets, 97 commits or 71.3% were
committed in less than 2 days, 39 commits or 28.6% of them were
committed in more than 2 days. Here we see that most of the related
change-sets were committed in less than two days difference.

114 6 | Mining Related Change sets in Git: A Quasi-Experimental Study

Table 6.3: Relatedness distributions
Relatedness Related Not related
Time between
commits
≤ 2 days 97 (71.3%) 64 (5.9%)
> 2 days 39 (28.6%) 1018 (94.1%)
Commits in the
same branch
yes 55 (40.4%) 49 (4.6%)
no 81 (59.6%) 1033 (95.4%)

The relatedness distribution of the unrelated change sets, 64 or
5.9% of the unrelated commits happened in less than 2 days, 1018
or 94.1% were committed in more than 2 days. Almost 95 percent
of the unrelated change sets were committed in more than two days
difference.
Considering the branching of related change sets, 55 commits or

40% are in the same branch, 80 or near 60% are not in the same
branch. In both cases, in the same and in different branches, we have
related change sets. For the unrelated changes, 49 of them or 4.6%
are in the same branch, 1033 commits or 95.4% are not. Most of the
unrelated change sets were found in different branches.

6.3.2 Influence of the time between the commits and the branching
on the relatedness

To answer RQ1, we test our main hypothesis investigating if the com-
bination of time and the branching influences the relatedness of the
coupled changes. The regression results are presented in Table 6.4.
The average sample size for all data sets after down-sampling is

6.3 | Results and Discussion 115

Table 6.4: Regression Results
Statistic Average Average

(validated)
Sample Size 270 227
Model Chi-Square 0.000 0.000
Standard error Time 0.043 0.048
Standard error Branch 0.441 0.488
B Coeff. (Time) -0.300 -0.291
B Coeff. (Branch) -0.607 -0.566
p Wald (Time) 0.000 0.000
p Wald (Branch) 0.194 0.221
Exp (B) (Time) 0.741 0.742
Exp (B) (Branch) 0.553 0.761
By chance Accuracy 66.5% 66%
Model Accuracy 90.4% 91.6%

270. This value is much larger than the minimum number of 10 cases
per variable, which satisfies the requirements for the sample size.
The average value of the standard error for both of the independent
variables is lower than the 2.0 threshold which reports that there are
no numerical problems in the analysis.
The presence of a relationship between the combination of the

independent variables and the dependent variable is based on the
statistical significance of the model-chi square. Our analysis shows
that the model chi-square value is 0.000 which is less than the 0.05
threshold. Therefore, the null hypothesis is rejected, meaning that
the combination of time between the commits and the branching has
an influence on the relatedness of the change sets. The values of the
model chi-square statistical significance presented in Table 6.4 for
the validated subsets are very close to the values for the full data set.
This satisfies the classification accuracy of our regression model.

116 6 | Mining Related Change sets in Git: A Quasi-Experimental Study

The values in Table 6.3 indicate that related change sets were
found in both groups for the time between the commits. Also they
were found both in the same or in different branches. This means
that a combination of these two factors influences the relatedness.
According to the results, the possibility to have related change sets
drops with the rise of the time of commit and the placement of the
commits in different branches.

6.3.3 Influence of time between the commits on the relatedness

For RQ2, we test our second hypothesis where we examine the in-
fluence of the time between commits on the relatedness of change
sets. The average value for the Wald test for the time variable as
independent variable is 0.000 which is lower than the 0.05 threshold.
This result delivers a significant presence of a relationship between
the individual independent variable (time between the commits) and
the dependent variable (relatedness), rejecting the null hypothesis in
this case.
The average B coefficient value is negative, meaning that one unit

change in the time has a negative influence on the relatedness odds.
The average value of the exponent of the B coefficient Exp (B) for
the time of commit is 0.741 (0.742 for the validated data set) which
means that a change of one unit in the commit time when the other
independent variable is constant is going to decrease the odds to have
related change sets by 26%.
The results in table 6.3 show that the average commit time period

between related change sets is two days, whereby most frequently,
related change sets were committed during one day. The frequency of
the commit time differences between related change sets is presented

6.3 | Results and Discussion 117

in Figure 6.2. Here we can see that the number of related change
sets cases drops with the increase of the time. This confirms the
high influence of the time between the commits on the relatedness of
change sets.

Figure 6.2: Related change sets time distribution

6.3.4 Influence of the branching on the relatedness

For RQ3, we test the null hypothesis about the influence on the branch-
ing on the relatedness of change sets. The average value of the Wald
test statistics for the data set is 0.194 and for the validated subsets is
0.221. These values are larger than 0.05. Therefore, the null hypothe-

118 6 | Mining Related Change sets in Git: A Quasi-Experimental Study

sis in this case is not rejected. This means that individually measured,
the branching does not influence the relatedness of change sets when
the other variable is constant.
The results show that both in the same or in different branches we

have related and unrelated changes as presented in table 6.3. There
is no clear distribution between the related and unrelated change sets
considering the branch location of the commits.

6.3.5 Influence of the time between the commits and branching on
the relatedness across projects

Regarding RQ4, we explore if there is a difference in the influence of
these two factors on the relatedness across the five project repositories.
We use the mean and the standard deviation values to investigate the
spread of the Wald Statistic values for all five projects. The results
presented in Table 6.5 show that the data from the first three projects
delivers useful data. The last two projects do not deliver data ready
for analysis. The Wald statistic value which is equal to 0 for all three
projects, reports that there is a strong relation between the time of
commit and the relatedness. The value of the Wald statistics for the
branching in all three projects is above the 0.05 threshold which
identifies that there is no significant influence of the branching on
the relatedness of the change sets.
The mean value of the Wald Statistics for the commit is 0.000 for all

projects. This shows that across all projects, the time has a significant
influence on the relatedness of the change sets. For all projects, the
value of the Wald Test for the branching is larger than 0.05. This
means that in all five projects, the branching does not influence the
relatedness of the change sets. The standard deviation for both factors

6.3 | Results and Discussion 119

identifies low spread meaning that there is no a significant difference
in the influence across the projects.
The last two projects do not deliver measurable interaction between

the time of commit and the branching because that there is no variance
in the branching. In these projects, all unrelated cases of change sets
are found in different branches. There is not a single case of an
unrelated change set where the commits are in the same branch. This
make the regression analysis not possible. A possible reason for this
situation could be that these two projects include heavy branching.
This may influence the way the related change sets are organized in
branches. To be able to further investigate this kind of projects, we
need to analyze a larger number of change sets per project.

Table 6.5: Influence on relatedness across project
Project Wald Test (Time) Wald Test (Branch)
ASTPA 0.000 0.396
RIOT 0.000 0.157
Metrics 0.000 0.310
Akka - -
Firefox Addon - -
Mean 0 0.287
St. Deviation 0 0.157

6.4 Threats to Validity

The mapping between the commits and the issues represents a cen-
tral construct validity threat for our study whereby the developers
could provide false references. Using data from different projects and
various developers having high rate of commit mappings decreases
the possibility for this threat.

120 6 | Mining Related Change sets in Git: A Quasi-Experimental Study

The relatively high data mining support threshold of 10% excludes
a number of coupled changes and commits. However, this threshold
ensures a relatively high level of frequency of the reported coupled
file changes which avoids the possibility to have changes that could
happen by chance.
The influence of the experimenter during the execution of the exper-

iment could affect the internal validity of the study. The experimenter
needs to define the relatedness of the change sets by manually exam-
ining the commit messages. We use an additional review of a sample
of the relatedness of the file changes by a second person.
A potential internal threat could also be the influence of particular

developer data on the change sets for the analysis. The commit
behavior of the developers and the discipline in the referencing of the
commits with the issue can influence the truthfulness of this relation.
We minimize the influence on the results by randomly selecting a
single set of commits per developer before the logistic regression
analysis has been performed.
An external validity threat is the limitation of our analysis general-

ization on other projects. The analysis is performed on projects which
include mapping between the commits and the issues. However, on
GitHub there are many projects where this mapping is implemented.
We have also used different project repositories developed in various
environments. Although we have used relatively small repositories,
the use of well-known analysis methods ensures that we can repeat
the analysis on larger projects.

6.4 | Threats to Validity 121

6.5 Conclusion

In this study, we have tested the part of our theory on the use of
coupled file change suggestions which is related to the influence of
the grouping of change sets on their relatedness.
The results give evidence that the combination of the time of commit

and the branching status influences the relatedness of change sets.
Having most of the related changes sets committed in a day and stored
in the same branch supports the heuristic we proposed. We have
extracted a number of commits performed in various time intervals
which allowed us to investigate the relatedness of the time between
the commits and their relatedness. However, the lack of heavier
branching in the examined projects limits the outcomes related to the
branching status of the commits.
These results show that to build relevant coupled file changes

and provide the context of these changes we have to consider the
committing time to avoid delivering unrelated file change suggestions.
The next steps in our research is to investigate larger and heavier
branched repositories and examine higher number of change sets for
a deeper investigation on the relatedness of change sets.

122 6 | Mining Related Change sets in Git: A Quasi-Experimental Study

C
h
ap

te
r 7

Interestingness of
Coupled File Changes: A

Case Study

7.1 Introduction

Suggestion about files that were frequently changed together can
support developers during maintenance tasks, when the developer
is new on the project or does not have much experience in software
development. Existing studies [KYM06; YMNC04; ZWDZ04], focus on
coupled changes from software repositories. They use expert findings
and ignore the feedback of developers.
One of the main goals of this thesis is to investigate the use of

123

coupled file changes during maintenance tasks by gathering their
feedback. For this purpose we explore the acceptance of the coupled
file changes and common repository attributes related to the file
changes.
In this study, we concentrate on applying Software Repository Min-

ing to provide suggestions for likely changes so that we can inves-
tigate how interesting the suggestions are for the developers and
what further information besides version histories might increase the
interestingness.
We present an industrial case study on the interestingness of cou-

pled change suggestions. We identify frequent couplings between
file changes based on the information gathered from three software
project repositories. We use the version control system, the issue track-
ing system and the project documentation archives as data sources
for additional repository attributes we join to the coupled changes we
discover. In particular, we investigate the feedback of the developers
about the interestingness of our findings by conducting a survey. We
evaluate the answers by performing additional interviews and analyze
them using the Grounded Theory method.

7.2 Case Study Design

The structure of this case study is based on existing guidelines pro-
posed in [RH09].

7.2.1 Research Questions

RQ1: How many coupled changes can we extract from software
repositories? This research question provides the basis for our re-

124 7 | Interestingness of Coupled File Changes: A Case Study

search. It is relevant to investigate for the reason that the number of
coupled changes affects the outcome of the repository data analysis
by influencing the interestingness of the concept of coupled files.

RQ2: How interesting are coupled change suggestions for devel-
opers? This is the central question of this study which decides if
developers would like to use the suggested couplings.

RQ3: Does the experience of developers influence the interesting-
ness of coupled changes? We expect that inexperienced developers
would be more interested in coupled file suggestions considering their
possible problems understanding the system [Say+11]. Therefore,
we investigate the developer’s programming and project experience.

RQ4: Does the involvement in the project of developers influ-
ences the interestingness of coupled changes? We include both
developers who were involved and those not involved in the devel-
opment of the software products used in the case study. Although
our goal is to support inexperienced or developers not involved in
the projects, we expand the investigation on developers which were
included in the software products, we want to get their feedback on
the coupled changes in order to determine if their involvement in the
projects affects the acceptance of coupled changes.

RQ5: How interesting is additional information from other re-
lated project artifacts? After we determine the interestingness of
the couplings, we will investigate if adding additional data sources
influences the interestingness. First, we examine the version control
system that is related to the changes, e.g. commit IDs where the

7.2 | Case Study Design 125

couplings were found, commit messages, commit dates and authors
of the commits. Second, the information stored in the issue tracking
system is investigated, attributes like issue description, issue date and
issue status. Third, we look into the project documentation archive
for information about the project structure and naming conventions.

RQ6: Does the experience of developers influences the interest-
ingness of additional information from other related project ar-
tifacts? We investigate if the choice of the attributes from the version
control system and the issue tracking system depends on the devel-
oper’s programming experience.

7.2.2 Case Selection

The case selection is based on their availability and the suitability for
our research. We select cases from industry as part of our cooperation
with our industrial partners as well as from the available open source
projects developed at the University of Stuttgart. Hence, our subjects
will be practitioners as well as students.

7.2.3 Data Collection Procedure

The case study uses two main data sources to investigate the cou-
pled file changes. As first data source, we use the artifacts from the
software product development archived in software repositories. We
did not have any direct contact with the development process of the
product. Instead, we examine the repositories of the software product
being developed or maintained. The second data source consists of
surveys and interviews with the project stakeholders providing direct
information. We divide the data collection procedure into five parts.

126 7 | Interestingness of Coupled File Changes: A Case Study

7.2.3.1 Version Control System

The first unit of data we use is the log data from the version control
system. Two software projects used Git, while the third project uses
Mercurial as a control management tool. Both are distributed ver-
sion control systems allowing the developers to maintain their local
versions of source code.

The data collection from the version control system consists of four
steps which lead to the extraction of the information we need.

• Log Extraction: We extract the information from the log file con-
taining the committed file changes and the commit attributes.
The log data is exported as text file.

• Data preprocessing: After the text files with the log data have
been generated, we continue with the preparation of the data
for data mining. Various data mining frameworks use their
own format, so the input for the data mining algorithm and
framework needs to be adjusted.

• Identifying atomic change sets: We divide the data into a collec-
tion of atomic change sets. Version control systems deal with
this issue differently. In our case, the version control systems
preserve the possibility to group changes into a single change set
or a so-called atomic commit. It represents an atomic changeset
regardless of the number of files changed. A commit snapshot
represents the total set of modified files and directories [Loe09].
We organize the data in a transaction form where every transac-
tion represents a set of files which changed together in a single
commit.

• Data filtering: We filter the file names and the following commit

7.2 | Case Study Design 127

attributes: commit id, commit message, commit date and commit
author. We deal with empty entries and outliers and we prepare
the log entries for data mining.

• Change grouping heuristic: There are different heuristics pro-
posed for grouping file changes [KYM06]. We use a heuristic
considering the file changes done by a single committer as re-
lated. We group the transactions of files committed only by a
particular author. We do not relate the changes done by other
committers. This heuristic is suitable for smaller projects or
those having lower number of developers for the reason that
each developer represents a group of change sets we can use to
extract coupled files.

7.2.3.2 Issue Tracking System

Issue tracking systems store important information about the software
changes or problems. In our case, the companies chose to use JIRA
and Redmine as issue tracking systems. The students also track their
issues using Redmine. We investigate the following issue attributes:
issue titles, issue descriptions and issue messages. The issue tracking
systems support spreadsheet export containing the considered issue
attributes.

7.2.3.3 Project Documentation

The software documentation gathered during the development pro-
cess represents a rich source of data. The documentation consists of
file naming conventions, directory paths and the package structure
description. From these documents, we discover the project structure.

128 7 | Interestingness of Coupled File Changes: A Case Study

For example in the last project, the subproject containing the files de-
scribed by the path astpa/controlstructure/figure/ contains
the Java classes responsible for the control diagram figures of this
software.

7.2.3.4 Joining Collected Data

After the mining process is finished and we have identified the coupled
changes, we join them with the attributes from the version control
system, the issue tracker and the project documentation. In [FPG03b],
the authors create a release history database where they import the
data from the version control systems and the issue tracking systems.
Similarly, we create a database containing all file changes and the
corresponding attributes from the repositories.
Every commit has it own hash value which represents the commit id.

It is an unique value which identifies all the commits in the database.
The issues are identified by their keys. We use the issue keys to follow
down the commit where the change took place by using merge points
of the issues and the commit messages. We use the path information
of the changed files to enlist the sub-projects. As a result we have a list
of the most frequently changed files accompanied by the information
about the commit attributes, issue attributes and the project structure.

7.2.3.5 Survey and Interviews

We investigate the developers’ feedback on the interestingness of
coupled changes and the additional attributes by conducting a survey
and performing interviews1 with the developers.

1All questions are available on http://dx.doi.org/10.5281/zenodo.15065

7.2 | Case Study Design 129

http://dx.doi.org/10.5281/zenodo.15065

• Survey: The developers answer a list of multiple-choice ques-
tions on-line. We investigate the background of the developers
by asking their programming and project experience. The devel-
opers give us feedback on the concept of coupled changes, not
on particular couplings. We choose this setup to get as many
opinions as possible. Only few developers were available for in-
depth interviews on specific findings. The developer can choose
between: interesting, neutral and not interesting to evaluate the
interestingness of coupled changes and repository attributes.

• Interviews: We perform semi-structured interviews to get more
in-depth feedback from the developers. This way, we ensure
that the developers did not answer the surveys by randomly
choosing the options. We ask the available developers who
worked on the projects and other uninvolved developers about
the interestingness of the file changes and the attributes. We
present them actual coupled file changes extracted from the
repositories.

7.2.4 Ethical Considerations

The data delivered by the companies is confidential. Therefore, we
preserve the anonymity of the stakeholders and the companies during
this study. The confidentiality and the publication is regulated by a
non-disclosure agreement between the researchers and the companies.
All personal information extracted from the repositories, the survey
and the interviews is anonymized and is not presented in the study.

130 7 | Interestingness of Coupled File Changes: A Case Study

7.2.5 Analysis Procedure

The data analysis is a combination of quantitative and qualitative
methods. We use quantitative methods to find the number of cou-
plings. We augment the results with a qualitative and quantitative
analysis of the survey and the interviews with the developers.

7.2.5.1 Analysis of Repository Data

We analyze the repository data to answer RQ1. We run the mining
algorithm to discover frequently coupled file changes. We investigate
the additional attributes we gather from the commit logs, the issue
tracking export and the project documentation.

• Data Mining Algorithm: Various algorithms for mining frequent
itemsets and association rules have been proposed in litera-
ture [AS94; GG04; HPYM04]. We use the FP-Tree-Growth
algorithm to find the frequent change patterns. As opposed to
the Apriori algorithm [AS94] which uses a bottom up genera-
tion of frequent itemset combinations, the FP-Tree algorithm
uses partition and divide-and-conquer methods [GG04]. This
algorithm is faster and more memory efficient than the Apriori
algorithm used in other studies and allows frequent itemset
discovery without candidate itemset generation.

• Support level: We analyze the coupled changes by defining
the threshold value of the support for the frequent itemset
algorithm. We use the thresholds that give us a frequent yet still
manageable number of couplings. This threshold is normally
defined by the user. We use the technique proposed by Fournier-
Viger presented in [Fou13] to identify the support level. These

7.2 | Case Study Design 131

values vary from developer to developer, so we test the highest
possible value that delivers frequent itemsets.

If for a particular developer, the support value does not bring
any useful results, we continue dropping the value of the thresh-
old. We did not consider itemsets with a support below 0.2 for
the first two projects and 0.1 for the third project. There is a
variety of commercial and open-source products offering data
mining techniques and algorithms. For the analysis, we use an
open-source framework specialized on mining frequent itemsets
and association rules called the SPMF-Framework.1 It consists
of a large collection of algorithms supported by appropriate
documentation.

7.2.5.2 Analysis of Questionnaires and Interviews

To answer RQ2–RQ6, we analyze the questionnaires and the outcomes
of the interviews.
We start by investigating the background of the developers by

checking their answers about their programming and project experi-
ence. We analyze the answers of the questionnaire by calculating the
distribution of the frequency of their answers. We put the focus on
the answers of the participants about the interestingness of coupled
changes and the answers about the additional attributes.
We examine the interviews with the developers to validate the

outcomes of the questionnaires and to understand the context of their
answers.
We analyze the interviews by using Grounded Theory [GS67; SC98].

It has been described to be a methodology used to develop induc-

1http://www.philippe-fournier-viger.com/spmf

132 7 | Interestingness of Coupled File Changes: A Case Study

http://www.philippe-fournier-viger.com/spmf

tive theories for systematically gathering and analyzing data [Bit05].
Grounded Theory is considered to be appropriate for investigating
human aspects of Software Engineering [HNM11]. The goal of the
Grounded Theory is to generate a theory that emerges from the data
being comparatively analyzed.
To analyze the data and build the theory, we use the following

types of coding activities in sequence: open, axial and selective cod-
ing [SC98]. After these codings, we perform the theoretical coding
and create the conceptual model. We use the analysis software At-
las.ti1 to link the codes and create a network diagram.

• Open coding: In the open coding, we have a line-by-line exami-
nation of the interview transcripts to identify the main concepts
and categories together with their dimensions and properties.
We code the data from interview answers with a set of open
codes derived from our research questions. Before we continue,
we write a memo consisting of the hypotheses and ideas noted
during the analysis.

• Axial coding: After the open coding is performed, we continue
with the axial coding where we relate the categories, concepts
and codes by identifying the relations among them. This is
done using the paradigm model [SC98] and considering the
relationships between contexts, interactions, conditions and
consequences.

• Selective coding: The selective coding formulates a core category
to which all other categories and codes can be related and
includes all the data.

1http://www.atlasti.com/index.html

7.2 | Case Study Design 133

http://www.atlasti.com/index.html

• Theoretical coding: After finishing the open and axial coding,
this coding involves the relationships between categories and
subcategories and gives meaning to the theory.

• Conceptual mapping and model: We express the concepts of our
theory and present their relations. We draw a category map
which emerges from the analysis.

7.2.6 Validity Procedure

We use well-known techniques and algorithms for repository mining.
We extract data from a repository systems used among a high number
of companies. We analyze the data from the software repository,
perform a survey among the developers and we validate the answers
given in the questionnaires by interviewing developers. We collect
the answers and compare the results related to the research questions
to identify if these reflect the investigated information [RH09]. This
way we avoid relying on a possible lack of precision in the answers on
the questionnaires by the developers concerning the interestingness.
We choose representative cases with high standards considering

software development and standardized development techniques. We
use an independent party to record the memos for the interviews and
code the information to increase the objectivity of the analysis results.

7.3 Results and Discussion

We report the results of the analysis of the software repository data,
the questionnaires and the interviews in relation to the interestingness

134 7 | Interestingness of Coupled File Changes: A Case Study

of coupled changes and attributes.1 We discuss the analysis outcomes
and evaluate the validity of our results by taking into account the
feedback from the developers.

7.3.1 Case Description

The cases in this study are three software projects. The first two
projects were provided by IT companies from the area of Stuttgart,
Germany. The third one is an open-source project developed at the
University of Stuttgart. The first project is a web-based software
written in Java and supplied by an industrial partner. The repository
of this project contains 1,610 commits performed by 26 developers
during 2 years of development. The software changes are stored in
Git and the issues are tracked using JIRA.
The second project is a C# software supplied by another partner

from the IT industry. the repository contains 159 commits performed
by 5 developers during 1 year of development. The project used
Mercurial as version control tool and Redmine for issues management.
The third project is a Java open source software which was de-

veloped at the University of Stuttgart by student developers. The
repository contains 752 commits, committed by 9 developers during 1
year. It uses Git for versioning and Redmine as issue tracking system.
Certain project documentation archives of the projects were available
from where we extract the information about the software structure
and the naming conventions.

1The analysis results are available at
http://dx.doi.org/10.5281/zenodo.15065

7.3 | Results and Discussion 135

http://dx.doi.org/10.5281/zenodo.15065

Table 7.1: Results based on repository analysis
Project1 Project2 Project3

No. of relev. dev. 22 4 9
No. of commits 1610 138 752
No. of couplings 205 13 200
Freq. itemset supp. 0.2 0.2 0.1

Table 7.2: Interestingness of coupled changes
Involved Not involved All

Interesting 2 2 4
Neutral 9 10 19
Not interesting 0 0 0
Sum 11 12 23

7.3.2 Number of Couplings (RQ 1)

In Table 7.1, we summarize the analyzed information from the repos-
itories. Referring to the first project, the data from 22 out of 26
developers was relevant for the study. For the second project, the
data from 4 out of 5 developers was taken into account. For the
third project, the data committed by all 9 developers was suitable
for analysis. The rest of the developers reported a low number of
commits so we did not consider their change commits. We excluded
their commits as unsuitable for the reason that they did not reach
the minimum support for the frequency of the changes we defined
previously.
The number of commits represents the size of the projects followed

by the number of change couplings we have extracted. The number
of coupled changes represents the basis of our analysis. We were able
to extract 205 couplings from the first repository. From the second,

136 7 | Interestingness of Coupled File Changes: A Case Study

a smaller repository, we report only 13 coupled changes. The third
repository delivered 200 coupled changes. These results show that we
need larger project repositories containing high number of commits
to be able to deliver a high number of couplings.

7.3.3 Interestingness of Coupled Changes (RQ 2)

The participants were asked to give their feedback on how interesting
coupled changes formaintenance tasks are. Most of the developers (19
of 23) reported a neutral opinion for the concept of coupled changes. A
small group of four participants noted coupled changes as interesting.
None of the developers rejected the idea as not interesting (Table
7.2).
The fact that the developers did not reject coupled changes allows

us to continue our analysis. These results allow us to continue in-
vestigating the next research questions. We proceed our analysis
and investigate how coupled changes is influenced by the developers’
programming and project experience. Taking into account our small
sample size, we refrain from formal hypotheses testing.

7.3.4 Influence of Developer Experience on Interestingness (RQ 3)

Both experienced and inexperienced developers were similarly inter-
ested in coupled changes which is in contrast to our expectations. In
Table 7.3, we present the distribution of the interestingness of coupled
changes in relation to the programming experience of the developers.
What we can see is that regardless of their expertise level, none of the
developers rejected the coupled changes. Very few developers have ac-
cepted the coupled changes as interesting, yet most of the developers
took a neutral position toward the coupled change suggestions.

7.3 | Results and Discussion 137

7.3.5 Influence of Developer Involvement in the Project on
Interestingness (RQ 4)

The results in Table 7.2 show that there is no difference based on
the involvement of the developers in the projects. Both involved and
uninvolved developers did not reject coupled changes. Continuing
with the developers involved in the project development, we group
their answers based on their project experience. Table 7.4 shows the
distribution of the developers by their project experience. Again in
all three groups from beginners to developers knowing the system,
most of them have answered neutrally, they did not reject the concept
coupled change suggestions, some of them even answered that they
find them interesting.

Table 7.3: Couplings and developer’s experience
Programming Freq. Freq. Interesting Neutral Not
Experience [%] interesting
<1 year 2 9 0 2 0
1–3 years 4 17 2 2 0
3–5 years 9 39 1 8 0
>5 years 8 35 1 7 0

Table 7.4: Couplings and developer’s project involvement
Project Freq. Freq. Interesting Neutral Not
Involvement [%] interesting
<6 mo.–1 year 3 27 0 3 0
1–2 years 3 27 1 2 0
>2 years 5 46 1 4 0

138 7 | Interestingness of Coupled File Changes: A Case Study

Table 7.5: Interesting attributes
Attribute Frequency Frequency [%]

Commit message 22 95
File name 18 78
File type 9 39
Commit time 8 34
Commiter 6 26
Commit id 2 9
Issue title 21 91
Issue status 15 65
Issue type 14 60
Issue time 6 26
Project structure 20 86
Naming conventions 15 65

7.3.6 Interestingness of Additional Information (RQ 5)

After the investigation of the coupled changes, we continued exam-
ining the interestingness of the repository attributes we have joined
to the coupled files presented in Table 7.5. To support the coupled
changes, we reported a set of common meta-data attributes [SZ13]
which allow us to find more information about the commits, the issues
and the product itself. The repositories offer various attributes related
to the committed changes, the issues found and the project structure.
We asked the participants about their feedback on the interesting-
ness of each of the provided repository attributes. The results show
that most of the offered attributes were rated by the developers as
interesting.
Considering the commit related attributes, most of the developers

found the commit message to be the most interesting attribute fol-
lowed by the file name. The developers did not show much interest

7.3 | Results and Discussion 139

for the commit time, the committer and the file type. The commit ID
as attribute, did not attract the developers’ interest.
Regarding the issue related attributes, most of the developers were

interested in the issue description. Some developers also found the
issue status and type to be interesting. The issue time was not inter-
esting for the developers.
From the documentation related attributes, the developers reported

that both naming convention and the project structure information
are interesting.

7.3.7 Influence of Developer Experience on Interestingness of
Additional Information (RQ 6)

We examined the distribution of interestingness of the repository
attributes according to developers’ experience level. Based on this dis-
tribution we created two general groups of developers in this context:
the first group called experienced, includes the developers having
more than 5 years experience and the second group called inexperi-
enced, includes developers having less than 5 years of experience. The
results show that the experienced developers have a more clear pic-
ture of the set of interesting repository attributes. They have chosen
a lower number of attributes compared to the inexperienced develop-
ers. The inexperienced developers have marked various commit and
issue attributes being interesting for them. The more experienced
developers’ choice is more narrow than the one for the inexperienced
ones. The distribution of commit attributes is shown in Figure 7.1.
The distribution of issue attributes is presented in Figure 7.2.

140 7 | Interestingness of Coupled File Changes: A Case Study

0

10

20

30

40

50

60

70

80

90

100

commit message commiter commit Time commit ID file Names file types

D
ev

e
lo

p
e

rs
 %

Attributes

Distribution of commit attributes

>5 Years

<5 Years

Figure 7.1: Commit attributes and experience

0

10

20

30

40

50

60

70

80

90

100

issue author issue description issue type issue status issue time

D
ev

e
lo

p
e

rs
 %

Attributes

Distribution of issue attributes

>5 Years

<5 Years

Figure 7.2: Issue attributes and experience

7.3 | Results and Discussion 141

Figure 7.3: Theoretical Framework

7.3.8 Validation and Theory

After the data mining analysis, we performed the interviews with
developers who were active on the projects. For the first project, we
managed to enlist 2 of the developers for interviewing. For the second
project, we interviewed 2 developers and from the third project, we
interviewed 4 out of 9 developers. They had been involved in the
project from the beginning and have the most knowledge about the
software. We also interviewed 4 developers not involved in any of the
projects.
Using Grounded Theory analysis on the interview transcripts, we

derived a corresponding theory. We created the codes using an open

142 7 | Interestingness of Coupled File Changes: A Case Study

coding procedure of the memos we created. They represent the
answers of our participants to interview questions. We extracted the
codes by identifying common issues in their answers.
We continued with the axial coding where we identified several

categories as presented in Figure 7.3. The core category we identified
after the selective coding is Accepting coupled changes as interesting.
The results from the theoretical code show the core category, the sub-
categories and the relationships presented as a diagram in Figure 7.3.
We have categories covering the attributes we found to be interesting:
version control, issue and software documentation attributes. They
are respectively divided in these subcategories: commit message, file
names, issue titles, issue types, project structure and naming conven-
tions. They represent the most interesting attributes which affect the
interestingness of coupled changes.
The next categories are the visualization of coupled changes, con-

sisting of the sub-category organized view, and the category context
of coupled changes. The last two categories represent an additional
feedback given by the interviewed developers where they would like
to see an organized representation of changed files with a possibility
to filter the information about them. They would also like to have
information about the context of the changes. We present the key
concepts of the theory together with their relations in Figure 7.4.
We see that the interestingness of the coupled changes also depends
on the chosen repository attributes. Furthermore, it is also impor-
tant to develop an organized presentation of coupled changes to the
developers and to describe the context of these changes.

7.3 | Results and Discussion 143

Figure 7.4: Conceptual Model from Grounded Theory

7.3.9 Discussion

The results related to RQ1 show that large repositories deliver more
couplings compared to the smaller or younger repositories. Projects
with a low number of commits do not provide enough data for a
broader analysis. The number of commits and their size limit the
output of our analysis. Our results lead to the conclusion that we
need a relatively high number of couplings to be able to present a
more exhaustive support for the developers in their tasks. Still, the
setup of our analysis identifies a number of strongly coupled changes
which limits the possibility they have happened by chance. We could
reduce the support level of the data mining algorithm to provide a
higher number of coupled changes, however, this could produce a
threat for their accuracy.
The results for RQ2 report that the developers weakly support that
coupled changes are interesting. The general concept of coupled

144 7 | Interestingness of Coupled File Changes: A Case Study

changes was received mostly as neutral. The developers did not judge
the coupled change suggestions very positive for the reason that they
were not solving real maintenance tasks. We believe that working
with coupled change suggestions related to real maintenance tasks
would increase the acceptance of coupled file changes.

The fact that none of the developers rejected the coupled changes,
gave us an impulse to investigate other attributes related to the cou-
pled changes. We proceeded with the analysis of the interestingness
based on the developers’ experience. During the interviews, actual
examples of coupled changes were presented to the developers which
increased their acceptance.
Considering RQ3, we expected that the coupled changes would be
interesting for developers having a lack of programming experience.
Our results at contrary show that also the experienced developers are
similarly interested in coupled changes. The developers higher expe-
rience does not eliminate the possibility that the coupled suggestions
could be helpful when working on an unknown source code, software
structure or on older project. The fact they did not reject the coupled
changes reports that the benefit from them is not limited on novice
developers which makes the coupled changes attractive for a broader
audience.
According to the results related to RQ4, both uninvolved developers
in the project development of the investigated software products and
those who worked on the projects provided a neutral feedback. They
fact that they did not reject the coupled changes increases the target
group for our coupled changes suggestions. These unexpected results
show that also the developers working on a particular part of the
source code could use some help when working on other parts of the
system. These findings encourage us to include the coupled changes

7.3 | Results and Discussion 145

as a part of an integrated tool support for developers.
Answering RQ5, our results show that most of the attributes from the
provided set were interesting for the developers. These results were
also validated by the interviews. Using the commits, the questionnaire
and the interviews, we reported that the commit message and the
file names are the most interesting attributes. This shows that the
developers found the information about the files being changed and
the description of these changes to be interesting.
For the issue attributes, the developers reported that the issue de-
scription and the issue type are interesting, meaning that they were
looking for the information which describes the problem to be solved
and the importance of the issue.
For the documentation attributes, the project structure and the nam-
ing convention were both interesting for the developers. This shows
that they were looking for the information that could help them find
the location in the system to begin with their source code changes.
We reported a set of repository attributes used by well-known version-
ing and issue tracking systems involved in the projects. The attributes
we defined are known and common in software development. During
the analysis of the interviews, however, we found that the developers
want a clear graphical representation of the coupled changes. They
also reported that they would like to see the context of the coupled
changes. This brings additional aspects to be considered in further
research about coupled changes.
The results for RQ6 show that experienced developers know well what
kind of repository attributes they want to see. Their choice is more
precise compared to the inexperienced developers. The inexperienced
developers did not have a clear picture which attributes to choose
from the provided set. The fact that developers with different pro-

146 7 | Interestingness of Coupled File Changes: A Case Study

gramming experience considered various attributes to be interesting
brings us to the conclusion that we should not make a fixed choice
of attributes for all developers. We can offer a flexible way for the
developers to choose the attributes individually. This way, we support
the developers which are not experienced and would like to have an
overview of the provided set of repository attributes. On the other
side we would like to offer the experienced developers to hide the un-
necessary information including the not interesting attributes during
maintenance tasks.
The results of the grounded theory show that the interestingness

of coupled file changes is influenced by their presentation form and
the related information such as the description of the change con-
text. Providing a good visual concept is inevitable for a successful
visual representation. Also the repository attributes influence their
interestingness. Choosing wrong or not useful attributes can drop the
acceptance of coupled change suggestions.

7.3.10 Evaluation of Validity

We validated the results of our study by checking all the steps in the
procedure of gathering and transforming the data from the repository,
the analysis methods and the results. In our study, we used a single
data mining technique for the reason that the frequent itemsets tech-
nique is most appropriate for investigating frequent couplings. We
investigated products built with common technologies and the reposi-
tories are maintained by well-known and commonly used products.
We tested different threshold values for the support and the confi-
dence of the algorithm to produce a sufficient number of frequent
itemsets. The relatively low support threshold signalizes that there is

7.3 | Results and Discussion 147

not much space for a greater reduction of the value. However, it also
reports a relatively low number of frequent couplings which reduces
the possibility that these couplings happened by chance.
We validated the outcomes of the questionnaire answers by asking
the developers again in the interviews about the interestingness of
the couplings and attributes. The interview transcript was coded
by two persons after we compared the notes. This way we checked
whether we understood the developer’s answers correctly. We inter-
viewed both involved and not involved developers on the projects. We
also performed double checks of the coding and the outcomes of the
Grounded Theory analysis.

7.4 Conclusion

The results of this case study represent the basic source for the con-
structs related to the acceptance of coupled files: the format, the
context and the chosen repository attributes. They represent the
fundamentals of our theory on the use of coupled file suggestions.
The feedback of developers on the interestingness of coupled changes

is mostly neutral. Our results lead to the conclusion that the couplings
were weakly accepted by developers having various programming
experience and level of involvement in the project. The developers
accepted most of the proposed software repository attributes joined
to the couplings as interesting. Experienced developers report a
narrower or more individual choice of attributes as opposed to the
inexperienced developers. The Grounded Theory shows that the
set of repository attributes influences the interestingness of coupled
changes.
Although we provided a number of repository attributes, the devel-

148 7 | Interestingness of Coupled File Changes: A Case Study

opers suggested additional aspects concerning the coupled change
suggestions and the repository attributes. They would like to see more
information about the change context and the visual presentation of
the coupled changes.
Working on real maintenance tasks would increase the acceptance

of coupled change suggestions. We need to develop a visualization
concept for the coupled change suggestions and provide the possibility
that the developers can individually adjust their choice of repository
attributes.
The next step is to perform an experiment to investigate coupled

changes by directly observing their use for a real maintenance tasks.
They could be visualized in a tool to present these changes to the
developers.

7.4 | Conclusion 149

C
h
ap

te
r 8

Usefulness of Coupled
File Changes: A

Controlled Experiment
Study

8.1 Introduction

We perform this study to test the part of our theory on the use of cou-
pled file change suggestions related to their influence on maintenance
tasks.
Existing studies about coupled change recommendations [BDO+13;

KYM06; YMNC04; ZWDZ04] focus on the presentation of the mining

151

results and expert investigations and neglect the feedback of develop-
ers on the findings as well as the influence of coupled changes on the
performance on maintenance tasks.
The aim of this study is to investigate the usefulness of coupled

file change suggestions in supporting inexperienced developers in
their maintenance tasks. We identify sets of files being frequently
changed together using the information gathered from the software
repository. We use the version control system, the issue tracking
system and the project documentation archives as data sources for
additional attributes. We join this information to the coupled changes
we discover. The usefulness of coupled file changes is determined by
analyzing the developers’ feedback, their influence on the correctness
of the task solutions and the time spent for solving the maintenance
tasks.
We present a controlled experiment on the usefulness of coupled

change suggestions where each of the 36 participants try to solve 4
different perfective maintenance tasks and report their feedback on
the usefulness of the repository attributes. We use this experiment to
test the propositions of our theory on the use of coupled change sug-
gestions by investigating their influence on the number of successfully
solved tasks and the time needed to solve the tasks.

8.2 Experimental Design

In this section we define the research questions, hypotheses and
metrics used in our analysis.

152 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

8.2.1 Study Goal

We use the GQMapproach [BCR94] and its MEDEA extension [BMB02]
to define the study goal. The goal of the study is to analyze the useful-
ness of coupled file change suggestions. The objective is to compare
the correctness of the solution and the time needed for a set of main-
tenance tasks between the group using coupled change suggestions
and the group that does not use this kind of help. The purpose is to
evaluate how effective coupled file change suggestions are regarding
the correctness of the modified source code and the time required to
perform the maintenance tasks. The viewpoint is that of a software
developers’ and the targeted environment is open source systems.

8.2.2 Research Questions

We investigate the usefulness of coupled file change suggestions and
the corresponding repository attributes. In this study, we concentrate
on perfective maintenance to have a similar set of tasks. For that
purpose we define the following research questions:

RQ1: How useful are coupled file change suggestions in solving
perfective maintenance tasks?
To determine the usefulness of the coupled file changes concept we
define the following sub-questions:

RQ1.1: Do coupled file change suggestions influence the correct-
ness of perfective maintenance tasks?
We investigate if there is any difference in the correctness of the main-
tenance task solutions between the group of developers who used
coupled file change suggestions and the group not using them.

8.2 | Experimental Design 153

RQ1.2: Do coupled file change suggestions influence the time
needed to solve perfective maintenance tasks?
We explore if the time the developers need to complete the mainte-
nance tasks differs between the group using coupled change sugges-
tions and the group not using these suggestions. We consider two
scenarios: The first one includes only the time needed to solve the
tasks, the second one also includes the time needed to select relevant
coupled file changes.

RQ2: How useful are the attributes from the software repository
in solving perfective maintenance tasks?
The second research question deals with the attributes from the ver-
sioning system, the issue tracking system and the documentation. We
investigate the perceived usefulness of each attribute in the proposed
set to understand which attributes are good candidates to be provided
to the developers.

8.2.3 Hypotheses

We formulate the following hypotheses to answer the research ques-
tions in our study.

For RQ1.1 we define the following hypotheses:

H0.1.1: There is no significant difference in the correctness of perfec-
tive maintenance task solutions between the developers using coupled
file change suggestions and those not using these suggestions.
HA.1.1: There is a significant difference in the correctness of perfec-

154 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

tive maintenance task between the developers who used coupled file
change suggestions and those not using these suggestions.

For RQ1.2 we address the following hypotheses:

H0.1.2: There is no significant difference in the time required to solve
perfective maintenance tasks between the developers who used cou-
pled file change suggestions and the developers not using these sug-
gestions.
HA.1.2: There is a significant difference in the time required to solve
perfective maintenance tasks between the developers who used cou-
pled file change suggestions and those not using these suggestions.

To answer RQ2 we formulate the following hypotheses:

H0.2: There is no significant difference in the perceived usefulness
among the attributes from the software repository in the current set.
HA.2: There is a significant difference in the perceived usefulness
among the attributes from the software repository in the current set.

8.2.4 Experiment Variables

We define the following dependent variables: the correctness of the
solution after the execution of the maintenance task, the time spent
to perform the maintenance task and the usefulness of the repository
attributes. For the first variable, the correctness of the task solution,
we assign scores to each developer’s solution of the maintenance
tasks.

8.2 | Experimental Design 155

Our approach is similar to the one presented by [RLR+12] where
the correctness of the solution of the maintenance task is manually
assessed by defining scores from totally incorrect to completely correct
task solution. We define three scores: 0 if the developers did not
execute or did not solve the task at all, 1 if the task was partially
solved and 2 if the developer performed a complete solution of the
maintenance task. The solutions are tested using unit tests to ensure
the correctness of the edited source code.
The second variable, the time required for executing the mainte-

nance tasks is measured by examining the screen recordings. We
mark the start time and the end time for every task. We calculate the
difference to compute the total time needed to solve each task. We
differentiate the time needed only to solve the tasks ts and the time
needed to determine the relatedness of the coupled files tr. For the
third variable, the usefulness of the repository attributes, we use an
ordinal scale to identify the feedback of the developers. The partici-
pants can choose between the following options for each attribute:
very useful, somewhat useful, neutral, not particularly useful and not
useful. We code the usefulness feedback using the scoring presented
in Table 8.1.

Table 8.1: Usefulness score
very
useful

somewhat
useful neutral

not particularly
useful not useful

5 4 3 2 1

156 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

8.2.5 Experiment Design

We distinguish two cases for the maintenance tasks: the first one
includes tasks executed on Java Code in the Eclipse IDE without
any suggestions and the second one includes tasks executed with
additional coupled files suggestions and corresponding attributes
from the repositories. We use a similar approach to the one presented
by [RLR+12] and define two values: − for Eclipse only and + for the
coupled file suggestions.
We use a counterbalanced experiment design as described in Ta-

ble 9.1. This ensures that all subjects work with both treatments:
without and with coupled change suggestions. We split the subjects
randomly into two groups working in two lab sessions of two hours
each. In each session, the participants work on two tasks using only
the task description and on two tasks using coupled file change sug-
gestions and their related attributes. The participants in the second
lab swapped the order of the tasks in the first lab.

Table 8.2: Experiment Design
Lab Tasks

Lab 1 Tasks 1-2 (–) Tasks 3-4 (+)

Lab 2 Tasks 1-2 (+) Tasks 3-4 (–)

8.2.6 Objects

The object of the study is an open source Java software called A-
STPA. The source code and the repository were downloaded from

8.2 | Experimental Design 157

SourceForge.1 The system was built mainly in Java by 12 developers
at the University of Stuttgart during a software project between 2013
and 2014. It represents an Eclipse-based tool for hazard analysis. The
source code contains 16012 lines of code and 178 classes organized in
37 packages. The Git repository of the project contains 1106 commits
from which we extracted 205 coupled file changes.

8.2.7 Subjects

The experiment participants are 36 students from the Software Engi-
neering course in their second semester at the University of Stuttgart
(Germany). The students have basic Java programming and Eclipse
knowledge and have not been related in any way with the software
system investigated in the experiment.

8.2.8 Materials, Procedure and Environment

All subjects received the following materials which can be found in
the supplemental material of this paper.

• Tools and code: The participants received the Eclipse IDE to
work with, the screen capturing tool and the source code they
need to edit.

• Questionnaires: The first questionnaire is filled in at the start
of the experiment and it is related to their programming back-
ground. The second questionnaire performed at the end of the
experiment is about their feedback on the usefulness of coupled
changes and the additional set of repository attributes.

1https://sourceforge.net/projects/astpa/

158 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

https://sourceforge.net/projects/astpa/

• Software documentation: We provided the technical documenta-
tion for the software system including the architecture descrip-
tion covering the sub-projects, the overview of the classes in the
data model, the application controllers, the graphic editor and
the package descriptions.

• Setup instructions: The participants received the instruction
steps how to prepare the environment, where to find the IDE,
the source code and how to perform the experiment.

• Maintenance tasks and description: Every participant received
spreadsheets with four maintenance tasks and their free-text
description. The maintenance tasks represent quick program
fixes that should be performed by the participants according
to the maintenance requests [Bas90]. The maintenance tasks
used in the experiment require the participants to add various
enhancements to the system. The changes do not influence the
structure or the functionalities of the application. The tasks are
related to simple changes of the user interface of the system. All
four maintenance tasks are perfective and have been assigned
to the participants in both groups.

• Set of coupled files: The files changed together frequently used
to solve a similar tasks have been provided to the group that
uses coupled file changes.

• Repository Attributes: The attribute set from the versioning sys-
tem, the issue tracking system and the documentation about
similar tasks performed in the system. They have been joined
to the coupled files using a mapping between the commits con-
taining the coupled files and the issues using their issue IDs.

8.2 | Experimental Design 159

The environment for the experiment tasks was Eclipse IDE on a
Windows PC in both treatments. For each lab, we prepared an Eclipse
project containing the Java source code of the A-STPA system. The
project materials were made available to the subjects on a flash drive.
The participants had amaximum of two hours to fill the questionnaires
and perform the maintenance tasks.

8.2.9 Selection of Change Author

According to the used heuristic for grouping the change sets in the
versioning history, we need to select the authors of the changes whose
data will be included in the analysis.
The selection process of the developers as authors of the source

code changes is presented in Figure 8.1. Out of 12 developers who
worked on the A-STPA software, after performing the frequent itemset
analysis, we have 8 developers left whose entries in the repository
delivered coupled files.
We have 4 maintenance tasks to be solved in the experiment. For

each of the tasks we use commits from a different developer to avoid
the influence of the authorship of the commits on the tasks. Out of
the 8 developers we need to select 4, one for each maintenance task.

8.2.10 Selection of Coupled Files

After selecting the developers, we continue with the selection of the
coupled files. The process includes the selection of the most frequent
coupled files followed by the selection of relevant coupled files as
presented in Figure 8.1.

160 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

Figure 8.1: Changes Selection

8.2.10.1 Selection of the Most Frequent Coupled Files

We need to select the coupled files which we will include in the
suggestions for the developers in the experiment. For each of the 4 de-
velopers we list the most frequent coupled files we have extracted. We
sort the sets of coupled file changes by their frequency in descending
order, so on top of the list we have the most frequent set of coupled
files. We start selecting the sets of coupled files from the top of the
list.
We do this for two main reasons: (1) To avoid a potential subjec-

tivity in the selection of the coupled files. (2) We want to use the
strongest couplings, meaning the coupled files which are frequent
and did not happen by chance.

8.2.10.2 Selection of Relevant Coupled Files

After identifying the most frequent coupled files, we examine their
broader change context. This means that we need to determine if
they fulfill the requirements to be: (1) of perfective nature and (2)
related to modifications in the user interface of the application.

8.2 | Experimental Design 161

We determine this change context using a manual analysis of the
content of the commit messages where the coupled file changes were
included as well as the description of the related issues. To perform
this, we use the mappings between the commit messages and the
issue IDs provided as part of the corresponding repository attributes
we added to the coupled file changes.

8.2.11 Classification of Issues

We classified the issues for the examined software systems using the
approach proposed in [HGH08]. We determine the following classes
of issues:

• Corrective: These issues cover failures related to the processing
or performance of the software.

• Adaptive: These changes include modifications related to the
data and the processing environment.

• Perfective: The changes include modifications related to perfor-
mance, maintenance or usability improvements.

• Implementation: These tasks include new requirements for the
software system.

• Other: These include changes that are not functionally related
to the system like copyright or control version system related
issues.

We go further and classify the perfective changes based on the most
frequently involved system functionalities. For example, we want to
know how many perfective issues have been defined for the user inter-
face of the application and what are the main parts of this interface

162 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

addressed in these issues. This way we expose the representativeness
of the selected coupled file changes and the defined tasks for the
software system we examine.

8.2.12 Definition of Tasks

After we determined the sets of coupled file changes which fulfill the
requirements of the experiment, we continue with the definition of
the tasks the participants need to solve.
Firstly, we determine the change context of the selected coupled file

sets more precisely by looking up repeatedly in the related commit
messages and the issue description. This identifies the functionality
the file changes are related to. We use the mapping of the issue IDs
and the commit messages to follow up this information. After we have
identifies the issues related to sets of relevant coupled file changes, we
define perfective maintenance tasks related to similar functionalities
covered in these issues. For example, in Table 8.3 we have an issue
extracted from the issue tracking system of the A-STPA product which
defines that a new item in the application view should be created
using a keyboard shortcut. The commit message for the changes
solving this task represents the comment of the developer who placed
the shortcut. Considering the described functionality, we create a task
where the developer needs to create a new shortcut combination for
that purpose. In the same manner, we repeat the procedure for each
of the relevant coupled files we have selected and define 4 tasks.
The content of the text description of the tasks is related to the

content of the issues we extracted from the issue tracking system. We
keep the content of the task definitions very simple. They contain
the functionality or the part of the system which has to be changed

8.2 | Experimental Design 163

Table 8.3: Task Information and Coupled File Changes
User Task Task Solution File Set

Change the shortcut for adding
new items in all the user interface
views from "SWT.KeyDown
and ’n’" into
"SWT.KeyUp and ’y’"

ControlActionView.java
SystemGoalView.java
DesignRequirementView.java
SafetyConstraintView.java
HazardsView.java
AccidentsView.java

Related Commit Suggested Coupled Changes

I have set a simple shortcut
for new items to be "n",
which can be quickly
changed if needed.

ControlActionView.java
DesignRequirementView.java
SafetyConstraintView.java
AccidentsView.javaRelated Issue

Using a keyboard shortcut,
a new item should be created
in the application views.

and the action to be performed. This makes it easier to replicate the
process using other software products and their repositories.

8.2.13 Tasks and Coupled File Changes

Our goal is for each of the tasks to provide coupled file changes related
to their context. This feature is of great importance for the study.
Offering unrelated coupled file can be misleading and confusing for
the developers.

164 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

We can extend the examination of the commit messages content
and the issue descriptions to determine the change context as a part of
a tool using natural-language processing techniques. We can compare
the content of the user input or the issue content with the comments in
the commit messages or issue description we mapped to the coupled
file change sets. However, this exceeds the scope of this study and
can be considered as future work.

8.2.14 Solution of Tasks

The complete list of files included in the task solutions are defined
manually by analyzing the solutions of the related issues and evalu-
ated by an independent party.
An example of the relation between the files included in the solution

for a particular maintenance task and the set of coupled file changes
is presented in Table 8.3. Here, we can see that to be able to solve
the mentioned task, the developer needs to change 6 files which are
related to the views of the application.
The coupled change suggestion based on an issue related to the

defined task recommends 4 files to be changed. These files were
extracted from the version history have been changed frequently
together in the past.
We would like to point out that the file change suggestions do not

represent the solutions for a particular task in the experiment. The
solution usually contains more files than the provided suggestions.
Although the provided suggestions contain a subset of the solution
set, the developers still need to find the location in the source code
meaning the method or the class they need to modify in order to
solve the tasks. This is finer grained information we do not provide

8.2 | Experimental Design 165

in our coupled files. The developers still have to read the repository
attributes and decide if they want to follow the coupled file change
suggestions.

8.2.15 Maintenance Activities

After receiving the task description, the participants investigate the
source code of the application, identify the files where the change is
needed and perform the change according to the requirement. The
scenario for solving the provided maintenance tasks includes the
following activities [NBD11]:

• Task understanding: First of all, the participants need to read
the task description and the instructions and prepare for the
changes. They can ask if they need some clarification about the
settings and the instructions.

• Change specification: During this step, the participants locate
the source code they need to change, try to understand and
specify the code change.

• Change design: This step includes the execution of the already
specified source code changes and debugging the affected source
code.

• Change test: To specify the successfulness of the performed
code changes, a unit test needs to be performed. This step is
performed by the experiment organizers after the lab sessions.

8.2.16 Data Collection Procedure

We collect data from several sources: the software repository of the
system, the questionnaires, the provided task solutions and the screen

166 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

capture recordings.

8.2.16.1 Software Repositories

• Version Control System: The first data source we use is the log
data from the version control system. The investigated project
uses Git as a control management tool. It is a distributed ver-
sioning system allowing the developers to maintain their local
versions of source code. This version control system preserves
the possibility to group changes into a single change set or a
so-called atomic commit regardless of the number of directories,
files or lines of code that change. A commit snapshot represents
the total set of modified files and directories [Loe09]. We or-
ganize the data in a transaction form where every transaction
represents the files which changed together in a single commit.
From this data source we extract the coupled file changes and
the commit related attributes.

Table 8.4: Repository Attributes Description
Attribute Name Attribute Description
Commit ID Unique ID of Git commit
Commit Message Free-text comment of the commit in Git
Commit Time Time-stamp of committed change in Git
Commit Author Person who executed the commit
Issue Descr. Free-text comment on issue to be solved
Issue Type Type of the issue: bug, feature
Issue Author Person who created the issue to be solved
Package Descr. Text description of the package: layer, feature

• Issue Tracking System: It stores important information about
the software changes or problems. In our case, the developers

8.2 | Experimental Design 167

used JIRA as issue tracking systems. This data source is used to
extract the issue-related attributes.

• Project Documentation: The software documentation gathered
during the development process represents a rich source of data.
The documentation contains the data model and code descrip-
tions. From these documents, we discover the project structure.
For example, in the investigated project, the package containing
the files described by the following path:
astpa/controlstructure/figure/, contains the Java classes respon-
sible for the control diagram figures of this software. We use
the documentation to identify the package description.

The complete set of attributes we extract from the software repository
is presented in Table 8.4.

8.2.16.2 Questionnaire

The developers answer a number of multiple-choice questions. Using
the first questionnaire, we investigate the developers’ programming
background. We use a second questionnaire after the tasks are solved
in order to gather the feedback on the usefulness of coupled changes
and the additional attributes1.

8.2.16.3 Tasks completion

Similarly to other studies [Cha08; NBD11; RLR+12], we define two
factors which represent the completion of the maintenance tasks:

1The questionnaires are available in the supplemental material of this paper

168 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

• Correctness of solution: We determine the correctness of the
solution by examining the changed source code if the solution
satisfies the change requirements. We use the scoring presented
previously where we summarize the points each developer gath-
ers for each of the four tasks. The score is added next to each
of the participants for both treatments, with and without using
coupled file changes.

• Time of task completion (ts): This represents the time measured
in minutes the developers spent to solve the maintenance tasks.
Having a scenario where the developers only need to solve the
tasks, the selection of the coupled files is not included in the
total time for the tasks. It does not include the time needed to
determine the relatedness of the coupled files for a specific task.
The completion time could be automatically determined using
a tool implementation or as part of an analysis procedure and
does not represent part of the developer task solution. We use a
screen capturing device to record the time that each participant
spends solving each of the four tasks. We record the time needed
for each task in both treatments.

• Time required to determine the relevance of the coupled files
(tr): This represents the time needed to determine the change
context of each of the coupled files related to the tasks. Consid-
ering a worst-case scenario, the selection of the coupled files
has to be performed by the developers and the time needs to be
calculated for the group using coupled file change suggestions.
In this case, the total time needed for each of the tasks is the
sum (tr+ts) of the time needed to select the coupled files and
the time to solve the task.

8.2 | Experimental Design 169

Given the task list, the coupled files list and the issue list, we
record the time the developers need to go through the process
of determining the change context of the coupled files we ex-
amine for a given task. We use three additional developers to
measure the time required to determine the context of each of
the coupled file changes related to the tasks.

8.2.17 Data Analysis Procedure

To be able to test our hypotheses, we need to analyze the usefulness of
the coupled file changes and the usefulness of the attributes from the
software repository. We perform the analysis using SPSS statistical
software.

8.2.17.1 Usefulness of Coupled File Changes

The main part of the analysis is the investigation of the usefulness of
the coupled changes. For this purpose we compare the scores of each
task solution and the amount of time needed for solving the tasks in
both groups: without using coupled file suggestions and with using
of coupled file suggestions.
For the time needed for the solution, we only use the values for

the accomplished tasks. This way we assure that the values for the
unsolved tasks do not corrupt the overall values for the time needed
to successfully solve the tasks.
Here we have two main scenarios. The first one includes only the

time the developers need to solve the tasks. The second scenario also
includes the time needed to select the coupled files set related to a
specific maintenance task. We calculate the mean time for a particular
task. Furthermore, we repeat the calculation for each participant on

170 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

the task. At last, we determine the grand mean as the average of
all the means of the time values for each of the tasks determined by
the participants, weighted by the sample size. In our case this is the
number of coupled files.
Having k populations or tasks, the ith observation is tri which is the
j(i)th coupled files set. We write j(i) to indicate the group associated
with the observation i. Let i vary from 1 to n, which is the total number
of samples, in our case, these are the coupled files, j varies from 1 to
k, the total number of tasks. There are a total of n observations with
nj observations in sample j: n= n1 + ...+ nk

The grand mean of all observations is calculated using the formula:

t r =
k
∑

j=1

�n j

n

�

t r j (8.1)

here, tr is the average of the sample means, weighted by the sample
size [HL11].
To determine the usefulness of coupled file changes, we test the

overall difference in the correctness of solving the tasks using the
two-tailed Mann-Whitney U test. It is used to test hypotheses where
two samples from the same population have the same medians or that
one of them has larger values, so we test the statistical significance of
difference between two value sets.
Determining an appropriate significance threshold defines whether

the null hypothesis must be rejected [Nac08]. If the p-value is small,
the null hypothesis can be rejected meaning that the value sets are
different. If the p-value is large, the values do not differ. Usually a 0.05-
level of significance is used as threshold. The p-value is not enough

8.2 | Experimental Design 171

to determine the strength of the relationship between variables. For
that purpose we report the effect size estimate [TT14].
We use a conservative approach where we test the difference in

the correctness of our tasks. Without differentiating the tasks, we
compare all the solutions of the tasks using coupled file changes and
the tasks performed without any suggestion. We repeat the same
approach to test the overall difference between the time needed to
solve the tasks using coupled change suggestions against the tasks
solved without the help of coupled file changes.
We use the SPSS statistical software and its typical output for the

Mann-Whitney U Test whereby the p-value of the statistical signifi-
cance in the difference between the two groups is reported. The mean
ranking determines how each group scored in the test. To support
statistical difference between the samples, we calculate the r-value of
the effect size proposed in [Coh77] using the z value from the SPSS
output [FMR12]. A value of 0.5 determines a large effect, 0.3 means
medium effect and 0.1 identifies a small effect [CT13]. Given that we
have a study which is restricted to a small number of comparisons,
we do not adjust the p-value using a procedure like the Bonferroni
correction [Arm14].

8.2.17.2 Usefulness of Attributes

We analyze the feedback from the questionnaire investigating which
attributes are useful. We investigate every attribute in the set ex-
tracted from the versioning system, the issue tracking system and the
documentation as previously presented. For that purpose we use the
Kruskal-Wallis H test, an extension of the Mann-Whitney U test. Using
this test, we determine if there are statistically significant differences

172 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

between the medians of more than two independent groups. We test
the statistical significance between more than two value sets. The
significance level determines if we can reject the null hypothesis. p-
values bellow 0.05 mean that there is a significant difference between
the groups [Poh14]. To determine the effect size for the Kruskal-Wallis
H test, we calculate the effect sizes for the pairwise Mann-Whitney U
tests for each of the attributes using the z statistic. We individually
calculate the r-value for the effect size for each pair comparison. The
r-value is calculated using the following formula:

r =
z
p

N
(8.2)

Our approach tests the differences in the feedback about the use-
fulness between all the attributes for all 36 participants. This way
we identify which attributes we should offer to the participants when
solving their tasks together with the coupled file change suggestions.
Using SPSS, we provide the statistical significance values of the dif-
ference between all eight attributes. The ranking of the means for
the feedback on the usefulness values determine the most useful
attributes.

8.2.18 Execution Procedure

• Log Extraction: We extract the information from the Git log
containing the committed file changes and the attributes. The
log data is exported as a text file and the output is managed
using proper log commands.

• Data preprocessing: After the text files with the log data have
been generated, we continue with the preparation of the data for

8.2 | Experimental Design 173

mining. Various data mining frameworks use their own format,
so the input for the data mining algorithm and framework needs
to be adjusted.

• Support threshold: To be able to begin the investigation, we need
to extract coupled file changes from the software repository. We
extract the coupled changes by defining the threshold value of
the support for the frequent item set algorithm. We use the
thresholds that give us a frequent yet still manageable number
of couplings. This threshold is normally defined by the user. We
use the technique presented in [Fou13] to identify the support
level. These values vary from developer to developer, so we test
the highest possible value that delivers frequent item sets. If the
support value does not yield any useful results for a particular
developer, we drop the value of the threshold. We did not
consider item sets with a support rate below 0.2 meaning the
coupled changes should have been found in 20 percent of the
commits.

• Mining Framework: There is a variety of commercial and open-
source products offering data mining techniques and algorithms.
For the analysis, we use an open-source framework specializing
in mining frequent item sets and association rules called the
SPMF-Framework.1 It consists of a large collection of algorithms
supported by appropriate documentation.

• Experiment preparation: We prepare the environment by setting
up the source code and the Eclipse where the participants will
work on the tasks. We define the maintenance tasks and provide
the free text description. We prepare the coupled file changes

1http://www.philippe-fournier-viger.com/spmf

174 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

http://www.philippe-fournier-viger.com/spmf

and the attributes from the software repository to be presented
to the participants in the experiment.

• Solving tasks: The participants in both groups work for two
hours in two labs and provide solutions for the maintenance
tasks. The solution and the screen recording are saved for
further analysis.

• Material gathering: We gather the questionnaires, the edited
source codes and the video files of the participants screens for
further analysis.

• Solution analysis: We analyze the scores for the correctness of
the maintenance tasks, calculate the time needed for solving the
tasks and determine the influence of the coupled file changes
on the task solution.

8.3 Results and Discussion

The complete list of the maintenance tasks, the coupled file changes,
the software repository attributes, the questionnaires and the analysis
results can be found in the supplemental material of this paper.

8.3.1 Participants

The participants’ feedback about their background reports that most
of them have around one year of programming experience and less
than 1 year experience with versioning and issue tracking systems.
None of them answered to be in any way involved on the A-STPA
project.

8.3 | Results and Discussion 175

8.3.2 Issues Classification

Based on the proposed classification from [HGH08], we classified
the issues from the issue tracking system related to commits in the
Git version history as presented in Table 8.5. Here, we see that most
changes of the system are corrective, implementation and perfective
issues.

Table 8.5: Issue Classification
Issue Category Frequency %
Corrective 217 31.77
Implementation 169 24.74
Perfective 146 21.38
Adaptive 85 12.45
Other 66 9.66

Table 8.6: Perfective Issues
Change category Frequency %
Views 74 49,01
Control Structure 34 22,52
Menus 22 14,57
Non functional source changes 13 8,61

Further, we examined the perfective issues in more detail to deter-
mine to which parts of the system they are related. We have identified
several classes of perfective issues related to the main functionalities
of the system we investigated in the experiment as presented in Ta-
ble 8.6.
The most frequent perfective issues are related to changes to the view
elements of the system user interface responsible for the visualization
of the hazard analysis steps including their layout, tables, grids, text
fields, buttons, icons and labels. These changes have been organized

176 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

in the class called Views.
The next class called Control Structure is composed by the issues which
handle the changes related to the control structure functionality of the
user interface. It is responsible for drawing the diagrams, connects
the layout components and includes changes on the diagram elements
like objects, labels and connections.
The following class we call Menus is related to the issues associated to
the user interface menus which are used to manipulate the creating
and editing of project elements including changes in the wizards, the
actions, labels and icons.
The last class includes the issues covering non-functional changes in
the source code like cleanups, refactoring or formatting.
The task distribution in the experiment corresponds to this classifica-
tion. We have defined two tasks for the application views, one task for
the menus and one task for the control structure of the user interface.

Table 8.7: Statistical Significance (Coupled changes)
Depend. Variable p-value r-value
Correctness 0.000 0.448
Time Effort 0.041 0.259

8.3.3 Usefulness of Coupled File Changes

As we already explained, we operationalize the usefulness of coupled
file changes by their influence on the correctness of the solutions and
the time needed to solve the tasks.

8.3 | Results and Discussion 177

Figure 8.2: Task Correctness Distribution

8.3.3.1 Correctness

We summarize the correctness distribution as presented in Figure 8.2.
On the y-axis we have the frequency of occurrence and on the x-
axis the score of solving of the tasks. Here, the observations are
grouped based on the presence of coupled change suggestions during
the maintenance task solution. From this figure we see that the
participants achieved better scores using the coupled file change
suggestions we provided.
We investigate the correctness difference of both groups by test-

ing the first null hypothesis of the first research question claiming
that there is no significant difference in the correctness of the task
solutions.
Applying the Mann-Whitney U Test results in a p-value of 0.000 as

178 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

presented in Table 8.7. This result has to be lower than the threshold
of 0.05, so this null hypothesis can be rejected. This means that there
is a statistically significant difference in the correctness of the solution
for the provided tasks when using coupled file change suggestions
against the correctness of the solutions only using the provided task
description. The r-value of the effect size for the correctness is 0.448
which describes a strong statistical difference in the correctness of
the maintenance task solutions between the groups that did or did
not coupled change suggestions.
In Table 8.8, we represent the descriptive statistics for the correct-

ness of the task solutions. The participants which used the suggestions
solved 63.8% of the tasks completely, whereby the participants not
using suggestions solved only 22% of the tasks. This shows an signifi-
cantly higher score for the group using coupled change suggestions.
The median absolute deviation (MAD) value for the group using

coupled changes is 0, whereby the value for the group not using
coupled changes is 1. These values show that the correctness score
is spread very close to the median for the score of the first group.
The statistical results provide evidence that the coupled file changes

Table 8.8: Descriptive statistics for the correctness of the tasks
Without Suggestions (–) With suggestions (+)

Completely Median MAD Completely Median MAD
solved tasks solved tasks

22 % 1 1 63.8 % 2 0

significantly influenced the correctness of the maintenance tasks in
the experiment. Inexperienced developers solved more tasks when
using our suggestions which means they used the benefit of hints
related to similar tasks. The coupled change suggestions allow the

8.3 | Results and Discussion 179

developer to follow a set of files and remind him/her that similar
tasks include changes in various locations in the source code.
The improvement in the number of solved tasks for the group using

the coupled change suggestions shows that developers have used the
benefits of additional help in locating the features and the files to be
modified to solve their tasks successfully. The group that did not use
this kind of help did not succeed to solve the same or a higher number
of tasks which points to the usefulness of our approach. The use of

Figure 8.3: Time Boxplots (ts)

coupled file changes has been especially noticed in cases where the
developer needs to perform similar changes in several locations, like
editing different views of the application GUI. Here, the developers not

180 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

Figure 8.4: Time Boxplots (tr + ts)

using coupled change suggestions missed implementing the change in
all the files where the change should have been performed. Coupled
file change suggestions help the developers not to miss other source
code locations they need for their task.

8.3.3.2 Time

We have analyzed the influence of using coupled file change sugges-
tions on the time needed to successfully perform the tasks versus
not using them. Many participants used split-screen and kept the
documentation window open so we were not able to subtract the time

8.3 | Results and Discussion 181

spent reading the documentation from the total amount needed to
solve the tasks.
The distribution of the values for the time needed to solve the tasks

is presented in Figure 8.3. We see that the distributions are similar
with a slight tendency to more time needed to solve the tasks without
suggestions.
We test the second null hypothesis which claims that there is no

influence of the coupled file changes on the time needed to solve the
tasks.
The distribution including the time to determine the relatedness

of the coupled files is presented in Figure 8.4. Considering only the
time needed to solve the tasks (ts), the p-value for the two tailed
test is 0.041. This value is slightly below the 0.05 threshold for
the significance of the difference in the time needed to solve the
tasks by the group using coupled file changes versus the group that
didn’t. Therefore, we reject the null hypothesis. The r-value for the
time needed to solve the maintenance tasks is 0.259 which shows
a relatively small statistical difference between the group that used
coupled change suggestions and the group that didn’t.
Considering the case we include the time to select the coupled files

to the time needed to solve the tasks (tr + ts), we can see that there
is almost no difference in the time measured for the group not using
the coupled files and the group using coupled files. Here, the p-value
for the total time is 0.987, which means that in this case the null
hypothesis cannot not be rejected.
The r-value for the total time is 0.02, which emphasizes this small

difference between using and not using coupled file change sugges-
tions.
After calculating the grand mean for tr, we added 3 more minutes

182 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

to the amount of time for the task solution and included it in the
analysis of the difference between both groups regarding the use of
coupled file change suggestions. The time needed to determine the
related coupled files for the additional participants is presented in
Table 8.9.
For the total time including the time needed to select the coupled

files, we add the number of considered coupled files per task and the
mean time the developers needed to select the coupled files for the
particular task.
The descriptive statistics in Table 8.10 for the time needed to solve

the tasks report a decrease in the means for the time needed to solve
the tasks by 26% for the group using coupled change suggestions.
The means ranking reports slightly better results for the group using
coupled file changes, which means that the participants of this group
solved their tasks slightly faster. The standard deviation for the group
using coupled changes is twice lower than for the group not using
coupled changes which shows a higher spread-out for the first group.
Including the time needed to select the coupled files, the values are
almost the same for both groups.
From the results, we can see that in this case, because of the ad-

ditional time we added for each of the participants, there is almost
no difference between the mean values which tells us that the group
using coupled files did not manage to solve the tasks faster.
The results related to the task selection time show a small improve-

ment for the time needed to solve the tasks. The developers using
coupled change suggestions needed less time to find the files to be
changed. Without coupled file changes, they would need to search
for the features and files in the source code they need to edit.
The improvement in the time needed to solve the tasks for the group

8.3 | Results and Discussion 183

Table 8.9: Time to determine related coupled files
Time (minutes)

Participant 1 Task 1 Task 2 Task 3 Task 4

Coupled Files 1 3 4 3 3
Coupled Files 2 5 3 2 2
Coupled Files 3 3 2 - -

Participant 2 Task 1 Task 2 Task 3 Task 4

Coupled Files 1 2 2 2 3
Coupled Files 2 2 2 2 2
Coupled Files 3 2 2 - -

Participant 3 Task 1 Task 2 Task 3 Task 4

Coupled Files 1 2 4 5 2
Coupled Files 2 2 4 2 2
Coupled Files 3 2 2 - -

All Participants

Mean (Coupled Files) 2.55 2.55 2.66 2.33
Grand Mean (Tasks) 3.41

Table 8.10: Descriptive statistics for the time needed in minutes
Median Mean Stand. Dev.

Without suggestions 12 13.50 7.403

With suggestions (ts) 9 9.11 3.837

With suggestions (tr + ts) 12 12.33 4.158

184 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

using the coupled file changes is not as strong as the improvement
in the correctness of the task solutions. It does not eliminate the
time the developers need to understand the features and the changes
they need to perform in the source code. They still need time to
organize this information and use it. Furthermore, they need to read
and understand the suggestions. Coupled file change suggestions do
not automatically provide a solution for solving their tasks.
If we include time needed to select the coupled files, the results

show that there is no improvement for the group using the coupled
file change suggestions. If the coupled files need to be determined
by the developers as a part of the task solution procedure, the small
advantage for the groups using the suggestions disappears. An au-
tomated extraction of coupled file change suggestions including the
determination of their relatedness could therefore be beneficial.

8.3.4 Usefulness of software repository attributes

Table 8.11: Descriptive Statistics (Attributes Usefulness)
Attribute Median MAD
Package Description 4 1
Issue Description 4 1
Commit Message 4 1
Issue Type 3 1
Commit ID 3 1
Commit Author 3 1
Issue Author 3 1
Commit Time 3 1

The distribution of the usefulness of each repository attribute is
presented in Figure 8.5. The mean values for the usefulness of each
of the repository attributes have been determined using the feedback

8.3 | Results and Discussion 185

of all participants in the experiment.
We test the third null hypothesis which claims that there is no

difference in the usefulness between the attributes using the p-value
of the Kruskal-Wallis H Test. In our case, the p-value for this test is
0.000 which is lower than the 0.05 threshold. This result leads us to
reject the null hypothesis. This means that the alternative hypoth-
esis claiming that there is a significant difference in the perceived
usefulness among the attributes from the software repository is true.

Figure 8.5: Usefulness of Attributes

We reported a set of various software attributes from the software
repository. The participants reported their feedback on their use-
fulness at the end of the experiment lab after the tasks had been
performed.
We gathered the descriptive statistics for the participants’ feedback

186 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

Table 8.12: Statistical Significance (Coupled changes)
p-value r-value Repository Attribute pairs
0.180 0.279 Commit ID Commit Message
0.972 0.004 Commit ID Commit Author
0.249 0.136 Commit ID Commit Time
0.000 0.467 Commit ID Issue Description
0.108 0.190 Commit ID Issue Type
0.624 0.058 Commit ID Issue Author
0.000 0.465 Commit ID Package Description
0.022 0.270 Commit Message Commit Author
0.001 0.400 Commit Message Commit Time
0.048 0.233 Commit Message Issue Description
0.582 0.065 Commit Message Issue Type
0.004 0.336 Commit Message Issue Author
0.220 0.269 Commit Message Package Description
0.228 0.142 Commit Author Commit Time
0.000 0.459 Commit Author Issue Description
0.122 0.182 Commit Author Issue Type
0.599 0.062 Commit Author Issue Author
0.000 0.464 Commit Author Package Description
0.000 0.566 Commit Time Issue Description
0.008 0.311 Commit Time Issue Type
0.476 0.084 Commit Time Issue Author
0.000 0.557 Commit Time Package Description
0.118 0.279 Issue Description Issue Type
0.000 0.526 Issue Description Issue Author
0.530 0.074 Issue Description Package Description
0.039 0.244 Issue Type Issue Author
0.009 0.308 Issue Type Package Description
0.000 0.515 Issue Author Package Description

on the usefulness of each attribute presented in Table 8.11. The
median values vary from 3 for the commit ID, the commit author, the
commit time, the issue author and the issue time, to 4 for the commit
message and the package description. This places the cutoff between

8.3 | Results and Discussion 187

“neutral” and “somewhat interesting” for most of the attributes. The
MAD value for all attributes is 1, which shows a low spread out of the
usefulness values around the median.
We calculated the r-value of the size effect for the repository at-

tributes by creating pairs of each of the attributes where we deter-
mined the z-value of the Mann-Whitney test for each pair as presented
in Table 8.12. We have 28 pairs of attributes.
The greatest difference in the usefulness is between the commit

time and the issue description where the r-value is 0.566, followed by
the difference between the commit time and the package description
with an r-value of 0.557. This indicates a high statistical significance
between these pairs of attributes. The lowest difference is between the
commit ID and the commit author, here the r-value is 0.004, followed
by the difference between the commit ID and the issue author with
an r-value of 0.058. This shows that there are significant differences
in the usefulness between individual attributes.
We determined that the attributes have different usefulness using

the feedback of the participants. The median ranking defines which
of the attributes are most useful. As the most useful attribute we
identify the package description followed by the issue description
and the commit message. This leads us to the conclusion that the
inexperienced developers seek for help about the features of the source
code they need to edit and the task they have to complete.
The issue type and the commit time are in the middle of the list.

The most useless attribute is the commit author followed by the issue
author and the commit id. Here, we suppose that the developers are
not interested in the information who performed the changes because
they do not know this person. This could change if the developers
were included in the project for a longer time.

188 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

Although we produced a list of typical repository attributes, the
participants have identified a smaller set of attributes to be useful
for them than we provided in this experiment. This means that we
don’t have to present all the attributes to the developers together with
the coupled files for the reason that different developers can happen
to find some attributes as obsolete to be included in the coupled
file change suggestions. An individual choice of useful attributes
can avoid confusion and increase the acceptance of the coupled file
change suggestions concept.

8.3.5 Threats to Validity

• Internal Validity: Potential internal validity threats can rise
from the experiment design. To limit the learning effect, we use
a counterbalanced design where every developer solves four
different tasks where each of them solves two tasks without
and two tasks using coupled change suggestions. This way the
results are not directly influenced by the task supported by the
coupled file suggestions.

Other validity threats related to the experiment design are
the selection of the coupled file changes, the creation of the
maintenance tasks as well as their definition and solution.

We extracted coupled files using a relatively high threshold
which limits the possibility to provide suggestions for coupled
changes that happened by chance.

We selected the most frequent coupled files for each of the
developers to avoid subjective interference. We also avoided de-
livering unrelated changes in order not to confuse the developer
by providing suggestions out of the context.

8.3 | Results and Discussion 189

The maintenance tasks were constructed manually. However,
they are related to issues from the issue tracking system and
fulfill the conditions set in the experiment to be perfective and
related to changes of the user interface.

We classified the issues on the system based on the maintenance
categories to show the representativeness of our maintenance
tasks. The content includes a simple description of the func-
tionalities and the required actions in order not to overwhelm
the inexperienced developers by providing unnecessary infor-
mation.

The set of files included in the solution of the tasks was provided
by manually analyzing related issue solutions. We validated the
task solutions using a third party.

The judgment of correctness of the developers’ task solutions
represents another internal threat whereby we test the solutions
to determine the level of correctness.

The time needed to determine the relatedness of the coupled
files can differ. To avoid an influence by particular tasks, we
calculate the average time per coupled file set and calculate
the grand mean for all tasks. We used independent student
participants for the measurement of the time needed to select
the related coupled files.

Also the metrics we used to determine the usefulness can rep-
resent a threat. The subjective usefulness rating represents
another construct validity whereby we evaluate the provided
task solutions pairwise to minimize the errors in conducting the
score distribution. For the time needed to solve the tasks, we
play the captured screens of the participants to calculate the

190 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

time the developers needed to solve the tasks.

• External Validity: The external validity threat concerns the gen-
eralization of the experiment. The main threats here are related
to the choice of the coupled file changes, the type and descrip-
tion of the maintenance tasks as well as the participants and
the system we investigate.

We used a data mining technique that can be easily performed
on other Git repositories to extract coupled file changes. Our
approach uses mapping between the commits and the issues
which excludes the projects not using them. However, this
practice is used very often today. We can find many projects
in various on-line software repository collections like GitHub
using this kind of mapping and providing issue and project
description.

We chose simple perfective tasks that can be easily replicated and
do not require large changes in the source code. The description
of the tasks is simple and includes the source code functionalities
to be changed and the activities without any specific format or
structure. This way we maintain the possibility to repeat the
process for other projects and limit the possibility of creating
artificial conditions specially tailored for our experiment. Yet,
it is not clear whether the results can be generalized for other
types of maintenance tasks.

The student participants in the experiment have basic program-
ming experience which corresponds to the target group of our
study to address inexperienced developers.

The system we used for the experiment is an open source Java
project with a clear project structure and repository. It does not

8.3 | Results and Discussion 191

contain specific information that can challenge the replication
of the analysis

8.4 Conclusion

In this experiment, we successfully tested the part of our theory on
the use of coupled change suggestions related to their influence on
the maintenance tasks solution.
Coupled file change suggestions are useful for inexperienced devel-

opers working on maintenance tasks. The influence is positive on the
correctness level of the tasks solutions, meaning that it helps them
to solve their tasks more successfully. The influence of the coupled
change suggestions on the time effort for solving the tasks is not sig-
nificant. We extended the findings of [RW16b] where the participants
in their feedback reported the coupled file changes and the attributes
as neutral to use in maintenance tasks. Our experiments outcomes
are more positive compared to the results of [RW16b]. Working on
real maintenance tasks using the tasks of the working software prod-
uct increases the usefulness of coupled change suggestions by the
developers. We rounded up the set of useful attributes based on the
set presented in this study.
The next steps would be to transform the results and the findings in

a tool implementation to support the developers working on mainte-
nance tasks using visual presentation of suggestions which set of files
they should also change. Also it would be interesting to follow the
influence of coupled changes on the strategy of solving maintenance
tasks.

192 8 | Usefulness of Coupled File Changes: A Controlled Experiment Study

C
h
ap

te
r 9

Coupled File Changes
Influence on Help

Seeking: An Exploratory
Study

9.1 Introduction

Using this exploratory study, we test the part of our theory on the
use of coupled file change suggestions related to their influence how
developers seek for help during maintenance tasks.
We investigate the developers’ information sources using the Grounded

Theory method on video recordings on the developer’s screen. We

193

explore which information sources are used by the developers and
what kind of information both the group not using coupled change
suggestions and the group using this kind of help seek for to solve
the tasks. We present an exploratory study based on the data from a
controlled experiment where each of the 36 participants try to solve
4 different maintenance tasks. The original experiment analysis is
available in Chapter 8.

9.2 Experimental Design

9.2.1 Study Goal

We perform our exploratory study using a mixed-method approach
on top of a maintenance tasks experiment where the impact of cou-
pled change suggestions on the time and the effort needed to solve
maintenance tasks has been investigated [RW16a]. We define the
goal of the study using the GQM approach [BCR94] and its MEDEA
extension [BMB02] which is analyzing the influence of coupled file
change suggestions on where and why developers search for help.
The objective is to compare the information sources the developers
access for the tasks using coupled change suggestions and the tasks
without using them. The purpose is to evaluate how effective are
coupled file change suggestions related to the location of the task
relevant information, the relevance of the information they look for,
the frequency and the patterns of information sources.

9.2.2 Research Questions

RQ1: Where do developers look for task relevant information? We
want to identify the sources for the information used for a particular

194 9 | Coupled File Changes Influence on Help Seeking: An Exploratory Study

maintenance tasks solution. This will show what are the usual loca-
tions to seek for help during the tasks.

RQ2: What kind of relevance has the source of information for their
task? The answer of this research question will show how information
sources contribute to the tasks solution.

RQ3: How do coupled file changes influence the search for task rele-
vant information during maintenance tasks with and without using
coupled change suggestions? We investigate their influence related
to the following subquestions:

RQ3.1: How frequently do developers use the sources of information?
We identify the most popular sources for seeking help used by the
developers in this study to identify common information sources.

RQ3.2: Are there any information sources patterns the developers
use to find task relevant information? We explore there are some
sequence patterns of information sources to identify the difference in
the strategy how developers seek for help.

9.2.3 Overview

9.2.3.1 Experiment Design

We use a counterbalanced experiment design similar to the one pre-
sented by Ricca et al. [RLR+12] which ensures that all subjects work
on tasks without and with coupled change suggestions. We split the
subjects randomly in two lab sessions having a maximum of two hours
to solve the tasks. We distinguish two groups of maintenance tasks:

9.2 | Experimental Design 195

the first one includes tasks executed in Eclipse IDE without using
suggestions and the second scenario includes additional coupled files
suggestions and corresponding attributes from the repositories for
similar tasks.
In each session, the subjects work on two tasks without coupled

suggestions using only the task description and on two tasks with the
coupled file changes suggestions and the related attributes delivered
together with the issue description. The participants in the second
lab swap the order of the tasks used during the first lab.

Table 9.1: Experiment Design
Lab Tasks

Lab 1 Tasks 1-2 Tasks 3-4
(without suggestions) (with suggestions)

Lab 2 Tasks 1-2 Tasks 3-4
(with suggestions) (without suggestions)

9.2.3.2 Objects

The study object is A-STPA, an open source Eclipse based Java tool
for hazard analysis built at the University of Stuttgart1 in 2013. It
has been chosen for the analysis because of the availability of the
source code, the git repository, the complete list of the issues and the
project documentation. The source code contains 16012 lines of code
and 178 classes organized in 37 packages. The Git repository of the

1https://sourceforge.net/projects/astpa/

196 9 | Coupled File Changes Influence on Help Seeking: An Exploratory Study

https://sourceforge.net/projects/astpa/

project contains 1106 commits from which we have extracted 205
coupled changes.

9.2.3.3 Subjects

The participants are 36 undergraduate students from the Introduction
to Software Engineering course in their 1st and 2nd study year at the
University of Stuttgart. The students have already passed the Java
programming course and have basic Java and Eclipse knowledge.

9.2.3.4 Environment, Materials

The participants worked on a Windows PC with an Eclipse IDE. Their
actions were recorded using a full screen video capturing tool. We
have provided the source code, the technical documentation for the
software system as pdf document including the data model and pack-
age descriptions, the instructions for the experiment and the mainte-
nance tasks free-text description.

9.2.3.5 Tasks

The maintenance tasks represent program fixes needed to be per-
formed by the participants according to themaintenance requests [Bas90].
All four maintenance tasks are perfective and enhance the software
usability without influencing the system structure. The tasks are
related to simple changes of the user interface of the system. The
complete set of tasks and coupled changes is available on-line1.

1https://peerj.com/preprints/2492/

9.2 | Experimental Design 197

https://peerj.com/preprints/2492/

9.2.3.6 Coupled Files

We have provided a set of files which changed together frequently to
the group which uses coupled file change suggestions. These coupled
files do not represent the solutions for a particular task in the experi-
ment and usually contain a subset of the solution file set. We have
joined to the coupled changes a set of attributes from the versioning
system, the issue tracking system and the project documentation to
build the suggestions. Using the related information about the con-
text of the change, the developers can decide if the coupled files are
suitable for their tasks.

9.2.3.7 Maintenance Activities

The maintenance tasks solving process includes the following activ-
ities: task understanding where the participants read the task de-
scription and the instructions, change specification where they locate
the source code to be changed, change design where they perform
the modification and change testing where the successfulness of the
changes is tested.

9.2.3.8 Data Collection

We have collected the data about that how developers search for
help using the full screen video capturing of their actions during the
experiments including the mouse movement and the keyboard input
they performed. We have recorded the screen including their actions
when using the IDE they work with as well as the applications the

198 9 | Coupled File Changes Influence on Help Seeking: An Exploratory Study

developers used or opened on the screen.

9.2.4 Data Analysis

We analyze the captured videos to follow the sources of information
developers used during their search for help.

9.2.4.1 Information Sources

Before we use the Grounded Theory method, we define the focus
involving the locations the developers use to search for help to avoid
confusion during the coding. We transcribe the captured videos to
isolate the locations as concepts. After this we start with the coding
process to identify the information sources.

9.2.4.2 Relevance of the Information

The relevance of the information is important to maintain the infor-
mation what is the purpose of the help search. We want to see how
the task-relevant information contributes to the solution. We differen-
tiate between resolving the source code location and the source code
description.

9.2.4.3 Frequency of Using Information Sources

We explore how popular various information sources are. We analyze
the frequency of use of a particular source of help to see what the
developers find most useful as a task relevant information source.

9.2 | Experimental Design 199

9.2.4.4 Patterns of Information Sources

Sequential pattern mining is used to discover interesting subsequence
in a set of sequences. One of the measures for their interestingness is
the occurrence frequency of the ordered elements [FLKK17]. For this
purpose we use the Prefix-Span algorithm, a fast and and memory
efficient sequential pattern mining algorithms [PHM+04]. It uses
the pattern-grown paradigm and outperforms fast algorithms like
GSM or SPADE as well as the BIDE algorithm, for greater support
levels [WH04].
Using sequential pattern mining, we explore common patterns in

the information sources. For this purpose we use the Prefix-Span algo-
rithm, one of the fastest sequential patternmining algorithms [PHM+04].
We take all unique information sources for a particular task as items
and order them in subsets whereby the items in a subset are not
repeating. All subsets of tasks for a particular task build a transac-
tion. Using all transactions we explore the most frequent patterns of
information sources.

9.3 Results and Discussion1

9.3.1 Information Sources

9.3.1.1 Identified Sources of Information

We identified a number of task relevant information sources using
open coding whereby the main concepts were coded using a set of
open codes. We continued with the axial coding to relate the concepts

1The study results are also available at:
http://dx.doi.org/10.5281/zenodo.291865.

200 9 | Coupled File Changes Influence on Help Seeking: An Exploratory Study

http://dx.doi.org/10.5281/zenodo.291865

and their categories as well as the relations among them. Further,
using the theoretical coding, we established the relationships between
categories and subcategories and delivered the information sources
as concepts for the theory as presented in Figure 9.1. We identified a
number of information sources categorized in two categories: internal
locations including the project explorer, the source code and the search
window in Eclipse and external locations like the task description, the
documentation and the web search.

Information Sources

Project Explorer

Source Code

Eclipse Search Task Description Documentation

Web Search

Code Description Code Search

Location

Internal External

Relevance

Coupled Changes

Figure 9.1: Information Sources

Table 9.2: Information Sources Frequency
Information Source ID No Suggestions With Suggestions
Source Frequency % Frequency %
Task description 1 65 100 67 100
Project explorer 2 65 100 67 100
Documentation 3 21 32 7 10.4
Eclipse search 4 26 40 28 41.8
Web search 5 11 17 1 1.5
Source code 6 65 100 67 100

9.3 | Results and Discussion 201

Figure 9.2: Information Sources Relevance

Table 9.3: information Source patterns
Support Sequence patterns without suggestions (Source ID)

0.1

1 2, 1 2 4, 1 2 4 6, 1 2 3, 1 2 6, 1 3, 1 2 3 4,
1 2 3 4 6, 1 2 3 6, 1 2 5, 1 4, 1 4 6, 1 3, 1 3 4,
1 3 4 6, 1 6, 2 4, 2 3, 2 3 4, 2 3 4 6, 2 3 6,
2 5, 2 6, 2 4 6, 2 5 6, 3 6, 3 4 6, 4 6, 4 5, 5 6,

0.2
1 2, 1 2 6, 1 2 4, 1 2 4 6, 1 2 4, 1 6, 1 4, 1 4 6,
1 5, 2 4, 2 6, 2 4 6, 2 5, 3 6, 4 6

0.4 1 2, 1 2 6, 1 6, 1 4, 2 6

9.3.1.2 Relevance of Information Sources

Using the Grounded Theory method, we have defined two general
categories of information relevance: source code location, where
the developers try to locate the source code they have to edit and

202 9 | Coupled File Changes Influence on Help Seeking: An Exploratory Study

Table 9.4: information Source patterns
Support Sequence patterns using suggestions (Source ID)

0.1
1 2, 1 2 4, 1 2 4 6, 1 2 3, 1 2 6, 1 4, 1 4 6,
1 6, 2 6, 3 6, 4 6

0.2 1 2, 1 2 6, 1 4, 1 4 6, 1 6, 2 4, 2 6

0.4 1 2, 1 2 6, 1 6, 2 6

source code description where they try to find an information to
understand the source code. We use a relevance matrix (Figure 9.2)
to demonstrate the relation of the information sources and their
relevance for the task solution similar to the maintenance matrix
presented in [DWP+07]. We can see that the internal task relevant
information sources like the project explorer and the Eclipse search
are used to locate the source code location to be modified, except the
source code windows which can be also used to find some comments
or other source code parts to find a description or an additional
information for the task.
The external sources of information like the documentation and

the web search have been used in both cases: to find the source code
location to be edited and to find additional information about it. The
task description and the coupled changes are used to describe the
tasks, which in the case of using coupled change suggestions can
also be used to identify locations where similar code modifications
need to be performed. This shows that the developers use the various
information sources for their strategy, by excavating the search for
additional information and the search for the source code to modify.

9.3 | Results and Discussion 203

9.3.2 Influence of Coupled Change Suggestions

9.3.2.1 Frequency of Use of Information Sources

Table 9.2 presents how frequently each of the information sources
was used both for the group using coupled file changes and the group
without any additional help. We see that the task description, the
project explorer and the source code has been used in all tasks in
the experiment in both groups. The documentation has been used
three times more for the tasks in the group not using coupled change
suggestions. Eclipse search has been almost equally used in both
groups. The web search has been used ten times more in the group
without using coupled change suggestions versus the group not using
them.
These results show that we have two different situations describing

the influence of coupled change suggestions with respect to which task
relevant information sources have been used during the maintenance
tasks. The first one shows that coupled change suggestions do not
influence the use of the internal information sources, both groups used
almost equally the Eclipse tool properties. Also very frequently they
used the task description. This means that coupled change suggestions
do not affect how the developers use the IDE and do not reduce the
need for the task description. Moreover, the tendency of the group
without coupled change suggestions is to use more external help like
the documentation or web search on pages like Google search, Stack
Overflow, tutorials and videos.
The developers tried to find some help outside their workspace. For

the tasks with coupled change suggestions, developers used mostly
the internal source code locations and made very little use of the
documentation and almost no use of web search for their tasks. This

204 9 | Coupled File Changes Influence on Help Seeking: An Exploratory Study

indicates that using coupled change suggestions, the developers do
not spread out their search for help, meaning the use of coupled
change suggestions reduces the need to search for external source
code location.

9.3.2.2 Patterns of Information Sources

We have extended our investigation of the used task relevant informa-
tion sources by looking for possible patterns of information sources
using coupled change suggestions vs. not using coupled change sug-
gestions. The results in Table 9.3 and Table 9.4 show the pattern
sequences for both groups and for various levels of frequency of
occurrence of these patterns. Here, the source code locations are
represented by their IDs as described in Table 9.2. We can see that for
the highest support value of 0.4 including the patterns repeating in
40% of the tasks, a typical pattern is starting with the task description,
continuing with the project explorer and Eclipse search and ending
with the source code window.
For the lower support values including 20% and 10% of the tasks

respectively, we have patterns in the group not using coupled change
suggestions where they start with the task description, look up in the
project explorer and jump for the web search or use the documenta-
tion before they edit the code in the source code window.
In summary, these results show that the most frequent patterns are

similar for both of the groups. In some cases their strategy for looking
for help during their maintenance tasks varies. Some developers
not using coupled change suggestions extend their pattern of help
seeking strategy with the external sources before accessing the source
code they need to edit. This shows that without the coupled change

9.3 | Results and Discussion 205

suggestions, the developers need more sources and have a different
strategy in help seeking than the group which uses coupled change
suggestions which concentrates on the IDE elements to accomplish
the source code modification.

9.4 Threats to Validity

The main internal validity threat is that most of the analysis in this
study is based on the subjective actions by the researchers. Transcrib-
ing the videos and the coding process can be error prone whereby
the researchers can drop some actions by the developers. For that
reason we include a third party in the transcribing of the videos for a
random set of videos.
The work in a controlled experiment using inexperienced 1st and

2nd year students instead of a real development process in company
represents a major threat to the external validity. Maybe, developers
with more experience show other patterns of help seeking. Especially
developers familiar with a systemmight show a different behavior. We
have designed simple maintenance tasks to increase the generalization
possibility. We used an open source project for the study and a well-
known data mining technique which can be performed on other
repositories.

9.5 Conclusion

We have successfully tested our theory on the use of coupled file
change suggestions in the part related to the propositions about the
influence of the suggestions on the help seeking process during main-
tenance. The use of coupled file change suggestions influenced the

206 9 | Coupled File Changes Influence on Help Seeking: An Exploratory Study

strategy of inexperienced developers seeking for help using task rele-
vant information sources by reducing the need of different information
sources.
Our study shows that developers using coupled change suggestions

mostly concentrate on the IDE and use its features and windows
like the project explorer, the source code window and the Eclipse
search. Without using this kind of help, developers accessed external
information sources like the product documentation or used search
on websites for code examples or code descriptions to find the needed
information.
The main effect of coupled change suggestions is that it makes the

process of help seeking shorter and compacter by reducing the need
for additional sources of information related to the concept location
and the source code comprehension. They influence the strategy of
using various information sources and help the developers save time
and effort for solving their maintenance tasks.

9.5 | Conclusion 207

C
h
ap

te
r 10

Mining System Packages
for Developer
Expertise: An

Exploratory Study

10.1 Introduction

The contribution of developers to a project consists of the combination
of their actions performed during software development [GKS08].
This kind of expertise is called implementation expertise [SZ08]. As the
development team grows, it becomes more complicated to allocate the
developers according to their expertise considering their contribution

209

to the project. One of the approaches defines that the developers who
changed a file are considered to have the expertise for that file [SZ08].
This information can be found by mining changes in the software
repositories.
In Java projects, packages are important to group source code

based on its functionality. By scanning the changes in the versioning
system, we can extract the packages of files being changed. For
the reason the package structure is more stable and do not often
change, we use the packages instead of classes or methods to define
developer expertise profiles. Sets of files changed together frequently
are called coupled file changes and can be offered to the developers
as recommendations when solving some maintenance task. We use
this technique to extract the packages which changed most frequently
together to define developer profiles. The profiles can be used to
identify who worked on similar issues on the project.
Developers working on maintenance task could use the informa-

tion who worked on which part of the source code. Having many
developers on the project, it could be awkward to identify the experts
working on topics related for their tasks.

The aim of our study is to identify the developer’s expertise profile
based on the project package structure. We use the package organiza-
tion of the source code because it reflects the grouping of the system
functionalities and defines the fundamental features or layers of the
system. Using data mining we investigate the software repositories
to extract the sets of packages that were most frequently changed
together by a given developer during software development. We
present an exploratory case study where we define developer profiles
of expertise based on the aggregated information about the system
packages that were most frequently changed together. By differenti-

210 10 | Mining System Packages for Developer Expertise: An Exploratory Study

ating developer profiles, the effort for the analysis drops because the
users involved in maintenance do not have to examine the data from
all developers on the project. They can choose the data from those
developers who implemented changes in the system relevant to their
tasks.

10.2 Case Study Design

10.2.1 Research Questions

RQ1:Which package couplings aremost frequent per developers?
We examine which packages are most frequently changed together
by particular developer. We use this information to investigate the
functionalities the developers were mostly involved into during the
software development.

RQ2: What kind of developer profiles can we define based on the
packages? Based on the changed packages and their functionalities,
we aggregate them to define their profiles related to their expertise on
the system software. Using this information developers can explicitly
identify the software changes related to their task.

10.2.2 Case Selection

For our study, we use three open source projects: ASTPA, an Eclipse
based Java project, RIOT, Java and Android based software and VITA,
Java based text analysis software. They were all developed at the
University of Stuttgart and were found on the local GitLab. The
projects have been selected based on the intensive use of packages
and their availability for analysis.

10.2 | Case Study Design 211

10.2.3 Data Collection Procedure

We extract the Git log from the project repositories and format the
output to separate the commits according to the developer who has
done the changes. We enlist the commits with all changed files repre-
sented by the file names containing the relative file paths including
the packages and sub-packages of the project. To prepare the data for
analysis, we remove empty or commits having single entry. We group
the commits based on the developer heuristics. We create data sets
of commits for every developer who contributed to the repository.

10.2.4 Analysis Procedure

• Extracting the packages from the commits: We extract all names
of the files changed in a commit. They include the relative file
path on the system which includes the names of the package and
sub-packages. We scan the file paths from the back and remove
the filenames from the path. The resulting string identifies the
name of the package or sub package.

• Mining packages: We perform a frequent item sets analysis on
the packages to extract the most frequent couplings from the
repository. Due to the high number of file couplings, we use a
relatively high user-defined support level for the frequent item
sets analysis. This way we include only the coupled packages
which happened frequently and not by chance.

• Define developer profiles: We rank all the coupled packages for a
developer starting with the most frequently changed package
to identify the most frequent ones. After the ranking of the
packages, we join the group of most frequent packages to the

212 10 | Mining System Packages for Developer Expertise: An Exploratory Study

developer. This will identify the expertise of the developer
marking the functionalities he or she was most contributed. We
look up the features that are involved in the files behind this
packages. We aggregate developers expertise profile based on
the most frequently changed packages.

Table 10.1: Most frequent packages in the couplings
ASTPA

packages profiles

Dev.1
astpa.src.astpa.
controller.editParts control structure

Dev.2

astpa.src.astpa.controlstructure
astpa.src.astpa.controlstructure.
controller.editParts
astpa.src.astpa.controlstructure.figure

control structure

Dev.3

astpa.src.astpa.controlstructure.
controller.editParts
astpa.src.astpa.model.interfaces
astpa.src.astpa.ui.common.grid

control structure+

user inter-
face+model

Dev.4 astpa.src.astpa.model.interfaces user inter-
face+model

Dev.5 astpa.astpa.intro.graphics.icons graphics

Dev.6
astpa.src.astpa.ui.sds,
astpa.src.astpa.ui.acchaz user interface

Dev.7 astpa.src.astpa.ui.common.grid user interface
Dev.8 astpa.icons.buttons.systemdescr graphics

10.2 | Case Study Design 213

Table 10.2: Most frequent packages in the couplings
RIOT

packages profiles

Dev1

android.riot.res.layout,
android.riot.res.drawable-xhdpi
android.riot.res.drawable-mdpi,
android.riot.res.drawable-hdpi,
android.riot

android layout

Dev2
android.res.layout android.res.layout
android.src.main.java.de.uni_stuttgart.
riot.android.management

android layout

Dev3
commons.src.main.java.de.uni_stuttgart.
riot.server.commons.db database

Dev4

android.riot, android.riot.settings,
android.riot.res.drawable-hdpi
android.riot.res.drawable-mdpi,
android.riot.res.drawable-xhdpi
android.riot.res.drawable-xxhdpi,
android.riot.res.layout
android.riot.res.menu,
android.riot.res.values-de

android layout

Dev5
android.src.main.java.de.uni_stuttgart.
riot.android.account android account

Dev6
android.src.main.java.de.
uni_stuttgart.riot.android.idea.libraries
.idea.libraries

android libraries

Dev7

usermanagement.src.main.java.de.
uni_stuttgart.
riot.
usermanagement.data.sqlQueryDao.impl

database

Dev8
commons.src.main.java.de.
uni_stuttgart.
riot.thing

riot things

Dev9 webapp webapps
Dev10 webapp webapps

214 10 | Mining System Packages for Developer Expertise: An Exploratory Study

10.3 Results and Discussion1

We have extracted the most frequent package couplings for the de-
velopers in all three projects. We use average support level for the
data mining of 80 % for the first project, 60% for the second and 40%
for the third project. Our results show that the number of different
coupled packages vary from developer to developer and from project
to project. These values are mainly influenced by the number of
functionalities the developers have been involved into.

Table 10.3: Most frequent packages in the couplings
VITA

packages profiles

Dev1
src.main.resources.gate_home.
plugins.annie.resources.gazetteer ANN plugins

Dev2
src.main.java.de.unistuttgart.vis.
vita.services services

Dev3 src.main.front-end.app.partials frontend

Dev4
src.main.java.de.unistuttgart.vis.
vita.analysis analysis

Dev5
src.main.java.de.unistuttgart.vis.
vita.importer.epub importer

Dev6
src.main.java.de.unistuttgart.vis.
vita.importer.epub importer

Dev7 src.main.front-end.app.partials frontend

10.3.1 Most frequent package couplings per developer (RQ1)

For every developer, we have extracted a list of package couplings
covering various software features. The first developer on the ASTPA

1 The complete list of all couplings and profiles are available at:
http://dx.doi.org/10.5281/zenodo.51302.

10.3 | Results and Discussion 215

http://dx.doi.org/10.5281/zenodo.51302

project changed mostly files in the controller.editParts sub-package,
whereby another one mostly changed functionalities in two ui pack-
ages (Table 10.1).
The first developer on the RIOT project, worked in several packages

with very similar functionalities on the android layout (Table 10.2).
The enlisted developers on the VITA project worked on the services

and the front-end (Table 10.3). The results show that some of them
changed functionalities in files that belong to the same package,
whereby others worked on different packages. Some developers share
the packages meaning that two or more developers worked on the
same packages. In other cases, the developers split their work and
contributed into totally different packages.

10.3.2 Developer profiles (RQ2)

Based on most frequent package couplings we have identified a num-
ber of developer profiles. For the first project we identify profiles
of developers working on the control structure, user interface and
graphics. For the second project we define profiles for developers
working on the android layout, database, account, libraries, android
functionalities and web apps. For the developers in the third projects
we define profiles including involvement in the plug-ins, services, front
end, analysis and import features. The difference in the profiles is di-
rectly influenced by the parts of the code the developers were working
on and the project organization. Instead of generating coupled file
changes for every developer, the user working on the web application
in the RIOT project can narrow the analysis on the data of the two
last developers in Table 10.2.

216 10 | Mining System Packages for Developer Expertise: An Exploratory Study

10.3.3 Discussion

Using the most frequently changed packages, various functionality
topics in the source code structure have appeared. For some users
we have limited set of changed system functionalities which gives
clear information what were they mainly working on. This way, the
profiles related to a low number of functionalities show a more precise
developer expertise. This is more useful to define the developers’
expertise profile. The users can easily identify he or she covers changes
related to his tasks.
Other package changes show developers with various topics in the

systems. They show more general expertise working on different
areas of the system. Their profile does not clearly represent a clear
picture of their changes which could identify them as experts for a
specific functionality. This information does not appear to represent
a high value for an automatized expertise profile analysis.

10.4 Threats to Validity

A construct threat could be that developers create packages and
influence the organization of the code. The names of the packages
could lead to a group of classes which are not related or similar.
We look up in the classes and other files in the packages to inspect
manually if they are related to the package name.
As internal threat we can mention the relative high support level for
the data mining algorithms provides relative small number of package
couplings. However, this ensures that these couplings happened
frequently and not by chance.
The generalization of our approach represents an external threat

10.4 | Threats to Validity 217

because it is limited andwe investigate a small number of Java projects.
However, it is possible to implement on projects having clear package
structure and having many developers working on it.

10.5 Conclusion

We conclude that we can successfully define developer profiles based
on the packages most frequently changed together. There are devel-
opers working on similar system functionalities which can lead to
developer profiles can be useful for the users because. This can limit
the number of data sets for data mining, which decreases the time
efforts for the analysis and can be very helpful in projects with large
number of developers.
However, for the developers working on various or totally different

parts of the code, the profiles do not show a clear expertise. The
resulting profiles differentiate a number of functionalities which can
help the users working on their maintenance tasks to choose the most
relevant implementation.
The next steps would be to formalize the automation of the expertise

analysis process of the profile description according to the package
structure of the system.

218 10 | Mining System Packages for Developer Expertise: An Exploratory Study

C
h
ap

te
r 11

Tool Support

Althoughmany tools exist for extracting logical couplings from version
histories, the fact we work with Git and we use various data sources
lead us to the decision to design and implement our own tool.

11.1 Concept and Design

To implement our coupled file change suggestions, we have designed
a Java based software tool which integrates the data mining process
in the Eclipse IDE when working on maintenance tasks 1.
Based on the coupled files concept presented in this thesis, we

provided the requirements and the design of the tool. It was then
implemented and optimized as part of five student theses [Ala16;
Cic15; Dem15; Kau17; Leh15].

1SRM Tool, http://www.mining-repos.com

219

http://www.mining-repos.com

The tool architecture is presented in Figure 11.1. The software tool
for extracting file change suggestion is called SRM (Software Reposi-
tory Miner) and involves of three main components: ATSR (Automatic
Transformation of Software Repositories) plugin, FPGA (Frequent Pat-
tern Growth Algorithm) plugin and SRMP (Software Repository Mining)
plugin.

Figure 11.1: Tool Design

11.1.1 Components

• ATSR: This component implements the data extraction including
the file change sets and the commit attributes from Git as well
as the issue and documentation attributes. It also includes the
preparation of the data and their storage in the database.

• FPGA: It performs the frequent sets mining performed on the
change sets in the database. This component includes the data
mining algorithm implementation based on the SPMF frame-
work[VGG+14] whereby, instead of using text files, the input
and output is performed using a database.

220 11 | Tool Support

• SRMP: It selects the coupled files and the repository attributes
from the database and visualizes them in the IDE views in
Eclipse.

Figure 11.2: Eclipse IDE

11.2 User Interface

The user interface views are presented in Figure 11.2. The main parts
of the user interface are: the button for starting the view perspective,
the wizard for selecting the repository and the developers and perform
the mining process, as well as the views to visualize the coupled files

11.2 | User Interface 221

and the repository attributes.

Figure 11.3: Tool Start

Figure 11.4: Wizard Sources

222 11 | Tool Support

Figure 11.5: Wizard Developers

11.2.1 Activation

To activate the Eclipse plugin and start the mining process for a partic-
ular project we have incorporated a button on the Eclipse menu which
enables the views for the coupled files and the repository attributes
(Figure 11.3).

11.2.2 Wizard

The wizard contains two main steps and enables the user to select
the data sources and the developers’ data for the mining process.

• Repository Choice: The first part of the wizard (Figure 11.4)
includes the feature which enables us to select the Git reposi-

11.2 | User Interface 223

tory to be analyzed. Additionally we have the issue and docu
import functionalities in this wizard for the repository attributes
extraction.

• Developers and Support Choice: After selecting the repository,
the second step in the wizard (Figure 11.5) includes the choice
of the developers whose commits we want to use as change sets
for mining coupled files. We can select the complete repository
to be used or to select a particular developer to use his or her
data for the analysis according to the developer heuristic. Also
the frequency of the coupled changes can be set using the slider
for the support threshold.

11.2.3 Views

For the visualization of coupled changes and repository attributes,
we have created three views in the Eclipse IDE: coupled changes view,
word cloud view and message view.

• Coupled Changes View: This view (Figure 11.6) enlists the cou-
plings for a particular file selected in the project explorer and
included in a set of coupled files.

• Message View: This view (Figure 11.7) represents a tabbed
representation of three sub-views where the developer can read
three type of attributes for the selected file coupling in the
coupled file changes view. The first tab enlists the commit
attributes, the second the attributes for the related issue and
the third one is displaying the description of the files in the
couplings.

224 11 | Tool Support

Figure 11.6: View Coupling Lists

11.2.4 Usage

The tool can be used to investigate the version history of a software
when working on maintenance tasks in Eclipse. The user locates the

Figure 11.7: Message View

11.2 | User Interface 225

Git repository and extracts the coupled changes and the repository
attributes. Working on an issue, the user selects the file to be modified
in the project explorer of Eclipse, the software checks the database
for potential coupled file changes including this file.
If the developer selects a file being part of coupled file changes,the

views automatically display the coupled files, the commits where this
file was found, information about the issues and the files included in
the couplings. The developers can use the couplings in order not to
miss other files needed to be modified and inform themselves about
the background of previous changes on similar issues or tasks.

226 11 | Tool Support

C
h
ap

te
r 12

Conclusion

12.1 Summary

We summarize the main contributions of this thesis to the concept of
coupled file change suggestions.
We performed an industrial case study on the interestingness of cou-

pled file changes where using data mining, precisely using frequent
itemsets analysis, we extracted coupled file changes from Git version
repositories. Additionally, we provided a set of repository attributes
to build coupled file change suggestions for developers working on
maintenance tasks. The developers reported in their feedback the
concept of coupled files and the attributes to be interesting. They
also provided additional issues to be included like the context and
the visualization of coupled file change suggestions.
The outcomes of the case study expose that the implemented min-

227

ing technique is suitable to extract coupled files from Git. Based on
this case study and a set of studies related to maintenance tasks and
activities, we provided a set of constructs and their relations to define
a theory on the use of coupled change suggestions during mainte-
nance tasks. We managed to test the theory on the use coupled file
change suggestions during maintenance tasks by performing empirical
studies.
Using a controlled experiment, we tested the part of the theory

related to the grouping of changes sets in Git. We have determined
the heuristics for grouping related change sets from Git repositories
which was not examined previously. Grouping the commits by their
author allows extracting coupled file change sets even for projects not
having many developers or commits. The heuristic based on the time
between the commits reported that most of the related changesets
have been committed in a short time of period between them, usually
in a day. This heuristic, however, significantly reduces the number
of change sets and the frequency of possible file couplings. The
experiment results reveal that the proposed heuristics significantly
influence the relatedness of change sets in Git and the extraction of
relevant coupled files.
In a quasi-experiment, we tested the part of the theory related to

the influence of the coupled files on the maintenance task solution.
We reported that coupled file changes have positive influence on the
correctness of the task solution has been found to be positive. The
outcomes reveal that the coupled file change suggestions to be useful.
However, they do not provide magical solution for the tasks and do
not substitute the effort of the developers to search for the source
code they need to modify.
We also tested the part of the theory related to the influence on the

228 12 | Conclusion

strategies of the developers for searching for help during maintenance
using an exploratory study. Here, the developers using coupled file
change suggestions, concentrated on IDE internal task relevant infor-
mation sources, whereby the developers not using these suggestions
accessed more often the documentation and searched on the web for
help. The study results show that the use of coupled files influences
the developers’ strategy for searching help during maintenance tasks.
The concept of coupled file changes was successfully extended on a

package level using an exploratory study. Using logical dependencies
between system packages, based on their frequency, we aggregated
developer profile showing their expertise which reduces the number
of developers data to be analyzed for particular tasks. The results
of this study reveal that the concept of coupled files can be useful to
help developers to recognize whose data they would like to analyze
for their tasks.
We have implemented the concept of coupled file change sugges-

tions in an Eclipse based tool to perform the data mining process and
visualize the couplings and the additional repository attributes. The
tool successfully extracts coupled files from various Git repositories.

12.2 Next Steps

The data mining methodology for extracting coupled files from Git
version histories, has been reported to be useful. However, the next
steps in the research could include larger data sets in the scope of
big data. This can provide additional insights in the dependencies
between different artifacts besides the source code files. Providing
suggestions based on logical couplings which are not limited to the
repository of the specific project, we can spread out the analysis on

12.2 | Next Steps 229

other project repositories.
Recommendations about source code modification based on classes

of commits or issues as well as on aspects like common libraries, APIs
or package structures, could provide useful information. These rec-
ommendations can be used to help developers to increase the quality
of the development and maintenance of their software products.

230 12 | Conclusion

Bibliography

[ABCO98] B. Appleton, S. Berczuk, R. Cabrera, R. Orenstein. “Streamed
lines: Branching patterns for parallel software development.”
In: In Proceedings of PloP. 1998 (cit. on pp. 87, 90).

[ADG08] O. Alonso, P. T. Devanbu, M. Gertz. “Expertise Identification
and Visualization from CVS.” In: Proceedings of the 2008 Inter-
national Working Conference on Mining Software Repositories.
MSR ’08. 2008, pp. 125–128 (cit. on pp. 51, 63).

[AIS93] R. Agrawal, T. Imielinski, A.N. Swami. “Mining Association
Rules between Sets of Items in Large Databases.” In: SIGMOD.
1993, pp. 207–216 (cit. on p. 39).

[AKM08] A. Alali, H. Kagdi, J. I. Maletic. “What’s a Typical Commit? A
Characterization of Open Source Software Repositories.” In:
International Conference on Program Comprehension (2008),
pp. 182–191 (cit. on p. 54).

[Ala16] D. Alakus. “Integration of Data Mining in Eclipse Plugin.” Bach-
elor Thesis. University of Stuttgart, July 2016 (cit. on pp. 25,
219).

[AM07] J. Anvik, G. C. Murphy. “Determining Implementation Expertise
from Bug Reports.” In: Proceedings of the Fourth International

231

Workshop on Mining Software Repositories. MSR ’07. 2007 (cit.
on p. 63).

[ANT92] D. A. Adams, R. R. Nelson, P. A. Todd. “Perceived Usefulness,
Ease of Use, and Usage of Information Technology: A Replica-
tion.” In:MIS Q. 16.2 (June 1992), pp. 227–247 (cit. on pp. 46,
85).

[Arm14] R. A. Armstrong. “When to use the Bonferroni correction.” In:
Ophthalmic and Physiological Optics 34.5 (2014), pp. 502–508
(cit. on p. 172).

[AS94] R. Agrawal, R. Srikant. “Fast Algorithms for Mining Association
Rules in Large Databases.” In: Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases. VLDB ’94. 1994,
pp. 487–499 (cit. on pp. 40, 131).

[Bas90] V. R. Basili. “Viewing Maintenance As Reuse-Oriented Software
Development.” In: IEEE Softw. 7.1 (Jan. 1990), pp. 19–25 (cit.
on pp. 159, 197).

[BAY03] J. Bieman, A. Andrews, H. Yang. “Understanding change-proneness
in OO software through visualization.” In: Program Comprehen-
sion, 2003. 11th IEEE International Workshop on. 2003, pp. 44–
53 (cit. on pp. 53, 54).

[BBC+96] V. Basili, L. Briand, S. Condon, Y.-M. Kim,W. L. Melo, J. D. Valett.
“Understanding and Predicting the Process of Software Mainte-
nance Release.” In: Proceedings of the 18th International Con-
ference on Software Engineering. ICSE ’96. 1996, pp. 464–474
(cit. on p. 50).

[BCR94] V. R. Basili, G. Caldiera, H.D. Rombach. The Goal Question
Metric Approach. Wiley, 1994 (cit. on pp. 103, 153, 194).

232 Bibliography

[BDO+13] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De
Lucia. “An Empirical Study on the Developers Perception of
Software Coupling.” In: Proceedings of the 2013 International
Conference on Software Engineering. ICSE. 2013, pp. 692–701
(cit. on pp. 22, 57, 151).

[Bec09] G. Becker. Human Capital: A Theoretical and Empirical Analysis,
with Special Reference to Education. Midway reprint. University
of Chicago Press, 2009 (cit. on p. 21).

[BG10] J. G. Burch, F. h. Grupe. A Systems Approach to Software Main-
tenance. 2010 (cit. on p. 49).

[Bit05] V. Bitsch. “Qualitative Research: A Grounded Theory Example
and Evaluation Criteria.” In: Journal of Agribusiness 23.1 (2005)
(cit. on p. 133).

[BKPS97] T. Ball, J.-m. Kim, A. A. Porter, H. P. Siy. If Your Version Control
System Could Talk... 1997 (cit. on pp. 20, 31, 53).

[BLX+15] L. Bao, J. Li, Z. Xing, X. Wang, B. Zhou. “Reverse engineering
time-series interaction data from screen-captured videos.” In:
2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). 2015, pp. 399–408 (cit.
on p. 58).

[BMB02] L. Briand, S. Morasca, V. Basili. “An operational process for
goal-driven definition of measures.” In: IEEE Transactions on
Software Engineering 28 (12 2002), pp. 1106–1125 (cit. on
pp. 103, 153, 194).

[BNF14] P. Bhattacharya, I. Neamtiu, M. Faloutsos. “Determining Devel-
opers’ Expertise and Role: A Graph Hierarchy-Based Approach.”
In: 2014 IEEE International Conference on Software Maintenance
and Evolution. 2014, pp. 11–20 (cit. on pp. 51, 63).

Bibliography 233

[BRB+09] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D.M. Germán,
P. T. Devanbu. “The promises and perils of mining git.” In:MSR.
2009, pp. 1–10 (cit. on p. 54).

[BSL99] V. R. Basili, F. Shull, F. Lanubile. “Building Knowledge Through
Families of Experiments.” In: IEEE Trans. Softw. Eng. 25.4 (July
1999), pp. 456–473 (cit. on p. 87).

[BSS13] E. di Bella, A. Sillitti, G. Succi. “A multivariate classification of
open source developers.” In: Information Sciences 221 (2013),
pp. 72–83 (cit. on p. 62).

[Car13] E. Carlsson. Mining Git Repositories : An introduction to reposi-
tory mining. 2013 (cit. on p. 54).

[CC05] G. Canfora, L. Cerulo. “Impact analysis by mining software and
change request repositories.” In: Software Metrics, 2005. 11th
IEEE International Symposium. 2005, pp. 9–29 (cit. on p. 54).

[Cha08] T. Chan. “Impact of programming and application-specific knowl-
edge on maintenance effort:A hazard rate model.” In: Software
Maintenance, 2008. ICSM 2008. IEEE International Conference
on. 2008, pp. 47–56 (cit. on pp. 21, 168).

[Cic15] F. Cicek. “Presentation of Software RepositoryMining in Eclipse.”
Bachelor Thesis. University of Stuttgart, Apr. 2015 (cit. on
pp. 25, 219).

[ČM03] D. Čubranić, G. C. Murphy. “Hipikat: Recommending Pertinent
Software Development Artifacts.” In: Proceedings of the 25th In-
ternational Conference on Software Engineering. 2003, pp. 408–
418 (cit. on p. 65).

[Coh77] J. Cohen. In: Statistical Power Analysis for the Behavioral Sciences.
Revised Edition. Academic Press, 1977, pp. 469–474 (cit. on
p. 172).

234 Bibliography

[CPD05] D. Currie, C. I. of Personnel, Development. Developing and Ap-
plying Study Skills: Writing Assignments, Dissertations and Man-
agement Reports. Cipd Publications. Chartered Institute of Per-
sonnel and Development, 2005 (cit. on p. 47).

[CT13] H. Coolican, F. Taylor. Research methods and statistics in psy-
chology. Routledge, 2013 (cit. on p. 172).

[CZD11] B. Cornelissen, A. Zaidman, A. van Deursen. “A Controlled
Experiment for Program Comprehension through Trace Visu-
alization.” In: IEEE Transactions on Software Engineering 37.3
(2011), pp. 341–355 (cit. on pp. 59, 87, 91).

[Dem15] Y. Demir. “Visualization Optimization of Repository Data in
Eclipse.” Bachelor Thesis. University of Stuttgart, Dec. 2015
(cit. on pp. 25, 219).

[DGL08] M. D’Ambros, H. Gall, M. Lanza. “Analyzing software reposito-
ries to understand software evolution.” In: Software Evolution.
Ed. by T. Mens, S. Demeyer. Springer, 2008. Chap. 3, pp. 39–70
(cit. on pp. 21, 32).

[DL06] M. D’Ambros, M. Lanza. “Reverse Engineering with Logical
Coupling.” In: 2006 13th Working Conference on Reverse Engi-
neering. 2006, pp. 189–198 (cit. on p. 61).

[DLR09] M. D’Ambros, M. Lanza, R. Robbes. “On the Relationship Be-
tween Change Coupling and Software Defects.” In: WCRE.
2009, pp. 135–144 (cit. on p. 54).

[DNRN13] R. Dyer, H. A. Nguyen, H. Rajan, T.N. Nguyen. “Boa: a lan-
guage and infrastructure for analyzing ultra-large-scale soft-
ware repositories.” In: ICSE. 2013, pp. 422–431 (cit. on p. 54).

[Dri10] D. L. Driscoll. Introduction to primary research: Observations,
surveys, and interviews. Writing Spaces, Readings on Writing.
Parlor Press, 2010 (cit. on p. 47).

Bibliography 235

[DWP+07] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, J. F. Girard.
“An Activity-Based Quality Model for Maintainability.” In: 2007
IEEE International Conference on Software Maintenance. 2007,
pp. 184–193 (cit. on p. 203).

[EKKM08] M. Eichberg, S. Kloppenburg, K. Klose, M. Mezini. “Defining and
Continuous Checking of Structural Program Dependencies.”
In: Proceedings of the 30th International Conference on Software
Engineering. ICSE ’08. 2008, pp. 391–400 (cit. on p. 31).

[FGP05] B. Fluri, H. Gall, M. Pinzger. “Fine-grained analysis of change
couplings.” In: Source Code Analysis and Manipulation, 2005.
Fifth IEEE International Workshop on. 2005, pp. 66–74 (cit. on
pp. 21, 32, 53).

[FLKK17] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh. “A Survey
of Sequential Pattern Mining.” In: Data Science and Pattern
Recognition 1.1 (2017), pp. 54–77 (cit. on p. 200).

[FMR12] C.O. Fritz, P. E. Morris, J. J. Richler. “Effect size estimates: Cur-
rent use, calculations, and interpretation.” In: Journal of Ex-
perimental Psychology : General 141.1 (Feb. 2012), pp. 2–18
(cit. on p. 172).

[FOMM10] T. Fritz, J. Ou, G. C. Murphy, E. Murphy-Hill. “A Degree-of-
knowledge Model to Capture Source Code Familiarity.” In:
Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1. ICSE ’10. 2010, pp. 385–394
(cit. on p. 51).

[Fou13] P. Fournier-Viger. How to auto-adjust the minimum support
threshold according to the data size. http://data-mining.
philippe- fournier- viger.com. 2013 (cit. on pp. 131,
174).

236 Bibliography

http://data-mining.philippe-fournier-viger.com
http://data-mining.philippe-fournier-viger.com

[FPG03a] M. Fischer, M. Pinzger, H. Gall. “Analyzing and Relating Bug
Report Data for Feature Tracking.” In: Proceedings of the 10th
Working Conference on Reverse Engineering. WCRE ’03. 2003,
pp. 90– (cit. on p. 54).

[FPG03b] M. Fischer, M. Pinzger, H. Gall. “Populating a Release History
Database from Version Control and Bug Tracking Systems.” In:
Proceedings of the International Conference on Software Mainte-
nance. ICSM ’03. 2003, pp. 23– (cit. on pp. 30, 54, 129).

[FPM92] W. J. Frawley, G. Piatetsky-shapiro, C. J. Matheus. Knowledge
Discovery in Databases: an Overview. 1992 (cit. on pp. 46, 85).

[FSP+13] S. D. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bellamy,
J. Lawrance, I. Kwan. “An Information Foraging Theory Perspec-
tive on Tools for Debugging, Refactoring, and Reuse Tasks.” In:
ACM Transactions on Software Engineering and Methodology 22
(2013), 14:1–14:41 (cit. on p. 60).

[GAH15] D. German, B. Adams, A. Hassan. “Continuously mining dis-
tributed version control systems: an empirical study of how
Linux uses Git.” In: Empirical Software Engineering (2015),
pp. 1–40 (cit. on p. 54).

[GAL] E. Guzman, D. Azócar, Y. Li. “Sentiment Analysis of Commit
Comments in GitHub: An Empirical Study.” In: Proceedings of
the 11th Working Conference on Mining Software Repositories.
MSR 2014, pp. 352–355 (cit. on p. 54).

[GE04] N. J. Gotelli, A.M. Ellison. A Primer of Ecological Statistics. Sin-
auer Associates, 2004 (cit. on p. 106).

[Ger04] D.M. German. “Mining CVS repositories, the softChange ex-
perience.” In: 1st International Workshop on Mining Software
Repositories. 2004, pp. 17–21 (cit. on pp. 32, 56, 64).

[GG04] C. Győrödi, R. Győrödi. A Comparative Study of Association
Rules Mining Algorithms. 2004 (cit. on pp. 40, 131).

Bibliography 237

[GHJ98] H. Gall, K. Hajek, M. Jazayeri. “Detection of Logical Coupling
Based on Product Release History.” In: Proceedings of the Inter-
national Conference on Software Maintenance. ICSM ’98. 1998,
pp. 190– (cit. on pp. 20, 31, 32, 53, 54).

[GJK03] H. Gall, M. Jazayeri, J. Krajewski. “CVS release history data
for detecting logical couplings.” In: Software Evolution, 2003.
Proceedings. Sixth International Workshop on Principles of. 2003,
pp. 13–23 (cit. on p. 53).

[GKS08] G. Gousios, E. Kalliamvakou, D. Spinellis. “Measuring Developer
Contribution from Software Repository Data.” In: Proceedings of
the 2008 International Working Conference on Mining Software
Repositories. MSR ’08. 2008, pp. 129–132 (cit. on p. 209).

[GKSD05] T. Girba, A. Kuhn, M. Seeberger, S. Ducasse. “How Developers
Drive Software Evolution.” In: Proceedings of the Eighth Inter-
national Workshop on Principles of Software Evolution. IWPSE
’05. 2005, pp. 113–122 (cit. on pp. 51, 62).

[Goe10] B. Goethals. “Frequent Set Mining.” In: Data Mining and Knowl-
edge Discovery Handbook. Springer, 2010, pp. 321–338 (cit. on
p. 39).

[GS67] B. Glaser, A. Strauss. The Discovery of Grounded Theory: Strate-
gies for Qualitative Research. Observations (Chicago, Ill.) Aldine
Publishing Company, 1967 (cit. on p. 132).

[GZ05] G. Grahne, J. Zhu. “Fast Algorithms for Frequent Itemset Mining
Using FP-Trees.” In: IEEE Trans. on Knowl. and Data Eng. 17.10
(Oct. 2005), pp. 1347–1362 (cit. on p. 45).

[Hau02] E. Hautus. Improving Java Software Through Package Struc-
ture Analysis. http://ehautus.home.xs4all.nl/papers/
PASTA.pdf. 2002 (cit. on pp. 37, 61).

238 Bibliography

http://ehautus.home.xs4all.nl/papers/PASTA.pdf
http://ehautus.home.xs4all.nl/papers/PASTA.pdf

[HGH08] A. Hindle, D.M. German, R. Holt. “What Do Large Commits Tell
Us?: A Taxonomical Study of Large Commits.” In: Proceedings of
the 2008 International Working Conference on Mining Software
Repositories. 2008, pp. 99–108 (cit. on pp. 162, 176).

[HH04] A. E. Hassan, R. C. Holt. “Predicting Change Propagation in
Software Systems.” In: Proceedings of the 20th IEEE Interna-
tional Conference on Software Maintenance. ICSM ’04. 2004,
pp. 284–293 (cit. on p. 55).

[HL00] D.W. Hosmer, S. Lemeshow. Applied logistic regression. Wiley
series in probability and statistics. John Wiley & Sons, Inc. A
Wiley-Interscience Publication, 2000 (cit. on p. 111).

[HL11] B. Hanlon, B. Larget. Analysis of Variance. http://www.stat.
wisc.edu/~st571- 1/13- anova- 4.pdf. 2011 (cit. on
p. 171).

[HLT09] K. Hinsen, K. Laeufer, G. K. Thiruvathukal. “Essential Tools: Ver-
sion Control Systems.” In: Computing in Science and Engineering
11.6 (Dec. 6, 2009), pp. 84–91 (cit. on p. 29).

[HMP05] J. Han, K. Micheline, J. Pei. Data Mining: Concepts and Tech-
niques. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2005 (cit. on pp. 22, 38–40, 45).

[HNM11] R. Hoda, J. Noble, S. Marshall. “Grounded Theory for Geeks.”
In: Proceedings of the 18th Conference on Pattern Languages of
Programs. PLoP ’11. 2011, 24:1–24:17 (cit. on p. 133).

[HPYM04] J. Han, J. Pei, Y. Yin, R. Mao. “Mining Frequent Patterns Without
Candidate Generation: A Frequent-Pattern Tree Approach.” In:
Data Min. Knowl. Discov. 8.1 (Jan. 2004), pp. 53–87 (cit. on
pp. 41, 131).

Bibliography 239

http://www.stat.wisc.edu/~st571-1/13-anova-4.pdf
http://www.stat.wisc.edu/~st571-1/13-anova-4.pdf

[HSCS08] L. Hattori, G. dos Santos Jr, F. Cardoso, M. Sampaio. “Mining
Software Repositories for Software Change Impact Analysis: A
Case Study.” In: Proceedings of the 23rd Brazilian Symposium
on Databases. SBBD ’08. 2008, pp. 210–223 (cit. on p. 56).

[IEE98] IEEE. “STD 1219: Standard for Software Maintenance.” In:
1998 (cit. on p. 48).

[ISO00] ISO/IEC. 14764: Software Engineering-Software Maintenance.
2000 (cit. on p. 49).

[ISO95] ISO/IEC. 12207: Information Technology-Software life cycle pro-
cesses. 1995 (cit. on p. 48).

[Jew12] C. Jewitt. An introduction to using video for research. 2012 (cit.
on p. 58).

[Job16] M. Joblin. Classifying Developers into Core and Peripheral: An
Empirical Study on Count and Network Metrics. http://arxiv.
org/abs/1604.00830. 2016 (cit. on pp. 51, 62).

[Kau17] Y. Kaupe. “Visualization of Data Mining in an Eclipse Plugin
using Word Clouds.” Bachelor Thesis. University of Stuttgart,
Apr. 2017 (cit. on pp. 25, 219).

[KCM07] H. Kagdi, M. L. Collard, J. I. Maletic. “A Survey and Taxonomy
of Approaches for Mining Software Repositories in the Context
of Software Evolution.” In: J. Softw. Maint. Evol. 19.2 (Mar.
2007), pp. 77–131 (cit. on p. 22).

[KMCA06] A. J. Ko, B. A. Myers, M. J. Coblenz, H.H. Aung. “An Exploratory
Study of How Developers Seek, Relate, and Collect Relevant
Information During Software Maintenance Tasks.” In: IEEE
Trans. Softw. Eng. 32.12 (Dec. 2006), pp. 971–987 (cit. on
pp. 50, 57, 60, 87, 91).

240 Bibliography

http://arxiv.org/abs/1604.00830
http://arxiv.org/abs/1604.00830

[KMS07] H. Kagdi, J. I. Maletic, B. Sharif. “Mining software repositories
for traceability links.” In: 15th IEEE International Conference on
Program Comprehension (ICPC ’07). 2007, pp. 145–154 (cit. on
pp. 34, 54, 87, 90).

[Kon11] K. T. Konecki. Visual Grounded Theory: A Methodological Outline
and Examples from Empirical Work. 2011 (cit. on p. 58).

[KTM+99] B. A. Kitchenham, G.H. Travassos, A. vonMayrhauser, F. Niessink,
N. F. Schneidewind, J. Singer, S. Takada, R. Vehvilainen, H. Yang.
“Towards an ontology of software maintenance.” In: Journal of
Software Maintenance 11.6 (1999), pp. 365–389 (cit. on p. 48).

[KXLL16] P. S. Kochhar, X. Xia, D. Lo, S. Li. “Practitioners’ Expectations on
Automated Fault Localization.” In: Proceedings of the 25th In-
ternational Symposium on Software Testing and Analysis. ISSTA
2016. 2016, pp. 165–176 (cit. on p. 59).

[KYM06] H. Kagdi, S. Yusuf, J. I. Maletic. “Mining Sequences of Changed-
files from Version Histories.” In: Proceedings of the 2006 Inter-
national Workshop on Mining Software Repositories. MSR ’06.
2006 (cit. on pp. 22, 33, 34, 40, 53, 55, 56, 64, 69, 87, 88, 90,
123, 128, 151).

[LBB+10] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector,
S. D. Fleming. “How Programmers Debug, Revisited: An In-
formation Foraging Theory Perspective.” In: IEEE Transactions
on Knowledge and Data Engineering 39 (2010), pp. 197–215
(cit. on p. 59).

[Leh15] S. Lehmann. “Automatic Transformation of Data from SOftware
Repositories and their Preparation for Data Mining.” Bachelor
Thesis. University of Stuttgart, Nov. 2015 (cit. on pp. 25, 219).

[Loe09] J. Loeliger. Version Control with Git - Powerful techniques for
centralized and distributed project management. O’Reilly, 2009,
pp. I–XV, 1–310 (cit. on pp. 30, 127, 167).

Bibliography 241

[LXPZ13] H. Li, Z. Xing, X. Peng, W. Zhao. “What help do developers seek,
when and how?” In: 2013 20th Working Conference on Reverse
Engineering (WCRE) (2013), pp. 142–151 (cit. on pp. 57, 60,
87, 91).

[McD01] D.W. McDonald. “Evaluating Expertise Recommendations.” In:
Proceedings of the 2001 International ACM SIGGROUP Conference
on Supporting Group Work. GROUP ’01. 2001, pp. 214–223 (cit.
on p. 62).

[McG05] K. McGarry. “A Survey of Interestingness Measures for Knowl-
edge Discovery.” In: Knowl. Eng. Rev. 20.1 (Mar. 2005), pp. 39–
61 (cit. on p. 84).

[MFH02] A. Mockus, R. T. Fielding, J. D. Herbsleb. “Two Case Studies of
Open Source Software Development: Apache and Mozilla.” In:
ACM Trans. Softw. Eng. Methodol. 11.3 (July 2002), pp. 309–
346 (cit. on p. 62).

[MHS+12] A. Mauczka, M. Huber, C. Schanes, W. Schramm, M. Bernhart,
T. Grechenig. “Tracing YourMaintenanceWork - A Cross-Project
Validation of an Automated Classification Dictionary for Commit
Messages.” In: FASE. Lecture Notes in Computer Science. 2012,
pp. 301–315 (cit. on p. 35).

[MM07] S. Minto, G. C. Murphy. “Recommending Emergent Teams.” In:
Fourth International Workshop on Mining Software Repositories
(MSR’07:ICSE Workshops 2007). 2007, pp. 5–5 (cit. on p. 63).

[Moc14] A. Mockus. “Is Mining Software Repositories Data Science?
(Keynote).” In: Proceedings of the 11th Working Conference on
Mining Software Repositories. MSR 2014. 2014 (cit. on p. 19).

[Nac08] N. Nachar. “The Mann-Whitney U: A Test for Assessing Whether
Two Independent Samples Come from the Same Distribution.”
In: Tutorials in Quantitative Methods for Psychology 4.1 (2008),
pp. 13–20 (cit. on p. 171).

242 Bibliography

[NBD11] V. Nguyen, B. Boehm, P. Danphitsanuphan. “A controlled ex-
periment in assessing and estimating software maintenance
tasks.” In: Inf. Softw. Technol. 53.6 (June 2011), pp. 682–691
(cit. on pp. 50, 58, 87, 91, 166, 168).

[NYN+02] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, Y. Ye. “Evo-
lution Patterns of Open-source Software Systems and Communi-
ties.” In: Proceedings of the International Workshop on Principles
of Software Evolution. IWPSE ’02. 2002, pp. 76–85 (cit. on
p. 62).

[Ott] S. Otte. Version Control Systems (cit. on p. 30).

[PA14] A. Perez, R. Abreu. “A Diagnosis-based Approach to Software
Comprehension.” In: Proceedings of the 22Nd International Con-
ference on Program Comprehension. ICPC 2014. 2014, pp. 37–
47 (cit. on p. 59).

[PA16] A. Perez, R. Abreu. “Framing program comprehension as fault
localization.” In: Journal of Software Evolution and Process 28
(2016), pp. 840–862 (cit. on p. 59).

[Par] D. L. Parnas. “On the Criteria to Be Used in Decomposing Sys-
tems into Modules.” In: Commun. ACM 15.12 (), pp. 1053–
1058 (cit. on pp. 21, 37).

[PHM+04] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen,
U. Dayal, M.-C. Hsu. “Mining Sequential Patterns by Pattern-
Growth: The PrefixSpan Approach.” In: IEEE Trans. on Knowl.
and Data Eng. 16.11 (Nov. 2004), pp. 1424–1440 (cit. on
p. 200).

[Pig96] T.M. Pigoski. Practical Software Maintenance: Best Practices
for Managing Your Software Investment. 1st. Wiley Publishing,
1996 (cit. on p. 49).

Bibliography 243

[PM94] G. Piatetsky-Shapiro, C. J. Matheus. “The Interestingness of
Deviations.” In: Proceedings of the 3rd International Conference
on Knowledge Discovery and Data Mining. AAAIWS’94. 1994,
pp. 25–36 (cit. on pp. 46, 84).

[PO11] C. Parnin, A. Orso. “Are Automated Debugging Techniques
Actually Helping Programmers?” In: Proceedings of the 2011 In-
ternational Symposium on Software Testing and Analysis. ISSTA
’11. 2011, pp. 199–209 (cit. on p. 59).

[Poh14] T. Pohlert. The Pairwise Multiple Comparison of Mean Ranks
Package (PMCMR). R package. 2014 (cit. on p. 173).

[PSW11] S. Phillips, J. Sillito, R. Walker. “Branching and merging: an
investigation into current version control practices.” In: In Inter-
national workshop on Cooperative and human aspects of software
engineering, CHASE ’11, ACM. 2011, pp. 9–15 (cit. on pp. 87,
90).

[PTL+11] R. Premraj, A. Tang, N. Linssen, H. Geraats, H. van Vliet. “To
Branch or Not to Branch?” In: Proceedings of the 2011 Interna-
tional Conference on Software and Systems Process. 2011, pp. 81–
90 (cit. on pp. 87, 90).

[QK02] G. P. Quinn, M. J. Keough. Experimental design and data analysis
for biologists. Cambridge University Press, 2002 (cit. on p. 105).

[RD04] F. van Rysselberghe, S. Demeyer. “Mining Version Control Sys-
tems for FACs (frequently Applied changes).” In: the Interna-
tional Workshop on Mining Repositories. Edinburgh, Scotland,
UK, 2004 (cit. on pp. 30, 56).

[RFJS07] G. RICKI, E. FREDERICK, L. JAY, D. SHARON J. “Selecting in
Video.” In: (2007). http://drdc.uchicago.edu/what/
video-research-guidelines.pdf#page=1&view=
fitV (cit. on p. 58).

244 Bibliography

http://drdc.uchicago.edu/what/video-research-guidelines.pdf#page=1&view=fitV
http://drdc.uchicago.edu/what/video-research-guidelines.pdf#page=1&view=fitV
http://drdc.uchicago.edu/what/video-research-guidelines.pdf#page=1&view=fitV

[RGMA06] G. Robles, J.M. Gonzalez-Barahona, M. Michlmayr, J. J. Amor.
“Mining Large Software Compilations over Time: Another Per-
spective of Software Evolution.” In: Proceedings of the Interna-
tional Workshop on Mining Software Repositories (MSR 2006).
2006, pp. 3–9 (cit. on p. 61).

[RGP11] M. Revelle, M. Gethers, D. Poshyvanyk. “Using Structural and
Textual Information to Capture Feature Coupling in Object-
oriented Software.” In: Empirical Softw. Engg. 16.6 (Dec. 2011),
pp. 773–811 (cit. on pp. 50, 57).

[RH09] P. Runeson, M. Höst. “Guidelines for Conducting and Reporting
Case Study Research in Software Engineering.” In: Empirical
Softw. Engg. 14.2 (Apr. 2009), pp. 131–164 (cit. on pp. 124,
134).

[RKTC16] R. B. Rayana, S. Killian, N. Trangez, A. Calmettes. “GitWater-
Flow: A Successful Branching Model and Tooling, for Achiev-
ing Continuous Delivery with Multiple Version Branches.” In:
Proceedings of the 4th International Workshop on Release Engi-
neering. 2016, pp. 17–20 (cit. on p. 30).

[RLR+12] F. Ricca, M. Leotta, G. Reggio, A. Tiso, G. Guerrini, M. Torchi-
ano. “Using UniMod for maintenance tasks: an experimental
assessment in the context of model driven development.” In:
Proceedings of the 4th International Workshop on Modeling in
Software Engineering, MiSE 2012, Zurich, Switzerland, June 2-3,
2012. 2012, pp. 77–83 (cit. on pp. 58, 87, 91, 156, 157, 168,
195).

[RP09] M. Revelle, D. Poshyvanyk. “An exploratory study on assessing
feature location techniques.” In: ICPC. 2009, pp. 218–222 (cit.
on p. 60).

Bibliography 245

[RPL08] R. Robbes, D. Pollet, M. Lanza. “Logical Coupling Based on
Fine-Grained Change Information.” In: 2008 15th Working
Conference on Reverse Engineering. 2008, pp. 42–46 (cit. on
p. 53).

[RR13] R. Robbes, D. Rothlisberger. “Using developer interaction data
to compare expertise metrics.” In: Los Alamitos, CA, USA, 2013,
pp. 297–300 (cit. on p. 62).

[RW] M. E. Rikard Andersson, A. Wingkvist†. “Mining Relations from
Git Commit Messages — an Experience Report.” In: The Fifth
Swedish Language Technology Conference. SLTC 2014 (cit. on
p. 54).

[RW16a] J. Ramadani, S. Wagner. “Are coupled file changes sugges-
tions useful?” In: (2016). https://peerj.com/preprints/
2492/ (cit. on pp. 24, 27, 85, 99, 194).

[RW16b] J. Ramadani, S. Wagner. “Are Suggestions of Coupled File
Changes Interesting?” In: In Proceedings of the 11th Interna-
tional Conference on Evaluation of Novel Software Approaches to
Software Engineering. 2016, pp. 15–26 (cit. on pp. 24, 27, 84,
86, 89, 90, 99, 192).

[RW16c] J. Ramadani, S. Wagner. “How Interesting Are Suggestions
of Coupled File Changes for Software Developers?” In: Eval-
uation of Novel Approaches to Software Engineering: 11th In-
ternational Conference, ENASE, Revised Selected Papers. Ed. by
L. A. Maciaszek, J. Filipe. Springer International Publishing,
2016, pp. 201–221 (cit. on p. 27).

[RW16d] J. Ramadani, S. Wagner. “Which Change Sets in Git Repositories
Are Related?” In: In Proceedings of the International Conference
on Software Quality, Reliability and Security (QRS). 2016 (cit.
on pp. 23, 24, 27).

246 Bibliography

https://peerj.com/preprints/2492/
https://peerj.com/preprints/2492/

[RW17a] J. Ramadani, S. Wagner. “How Do Coupled File Changes Influ-
ence How Developers Seek Help During Maintenance Tasks?”
In: In Proceedings of the International Conference on Software
Quality, Reliability and Security (QRS). 2017 (cit. on pp. 24,
27, 100).

[RW17b] J. Ramadani, S. Wagner. “Mining Java Packages for Developer
Profiles: An Exploratory Study.” In: Datenbanksysteme für Busi-
ness, Technologie und Web (BTW 2017), 17. Fachtagung des
GI-Fachbereichs ,Datenbanken und Informationssysteme" (DBIS),
6.-10. März 2017, Stuttgart, Germany, Workshopband. 2017,
pp. 143–152 (cit. on pp. 25, 28).

[SAPM14] G. Salvaneschi, S. Amann, S. Proksch, M. Mezini. “An Empiri-
cal Study on Program Comprehension with Reactive Program-
ming.” In: Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. FSE 2014.
2014, pp. 564–575 (cit. on p. 58).

[Say+11] J. Sayles et al. zOS Traditional Application Maintenance and
Support. IBM Redbooks, 2011 (cit. on p. 125).

[SC98] A. Strauss, J.M. Corbin. Basics of Qualitative Research : Tech-
niques and Procedures for Developing Grounded Theory. SAGE
Publications, 1998 (cit. on pp. 132, 133).

[Sch03] J. Schwab. Logistic Regression - Complete Problems. University
Lecture. 2003 (cit. on pp. 111, 112).

[SCR98] G. B. Shelly, T. J. Cashman, H. J. Rosenblatt. Systems Analysis
and Design. 1998 (cit. on p. 48).

[SDAH08] D. I. Sjøberg, T. Dybå, B. C. Anda, J. E. Hannay. “Building theo-
ries in software engineering.” In: Guide to advanced empirical
software engineering. Springer London, 2008, pp. 312–336 (cit.
on pp. 85, 86, 92, 94, 98).

Bibliography 247

[SDMA07] S.Ducasse, D.Pollet, M.Suen, H. andI. Alloui. “Package Surface
Blueprints: Visually Supporting the Understanding of Package
Relationships.” In: 2007 IEEE International Conference on Soft-
ware Maintenance. 2007, pp. 94–103 (cit. on p. 61).

[SH98] S. E. Sim, R. C. Holt. “The ramp-up problem in software projects:
A case study of how software immigrants naturalize.” In: Pro-
ceedings of the 1998 International Conference on Software Engi-
neering. IEEE. 1998, pp. 361–370 (cit. on p. 21).

[SLM03] J. Shirabad, T. Lethbridge, S. Matwin. “Mining the mainte-
nance history of a legacy software system.” In: Software Main-
tenance, 2003. ICSM 2003. Proceedings. International Conference
on. 2003, pp. 95–104 (cit. on p. 56).

[SLVA97] J. Singer, T. Lethbridge, N. Vinson, N. Anquetil. “An Examina-
tion of Software Engineering Work Practices.” In: Proceedings
of the 1997 Conference of the Centre for Advanced Studies on
Collaborative Research. CASCON ’97. 1997, pp. 21– (cit. on
pp. 21, 60).

[Som02] I. Sommerville. “Software documentation.” In: In Software En-
gineering, vol 2: The supporting Processes. R.H. Thayer and M.I.
Christensen (eds), Willey-IEEE. Press, 2002 (cit. on p. 31).

[Ste08] L. P. Stephan Salinger Laura Plonka. “The Mann-Whitney U: A
Test for Assessing Whether Two Independent Samples Come
from the Same Distribution.” In: Human Technology: An Inter-
disciplinary Journal on Humans in ICT Environments 4.1 (2008),
pp. 9–25 (cit. on p. 58).

[SVAA15] L. L. Silva, M. T. Valente, M. de A. Maia, N. Anquetil. “Develop-
ers’ perception of co-change patterns: An empirical study.” In:
2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 2015, pp. 21–30 (cit. on p. 57).

248 Bibliography

[Swa76] E. B. Swanson. “The Dimensions of Maintenance.” In: Proceed-
ings of the 2Nd International Conference on Software Engineering.
ICSE ’76. 1976, pp. 492–497 (cit. on pp. 48, 49).

[Sys13] H. Systems. Package by feature, not layer
. http://www.javapractices.com/topic/TopicAction.
do?Id=205. 2013 (cit. on p. 38).

[SZ08] D. Schuler, T. Zimmermann. “Mining Usage Expertise from
Version Archives.” In: Proceedings of the 2008 International
Working Conference on Mining Software Repositories. MSR ’08.
2008, pp. 121–124 (cit. on pp. 63, 81, 209, 210).

[SZ13] J. Steven, W. Zach. Bad Commit Smells. http://pages.cs.
wisc.edu/~sjj/docs/commits.pdf. 2013 (cit. on p. 139).

[TPF+14] C. Teyton, M. Palyart, J.-R. Falleri, F. Morandat, X. Blanc. “Auto-
matic Extraction of Developer Expertise.” In: Proceedings of the
18th International Conference on Evaluation and Assessment in
Software Engineering. EASE ’14. 2014, 8:1–8:10 (cit. on p. 61).

[TSK05] P.-N. Tan, M. Steinbach, V. Kumar. Introduction to Data Mining,
(First Edition). Addison-Wesley Longman Publishing Co., Inc.,
2005 (cit. on pp. 41, 45).

[TT14] M. Tomczak, E. Tomczak. “The need to report effect size esti-
mates revisited. An overview of some recommended measures
of effect size.” In: The need to report effect size estimates revis-
ited. An overview of some recommended measures of effect size
TRENDS in Sport Sciences (2014), pp. 19–25 (cit. on p. 172).

[VGG+14] P. F. Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu,
V. S. Tseng. “SPMF: A Java Open-Source Pattern Mining Li-
brary.” In: Journal of Machine Learning Research 15 (2014).
http://www.philippe- fournier- viger.com/spmf/,
pp. 3389–3393 (cit. on pp. 46, 71, 220).

Bibliography 249

http://www.javapractices.com/topic/TopicAction.do?Id=205
http://www.javapractices.com/topic/TopicAction.do?Id=205
http://pages.cs.wisc.edu/~sjj/docs/commits.pdf
http://pages.cs.wisc.edu/~sjj/docs/commits.pdf
http://www.philippe-fournier-viger.com/spmf/

[VT06] L. Voinea, A. Telea. “Mining Software Repositories with CVS-
grab.” In: Proceedings of the 2006 International Workshop on
Mining Software Repositories. 2006, pp. 167–168 (cit. on p. 56).

[WA09] A. I. Wang, E. Arisholm. “The Effect of Task Order on the Main-
tainability of Object-oriented Software.” In: Inf. Softw. Technol.
51.2 (Feb. 2009), pp. 293–305 (cit. on pp. 58, 87, 91).

[WH04] J. Wang, J. Han. “BIDE: Efficient Mining of Frequent Closed
Sequences.” In: Proceedings of the 20th International Conference
on Data Engineering. ICDE ’04. 2004, pp. 79– (cit. on p. 200).

[WLR11] R. Wettel, M. Lanza, R. Robbes. “Software Systems As Cities:
A Controlled Experiment.” In: Proceedings of the 33rd Inter-
national Conference on Software Engineering. ICSE ’11. 2011,
pp. 551–560 (cit. on pp. 59, 87, 91).

[WPXZ11] J. Wang, X. Peng, Z. Xing, W. Zhao. “An exploratory study of
feature location process: Distinct phases, recurring patterns,
and elementary actions.” In: Software Maintenance (ICSM),
2011 27th IEEE International Conference on. IEEE. 2011 (cit. on
p. 60).

[WS02] C. Walrad, D. Strom. “The Importance of Branching Models in
SCM.” In: Computer 35.9 (2002), pp. 31–38 (cit. on pp. 87,
90).

[WS08] C. C. Williams, J.W. Spacco. “Branching and Merging in the
Repository.” In: MSR. New York, NY, USA, 2008, pp. 19–22
(cit. on p. 30).

[WZKC11] R. Wu, H. Zhang, S. Kim, S.-C. Cheung. “ReLink: Recovering
Links Between Bugs and Changes.” In: Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering. ESEC/FSE ’11. 2011,
pp. 15–25 (cit. on p. 54).

250 Bibliography

[XBLL16] X. Xia, L. Bao, D. Lo, S. Li. “Automated Debugging Considered
Harmful: A User Study Revisiting the Usefulness of Spectra-
Based Fault Localization Techniques with Professionals Using
Real Bugs from Large Systems.” In: Proceedings of the 2016 IEEE
International Conference on Software Maintenance and Evolution.
2016, pp. 267–278 (cit. on p. 59).

[YMNC04] A. T. T. Ying, G. C. Murphy, R. T. Ng, M. Chu-Carroll. “Predicting
Source Code Changes by Mining Change History.” In: IEEE
Transactions on Software Engineering 30.9 (2004), pp. 574–586
(cit. on pp. 22, 53, 54, 56, 65, 87, 88, 123, 151).

[YR14] A. T. T. Ying, M. P. Robillard. “Developer Profiles for Recom-
mendation Systems.” In: Recommendation Systems in Software
Engineering. Ed. by M. P. Robillard, W. Maalej, R. J. Walker,
T. Zimmermann. 2014, pp. 199–222 (cit. on p. 63).

[ZW14] L. Zhou, X. Wang. “Research of the FP-Growth Algorithm Based
on Cloud Environments.” In: JSW 9 (2014), pp. 676–683 (cit.
on p. 41).

[ZWDZ04] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller. “Mining
Version Histories to Guide Software Changes.” In: Proceedings
of the 26th International Conference on Software Engineering.
ICSE ’04. 2004, pp. 563–572 (cit. on pp. 22, 32, 40, 53, 54, 56,
64, 87, 88, 123, 151).

All URLs were checked at 19.09.2017.

Bibliography 251

List of Figures

2.1 1 commit to 1 issue . 36
2.2 1 commit to n issues . 37
2.3 n commits to 1 issue . 37
2.4 FP-Tree after t1 . 43
2.5 FP-Tree after t2 . 43
2.6 FP-Tree after t3 . 44
2.7 FP-Tree . 44

4.1 Obtaining Couplings . 68
4.2 Obtaining Attributes . 72
4.3 Commit Export from Git 73
4.4 Coupled Changes ER-Diagram 75
4.5 Building Coupled File Change Suggestions 75
4.6 Smart Commits . 76

5.1 Building Theory . 86

253

5.2 Construct Sources . 87
5.3 A Theory for Change Suggestions 92
5.4 Theory Testing . 98

6.1 Experimental variables . 106
6.2 Related change sets time distribution 118

7.1 Commit attributes and experience 141
7.2 Issue attributes and experience 141
7.3 Theoretical Framework . 142
7.4 Conceptual Model from Grounded Theory 144

8.1 Changes Selection . 161
8.2 Task Correctness Distribution 178
8.3 Time Boxplots (ts) . 180
8.4 Time Boxplots (tr + ts) . 181
8.5 Usefulness of Attributes . 186

9.1 Information Sources . 201
9.2 Information Sources Relevance 202

11.1 Tool Architecture . 220
11.2 Eclipse IDE . 221
11.3 Tool Start . 222
11.4 Wizard Sources . 222
11.5 Wizard Developers . 223
11.6 View Lists . 225
11.7 Attributes View . 225

254 List of Figures

List of Tables

2.1 Unrelated changes . 33
2.2 Related changes . 33
2.3 File Change Transactions 40
2.4 Transaction Items . 42
2.5 Frequent Patterns . 45

4.1 Issues Export . 73
4.2 Package description . 77
4.3 Coupled Change Suggestion 79
4.4 Packages couplings . 80
4.5 Developer profiles . 81

6.1 Commit Combinations . 109
6.2 Descriptive Statistics . 114
6.3 Relatedness distributions 115
6.4 Regression Results . 116

255

6.5 Influence on relatedness across project 120

7.1 Results based on repository analysis 136
7.2 Interestingness of coupled changes 136
7.3 Couplings and developer’s experience 138
7.4 Couplings and developer’s project involvement 138
7.5 Interesting attributes . 139

8.1 Usefulness score . 156
8.2 Experiment Design . 157
8.3 Task Information and Coupled File Changes 164
8.4 Repository Attributes Description 167
8.5 Issue Classification . 176
8.6 Perfective Issues . 176
8.7 Statistical Significance (Coupled changes) 177
8.8 Descriptive statistics for the correctness of the tasks . . 179
8.9 Time to determine related coupled files 184
8.10 Descriptive statistics for the time needed in minutes . . 184
8.11 Descriptive Statistics (Attributes Usefulness) 185
8.12 Statistical Significance (Coupled changes) 187

9.1 Experiment Design . 196
9.2 Information Sources Frequency 201
9.3 information Source patterns 202
9.4 information Source patterns 203

10.1 Most frequent packages in the couplings 213
10.2 Most frequent packages in the couplings 214
10.3 Most frequent packages in the couplings 215

256 List of Tables

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Objective
	1.4 Contribution
	1.5 Thesis Outline
	1.5.1 Previously Published Material

	2 Background
	2.1 Software Repositories
	2.1.1 Version Control Systems
	2.1.2 Issue Tracking System
	2.1.3 Software Documentation

	2.2 Coupled File Changes
	2.2.1 Atomic Change Sets
	2.2.2 Related Changes
	2.2.3 Heuristics
	2.2.4 Mapping Between Commits and Issues

	2.3 System Packages
	2.4 Data Mining
	2.4.1 Mining Frequent Itemsets
	2.4.2 FP-Growth Algorithm
	2.4.3 Data Mining Framework

	2.5 Developers' Feedback
	2.5.1 Types of Feedback
	2.5.2 Surveys
	2.5.3 Interviews
	2.5.4 Observation

	2.6 Software Maintenance
	2.6.1 Maintenance Categories
	2.6.2 Maintenance Activities
	2.6.3 Search for Task Relevant Information Sources
	2.6.4 Developer Expertise Profiles

	3 State of the Art
	3.1 Logical Couplings
	3.1.1 Granularity
	3.1.2 Data Sources
	3.1.3 Commit Messages
	3.1.4 Change Set Heuristics

	3.2 Mining Repositories
	3.2.1 Techniques
	3.2.2 Algorithms

	3.3 Developers' Feedback
	3.3.1 Couplings and Feedback
	3.3.2 Video Materials and Feedback

	3.4 Assessment of Maintenance Tasks
	3.5 Help Seeking During Maintenance Tasks
	3.6 System Packages
	3.7 Developer's Expertise
	3.7.1 Expertise Identification Based on The Contribution
	3.7.2 Expertise Identification Based on The Developer Roles
	3.7.3 Expertise Identification Based on Software Repository Analysis

	3.8 Recommender Tools

	4 Coupled File Change Suggestions
	4.1 Coupled File Changes
	4.2 Obtaining Coupled File Changes
	4.2.1 Data Extraction
	4.2.2 Data Preparation
	4.2.3 Mining Coupled Files

	4.3 Obtaining Repository Attributes
	4.3.1 Extracting Commit Attributes Set
	4.3.2 Extracting Issue Attributes Set
	4.3.3 Extracting Documentation Attributes Set

	4.4 Building Coupled Changes Suggestions
	4.4.1 Database Structure
	4.4.2 Data Joining
	4.4.3 Coupled Change Suggestions Example

	4.5 Developer Expertise Profiles Based on Coupled Packages

	5 Theory on the Use of Coupled File Change Suggestions
	5.1 Use of Coupled File Change Suggestions
	5.1.1 Interestingness of Coupled File Change Suggestions
	5.1.2 Usefulness of Coupled File Change Suggestions

	5.2 Theory Building Description
	5.2.1 Constructs
	5.2.2 Propositions
	5.2.3 Explanations
	5.2.4 Scope of the Theory
	5.2.5 Theory Testing

	6 Mining Related Change sets in Git: A Quasi-Experimental Study
	6.1 Introduction
	6.2 Experimental Design
	6.2.1 Research Questions
	6.2.2 Hypotheses
	6.2.3 Experimental Variables
	6.2.4 Experiment Design
	6.2.5 Objects
	6.2.6 Experiment Instruments
	6.2.7 Data Collection Procedure
	6.2.8 Analysis Procedure

	6.3 Results and Discussion
	6.3.1 Descriptive Statistics
	6.3.2 Influence of the time between the commits and the branching on the relatedness
	6.3.3 Influence of time between the commits on the relatedness
	6.3.4 Influence of the branching on the relatedness
	6.3.5 Influence of the time between the commits and branching on the relatedness across projects

	6.4 Threats to Validity
	6.5 Conclusion

	7 Interestingness of Coupled File Changes: A Case Study
	7.1 Introduction
	7.2 Case Study Design
	7.2.1 Research Questions
	7.2.2 Case Selection
	7.2.3 Data Collection Procedure
	7.2.4 Ethical Considerations
	7.2.5 Analysis Procedure
	7.2.6 Validity Procedure

	7.3 Results and Discussion
	7.3.1 Case Description
	7.3.2 Number of Couplings (RQ 1)
	7.3.3 Interestingness of Coupled Changes (RQ 2)
	7.3.4 Influence of Developer Experience on Interestingness (RQ 3)
	7.3.5 Influence of Developer Involvement in the Project on Interestingness (RQ 4)
	7.3.6 Interestingness of Additional Information (RQ 5)
	7.3.7 Influence of Developer Experience on Interestingness of Additional Information (RQ 6)
	7.3.8 Validation and Theory
	7.3.9 Discussion
	7.3.10 Evaluation of Validity

	7.4 Conclusion

	8 Usefulness of Coupled File Changes: A Controlled Experiment Study
	8.1 Introduction
	8.2 Experimental Design
	8.2.1 Study Goal
	8.2.2 Research Questions
	8.2.3 Hypotheses
	8.2.4 Experiment Variables
	8.2.5 Experiment Design
	8.2.6 Objects
	8.2.7 Subjects
	8.2.8 Materials, Procedure and Environment
	8.2.9 Selection of Change Author
	8.2.10 Selection of Coupled Files
	8.2.11 Classification of Issues
	8.2.12 Definition of Tasks
	8.2.13 Tasks and Coupled File Changes
	8.2.14 Solution of Tasks
	8.2.15 Maintenance Activities
	8.2.16 Data Collection Procedure
	8.2.17 Data Analysis Procedure
	8.2.18 Execution Procedure

	8.3 Results and Discussion
	8.3.1 Participants
	8.3.2 Issues Classification
	8.3.3 Usefulness of Coupled File Changes
	8.3.4 Usefulness of software repository attributes
	8.3.5 Threats to Validity

	8.4 Conclusion

	9 Coupled File Changes Influence on Help Seeking: An Exploratory Study
	9.1 Introduction
	9.2 Experimental Design
	9.2.1 Study Goal
	9.2.2 Research Questions
	9.2.3 Overview
	9.2.4 Data Analysis

	9.3 Results and Discussion
	9.3.1 Information Sources
	9.3.2 Influence of Coupled Change Suggestions

	9.4 Threats to Validity
	9.5 Conclusion

	10 Mining System Packages for Developer Expertise: An Exploratory Study
	10.1 Introduction
	10.2 Case Study Design
	10.2.1 Research Questions
	10.2.2 Case Selection
	10.2.3 Data Collection Procedure
	10.2.4 Analysis Procedure

	10.3 Results and Discussion
	10.3.1 Most frequent package couplings per developer (RQ1)
	10.3.2 Developer profiles (RQ2)
	10.3.3 Discussion

	10.4 Threats to Validity
	10.5 Conclusion

	11 Tool Support
	11.1 Concept and Design
	11.1.1 Components

	11.2 User Interface
	11.2.1 Activation
	11.2.2 Wizard
	11.2.3 Views
	11.2.4 Usage

	12 Conclusion
	12.1 Summary
	12.2 Next Steps

	Bibliography
	List of Figures
	List of Tables

