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Abstract

Recently, new architectures of the modern smart phones come with integrated powerful
platform sensors. Moreover, indoor environments are typically rich with such smart
devices. By considering these advantages, the mobile phones can be exploited for
collecting measurements through a public sensing (PS) system. As a motivation for
the mobile users to participate in the data sensing process, we should restrict the
energy drawn by the sensing tasks. Several energy consumers may negatively affect the
participating mobile devices while collecting measurements. Among these consumers
are: (1) data acquisition, (2) measurements uploading, (3) overhearing superfluous
sensing queries, and (4) position fixing and updating. Actually, a significant amount
of energy is dissipated, on the mobile devices, due to updating the PS server with the
current position. Several research work has devoted to reducing this overhead through
either piggybacking the update messages or through reducing the number of position
updates. However, there exists still an overhead on the mobile devices due to estimating
the position and reporting it to the corresponding PS server.

In this thesis, we consider an alternative approach to overcome this energy overhead.
We propose to opportunistically exploit the already-existent WiFi traffic to monitor
the occupancy of a certain area by the participating mobile devices. Accordingly, we
move the burden of estimating the position and reporting it to a PS server, from the
mobile devices to the PS servers. At the outset, we investigate the applicability of our
proposed method through experimentally studying the WiFi traffic. The traffic analysis
confirmed that plenty of WiFi messages are exchanged between mobile devices and the
WiFi access points (AP). Based on these findings, the proposed occupancy monitoring
method is divided into two scenarios: (1) multiple APs localization scenario; which is
applied when there are enough uplink traffic from the mobile devices, hence the user’s
location can be estimated using RSSI from multiple APs; (2) a single AP localization
scenario when there is no enough WiFi traffic but the server still receives the RSSI
measurement of mobile device from the associated AP. Specifically, two algorithms
constitutes our proposed algorithm, namely device detection and data collection algorithm
and position estimation algorithm. The former runs at the AP level to detect the existing
devices in their coverage area whereas the latter algorithm runs on the server side to
gather the RSSI measurement and to calculate the current user location. We adopt
the fingerprinting strategy as our position fixing method. Generally, fingerprinting has
two phases including an offline and an online phase. For the offline phase, we adopt
affinity propagation to cluster the collected RSSI measurements. For the online phase,
we provide a comparative study between adopting the K-nearest neighboring algorithm
and the compressive sensing algorithm. For evaluating the performance, we construct a
testbed and several experiments have been carried out. The findings show a localization
accuracy of circa two meters which is achieved via adopting compressive sensing.
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1 Introduction

1.1 Motivation

With the recent advances in semiconductor processes and technologies, the hardware
architecture of the modern mobile device enables it to be more powerful while at the
same time consume less energy. For instance, modern smartphones make use of the
latest generation of multi-core processors for higher computational and processing capa-
bilities. Additionally, they embed larger and faster memory chips for better multitasking
performance, and integrate a variety of smart sensors such as accelerometers, dual
cameras (3D sensors), microphones, and Global Positioning System (GPS) receivers to
provide a wide range of capabilities.

In fact, modern mobile devices support newest versions of the communication technolo-
gies such as the latest generations of WiFi and Bluetooth standards. With these modern
communication technologies, a mobile device can establish faster and more reliable
wireless communications while consuming less energy. For example, smartphones can
communicate with nearby wireless devices, such as wearable devices (medical devices,
smart watches, smart glasses, and fitness trackers) to obtain the user’s blood pressure,
stress level, and body temperature or other health and environment parameters using the
Bluetooth Low Energy (BLE) technology. These hardware, software, and communication
aspects of modern mobile devices make them an indispensable part of our daily life,
paving the way for a new concept called Public Sensing (PS).

Generally speaking, the PS systems exploit crowdedness of mobile devices to collect
measurements from the surrounding environment. Specifically, they obtain data from
a set of embedded sensors. One important aspect of PS systems is to convince users
to participate in the PS system. Users typically are concerning with the lifetime of
their batteries. Hence, reducing the energy overhead due to PS tasks can motivate
mobile devices’ owners to participate in the PS systems. In particular, sources of energy
consumption in PS systems comprise data acquisition, localizing the mobile devices and
reporting these data to the PS servers.

In this thesis, we target relieving the energy consumption due to localizing mobile
devices and reporting the position information. Specifically, we consider a subset of the
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1 Introduction

PS applications in which the sensing tasks are entirely scheduled in indoor environments.
In such cases, indoor localization methods are to be utilized to identify the users’ current
position. For the PS servers to localize the participating mobile device, position queries
and reports have to be frequently exchanged between each mobile device and the PS
servers. To this end, there exist several technologies and proposed solution to the user
positioning problem as alternative to the GPS technology which is ill-suited for indoor
environments. Examples of these indoor positioning methods include: ultrasound-based
positioning systems, infrared-based positioning systems, and Radio frequency based
positing system [FNI13].

Mostly, position updates are recurring due to the varying mobility pattern. Hence,
manifold problems emerge like the excessive energy overhead on the mobile device,
the networking overhead, and the extended update latency. Unfortunately, mobile
devices have typically limited energy sources, therefore indoor positioning methods have
to preserve the allocated energy. Several endeavors have been undertaken aiming at
addressing this issue from different perspectives. For instance, the authors in [LR01]
propose numerous methods to reduce the number of update messages. In [KLGT09],
sensing management strategy to improve the energy efficiency by scheduling and con-
trolling the power on/off of sensors devices for reading the position barrier is proposed.
In [BDR13], the authors introduce an opportunistic position update protocol. They
investigate the energy characteristics of the 3G mobile network interface. Accordingly,
they piggybacked the position update messages to other messages generated by various
mobile applications.

Although the above solutions managed to reduce the energy consumption due to po-
sitioning and reporting the position fixes, there still exists remarkable energy burden
on every mobile device. Furthermore, these proposed methods did not consider the
tradeoffs between energy efficiency and other characteristics of position update such as
latency and accuracy. For instance, Dead Reckoning (DR) is a well-known method used
to estimate the current location based on the last estimated location and speed of the
mobile device, as will be explained later. In the DR method, identical predictors have
to be implemented on both of the mobile device and the PS servers. As a decision rule
of reporting the position, DR defines a threshold deviation between the real position
and the predicted position. Hence, a small threshold value leads to an increment in the
update messages which significantly affects the energy efficiency.

To overcome these challenges, we propose to convert the research problem from devel-
oping energy-efficient position update protocols into designing an occupancy monitoring
method through which sending position updates by mobile devices are sidestepped. Such
a method is completely achieved on the PS server side without any intervention from
the mobile devices. Considering an indoor environment with Wi-Fi availability, each
mobile device frequently sends probe messages to connect to or to ensure connectivity
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to Wi-Fi access points and as we showed in our traffic studies that even if the mobile
inactive but still sending frames frequently. Accordingly, the traffic analysis gives us the
motivation to propose an approach that exploits this already-existent traffic for enabling
the PS server to determine the occupancy of certain areas by mobile devices.

Aside from relieving a significant energy overhead from mobile devices, this proposed
method has several other advantages. For instance, it handles different mobility patterns.
Either the mobile devices are stationary or frequently moving, the occupancy monitoring
method can detect them whether the mobile devices are communicating with the
scattered Wi-Fi access points or not. Additionally, the incurred delays due to position
update messages are entirely avoided. In our case, the PS server has approximately an
instantaneous map of the mobile devices within the building. The main shortcoming of
the proposed method is the user privacy. However, the user identity is still difficult to
be revealed due to the long time between subsequent messages sampling. Additionally,
some Apple devices are capable of frequently changing their Media Access Control (MAC)
addresses. This feature will be integrated in all upcoming mobile devices. As a result,
the proposed occupancy monitoring method does not contradict with users’ privacy.

1.2 Public Sensing Overview

Public Sensing (PS) is a new technology to build low-cost wireless networked sensors.
The main idea behind PS systems is to sense the environment via exploiting the powerful
capabilities and features of modern mobile devices. In particular, smartphones became
indispensable part of our daily routine. These mobile devices exist everywhere and
cover a large geographical area where they can inexpensively report the sensed data
by means of the existing wireless network infrastructure such as WiFi and 3G networks.
The concept of PS systems was first proposed by Abdelzaher et al. in [WAK15]. Since
2007, several research work has devoted to develop new PS applications and to optimize
the associated Quality of Service (QOS) metrics. Nowadays, most mobile devices are
equipped with a large variety of sensors such as accelerometers, proximity sensors,
microphones, magnetic field sensors, GPS senors, and cameras. Furthermore, some
vendors come with specific sensors. For instance, a new model of Apple’s iPhone
come with a smart sensor such as barometers and gyroscopes as well as IBeacon (BLE
modules). Similarly, wearable devices, such as smart watches and smart glasses can be
easily integrated into the PS systems.

In fact, PS systems can be classified according to the human intervention into oppor-
tunistic sensing and participatory sensing. In the former class, the PS servers passively
collect sensor data without including the mobile devices owners in the sensing tasks.
Thus, sensor data is gathered as background operations such as position fixing using
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IBeacon and occupancy monitoring, and detecting the orientation. The second approach
is a participatory sensing approach; sensor data is collected by interacting with the
mobile device. PS system asks the user by sending a request to a running application on
the mobile device that can process the request and respond to it. This thesis takes the
opportunistic sensing into consideration. In which, the sensor data collection and the
position estimation are performed by the server without the need to modify or install
any software on the mobile device.

1.2.1 Architecture

A typical PS system comprises a set of participating mobile devices, servers, communi-
cation networks, and client applications. Figure 1.1 shows the general architecture of
PS system. A PS server is responsible for serving all queries from different applications
in the system. A server manages the sensing query, controls the sensing processes and
coordinates the communication between the served clients and the participating mobile
devices. Specifically, the PS server has a query interface which makes the communication
between a client and a server easier and more flexible. The query interface is used by
a client to send queries and to receive the required data. In addition, the PS server
contains a basic sensing system which is responsible for managing the received queries.
The basic sensing system decodes the received queries and then forwards it to the set of
participating mobile devices. To this end, a position update protocol keeps track of the
mobile devices in the sensing area.

Similarly, the participating mobile devices run a basic sensing system which is responsible
for managing the received sensing queries. The basic sensing system on the mobile
device has two units, query listener and sensing engine. The query listener waits for any
query and forwards it to the sensing engine. Subsequently, the sensing engine manages
the sensing process by controlling the sensors. For example, activating or deactivating a
sensor to perform a measurement, such as sampling the temperature in a specific area
and fixing the position of the mobile device. The sensing engine answers the query by
sending the requested sensor data back to the server. Additionally, an update position
protocol frequently senses the position of the mobile device and sends an update to the
PS server. More details about positioning can be found in Section 2.3.

1.2.2 QoS Requirements

There are several Quality of Service (QoS) requirements for the PS systems. For instance,
the PS system should guarantee that the whole geographic monitoring area is covered
by leveraging the availability of the mobile devices. Moreover, it should guarantee the
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Query Distribution Position Sensing 

Basic Sensing System 

Sensors 

Sensing Engine 

Query Listener 
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Query Manager 
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Mobile Device PS Server 
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Position Update Protocol Location Server  

 

Figure 1.1: General architecture of PS systems [Bai15]

quality of the gathered data. In other words, the accuracy and precision of gathered data
that could be the impact of unreliable data sources. Furthermore, it should motivate
and attract the users so that they accept to participate in the data gathering process.
To ensure the user’s acceptance, the PS systems have to be highly energy efficient so
that the energy resource on the participants mobile devices is preserved. An important
QoS metric is the user provacy which has to be considered while desiging the PS system.
Finally, the PS system should guarantee the usability by implementing and offering
convenient Application Programming Interface (API)s [Kur15].

1.2.3 PS Applications

Due to their powerful capabilities, the PS systems can be applied in different areas,
like environmental monitoring, advertising, indoor mapping applications, and traffic
monitoring. PS opens the door for developing new powerful and smart applications and
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1 Introduction

services for both big and small companies. PS enables an application to make the right
decision and interact with the users based on data that is gathered in real-time. Below,
we present some examples of the existing PS applications.

1.2.3.1 Environmental Monitoring

The PS system has many applications in the observation and analysis of the environmen-
tal changes. It can collect data from different sources such as from sensors installed in
buildings or from sensors that are embedded in mobile devices. One such application is
collecting noise pollution data using the microphone of a mobile device. For instance,
the authors in [RCK+09] introduce the earphone system which is a sensing system
that measures the noise pollution using the microphone built in the mobile devices of
volunteers and sends the sensor data to a server. From this data, a reconstructed noise
map is generated by exploiting the comparative sensing algorithm to manipulate the
missing samples.

1.2.3.2 Indoor Mapping

The PS system can be used to automatically derive the floor plan of a building. For
example, the ComNSense project – developed and implemented by Stuttgart University
[comnsense] – aims to develop a universal method for the automated generation of
interior models. It takes advantage of the mobile devices equipped with sensors and the
fact that the indoor environment is crowded by such devices. ComNSense tracks the
mobile devices in order to automatically derive indoor floor plans. Its major goals are:

• automatically derive 2D floor plans from the data collected through indoor tracking
of mobile devices or foot-mounted-sensors.

• derive 3D indoor models from point clouds and 2D images samples using the
recently-released Google Tango tablets.

Many contributions have been done in the project. One of those contributions is the
development and implementation of an indoor grammar approach for building the
interior models. This is used to manipulate the noise and draft-based of the collected
data. The grammar approach shows a significant increase and improvement in the
accuracy and robustness of the indoor plane floor generation. [Kur15]
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1.3 Research Objectives

1.3 Research Objectives

In this thesis, the author aims to achieve the following research objectives:

• conducting a thorough investigation of the work done in the field of energy-efficient
indoor localization;

• developing and Implementing an indoor occupancy monitoring method for public
sensing; and

• evaluating the proposed approach via building a testbed and performing real
experiments.

1.4 Contribution

The outcome of this thesis contributes in overcoming problems of the existing position
update protocols. In other words, the primary goal is to develop and to implement an
indoor occupancy monitoring method on the PS servers by exploiting the existing IEEE
802.11 traffic. The implementation of the concept goes through two phases, namely:
detection and data collection phase; and localization phase. The concept uses a Wi-Fi
based technology, namely the Received Signal Strength Indicator (RSSI). For the detection
and data collection phase, a detection method is developed and implemented to discover
all the devices available in a certain geographical area. For the localization phase, RSS
fingerprint based method is selected which is recommended for the indoor positioning.
To estimate the exact location and construct a map of the mobile devices, this thesis
implements and compares between two methods, namely: K-Nearest Neighbors (KNN)
and Comparative Sensing, which are well-suited candidates for a RSS fingerprint-based
method.

1.5 Document Structure

The rest of the document is organized as follow. In Chapter 2, the system model and the
problem statements are presented, some fundamental concepts, such as position update
protocols and indoor localization technologies as well as the related work are elaborated.
In Chapter 3, the WiFi traffic experiments are explained and the obtained results are
discussed. Chapter 4 gives a clear description of the concept of our approach and each
part is explained in more detail. Chapter 5, the implementation of our approach is
discussed. specifically, the description of the hardware and software components of
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the detection and data collection method are explained. Then, the implementation of
affinity propagation, KNN and compressive sensing is given. Afterward, the evaluation of
the approach is explained where the real experiments are described and the performance
of KNN and compressive sensing are evaluated. Finally, Chapter 6 concludes the thesis
and gives some suggestions for future work.
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As discussed in the previous chapter, energy consumption is a significant design parame-
ter of all PS systems. In other words, PS designers have to ensure a minimum energy
overhead on the participating mobile devices. To tackle this problem, we identify the
main energy consumers in most PS systems. Due to the requirements of the ComNSense
project, we consider only a subset of PS systems which are designed for indoor operation.
In this chapter, we explain the system model before we formalize the attacked problem
of reducing the energy overhead on the mobile devices. Subsequently, we present an
overview of the existent indoor localization methods.

2.1 System Model

In this section, we describe the system under investigation in this thesis. Moreover,
we introduce our assumptions that have to be considered while resolving the energy
overhead problem. As discussed earlier, the thesis targets a subset of PS systems in
which the entire system operations are performed in indoor environments. For instance,
comNSense project targets autonomously generating 3D interiors model through crowd
sensing. Accordingly, assuming a building is equipped with n WiFi Access Point (AP)s,
each AP covers an area whose radius is r meters. These areas are deliberately overlapping
to guarantee full coverage. For simplicity, we assume a single PS server which is
physically connected to the scattered APs. The building has m mobile devices users
who are freely traversing the various floors. Figure 2.1 depicts the architecture of the
proposed method. As it can be seen in the Figure, the system consists of main four
components as follows:

• A set of mobile devices, which send association requests and exchange normal
traffic (e.g. web browsing, video streaming) with the associated AP.

• A set of APs, which detect and read measurement data.

• A localization server, which is deployed on the top of thePS server.

• A communication network, which allows the mobile devices to communicate with
the APs.
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Fine Positioning

Coarse Positioning 

RSSI Collection

Devices Detection

Association Requests

Normal Traffic Packets

Figure 2.1: Sytem model architecture

In the sequel, we briefly describe the role of each component:

Mobile Devices The main goal of this thesis is to localize the mobile devices in a
certain geographic area to construct a map of the available mobile devices. We assume
that the mobile devices enable their WiFi and they frequently send probe messages
and enable client roaming mode during the movement of the user between the APs.
Thus, our proposed method does not require to install any extra software on the mobile
device.

Access Points In general, most of indoor environments have a set of APs that are
already installed to wirelessly communicate with mobile devices. We assume these APs
support a lightweight embedded Linux distribution such as OpenWRT and DDR-WRT.
Accordingly, we are able to run an application which is installed on each AP to monitor
the surrounding area. Each running application detects all mobile devices that can
be seen from a certain AP. It also reads measurement data such as the received signal
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strength indicator RSSI of each detected mobile devices and then sends an update to the
server.

Localization Server In our approach, the localization processing is performed on the
server side. A localization algorithm is responsible for gathering the sensing data from
all APs and for calculating the current device’s position. The estimated positions are
used to update a map of mobile devices on the server.

Generally, several components contribute to the energy consumption problem, including:
(1) sensor data acquisition, (2) data uploading, (3) position fixing and server updating
with new locations, and finally (4) overhearing sensing queries. Activating the sensing
module of a mobile device to sample data is energy-costly, especially for frequent
data logging. For instance, the gyroscope sensor embedded in IPhone 4 consumes
approximately 175.6 mW per each data sample [KMD13]. Similarly, reporting the
measurements to the PS servers is extremely “energy-expensive”. It is known that
sending one bit of information consumes energy similar to consuming for processing one
thousand line of codes. Another fact is most modern transceivers is the same of amount
of energy consumed for data transmission and data reception. Therefore, receiving
sensing queries outside the sensing area represents wasting energy due to the reception
of superfluous queries.

As described in the previous chapter, the PS servers have to be aware of mobile devices
in the sensing area. Hence, the participating mobile devices are asked to send their
position. This implies that each mobile device has to frequently activate its location
sensing module and its transceiver to report the current position. In this thesis, we
consider a different approach in which we remove the burden of localization and position
update from the participating mobile devices to the PS servers. Below, we describe the
system model before we formalize the investigated problem.

2.2 Problem Statement

The traditional position update protocols face many problems such as energy consump-
tion on mobile devices, latency update, network overhead and low accuracy. Several
approaches have proposed and addressed those issues. Due to the tradeoff between the
energy efficiency and other properties of indoor positioning, implementing an energy-
efficient localization system is one of the biggest challenges. The main objective of
this thesis is to tackle the problems with the existing indoor positioning systems (IPSs)
through designing and implementing of an indoor occupancy monitoring. In this section,

21



2 System Overview

we will define the problems of typical IPS systems in terms of the energy overhead on
mobile devices due to frequently sense their location, and the incurred latency.

2.2.1 Energy Consumption

Mobile devices typically consume a large amount of energy during the process of updat-
ing their position. The source of energy consumption can be divided into three sources:
First, the IPS requires frequently to sense the position in order to update its current
position which leads to power consumption by the used sensor and some localization
algorithms use many sensors to navigate on the map. In terms of energy consumption,
sensors can be categorized into two categories: 1) sensors that consume higher power
such as the Wifi module and the GPS sensor, and 2) sensors with lower power consump-
tion such as the magnetometer sensor which is used to measure the orientation, and
the accelerometer sensor which is used to measure the speed of the object. Both of the
accelerometer and the magnetometer sensors are used to for localization.

Most approaches focus on the energy consumption of the energy-expensive sensors
and on reducing the need for reading data from high-power sensors by exploiting the
map information, floor plan and using the low-power sensors and predicate the next
positions. Few approaches that take into consideration the power consumption on the
low-power sensors (e.g. [KBBN11]). The second source of energy consumption is that
IPS frequently sends current position as an update message to the PS server. The power
consumption due to sending the update message is higher than others operations. Thus,
many researchers strive to reduce this energy consumer. For example, dead reckoning is
an efficient approach that tackled this issue via employing predictions.

Finally, the power consumption due to the computational operations is another source of
energy dissipation. Compared to the two previous consumers, the computation’s energy
consumption can be ignored. Since energy consumptions is an important metric that has
to be considered during the design of a position update system, several research work
has been performed from different perspectives. For example, Leonhardi and Rothermel
[LR01] study and classify a class of update position protocols which reduce the energy
consumption by reducing the number of update messages. The authors in [KBBN11]
propose a management sensor strategy in order to reduce the power consumption via
controlling and scheduling the tasks of running the sensors on mobile devices to fix
the position. Alternatively, the authors in [BDR13] describe an opportunistic update
strategy. The proposed strategy reduces the power consumption that is consumed on a
mobile device by utilizing a Markov algorithm. This algorithm predicts the next coming
traffic in order to send the update message with normal traffic instead of activating
the 3G network module to send the update message. To sum up, many efforts have
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been achieved to address the problem of high power consumption on mobile devices.
However, mobile devices still have to consume an amount of energy update their position.
In this thesis, we propose an opportunistic algorithm which exploit the already-existent
WiFi traffic to enable the PS server from localizing the participating mobile devices.
Accordingly, the burden of localizing mobile devices is completely relieved from the
mobile devices side.

2.2.2 Latency Update

In particular, clients send queries to the PS server asking for data. If the server has no
fresh position data, it can not determine the possible candidates to perform the required
sensing task. Then, the PS server waits the available mobile devices for a certain time to
send position updates. If we consider our proposed solution, we find that the PS server
continuously perform localization, assuming unlimited energy source allocated for the
server. Hence, the server will always retain fresh information about the users distribution
in the sensing area. Formally, we can define the attacked problem as follows.

minimize
m∑

i=1
(Ec(i) + Es(i) + Eu(i)) (2.1)

minimize
m∑

i=1
(D(i)) (2.2)

subject to

Ps = Pcurrent ∀m (2.3)

The terms Ec, Es, and Eu denote the energy consumption required to perform localiza-
tion computations, position data acquisition, and transmitting the position to the PS
server, respectively. Thus, Equation 2.1 describes the main objective of reducing the
energy consumption due to the different sources. This reduction should be achieved for
the m mobile devices participating in the sensing task. Similarly, Equation 2.2 denotes
the objective of reducing the incurred delay D due to waiting for the mobile devices to
send their position updates. These two goals should conform with a quality condition,
give by Equation 2.3. In this equation, we declare that the position of a mobile device
stored at the server Ps should be the same as the actual current position Pcurrent of this
mobile device. Below, we explain the well-known indoor positioning methods before we
introduce our proposed method in the next chapter.
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2.3 Indoor Positioning Systems

Indoor Positioning System (IPS) is a user location tracking system of indoor environments
like such as in a university or a hospital. As illustrated in Figure 2.2, the indoor
positioning system consists of three components. The first component is a Localization
Sever (LS) which contains a secondary copy of location information for all mobile objects.
The secondary copy is used by the LS to answer the incoming queries by the clients. A
second component is a mobile device which has the primary copy. The primary copy is
read directly from the position sensors. To sense a position on the mobile device, several
techniques are used in indoor position systems as explained in the subsection 2.3. The
server and mobile devices run a position update protocol to sense the position on mobile
devices and an update message is sent to update the secondary copy on the server. The
network communication, for instance, between the mobile device and the existing WiFi
network is used to send an update message in order to update the primary copy. The
last component is the client application which inquires about the position information of
a mobile device.

The huge amount of update messages causes many problems such as consumption of
the energy resources on the mobile device and the network overhead. Hence, the key
challenge of IPS is to overcome these problems and achieve a higher accuracy. In the
following subsection, the components and the general structure of the IPS as well as the
update protocols will be presented.

2.3.1 Location Servers

As illustrated in Figure 2.2, the LS runs a position update protocol to manage the
location information of the mobile devices in a certain geographical area. The location
server stores a secondary copy that comprises the location information about mobile
objects such as the speed of the object, the “(X,Y)” location coordinates as well as
information about the region such as name and address. Moreover, LS is deployed
on the cloud and provides an API to allow clients to query the current position of a
mobile object. With Public Sensing system, location server is deployed on the top of
PS server to construct the map of available mobile devices in a certain geographical
area. In order to synchronize the update process between the secondary copy on the
LS and the primary copy on the mobile object, several approaches have proposed and
implemented a position update protocol. The next subsection describes the classes of
the update protocols.
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Figure 2.2: General Structure of the IPS

2.3.2 Update Position Protocols

The mobile object senses its location (primary copy) and updates a secondary copy
stored on a location server. A mobile object sends an update frequently to make sure
that the secondary copy on the location server is up-to-date, to guarantee a higher
accuracy and lower latency delay. Sending the update for each sensing position results
in more energy resource consumption on mobile devices and consuming the network
bandwidth. According to [LR01], the update position protocols are classified into three
types: (1) querying update protocol which the LS asks the mobile device for sending
update whenever the queries about information location of the mobiles are received,
reporting update protocols which the mobile device frequently send updates to the LS
and hybrid update protocols which both aforementioned types are combined.

25



2 System Overview

2.4 RSS-Based Technique

A radio wave travels from a source to a destination in all directions and in a straight
line in the free space. The traveling radio wave may be reflected by barriers in indoor
environment which cause signal path loss and signal fading. Hence, the power of the
signal is lost during the traveling between the source and the destination. The lost
power varies depending on the distance and the barrier in the way of the signal to
the destination. To model the energy loss of the received signal, the term Received
Signal Strength (RSS) is used. The advantage of using RSS that it supports and can
be measured by the most of the commercial wireless network devices. Therefore, the
RSSI is used for various purposes. For example, RSSI is used to measure the quality of
network link. Moreover, RSSI value is specified in – db which is used to implement a
localization system.

The RSS-based method has a few disadvantages: (1) RSSI has a slight linear relation
between the RSSI and distance, (2) The measurement of RSSI is unstable and (3) The
RSSI at the same point can be changed from time to time due to the multipath and
presence of the barriers in an indoor environment such as walls, closed doors, human
bodies and furniture. Thus, key challenge to use RSS-based for the indoor position is to
overcome the problems of the RSS-based technique by utilizing the vectors of RSSI that
are collected from multiple APs. The difference of the RSSI measurement from multiple
APs can be utilized to characterize and to describe a certain physical location. There are
two methods to model the RSSI in order to describe the information of the user position,
including the radio propagation modeling methods and the fingerprint-based method.

2.4.1 Radio Propagation Modeling

The distance between a mobile object and a known position reference point (e.g. AP)
can be presented as a model. Such a model describes the relation between the RSSI
and the distance. The basic model of radio propagation modeling is given as denoted by
Equation 2.4.

(d) = P (d0)[dBm] + 10log( d
d0

) = PT − RSSI

d = d0 ∗ 10log(P − RSSI − A

10n)
(2.4)

where P (d0): the RSSI value at a reference distance that is taken during the calibration
phase, typically 1 meter,
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d: the distance between the source and destination,

d0: reference distance A = Pathloss(d0), usually 1 meter

PT : the transmitted power,

n : path loss exponent, typically 2 for free space,

RSSI: the runtime RSSI at the unknown position.

Most of the WLAN cards have omnidirectional antennas. As illustrated in Figure 2.3,
the estimated distance between a sender and a receiver represents the radian of the
circle (r) where the position of the mobile target is estimated as a point located on the
perimeter of the circle. The estimated distance can be formulated as

r = X2 − Y 2. (2.5)

Figure 2.3: 1D estimated position

To estimate the exact position of a mobile device, the radio propagation modeling needs
at least three nodes. In general, there are two methods to estimate the position which
are triangulation and trilateration methods which is which an alternative method to the
triangulation methods.

2.4.1.1 Triangular

Triangulation method uses the geometric knowledge to estimate a node position. As
shown in Figure 2.4, the method requires at least three reference nodes whose position
is known (N1,N2 and N3) and a fourth point (target point T) whose location needs to
be calculated. The distances from T to all three reference nodes are measured. Each
distance from T to Ni is presented as a circle. The exact location of the target point is
estimated as the intersection of three circles.
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Figure 2.4: triangulation estimated position method

Moreover,the triangulation method has been extended to trilateration method where
more than three nodes are used for calculating the user location which shows improving
in the accuracy of localization. For more details about trilateration [Far11].

The drawbacks of the triangulation method,that a Line Of Sight (LOS) is required to
be able to measure the distance or the angle. Hence, the triangulation cannot be used
in the real world because of the presence of Non-Line Of Sight (NLOS) in an indoor
environment. Thus, alternative method is proposed which is Location Estimation Based
on Location Fingerprinting as explained in the next section

2.4.2 Fingerprinting-Based Localization

Location estimation based on Fingerprinting-based location is one of the recommended
method for indoor positioning. This method is implemented as a non-line of sight
mitigation approach for an indoor positioning. The implementation of this method goes
through two phases: (1) offline phase (training phase) and (2) on-line phase.

Off-line Phase: During the off-line phase, the radio map of a certain geographic area
is constructed by dividing the area into small cells. Inside each cell, a reference point
(RPi) is calibrated by the average of RSS values of surrounding APs which is known
as a fingerprint of Reference Point (RP). For each RPi, an RSSI vector is stored in the
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database known as a fingerprint table or radio map. RPi = ⟨ψi0, ψij, ψiN , θi⟩ , N=1,2,
. . . , n. Where n is the number of APs; ψij is the average of RSSI from APj, θi contains
information about the calibration point such as the (x, y) physical coordinates location
and the orientation which can integrate the direction (north,south,east and west).

Online phase: During the on-line phase, the mobile collects the average RSSI values of
the available APs. The RSSI values vector (Y) is collected similar to the offline phase.

Y = ⟨ψ0, ψ1, . . . , ψn⟩ (2.6)

The user position can be estimated by comparing the on-line measurement Y with
RPs in the radio map. There are several approaches are proposed for calculating the
user position such as KNN which is a deterministic-based approach for calculating the
user location by calculating the centroid of the k nearest neighbors. More details are
discussed later in Chapter 4.

2.5 Related Work

In this section, some outstanding approaches for occupancy detection and localization
are discussed. An approach – which significantly affects the energy-efficient of the
position update protocol – utilizes the human daily activities, map information. For
example, dead-reckoning is one of the efficient positioning updating protocols with
prediction function for reducing number of update messages. This approach draws
research interests to improve the performance of the prediction function. For instance,
the authors in [LNR01] describe a map-based dead-reckoning protocols for updating
location information where both the mobile device and the server navigate on the
map. The map dead-reckoning predicts the future course on the map by utilizing the
information of the map. The information includes the intersection and information of
the geographic location, as well as the last update current status of the user such as the
estimated direction and speed. By utilizing map information, the performance of the
prediction function is improved, however, the number of update messages decreases,
while the error threshold value increases. This means the energy efficient is improved
but localization accuracy are decreased.

Other approaches which studied the behaviors and the activities of human in order to
improve the predication function. For example, the authors in [AGC13] described an
approach for improving the performance of the prediction function. The authors uses
Markov processing for predicting the user location for a future time by utilizing the
human daily activities. The approach achieves in 8 hours, 69% accuracy for predicting
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the user location and significantly improves the energy efficient. However the accuracy
is not taken into account.

The approaches mentioned above attempt to improve the energy consumption of posi-
tioning update protocol by reducing the number of the update messages. However, those
approaches do not consider the burden of energy consumption on the position sensor of
the mobile device during the position update operation. Thus, several energy-efficient
update position protocols have been proposed to address the energy consumption of the
positioning sensors. The main principle of improving the energy efficient is by reducing
the need of querying the position from high power positioning sensors such as GPS ,
GSM, and WiFi. For example, [CCR10] exploited the low power sensors such as the
accelerometer sensor and the compass sensor. However, the approach shows an improve-
ment in the energy efficiency, but the energy burden on the low power sensors is still not
ignorable as the sensors are turned on for a long time. Thus, the authors in [KLGT09]
describe a sensor management strategy which fully controls and schedules the power
on and power off of the sensors. Besides that, it describes a robust movement-aware
strategy and heading-aware strategy. Comparing to the other approaches, this approach
achieved a higher energy efficiency. In general, the performance improvements of the
mentioned approaches are based on the prediction algorithm and the predefined error
threshold. For example, the number of update messages decreases as the threshold
value increases but the localization accuracy is decreased and vice versa.

To overcome the trade off between the energy efficiency and the localization accuracy,
occupancy monitoring of the building and localizing the mobile devices have to be been
considered. For example, the authors in [BXN+13], present an occupancy-based HVAC
actuation using existing WiFi infrastructure within commercial buildings where the
occupancy of the HVAC zone is monitored by capturing the traffic from mobile devices
at the AP level. The approach also utilizes the RADIUS server which is as a part of
the WPA2802.1x protocol for acquiring information about the mobile devices. RADIUS
server supports the information about the MAC address and indicates when the mobile
device moves from AP to AP. The accuracy of the approach was 85% of the time, the
estimation was true.

Another occupancy monitoring is presented in [MRNC11] which namely calls implicit
occupancy sensing where existing IT infrastructure. The approach requires additional
hardware and software in order to monitor the occupancy of a geographic area by the
mobile devices. The approach consists of three tiers. In tier I, the MAC and IP addresses
are gathered from the existing IT such as routers and AP. In tire II, additional software
is required for monitoring the activities on the existing IT, such as the keyboard usage
and the mouse movement and the PC activity monitor. In tier III, additional hardware
is installed, such as webcams and other sensors. In this thesis, we strive to improve
the occupancy monitoring in approach [BXN+13] by improving the detection function
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to be able to detect both associated mobile devices and un-associated mobile devices.
Afterward, the exact user position is calculated instead of predicting the existing of the
mobile device. Moreover, we avoid the utilization of additional hardware devices.
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As earlier highlighted, the primary contribution of this thesis is the exploitation of the
already-existent WiFi traffic to monitor the occupancy of a certain area. Hence, we
investigate, in this chapter, the WiFi traffic to check the applicability of the proposed
method. To better understanding the network traffic in wireless networks, an overview
of WLAN standards are explained, before we introduce the experiments of measuring the
WiFi traffic. Afterward, we classify this collected traffic into: (1) association messages
and (2) normal traffic emerges from the typical mobile Apps such as Youtube and
Facebook.

3.1 WLAN standards overview

The IEEE 802.11 standard is an implementation of WLAN which specifies the media
access control (MAC) and the physical layer (PHY) of the WLAN. IEEE 802.11 supports
various frequency bands (e.g. the data rate at 2.4 GHz is up to 2 Mbps). In general, IEEE
802.11 uses several modulation techniques such as Frequency Hopping Spread Spectrum
(FHSS), Direct Sequence Spread Spectrum (DSSS), and Infrared (IR). There exist several
variants of the IEEE 802.11 standard, most of them have 14 channels. The availability of
such channels differ based on the country regulation [Pri13]. For instance, all channels
are operable in Japan while most other countries permit the use of all channels except
channel 14. Below, we briefly present two examples of these variants.

3.1.1 IEEE 802.11a Protocol

Technically speaking, IEEE 802.11a uses the orthogonal frequency-division multiplexing
(OFDM) modulation technique. Furthermore, it employs the Wired Equivalent Privacy
(WEP) and the WiFi Protected Access (WPA) security protocols. It has a data rate up to
54 Mbps in the 5 GHz band. The 802.11a protocol uses 12 non-overlapping channels in
the USA and 19 non-overlapping channels in Europe [Ban13].
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3.1.2 IEEE 802.11b Protocol

Specifically, the IEEE802.11b protocol is the most popular variant of the IEEE 802.11
standard that is adopted and built into many mobile devices nowadays. This fact arises
to numerous advantages of the IEEE 802.11b protocol, including the lowest cost, the
relatively long signal range (i.e. 115 feet), and being not easily obstructed. IEEE 802.11b
uses high rate DSSS modulation technique. The maximum data rate of IEEE 802.11b
is 11 Mbps per AP which is less that provided by the 802.11a protocol. Moreover, the
802.11b protocol uses only three out of 14 non-overlapping channels [Ban13].

Recently, IEEE released two variants, namely 802.11g and 802.11n. Both protocols shows
better performance in terms of the signal range and the offered data rate. However, we
confine our discussion, in this thesis, to 802.11b protocol which has been utilized during
our experiments. Generally, the 802.11 standard supports two modes, including the
authentication mode and the non-authentication mode. In fact, there are three types of
802.11 frames, namely management frames, control frames and data frames.

Management Frames The IEEE 802.11 supports two scan modes to discover the
nearby APs, including passive and active scan modes. In the former mode, the station
(STA) keeps listening for periodic beacon frames which are broadcasted by the surround-
ing APs. The mobile device selects an AP with the strongest signal. Subsequently, the
mobile device negotiates to associate with the selected AP. Authentication frames and
association frames are exchanged during the association. After association with an AP
is successfully done, the STA can use both active and passive scan. In the active scan
mode, a client WiFi (e.g. mobile device, laptop) broadcasts probe request frame on every
channel to scan the nearby APs. The frame is also used in client roaming when the
client is moving between the APs. The AP then responds with probe response frame to
the client. The negotiation to associate is started. While walking between APs inside a
building, only re-association request frames and re-association response frames are sent
between the station and a new AP as well as disassociation frame is sent to the old AP.

Control Frames The 802.11 control frames are used to manage the traffic and to
deliver the data between a STA and an AP. For instance, to avoid the packet Collision,
the Request To Send (RTS) / clear To Send (CTS) mechanism was proposed. The STA
or AP sends RTS to ask the destination whether it is possible to receive the data or
not. Then, the destination station replies with CTS to inform that it is ready to receive
the data. After receiving the CTS, the sender forwards the data frame whereas the
receiver acknowledges the received data frame by using immediate Acknowledgment
(ACK) frame.
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Data Frames The data frame is the last types of 802.11 frames which carries the
payload of higher level layer in the frame body. Important to realize that the data frame
differ according to its function. In the sequel, we perform an experimental study to
investigate the various WiFi frames in practice. Several experiments have been done to
check the amount of daily traffic, including the three classes of WiFi frames.

3.2 WiFi Traffic Study

For studying the network traffic, several experiments have been carried out using an
IEEE 802.11b WiFi network. In each, the wireless network traffic between a mobile
device and the surrounding APs has been measured. The study focuses on specific
WiFi frames which are used by the different localization methods. For example, in the
time-based localization, frames such as RTC/CTS and DATA/ACK have to be collected.
Several research articles investigated the use of such frames to design a positioning
method [HW08]. In this work, four ways RTS/CTS and DATA/ACK are used to calculate
the round time trip. Knowing that most of the WiFi devices can measure the RSSI,
the following study gives more attention to all the up-link traffic from a mobile device,
including the normal traffic and the broadcast traffic.

3.2.1 Experimental Setup

To capture and analyze the network traffic in the low-level layer, the IEEE radiotap
header – which is a format mechanism to provide more information about the various
IEEE802.11 frames such as MACtimestamp and RSSI – is parsed. Important to realize
that these headers are not part of the standard 802.11 frame format, but are additional
information added at the time of capture to provide supplementary data about the
frames captured. Indeed, the IEEE radiotap header is more flexible than other headers
like Prism and AVS header format [Ber16]. In order to capture radiotap header, the IEEE
802.11 wireless card has to work in the monitoring mode which also allows sniffing all
the packets in the surround area. The monitor mode is inherently supported in some
wireless network interface card (WNIC) where a machine that operates in a monitor
mode is running as a listener.

For this study, we used the Wireshark tool installed on an Apple MacBook. The Wireshark
tool is an open source packet sniffing and network analyzing tools, and offers visualiza-
tion analyze as well. The MacBook laptop has been configured to work in monitoring
mode. Furthermore, several experiments have been carried out in a building of three
floors (Informatics building 38, Stuttgart University) where the APs are deployed. We
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Figure 3.1: Experimental setup

employed a Google Nexus 4 smartphone as the targeted mobile device. The MacBook
acts as a third party device which listen to the traffic between the mobile device and the
various APs. Figure 3.1 shows the scenario that have been used in the experiment to
perform the network traffic study.

During the experiments, several scenarios have been examined in terms of the mobility
of the mobile device and the activities running on the mobile device. For studying the
network traffic, four scenarios have been considered under different conditions.

• Scenario 1: mobility without activities (only background services).

• Scenario 2: mobility with activities (e.g. web browsing, video streaming).

• Scenario 3: stationary without activities.

• Scenario 4: stationary with activities.

In the stationary scenario, we collect uplink packets while the mobile device is fixed.
Alternatively, the second scenario consider collecting WiFi packets during the movement
of the mobile device. Normal activities were running on the mobile device such as
browsing Internet (e.g. YouTube, Facebook) and some services were also running in the
background. The capture period continues for ten minutes for each experiment. All the
traffic in the air has been captured by the MacBook laptop. Later, the collected traffic has
been filtered using the MAC address of the Google mobile device. This filtering step is
crucial to consider merely the incoming and upcoming traffic from/to our mobile device
while discarding traffic from other sources. Specifically, the experiments have been
repeated four times. In each round, we consider one of the aforementioned scenarios.
In the following section, we analysis the collected packets.
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3.2.2 Traffic Analysis

In this section, the captured traffic during the experiments are analyzed. After filtering
the traffic, Wireshark statistics I/O Graph is used to visualize the results. For each
experiment, we delineate two figures to show the amount of probe request and the
normal up-link traffic as the following. Figure 3.2 depicts the association packets (also
known as probe requests) when the mobile device is moving and no activities are
running. As it can be seen in the figure, there exist plenty of wireless message due to
mobility. The movement of a mobile device forces continuous handovers between the
neighboring APs to maintain the wireless connectivity. Figure 3.3 demonstrates the
normal uplink traffic from the mobile device to the various APs with no activities are
running. Despite disabling the typical mobile applications, we found that tens of packets
are transmitted to the application.
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Figure 3.2: Scenario 1: probe requests

Figure 3.4 demonstrates the probe requests when the mobile device is moving while
activities are running. The figure shows plenty of messages for association even during
delivering normal traffic. Figure 3.5 depicts the normal uplink traffic from mobile with
running activities. Again, we found hundreds of messages transmitted to the APs due to
web browsing and video streaming.

Figure 3.6 shows the probe request when the mobile device is stationary and no activities
are running. As expected, the number of messages is dropped thanks to keep the
connection to a single AP. However, we note also the periodic behavior of the probe
request in this scenario. As shown in the figure, the probe requests are frequently
transmitted every approximately three minutes. Figure 3.7 depicts the normal uplink
traffic from the mobile device when no activities are running and mobile device is
stationary. Similarly, the number of messages is smaller than that in Figure 3.5.
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Figure 3.3: Scenario 1: normal uplink traffic
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Figure 3.4: Scenario 2: probe requests
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Figure 3.5: Scenario 2: normal uplink traffic
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Figure 3.6: Scenario 3: probe requests
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Figure 3.7: Scenario 3: normal uplink traffic

Figure 3.8 shows the probe requests when the mobile device is stationary and some
activities are running. The figures show extreme reduction in the number of probe
request due to being already connected to an AP. Alternatively, Figure 3.9 delineates
the normal uplink traffic from the mobile device when some activities are running and
the mobile device is stationary. We found also high traffic size due to uploading data
related to the running mobile applications.

Figure 3.10 depicts the RTS messages that are sent from AP to the mobile device during
mobility and running activities. As obvious in the figure, the peaks in the curve occur
during running all activities simultaneously. Similarly, Figure 3.11 shows the RTS
messages while the mobile device is fixed and no activities are running.
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Figure 3.8: Scenario 4: probe requests
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Figure 3.9: Scenario 4: normal uplink traffic
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Figure 3.10: Scenario 2: RTS messages
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Figure 3.11: Scenario 4: RTS messages

3.2.3 Discussion

In general, the IEEE 802.11 control frame such as probe request are broad-casted from
time to time as a bench of messages and it broadcasts on all channels. The amount
of the probe request frames is varied based on the setting and the state of the mobile
devices. The figures from the four experiments illustrate the amount of probe request
that are transmitted by the mobile device to check the connectivity to the deployed APs.
The traffic of probe request is increased if the user mobile moves between the APs and
the client roaming mode are active as shown in Figure 3.2 and Figure 3.4.

Furthermore, the amount of normal uplink traffic that is sent from the mobile devices
varied according to running activities on the mobile device. In the experiment, the
normal traffic measured in both cases when the mobile device was running activities and
without activities as depicted in the figures above. From the above figures and also by
analyzing the traffic of random mobile devices which were existing in the building during
running the experiment. The measurement results showed that in both cases when
there were running activities or not, there is sufficient traffic which can be exploited to
opportunistically monitor the occupancy of an area.

Important to mention that the obtained results of this study may be affected by several
reasons. For instance, we have monitored solely one channel. Furthermore, the back-
ground activities running in the mobile devices can be different from a mobile device to
another. Also, the background services and activities are different according to the OS,
such as Android, IPhone and Symbian. For these reasons, we repeated the experiments
three times. We found the average results show similar traffic size even when there are
no activities running on the mobile devices.
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To conclude, the normal traffic is shown to be sufficient to be utilized for developing an
opportunistic occupancy monitoring method. There are many services and application
that keep sending data when the mobile is not used. The result of the study shows the
feasibility of localizing the mobile devices by exploiting the existing traffic. For example,
as the dedicated results show that there is enough traffic that can be exploited to get a
good accuracy of RSSI measurements by averaging the extracted value for the threshold
duration such as 1 second. Therefore, the normal traffic can be captured from more than
one anchor and then a localization method is applied to calculate the user position.

42



4 Monitoring Occupancy

After validating the existence of plenty of WiFi messages in different scenarios, we
present, in this chapter, the proposed occupancy monitoring method for public sensing.
First, an overview of the proposal method is described. Second, we explain the packets
detection and data collection algorithms. Subsequently, we explain the estimation of
coarse and fine grained locations of mobile devices in a certain building. Specifically, we
strive to improve the accuracy of localization by applying different algorithms, including
compressive sensing and the k-Nearest Neighbors algorithm.

4.1 Overview

The traffic analysis motivates us to propose an occupancy monitoring algorithm that
exploits the already-existent traffic for monitoring the mobile device occupancy in
certain geographic area. The primary goal of the approach is to overcome the energy
consumption on the mobile device due to localization mobile during data collection
process in public sensing applications. To this end, the burden of location estimation is
moved from the mobile device to the server, as illustrated in Figure 4.1. As it can be seen
in the figure, the proposed occupancy monitoring method is implemented on top of the
basic sensing system and the localization process is entirely performed on the server.

According to the traffic analysis presented in Chapter 3 Referenceschapter:traffic, the
monitoring occupancy method is divided into two scenarios, namely fine-grained and
coarse-grained localization. The algorithm frequently checks if there are enough traffic
that guarantees highly accurate RSSI measurement. In other words, the algorithm keeps
observing the amount of collected RSSI measurements from the acquired data. If the
collected amount during an interval is above a threshold Dth, which is calibrated during
the offline phase, the first scenario is applied to estimate the user location. Otherwise,
the second scenario is applied, when there is no enough traffic but the server still receives
the RSSI only from the associated AP. This means that a single AP is used to estimate
the current position. Given n access points deployed in the building, then the collected
RSSI is expressed by ψr = [RSSI1, RSSIi, . . . , RSSIn] where RSSIi is the average of
RSSI that is collected by APi. The approach consists of two separately stages, including:
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Figure 4.1: PS architecture with incorporating the occupancy monitoring method

(1) detection and data collection which runs at the AP level for monitoring the occupancy
of the surroundings by mobile devices; and (2) positioning estimation which runs also
on the server for calculating the device’s location.

For better understanding the role of each algorithm, the approach is presented in
hierarchy layer. In bottom layer where the detection and data collection are running,
the monitoring occupancy is performed on each AP by detecting the mobile devices
in the surround area of the AP and then collecting the RSSI measurement for each
detected mobile device. In the upper layer, the RSSI measurement at the bottom layer
are collected and then a localization method is applied for calculating the fine-grained
position.

4.2 Detection & Data Collection

The algorithm – which runs on the AP – monitors the occupancy of an area by mobile
devices where it checks whether the mobile devices are associated with the AP or not.
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According to the connection type with the AP, the algorithm is designed to handle two
types of mobile devices which are: (1) associated mobile device which are already in
connection with an AP, and (2) unassociated mobile devices which are available in the
coverage region of an AP.

Figure 4.2 demonstrates the diagram of the proposed algorithm. It mainly consists of
three parts that includes the associated mobile device detection, the unassociated mobile
device detection and the measurement pool update. In the sequel, the role of each part
is described in more detail.

Updating pool

Kalman filter Measurement pool Sending update 
to the server 

Detecting associated mobile devices

Reading associated list 

Extracting mobile 
device  information 

Detecting un-associated mobile device

Monitoring traffic

Extracting mobile device  
information 

Figure 4.2: Detection of mobile devices and data collection
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4.2.1 Associated Mobile Devices Detection

The role of this handler is to detect and gather the RSSI of the associated mobile devices
with the AP by frequently reading the associated mobile device list on each AP where
the information of Wi-Fi devices such as data rate, RSSI, mac address, and channel are
found. The RSSI and MAC of the associated mobile devices are extracted by analyzing
the content of associated list on the AP. Each detected mobile device is reported to
the server by send an update message mi,j ∈ Ai, where mi,j is a mobile device j that
is detected by APi while Ai is the associated mobile devices list on APi. With only
detecting the associated mobile devices, accuracy of the occupancy monitoring is in the
space of the coverage area of the AP which is presented as circle. Thus, to improve the
accuracy, the AP have to handle the unassociated mobile devices as well.

4.2.2 Unassociated Mobile Device Detection

In this section, the detection and data collection of unassociated mobile devices is
described. The traffic analysis shows that there is enough normal uplink traffic and
broadcast traffic from the mobile devices. This traffic can be exploited to detect and
collect the RSSI of the unassociated mobile devices which can be seen by the AP. Thus,
the detection of the unassociated mobile devices is achieved by dumping the entire
flight packets in the surround area. Then, the dumped traffic is analyzed and filtered
for extracting the MAC address and the corresponding RSSI value of each packet, as
explained in detail in Chapter 5. The handler reports each detected mobile device to
the server by sending update message ni,j ∈ Ui, where ni,j is a mobile device j which
unassociated mobile that is detected by APi. With knowing the RSSI measurement at
more than two AP, the location of the occupant mobile device is estimated as coordinates
locations in side the coverage area of the associated AP which is performed by the upper
layer as discussed in the next sections

4.2.3 Measurement Pool Update

The last part aims to improve the quality of the collected data. The gathered data is
preprocessed and then are sent to the server. For example, a noise filter, referred to as
the Kalman filter, is applied. The Kalman filter improves the quality of measurements by
filtering out the noise. It also tracks the changes of mobile devices based on the previous
measurement. As discussed in Chapter 2, the location can be estimated as a point by
using RSSI measurement value from one AP. To calculate the exact user position, the
RSSI from more than two APs is required. To have better understanding, Figure 4.3
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shows an example of how our approach can gather the RSSI for the mobile devices and
sends them to the server.

𝐴𝑃#

Un-associated

Associated

𝐴𝑃$

𝐴𝑃% 𝐴𝑃&

Figure 4.3: Example of the mobile devices detection

As it can be seen in the figure, each AP detects the mobile device and collects data
about the mobile device in the range of their coverage which is represented as a circle.
For instance, AP1, AP2, and AP3 report the RSSI value of the mobile device Tt as
unassociated device such as ni,t, i = {1, 2, 3}. While AP4 reports the RSSI of mobile
devices as an associated device (e.g. AP4 sends m4,t) while ni,t and mi,t are the update
message which hold the MAC address and the RSSI measurements. The server received
all the update messages from the APs and then reconstructs them as a record which is
known as runtime measurement ψr = {ψ1, ψ2, ψi, · · · , ψn}, Where ψi is the RSSI that is
reported by APi. In the next section, we will discuss the localization methods that use
RSSI to calculate the user position.

4.3 Position Estimation

In this section, the positioning estimation algorithm is presented. This algorithm runs on
the server for calculating the user location. To calculate the user position, in this thesis,
the RSS-based fingerprint is applied which has accepted as an effective method in the
indoor positioning comparing to the propagation modeling method. Figure 4.4 shows
the architecture of the monitoring occupancy algorithm which consists of two phases.
These phases comprises (1) an offline phase where the radio map is constructed and
then is clustered into small clusters, and (2) an online phase where the data is gathered
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from multiple APs for calculating the exact position using the proposed localization
method.
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Figure 4.4: Architecture of the proposed occupancy monitoring method

4.3.1 Offline Phase

The aim of this phase is to construct the radio map and use it during the online
phase. Figure 4.4 illustrates the offline phase which consists of two stages. These stages
includes construction of the radio map and RSSI clustering using the affinity propagation
algorithm for operating on the radio map in order to improve the accuracy by clustering
the reference points (RPs) in the radio map based on the RSSI.

48



4.3 Position Estimation

4.3.1.1 Radio Map Construction

In the offline phase, a radio map of the monitoring area is obtained. Figure 4.5 illustrates
the diagram of radio map construction for our approach. The radio map of the indoor
environment is constructed and stored in the database. First, the geographic area of
the indoor environment is divided into a small area. Each small area has a RP which
is identified by its coordinates (X, Y ) as discussed in Chapter 2. The distance between
each point is selected to be two meters. For example, if a coordinate location starts with
(1,1), then it will increase to (1,3) and (1,5).

Estimate positionData collection

(?,?) RSS1,RSS2,.. Localization
algorithm
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APn
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Construction of radio map 

RSSI	i
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Figure 4.5: Radio map construction

In our approach, the APs measure the RSSI of mobile devices and send the measured
RSSI to the server. For each RPi,j, at the coordinates location (Xi, Yj), the average of
RSSI for each orientations is collected from the surround APs. Integrated radio and
the orientation map has shown improving the accuracy compared to radio map with
averaging the RSSI across different orientations. The integrated radio map takes into
account the obstacles of the human body. The collected RSSI is constructed as a training
record by adding information about the RP such as coordination location (X, Y ), and
the orientation. The collected average of RSSI has to be unique to characterise the RP
in the radio map.

RPi = X, Y, direction,Ψi,ki = 1, . . . , N ; k = 1, . . . L (4.1)

Where Ψi,k is the average of RSSI at RPi which is reported by APk; k = {1, · · · , L} and
N is the number of RPs in the radio map, L is the number of APs in the training record.
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The same procedures are repeated until all RPs in the radio map are visited. In the end
of the training phase, the radio map is constructed as a set of training record such as

Ψi,j
=


Ψ0,0 Ψ0,1 Ψ0,j . . . Ψ0,L

Ψ1,0 Ψ1,1 Ψ1,j . . . Ψ1,L

. . . . . . . . . . . . . . .

ΨN,0 ΨN,1 ΨN,j . . . ΨN,L

 . (4.2)

The radio map is stored in the database and used for calculating the user location during
the online phase.

4.3.1.2 Affinity Propagation

Affinity propagation is a clustering algorithm that was proposed in [FD07]. The algorithm
is used for clustering the data points such as a set of a training data by exchanging the
update messages between the data points. The aim of using Affinity propagation, in this
approach, is to cluster the RPs in the radio map. This clustering improves the accuracy
and reduces the number of RPs that will be used for calculating the user position during
the online phase. In addition, using affinity propagation reduces the number of RSSI
that is required during the online phase. Next, the procedure of the algorithm and how
affinity propagation operates on radio map is described.

As an initialization, the constructed radio map ψ, in the above section, is first represented
as a matrix of size ψ ∈ RN,L where N is the number of RP in the radio map and L is the
number of the APs in each RP. Second, the algorithm calculates the similarity between
all RPs in the radio map and creates a square similarity matrix S ∈ R(N,N) where N is
the number of RP in the radio map.

S(i, k) = −||RPi −RPk||2 ∀ i, k ∈ {1, 2, · · · , N} (4.3)

where
||RPi −RPk||2 (4.4)

The notation ||.|| denotes the Euclidean distance which is used for measuring the
similarity between the candidate exemplar and other RPs in the radio map. Third, the
idea of affinity propagation is to label the RPs with a preference P = s(i, i). The RPs
with P are more likely to be selected as an exemplar. Thus, the algorithm requires a set
of data points to be selected as center points for each generated clusters. So, if the center
point is selected from the actual data points, the selected center is called “exemplar”. In
this approach, the algorithm is initiated by assuming that all the RPs in radio map matrix
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as potential examples [TTZT13] which is done by initialing all RP with a preference
value which is calculated by taking the median of similarity matrix S such as

P = s(i, i) = median
(i,j)∈1,2,...,N

{S(i, j)} (4.5)

Fourth, there are two update messages: (1) responsibility update message which is
represented as matrixR ∈ RN,N and (2) availability update message which is represented
as matrix A ∈ RN,N . These messages follow update rules and recursively exchange
between the RPs until the well-suited examples are selected as follows. The responsibility
message R(i, k) is transmitted by RPi to each candidate potential exemplar RPk. The
responsibility message transmits the accumulative evidence for the RPk to be selected
as a fitness exemplar for RPi with taking into account all the other potential exemplars.
The responsibility message R(i, k) is then calculated by following this update rule

R(i, k) = S(i, k)−max
k‘ ̸=k
{A(i, k‘) + S(i, k‘)} (4.6)

where A(i, k) is the availability update message of RPk for RPi. As explained later,
S(i, k) is the similarity matrix between the RPi and exemplar RPk. If the i ̸= k, then the
R(i, k) is set to the input similarity between RPi and RPk minus the maximum similarity
between the other RPs and exemplar RPi pulse R(i, k). With the first iteration, the
initial value of A(i, k) is equal to zero. In the later iteration, the availability message
is decreased if the RPi is assigned to other exemplars and may drop under zero. The
negative A(i, k) leads to remove the RPk from the competence.

If i = K, the R(i, i) is defined as self-responsibility that is set to the input preference P
which is calculated by using Equation 4.5. The self-responsibility describes that RPk is
selected as well suited exemplar. The second message is the availability message A(i, k)
which is sent from each potential candidate exemplar RPk to other RPi. The availability
message indicates how the exemplar RPk is well-suited to be selected as exemplar for
RPi. Hence, The availability message is calculated by following this rule

A(i, k) = min

0, R(k, k) +
∑

i‘ ̸=(i,k)
max{0, R(i‘, k)}

 (4.7)

The availability message A(i, k) is set to the self-responsibility plus the sum of the
positive responsibility update R(i‘, k) that exemplar K receives from RPi‘. Similar to
the self-responsibility, the availability message defines self-availability which reflects the
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accumulative evidence how well-suited RPk to serve as exemplar for RPi based on the
positive responsibility that is sent by other RPi. The self-availability is calculated by

A(k, k) =
∑

max
i‘̸=k
{0, R(i‘, k)} (4.8)

The two messages recursively pass among the RPs and both mentioned update rules
are followed until a suitable set of exemplars is found. In addition, Tian et al. [TTZT13]
describe damping factor as another important factor. The damping factor is a number
between 0 and 1. This factor is used for avoiding the numerical oscillations while
updating the message above. So, the mentioned above messages are set to (λ)∗ time the
value and (λ− 1) time the value from the previous iteration. The update is calculated, in
this thesis, by using the previous update rule with the following that used in [TTZT13].

Ri = (1− λ)Ri + λRi−1 (4.9)

Ai = (1− λ)Aj + λAj−1 (4.10)

The update messages recursively are transmitted between the neighbor RPs until there
is no change in the Ri and Ai or not exceeds 300 iterations according to Tian et al.
[TTZT13]. In this thesis, the number of iteration is set to the maximum 300 iterations.
Finally, after the iteration is done, the exemplars are selected by checking if the self-
availability update message plus the self-responsibility are positive such that

a(i, i) + r(i, i) > 0. (4.11)

Specifically, RPi ∈ H where H is a set of exemplar RPi. Each exemplar is a center point
for cluster Ci which holds the set of RPs. The RPs in the radio map is assign to the well-
suited cluster by calculating the Euclidean distance between the RP and all exemplary
RPi ∈ H. Then, the RP is added to the cluster that its exemplar has a minimum distance.
The output of this algorithm are set of exemplars and their corresponding cluster that
are used during the online phase in coarse localization.

52



4.3 Position Estimation

4.3.2 Online Phase

In this phase, the server collects the detected RSSI on each AP and then calculate
the exact location. In this work, the positioning estimation algorithm initially defines
two threshold values that include Dth which determines the number of RSSI which
have been collected during the Dperiod

th . The selected threshold value have to guarantee
enough accuracy of the RSSI. Hence, the algorithm frequently checks if the number of
collected RSSI exceeds the threshold value, then the proposed localization method can
be applied. To calculating the position for RSS-based fingerprint technique, Possible
methods are classified into three approaches according to [TTZT13].

• machine learning approaches such as K-Nearest Neighbor (KNN) [Far11] (see the
next section).

• probabilistic-based approaches such as Bayesian theory [SMRP] and kernel theory
[KPV07].

• other approaches such as Compressive Sensing (CS) (see Section 4.3.2.2).

In this thesis, we consider both of the KNN and the CS methods, as explained in the
next section.

4.3.2.1 K-Nearest Neighbor Method

The K-Nearest Neighbor method is used to estimate the user’s location for the RSS-based
fingerprint technique by matching the run-time RSSI vector and the RP in radio map.
The KNN is an extension of the Nearest Neighbor (NN) algorithm where only one RP is
used for estimating the position. Figure 4.6 illustrates the diagram of calculating the
user position by using KNN algorithm. First, the distance between the run-time RSSI
vector of the target mobile devices ψr and the RPs in the radio map is calculated by
using a similarity method such as Euclidean distance.

RP = min||ψi − ψr|| (4.12)

where ψi is RSSI vector at RPi, ψr is the runtime RSSI vector. The term ||ψi − ψr|| is
the Euclidean distance which calculate by

di =
√√√√ n∑

(j=0)
(ψi,j − ψr,j)2. (4.13)

53



4 Monitoring Occupancy

Runtime RSSI

Radio map

Calculate Euclidean 

distance between 

runtime RSSI and RPs

Find K  RPs with 

minimum distance

Centroid the user 

position among the 

selected  K RPs

P(X,Y)

Figure 4.6: The KNN algorithm

To improve the location-estimated accuracy, the KNN algorithm is proposed in which
the accuracy is improved by selecting K RPs instead of a single RP and the user location
is estimated by calculating the centroid location between the K RPs which have the
minimum distance such that

(X, Y ) = 1
K

K∑
i=1

R(Xi, Yi) (4.14)

where R is a set of the K selected RPs that has the minimum distance with ψr. Second,
K RPs with minimum distance is selected.

The key challenge of the KNN method is to select the well-suited K for the environment
which achieves the highest accuracy. The well-suited K can be determined during
the calibration phase as it depends on the environments. As investigated in [LSDR],
the accuracy of KNN can improve by using the weight of RP instead of K which is
implemented in the extension Weighted K-nearest neighbor (WKK) algorithm.

P = 1∑
d

K∑
i=1

R(Xi, Yi) (4.15)

Although the WKNN method improves the accuracy of the estimated location, but it is
still not sufficient. Moreover, there are still several challenges and limitations to achieve
high accuracy in the RSS-based fingerprint, including:

• a different RSS measurement for the same particular location, every time the
measurement is taken.
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• RSSI vectors sever from several noises such as missing data and change in the
environment which highly affects the location-estimated accuracy.

Thus, To overcome this problem and improve the accuracy, a machine learning methods
is applied in this thesis as discussed in the next section.

4.3.2.2 Compressive Sensing

Compressive Sensing (CS) is a signal processing technique that provides a novel frame-
work to reconstruct sparse signals. The CS theory is used in different areas such as
signal processing, image compression, and localization. In [FAVT10], the compressive
sensing is used to improve the accuracy location-estimated by utilized the advantage
that sparse location in space can be recover by using L1 minimization algorithm.

Figure 4.7 shows the CS localization algorithm has two phases including an offline and
an online phase. The offline phase groups the RPs in the radio map into small clusters
using affinity propagation algorithm. The online phase has two stages consisting of
coarse localization and fine localization where the CS algorithm is applied for recovering
the missing sparse data and estimating the position of the mobile users.

On-line phase

Coarse 
localization

Runtime 
RSSI reading

OrthogonalizationAP detection

L1-norm
minimizationFine localization

Offline phase
Clustering 
(affinity 

propagation)

Construction of 
radio map

RSSI

Figure 4.7: Compressive sensing diagram
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During the online phase, the average of RSSI values for mobile devices at the unknown
position are collected from each APs by the server as explained in section 4.2.

ψr = [ψr1, ψri, . . . , ψrL]T (4.16)

where ψri is the average of RSSI on the APi.

Coarse Localization The primary goal of estimating a coarse localization is to reduce
the set of RP that will be involved later in the fine localization. This leads to reduce
the required memory to perform the fine localization. For instance. In [FAVT10], the
coarse localization operates on mobile devices where the similarity between the set of
exemplars H and run-time average RSS ψr are computed in order to select the close
cluster. the selected cluster is send back to the server and then their corresponding
clusters are downloaded from the server for calculating the user position during the fine
localization as explained in the next section. In our approach, the coarse localization
operates on the server. So, there is no need to wait for downloading the selected
clusters.

Furthermore, the algorithm improves the accuracy by selecting more than one cluster
by taking into account the case when the mobile device is close to the boundary of the
clusters. The factor α is computed in order to select the well-suited number of clusters,
and it is given by

α = 0.95 max
l∈H

S(r, n)−min
j∈H
{S(r, j)}

 (4.17)

Now, the result of the coarse localization is donated as the following.

R = j : s(r, j) > α, j ∈ H (4.18)

[C =
⋃
jcs

Cj] (4.19)

where Cj is the cluster that is corresponding to the exemplar J in S, C is a set of RPi

that their exemplars appear in S, the RPs in C is converted to matrix with size N ‘ ∗L, N ‘
is the number of RP that appear in C N ‘ < N , L is the total number of APs, the matrix
is given by

ψ‘ = ψj∀j ∈ C. (4.20)
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4.3 Position Estimation

At the last step, the fine localization stage operates on the selected clusters are repre-
sented in N ‘ ∗ L matrix.

Fine Localization The compressive sensing is used to recover the sparse signal. Fortu-
nately, the localization has sparse nature where the RSS at RP is unique in the discrete
spatial domain at a certain time [FAVT10]. To apply CS algorithm for the RSS-based
fingerprinting, the collected data have to processed as follows. The term theta is 1-spare
vector of transformation coefficients, where θ ∈ RN ‘N ‘x1 and the θ is equal to zero in
all element except θ(n) = 1, where n is the index of RP at which the mobile device is
located via

θ = [0, . . . , 0, 1, 0, . . . , 0]T . (4.21)

The online measurement is expressed as

y = ψΨ‘θ + ϵ. (4.22)

where Ψ‘ ∈ RN ‘∗L‘ is a matrix that is generated in Coarse localization, ψ is M ∗ L matrix
which denotes the measurement matrix that indicates the selection AP as seen later, ϵ is
the noise measurement.

y = φψr, y ∈ RM (4.23)

The sparse vector ϕ represents the AP selection matrix. The authors in [FAVT10] describe
two approaches to select ϕ, namely the strongest APs and the Fish criterion method.
The strongest APs approach is used in this thesis. So, the ϕ is set to ϕ(n) = 1 where n is
the index of selection AP such that

ϕm = [0, . . . , 0, 1, 0, . . . , 0], m = {1, 2, · · · ,M}. (4.24)

To apply the compressive sensing theory, ϕ and Ψ have to be incoherence and hold
the Restricted Isometry Property [FAVT10]. Assuming the sensing matrix R = ϕΨ, and
evaluating z = Ty where the measurement vector y is casted by using the orthogonal
basis operator T . The notation T = QR+ and T represent the orthogonal basis for R
such that Q = orth(RT )T , R‘ is the pseudo-inverse of matrix R, accordingly TR‘{y} =
TR‘Rθ + TR‘. The θ can be recovered totally from the observation vector z by solving
the following problem using L1-minimization program such that: θ‘ = argmin||θ||1, θ ∈
RN ‘, z = Qθ+ ϵ, where ϵ is the white Gaussian noise. If the recovery vector in θ‘ contains
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only one, it means the estimated location is exactly that RP. Otherwise, the estimated
position can be calculate by centroid the position among the selected RP in θ‘.
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5 Implementation and Evaluation

In this chapter, we discuss the implementation details of the occupancy monitoring
algorithms. First, the implementation of our proposed detection and data collection
algorithm is described. Subsequently, the implementation of the position estimation
algorithm, including both localization methods: the KNN method and the CS method is
described. For evaluating the performance of applying KNN and CS, we built a testbed
and performed a real experiment as discussed in Section 5.4.1.

5.1 Detection & Data Collection

In this section, we explain the implementation details of the detection and data col-
lection algorithm. At the outset, we present a description of the adopted hardware.
Subsequently, the implementation of the proposed algorithm is elaborated. All imple-
mentations, in this chapter, are written in C/C++.

5.1.1 Hardware Description

Most modern wireless network are managed by the wireless network controllers. In
other words, all the APs in the wireless networks are connected together via a LAN
network for management and administrative purposes, as illustrated in Figure 5.1.
Thus, we assume that the APs are connected together through a LAN network. The
employed APs is a commercial off-the-shelf hardware that can execute C/C++ code and
support monitoring mode. Nowadays, a cheap AP can support open source firmwares
(e.g. Tomato firmware, DD-WRT firmware and OpenWRT firmware). These firmwares
are a lightweight embedded Linux distribution such as LinksysWRT. Beside, the main
functionality of an AP is being an intermediary between the wireless network nodes. An
AP is used as a monitoring sensor since it is already installed and covers all the area.
The network traffic monitoring algorithm – which runs on each AP to detects and collect
RSSI in a surrounding area – is explained in the next section.
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LAN Network

Server 
(Localization Algorithm)

Detection and 
data collection

Figure 5.1: Detection and data collection hardware

5.1.2 Software Description

In chapter 4, the core idea behind our detection and data collection algorithm is
discussed. In this section, we describe the implementation details of this aforementioned
algorithm. The algorithm has been implemented to detect two types of mobile devices
and then collect the data for each detected mobile devices. Figure 5.2 describes the
data flow of the detection and data collection algorithm. (1) In the main method,the
memory is initialed for creating the measurement pool.Next, tow new threads are thrown
which are associatedList handler and un-associatedlist handler.(2) In the associatedList
handler,the associatedList is read and the extracted RSSI and MAC are send to the
measurements update pool as describe in Algorithm 5.2. (3)In the unassocaitedList
handler, the Packet Capture (PCAP) analysis handler is used for capturing and analyzing
the dumped traffic to extract the MAC and RSSI of each dumped packet and send
them to measurements update pool as described in Algorithm 5.3.(4) The last process is
measurement pool update process which receives the MAC and RSSI form both handlers
for updating the measurement pool .It also filter the collected data using Kalman filter,
average the RSSI and format the update as JavaScript Object Notation (JSON) for
sending them to the server as described in Algorithm 5.4.

Algorithm 5.1 describes the main procedure of the detection and data collection algo-
rithm where the initialization of algorithm is done and both handlers are started. The
pseudo code starts by creating a measurement pool in which the set of space memories
are allocated to hold the extract RSSI and MAC for both detected associated mobile
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5.1 Detection & Data Collection

Figure 5.2: Data flow diagram of detection and data collection

devices and unassociated mobile devices. Then, the UDP port is created to connect to the
server (l. 3). The two handlers of detecting associated mobile devices and unassociated
mobile devices are run in parallel by throwing two new threads (l. 4-5).

Algorithmus 5.1 Detection and collection data algorithm

1: procedure MAINPROCEDUR(serverAddr)
2: MeasurementPool← allocateMeasurmentPool

3: P ← createUDPport(serverAddr)
4: startassociationlisthandler()
5: startun− associationlisthandler()
6: end procedure

To detect and collect the data for each associated mobile device, the algorithm reads
the associated mobile devices list because most IEEE802.11 APs support accessing
the associated devices list. The devices list contains all needed information about the
associated mobile devices such as the MAC address, the corresponding RSSI as well as
other information (e.g. data rate, and channel). For example, The Broadcom wireless
card support wi tool that we used for dumping the associated devices list.

In a similar manner, Algorithm 5.2 describes the pseudo code of the association list
handler. The associated mobile device list on AP is periodically read (l. 5) . Afterward,
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the RSSI and the MAC address are extracted from the dumped list (l. 6–7). Next, the
extracted information (i.e. RSSI and MAC address) are passed to the measurement pool
by calling updatePool procedure (l. 6) which manages the updates of the measurement
pool, as discussed later.

Algorithmus 5.2 Handling associated mobile devices

1: procedure ASSOCAITIONLISTHANDLER

2: assocList← null

3: while (true ) do
4: List← readassociatedlist()
5: for (line in list) do
6: if (line contain MAC) then
7: MAC ← extractMAC(line)
8: end if
9: if (line contain RSSI) then

10: RSSI ← extractRSSI(line)
11: if (MAC! = nullandRSSI! = null) then
12: updatePool(MAC,RSSI, asstype = 1)(
13: end if)
14: end if
15: end for
16: end while
17: end procedure

The second handler is implemented to handle the unassociated mobile devices. By
default, the existing hardware does not support the direct detection of and reading the
RSSI of the unassociated mobile devices. Thus, the network traffic is dumped in order
to analyze and extract the interested information of each mobile device. The RSSI of
the detected value is placed in the Radio Tap header which exists in the low level layer
of the MAC layer. In order to capture this header, a new wireless network interface
is created and is configured to work in the monitoring mode and using PCAP which is
an open source project that provides an API for low-level network monitoring. The
pcap is implemented in the libpcap library in the Unix system which is an open source
project [JLM16]. Similarly, Windows OS implements a port of libpcap which is known
as Winpacap. The libpcap provides a framework for capturing, filtering and analyzing.
The libpcap supports two ways of capturing and analyzing. First, the network traffic is
captured and is saved into a file in pcap format for later filtering and analysis. Second,
the libpcap supports an online capturing and analyzing which provides a packet handler
for each captured packet.
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Algorithm 5.3 describes the pseudo code that implements the unassociated mobile
devices handler. The algorithm starts by creating a new wireless interface and monitoring
mode configuration (l. 3-4). Next, an interface of libpcap is created (l. 5). Afterward, a
network filter is applied on the created libpcap interface to avoid some unwanted traffic
such as the outbound traffic and the Beacon frames (l. 6). After compiling and applying
the setting of the libpcap interface, the capturing operation is started. Furthermore, the
libpcpa library supports a packet handler that is invoked for each captured packet (l.
7-12). In the packet handler, the RSSI and MAC address of the sender are extracted
by analyzing the radio tap header using radio tap API analysis library implemented by
[Ber16] and the updatpool method is called to update the measurement pool with the
extracted RSSI and the MAC address.

Algorithmus 5.3 Handling unassociated mobile devices

1: procedure UNASSOCAITIONLISTHANDLER

2: unassocList← null

3: monitoringInterface← createwirelessnetworkinterface

4: configure(monitoringInterface)
5: PCAP ← createPCAPInterface()
6: Settingfilter()
7: while ( true ) do
8: packet← waitingforpacket

9: if (packet not empty) then P(C)APHandler(packet)
10: end if
11: end while
12: end procedure

The last part is the updatepool procedure which is responsible for managing the measure-
ment pool, as described in Algorithm 5.4. The pseudo code shows that the procedure
checks whether the received MAC address already exists and the time since last seen of
this MAC does not exceed the threshold time Dth (last seen). A Kalman filter is applied
to filter the noise in the RSSI value based on the previous measurement value. The
threshold Dth (last seen) should be a small interval. In addition, in order to reduce
the redundancy update to the server, the algorithm averages the RSSI for a threshold
number of measurement value that is specified by Dth before sending to the server. The
measurement data is reconstruct as JSON object expressed as

Data : [MACofAP :< macAP >,MACofmobile :< macmu >, rssi :<>].

For evaluating the performance of the KNN-based and CS-based localization methods,
the proposed occupancy monitoring algorithm is implemented, as illustrated in Figure 4.
First, the implementation of offline phase consists of two stages: (1) construction of a
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Algorithmus 5.4 Measurement Pool Update

1: procedure UPDATEPOOL(MAC,RSSI, assType)
2: if (MAC ∈ assListorMAC ∈ assList) then
3: if (LastSeentime− currentT ime < Dthrtime) then
4: RSSI ← KalmanFilter(MAC,RSSI)
5: end if
6: end if
7: measurmentpool← RSSI,MAC U(p)dateLastseen(currenttime,MAC)
8: if (Lastupdate− currentT ime > Dthrupdateand assType == 1) then
9: RSSI ← getaverageofRSSI(MAC)

10: Else
11: return

12: end if
13: JsonObj ← convertToJSON(MAC, avrrssi, assType)
14: ServerPort← sendUpdate(JsonObj)
15: end procedure

radio map – which is discussed in Section 5.4.1.1 and the affinity propagation algorithm
which is described in Algorithm 5.5. In the second part, implementation of the online
phase is described. Below, the monitoring and initialization algorithm is introduced.
subsequently, both of CS and KNN algorithms are explained in more detail.

5.2 Occupancy Monitoring: Offline Phase

In this section, the implementation of the affinity propagation algorithm is described
which is used for clustering the RPs in the radio map. This clustering improves the
accuracy by using CS and also reduces the number of the required APs during the online
phase [FAVT10]. The second part of this section describes both KNN and CS localization
methods.

5.2.1 Affinity Propagation

The implementation of affinity propagation is described in Algorithm 5.7 which is
based on the approaches in [FAVT09; TTZT13]. The algorithm starts by initiating the
parameters such as the matrix A holds the availability message, matrix R holds the
responsibility message and matrix S of size N ∗N −N holds the similarity between the
RPs in the radio map; where N is the number of RPs in the radio map. Next, the distance
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or similarity between the RPs is calculated by calling calcSimilarity method in which the
Euclidean distance is used for calculating the similarities between the RPs (l. 9).

Algorithmus 5.5 Affinity propagation algorithm

1: procedure AFFINITYPROPOGATION(radiomap, λ, iteration)
2: Ψ← ConverttoMatrix(radiomap)
3: N ← sizeof(Ψ)
4: if (λ > 0.5andλ1.0) then
5: return

6: end if
7: A[N ][N ]← 0
8: R[N ][N ]← 0
9: S[N ][N ]← Calcsimilarity(Ψ)

10: P ← media(S)
11: for (inti = 0; i < N ; i+ +) do
12: R[i][i]← P

13: end for
14: while (iteration > 0) do
15: R← responsibilityUpdate(S,A)
16: A← availibiltyupdate(S,R)
17: end while
18: for (inti = 0; i < N ; i+ +) do
19: if (A[i][i] +R[i][i] > 0) then
20: Exemplars← i

21: end if
22: end for
23: for (int i=0;i<sizeof(Exemplar);i++) do
24: Clusteri ← getCluster(i)
25: end for
26: return <Exemplar,Cluster>
27: end procedure

To define the number of exemplars, the algorithm is initiated by calculating the median
of matrix S (l. 10) and also by using a predefined parameter λ (l. 4). Then, clustering
is performed by exchanging both update messages R and A between the RPs in order
to select the well-suited exemplars to be as a center point for the generated cluster
(l. 14-17), where The number of iterations is given, as given in [tian2013fingerprin].
The responsibilityUpdate method (l. 15) uses the responsibility update rule and also
availabilityUpdate method uses the availability update rule, as discussed in chapter 4.
After finishing the iteration, the well-suited exemplar is determined in (l. 18-17) by
using A[i][i] +R[i][i] > 0. Finally, to select the RP for each generated cluster, getCluster
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method is used which selects the RPs with a minimum distance to the exemplar taking
into account the distance to the other exemplars. The discussed algorithms in this
chapter has been implemented in java.

5.3 Occupancy Monitoring: Online Phase

Algorithm 5.6 shows the pseudo code of the server listening on the UDP port and
waiting for an update that is coming from the APs (l. 7). Then, a new thread is thrown
for each incoming update(l. 9). The thread runs a handler that will be described by
Algorithm 5.7.

Algorithmus 5.6 Initialisation of the localization process

1: procedure MAINMONITORING

2: initial prameters()
3: P ← CreateUDPport(serverport)
4: db← ConnectToDataBase()
5: while ( true ) do
6: JsonObject← WaitForPacketFromAcessPoints

7: if (JsonObject is valid) then
8: throw new monitoringOccupancyHandler(jsoneObject, db)
9: end if

10: end while
11: end procedure

Algorithm 5.7 shows that each received update is stored in the database after adding the
time stamp. Then, it checks if there is enough measurement update. For example, the
algorithm retrieves the last received update during the last one. Second, if the number
of RSSI measurements – that is reported by the unassociated AP – is above a threshold
value Dn, then the Dn is calibrated during the offline phase to guarantee enough RSSI
and consequently accurate localization. If so, the average of the RSSI values is taken
and the localization methods are called.

5.3.1 KNN Implementation

In chapter 4, the calculation of the user position by using KNN algorithm is discussed.
In this section, Algorithm 5.8 gives the pseudo code which describes the implementation
of the KNN method. The algorithm starts by retrieving the run-time RSSI for the MAC
address to ψr and radio map Ψ from the database (l. 3-4). The Euclidean distance
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Algorithmus 5.7 Monitoring occupancy

1: procedure MONITORINGHANDLER(jsoneObject,db)
2: R← createmeasurementRecord(JSONObject, timestamp)
3: db← storeIntoDatabase(R)
4: if (time to update) then
5: M ← getlastupdatinlastsecond(MAC)
6: if (numberOfRSSI > Dn) then S(t)artLocalizationProcess(M)
7: end if
8: end if
9: end procedure

between the ψr and each RPi in the radio map is calculated by using calling the
calcDistance function (l. 8-10). By sorting the calculated distance and get the K first
minimum RP (l. 6) and then calculate the centroid among them to find P (l. 9).

Algorithmus 5.8 KNN algorithm

1: procedure KNN(Psi, ψr)
2: if (ψrisempty) then
3: return

4: end if
5: for each(RPi ∈ Ψ) do
6: Si ← CalcSimiliarity(RPi,Ψr)
7: end for
8: sort(Si,Ψ)
9: RPs← selectF irstKminimumDistance(K,Si,Ψ)

10: P = CalcCentrinoposition(RPs)
11: return P
12: end procedure

5.3.2 CS Implementation

To improve the localization accuracy, the CS method is implemented. The implemen-
tation of this method has three separately stages. First, offline phase in which the
radio map has to be clustered by using Affinity propagation algorithm. The second part
is the online phase which consists of two stages, namely coarse localization and fine
localization.
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5.3.2.1 Coarse Localization

The aim of using coarse localization is to reduce the RPs that will be used in the fine
localization to calculate the user position. Algorithm 5.9 gives a simple pseudo code that
describes how we implement the coarse localization based on the approach in [FAVT10].
First, the similarly between the run-time measurement ψr and all exemplars is calculated
by using the Euclidean distance (l. 2). The number of clusters significantly impacts the
accuracy of the estimated position in the fine localization, as investigated later. Thus,
to select the number of clusters that has the minimum distance, λ is calculated (l. 3),
based on the calculated similarity in (l. 2). In order to select the well-suited number of
clusters, λ is calculated (l. 3). Finally, the selected clusters are passed to fine localization
stage to calculate the user position, as described in the next subsection.

Algorithmus 5.9 Coarse localization algorithm

1: procedure COARSELOCALIZATION((Exemplars, Clusters, ψr))
2: S ← Calcsimilarity(Exemplars,Ψr)
3: λ← calcLamda(S)
4: for (int i=0;i<sizeof(Exemplar);i++) do
5: if (S[Exampler[i]]>λ) then
6: R← Exampler[i]
7: end if
8: end for
9: for each(i in R) do

10: RPs← getRPInCluster(i)
11: end for
12: ΨN,M ← ConvertRPiTomatrixMXN(RPs) F(i)neLocalization(ΨN,M , ψr)
13: return ΨN,M

14: end procedure

5.3.2.2 Fine Localization

As explained in chapter 4, this stage is implemented to recover the sparse location by
applying the CS theory. During the performance evaluation, Algorithm 5.10 has been
implemented in Matlab, based on the approach presented in [FAVT10]. The algorithm
starts by initiating the parameters θ which holds the recovery vector. The sensing matrix
Φ is determined by selecting M APs with strongest signal to perform the sparse recovery
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(l. 5). An orthogonalization step – expressed in Equation 5.1 is required to provide the
incoherency condition stated by the CS theory.

θ
′ = argmin∥θ∥1, Z = Qθ + ε (5.1)

Algorithmus 5.10 Fine localization algorithm for calculate the user localization

1: procedure FINELOCALIZATION((L,M,ΨN,L, ψr))
2: Ψ← ΨT

3: N ← Sizeof(Ψ)
4: θ[N ]← 0
5: ΦMxL ← selectionAPs(ψr,M,L)
6: yMx1 ← Φψr

// %comment: Apply orthognalization for recover the sparse localization%
7: RMxN ← ΦΨ
8: Q← orth(RT )T

9: R† ← psudoInverse(R)
10: T ← QR†

11: Z ← Ty

12: ε = QZ

13: θ
′ ← argmin∥θ∥1, Z = Qθ + ε

14: if (θ′
hasonlyoneitemequalto1) then

15: P ← θ
′(n), nistheindexwhereθ′

equalto1
16: return P
17: end if
18: λ← calclamda(θ′)
19: P ← calcCentrinoPosition(θ′

, lambda)
20: return P
21: end procedure

We used L1-minimization code ”l1eqpd” (l. 5) which is proposed in [Pey13]. The
recovered vector may hold more than a single one. In this case, the user location is
calculated by determining the centroid among the λ selected RP. In our implementation,
the λ has been selected as the minimum positive value in the θ

5.4 Performance Evaluation

To evaluate the performance of our approach, a testbed is built for deploying our
implementation and carrying out an experimental study where the real radio map of
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the environment is obtained. Then set of test points are collected. Afterward, the
performance of both KNN and CS algorithms are evaluated in terms of the localization
error.

5.4.1 Localization Testbed

The goal of the experiment is to obtain the real radio map from a certain geographic area
that reflects a typical setting of indoor environment and then collect set of test points in
order to study the performance of KNN and CS. In the following section, the hardware
and the software of the testbed are presented before the construction of radio map is
discussed. Figure 5.3 shows that the testbed consists of Five APs (Linksys WRT 54GL)
were connected together with a laptop as a server; via Ethernet LAN switch 8 ports. the
mobile device was used is IPhone 4. On the AP side, the implemented detection and
data collection algorithm is run on each APs. On the server side, we implemented a tool
for constructing the radio map.

Each AP is configured for running the software. For example, we use the OpenWRT as a
firmware which is an open source Linux distribution for embedded devices. We installed
all the packages that are required to run the application such as pthread, libstd, and
libpcap. Be caution that the version of those packages have to be compatible with
that are used to compile the code. As illustrated in Figure 5.3, the testbed has been
constructed in 13m x 10m area of two student rooms and the cross hallway (second
floor, Stuttgart University, Building 38).

5.4.1.1 Radio Map Construction

To construct the radio map for the monitoring area where the experiments have been
performed, First, the area has been divided and a set of reference points (RP) were
placed as shown in Figure 5.3. The distance between the RPs were two meters. Then,
the software on both the APs and the server were run. The mobile device was carried by
a volunteer where he was moved from a RP to another RP. A fingerprint is the average
of RSSI of the mobile device on each surrounding AP that are collected by the server
while the mobile device was associated with each AP. The radio map are generated over
35 RPs and cross the different orientations represented by the main four angles (0, 90,
180, 270).

Now, we explain how to construct the fingerprint for each RP. First, the radio map
constructor tool asks to type the coordinates location (Xi, Yj) and then the RSSI values
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Figure 5.3: Testbed environment and hardware

from all APs are collected until the user type a next orientation. Afterward, the average
of the collected RSSI values are used to create a new fingerprint recode which holds

ψ = {Xi, Yj, direction, {RSSI1, RSSIk, . . . , RSSIL}}k, i, j ∈ RN (5.2)

Where RSSIk is the average of RSSI on APk and L is the number of APs. Then, the
created fingerprint record ψ is stored into the database. The procedures are repeated
four times for each RP in the radio map until all RPs in the interesting area are visited.
Figure 5.4 shows a screenshot of the fingerprint table in the database that is known as
the radio map.
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Figure 5.4: Fingerprint database

5.4.1.2 Test Point Collection

After constructing the radio map, a set of 17 test points were collected selected at
random locations, in order to use it later for evaluating the performance of both KNN
and CS methods. The test points were collected in different ways. Some of them were
collected by associating mobile device with APs and other were collected by capturing
the probe request packets that are broadcasted from the mobile device. In the next
section, the generated radio map and the collected test point are used to studies the
performance of both KNN and CS localization methods.

5.4.2 KNN Evaluation

In this section, the KNN performance is evaluated in terms of the localization error
which is calculated by taking the average of the Euclidean distance between the actual
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location of the volunteer and the estimated position over 17 test points using KNN and
the constructed radio map. The calculation is repeated for studying different cases. First,
we studied the impact of number of RPs on the average of localization error. The number
of RP has been changed between 1 to 12. The average of localization error for each
selected k is depicted in Figure 5.5.

Figure 5.5 shows the average localization error, with respect to the number of RPs using
KNN for both average and integrated radio maps. We studied the benefits of integrating
the orientation data with the radio map across the four orientations. Obviously, selecting
K equal to 7 is the well-suited for our environment where it achieves the minimum
error. The result also shows that the average of localization error can vary between 4m
and 2.86m. The performance improvement is decreased as k increase above 7. The
variable K should not set to a high value which involves many RPs in calculating the
user position in order to avoid calculating the center point of area instead of estimating
the exact user position. Thus, the optimal k value was selected during the calibrating
phase.
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Figure 5.5: Average error using KNN for both the average and the integrated radio
maps

The figure also shows the average of localization error for both calculation using averaged
radio map and using integrated radio map with respect to the selected K from 1 to
12. The figure demonstrates that the average radio map is more stable than integrated
radio map and the improvement of performance keep stable above k = 3. The minimum

73
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average localization error is almost the same. For studying the effect of number of AP
on the average localization error. The KNN method has been run again but this time
versus the number of APs which were changed from one to five APs. Figure 5.6 shows
the average localization error with respect to the number of used APs while k was set to
four.
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Figure 5.6: Average error versus the number of APs using KNN

The result shows that performance of the KNN methods improves as the number of APs
increases. Thus, the number of APs significantly affects the performance of localization
estimation. The last evaluation is testing the improvement of using the WKNN method.
Again, the average localization error is calculated by using WKNN and using both
average radio map and integrated radio map as shown in Figure 5.6. Both KNN and
WKNN methods have similar performance because the number of APs is not relatively
high and the weighted value does not affect the accuracy.

5.4.3 CS Evaluation

In this section, the improvement of CS on the the performance of localization estimation
is investigated. The CS method was implemented to estimate the position of the
collected test points. The estimated position is determined by estimating the centroid
of the minimum positive values of the recovered output vector θ. Then, the Euclidean
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Figure 5.7: Average error versus the number of RPs using WKNN and KNN

distance between the actual user’s location and the estimated position over 17 tests
points and using 5 APs are calculated. First, the impact of number of cluster on the
average localization error, we run the CS method several times for different number of
clusters and then we calculated the average localization error, as shown in Figure 5.8.

The figure shows that the number of clusters significantly affects the localization perfor-
mance. It also shows that CS method minimizes the average error form 2.9m with KNN
to approximately 2m. Moreover, the figure shows that the average error varies in the
range between 2m as the minimum distance and 2.5 m. Compared to the KNN method,
we found that CS achieves better localization for the various number of APs.
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6 Conclusions and Future Work

6.1 Summary

In this thesis, we presented the design and the implementation of an occupancy mon-
itoring method for indoor public sensing application that leverages the existing APs
and exploiting the already-existent wifi traffic to localize the mobile device. The ap-
proach includes two algorithms which are (1) detection and data collection algorithm
runs on the AP level and (2) positioning estimation algorithm which run on the server.
We demonstrated the possibility of developing occupancy monitoring method through
several traffic measurement experiments to check the applicability of exploiting the
already-existent WiFi traffic. The traffic analysis indicated that there is enough traffic.
Based on the traffic analysis, we attempted to improve the accuracy of localization
estimation by applying a machine learning algorithm where the radio map is clustered
by using affinity propagation clustering algorithm and compressive sensing has been
applied to accurately find the mobile device’s position.

In contrast to the existent occupancy monitoring algorithms in [BXN+13; MRNC11]
which can detect the existing of the mobile device within the space of AP and predict
the existing of mobile device in the space of the occupant office. Our proposal approach
improves the accuracy of monitoring occupancy by detecting both associated and unas-
sociated mobile devices even if the mobile devices are inactive. We also attempted to
improve the accuracy of monitoring occupancy by applying a machine learning algo-
rithm where the radio map is clustered by using affinity propagation algorithm. The
CS method improved the accuracy from 2.9m in case of KNN to 2m. In addition, our
proposed approach reduce the cost of monitoring the occupancy as the algorithm can be
deployed on cheap commercial AP which already exist in most indoor environments.

6.2 Future Work

Our proposal can be improved from different point of views. To improve the accuracy,
time-based such as Differential Time Difference of Arrival (DTDOA) can be used instead
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of the RSS-based methods. Actually, we attempted to employ a time-based method
for monitoring the occupancy through modifying an open-source firmware to exploit
the RTC/CTS and DATA/ACK traffic. Unfortunately, we faced many problems due to
hardware limitations. Indeed, it requires special hardware to accurately estimate a
position. Furthermore, the mobility of mobile devices can be detected precisely by
monitoring the Channel State Information (CSI). The performance also can be improved
by increasing the traffic, either by concurrently monitoring all channels or via generating
a new traffic by sending RTS frames to the targeted mobile devices. Then, the server
receives CTS frames which can be processed and replied by the Network interface

controller (NIC) card. The last proposal may add energy burden due to activating the
NIC card for sending the CTS frames.
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List of Abbreviations

Abbreviation Meaning First occurrence

ACK Acknowledgment 34
AP Access Point 19
API Application Programming Interface 14
BLE Bluetooth Low Energy 11
CS Compressive Sensing 8
CSI Channel State Information 77
CTS clear To Send 34
DR Dead Reckoning 12
DSSS Direct Sequence Spread Spectrum 33
DTDOA Differential Time Difference of Arrival 77
GPS Global Positioning System 11
IPS Indoor Positioning System 23
JSON JavaScript Object Notation 59
KNN K-Nearest Neighbor 7
LOS Line Of Sight 28
LS Localization Sever 23
MAC Media Access Control 13
NIC Network interface controller 77
NLOS Non-Line Of Sight 28
PCAP Packet Capture 59
PS Public Sensing 7
QOS Quality of Service 13
RP Reference Point 28
RSS Received Signal Strength 25
RSSI Received Signal Strength Indicator 17
RTS Request To Send 34
WEP Wired Equivalent Privacy 33
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