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Abstract

SKilL provides a language independent means to specify serialisable data types. Bindings
for these types can be generated automatically for multiple supported languages based
on this specification. However, using these bindings is only hassle-free for newly written
code, because existing types must be replaced by the controlled generated bindings.
This impedes the usefulness of SKilL in old projects.
We investigate a new approach. SKilL is to be extended in order to support the reuse
of existing Java classes, so-called foreign types. The tool shall be able to analyse
classes, associate them with specified SKilL types, verify the type correctness of this
association and generate the required code in order to serialise objects of these types.
This thesis points out the occurring challenges and discusses potential solutions. We
experiment with several alternatives and provide insight into their pros and cons,
as well as justification for our design. Functional and performance tests assess our
implementation and shortcomings are addressed in detail.

Kurzfassung

SKilL bietet sprachunabhängige Mittel um serialisierbare Datentypen zu spezifizieren.
Anbindungen für diese Typen in verschiedenen Sprachen können automatisch mithilfe
eines Werkzeugs generiert werden. Allerdings können diese generierten Datentypen nur
in Neuentwicklungen mühelos benutzt werden, da in Bestandsprojekten die existieren-
den Klassen durch die generierten ausgetauscht werden müssten. Dies beeinträchtigt
die Nützlichkeit SKilLs für ältere Projekte.
In dieser Masterarbeit soll ein neuer Ansatz untersucht werden. Das SKilL-Werkzeug soll
erweitert werden, sodass es bestehende Java-Klassen wiederverwenden kann. Solche
Klassen werden fremde Typen (engl. foreign types) genannt. Das Werkzeug soll in der
Lage sein, Klassen zu analysieren, diese mit SKilL-Typen zu assoziieren, die Typkorrek-
theit dieser Beziehung nachzuprüfen und schließlich den nötigen Code zu generieren,
damit Objekte dieser fremden Typen serialisert werden können. In dieser Arbeit werden
die auftretenden Probleme aufgezeigt und mögliche Lösungen diskutiert. Es werden
mehrere Lösungsansätze ausprobiert um deren Vor- und Nachteile zu ermitteln. Die
anschließenden Designentscheidungen werden ausführlich begründet. Funktionale Tests
und Leistungstests beurteilen die Implementierung und auftretende Mängel werden
detailliert diskutiert.
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1 Introduction

Many software projects contain source code in different languages. This can have a
variety of reasons. The developers might want to include a useful library written in
another language or exploit certain strengths and advantages of a particular language.
For example, software analysis tools often exhibit multiple processing steps. It might be
beneficial to reuse an existing analysis on the intermediate results of such a step, even
though this analysis is written in another language. It might even be useful, to develop
analysis in a specific language to exploit its strengths in terms of fast prototyping, for
example.

SKilL is a domain-specific language that provides the means to specify types indepen-
dently of any programming language [Fel13]. The SKilL tool parses such a specification
and then generates bindings for any of the supported target languages. Along with the
bindings, the tool also generates code for serialisation. Objects of these generated types
can be translated into a specified binary format and back again. The binary format “does
encode the type system and can therefore provide maximum of upward and downward
compatibility” [Fel13].

1.1 Motivation

The use of SKilL promises many merits. Types can be specified before the implementation
languages for the software are known. The types can be changed over time without
breaking compatibility with existing programs, making SKilL very flexible. The serialisa-
tion and deserialisation method provides “high decoding and encoding speeds” [Fel13].
However, working with existing code-bases is not supported automatically. If the user
wants to benefit from SKilL’s advantages, they must change existing code and use the
generated types. In large projects, this can be a tedious and time-consuming task.

In this thesis, we experiment with a new approach. We extend the SKilL tool by support
for foreign types in Java. Foreign types are already part of the user’s code-base and need
not be generated by SKilL. The SKilL tool is improved in order to recognise Java classes,
analyse their structure and subsequently generate the appropriate serialisation code.
Hence, the foreign classes act as the language bindings.
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1 Introduction

Serialisation of foreign types in general can have several advantages over using the
conventional generated types:

• Existing software without SKilL bindings can become a “SKilL-supported” project.
The original code-base can be maintained as before and new languages can easily
be used within an old project.

• The architectural design of a program can be maintained, as foreign types are
allowed to be located in different packages or even libraries.

• Types can also be serialised even though the user cannot access their source code.

• Foreign types support may facilitate experimenting with SKilL in a real project.
Getting started might be easier and less of a burden. This can increase the
attractiveness of SKilL over its competitors.

1.2 Task Description

The following tasks are to be accomplished in this thesis:

1. Develop a method to map SKilL type definitions to Java classes, such that Java
data can be serialised and deserialised as SKilL data.

2. The type correctness of the specified mapping must be guaranteed by the imple-
mentation.

3. The implementation must be able to access fields via getter and setter methods as
well as directly.

4. If necessary, the state management must be revised in order to compensate for the
lack of certain SKilL-specific fields, such as the internal “skillID”.

1.3 Contributions

We contribute the following enhancements and related findings in order to solve the
tasks described above:

• A very simple and extendible domain-specific language to define mappings between
types of a SKilL specification and Java classes. The language aims to minimise the
manual work of the user. This solves the task 1 mentioned above.
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1.4 Basic Principles

• A fast type checker which is able to detect semantic errors within the specified
mapping and inform the user about those errors. This solves task 2.

• A class file analyser which translates Java classes into SKilL’s internal type system.
It also records properties of the Java classes in order to generate appropriate
serialisation code, such as direct field accesses or the use of existing getter and
setter methods. This solves task 3.

• A new code generator, that produces serialisation code concerted to operate
with foreign types. It also generates AspectJ code to inject the missing SKilL
ID and other required properties into foreign classes during compilation. This
approach promises to minimise runtime overhead and maintain high serialisation
and deserialisation speeds. This solves task 4.

• We introduce a new way to mark entire object graphs for serialisation at once.
This aims to minimise the programming effort for the user, when adopting SKilL
serialisation.

• We provide an extensive report about the success of our approach by means of a
realistic test case. We explain the reasons of shortcomings and how they might be
solved.

• We conduct performance tests to show the high performance of our extension and
compare the results with the performance of generated SKilL types.

1.4 Basic Principles

In this section, we briefly explain the basis for this thesis. We name the relevant
technologies that are used, define some basic terms and names and describe the assumed
restrictions under which our implementation operates.

1.4.1 SKilL

As mentioned shortly in the introduction, SKilL designates a specification language for
types. The implementation of SKilL parses and interprets the language and generates
bindings for the types in requested target programming languages. The features of the
SKilL language are described in [Fel13]. For simplicity, throughout this thesis we use
the term SKilL for both the language and the software tool. Figure 1.1 shows a short
example for the conventional use of SKilL. Besides these generated bindings, the tool
also produces management and serialisation code.
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SimpleType {

i32 anInt;

string aString;

list<string> listOfStrings;

}

public class SimpleType extends SkillObject {

private static final long

serialVersionUID = 0x5c11L + ((long)

"simpletype".hashCode()) << 32;

protected int anInt = 0;

protected java.lang.String aString = null;

protected

java.util.LinkedList<java.lang.String>

listOfStrings = null;

// ...

}

Figure 1.1: A very simple example for the use of SKilL. The left shows a SKilL specifica-
tion and the right the resulting Java binding. All methods were removed for
brevity.

1.4.2 Terms and Special Names

In this section we list some terms and names which are used in this thesis. This is not a
complete reference but merely a clarification for the meaning of these terms.

Java1 is a general-purpose programming language developed by Sun Microsystems which
is part of the Oracle Corporation. It is a registered trademark of Oracle2. The Java
compiler (javac) translates Java source code into class files. The class file’s binary
format is called bytecode. The Java Virtual Machine (jvm) is part of the Java platform
and executes this bytecode.

AspectJ is a language extension for Java, which provides aspect-oriented programming
features. It originates from the Paolo Alto Research Center Incorporated and is part of the
Eclipse Project3. We cover the relevant AspectJ features in Section 1.4.3.

Types and Java classes which are provided by the user and are to be serialised are called
foreign types, because they are foreign to the SKilL tool. In contrast, we call the language
bindings produced by SKilL generated types. The term container types refers to the three

1https://www.oracle.com/java/index.html
2https://www.oracle.com/legal/trademarks.html
3http://www.eclipse.org/aspectj/
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1.4 Basic Principles

container types supported by SKilL, namely list4, set5 and map6. Type context refers to a
closed set of related types within SKilL’s type system.

1.4.3 AspectJ

AspectJ features aspect-oriented programming (AOP) in Java. In AOP, the developer
can define cross-cutting behaviour which may influence many parts of the code, without
manipulating the code itself. Thus, cross-cutting concerns can be described once in a
central place rather than repeatedly throughout the code-base.

An aspect is a grouping for several such concerns. Its structure is similar to a Java class.
It is introduced by the keyword aspect and a name. E.g. public aspect MyAspect,
followed by a block in curly braces. Within the braces, there can be two kinds of
definitions: inter-type declaration and advice.

Inter-type declarations allow for structural changes in other classes. It is possible to
declare fields, add implemented interfaces or set parent classes. It is also possible to
define new methods. For example, the declaration public long SomeClass.x; adds
a public field of type long to SomeClass. Whereas public long SomeClass.getX() {

return this.x; } adds a method to SomeClass with the given name and body.

A join point is a position within the control-flow of a program. A pointcut is a set of
such join points. With AspectJ the user has the means to describe pointcuts in order to
select a subset of join points. The description is declarative. It can involve the name
and signature of functions as well as certain stages during a method call, such as call
when the call itself takes place or execution when the body is executed, i.e. after the
call mechanism is completed. For example “target(Point) && call(int *())” means
“any call to an int method with no arguments on an instance of Point, regardless of its
name” [Xer03]. An advice is a block of code, similar to a method body which can be
executed whenever a join point of a specified pointcut is reached.

A scientific overview of AspectJ can be found in [KHH+01]. Technical implementation
details are described in [HH04]. A complete programming guide can be found online
in [Xer03].

4https://en.wikipedia.org/wiki/List_(abstract_data_type)
5https://en.wikipedia.org/wiki/Set_(abstract_data_type)
6https://en.wikipedia.org/wiki/Associative_array
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1 Introduction

1.5 Assumptions and Restrictions

In real-life, there is a vast amount of scenarios that SKilL might be confronted with. In
order to keep the complexity at a manageable level, we make several assumptions about
the use cases. The assumptions cover properties of the Java code and classes at hand,
the build process and the scenarios in which SKilL with foreign types might be used.
Altogether, the assumptions pose some restrictions on the use cases and input. Generally
speaking, we strive for the goal:

SKilL shall support all properties and constructs in foreign types if they can also
be produced in generated types by an appropriate SKilL specification. SKilL may
support additional constructs, only if they can be mapped properly to SKilL’s inter-
nal model. This implies that for any foreign type, SKilL can generate compatible
bindings in all supported languages, including Java itself.

1.5.1 Class Files, Build Process

We assume, that the user has full access to the class files of the types which are to be
serialized. As the analysing module only reads class files for analysis, we do not require
the source files to be available. Furthermore, we assume, that the build process can be
controlled and modified by the user. The code generator will produce Java and AspectJ
code as output. This code must be compiled using the AspectJ compiler in place of javac.
The aspects will induce the compiler to weave the foreign types’ class files. It is possible
to provide either the original source files or the Java class files as input to the AspectJ
compiler. Since class files are always available, this provides maximum flexibility for
foreign types support.

1.5.2 Constructors

The deserialisation code must create actual in-memory objects of the serialised data.
This involves instantiating foreign types in Java using the “new” keyword. This, in
turn, calls a constructor of the respective class, depending on the types of the provided
arguments. The deserialisation code calls the default constructor. If the user does not
define any constructor at all, Java implicitly adds a default constructor. However, if the
user adds customised constructors the default constructor is not added automatically. It
must be added explicitly in the source code. We assume the following properties about
constructors:
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• If the default constructor is available, either added implicitly by Java or defined
explicitly by the user, we assume that deserialisation can use this constructor safely.
In particular, we assume that using the default constructor will leave the object in
a valid state. This way, deserialisation will return usable and valid objects. SKilL
will not modify existing default constructors in any way.

• If the public default constructor is not available, we assume that an aspect may add
one safely. That is, there must not be any conflicting definitions, such as private
or protected constructors with the same signature. The added constructor will be
empty, except for a call to super().

1.5.3 Generics

SKilL does not know generic types, except for some basic container types as described in
Section 1.5.4. Consequently, generic types in Java cannot be mapped properly to SKilL’s
type system. In foreign types, generic classes and fields are permitted, however when
mapped to SKilL types, the generic information will be lost. If a field f is of type T ,
where T is a type variable, the type of f cannot be determined statically. SKilL can only
assume that f will be of type Object. However, Object does not carry any information
worth serialising. We ignore fields in this case, even though they could reference a
known foreign type at runtime.

1.5.4 Container Types

In SKilL, list, set and map are called container types. We associate the List, Set and
Map interfaces from the package java.util with SKilL’s container types respectively. We
allow them to be generic, because they can be properly mapped to SKilL’s type system.

Foreign types may contain fields with container types. That is, fields may be of any type
that implements either List, Set or Map. SKilL’s type system does not allow for nested
lists or sets. Consequently, our extension also refuses nested Lists or Sets in foreign
types.

However, SKilL provides maps with variable amount of type arguments, i.e. two or more.
They act as a right-associative chain of mappings. Say T → U is the map type that maps
elements of type T to one element of type U each. Then, the SKilL type map<T, U> is
T → U . Say further that chains of mappings are right-associative. Then the SKilL type
map<T, U, V> becomes T → (U → V ).
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In order to maintain compatibility with generated types, we only allow right-associatively
nested maps in foreign types. That is, while the Java type

HashMap<Integer, HashMap<Integer, Integer> >

is legal,

HashMap<HashMap<Integer, Integer>, Intger>

is not. Furthermore, the following examples will be refused by our foreign types
extension as well:

Set<Set<Integer> >

List<Set<Integer> >

HashMap<Integer, List<Integer> >

1.5.5 Interface Types

At the time when this thesis started, SKilL’s interfaces were not mapped to Java interfaces
but resolved before the generation. That is, the fields in SKilL interfaces were added
to every implementing type but no code containing a Java interface was generated.
Therefore, it did not seem reasonable at the time, to map Java interfaces back to SKilL
interfaces in the context of foreign types. Because Java interfaces do not carry fields,
we ignore them. However, this restricts the foreign types, because we cannot serialise
a field which has an interface type. After recent advancements in SKilL, it would now
be possible to map Java interfaces to SKilL interfaces and the restriction could likely be
abolished.

1.5.6 Serialization of Standard types

As the serialisation of foreign types relies on compile-time class file weaving, SKilL
cannot serialise the types from the standard library (with the only exception of the
aforementioned container types).

The standard library is shipped with a Java implementation in form of the “rt.jar”-file. It
is a regular jar-archive. However, Java’s class loader treats this library differently. Firstly,
it is not looked up in the usual class path. The archive normally resides within the
directory of the Java installation. Thus, the class loader does not expect it to be in the
current application’s path. It is rather looked up from the “boot strap class path”. The
Java SE documentation [Orac] by Oracle states: “It is very unlikely that you will need to
redefine the bootstrap class path. The nonstandard option, -Xbootclasspath, allows you

14
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to do so in those rare cicrcumstances in which it is necessary to use a different set of core
classes.” OpenJDK’s java command also provides this option, but other implementations
might not.

In case the user wants to serialise classes from the standard library using SKilL’s foreign
types extension, they can weave the class files in the shipped rt.jar7. The altered class
files must be packaged separately from the application’s “regular” class files. The Java
Virtual Machine must load classes from the standard library before it loads any other
class. E.g. since all types inherit from Object, it must be loaded and available when any
other type’s class file is read. Consequently, the custom rt.jar containing the weaved
standard types must be loaded from the redirected bootstrap class path.

While not entirely impossible, it is a rather cumbersome way of serializing classes from
the standard library. We assume that most of the time the user wants to serialise their
own classes. Consequently, we make a compromise which favours the most frequent use
cases.

1.5.7 Type Correspondence

In case that types from a SKilL specification are to be associated with Java classes, we
require that field mappings are a one-to-one relationship. Every SKilL or Java field can
participate in zero or one mapping. That is, each SKilL field may be mapped once or not
at all. Zero or one SKilL field can be mapped to one Java field. These two restrictions
arise naturally. If a SKilL field is mapped twice, during deserialisation the value of the
SKilL field would be stored in two Java fields. Consequently, they hold identical values.
However, during serialisation, there is no general way to determine which of the two
fields to serialise and store as the SKilL field, if the two Java fields hold different values.
The analogous problem occurs during deserialisation, if multiple SKilL fields are mapped
to one Java field. In the same way, SKilL types can only be mapped in a one-to-one
relationship to Java types.

7AspectJ conveniently allows for jar-files as input as well.
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2 Implementation

A conventional execution of SKilL mainly requires a SKilL specification as input. The
specification describes the types for which SKilL shall generate both language-specific
bindings and the serialisation code. An execution of SKilL for foreign types in Java takes
the following input:

• A Java code base that contains said types.

• A mapping that describes which Java types are to be serialised. This mapping may
also state how a type relates to a type of a SKilL specification.

• A SKilL specification, which may be empty.

Evidently, when generating serialisation code for foreign types, several processing steps
are quite similar or even identical, despite the different nature of the user input. Thus,
these extensions to the SKilL tool are naturally implemented based on SKilL’s code base.
We reuse as much of the tested code as possible to preserve maintainability.

This chapter first describes the architecture and how it integrates with SKilL’s existing
architecture. Subsequently we detail on the single processing steps. We focus on the
challenges and their proposed solutions in contrast to some alternatives.

2.1 Architecture

Figure 2.1 shows a rough overview of the architecture. The parser analyses a SKilL
specification, which is basically a description of types. The result is an intermediate
representation (IR) of the types. Subsequently, the IR is passed to all code generators
of requested output languages. That is, depending on the requested output languages,
multiple code generators may be invoked. They all operate on the same IR as input. A
code generator produces the necessary code for a particular language. That includes, for

Specification Parser IR Code generator Bindings

Figure 2.1: Rough overview of the SKilL architecture. Arrows indicate information flow.
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Specification Parser Code generator BindingsIR

Java class files

Mapping file

IR Mapper IR

Parser Mapping Type rules Type Checker

Figure 2.2: Overview of the extension’s impact on SKilL’s architecture. Arrows indi-
cate information flow. The top line of the original architecture remains
unchanged.

conventional generated types, the language bindings for the types, a reflection interface
for client code and administrative code that handles serialisation, deserialisation and
the memory management.

The foreign types extension must leave this existing architecture unaltered. The SKilL
language specification [Fel13] defines the valid input to SKilL and extending upon
it must not break compatibility with any previously valid input. Foreign types ought
to interoperate seamlessly with generated types, as long as there exists a compatible
mapping (see Section 2.5). This implies, that foreign types must be representable
in SKilL’s type system. If there are foreign types which SKilL’s type system cannot
represent, it would not be able to generate bindings for those types. This contradicts
the requirement for interoperability, as one could not deserialise data in any other
language.

As depicted in Figure 2.2, SKilL’s original architecture remains unaltered. For “conven-
tional” invocations of SKilL the user can provide the same input as before. In order
to use the foreign types extension, the user must additionally provide Java class files
of the types which are to be serialised and a mapping file as input. The IR Mapper
translates a list of Java classes into the intermediate representation. This process is
described in detail in Section 2.2. A second parser translates mapping files into an
internal representation of mappings. Such a mapping merely consists of two strings
which represent names of SKilL and Java types. During a binding step, the names are
translated to type objects of the intermediate representation. The output of this step
is a set of type rules. The rules are used to determine the correctness of a mapping.
The mapping specification, name binding and type safety are explained in detail in
Section 2.3, Section 2.4 and Section 2.5.
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Language bindings generated by SKilL exhibit some properties that foreign types do not.
In particular, the user types do not inherit from the known Java class SkillObject as the
generated types do. However, SKilL’s serialisation code relies heavily on the fact, that all
objects possess a field skillID. Section 2.6 describes how SKilL’s code generator for Java
needs to be adapted in general to produce code which interoperate with foreign types.
Section 2.7 explains how the SKilL ID is added to foreign classes without interfering
with the user’s source code. In Section 2.8 we present an approach to facilitate the
adoption of SKilL in old projects by marking entire graphs of foreign type objects for
serialisation.

2.2 Analysing Java Class Files

SKilL requires information about foreign types for several reasons:

1. The generators for serialisation and management code needs to know all serialis-
able types and their fields’ types.

2. Foreign types that ought to be compatible with generated SKilL types must be type
checked. The type checker has to verify whether a serialised foreign type can be
deserialised into a generated type and vice versa.

3. SKilL must verify if the foreign type is compatible with SKilL’s type system. SKilL
poses several restrictions on types, such as limited nesting of containers (see
Section 1.5.4). If a foreign type uses types that cannot be generated by SKilL, they
must be refused.

Assuming that the Java source code is available, SKilL has essentially two possibilities to
analyse existing types: analyse the source code itself or analyse class files. We decided
to analyse class files for several reasons:

• Class files are always available, even if the source code is not.

• There is a plenitude of Java class file libraries freely available.

• Class files are more robust against version changes in the language. I.e. many
language updates involve syntax changes or extensions but do not affect the layout
in the class files. Even if they change, well-maintained class file libraries would be
updated promptly.

Any foreign Java type must be compatible with conventional generated types. Thus, we
are able to reuse SKilL’s IR to represent Java types internally. We extend SKilL by the
module IR Mapper. It takes a list of class paths and a list of Java (fully qualified) class
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names as input and produces the respective IR representation for each of these classes
as output.

From an architectural point of view, the IR Mapper should be able to map any class to
the IR. If a class is not compatible with SKilL’s restrictions, only the type checker should
decline such classes in a later processing step. These restrictions include nesting of
containers: SKilL does not allow lists of lists, or lists of sets for example. Merely maps of
maps are allowed, if the value type of the outer map is a map type itself. However, SKilL’s
IR is not able to model those invalid type combinations. In order to keep code changes
to a minimum, we allow the IR Mapper itself to refuse those invalid type combinations.
This slight break in the architecture prevents a lot of code changes that could potentially
introduce many bugs.

2.2.1 Principle of Operation

We use javassist1 to dissect class files and extract the essential type information. javassist
provides a simple API to lookup, load and analyse Java class files. A ClassPool can
be configured with a classpath, which specifies from which locations class files will be
loaded. With help of the ClassPool, classes can be loaded simply by calling get() with
their name as argument. For each loaded class, the javassist API instantiates a CtClass

object. This object acts as a convenient wrapper for Java’s reflection API.

Now that the IR Mapper can load a reflective representation of any Java class, it can start
mapping them to SKilL’s IR. That is, the CtClass reflection objects are to be translated
into type objects of the IR. This translation may be partial. Classes may contain fields
with types which are unknown to SKilL. Such fields cannot be considered for serialisation.
Thus, they will be left out.

The IR Mapper performs the translation of a Java type Tj into SKilL type Ts in two basic
steps:

1. Collect all explicitly requested types and the transitive closure over the parent type
relation.

2. Translate all types to SKilL types. For a type T this includes translating parent
types first recursively and translating all field types of T ’s fields before adding the
result of T ’s translation to the set of translated types.

1http://jboss-javassist.github.io/javassist/
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In the first step the types are only collected, not translated yet. “Collecting” a type Tj

means to create an empty prototype Ts in the IR as representative for Tj. Then, the pair
(Tj, Ts) is added to a map of known types. This map links a CtClass object with its IR
representation. Whenever the IR Mapper is asked to map Tj again (for example if a field
with this type occurs), it will simply retrieve Ts from the map. This can also safely be
done when Ts is yet incomplete.

After collecting a type, the algorithm collects the parent type recursively, until it reaches
Java’s top type Object. Thus, after the first step, all user types are created as empty
prototypes and their relationship to the original Java class is stored within a map. The
remaining (not collected) types include containers, arrays and Java’s primitive standard
types.

This dedicated collecting step breaks up possible cycles. Say there are the two types T

and its parent type Tp. Now assume Tp has a field with type T . If T is translated first, its
parent type cannot be set, because it yet has to be translated. If then Tp is translated, its
field type T is not translated yet and missing. Collecting all types in the hierarchy will
ensure that for each type there is at least a prototype available during the translation
step.
Furthermore, the transitive walk along the parent references are a convenient way to
add new types in the correct order. In SKilL’s intermediate representation, the types’
order is meaningful. The code generators produce a SKilL-specific reflection interface
for all types. In this interface, any type’s reflection object also contains a reference to the
parent’s type reflection object. As they are instantiated one after the other, parent classes
must be instantiated first, so that the child class can obtain the respective reference for
the inheritance relationship. By recursively collecting parent objects first, this order is
produced naturally. Translating the types directly could destroy the order due to the
translation of field types.

The second step actually translates a type Tj to Ts, which means the empty prototype
is filled with fields and possibly the parent type is set, if any. In order to add the fields
to Ts, the IR Mapper iterates over Tj ’s fields and checks the map with known types for
each field type. If a type is not found in the map, it is either a primitive type, a container
type or the type is a missing user type. The latter case will cause the field to be omitted
in the translation. Primitive types are translated to SKilL’s primitive types, which match
the ones available in Java. Container types are handled separately. Afterwards Ts is an
equivalent representation of Tj in SKilL.
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HashMap<Integer, HashMap<Integer, Integer>> maps;

Ljava/util/HashMap;

Ljava/util/HashMap<Ljava/lang/Integer;

Ljava/util/HashMap<Ljava/lang/Integer;Ljava/lang/Integer;>;>;

Figure 2.3: From top to bottom: a field declaration in Java, its non-generic type de-
scriptor and its generic type signature as found in a Java class file. The line
break is only added for formatting purposes.

2.2.2 Container field types

SKilL knows three container types: lists, sets and maps. These types are all generic in
nature and accept one or in the case of maps two or more type arguments. Evidently,
container type fields occur frequently in real-life software. SKilL can serialise containers
and thus it must support the such in foreign types as well. In generated types, the code
generator can pick which concrete container implementation is used. For example, lists
are mapped to LinkedList, whereas SKilL’s map type is implemented by the HashMap

class in Java. However, in foreign types, containers can be much more diverse. The user
might have picked any of the classes that implement the interfaces from Java’s standard
library: List, Set and Map2. This includes both the default implementations from Java’s
standard library and any custom implementation by a third-party or the user. For foreign
types, we allow any class as a container type, as long as it implements the respective
interface. See Section 1.5.4 for details on restrictions for container types.

In order to maintain type safety in the presence of container types, we must analyse and
interpret the generic type arguments of such fields. Recall, that we analyse class files
rather than Java source code. Thus, the IR Mapper must analyse the type signatures
encoded in the Java bytecode. “Signatures are used to encode Java programming
language type information that is not part of the Java Virtual Machine type system,
such as generic type and method declarations and parameterised types.” [LYBB13].
Section 4.3.4 in the jvm specification describes in detail how signatures are constructed
from a set of formal grammar rules.

Figure 2.3 shows a generic signature of a field of type HashMap. Here, the second type
argument (i.e. the value type in the map) is in turn a HashMap. It is obvious that in such
a case the generic part can be syntactically nested multiple times. The given example is

2these can be found in package java.util
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the only valid nesting of two maps which can be mapped to SKilL’s map type. Obviously,
the nesting can be much deeper, as long as it is right associative. That is, the value type
of a Map can be another Map, but the key type cannot. The IR Mapper must verify that
the combination of container types is valid. Thus, the entire generic signature must
be analysed. The signature in Figure 2.3 is equivalent to the output of the Java code
generator for the SKilL type:

map<i32, i32, i32>;

Say the function m maps any SKilL user type to its corresponding Java class and any
primitive SKilL type to its respective Java primitive type. We extend the definition of m

to clarify how SKilL’s map corresponds to Java’s Map:

Let m be defined for SKilL types T1, T2, . . . , Tn, n ≥ 2.

Then m(map < T1, T2, . . . , Tn >) :=

Map < m(T1), Map < . . . , Map < m(Tn−2), Map < m(Tn−1), m(Tn) >> · · · >>

We use Sun’s SignatureParser3 to analyse the generic signature. The parser is run on
the generic signature and returns a tree representing the dissected signature. We define
our own custom signature visitor4. The visitor then analyses the field’s generic type and
maps it to an equivalent SKilL type. If unsupported combinations are detected (such as
nested lists or sets or illegally nested maps) the visitor will emit an error. The exact type
of the container is not determined. The visitor rather checks if the field type implements
the List, Set or Map interface and maps the type to the its representative in the SKilL
type system. That way our extension can provide the largest degree of freedom for
foreign types. The container must merely implement the respective interface but can
otherwise be chosen freely by the user.

2.2.3 The Reflection Context

In SKilL’s original architecture, the IR is the major means of communication between
the front-end and the code generator. A specification file is parsed and translated into
the IR which is then passed to the code generators. We strive to keep changes to the IR
minimal, because it constitutes the common base for all languages. Language specific
properties should not pollute the architecture too much. However, our code generator

3can be found in package sun.reflect.generics.parser.SignatureParser and is shipped with Java’s runtime.
4implementing the abstract sun.reflect.generics.visitor.Visitor<T>.
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needs additional information which is not represented in the IR. E.g. for container types,
it must determine the actual used type.

Say, the user declared a field of type TreeMap<String, Integer>. The IR Mapper will
translate this type into the type context as map<string, i32>. When SKilL deserialises
data, it must instantiate a TreeMap, because the resulting object is to be stored in the
field of type TreeMap again. Simply instantiating a “default implementation” such as
HashMap would lead to incorrect code which cannot be compiled. Hence, the IR Mapper
must inform the code generator about a field’s concrete type. The IR does not provide
means to store such information.
Furthermore, the code generators for foreign types must also be able to determine if a
field can be accessed directly or only via getter/setter methods. Again, it is not possible
to store such a property in the IR.

Therefore, in addition to the type context, we introduce a reflection context. It mostly
consists of two maps:

• A map from IR types to their reflection object.

• Another map from IR fields to the field type’s reflection object.

This context is passed along to our code generator. With help of the two maps, it can
determine the original type of fields (such as concrete container implementations) and
generate field accessing code by directly accessing public fields or using getter/setter
methods, whichever is appropriate.

2.3 Mapping

There are several cases when a user might want to serialise existing types. Firstly, the
user might have created a Java code base and, of late, wants to send data back and
forth to another programming language. In this case the user could simply use the
existing Java code base, analyse it with SKilL and derive the matching SKilL specification.
With the help of this specification, they now can generate bindings for other languages
supported by SKilL. In this case the specification is derived from the Java code base. The
Java code is restricted by SKilL’s general assumptions, but the mapping itself poses no
additional restrictions. I.e. there is no forced correspondence between certain types or
fields. We call foreign types which are not bound to any SKilL specification unbound
foreign types.

If the user derives the SKilL specification automatically, they might also want to preserve
it. While the derived specification can be reused directly by other code generators in
form of the internal representation, SKilL can also write out the specification to a plain
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text file. This file can be parsed by the SKilL specification parser again to recreate the
same type context at a later point.

Sometimes, there might be a preexisting SKilL specification and a Java code base that
matches the specification completely or partially. In that case, the user might want to
serialise those data types without changing the code base. Compliance with the SKilL
specification, however, poses some restrictions on the serialised data. E.g. the naming
of the serialised types must match the names in the SKilL specification. If neither the
specification nor the code base should be changed, the generated code must translate the
Java names to SKilL names during serialisation, and back again during deserialisation.

Furthermore, in case of differing naming between a SKilL specification and a set of
Java classes, it is not guaranteed that the correspondence between types and fields can
be determined automatically. E.g. if a type contains two fields of integer type, there
are two possible mappings, which would be correctly typed. It could be possible to
guess the intended mapping automatically using the fields’ names. However, such an
automatic guessing can always fail if none of the predefined patterns are used for naming.
Moreover, it could be that the guessed correspondence is simply not the intended one.

In short, the user must have a means to instruct SKilL on how to tie a foreign type to a
specification. We call this instruction a mapping and it is provided via a mapping file.
We extended the command line interface by the -OJavaForeign:M option, to specify the
path to the mapping file. This option has no effect on any other of SKilL’s language
generators.

In the previous section, we described how a set of Java types is translated to the core data
structure of SKilL’s type system, the internal representation of types (IR). After this step,
there are two independent type contexts. One stems from the compiled specification file.
The other is produced by the IR Mapper and represents the Java classes. The mapping is
the user’s tool to connect both worlds. They can freely pick which types on both sides are
connected and correspond to each other (bound mappings), which types shall be ignored
entirely and which Java types must be serialised without corresponding SKilL equivalent
(unbound mappings). In the next sections we first describe the general structure of
a mapping file, followed by different variants of bound and unbound mappings. We
parse the mapping file and translate it into our internal representation. It is then bound
to actual types in the SKilL and Java type contexts. We describe this process and its
consequences in Section 2.4.

2.3.1 General Structure

A mapping file contains a series of type mappings. Type mappings can be of various
natures, as explained below. The order of the mappings is irrelevant. As Java type names
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〈mapping-file〉 ::= 〈mapping〉*

〈mapping〉 ::= 〈explicit-mapping〉 | 〈unbound-mapping〉 | 〈unbound-total-mapping〉

Figure 2.4: Syntax of a mapping file in EBNF.

map Point3D -> my.package.Point {

x -> coordX;

y -> coordY;

z -> coordZ;

}

map Line -> my.package.Line {

start -> startPoint;

end -> endPoint;

}

Figure 2.5: Example for a simple mapping file. We assume two SKilL types and two
corresponding Java types.

are case sensitive, the mapping file is also case sensitive. Figure 2.4 gives an overview
of the mapping file’s structure. The missing definitions are explained in the following
sections.

2.3.2 Explicit mapping

Explicit mappings state the name of both the SKilL and Java type and the names for
each pair of corresponding fields. An explicit mapping is introduced by the keyword
map. We describe the syntax in EBNF as seen in Figure 2.6.

〈explicit-mapping〉 ::= ‘map’ 〈skill-name〉 ‘->’ 〈java-name〉 ‘{’ 〈field-mapping〉* ‘}’

〈field-mapping〉 ::= 〈name〉 ‘->’ 〈name〉 ’;’

Figure 2.6: EBNF excerpt for explicit type mappings. The definitions for the non-
terminals name, java-name and skill-name are left out. These rules produce
valid names as expected. Note, that Java names include ‘.’ because they are
fully qualified.
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We use ‘->’ as “mapping operator” to emphasise, that mappings are directed: the left
side is a SKilL type and the right side a Java type. Similarly for field mappings. Every
SKilL or Java field can participate in zero or one mapping. That is, each SKilL field may
be mapped once or not at all. Zero or one SKilL field can be mapped to one Java field.

These two restrictions arise naturally. If a SKilL field is mapped twice, during deseri-
alisation the value of the SKilL field would be stored in two Java fields. Consequently,
they hold identical values. However, during serialisation, there is no general way to
determine which of the two fields to serialise and store as the SKilL field if the two Java
fields hold different values. The analogous problem occurs during deserialisation, if
multiple SKilL fields are mapped to one Java field.

Due to the fact, that fields on either side do not need to participate in a mapping, both
sides can be mapped partially. That is, SKilL may ignore existing Java fields and may
simply not serialise them. At the same time, it may deserialise data into Java types
which lack certain fields that are available in the serialised data. The latter is possible
because of SKilL’s flexibility with version changes. The binary representation of data
“does encode the type system and can therefore provide a maximum of upward and
downward compatibility, while maintaining type safety at the same time.” [Fel13].

Figure 2.5 shows an example mapping for a type Point3D with three field mappings. In
case that the SKilL type Point3D or the Java type Point have more fields, they will be
ignored by SKilL.

2.3.3 Unbound mapping

The previously described mappings are used to tie a Java type to an existing SKilL
specification. However, sometimes there might not be any SKilL specification available. A
user might simply want to serialise Java classes without any prior restrictions. Moreover,
the user might want to automatically generate a SKilL specification derived from the
Java classes. It would be nonsensical to write the specification by hand. An additional
type of mapping is necessary. Thus, we introduce unbound mappings. An unbound
mapping only specifies which Java types are to be serialised. The Java types are not tied
to the SKilL type context. The mapping is necessary nonetheless, because the user has to
specify the set of classes selected for serialisation.

Figure 2.7 shows a grammar in EBNF describing the structure of unbound mappings.
In Figure 2.8 an exemplary use of unbound mappings is depicted for the previously
mentioned Point class. Below the “regular” mapping, there is an unbound total mapping
using the “new!” keyword instead of “new”. A total mapping implies that the entire class
is to be serialised. It is a useful shortcut, as it is shorter than listing all fields explicitly.
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〈unbound-mapping〉 ::= ‘new’ 〈java-name〉 ‘{’ 〈unbound-field-mapping〉
(‘,’ 〈unbound-field-mapping〉 )* ‘}’

〈unbound-total-mapping〉 ::= ‘new!’ 〈java-name〉 ‘;’

〈unbound-field-mapping〉 ::= 〈name〉

Figure 2.7: Excerpt of the EBNF that describes unbound and unbound total mappings.

new my.package.Point {

coordX,

coordY,

coordZ

}

new! my.package.Point;

Figure 2.8: Example for an unbound mapping and an equivalent unbound total mapping,
assuming that my.package.Point only contains those three fields.

Further, it is robust to changes made in the Java class. If a field is removed or added to
the Java class, the user does not need to adapt the mapping file.

However, note that even for a “total mapping” the restriction holds, that the IR Mapper
will only serialise known types. Thus, if the user requests a total mapping, but a
class contains fields whose type is not requested for serialisation, the field will still be
dropped.

2.4 Name Binding

Recall Figure 2.2 which outlines SKilL’s architecture including the foreign types extension.
So far, the original parser read in a SKilL specification and the IR Mapper translated
Java class files into the IR. The mapping file as described in Section 2.3 is also parsed
and translated to an internal representation. However, up until now all three internal
representations are unconnected. The mapping merely contains type and field names as
strings. A lookup via string, however, is expensive. Hence, SKilL performs name binding
once and subsequently only works with references.

The name binding translates names represented as strings into references to their type
representatives from the intermediate representation. The respective type context is
searched for either side of the mapping using the specified name. A successful lookup
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results in a reference to the internal representative of a type. Note, that unbound
mapping rules only contain a Java name and thus there is only need for one lookup in
the Java type context. If a lookup fails, SKilL will produce an error as output to the user.
The name binding algorithm will not be canceled after the first error. It rather performs
all name bindings and produces a list of missing types. That way, the user can try to fix
multiple errors at a time, rather then invoking the tool after only one eliminated issue.

2.5 Type System and Type Checking

SKilL might encounter arbitrary classes as foreign types. Because of Java’s strong static
type system and the fact that we operate on bytecode level, we can safely assume that
those types are sane at least in the Java world. In order to avoid compile-time and
run-time errors, the SKilL tool must now verify that those types are also valid within
the SKilL type system, i.e. that they can be modelled and represented thereby. This
is not guaranteed, because SKilL is slightly more restrictive in respect to some typing
properties, such as generics or nested containers.

Beyond that, it must also be guaranteed that the mapping between SKilL and Java types
does not cause any conflicts. Both mappings between types and mappings of fields imply
constraints for type correspondence. Illegal mappings must be detected and reported to
the user.

2.5.1 Derivation of Type Rules

Besides finding type representatives for a given name, name binding serves another
purpose: it produces type rules that can be evaluated by the type checker.

In case of SKilL with foreign types, the type correctness does not only depend on the
specification of SKilL types. It is also influenced by the correctness of the mapping. How-
ever, the mapping file is merely a character string. The user can specify corresponding
types by using their name. In order to determine the mapping’s correctness, SKilL verifies
if the mapping abides a set of rules. These rules are derived naturally from the mapping.
An instance of such a rule contains one or more references to an actual type using SKilL’s
intermediate representation. This has several reasons: firstly, due to the fact that every
type has exactly one object in memory representing it, equality and inequality are simply
implemented as pointer comparison. Secondly, some of the necessary type rules require
knowledge of the respective type in order to check if they are obeyed. Hence, the type
checker must resolve names to types in any case. Performing this resolution during a
dedicated name binding step, guarantees that each name is only looked up once.
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After successfully binding a SKilL or Java name to a type, the references for these
types can be stored in one or more type rule instances. The type checker verifies the
correctness of the rule by operating on actual type objects.

2.5.2 Type Rules

The correctness of an entire mapping is dissected into a series of statements. A statement
declares a single atomic fact. For example, a valid statement R could be “Type TS

corresponds to type TJ”, where TS is a type derived from a SKilL specification and TJ is
a type produced by the IR Mapper (see Section 2.2).

The statements are partitioned into different categories. In the example above, R belongs
to the category “TypeEquation”. We call these categories “type rules” and the concrete
statements (such as R) an instance of a type rule.

Our foreign types extension for SKilL supports the following type rules:

• TypeEquation

• TargetTypeExists

• TypeMappedOnce

• FieldMappedOnce

• FieldAccessible

For a mapping, there may be multiple instances of any of those rules. In the following,
we describe type rules, what they mean and how they are derived.

TypeEquation

A TypeEquation signifies the correspondence of two types, one from the SKilL world and
one from the Java world. We use the following notation for TypeEquations: Eq(TS, TJ).
Thus an instance of this rule contains two references to type objects. As opposed to a
“mathematical equation”, this equation is not commutative: Eq(T, U) 6= Eq(U, T ). Its
left side should always be the SKilL type and its right side the Java type. This negligible
restriction simplifies the process of checking this rule significantly.

The TypeEquation implies a one-to-one relationship between the types. That is, if any
type T participates in any two TypeEquations: Eq(T, T 1

J ) and Eq(T, T 2
J ) then T 1

J = T 2
J

must hold. This is checked and verified by the type checker. TypeEquations are produced
by the following parts of a mapping:
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• When a type is mapped to another type using their type names. For example map

Point -> example.Point3D { ... produces an instance of such a rule with these
two types.

• Furthermore, the parent types of any two mapped types also form a TypeEquation.

• When a field of a SKilL type is mapped to a field of a Java type, the two types of
these fields form a TypeEquation.

TargetTypeExists

Recall unbound mappings as described in 2.3.3. They only specify that the mentioned
Java type shall be serialised. This type, however, is not bound to any SKilL type. Thus,
a TypeEquation is not necessary to guarantee a correct mapping. However, the type
must exist within the specified class path. A TargetTypeExists-rule declares, that the type
checker must verify the existence of the mentioned Java type.

TypeMappedOnce

Section 1.5.7 describes the restriction that any type on either side (SKilL or Java) can at
most participate in one mapping. In order to guarantee this property, the type checker
must refuse any mapping in which a type participates in more than one mapping. The
TypeMappedOnce-rule signifies that a type participates in a mapping. We write for a
type T : Once(T ). For a bound mapping between TS and TJ , this rule is emitted twice:
Once(TS) and Once(TJ). Both TS and TJ may only participate in this mapping and
not in any other. For an unbound mapping, it is emitted only once for the Java type
T : Once(T ). This prevents that a Java type is part of both a bound and an unbound
mapping at the same time, for example. Note that this rule is never emitted for field
mappings. There can be many field mappings with the same field types, as long as every
SKilL type is always mapped to the same Java type.

FieldMappedOnce

This rule is analogous to the TypeMappedOnce rule. For bound mappings the rule is
emitted twice for each field mapping, once for either side of the mapping. For unbound
mappings, it is emitted once for each field in the Java type. The rule states that a field
participates in one mapping. Consequently there must not be two instances of the rule
with the same field. Note, that the rule actually refers to fields and not the fields’ types.
This way, obviously, a TypeMappedOnce rule and a FieldMappedOnce do not conflict.
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FieldAccessible

The FieldAccessible rule states that a field of a Java type must be accessible from outside
the class. This rule is emitted once for every field in a Java type, which is to be serialised.
Our code generator produces serialisation code which has to access the actual values
stored in a field. Hence, the field must either be public or a pair of public getter/setter
methods with the conventional naming pattern must exist.

2.5.3 Type Checker

The type rules described above can be considered statements or facts which must hold
true in order to realise the requested mapping. The type checker’s task is, to prove
that the entire set of rule instances is free of contradictions. A contradiction implies
that the user requested a mapping that collides with our restrictions for foreign types
or with the type system. Again we break this section down to the different rules, how
they are verified and how they may contradict instances of the same or of other rules.
The type checker iterates over the set of all type rule instances. For each instance, it
checks which category the instance falls in. Then, the rule is processed accordingly.
Note, that the order of rule instances is irrelevant. The type checker will try to verify
that all instances are free of conflicts with other instances. That is, if a contradiction
is detected, the checker will continue with the following rule instances and report all
errors before failing. In the following we describe the verification steps for each rule.

TypeEquation

The TypeEquation rule can only conflict with itself, but not with instances of other type
rules. The two rules Eq(T, U) and Eq(T, V ) for U 6= V form a minimal contradiction.
The first rule clearly states that T corresponds with U . However, the second rule claims
that T corresponds with V . Since U 6= V , this is not possible. We require the mapping
to be a one-to-one relationship.

The origin of this contradiction is also obvious: the user (accidentally) mapped type T

twice. The type checker cannot determine which of the two mappings was the intended
one. Thus, it reports the error and SKilL does not proceed to code generation.

Conflicts due to TypeEquation rules can simply be determined using a HashMap. When-
ever a TypeEquation rule is processed, the type checker tests if the SKilL type is stored as
a key in the HashMap. If the type is still missing, the checker will insert it with the Java
type from the rule instance as value. In case that the type is found in the HashMap, the
checker will compare its mapped value to the Java type in the TypeEquation instance.

32



2.5 Type System and Type Checking

If they are equal, there is no contradiction and the processing for this rule instance is
complete. If they are not equal, it is a contradiction and the type checker will report the
problem to the user.

TargetTypeExists

TargetTypeExists rules are very simple to verify: the checker simply looks up the respec-
tive type in the Java type context. If the type is not part of the type context, it might
have been erased during a processing step after the IR Mapper completed.

TypeMappedOnce

An instance of a TypeMappedOnce rule can only contradict an instance of the same
category. Whenever a TypeMappedOnce rule is encountered, the checker will test if the
respective type is stored in a set. If it is, there was at least one other mapping for the
same type. The reason of this contradiction stems from the requested mapping: the user
made a single type part of more than one mapping. If the type is not found in the set, it
is now added and the checker continues with the next rule instance.

FieldMappedOnce

The FieldMappedOnce rule is verified analogously to the TypeMappedOnce rule using a
set. A contradiction can only arise between two instances of FieldMappedOnce rules.
The reason for such a contradiction is, that a field is part of more than one field mapping.
This can happen if the user mentions a field twice within one type mapping, or if they
map entire types more than once.

FieldAccessible

The FieldAccessible rule is verified with help of the Reflection Context (see Section 2.2.3).
The type checker analyses the original Java class, and checks for possibilities to access
the respective field. I.e. either the field is found to be public or a matching pair of
getter/setter methods is found. The FieldAccessible rule is used to ensure a certain
property about the input itself (in this case the Java classes) but they are never in conflict
with any other rules.

The reason for a conflict lies in the original Java class. It defines private or protected fields
that do not have a getter/setter pair. Thus, SKilL cannot access the values of the field
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during serialisation and deserialisation. Because the serialisation code cannot operate
efficiently under these circumstances, fields for which the FieldAccessible instance does
not hold true are considered to be an error.

2.5.4 Unused Types and Fields

The type checker’s primary task is to determine whether the requested mapping is typed
correctly or not. However, in the process, it also computes another useful information.
Due to the fact, that TypeMappedOnce and FieldMappedOnce rules are emitted for every
type and every field which is actually part of a mapping, the type checker automatically
knows about the set of all used types and the set of all used fields. The code generator
for foreign types shall only produce serialisation code for these types and fields. Non-
mapped entities shall be ignored entirely.

When using the foreign types extension, the IR is produced by translating Java classes in
the IR Mapper. Thus, the derived types contain all fields which are found in the Java
classes, including all the unmapped ones. We extend the type checkers output by these
two sets and use them to filter out unused fields and types.

2.6 Code Generation

When SKilL is used the conventional way, language bindings are generated alongside
the management and serialisation code. For foreign types, SKilL obviously does not
have to generate language bindings. The classes and methods handling serialisation,
state management and SKilL’s reflection interface are required nonetheless. In order
to develop the foreign types generator, we copied the Java generator and adapted it to
the slightly different requirements. Copying the code and using it as a basis kept the
development effort at a manageable level, since the generator is complex.

The code generators for all target languages are roughly of the same structure. They
produce several kinds of classes, each with a specific purpose such as providing access
to object pools, a reflection-like interface, state management and so on. For each kind
of output code file there is one module in the generator, whose name usually ends in
“Maker”. In the following, whenever we refer to these different makers, we always refer
to our specific version which generates the accompanying code for foreign types. Other
target languages have their own versions of these makers. They are not considered
here.
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There is a special class GeneralOutputMaker which is the base class for the other makers.
It does not correspond to a class in the generated output. Our GeneralOutputMaker

remains mostly unaltered. We added some useful helper methods, for example the
getterOrFieldAccess and setterOrFieldAccess methods, which take a SKilL field and
produce Java code for direct member access or a getter/setter call, depending on the
accessibility of the respective field. That is, if the field is public, a direct member access
is generated, otherwise the getter or setter methods are used.

In the Java generator, the “TypesMaker” produced the language bindings for the types,
i.e. the Java classes derived from the input SKilL specification. We removed this maker
entirely, because we do not need to generate types. Furthermore, the existing code within
the SkillFileMaker, FileParserMaker and StateMaker are only adapted insignificantly.
We extend the StateMaker in order to generate the addAll() methods, which we describe
later in Section 2.8.

The AccessMaker produces an “access class” for each user type. As the name suggests, this
class provides access to SKilL’s object pools, provides make() methods which instantiate
a user type and allows to mark objects for serialisation with the add() method. A series
of minor changes are necessary in this maker. Many are caused by differing package
names because we provide our own adapted version of SKilL’s common library in which
the package is called jforeign instead of java to avoid conflicts, if both are linked.
Additionally, this maker produces several code lines containing the fully qualified name
of user types. Since the foreign types are not necessarily in the same package as the
resulting “access class” we adapt the generated package path. The correct package path
for the foreign types is stored in an optional field in the IR, for each type individually. The
generated make() method needs minor adaption. It calls a constructor of the user type.
We cannot assume, that the respective constructor exists in a foreign type. Consequently,
it needs to be added during compilation, with a slightly altered signature to avoid
conflicts. The details are explained in Section 2.7.

The FieldDeclarationMaker produces part of SKilL’s own reflection interface. Each
generated class represents a specific field. They are heavily used by the serialisation
code to read and write field contents. In that, they also function as an interface to
the low-level implementation details of SKilL. This maker shows the most deep-rooted
changes.

Again, many occurrences of package paths are adapted. The original maker for Java
extensively uses the method mapType(). Its purpose is to map a type object of SKilL’s
type system to the name of the corresponding type in the generated code. We overload
this method for fields. In case the field has a container type, we map it to the Java
type originally declared in the user’s class. E.g. a field of type TreeMap in the user’s
class is translated to SKilL’s map type by the IR Mapper. When the IR is passed to our
code generator, the type is translated back to the original, i.e. TreeMap. This double
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translation might seem unnecessary. However, as all types are translated to the internal
representation, they can easily be passed to any of the other code generators. Further-
more, it makes the reuse of the generator code possible, with only minor adjustments.
If the field is of a non-container type, the original mapType() is called and types are
translated as usual. Due to this minor extension, the user has a freedom of choice for
implementations of the container interfaces. In case the user declared a field using the
interface type, say Map, we pick a default implementation, in this case HashMap.

The DependenciesMaker is a small maker which creates a libs directory in the output
path and copies SKilL’s common runtime library. We adjusted the code to copy our
skill.jforeign.common.jar rather than the library for Java.

We introduce a new AspectMaker. Along with all the previously described makers, this
maker produces an aspect, intended for the AspectJ compiler. The generated aspect is
best explained using a realistic example. Section 2.7 covers all details about AspectJ.
We first describe why we chose AspectJ over some alternatives and then focus on what
aspects are generated and what effects they have.

2.7 Providing a SKilL Interface in Foreign Types

Foreign types are created by the user, without SKilL serialisation in mind. Consequently,
one issue arises for the serialisation code: it cannot identify objects as “SKilL objects”.
That is, generated types inherit from an abstract class SkillObject which carries a
unique ID, as well as a method to determine the type’s SKilL name. This basic information
is essential for the serialisation code to work. The name is used to identify types in
serialised data. When an object is deserialised, it can be associated with its runtime
representation, a class in the case of Java, which is then instantiated in order to hold the
deserialised data. The unique ID is used to identify objects at runtime and determine
their state, i.e. whether they are serialised already or not. A negative ID indicates that
the object is not yet serialised.

Foreign types do not carry these fields. Consequently, SKilL must provide means to
associate an object with its SKilL-specific data, namely the ID and the SKilL name.
There are several ways to store this data and link it to the objects. We describe three
alternatives that were considered for the implementation of foreign types in SKilL, two
of which place the information within the foreign type’s object.
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2.7.1 Custom Class Loaders

For one, SKilL could generate a custom class loader. A class loader’s purpose is to load
class files at runtime and link them to the Java Virtual Machine. Java naturally features
a hierarchy of class loaders rather than a single one. Their intended behaviour is to
firstly delegate class loading to the parent loader, and subsequently, if the parent loader
fails to do so, attempt to load the class. By default, the hierarchy contains at least the
bootstrap loader (top level) which loads classes from the standard library, an “extension
class loader” and one for the user classes. However, this hierarchy may be extended
by user code in that it adds another class loader at the bottom of the hierarchy. This
custom loader can break the convention to delegate first. In our case, it would rather
attempt to load a respective class first, if this class is a “SKilL type” that can be serialised.
Otherwise, class loading would be delegated as usual.

In order to use such a class loader, it must be configured at startup before any relevant
class is loaded. Therefore, our code generator for foreign types would have to generate
an alternative main() method. This method firstly instantiates and configures the custom
class loader. It then calls the “regular” main method of the program. The custom class
loader will intercept every attempt to load a new class file. It can then check if the class
belongs to a foreign type. If it does, it alters the class file by adding an ID and a name field
and appropriate getter/setter methods to access the fields. In order to identify the type as
a foreign type (a SkillObject), SKilL also adds an interface to the class which declares
the signatures of the getter/setter methods. When the alterations are completed, the
resulting class is linked to the application. There are several downsides to this approach.
The main issues are slower class loading, potentially risky code5, interference with
“execution conventions” of the original application6 or potential conflicts with other
custom class loaders7.

2.7.2 Storing SKilL Data Externally

One option is not to alter the foreign types’ classes at all. However, since SKilL still relies
on the information, we must somehow provide means to associate the externally stored
meta data with a SKilL object. The obvious way is to add every object to a hash map

5Changing class files in the class loader effectively invalidates signatures for signed classes.
6Because we provide a different main() method which must be called in order for SKilL code to work,

the user must either specify this class as the main class using command line arguments or the manifest
file must be altered.

7In case the user already has a custom class loader in place which must be used for all classes including
the SKilL types in order for the application to work, the only solution would be to merge SKilL’s and
the other custom class loader.
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with the SKilL meta data as value8. For any object we can then retrieve the data by a
simple hash map lookup.

However, this solution has major disadvantages. First of all, hash table lookups are slower
than a field access by several orders of magnitude. The more objects are serialised, the
more lookups are necessary. We want to avoid this slowdown. While fields of different
objects can be accessed in parallel, even a concurrent hash table implementation will
lock the table for write operations. The deserialisation code works in parallel and the
hash table might become a bottleneck. Moreover, externally stored information requires
another Java object just to enclose the two variables.

Therefore, with this alternative, both the memory consumption and the computation
time will be increased. Efficiency is one of SKilL’s major advantages and diminishing it
should be avoided whenever possible.

2.7.3 Compile-time Weaving

We chose a solution which both promises speed and safety while keeping as much of the
management code unchanged as possible. In order to inject SKilL meta data into foreign
types, we alter the compilation process rather than class loading or runtime behaviour.

We use AspectJ to change specific classes during compilation. AspectJ provides its own
compiler which takes an extension of Java as input. Besides regular Java classes, we can
also specify aspects. Section 1.4.3 explains the possibilities of AspectJ in sufficient depth
to understand the constructs we use in SKilL with foreign types.

Thanks to AspectJ’s ability to work directly on class files, we can even employ compile-
time weaving when no source files are available. The alteration of class files will only
happen once during compilation. Hence, this approach is superior to the runtime
weaving with custom class loaders in terms of speed. If desired, the compilation can be
separated only for SKilL-relevant classes. That is, the user may compile the classes of
foreign types and the generated code using the AspectJ compiler. The resulting class
files could be packaged into a JAR-file, for example. The remaining code of a larger
software project can be compiled using javac as usual9.

Consider Figure 2.10. It shows AspectJ code produced by our code generator for foreign
types. An aspect is introduced by the keyword aspect followed by the aspect’s name. The

8E.g. introduce a small class only containing those two fields for the ID and the name.
9If development tools such as Integrated Development Environments (IDEs) are configured appropriately,

they can even provide completion for the classes that are altered by AspectJ. With this completion
based on class files, even the injected fields become visible to the user.
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A

B

C1

D1 D2

C2

D3 D4

Figure 2.9: Exemplary class hierarchy. Say D2 and D3 are to be serialised. If they shall
have a common ancestor containing the SKilL ID, we must insert it between
A and B. Consequently, B, C1, C2, D1, D4 also inherit the SKilL ID field even
though they do not need it.

aspect’s content is enclosed by curly brackets, similar to Java classes. In the following
sections, we discuss the different parts of the aspect on the basis of the example in
Figure 2.10. All line numbers refer to this figure. The aspects of all types look very
similar, except for type specifics such as the fields.

2.7.4 Injecting the SKilL ID into Foreign Types

We use AspectJ to weave in the SKilL ID into foreign types. As previously mentioned,
SKilL’s generated management code relies on the presence of this special field. The SKilL
name must also be accessible. However, since the SKilL name is actually a constant, we
return it directly from a getter method.

The original Java generator produced types that all inherit (directly or indirectly) from
an abstract class SkillObject. However, for foreign types, this is not as appropriate. For
example, say the user wants to serialise a few classes C1 . . . Cn that are at the bottom of
a rather large type hierarchy. If we want to insert a single class C in this type hierarchy
which carries the SKilL ID, it must become an ancestor of the common supertype of
C1 . . . Cn. This implies that a potentially big amount of classes in between will also carry
the SKilLID unnecessarily. Thus, a lot of memory is wasted. Figure 2.9 illustrates the
problem.

We are rather looking for a way to insert the SKilL ID only in such classes that are to be
serialised. Luckily, AspectJ allows for insertion of fields directly into a specific type. Line
4 in the example in Figure 2.10 shows the insertion. AspectJ will parse and interpret
this aspect and will weave the ID field into the class’s bytecode. Additionally to the field
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itself, we also define getter/setter methods to access it. These are added by lines 6 and
7. In line 9 the skillName() method is added to the foreign type. This method defines
which name is used for the type in the serialised format. The returned value can be
different from the class’s name. This happens if a mapping between a SKilL type and a
Java class is used. SKilL identifies this type by its SKilL name.

Since we do not use an abstract base class SkillObject, foreign types’ only known
common base type would be Object. However, sometimes it is necessary to declare
variables of “any type known to SKilL”. This type is also used in the common library
that is shipped and linked to a program using SKilL serialisation. We thus replaced the
abstract class SkillObject by an interface with the same name. The interface defines
the same methods with identical signatures as the original abstract class. Consequently,
much of the existing code can be left unaltered. The advantage of the interface is, that
it can be added to any class without altering the existing type hierarchy or changing
an object’s memory representation. The interface is added to the type in line 35 using
the declare parents directive. Together with the methods from lines 6, 7 and 9, the
foreign type actually implements the interface correctly after AspectJ’s weaving.

2.7.5 Initialising the SKilL ID

SKilL IDs of SKilL objects are usually positive numbers. However, objects that are not
yet marked for serialisation (and thus yet unknown to the serialisation code) exhibit a
negative SKilL ID. All newly created objects are unmarked, at first. Hence, we want to
make sure that the SKilL ID is always initialised to a negative number. The user might
be calling their own constructors which do not set the SKilL ID to any particular value.
In order to always initialise the SKilL ID no matter which of the constructors is called,
we introduce a pointcut which executes the initialisation before any constructor code
is executed. This can be seen in lines 38 to 40 in Figure 2.10. As the code shows, the
point cut applies to objects x of type Simple whenever a constructor (Simple.new) with
any signature (the two dots) is called. If the point cut applied, the code in line 39 is
executed, i.e. the field skillID is set to −1.

2.7.6 Constructors

Section 1.5.2 describes our general assumptions about constructors for foreign types.
We require a default constructor in all types. Another constructor which sets all fields
to initial values is useful in the generated management code. Our aspect generator
checks if the foreign type already provides a standard constructor. In this case, we
assume that this constructor can be used to instantiate the type during deserialisation
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1 public aspect SimpleAspects {

2
3 // add skillID to Simple

4 public long Simple.skillID;

5 // getter and setter for skillID

6 public long Simple.getSkillID() { return this.skillID; }

7 public void Simple.setSkillID(long skillID) { this.skillID = skillID; }

8 // Access to skillName

9 public String Simple.skillName() { return "Simple"; }

10
11
12 public Simple.new() { super(); }

13
14 public Simple.new(long x, long y, byte b, short s, int i, long l, float f, double d,

java.lang.String str, long skillID, SkillObject ignored) {

15 super();

16 this.x = x;

17 this.y = y;

18 this.b = b;

19 this.s = s;

20 this.i = i;

21 this.l = l;

22 this.f = f;

23 this.d = d;

24 this.str = str;

25 this.skillID = skillID;

26 // this is stupid, but the parameter makes sure that there are no signature

conflicts.

27 assert ignored == null;

28 }

29
30 public void Simple.selfAdd(SkillState state) {

31 state.addAll(this);

32 }

33
34 // Add SkillObject interface

35 declare parents : Simple implements SkillObject;

36
37 // Initialize skillID no matter which constructor is called

38 before(Simple x): target(x) && execution(Simple.new(..)) {

39 x.skillID = -1;

40 }

41 }

Figure 2.10: Example for a generated aspect for the type Simple. Imports are left out
for brevity.
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(see Section 1.5.2). If it does not exist, we add one using an aspect. Line 12 shows the
insertion of the standard constructor.

Line 14 adds the field-initialising constructor. All fields known to SKilL cause a formal
parameter which accepts the initial value for this field. We also append another parame-
ter for the SKilL ID to be set directly by the constructor. The last parameter is of type
SkillObject which we assume is not known anywhere in the user’s code. By using this
type in the last formal parameter, we ensure that the constructors signature is unique
and will not cause any conflicts with existing constructors. In the management code we
simply pass null as the last actual parameters. Line 27 tries to prevent any surprises on
the unknowing user’s side.

2.7.7 Injecting the selfAdd method

In Section 2.8 we describe a newly added mechanism to mark entire data structures
for serialisation. The code, which handles this, needs a dispatching call on the first
parameter’s type. Since Java only supports single dispatch (i.e. on the receiver “this”
of a method call), we need to add a method to the SKilL objects themselves. Calling
this method will invoke the dispatching mechanism and result in a call to the method of
the actual type rather than the static type. This method than calls the intended method,
effectively acting as a proxy. The insertion of this simple method can be seen in the lines
30 to 32.

2.8 Marking Objects for Serialisation

There is one significant difference between foreign and generated types. Since foreign
types exist before SKilL comes into play, they might be instantiated anywhere in the
code. The user probably just calls the regular constructors of the class. Generated types,
on the other hand, are accompanied by the respective type access classes. They allow
for instantiation of user types with make(). Calling this method will return an instance
that is already marked for serialisation.

The foreign types however, are likely instantiated by constructors and thus not auto-
matically marked for serialisation. The user must call the add() method from the type’s
access class. However, the add() method exhibits a shortcoming. It only adds the passed
object itself and none of the objects referenced in the fields. Hence, the user must
manually keep track of all objects they create and add them one by one to the SKilL
context. This can become very tedious, especially when big and complex data structures
are involved. Moreover, constructors will often create other objects automatically. So
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the user must check and potentially adjust all code positions where any of the foreign
types are instantiated. Alternatively, they might write their own algorithm that traverses
the object graph and adds all reachable objects. Again, this would be a time consuming
and error-prone task.

We want to provide an easy to use alternative. We extend the code generator to provide
methods addAll(). Similarly to add() they mark an object for serialisation. However,
beyond that, they also call addAll() for all fields that contain references to further SKilL
objects. If a field is of a container type, addAll() will iterate over all contained elements
and call addAll() on each. Consequently, by calling addAll() once for a SKilL object, it
will add the entire transitive closure, that is, all SKilL objects which are reachable from
the initial one.

There are two pitfalls that must be considered:

1. The object graph may (and often will) contain cycles. Obviously, while traversing
the graph, the algorithm will encounter objects multiple times. We must break
up these cycles. Otherwise, the program will eventually crash due to endless
recursion.

2. An object O may be reachable from two objects O1 and O2. However, O1 and
O2 are not reachable from each other. Thus, the user will likely call addAll()
for both O1 and O2. Both transitive closures will eventually try to mark O for
serialisation. We must ensure that this only succeeds the first time. The second
time the algorithm should simply do nothing.

We use the SKilL ID as an indicator of the SKilL object’s state. Note, that the SKilL ID is
always initialised to −1 for new objects. A negative ID signifies that the object is not yet
serialised. Fortunately, the code only uses −1 and no other negative value. We extend
upon this convention. We define, that an ID of −2 signifies “not yet serialised but already
seen by addAll()”. When calling addAll() for an object, it first checks if the ID is −2. If
so it returns without performing any further action. If not, it calls add() for the object
and subsequently calls addAll() for all fields that may contain SKilL objects, as long as
they are not null.

In case that the user calls addAll() on an object O and subsequently changes it, our
algorithm cannot detect that O’s updated parts might have to be added again. We oblige
the user to call addAll() for all references in O which have not been added yet. In
most cases, the user can just make the call to addAll() when none of the objects change
anymore.

Note that the addAll() method is overloaded for every user type. Consequently, one
such method only needs to know about the fields of this particular type. With all the
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type information at hand, the generation can simply be done by iterating over all fields
and generating the respective code for each field.

However, Java does not feature dispatching function calls on the arguments. Only the
receiver of method calls (“this”) is considered for dispatching calls10.

Say we have SKilL types A and B, where B inherits from A. If a field is of type A but
contains an object of type B, calling addAll() for this field will result in a call to the
overloaded version for A. This is not the intended behaviour. The user wants that an
object of type B is added, including all of B’s fields. The method for A does not know
about these fields. Hence, we must force Java to dispatch on the parameter by employing
a widely-used workaround11. As described in Section 2.7.7, all user types receive a
method selfAdd(). Calling this method will be a dispatching call. Thus within the
respective version of selfAdd(), we know the actual type of the object. The selfAdd()

method then calls the correct overload of addAll() in a non-dispatching call.

Figure 2.11 shows an example for a generated addAll() method. Lines 2 to 5 break
up cycles in the object graph. Line 6 adds the object itself. The lines 8 to 12 iterate
over a map field, adding all the keys and values. The remaining lines iterate over other
container fields (lists or sets) and add all their contained objects. Note, that addAll() is
not called directly for the fields. Rather the dispatching e.selfAdd(this) is used. The
proxy method selfAdd() will call the correct addAll() method.

10For details on dispatching calls in Java see the section “invokevirtual” of the Java Virtual Machine
Specification [LYBB13]: https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.
10.1.9.invokevirtual

11Programming patterns like the visitor pattern are based on the same mechanism. See the literature for
details about the visitor pattern [GHJV95].
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1 public void addAll(de.ust.skill.ir.TypeContext x) {

2 if (x.getSkillID() == -2) {

3 return;

4 }

5 x.setSkillID(-2);

6 TypeContexts().add(x);

7
8 if (x.types != null) {

9 x.types.forEach( (k1, v1) -> {

10 Strings().add(k1);

11 v1.selfAdd(this);

12 });

13 }

14 if (x.declarations != null) {

15 x.declarations.forEach(e -> e.selfAdd(this));

16 }

17 if (x.getUsertypes() != null) {

18 x.getUsertypes().forEach(e -> e.selfAdd(this));

19 }

20 if (x.getInterfaces() != null) {

21 x.getInterfaces().forEach(e -> e.selfAdd(this));

22 }

23 if (x.getEnums() != null) {

24 x.getEnums().forEach(e -> e.selfAdd(this));

25 }

26 if (x.getTypedefs() != null) {

27 x.getTypedefs().forEach(e -> e.selfAdd(this));

28 }

29 }

Figure 2.11: Example for a generated addAll() method for the type TypeContext.
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The purpose of this thesis is to investigate serialisation of foreign types with SKilL. In
the previous chapter we describe the details on how our implementation works. We try
to make serialisation of existing types seamless to the user. That is, we try to minimise
manual adaptions which the user must perform in order to serialise data with SKilL. In
this chapter we want to examine the extent of our success. We first describe a series
of targeted tests we designed in order to investigate if our extension to SKilL works
correctly. This is covered in Section 3.2. Section 3.3 describes the serialisation of a
“real-life” data structure. This test’s purpose is to determine how useful our foreign types
extension is in a real-life scenario. We describe the problems and shortcomings, their
causes and how they can be solved or mitigated. In Section 3.4 we show the results of a
few performance tests. The generated code for foreign types is assessed. We compare its
efficiency with the performance of conventially generated types.

3.1 Testing

During the course of implementation, it is useful to design test cases alongside the code
itself. This is a widely used practice to find programming and design mistakes as early
as possible. By adding more and more test cases the programmer increases the chance
to find mistakes in new features or errors that interfere with previously implemented
functionality.

SKilL already has a set of several hundreds of tests which cover the core functionality as
well as the language specific code generators. While adding new features and extending
SKilL by foreign types support, we always test against this set. That way, we ensure
that none of the core functionalities or “conventional” generators are interfered with.
Simultaneously, we add new test cases which cover the recently changed or newly added
code.

There are multiple working steps, starting with the processing of user input and ending
in the rather complex code generators, one for each supported programming language.
There are multiple error sources along this path:
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• The user can provide erroneous input which violates the syntax or semantic rules
defined by SKilL’s type system.

• There might be programming errors anywhere from the input parser to the code
generator. Errors in one working step can obviously cause malfunctioning of
following steps.

The result of such errors’ presence might be, that SKilL crashes or, similarly, does not
produce any output. Such errors can be detected simply by running SKilL. However,
even if SKilL generates code and seems to perform without errors, the output code might
be incorrect. It is obvious, that testing such an application actually requires another
stage in the testing harness. By compiling the generated code and testing it against a
set of targeted tests for the respective language, we can increase the probability to find
errors in the code generators.

In the case of SKilL with foreign types, we have yet another potential error source.
SKilL takes additional input which may lead to errors. Firstly, the foreign types are read
and analysed in the form of class files. While class files can be assumed to be correct,
they may still exhibit properties which are not supported by SKilL. These properties
should be detected while analysing and should be properly rejected by SKilL. More
importantly, SKilL reads the mapping file which may be syntactically or semantically
incorrect. All these potential errors should lead SKilL to reject the input rather than
generating incorrect code on the output.

3.2 Targeted Test Cases

We design targeted test cases whose purpose is to detect the discussed error sources. In
this section we describe each category of test cases and how they are designed. All our
tests integrate with the existing testing framework. Whenever the build system’s test
target is executed, all tests are compiled and executed. Thus, the application can be
tested using continuous integration tools, which facilitate development considerably.

3.2.1 Mapping Tests

As discussed before, there are two types of errors which a mapping file may introduce:
syntactical and semantical errors. Both types are tested in the same way. A test case
contains a Java class and a SKilL specification. Additionally, many mapping files can be
provided. The mapping files are organised in subdirectories “succeed” and “fail” based
on the expected outcome. That is, “succeed” contains many mapping files which are
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all considered to be correct mappings. Mapping files in “fail” are expected to cause an
exception either in the mapping file parser or the type checker.

Syntax tests are mostly modelled as violations of the syntactic rules for the mapping
files, i.e. they are mostly fail-tests. The fact that SKilL accepts the correct syntax is
tested by cases which target the semantic features of the mapping already. The fail-tests
include:

• missing arrow

• missing braces

• wrong braces

• missing mapping keyword

• file containing complete garbage

Because the mapping file syntax is very simple, the expected syntax errors are also
rather simple. Semantic errors add a level of complexity, because some of these errors
are only detected once the names in the mapping are bound to actual types. Thus, we
additionally introduce test cases which all feature syntactically correct mapping files,
which introduce semantical errors, including:

• mapping a type twice

• mapping a type twice with different kinds of mappings (e.g. unbound vs explicit)

• mapping a field twice

• mapping non-existent types

• mapping non-existent fields

• wrong casing (mapping files are case sensitive, because Java is case sensitive)

Furthermore, we also provide a set of tests, in which both the syntax and the semantics
are considered correct. These mappings must obviously be accepted without producing
any kind of error. They mostly cover all different variants of mappings, i.e. unbound
mappings, explicit mappings and, for both forms, incomplete mappings which do not
cover all fields.
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3.2.2 Write/Read Tests

The mapping tests only cover the mapping parser and the semantics associated with a
mapping. Those tests are important in order to make sure that the subsequent processing
in SKilL is only fed error-free input. However, the code generators for foreign types are
yet completely untested. Consequently, we introduce another series of tests targeted at
the generated code. Java is a rather complex language and testing it simply by analysing
the code is a time-consuming task. Rather than reading the generated code back in, we
add another stage in our testing procedure. The components of such a test are threefold:
the generated code, the existing foreign types and some dedicated test code which uses
both parts together. The test code always follows the same pattern: instantiate the
classes of foreign types, ideally set all serialised fields with some value and subsequently
serialise the objects. The serialised data is stored to a temporary file. Afterwards, the
file is read again and the objects are deserialised. We then verify that all objects are
serialised and all the fields are set correctly. We call those tests “write/read tests”.

Following this simple principle, we design tests that target different implementation
details of SKilL with foreign types. SKilL supports language constructs such as primitive
basic types, containers, and inheritance. While these features are well-tested in generated
types, we must verify that they work well with foreign types. In the following we describe
the most important test cases.

Simple Type

The purpose of this test is to verify that SKilL handles all “ground types” correctly. These
ground types include integer types of different sizes, floating point types and strings.
Since all of these types are somehow special both in Java and in SKilL we must check
if they are mapped correctly and behave as expected. We create a new type called
“SimpleType” both as SKilL specification (Figure 3.1a) and as Java class (Figure 3.1b).
The explicit mapping simply maps all fields of same name. The test code creates multiple
instances of class Simple and sets arbitrary values for the fields. Then the objects are
deserialised and assertions for each field value check if the correct values have been
restored.

We add another test for the same type using an unbound mapping. Generally, there is
no SKilL type which corresponds to a Java type when using an unbound mapping. The
whole purpose is to serialise Java types without tediously writing an equivalent SKilL
specification. However, even in unbound mappings, the primitive Java types and strings
must be associated with SKilL’s ground types. These types are often treated separately
in programming languages, including Java. For example, the primitive types cannot be
instantiated using the new keyword. If they are to be used as “reference types”, they
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SimpleType {

i64 x;

i64 y;

i8 b;

i16 s;

i32 i;

i64 l;

f32 f;

f64 d;

string str;

}

(a)

public class Simple {

public long x;

public long y;

public byte b;

public short s;

public int i;

public long l;

public float f;

public double d;

public String str;

}

(b)

Figure 3.1: SKilL specification and Java class for simple type containing all ground types
as fields.

must be “boxed”1. Whenever it is unnecessary, boxing should be avoided because it
decreases performance2. In order to distinguish these types from the regular user types,
they are treated specially in SKilL’s type system. This additional test ensures that the
special treatment works in the presence of unbound mappings.

Containers

The three container types list, set and map are supported by SKilL and Java provides
these types as part of the standard library. There are several implementations for each
kind of container. In generated types, SKilL can pick the implementation, which seems to
suit the needs best. However, in foreign types, the user picks an arbitrary implementation.
Since SKilL should be able to handle all of them, our support for container types needs
to be tested specially.

We discriminate two general cases that may occur. The user may use the interface type
(e.g. java.util.List) in the field declaration. In this case we assume that the user does
not make any assumption about the concrete type of that list. That is, it is not allowed
to cast the interface type to a concrete type, because the deserialisation code could use a
different implementation. In the other case, the field declaration is made with a concrete
type such as java.util.concurrent.CopyOnWriteArrayList. Obviously SKilL must then
use exactly this type when deserialising.

1https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
2http://docs.oracle.com/javase/1.5.0/docs/guide/language/autoboxing.html
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In order to verify the correct behaviour in both of these cases, we design two targeted
tests. In the first one, we declare all fields with the interface types java.util.List,
java.util.Set and java.util.Map. In the standard constructor, the fields are then
initialised using arbitrary implementations of the interfaces. The second test case uses
arbitrary concrete implementations of containers directly in the field declarations. In
both cases, we intentionally picked implementations which are not used in the original
code generator for Java in order to detect any implementation-specific generated code.
For example instead of java.util.HashMap, which is used by the Java code generator
for SKilL’s map type, we use java.util.TreeMap. Both tests also contain nested maps.

Inheritance

One of SKilL’s defining features is inheritance among types. In Java, type inheritance is
mapped directly into Java’s type system. That is, if a SKilL type B inherits from another
SKilL type A, the generated Java class B′ will also inherit from the class A′. This enables
SKilL’s foreign type extension to recognise such an inheritance relationship and identify
the correct class hierarchy.

We provide a simple test to verify that the class hierarchy is recognised correctly. That is,
we introduce a few types with inheritance relationships. Each type gets some designated
fields. In the test code, each type is instantiated and all fields are set to specific values,
including the fields of parent types. After the deserialisation, we verify that all fields
again exhibit the correct value. If the inherited fields are also deserialised correctly,
SKilL recognised the type hierarchy properly.

Generics

SKilL does not support generics, but it may still encounter generic foreign types. In
Section 1.5.3 we describe that generic classes are treated as if they were raw types. A
test shall verify that our IR Mapper and type checker can deal with generic types. It shall
further ensure that the generated code is compatible with the generic foreign class. We
introduce a simple class with generic type arguments. The test code verifies that all the
non-generic parts are serialised correctly while the generic parts are simply ignored.

3.2.3 Adding Reachable Objects Automatically

In Section 2.8 we described the generated methods addAll() which add a given object
and all SKilL objects reachable from this one. We test these methods with the “realistic”
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types described in Section 3.3. The test’s purpose is to verify, that all reachable objects
are actually serialised. Thus, we build a connected graph of objects. We use multiple
types to ensure that the generated code works for all types. We also use values whose
dynamic type differs from the static types. That way, we can test if the code recognises
the actual type correctly.

Once the object graph is build, we use the addAll() method on an object from which
all other objects are reachable. We serialise the data to a temporary file. After that, the
file is read and the data is deserialised again. With a series of checks, we assert that all
objects are serialised correctly and their references to each other are correct.

3.3 Serialising Realistic Data

In Section 3.2 we described a series of targeted test cases. We developed these tests in
order to detect errors in the respective features. However, those test cases are all rather
limited. They can only find anticipated errors. Furthermore, most of them are very
focused on one specific feature. Hence, they do not test the combination of different
features extensively.

Another issue with targeted test cases is the fact that they are not necessarily realistic.
They might detect if certain features behave as expected, but they cannot really verify
that the set of features is sufficient. In order to address these shortcomings, we evaluate
SKilL with foreign types on a realistic set of types. SKilL was originally designed with
intermediate representations of languages in mind. It is used in conjunction with
program analysis software. Hence, we use SKilL’s intermediate representation as an
example.

In the following of this section, we first describe the SKilL IR. Then, we describe our
attempt to serialise the entire IR using our own foreign types extension. We describe the
issues and shortcomings and by which circumstances they are caused.

3.3.1 SKilL’s Intermediate Representation

The SKilL IR consists of roughly over 40 classes. The central class of SKilL’s IR is
TypeContext. A type context can contain different kinds of types, which are represented
by different classes. Figure 3.2 shows the classes representing different types. The
container types are generic in SKilL. The subclasses of ContainerType contain references
to types that are stored in the container. In the case of MapType, this is a list Types. For
the other containers, it is a single type. Furthermore, there are classes that represent
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• Type

– ContainerType

* ConstantLengthArrayType

* ListType

* MapType

* SetType

* VariableLengthArrayType

– Declaration

* EnumType

* InterfaceType

* Typedef

* UserType

– GroundType

* PointerType

Figure 3.2: Excerpt of the type hierarchy of SKilL’s IR. These are all classes that inherit
from the abstract class Type.

names, fields, comments and the restrictions for fields3. Finally, there are a few classes
which represent type substitutions, a mechanism which the IR uses internally.

The SKilL IR features a rich type hierarchy, with multiple levels. There are interfaces and
abstract classes. All container types (Map, Set, List) are used as field types. Access
modifiers (public, protected, private) are all used appropriately.

3.3.2 Creating a Mapping File

We extract the SKilL IR from its larger code-base and put it into an isolated directory. It
can be compiled independently, since it is a self-contained code-base. The compilation
is necessary because SKilL will analyse the class files rather than the source code. We
then create a mapping file in order to instruct SKilL about all classes that we want to
serialise. We run find -iname \*.class in order to get a list of all class files. With the
command line tool sed we replace slashes (/) by dots and adapt the beginning of each

3Explained in the SKilL specification document [Fel13].
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line to read “new!”. The file extension “.class” is replaced by a semicolon. Because the
file system path matches the package path, this results in valid fully qualified names for
the classes. We store the result in a file. We then manually remove all interface types
from the list4.

Using the “new!” keyword, we only use unbound mappings. That way, we do not have
to write the SKilL specification and an exact mapping in tedious manual work. We then
make a first attempt at producing the serialisation code. With help of this mapping file,
we run SKilL with our foreign types extension. The result is a series of errors due to
unsupported language constructs in the Java code. In the following, we describe the
specific errors that occurred.

3.3.3 Nested Containers

Several fields are declared with type Map<String, List<String> >. However, SKilL
only supports maps of maps. Other combinations of container types are illegal. As a
workaround, the user would have to transform the value type (List<String>) into a
proper type. That is, they could define a class which implements the functionality of a
list of strings. This class would likely have a field List<String>, which is legal as a field
type. However, the class cannot be generic, because SKilL treats generic classes as raw
types, in general. The workaround would obviously also cause a series of code changes,
since the list cannot be accessed the same way as before. In order to continue testing
without considering this issue any further, we remove the fields with this type.

3.3.4 Inaccessible Fields

The second cause of errors is the fact that many of the fields are not accessible in any
way. There are private or protected fields for which there are no getter/setter methods.
This is not surprising, as information hiding is considered a good practice in software
development. SKilL’s IR is comprised of immutable types. To guarantee immutability,
information hiding is crucial. However, it poses a problem for SKilL, because we want to
serialise the data which is stored in private fields as well.

4At the starting time of this thesis, SKilL interfaces were not mapped to Java interfaces, but resolved
before code generation. Hence, mapping foreign interfaces back to SKilL interfaces did not seem
reasonable, because Java’s interfaces do not introduce fields. This poses a restriction: fields which are
declared with an interface type cannot be serialised. Because SKilL is under ongoing development, our
implementation could now be extended to support interfaces.

55



3 Evaluation

The problem could easily be solved by either making the fields public or by adding getter
and setter methods for each non-public field. But more importantly, the extent of this
issue leads to an important conclusion. Our initially posed restriction, that all relevant
fields must be accessible, is not a practical solution. By means of this restriction, we
effectively force the user to avoid good software patterns and make the code more prone
to programming errors.

We propose to avoid the restriction and access fields even though they might be non-
public in the source code. Since we use AspectJ to alter all user types, we can easily
inject getter and setter methods for each non-public field. Because the aspects only take
effect during compile time, the non-generated code still exhibits the usual encapsulation.
That is, within the user’s code, the fields are private (protected) and there are no getters
or setters to read or modify them. Only after the compilation with AspectJ getter/setter
methods exist. The generated serialisation code can simply access the fields via those
methods. This also renders the type rules superfluous, which ensure that all fields are
accessible. The type checker can be simplified.

3.3.5 Interfaces and Abstract Classes

As previously mentioned, interfaces are not considered in our implementation. Abstract
classes on the other hand may introduce fields which all inheriting classes also carry.
With abstract classes in the type hierarchy, SKilL generated illegal code. The abstract
modifier was not considered and thus the classes were treated as regular concrete classes.
Because abstract classes cannot be instantiated, the resulting code does not compile.

We consider two potential solutions. Firstly, we propose to enhance our IR Mapper
and enabling it to recognise abstract classes. In conjunction, we can adapt the code
generators to respect the limitations of abstract classes and avoid their instantiation.

Since abstract classes have no instances, there never exist objects to serialise. The only
significance of abstract types results from inheritance. The abstract classes can have
fields which are also part of all descendants. Consequently, we considered not regarding
abstract classes as types at all, but rather as a set of fields which might be added to
multiple subclasses. We could easily collect all fields from abstract classes and apply
them to the first concrete subtype. This is also very similar to the way SKilL’s interfaces
work. However, there is one significant difference. When using SKilL’s interfaces, the
code generator produces these fields to be an actual member of the concrete types. That
is, if multiple user types have the same SKilL interface, they all receive their own field
with identical name. In our case, the field would be part of the abstract parent class. This
in turn implies, that SKilL’s generated reflection interface must exist for these abstract
classes. Hence, it is only feasible to consider abstract classes as user types as well.
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We extend the IR Mapper to add the AbstractRestriction to user types, whose Java
equivalent carries the abstract modifier. We extend the AccessMaker to respect the
AbstractRestriction. Whenever this restriction is present, the AccessMaker produces
slightly different code. The method insertInstances(), which is called during deserial-
isation, has an empty body for abstract classes. There are no actual instances for these
types, so there is nothing to do. Furthermore, we change the make() methods to throw
exceptions in case they are called. These methods are merely convenient helpers, that
instantiate a class and mark the object for serialisation. If the user calls such a method,
it will now lead to an error. The methods could not be simply removed, because they
are inherited. Furthermore, we remove the UnknownSubPool and SubType classes for
abstract user types. The SubType classes actually inherit from the foreign class. Say the
user’s class is called MyClass. The generator produces a subclass called MyClassSubType.
If MyClass contains abstract methods, MyClassSubType would have to implement those
methods.

With these alterations, we first test the enhancement with a further targeted test. We
provide three classes Grandpa, Parent, Child, of which Parent is an abstract class. All
classes contain one field. We instantiate the Child class and serialise the object. After
deserialisation, we verify that all three fields are set correctly. Subsequently, we continue
testing the SKilL IR. Abstract classes are now recognised correctly and our write/read
tests work as expected.

3.3.6 Final Fields

Another class of errors occurred due to the presence of final fields. SKilL’s type system
has constants, but they can only be of an integer type. In general, fields cannot be
declared to be constant in a SKilL specification. Thus, the constant (final) fields in our
foreign types lead to errors. The cause of this issue lies in the deserialisation code. It
operates by firstly creating all the objects and subsequently by setting the fields to their
respective values. If a reference is to be set within a deserialised object, the respective
target object will also be present already. The IR’s immutable types are in direct conflict
with this, as all final fields must initialised in the constructor.

If the deserialisation code set all fields upon object creation, the order of deserialisation
would be of significance. This might increase code complexity. Furthermore, cycles
within the object graph would lead to further difficulties, because they cause cycles in
the dependencies of objects. Bypassing the final modifiers is also heavily discouraged by
the Java Language Specification. See Section 17.5.3 for comparison [Oraa]. Thus, it is
not feasible to change the deserialisation code.
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Compiled from "Hint.java"

public final class de.ust.skill.ir.Hint$Type extends

java.lang.Enum<de.ust.skill.ir.Hint$Type> {

public static final de.ust.skill.ir.Hint$Type owner;

public static final de.ust.skill.ir.Hint$Type provider;

public static final de.ust.skill.ir.Hint$Type removerestrictions;

public static final de.ust.skill.ir.Hint$Type constantmutator;

public static final de.ust.skill.ir.Hint$Type mixin;

public static final de.ust.skill.ir.Hint$Type flat;

public static final de.ust.skill.ir.Hint$Type unique;

public static final de.ust.skill.ir.Hint$Type pure;

public static final de.ust.skill.ir.Hint$Type distributed;

public static final de.ust.skill.ir.Hint$Type ondemand;

public static final de.ust.skill.ir.Hint$Type monotone;

public static final de.ust.skill.ir.Hint$Type readonly;

public static final de.ust.skill.ir.Hint$Type ignore;

public static final de.ust.skill.ir.Hint$Type hide;

public static final de.ust.skill.ir.Hint$Type pragma;

public static de.ust.skill.ir.Hint$Type[] values();

public static de.ust.skill.ir.Hint$Type valueOf(java.lang.String);

static {};

}

Figure 3.3: javap’s output for the enum Hint.Type from SKilL’s IR.

3.3.7 Enum Types

Even though SKilL has enumeration types, they are not compatible with Java’s enum. In
most languages, enumeration types are simply represented by integers, or in some rare
cases as strings5. In Java, on the other hand, using the keyword enum will not produce
an integer, which is treated as a separate type. Java rather creates a class which inherits
from java.lang.Enum. The different options of the enum are singleton instances stored
as constant fields of the class. Figure 3.3 shows javap’s output for an enum type from
the SKilL IR.

This enum implementation is not compatible with SKilL. Firstly, the different options
are singletons which are instantiated as soon as the enum’s class is loaded. During
deserialisation, SKilL would attempt to create an object of the type for every enum
field. Thus, the value stored in the field is not equal to the singleton value created upon
loading the enum class. This will effectively destroy the intended behaviour of enums.

Another issue is SKilL’s back and forward compatibility. This could lead to differing
version of the enum between the serialised data and the actual code. There is no obvious

5There are Perl packages using strings for enum values for example.
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way how SKilL should handle a missing option in the current version of the enum, for
example. Java’s enums cannot be supported by SKilL without major code changes.

As a reference, we experiment with Java’s built-in serialisation. We create an enumer-
ation type and serialise it using an java.io.ObjectOutputStream. The serialised data
is stored in a file. Then we change the enum type in the source code and attempt
to deserialise the data from the file again. Our experiment shows, that this is possi-
ble, as long as all options that were stored are still available in the enum’s current
definition. This leads to the supposition, that Java serialises enumerations simply by
using their name. Section 1.12 of the Java Object Serialization Specification confirms:
“Enum constants are serialized differently than ordinary serializable or externalizable
objects. The serialized form of an enum constant consists solely of its name; field
values of the constant are not present in the form.” [Ora10]. It then states further
about deserialisation: “To deserialize an enum constant, ObjectInputStream reads the
constant name from the stream; the deserialized constant is then obtained by calling the
java.lang.Enum.valueOf method, passing the constant’s enum type along with the re-
ceived constant name as arguments.” [Ora10]. Note, that the in-memory representation
of enums is not based on strings, but on references. Only the serialised form of enums
relies on strings.

We propose, that SKilL’s enum implementation should also be based on strings. It is the
only way to reliably distinguish between options that were introduced independently6.
An integer-based implementation cannot detect this conflict. This would violate SKilL’s
forward compatibility.

3.3.8 Nested Classes

The SKilL IR also contains several nested classes. Within Java source code, those nested
classes are referred to by their name in the scheme SurroundingClass.NestedClass.
The Java compiler translates each nested class into its own class file. The naming
changes to SurroundingClass$NestedClass. This implies, that the IR mapper must load
class files using their bytecode name. The generator on the other hand must produce
code with the Java name.

After adjusting the name handling within the generator and the IR mapper, we notice
further issues. In Section 2.7.6 we describe how two kinds of constructors are inserted
for every foreign type using AspectJ. For some reason, the generated aspect does not
work for nested classes. While for regular classes it has the expected effects, for nested

6Options with the same name would be considered equal, even if they are introduced independently.
This is also true for types.
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classes the AspectJ compiler reports “can’t define constructors on nested types (compiler
limitation)”. It might have to do with the way Java implements constructors of nested
classes. If such a constructor is private, it can only be called by the surrounding class.
During compilation, the nested class is transformed into its own proper class file. Hence,
the compiler must establish a way that the private constructors can be called from the
“outer” classfile. This is done by adding a public constructor, which calls the private one7.
Evidently, this is not handled in the same way by all Java implementations.

Avoiding this issue would force us to adapt our code generator further. As we cannot
inject the field initialising constructor, we must adapt the AccessMaker. For nested
classes it would have to call the default constructor and subsequently set the fields one
by one. Furthermore, this adds another restriction for nested classes. We cannot inject
the default constructor using aspects either, so the user must ensure its existence for all
nested classes.

Nested classes cannot be modeled with SKilL’s type system. This leads to an architectural
problem. The code generator must produce import statements for foreign types in
several of the code files. For nested classes, it should produce an import of the outer
class. Consequently, each inner class should carry a reference to its surrounding class.
We could extend the internal representation and store the information within each type’s
representative. Alternatively, the reflection context (Section 2.2.3) could be extended.

3.4 Performance

We evaluate the performance of our foreign types extension in terms of serialisation
and deserialisation speed. It is a primary objective to provide efficient serialisation
and deserialisation for foreign types. However, measuring SKilL’s performance in
general is not part of this thesis. In order to assess our success in terms of speed, we
rather compare the performance of serialising foreign types with the performance of
serialising their generated equivalent. For this purpose, we use SKilL’s IR as types. Our
extension produces the serialisation code for these foreign types and also generates a
SKilL specification which can be passed to the Java generator. Thus, we have the two set
of types, foreign and generated ones.

Our test method creates a graph consisting of a TypeContext with several UserTypes and
these types in turn contain Field objects. The TypeContext and UserType classes use
several containers, such as lists and maps. UserTypes also contain references to Comment

7There is an article about another conflict with AspectJ and nested class constructors: http://
andrewclement.blogspot.de/2009/03/compiler-variation.html?view=timeslide
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objects. Name objects can be found in user types and fields alike. Name, Comment and
TypeContext all contain references to strings. We parameterise the graph creation with
the amount of types and fields. This way, we can easily control the amount of nodes that
are to be serialised.

The foreign types contain user-implemented methods which allow us to create and
use the types realistically. For example, creating a UserType within a TypeContext will
automatically add the type to a hash map, associating its name with the type object.
This logic is missing in the generated version, because SKilL only generates fields, getter
and setter methods. Hence, after creating the respective objects, we must also ensure all
the references are set, as they are using the original types. E.g. we add the user type
manually to the hash map.

In order to obtain most reliable results possible, we perform all tests on the same machine
and in the same general setup. We try to maintain a stable execution environment and
try to eliminate potential sources of interference, such as other process executing on the
system. One iteration of a test consists of serialising and deserialising an object graph.
For foreign types, we also consider the use of addAll() (Section 2.8) as a separate step.
We measure the execution time for each step using System.nanoTime(), which accesses
“Java Virtual Machine’s high-resolution time source” [Orab]8. Each step is executed for
multiple instance sizes.

3.4.1 Serialisation and Deserialisation

Figure 3.4 shows the time spent on serialisation. Note, that both axes have a logarithmic
scale. Obviously, if the amount of nodes is increased, serialisation will take longer.
But the chart shows, that for foreign and generated types, the increase is similar. In
most cases, foreign types’ serialisation is slightly slower. This could be caused by some
of the many differences between generated and foreign types, such as the modified
commons library, class file alterations through AspectJ, or the changed management
code. Fortunately, the overhead seems to be constant and thus does not increase for
larger amounts of objects.

Figure 3.5 compares execution times of the deserialisation for foreign and generated
types. Again, the chart shows, that the increase for both is roughly similar. For millions
of nodes, there are much more outliers. This might have to do with the deserialisation
code’s memory usage. We suppose when deserialising many nodes, the garbage collector
might have been invoked several times, distorting our measurements. Repeating the
performance tests showed, that this effect prevails.

8Direct link: https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#nanoTime()
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Figure 3.4: Time spent on serialisation for foreign and generated types with different
amount of nodes.

Further, we test how much time is spent on marking objects for serialisation using our
generated addAll() methods. Figure 3.6 compares the performance of addAll() with
the performance of serialisation itself. It is evident, that adding is quite a bit faster than
serialisation. Hence, in the worst-case scenario, the execution time would be at most
doubled by our transitive add algorithm, but the average case is much better.

62



3.4 Performance

Figure 3.5: Time spent on deserialisation for foreign and generated types with different
amount of nodes.
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Figure 3.6: Time spent on marking objects for serialisation using the addAll() method
compared with the actual serialisation time.
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4 Summary and Conslusion

We have described a new approach that allows to serialise existing Java classes without
using the conventional generated bindings. In order to provide a maximum of flexibility
to the user, we have introduced two kinds of mappings, which are checked for type
correctness by our type checker. We have introduced the IR Mapper, which analyses
Java classes and translates them into SKilL’s internal type system. This IR representation
of the foreign types can also be used to generate language bindings in different target
languages. That means, we have established the means to serialise foreign Java classes
and make the data available in any other of SKilL’s supported languages. We have
discussed the challenges of developing such an extension to SKilL. This includes the
architectural changes, analysis of Java classes, implementing the type safe mapping,
compensating for the missing SKilL ID and developing the code generators. For several
of these challenges, we have provided in-depth discussion of the alternatives and have
reasoned our design choices.
The evaluation provides insight into our testing methodology. We have created a series
of targeted test cases, as well as an assessment of the usability and utility of the foreign
types extension based on a real-life scenario. Finally, the performance tests have shown
that foreign types can be used with the usual high performance of SKilL serialisation.

We find, that serialising foreign types is a feasible and useful enhancement. The core
features could be implemented with moderate effort. The extensions integrate well with
SKilL’s architecture. We also find, that the foreign type’s serialisation and deserialisation
performance is nearly identical to the one of generated types. Because we chose a
compile-time method to inject the missing SKilL ID the runtime performance is hardly
affected at all. We suppose that the remaining drawbacks, such as missing support of
interfaces, could be implemented with moderate effort.

Future work might include reducing the amount of unsupported Java features. It would
also be beneficial to the user, if type mappings were more convenient. Enhancements in
the mapping parser could include the use of regular expressions or wildcards. Lastly,
it could be interesting to investigate if support for foreign types is feasible in other
languages as well.
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