
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit

Design and Implementation of an
Indoor Modeling Method through

Crowdsensing

Daniel Reichelt

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: Dr. Mohamed Abdelaal

Commenced: 2016-10-01

Completed: 2017-03-31

CR-Classification: C.2.4, I.4

Abstract

While automatic modeling and mapping of outdoor environments is well-established, the
indoor equivalent of automated generation of building floor plans poses a challenge. In
fact, outdoor localization is commonly available and inexpensive through the existing
satellite positioning systems, such as GPS and Galileo. However, these technologies
are not applicable in indoor environments, since a direct line of sight to the satellites,
orbiting the globes, is required. As a substitution, the technical literature comprises several
proposals for the development of simultaneous indoor localization and mapping (SLAM).
In these approaches, the authors mostly exploit indoor resources such as the WiFi access
points and the mobile smart devices carried by individuals in the indoor environment.
Collecting data from several mobile devices is referred to as crowdsensing.

To enable the generation of two-dimensional (2D) as well as three-dimensional (3D) maps,
we propose crowdsensing of point clouds, which are 3D data structures of points in space.
For localization, we integrate two features of a recently developed mobile device, called
Project Tango. Specifically, the Tango platform provides two main technologies for reliable
localization, namely motion tracking and area learning. Moreover, Tango-powered devices
provide us with the ability to collect point clouds though a third technology, called depth
perception. In the past few years, spatial data obtained from range imaging was used
to generate indoor maps. Nevertheless, range images are expensive and not always
available. The required equipment, e.g. laser range scanners, are both expensive in
procurement and require trained personnel for proper setup and operation.

In this thesis, we aim for obtaining spatial point clouds via crowdsensing. The main
idea is to use sensor data which can be scanned by volunteering individuals using easy
to handle mobile devices. Specifically, we depend on depth perception capabilities as
provided by Google Tango-powered tablet computers. A crowdsensing infrastructure
assigns scanning tasks to individuals carrying a Tango device. Execution of such a task
consists of taking scans of e.g. offices in a public building. The scanning results contain
both spatial information about the room layout and its position. Energy consumption on
the mobile device is reduced by applying Octree compression to the scanned point clouds,
which results in a significant reduction of the amount of data, which has to be transferred
to a back-end server.

Afterwards, the back-end is responsible for assembling the received scans and the
extraction of an indoors model. The modeling process – developed in this thesis –
comprises two-phases. First, we extract a basic model from the obtained point clouds,
which may contain outliers, inaccuracies and gaps. In the second phase, we refine the

3

model by exploiting formal grammars. It is worth to mention here that we are the first to
exploit formal grammars as a model fitting tool. We feed the information obtained in the
first phase to an indoors grammar, which has been developed in the ComNSense project,
University of Stuttgart. The resultant model both contains much less deviations from
the ground truth and provides improved robustness against aberrations with respect to
localization during the scanning process. Thus, instead of scanning multiple point clouds
per room, we need only one scan to be able to construct an indoor map. During evaluation
of this process, using scans of offices of our department, we were able to reproduce a
model which is very close to the ground truth.

4

Acknowledgments

I would like to thank Prof. Dr. Kurt Rothermel for his support in my search for a thesis
subject in his department, and giving me the opportunity to work on this topic.

A very special gratitude goes to my supervisor, Dr. Mohamed Abdelaal. Although he
keeps saying, he did only his job, I would like to say thank you for many hours of interesting
discussions, our sharing of ideas, his truly always open ears for any problem, and his
constant optimism and moral support.

Also a special mention to my dear friend, Julian Trischler, for your input.

And finally, but by no means least, to my family, for keeping my back free during this – not
always stress-free – time.

Thank you!

5

Contents

List of Figures 11

List of Tables 13

List of Abbreviations 15

1 Introduction 17
1.1 Motivation . 17
1.2 Crowdsensing Overview . 19
1.3 Indoor Mapping . 22
1.4 Contributions . 23
1.5 Document Structure . 24

2 System Overview 27
2.1 System Model . 27

2.1.1 Tango-Powered Mobile Devices 28
2.1.1.1 Motion Tracking . 28
2.1.1.2 Area Learning . 29
2.1.1.3 Depth Perception . 31

2.1.2 Crowdsensing Servers . 32
2.1.3 Communication Facilities . 33

2.2 Problem Statement . 34
2.3 Related Work . 35

2.3.1 Indoor Mapping . 35
2.3.2 Energy Consumption . 36

3 Basic Interiors Model 39
3.1 Point Clouds . 39

3.1.1 Octree Compression . 40
3.2 Voxel Rasterization . 40

3.2.1 Normals Estimation, Principal Component Analysis 41

7

3.2.2 Filtering by Normals Angle . 41
3.2.3 Segmentation . 42

3.2.3.1 Region Growing . 42
3.2.4 Deriving Walls from Segments 44
3.2.5 Refinement . 44

4 Grammar-Enhanced Mapping 47
4.1 Formal Grammars . 47
4.2 Interiors Grammars . 49

4.2.1 Split Grammar . 50
4.3 Grammar-Based Model Fitting . 52

4.3.1 Discussion . 54

5 Implementation 55
5.1 Software Components . 55

5.1.1 Point Cloud Library (Tango Device and Back-End) 55
5.1.2 Point Cloud Sampling App (Tango device) 56
5.1.3 Application of Grammar-Based Model Fitting (Back-End) 56

5.2 Software implemented for the Tango Device 56
5.2.1 Point Cloud Library Cross-Compilation for Android 56
5.2.2 Octree compression . 58

5.2.2.1 Color Mode . 59
5.2.2.2 Processing Mode . 59
5.2.2.3 Quality Level . 60
5.2.2.4 Internal Parameters . 60
5.2.2.5 Profile Selection . 60

5.3 Software implemented for the Back-End Server 61
5.3.1 Model Extraction . 61

5.3.1.1 File Handling . 61
5.3.1.2 Voxel Grid Filtering . 62
5.3.1.3 Normals Estimation . 62
5.3.1.4 Filtering by Normals Angle 62
5.3.1.5 Segmentation . 63
5.3.1.6 Further Processing Steps 63
5.3.1.7 Visualization . 64
5.3.1.8 Extraction of Grammar Rules 65

8

6 Evaluation 67
6.1 Tango Device . 67

6.1.1 Area Learning . 67
6.1.2 Sampling Point Clouds . 68
6.1.3 Octree Compression . 69
6.1.4 Energy Savings during Data Transfer 72

6.2 Back-End Server – Basic Model . 76
6.2.1 Voxel Rasterization . 76
6.2.2 Normals Estimation . 77
6.2.3 Filtering by Normals Angle . 77
6.2.4 Segmentation: Region Growing 78

6.2.4.1 Deriving Walls from Segments and Refinement 79
6.2.5 Discussion . 80

6.3 Back-End Server – Enhanced Model . 85
6.3.1 Discussion . 86

7 Conclusion and Future Work 89
7.1 Conclusion . 89
7.2 Future Work . 90

Bibliography 91

9

List of Figures

1.1 General architecture of crowdsensing system [Bai15] 21
1.2 Ground truth of the floor layout . 23

2.1 System architecture . 27
2.2 An example of motion tracking . 29
2.3 Impact of integrating motion tracking (MT) and area learning (AL) 30
2.4 An example of point cloud collected using a Tango tablet 32
2.5 Uploading energy consumption in case of WiFi and 3G 33

3.1 Processing chain in the back-end . 39

4.1 An example of split grammar derivation 51
4.2 Rooms layout generation using a split grammar 52
4.3 An example of a scanned room with missing details 53
4.4 A modified processing chain . 54

6.1 Ground truth of the target area . 68
6.2 Octree compression – execution time 71
6.3 Octree compression – energy consumption 72
6.4 WiFi uploads – transfer time . 73
6.5 WiFi uploads – energy consumption . 73
6.6 An example of overgrowing . 78
6.7 Segmented model of the target area (with and without outliers) 80
6.8 Model after projection and inscribing wall segments into OBBs 81
6.9 Model after segment merging . 82
6.10 Model after alignment of segments with the coordinate system axes . . . 83
6.11 Deviations between the ground truth and the basic model [cm] 84
6.12 Grammar-enhanced model . 86

11

List of Tables

4.1 Example for room grammar rules and room unit grammar rules 51

5.1 Pre-defined Octree compression profiles 59
5.2 Octree compression profiles available in pcl-pcd2octree 60
5.3 Parameters pertaining to Region Growing 63
5.4 Description of available visualizations and their IDs 64

6.1 Octree compression statistics using profile #1 70
6.2 Data upload time and energy consumption 74
6.3 Energy savings by applying octree compression (profile #1) 75
6.4 Execution times of normals estimation 76
6.5 RLSs and their associated rooms . 87

13

List of Abbreviations

ARM Microprocessor Architecture, also Advanced RISC Machines Ltd.. 56

CPU Central Processing Unit. 56

CSV Comma-Separated Values. 65

CUDA Compute Unified Device Architecture. 77

EV Eigenvector. 44

GCC GNU C Compiler. 57

GPU Graphics Processing Unit. 77

NDK Native Development Kit. 56, 57

OBB oriented bounding box. 44

OOP Object-oriented Programming. 40

PCA Principal Component Analysis. 44

PCL Point Cloud Library. 41, 42, 55, 63, 64

QoS Quality of Service. 19

15

1 Introduction

1.1 Motivation

A large variety of systems and applications are offering localization and navigation services
for outdoor environment. However, people typically spend most of their time in indoor
environments. Hence, it appears the need for updated indoor maps especially for public
spaces. The majority of current research endeavours focus on the indoor positioning
problem [LDBL07; LLY+15; Mau12]. Obtaining spatial information in indoor environments
is a challenge. Inertial sensors, accelerometers and gyroscopes, which are available
on most smartphones, are used for positioning. The barometers built into smartphones
are used to estimate the vertical position or to recognize vertical movements. The
magnetometers built into smartphones are used for attitude estimation as part of a
positioning system. Indoor positioning using WiFi signals is heavily investigated. The
common approach to position estimation in these works is based on the received signal
strength (RSS) and the fingerprinting method.

On the one hand, indoor positioning is currently affordable using recent commercial
technologies. The indoor equivalent floor plans are currently very limited, affecting the
ubiquity and spread of indoor location-based applications. On the other hand, there still
is a gap in developing reliable indoor maps. Recently, Google Maps started to provide
detailed floor plans for a few malls and airports in the U.S. and Japan. Nevertheless, all
these systems depend on manually building the floor plan. Manual addition/editing of all
buildings’ floor plans around the world requires an enormous cost and effort which may
be unaffordable. In addition, keeping these floor plans up to date is another challenge.

Considering that normally the indoor mapping is an expensive procedure in terms of
needed instruments and specialized personnel, alternative ways of automatic indoor
mapping are recently a subject of research. An innovative solution for this issue is to
exploit the data that is already available, coming from mobile devices [BPDR14]. Despite
having become an everyday life commodity, they are a meaningful source of information
supported by powerful sensors and increasing computational power. In this way, this

17

1 Introduction

thesis has the purpose of using the mobile data coming from the crowd, for automatically
mapping indoor environments.

In this thesis, we target developing an efficient and automatic floor plan construction
system. Such a system leverages the ubiquity of mobile smart phones to infer information
about the building floor plan. As aforementioned, today’s smart devices have an array of
sensors, e.g. inertial sensors (accelerometers, compasses, and gyroscopes), that can
be used to construct traces of movement in a transparent manner to the users. Using
this crowdsensing approach, we can provide the general layout of a building, identify
rooms, corridor locations and shapes, along with identifying other points of interest, such
as elevators, stairs, and escalators.

Several research articles have been devoted to deriving indoor models. For instance,
Damien et al. [PBD+14] propose an automatic method for deriving the indoor model via
collecting odometry traces. They later enhanced the obtained model via considering a for-
mal interiors grammar. Chen et al. [CLRQ15] introduce a new automatic method, referred
to as CrowdMap. CrowdMap jointly leverages crowdsensed sensory and video data to
track user movements. Afterward, it uses the inferred user motion traces and context of
the image to produce an accurate floor plan. Alzantot et al. [AY12] propose an interior
model generation, called CrowdInside, which leverages the ubiquity of smart phones
to infer information about the building floor plan along with other semantic information.
They collect measurements from sensors including: accelerometers, magnetometers,
gyroscopes, and the received WiFi signal strength values from available access points.
Similarly, Qiu et al [QM16] introduce an indoor map construction method, referred to as
iFrame. In particular, iFrame combines dead reckoning and RSSI detection techniques
to judge whether the subareas in an indoor environment are empty. However, all these
approaches utilize traditional observations as the source of semantic information. These
observations are useful only if a 2D indoor model is required. This means that 2.5D and
3D models are not feasible with these observations.

To tackle this problem, several research articles proposed point clouds to be the source of
geometrical information. For instance, Budroni et al. [BB10] introduce a fully automated
3D modeling method of indoor environments from point clouds. The point clouds were ac-
quired using a laser scanner with several scans. Afterward, the collected point cloud data
is processed in order to segment planar structures, which have a noticeable architectural
meaning (floor, ceiling and walls) in the interior. Referring to crowdsensing, the utilization
of laser scanners hinders collecting data in a distributed fashion. Additionally, these laser
scanners are relatively expensive.

18

1.2 Crowdsensing Overview

As a solution to these challenges, we select to exploit a recently-developed technology by
Google Inc., referred to as Project Tango [16a]. Tango capabilities give mobile devices a
human-scale understanding of space and motion. To this end, Tango-powered devices
embed three novel features, including depth perception, motion tracking, and area learning.
Motion tracking means that a Tango-powered device can track its own movement and
orientation through 3D space. This means that Tango-powered devices are capable of
detecting various movements such as forward, backward, up, down; or being tilted in
any direction. Depth perception enables mobile devices to understand the distance to
objects in the real world. Finally, area learning gives the mobile device the ability to see
and remember the key visual features of a physical space – the edges, corners, other
unique features – so it can recognize that area again later.

In this thesis, we exploit an indoor mapping model via crowdsensing point clouds. Tango-
powered devices are used to collect the point clouds. We make use of the three Tango
features to improve the modeling accuracy. For instance, we integrate area learning with
motion tracking to correct the continuous and growing drifts. Additionally, we integrate
area learning with depth perception to unify the reference to all collected point clouds.
After data acquisition, we apply several filtering stages in order to keep only the segments,
representing walls.

As a contribution of this thesis, we apply formal interiors grammars to enhance the
modeling accuracy and to reduce the overall energy consumption. In general, grammars
are a powerful tool for precisely describing and analyzing objects such as languages,
behaviours, buildings, etc. In the project ComNSense [13], we developed a formal
grammar to describe public buildings. Specifically, the developed grammar comprises
rules for describing different room types and probabilities of transition between these
rooms. We employ the interiors grammar to fit the model obtained via processing the
point cloud data. Moreover, we examine the ability of the grammar to reduce the number
of scans required to model the building interiors. Below, we give an general overview of
crowdsensing, before we express the thesis’ contributions in more detail.

1.2 Crowdsensing Overview

Literally, crowdsensing is a new technology to build low-cost wireless networked sensors.
The core idea behind crowdsensing systems is to exploit the powerful capabilities and
features of modern mobile devices to collect information about their environment. In
particular, smart mobile devices are currently indispensable from our daily routine. These

19

1 Introduction

mobile devices exist everywhere and cover a large geographical area where they can inex-
pensively report the sensed data by means of the existing wireless network infrastructure
such as WiFi and 3G networks. Originally, Abdelzaher et al. [AAB+07] first proposed the
concept of crowdsensing systems. Since this date, several research work was devoted
to developing new crowdsensing applications and to optimizing the associated Quality
of Service (QoS) metrics. Nowadays, most mobile devices are equipped with a large
variety of sensors such as accelerometers, proximity sensors, microphones, magnetic
field sensors, GPS senors, and cameras.

Furthermore, some vendors equip special sensors. For instance, a new model of Apple’s
iPhone comes with smart sensors such as barometers, gyroscopes, BLE modules,
etc. Similarly, wearable devices, such as smart watches and smart glasses can be
easily integrated into the crowdsensing systems. Due to their powerful capabilities, the
crowdsensing systems can be applied in different areas, like environmental monitoring,
advertising, indoor mapping applications, and traffic monitoring. Crowdsensing opens the
door for developing new powerful and smart applications and services for both big and
small companies. Crowdsensing enables an application to make much more informed
decisions and interact with the users based on data that is gathered in real-time.

Crowdsensing systems can principally be categorized according to the human involvement
into opportunistic sensing and participatory sensing [Bai15]. In the former class, the
back-end servers passively collect sensor data without assigning data collection tasks
to the mobile devices owners. Thus, gathering sensor data is a background operation,
such as position fixing and detection of orientation. The second class of crowdsensing
applications is a participatory sensing approach; sensor data is typically collected through
interacting with the mobile device users. A crowdsensing system asks the user by sending
a request to a running application on the mobile device that can process the request and
respond to it. In this thesis, we leverage the participatory sensing mechanism to collect
the required point clouds.

A typical crowdsensing system comprises a set of participating mobile devices, servers,
communication networks, and client applications, as depicted in Figure 1.1. A crowd-
sensing server is responsible for serving all queries from different applications in the
system. Moreover, it manages the sensing query, controls the sensing processes and
coordinates the communication between the served clients and the participating mobile
devices. Specifically, the crowdsensing server has a query interface which makes the
communication between a client and a server easier and more flexible. The query inter-
face is used by a client to send queries and to receive the required data. In addition, a
basic sensing system is included to manage the received queries. It decodes the received

20

1.2 Crowdsensing Overview

Query Distribution Position Sensing

Basic Sensing System

Sensors

Sensing Engine

Query Listener

Basic Sensing System

Query Manager

Query Interface

Mobile Device PS Server

Client

Position Update Protocol Location Server

Figure 1.1: General architecture of crowdsensing system [Bai15]

queries and then forwards it to the set of participating mobile devices. To this end, a
position update protocol keeps track of the mobile devices in the sensing area.

Similarly, the participating mobile devices run a basic sensing system which is responsible
for managing the received sensing queries. Specifically, it comprises two sub-units, query
listener and sensing engine. The query listener waits for any query and forwards it to
the sensing engine. Afterward, the sensing engine manages the sensing process by
controlling the sensors. For example, activating or deactivating a sensor to scan an area
to collect motion traces and point clouds. The sensing engine answers the query by
sending the requested sensor data back to the server. In addition, an update position
protocol frequently senses the position of the mobile device and sends an update to the
corresponding server.

There are several QoS requirements for the crowdsensing systems, including privacy,
coverage, scalability. For instance, the crowdsensing system should guarantee that the

21

1 Introduction

whole geographic monitoring area is covered by leveraging the availability of the mobile
devices. Moreover, it should guarantee the quality of the gathered data, i.e. prevent
undesired impacts of unreliable data sources. Furthermore, it should motivate and attract
the users so that they accept to participate in the data gathering process. However,
energy consumption is considered as the most important criterion while designing a
crowdsensing system. The reason revolves around the users’ acceptance to participate
in the crowdsensing system. If the additional tasks – due to participating in the mobile
crowdsensing system – consumes an excessive amount of energy, then users typically
lose their motivation to share their resources for collecting data. To ensure a user’s
acceptance, the crowdsensing systems have to be highly energy efficient so that the
energy resource on the participant’s mobile device is preserved. Another important QoS
metric is the user privacy which has to be considered while designing the system.

1.3 Indoor Mapping

The availability of maps is highly important while dealing with location-based services.
Literally, a map is typically defined as a model that describes threefold features, namely
topology, geometry and semantics [Ind16]. Topology defines which areas are connected
and which areas are not. Geometry defines objects which are represented by means of
coordinates in a reference system. The simplest spatial object is a single point expressed
by its x, y and z coordinates, e.g. two endpoints model a straight line. Similarly, an ordered
list of points models a polyline. A polygon is defined when the start node and end node of
a polyline match. Finally, semantics indicates the way that the space can be used (e.g.
stairs, elevator, etc.) as well as unique identifiers of the place, e.g. the received signal
strength in a room from multiple access points.

Recently, OpenStreetMap is released as a crowdsensing project with the goal of creating
a free map of the world [Ope16]. In this project, volunteers record motion traces via
their smartphone’s built-in GPS sensor. The resulting traces are combined to remove
measurement errors and to determine the type of path traversed by the users. Although
these approaches reliably work for outsdoor settings, they are not suitable for indoor
environments. This limitation emerges due to the lack of absolute positioning systems,
such as GPS or Galileo. Therefore, indoor models were created in the past manually
through converting building blueprints or by tediously mapping buildings using 3D laser
scanners. However, such manual generation of indoor maps typically consumes too much
time and effort.

22

1.4 Contributions

Figure 1.2: Ground truth of the floor layout

Since recently, several efforts are being made for automatically deriving indoor maps.
Crowdsensing is exploited in the realm to mitigate the overhead of collecting data. Fig-
ure 1.2 depicts the ground truth layout of the second floor of the Computer Science
Department, University of Stuttgart, Stuttgart. We seek – through this thesis – to automat-
ically generate a map close to the one shown in Figure 1.2. As depicted in the figure, the
floor layout is composed of exactly four quadrants. Since these quadrant are similar, we
seek to collect data from the quadrant which is easily accessible by our volunteers. To this
end, the bottom left quadrant, which comprises the employee’s offices of our department
was selected as target area for sampling point clouds. For evaluating the accuracy of
our model, we determine the modeling error relative to the shown map, representing the
ground truth.

1.4 Contributions

The main goal of this thesis is to design and implement an interior model derivation
method. Crowdsensing exploits mobile devices existent in an indoor environment to
collect a set of point clouds. In this thesis, we rely on the powerful features provided by
the Google Tango tablet to generate a 2.5D interior model. For instance, Tango tracks
the motion of particular device, and creates a 3D representation of the environment
around it, also known as point clouds. It also includes development APIs to provide

23

1 Introduction

alignment, position or location, and depth data to regular Android apps. We collect a set
of point clouds from different mobile devices to cover the entire building. Then, we follow
a multistage filtration approach to keep only the walls.

Subsequently, we enhance the resultant model via adopting formal grammars. In the
project ComNSense, we developed a formal grammar which encodes structural infor-
mation. In fact, the 3D model – resultant after filtration steps – is not complete and the
segments are usually not connected. To improve the modeling accuracy, we extract the
semantic information from the point cloud-based model such as room width and the ceiling
height. Subsequently, we feed this information to the grammar to generate a clean version
of the model in which all lines are connected. In more detail, the thesis contributions are
summarized as follows.

• Collecting point clouds – from the participants mobile devices in the crowdsensing
system – is achieved via integrating depth perception and motion tracking with area
learning.

• Development of a novel processing pipeline which comprises multi-stage point cloud
filtering, including normals estimation and segmentation by region growing.

• Enhancing the modeling quality and energy efficiency is performed through incorpo-
rating the formal grammars.

• A comparative study between the proposed grammar-based method and the
grammar-free model generation method is carried out.

• The performance of the proposed method is evaluated in terms of the energy over-
head on the participating mobile devices (i.e. number of point clouds sampled per
each device), the computational overhead of the method, and the model accuracy.

1.5 Document Structure

This thesis is structured as follows:

Chapter 2 – System Overview: This chapter describes the system model this work is
based on and provides an overview of related work in the area of crowd sensing
and indoor mapping.

24

1.5 Document Structure

Chapter 3 – Basic Interiors Model: In this chapter, we introduce a basic process to
obtain a floor plan from crowd-sensed point clouds. Each step of the process is de-
scribed along with a short introduction into the underlying concepts and algorithms.

Chapter 4 – Grammar-Enhanced Mapping: Introduction of interiors grammars and
their combination with the basic model into an enhanced, grammar-based indoor
mapping process is the main subject of this chapter.

Chapter 5 – Implementation: In this part, we introduce the software developed in the
course of this work and other tools, which are used to drive the mapping process.

Chapter 6 – Evaluation: In a real-world application of both processes (basic and en-
hanced), we evaluate their performance in terms of effectiveness and accuracy.

Chapter 7 – Conclusion and Future Work: Finally, we briefly summarize this work and
elaborate on some of the processes’ current limitations and potential research topics
to alleviate these shortcomings.

25

2 System Overview

In this chapter, we explain the system model before we formalize the attacked problem of
reducing the energy overhead on the mobile devices and improving the modeling accuracy.
Subsequently, we review examples of recent work in the realm of indoor mapping.

2.1 System Model

In this section, we provide an overview of the system architecture. Moreover, we describe
our assumptions which are adopted throughout the entire thesis. As can be seen in
Figure 2.1, the system model comprises three main components. First, a set of Tango-
powered devices, which are carried by individuals, exist in the indoor environment, referred
to as the sensing area. Second, a crowdsensing server collects the sensed data and
coordinates the communication with the mobile devices. The servers usually send sensing
queries to a set of users located in the sensing area. Finally, a mobile communication
network allows the mobile devices to communicate with the crowdsensing system. Below,
we discuss these components in more detail.

Sensing Query

Sensing Area

Point Clouds

Indoor Mapping

Figure 2.1: System architecture

27

2 System Overview

2.1.1 Tango-Powered Mobile Devices

Project Tango is a device developed by Google’s Advanced Technology and Projects
(ATAP) group with the intention of adding human-like sensors to technology [16a]. Tango
technology involves several new features, including motion tracking and depth perception
sensors that allow the device to locate itself in space and compute its distance from
objects that are in the range of sight of these sensors. Moreover, Tango enables area
learning which represents a memory of the places which have been visited. The device
offers a four megapixel RGB-IR rear-facing camera along with a 170 degrees fish-eye
motion tracking camera that updates at 30Hz. The infra-red projector is also positioned in
the rear of the device and has a refresh rate of 3Hz. The accelerometer, gyroscope and
compass offer six degree-of-freedom positional data.

Unlike Kinect, which includes similar sensors [Mic17], Project Tango, just like other
Android devices, offers on-board processing and storage. It has a 2.3 GHz quad-core
NVIDIA Tegra K1 CPU and also offers 4 GB of RAM and 128 GB internal storage, which is
expandable via microSD. Project Tango offers three Application Programming Interfaces
(APIs), including: Java API, C API and the Unity API. We intend to exploit the three main
features of Tango while deriving the floor plan. In the sequel, we describe each of the
aforementioned features.

2.1.1.1 Motion Tracking

Motion tracking is a new feature of Tango-powered devices which is based on the visual
and the inertial odometry. This means that computer vision techniques are combined
with measurements from the inertial sensors to achieve mapping of the environment.
Moreover, it achieves positioning of the device within an indoor environment relative to the
objects in the scene and tracks the device in the given space [16d]. Specifically, computer
vision techniques involve feature matching – a technique used to match features (objects
or part of them) between frames – and feature tracking, a technique which is used to track
the matched features in order to determine the position of the camera/device relative to
those features. Figure 2.2 depicts an example of tracking a user’s movement using the
motion tracking feature of Tango. The blue curve represents the path traversed by the
user during this experiment.

Similarly, after the position of the device is established, the speed with which it is moving
can be determined based on the change of position between frames. In particular, Google
provides Tango APIs to collect the pose of the device, i.e. position and orientation, in

28

2.1 System Model

Figure 2.2: An example of motion tracking

six degrees of freedom (6DOF) from the inertial sensors: accelerometer, gyroscope and
compass. The returned data is a 3D vector in meters for translation and a quaternion for
rotation. Both sources need to be fused in order to achieve tracking, but Google does not
supply information on how they achieve data fusion for tracking purposes. In fact, motion
tracking has some limitations, including:

• Drifts: after walking long distances for a period of time error is accumulated and the
perceived position from the device will have drifted from the actual position the user
is at.

• Motion tracking does not understand the space around it. Every time a new tracking
session starts, it will be based on the latest starting position, not remembering
anything from previous tracking sessions.

Both of these limitations can be sidestepped via integrating motion tracking with area
learning. Below, we explain the area learning feature of Tango-powered devices.

2.1.1.2 Area Learning

Area Learning is a process that enables a Tango-powered device to “learn” the area
around it while keeping track of the user’s position in the given scene. To this end, Tango
recognizes the space – in which the device is in – through matching what the device

29

2 System Overview

currently sees with what it has seen before. Specifically, area learning easily recognizes
spaces that are visually distinctive, i.e. with corners and edges – in contrast to empty
rooms with white walls. It also depends on the conditions under which the environment is
being registered, i.e. day/night and furniture changes. Walking around the area, with area
learning mode activated, enables the device to create an improved model of the area and
thus correct drift. Area descriptions are saved in compressed form in Area Description
Files (ADF) and can be reloaded whenever area learning is to be continued.

Figure 2.3 depicts a comparison of several motion traces collected while traversing the
corridor of the computer science department, University building in Stuttgart. The red
solid lines denote the user trajectories when only motion tracking was enabled. As
can be seen, the traces are completely out of the correct path due to accumulated
drifts. The black dotted lines represents walking in the same path but this time with
area learning mode enabled and having loaded a previously stored ADF. Obviously, area
learning significantly improves the accuracy of the collected traces. Drifts are corrected
via remembering the visual features of the area it has visited, and uses them to correct
errors in its understanding of its position, orientation, and movement. When a Tango
device recognizes an area it knows, i.e. it has seen earlier in previous session, it realizes
that the device has traveled in a loop and adjusts its path to be more consistent with its
previous observations.

Figure 2.3: Impact of integrating motion tracking (MT) and area learning (AL)

According to Tango developers [16b], environmental changes which may occur in the
indoor areas can degrade the performance of area learning. We observed this limitation

30

2.1 System Model

during data collection where the ADF file was recorded during the day. Afterward, all
collected point clouds and motion traces during the day were accurately positioned.
On the other hand, the data collected at night using the same ADF file suffers from
misplacement and drifts. To tackle such a problem, we advocate recording multiple ADFs
for a single physical location under different conditions. This gives the participating mobile
devices the option to select a file that most closely matches their current conditions. In
the same regard, multiple sessions can be appended to the same ADF to capture visual
descriptions of the environment from every position and angle and under variations of
lighting or environmental change.

2.1.1.3 Depth Perception

Depth perception enables Tango devices to estimate their distance from objects in the
scene. Project Tango allows three approaches of achieving depth perception, namely
structured light, time-of-flight and stereo. The first two approaches exploit the infra-red
sensor to estimate the depth. In the time-of-flight approach, the distance from the objects
will be estimated from the time it takes the infra-red waves to be reflected back and
received at the infra-red sensor. Whereas, the third approach calculates the distance
based on the pictures taken from two cameras, i.e. similar to the human eyes.

The depth APIs – provided by Project Tango’s developers – return point clouds from the
depth sensor in the form of xyz coordinates as float values given in meters. There are
two different coordinate systems, referred to by the developer documentation as “Right
Hand Local Level” and “Right Hand Android” (cf. [16c]).

The Java API uses the “Right Hand Android” variant to describe coordinates and vectors
for localization and orientation. However the final point clouds which are saved to files
for further processing employ the “Right Hand Local Level” variant. We consider this
an implementation detail of the scanning app and will use the “Right Hand Local Level”
variant throughout this thesis, since all calculations for obtaining an interior model are
based on this one.

The “Right Hand Local Level” coordinate system is defined as follows: If the device is
in landscape orientation with the screen facing the user, then +y points in the direction
of the camera’s optical axis and is perpendicular to the plane of the camera, +z points
toward the top of the screen and +x points toward the user’s right.

Specifically, the API returns coordinates of objects in space relative to the device, i.e. not
direct distance measurements. The distance can be easily estimated as the Euclidean

31

2 System Overview

distance of two points in the 3D space. One limitation of the depth perception is that the
surrounding sources of light and heat, which are infra-red sources, interfere with the depth
sensor. Also, the depth sensors fail to detect transparent or reflecting surfaces since the
waves travel through them or are diverted such that their reflection cannot be received by
the sensor.

Figure 2.4 shows an example of a point cloud, collected using our Tango device. In this
scan, we sweep the device to catch the distance between the device and the walls as
well as the furniture. This figures shows the data which we can get from Tango devices,
if it participates in a crowdsensing-based indoor mapping application. In this thesis, we
collect similar point clouds and then apply several processing steps to identify interesting
points only, e.g. walls.

Figure 2.4: An example of point cloud collected using a Tango tablet

2.1.2 Crowdsensing Servers

The back-end servers represents an intermediate stage between the application layer
and the data collection layer. They send sensing queries to the participating mobile
devices. In this regard, several efforts have been exerted to identify only a subset of
participating devices for the sake of improving the energy consumption. For instance,
Baier et al. [BDR13] introduce a data quality model which relies on estimating the data
completeness at the application layer. Based on the estimated data quality, the server
selects a subset of the available mobile devices to which sensing queries are transmitted.
In general, there may exist several crowdsensing servers, serving the same application,

32

2.1 System Model

and being connected via a wired network. Each crowdsensing server is responsible for the
mobile devices in a certain geographical area, which is referred to as the server’s sensing
area, as shown in Figure 2.1. For simplicity, and taking into account working in indoor
environments, we consider – in this thesis – the case at which only one crowdsensing
server exists. Accordingly, all participating mobile devices move within the sensing area of
this server. Moreover, we assume that the sensing area is entirely covered by one server,
i.e sensing queries are inside this area. Below, we describe sorts of communication
between the back-end servers and the corresponding mobile devices.

2.1.3 Communication Facilities

Several wireless communication technologies exist for transferring the sensing queries and
the sensed data between the crowdsensing servers and the participating mobile devices.
For instance, this wireless communication can be done using either WiFi networks, or
via cellular mobile networks such as UMTS or LTE. However, we assume that most
modern buildings are completely covered by WiFi networks. Therefore, we only consider
WiFi communication to convey data and queries between the crowdsensing components.
Another reason for our selection emerges from the need to save as much energy as
possible. Figure 2.5 demonstrates a comparison between WiFi and 3G in terms of the
consumed energy when uploading three datasets. The datasets, referred to as single,
double and triple, represent point clouds which result from scanning three different-sized
rooms, ranging from small room, medium-sized room to large room. As can be seen in the
figure, uploading the datasets using WiFi consumes much less energy compared to 3G.
Therefore, we rely on WiFi for uploading the acquired point clouds to the crowdsensing
server.

0

100

200

300

400

500

600

slow fast slow fast slow fast

single double Triple

U
p

lo
ad

in
g

 E
n

er
g

y
 [

J]

WiFi 3G

Figure 2.5: Uploading energy consumption in case of WiFi and 3G

33

2 System Overview

2.2 Problem Statement

The problem with indoor mapping using crowdsensed point clouds is that point clouds are
bulky enough to drain the mobile devices’ batteries once they are processed or uploaded.
Even with a WiFi connection between the server and the participating mobile devices, data
transmission consumes an excessive amount of energy. In order to tackle this problem,
we select to adopt a lightweight compression method which can reduce the uploading
energy overhead via reducing the number of transmitted bytes. For this sake, we employ
the Octree compression provided by the PCL library [RC11]. Another concern emerges
due to compressing the point clouds prior to transmission where this compression may
have negative impact on the modeling accuracy. In other words, compression may lead to
miss important details of the point clouds. Therefore, we formalize the research problem
as an integer linear programming problem to improve both of the energy consumption
and the modeling accuracy, as denoted by Equation 2.1.

minimize
N∑

i=1
Ei(task), task ∈ {proc, upload}

subject to Ω(P) = Ω(MP), |MP | << |P|.
(2.1)

Equation 2.1 defines the main objective as minimizing the overall energy consumption
E for the required tasks, including processing proc and data uploading upload. This
objective should be satisfied given that modeling accuracy does not degrade, i.e. modeling
accuracy using the raw point cloud Ω(P) should equal that if only we use the compressed
version Ω(MP) where |P| is the size of the raw point cloud and |MP | denotes the size
after compression.

Another source of energy consumption is the need to sample several point clouds for
each room to cover the different details. Typically, point clouds collected by normal users
are not complete and have many gaps; therefore several point clouds are necessary to
achieve the required modeling accuracy. Again, uploading several point clouds harms the
energy budget of the participating mobile devices. To tackle such a challenge, we employ
the formal grammars. Instead of relying on each point in the collected clouds, we can only
extract some semantic information, such as the room width, and integrate them with the
grammar to generate the required map while achieving high modeling accuracy.

34

2.3 Related Work

2.3 Related Work

In this section, we discuss the research efforts in the realm of indoor mapping and
crowdsensing. Specifically, we are interested in the energy-efficiency while participating
in a crowdsensing system. Additionally, we review the literature to discover different
methods of deriving the indoor floor plans.

2.3.1 Indoor Mapping

In this section, we review the main recent efforts for modeling the indoor environment.
In fact, the literature has several articles tackling the problem using different resources
and technologies. For instance, Philipp et al. [PBD+14] introduce MapGENIE, a new
framework to derive indoor maps via collecting odometry traces. They exploited the
formal grammars to enhance the model accuracy. Similarly, Alzantot et al. [AY12] present
CrowdInside which is a crowdsensing-based system for the automatic construction of
buildings floor plans. CrowdInside enhances the dead-reckoning accuracy through using
unique anchor points which are found in typical indoor spaces for error resetting. Luo
et al. [LHC+15] introduce iMap, a smartphone-based opportunistic sensing system that
automatically constructs the indoor maps. iMap is designed to detect the floor plan as
well as higher-level semantics such as stairs, escalators, elevators and doors. To this end,
they collected several types of data including motion traces, atmospheric pressure, audio,
and WiFi signal strength.

As can be seen, the aforementioned methods share collecting crowdsensed data. Al-
though the resultant models are relatively accurate, they are limited to 2D representations.
As a solution, Gao et al. [GZY+14] propose Jigsaw, a floor plan reconstruction system that
leverages crowdsensed data from mobile users. Jigsaw merges images and motion traces
to generate 3D point clouds of a given scene. Afterward, they compute the coordinates
and orientations of objects – in the generated point clouds – to derive an initial floor plan.
However, these methods require the continuous reporting of the users position and their
sensed data to the corresponding serves. As an example, Jigsaw has to report around
two hundred images per scene to the crowdsensing server to generate a single point
cloud. This huge overhead negatively affects energy efficiency of the participating mobile
devices.

We also found several articles exploiting point clouds for indoor maps. However, these
point clouds are obtained using laser scanners instead of collecting them from distributed

35

2 System Overview

mobile devices. For example, Sanchez et al. [SZ12] observed that most building interiors
can be modeled as a collection of planes representing ceilings, floors, walls and staircases.
Accordingly, they use a laser scanner to collect 3D point clouds and then adopt RANSAC-
based model fitting to detect ceiling and floors, as well as small-scale architectural
structures, such as staircases. Similarly, Budroni et al. [BB09] introduce a modeling
method based on a plane sweep algorithm for the segmentation of a point cloud in order
to recognize the planar structures of a room. In this thesis, we seek to adopt point clouds
as our data source while exploiting the concept of distributed crowdsensing.

As explained earlier in this chapter, Tango-powered devices enables us to acquire point
clouds as well as motion traces. Although the laser scanners-generated point clouds
are more accurate than those obtained by Goggle Tango devices, the level of accuracy
obtained with Tango is proved to be sufficient for indoor modeling applications. Roberto
et al. [RLAT16] provide an evaluation of the Tango-powered devices regarding its motion
tracking and depth perception capabilities. Their results demonstrate that Tango devices
sometimes present large motion tracking errors, which may harm augmented reality
experience. In addition, a Tango device’s depth sensing presents average error values
similar to desktop depth cameras, but it is more sensitive to infrared reflection properties
of the objects to be mapped. Schöps et al. [SSHP15] exploit Tango-powered devices to
evaluate their real-time system for 3D reconstruction of large-scale outdoor scenes based
on monocular motion stereo. Similarly, [SGSM16] use the Tango tablets to evaluate their
system for automatically generating immersive and interactive virtual reality environments
using the real world as a template. In this thesis, we believe that Tango-powered devices
are reliable enough to be adopted for crowdsensing point clouds.

2.3.2 Energy Consumption

A major prerequisite for reaching user acceptance – in a typical crowdsensing system
– is to acquire the necessary data in an energy-efficient manner. Specifically, energy is
dissipated, due to participating in a crowdsensing system, for four main tasks, including:
data acquisition and uploading, query distribution, and device positioning. Several works
have been dedicated to improve the crowdsensing energy efficiency. To conserve energy
due to redundant data uploading, Liu et al. [LHZ+13] propose delaying data upload until
the availability of a WiFi connection in lieu of uploading the data immediately via the 3G
network. The energy-efficient location API described in [DRM14] allows one to predict the
location based on the assumption that most of the users repeat the same path every day.

36

2.3 Related Work

Nevertheless, this approach may decrease the accuracy and therefore leads to significant
errors in case the participating users do not follow the usual habits.

Zhao et al. [ZML14] propose a novel model of opportunistic coverage, along with a
measurement methodology to estimate the coverage quality and to improve the energy
efficiency. The collected mobility traces are exploited to efficiently distribute the sensing
queries. Similarly, Kjaergaard et al. [KBBN11] present an energy-efficient system for
tracking trajectory, in which the goal is to track straight segments of a path instead
of individual coordinates. This approach is built upon the EnTracked position tracking
algorithm [KLGT09], extending it to trajectory simplification and three new modes of
operation: heading-aware (which employs the compass), distance-aware (which employs
GPS data) and movement-aware (which employs the accelerometer). The authors show
significant improvement in energy savings comparing to the EnTracked algorithm, while
keeping the location error within the requested error bound.

The aforementioned approaches mainly attack services like positioning and query dis-
tribution. However, they do not consider the energy consumption due to performing the
sensing tasks per se. Philipp et al. [PSA+13] propose DrOPS, a system for improving the
efficiency of data acquisition in crowdsensing systems. DrOPS utilizes a model-driven
approach, where the number of required readings from mobile devices is reduced by
inferring readings from the model. Furthermore, the model can be used to infer readings
for positions where no sensor is available. Alternatively, Ra et al. [RPKL12] propose to
modify the mobile devices’ hardware via the use of a dedicated low-power processor. In
[LCZ+13], a piggyback mechanism is proposed that collects the data when the sensors
are used by other applications. This approach significantly reduces the energy overhead,
however it also degrades the number of performed measurements and does not allow for
properly tracking the device mobility. Finally, Rachuri et al. [REL+14] introduce METIS,
a mobile sensing platform that leverages both mobile phone sensors and fixed sensors
in the environment. The system implements a novel sensing distribution scheme that
is able to switch between phone and remote sensors considering the various sensing
parameters, and mobility patterns of the users.

Although these methods managed to reduce the energy consumption, they are not
applicable in most crowdsensing applications. For instance, predicting the readings works
well with low-frequency data, such as temperature and humidity. However, it cannot be
applied to other type of data, such as images and point clouds, which are necessary in
our application of indoor mapping. Similarly, offloading the sensing tasks to fixed sensors
requires pre-installation of such fixed sensors. In addition, adding fixed sensors to collect
point clouds is not reasonable. Piggybacking the sensing queries leads to unpredictable

37

2 System Overview

reception time of necessary data, taking into account that most apps which use point
clouds are mostly augmented reality-enhanced games. Based on these arguments, we
leverage data compression and the utilization of the grammar for reducing the sensing
energy overhead.

38

3 Basic Interiors Model

In this chapter we explain both the process of obtaining a floor plan from point clouds
sampled with a Tango-powered device, and the concepts, algorithms and data structures
each of the process steps are based on. An outline of the processing steps is shown in
Figure 3.1. We will explain the function of each box in the following sections.

Octree-Based

Compression

Decompression

Voxel Grid

Filtering

PCA-Based

Filtering

Region-Growing

Segmentation
2D Projection

Line Segments

Refinement

Indoor Model

Multistage Filtering

Data

Uploading

Tango Mobile

Devices

Backend Server

Figure 3.1: Processing chain in the back-end

3.1 Point Clouds

From a Computer Science perspective, a point cloud is a simple data structure containing
a set of n-dimensional vectors. When these vectors are interpreted as position vectors

39

3 Basic Interiors Model

in a Cartesian coordinate system1, each vector represents a specific point in space.
Thus, (unorganized or unstructured) point clouds describe e.g. surfaces or objects in a
3D-model, without imposing or implying any semantic relations between the contained
points.

Looking at point clouds from an Object-oriented Programming (OOP) perspective, single
points also can, in addition to its position, carry further information. Examples are gray-
scale intensity, color information, an alpha channel or any other attribute which is required
for a particular application.

3.1.1 Octree Compression

After a point cloud has been sampled with a Tango-powered device, octree compression
is applied to save energy during data transfer to the back-end server. Octrees are a simple
data structure which can be seen as an extension of binary or quad trees, where each
inner node has exactly eight children (instead of two or four). They are able to handle
sparse 3D data with a high memory efficiency.

Octree compression consists of three primary steps, including: a) It spatially decomposes
the point cloud into an octree data structure. b) It quantizes the point cloud by replacing
the points by the cell centers of the octree’s leaves. c) It arithmetically encodes the
remaining points by considering only cells whose child cells are nonempty. While the
different parameters of octree compression are introduced in Section 5.2.2, their effects
on efficiency and details about energy savings will be discussed in Section 6.1.3.

3.2 Voxel Rasterization

In a two-dimensional raster graphic, the smallest atomic unit is a pixel, which occupies a
certain area, depending on the graphic’s resolution. Adding a third dimension to a pixel
results in a voxel, an element within an evenly spaced, three-dimensional grid. The term
Voxel stems from the contraction of the words “volume” and “element“. Subsequently,
voxel rasterization (or re-sampling) means the mapping of voxels from one grid into
another with a different grid size. In almost all cases, this process entails the loss of

1 Although Cartesian coordinate systems will be assumed throughout this thesis, other systems like polar
or geo-referential systems are also conceivable in other applications.

40

3.2 Voxel Rasterization

information. For a smaller size of the new grid, he only exceptions are cases, where a)
the new grid size is either smaller b) the mapping can occur without any rounding errors.
If the new grid size is larger, these conditions are even more constrained. For example, a
cube consisting of eight voxels can be mapped losslessly in to a grid of twice the old edge
length, iff the cube aligns exactly at step boundaries of the new raster.

After the point cloud has been transferred to the server, the compressed point cloud is
further processed by pcl-model-extraction (cf. Section 5.3.1). When the compressed
point cloud is loaded, decompression and conversion to a data structure internal to
the Point Cloud library is handled implicitly. Subsequently, voxel rasterization – with a
larger grid size – is applied to further reduce the amount of data to be processed. This
operation can be parameterized in accordance with the system resources at hand (cf.
Sections 5.3.1.2 and 6.2.1).

3.2.1 Normals Estimation, Principal Component Analysis

For our practical purposes, we assume point clouds to be representations of surfaces,
in contrast to solid, filled bodies. In order to describe the orientation of a surface (or
part thereof) represented by a cluster of points within a point cloud, so-called surface
normals can be used. A process of normals estimation associates each point with such
a normal, and the Point Cloud Library (PCL) provides an implementation for this. Rusu
provides more details on the mathematical background of his implementation in [Rus09].
In addition to a normal, each point is also attributed a curvature. The calculated surface
normals and curvatures are required for both the next processing step, filtering by normals
angle, and for segmentation using region growing.

3.2.2 Filtering by Normals Angle

Since we are primarily interested in upright walls, the number of points to process during
region growing can be drastically reduced by only considering points, whose normal angle
α against the x/y-plane lies within a certain range between ±β. In other words, if |α| > β

applies to a point’s normal, the point is dismissed (cf. Sections 5.3.1.4 and 6.2.3). A
perfectly sampled wall would be reflected by points with normal angles of 0°, without
exception. Flat desktop surfaces, conversely, would imply normal angles of 90°.

41

3 Basic Interiors Model

3.2.3 Segmentation

Segmentation describes the process of partitioning a point cloud into smaller, distinct
segments, with the points in each segment being in a semantic relation to each other. For
our purpose of detecting wall segments, the semantic relation is defined singularly by
the points’ locations in space (and, implicitly, a sufficiently small difference of the angle
between normals of neighboring points), i.e. the points of a segment are part of one,
and only one, wall. Points which cannot be allocated to any segment are referred to as
outliers.

3.2.3.1 Region Growing

In this work, a segmentation algorithm called Region Growing is employed. Since we
used the implementation provided by the PCL, this description is based on its online
documentation. In particular, Algorithm 3.1 was obtained from [PCLc].

At the beginning, the point cloud’s points {P} are sorted, ascendingly by their curvatures
{c}, into a set of available points {A}, which were obtained by normals estimation.
Iterating over {A} sorted that way, region growing is able to reduce the total amount of
segments yielded. Now, we take the first point from {A} and add it both to the current
region {Rc} and to a set {Sc} called current seed points.

For each seed point Si
c we find the set {Bi

c} of its nearest neighbors using a neighbor
finding function Ω(). Next, we iterate over {Bi

c}, referring to the current point thereof
as Pj . If the angle between the normals of the current seed point Sc and Pj is less
than the specified smoothness threshold angle Θth, the point Pj is added to the current
region {Rc}, and then removed from the set of available points {A}. Subsequently, if
the curvature value associated with Pj is less than the provided threshold cth, Pj is also
added to the set of seed point {Sc} for the region currently being grown. When the set of
seed points {Sc} has become empty, the current region {Rc} is grown completely and
the next point with the smallest curvature is moved from the set of available points {A}
to a new set of current seed points {Sc}. After the set of available points has become
empty, region growing has finished. All points which were not added to any region are
finally added to a set called outliers.

Details on parameterization can be found in Sections 5.3.1.5 and 6.2.4.

42

3.2 Voxel Rasterization

Algorithm 3.1 RegionGrowing
1: // Input:
2: // Point cloud: {P}
3: // Point normals: {N}
4: // Points’ curvatures: {c}
5: // Neighbor finding function: Ω()
6: // Curvature threshold: cth

7: // Smoothness threshold angle: Θth

8: procedure REGIONGROWING({P}, {N}, {c}, Ω, cth, Θth)
9: Region List {R} ← ∅

10: Available points list {A} ← {1, . . . , |P |}
11: while {A} ≠ ∅ do
12: Current region {Rc} ← ∅
13: Current seeds {Sc} ← ∅
14: Point with minimum curvature in {A} → Pmin

15: {Sc} ← {Sc} ∪ Pmin

16: {Rc} ← {Rc} ∪ Pmin

17: {A} ← {A} \ Pmin

18: for i = 0 to |{Sc}| do
19: Find nearest neighbors of current seed point {Bi

c} ← Ω(Sc{i})
20: for j = 0 to

∣∣∣{Bi
c}

∣∣∣ do
21: Current neighbor point Pj ← Bi

c{j}
22: if Pj ∈ {A} ∧ arccos(∡(N{Si

c}, N{Pj})) < Θth then
23: {Rc} ← {Rc} ∪ Pj

24: {A} ← {A} \ Pj

25: if c{Pj} < cth then
26: {Sc} ← {Sc} ∪ Pj

27: end if
28: end if
29: end for
30: end for
31: Add current region to global segment list {R} ← {R} ∪ {Rc}
32: end while
33: return {R}
34: end procedure

43

3 Basic Interiors Model

3.2.4 Deriving Walls from Segments

Several further calculations have to be applied after segmentation to obtain a model
reflecting walls. For brevity, the steps outlined in this section focus on one segment, while
in reality each of these steps has to be performed on all segments yielded by the previous
step of segmentation.

Errors in measurement at the time of sampling of point clouds cause the segments to
occupy space, instead of – in case of ideal measurements – their points being aligned in a
flat plane. After projecting a segment onto the x/y-plane, an oriented bounding box (OBB)
is calculated. For this, Principal Component Analysis (PCA) is performed on an entire
segment which yields its Eigenvectors (EVs), describing the segment’s orientation. The
EV’s orientation to each other is rectangular, the first one being the segment’s surface
normal, the second and third EVs pointing in the direction of the segment’s width and
height. Next, the segment’s centroid is calculated. The EVs and the centroid then are
used to perform a rotation and translation (transformation T), such that the segment’s
EVs align with the axes of the coordinate system and the centroid is located at the origin.
The four corner points of the bounding box then correspond to possible combinations of
the minimum and maximum x- and y-coordinates of the segment’s points: (xmin/ymin),
(xmax/ymin), (xmin/ymax), (xmax/ymax). After applying the transformation T−1 to those
points, the resulting points finally describe the OBB.

Assuming that a wall is wider than it is thick, we inscribe a line segment into the OBB,
such that its end points are located in the middle of the segment’s lateral edges. The set
of line segments derived from all OBBs then constitutes an indoor model.

3.2.5 Refinement

The model may, for some wall sections, contain multiple lines. An example could be a
section with a large window, where the wall sections above and below the window might
have been split into separate segments by region growing. It is then likely, that their ventral
positions differ and thus they also yield two individual wall sections. To mitigate this, we
added some steps for refinement, which are explained in detail in Section 5.3.1.6.

The model obtained in the previous step may still contain line segments for objects, which
are not part of the building’s structure. Filtering out such objects, like e.g. furniture, can be
done in a final filtering step. For example, the cloud segment of provenance associated

44

3.2 Voxel Rasterization

with a line segment would have to meet additional criteria, like e.g. minimum dimensions,
in order to not get filtered out.

45

4 Grammar-Enhanced Mapping

In this chapter, we discuss the utilization of formal grammars to enhance the accuracy
of the obtained model from the previous chapter. Moreover, we explain how grammar
involvement leads to significantly reducing the energy consumption of the participating
Tango-powered mobile devices. We start by providing a general overview of formal gram-
mars, before we elaborate on the interiors grammar which encode structural information.
Afterward, we explain the methodology by which we use the grammar as novel model
fitting tool.

4.1 Formal Grammars

In this section, we explain the general concept behind formal grammars. Grammars are
typically a set of production rules for strings in a formal language [Pow02]. The rules
describe how to form strings from the language’s alphabet that are valid according to
the language’s syntax. In other words, the rules are used for rewriting strings, along
with a “start symbol” from which rewriting starts. In particular, formal grammars do not
describe the meaning of the strings or what can be done with them in whatever context
– only their form. In some applications, formal grammars are used as recognizer to
determine whether a given string belongs to the language or is grammatically incorrect.
Literally, parsing is the processing of words by breaking them down to a set of symbols
and analyzing each one against the grammar of the language. Formally, a grammar G is
an ordered quadruple ⟨VN , VT , S, R⟩ where:

• VN is a set of grammar nonterminal symbols that can be replaced/expanded to a
sequence of symbols.

• VT is a set of actual words in a language; these are the terminal symbols in a
grammar that cannot be replaced by anything else, where VT ∩ VN = ∅. The
term “terminal” is supposed to conjure up the idea that it is a dead-end – no further
expansion is possible.

47

4 Grammar-Enhanced Mapping

• S ∈ VN is a start nonterminal symbol. All sentences are derived from S by
successive replacement using the production rules Ri of the grammar G.

• Ri is a set of grammar rules (aka production) that describe how to replace/exchange
symbols.

The terminal symbols are typically denoted by small letters, VT = {a, b, c, · · · } while the
nonterminal symbols are denoted by capital letters, VN = {A,B,C, · · ·}. To generate a
string in the language using a formal grammar, we start with a string consisting of only a
single start symbol. Then, the production rules are sequentially applied without a specific
order, until a string that contains neither the start symbol nor designated nonterminal
symbols is produced. A production rule is applied to a string by replacing one occurrence
of the production rule’s left-hand side in the string by that production rule’s right-hand side.
Any particular sequence of production rules on the start symbol yields a distinct string in
the language. As an example, assume the alphabet consists of a and b, the start symbol
is S. The production rules are represented as follows.

Rule R1: S → aSb

Rule R2: S → ba

At the outset, we start the derivation with the start symbol S. Subsequently, we select a
rule to apply. For instance, if rule 1 is to be applied, we obtain the sequence aSb. Assume
that rule 1 is selected again to be applied. Then, we replace S with aSb and therefore the
output is represented by the sequence aaSbb. Finally, we may apply rule 2 via replacing
S with ba, then we get a new sequence aababb. Since the resultant sequence has neither
the start symbol nor designated nonterminal symbols, there exist no further iterations.
Accordingly, the production process has to be terminated.

In the literature, we found four main types of formal grammar, ranging from type 0, type 1,
type 2 to type 3. The difference between these types is that they have increasingly strict
production rules and can therefore express fewer, less powerful, formal languages.

• Unrestricted grammars (type 0). It is the most general case in which productions
are of the form a → b where both a and b are arbitrary strings of symbols in
V = VT ∪ VN , with a non-null. There are no restrictions on what appears on the
left or right-hand side other than the left-hand side must be non-empty.

• Context-sensitive grammars (type 1). Productions are of the form ϕAψ → ϕαψ

where A ∈ VN and α are arbitrary strings of symbols in V . Here, the symbols ϕ
and ψ provide the context for the production.

48

4.2 Interiors Grammars

• Context-free grammars (type 2). Productions are of the form A→ α where α is
an arbitrary string of symbols in V , and A is a single nonterminal. Wherever the
symbol A is found, we can replace it with α, i.e. regardless of context.

• Regular grammars (type 3). Productions are of the form A→ aα, where A ∈ VT .
Specifically, the left-hand side must be a single nonterminal and the right-hand side
can be either empty, a single terminal by itself or with a single nonterminal. These
grammars are the most limited in terms of expressive power.

Notice that the classes form a hierarchy of increasing restrictiveness, so every type 3
production is also a type 2 production, and every type 2 production is also a type 1
production. After defining the formal grammars, we below give an overview of a context-
free interiors model which encode structural information.

4.2 Interiors Grammars

Initially, formal interiors grammars are that kind of context-free grammars which are
able to store geometric, topological and semantic information on building interiors. As
aforementioned in Section 4.1, formal grammars represent object knowledge through
symbols and a set of production rules. The nonterminal symbol VN which defines the
starting point for all replacements is denoted by the axiom. By successively applying rules
to the axiom, new sequences of symbols are generated, i.e. a room sequence.

To develop an interior model, we have to identify basic geometric primitives as well as
characteristic topological properties by which an indoor model can be described [PBF13].
In general, modeling the floor’s hallways is simpler than modeling rooms. The reason
behind this fact lies in the linear arrangement of hallways which show a one-dimensional
topology. Alternatively, the topology of room configurations on a floor is two-dimensional.

However, room arrangements are typically not created by random compositions of walls,
but follow architectural principles and are subject to functional restrictions. Accordingly,
the interiors grammar encodes knowledge about architectural principles and geometric
restrictions. The following properties of building interiors are crucial for the interiors
grammar design:

• In public buildings, each floor is usually traversed by a system of connected corridors.
The intuition behind this design principle is to ensure convenient access to the
rooms.

49

4 Grammar-Enhanced Mapping

• Each floor is divided – according to the system of corridors – into hallway areas and
non-hallway areas. Further, the non-hallway areas can be partitioned into smaller
room units which are mostly arranged in a linear sequence parallel to the adjacent
hallway.

• Depending on their function, such room units feature specific layouts. For example,
in hotels or hospitals a typical room unit consists of a bedroom and a bathroom.

According to the first and second properties, two different grammars have to be used to
describe hallway areas and non-hallway areas. On the one hand, hallway areas resemble
a network of a linear structure. On the other hand, non-hallway areas can be derived by
a spatial partitioning applied to the interspaces of the hallway areas. The third property
makes it easier to model buildings where there are semantic relationships between the
cascaded rooms. For instance, a secretary office, with high percentage, is located next to
an executive office. In these cases, the grammar models both rooms as a single object,
referred to as room unit. Below, we elaborate on the split grammar utilized for deriving
the rooms’ layout. It is important to mention, that the interiors grammar – utilized in this
thesis – is not a contribution of the author. Rather, it is a tool which has been developed
in the ComNSense project [Pro13].

4.2.1 Split Grammar

As usual, the split grammar is composed of the nonterminals VN , the terminals VT , the
axiom S, and the production rulesR. The nonterminals and terminals of the split grammar
correspond to basic geometric primitives. Specifically, the set of nonterminals VN consists
of the axiom S = Space. The symbol Space represents a 2D wall that can still be
decomposed in wall segments. The terminals VT = {ϵ, ra, rb, rc, · · · } describe walls that
are not divisible. Each terminal ri ∈ VT corresponds to a class i of rooms, identified by
their geometric extent. It is sometimes beneficial to specify that a symbol can be replaced
by nothing at all. To describe this case, the null symbol ϵ is utilized. Both nonterminals
and terminals have attributes which determine their geometry and type. Accordingly, the
production rules R can be formulated as follows.

1. Rroom
i : Space→ ri Space

2. Runit
n : Space→ rj . . . rk Space where n ∈ room units in the building

3. Rϵ: Space→ ϵ

50

4.2 Interiors Grammars

The first rule inserts a room – which is identified by the terminal symbol ri – by dividing the
available space into a room ri plus another Space. The resultant Space can be further
divided into rooms or room units. The second production rule inserts a room unit by also
dividing the available space into a room unit and a remaining space. Finally, the third rule
implies that if there is no further free space we substitute the symbol Space with the null
symbol ϵ. This rule announces the termination of the current derivation process. Table 4.1
provides an example of a room grammar rule Rroom

1 which describes a room in terms
of its width, its type, and the prior probability P (Ri). The latter principally stands for the
relative frequency of occurrence of a room or room unit. The unit room is defined in a
similar manner.

Rroom
1 Runit

5

Rule Space→ r1Space Space→ r3r2r3Space

Width 2.4 m 19.2 m
A-priori 0.06 0.04

Type small office two executive with assistant’s office

Table 4.1: Example for room grammar rules and room unit grammar rules

As an example, Figure 4.1 depicts one possible derivation tree (i.e. sequence of rules) to
fill a non-hallway space with the split grammar. In the sequel, we explain the method by
which we exploit the interiors grammar as a model fitting tool. Moreover, we clarify the
advantages of adopting this novel approach in terms of the saved energy consumption as
well as the improvement in the modeling accuracy.

Space

r1 Space

Space

Space

ϵ

r4

r3r2r3

Figure 4.1: An example of split grammar derivation

51

4 Grammar-Enhanced Mapping

4.3 Grammar-Based Model Fitting

To explain how the split grammars can be used as a model fitting tool, we have to
understand the methodology by which we apply the split grammar to derive the rooms’
layout. Figure 4.2 demonstrates the process of deriving the rooms’ layout using the split
grammar. In particular, the process of applying the production rules has to be performed
on a given line, referred to as the reference line segment (RLS). This RLS line is used
as a reference for cascading the successive rooms. The figure shows that the area
between the beginning RLS_START and the end of the RLS line RLS_END, represents the
free space which is then filled with rooms via applying the aforementioned production
rules. The figure shows two cases of filling the RLS segment. In the first case (top RLS),
the grammar inserts only rooms in accordance with the prior probability P (Ri). Whereas,
the split grammar – in the second case (bottom RLS) – inserts a combination of rooms
and room units.

R3 R2 R4

RLS_START RLS_END

R1 R1 R2

R2 R4 R1R4 R1 R1

Room Unit

Figure 4.2: Rooms layout generation using a split grammar

The core idea of our proposed approach is to exploit the knowledge encoded in the
grammar while processing the collected point clouds. As explained earlier, the collected
point clouds are usually not complete and sometimes they do not include important details.
The reason lies in collecting the point clouds on the fly, employing untrained individuals
who lack the knowledge of the current processing pipeline. Figure 4.3 shows an example
of such cases where the collected point cloud of a certain room is not complete. As it can
be seen in the figure, several parts of the outer walls are completely missing. Therefore, it
is not trivial to extract the interesting segments, i.e. walls, and then convert them into a
set of interconnected walls.

To tackle this problem, we convert our strategy from relying entirely on the point clouds to
enhancing the model extraction with prior knowledge embedded in the interiors grammar.

52

4.3 Grammar-Based Model Fitting

Figure 4.3: An example of a scanned room with missing details

Figure 4.4 depicts a modified version of the processing pipeline, which was explained
the previous chapter. In this figure, we incorporate the grammar to the model extraction.
We consider the basic model obtained from the previous chapter as input to the new
processing steps. As Figure 4.4 demonstrates, the reference line segments are used to
extract some semantic information, specifically rooms widths. To this end, we use a set
of reference lines, which are provided by the indoors grammar (cf. [PBD+14]). For each
RLS, we search for all line segments which are orthogonal to the current RLS and either
intersect with it or have an end point located in the vicinity of the RLS. The maximum
range of said vicinity is a parameter, adjustable to the model at hand. Finally, we estimate
the distance between successive walls which represents the rooms widths.

Now, we have a list of room widths, obtained by processing the collected point clouds.
As discussed earlier, the grammar rules have attributes such as the room width and the
prior probability. In the MapGENIE system [PBD+14], the authors implemented a Markov
Chain in order to randomly assign the rooms to each reference line. In our case, we
convert the random walk to a deterministic one via adjusting the transition probabilities in
accordance with the extracted rooms widths. Specifically, we match between the extracted
room widths and the available interiors grammar to select the corresponding rules. Then,
we adjust the transition probability between the successive rules according to the order,
obtained from the basic model.

53

4 Grammar-Enhanced Mapping

Multistage

Filtering

Octree-Based

Compression

Decompression

2D Projection

Line Segments

Refinement

Indoor Model Data

Uploading

Tango Mobile

Devices

Backend Server

Semantic Data

Extraction

Grammar-Based

Model Fitting

Figure 4.4: A modified processing chain

4.3.1 Discussion

The idea of incorporating the interiors grammar for enhancing the quality of the obtained
basic model not only improves the modeling accuracy, but also reduces the energy
consumption of the participating Tango-powered mobile devices. Instead of sending
queries the users to scan several point clouds, compress them, and then upload all this
data to the back-end server, we refine the system to query for only a single point cloud.
Accordingly, we saved an amount of energy which had to be wasted for sampling and
uploading unnecessary point clouds. In the next chapter, we discuss the implementation
details of the basic model as well as the grammar-enhanced model.

54

5 Implementation

The main focus of the software that was developed in the course of this work was directed
towards functionality. The proof-of-concept character of the resulting programs is reflected
mainly by the fact, that they were implemented as command-line tools, rather than fully
integrated GUI applications or Android apps.

All tools support several command-line parameters. Parsing is implemented using the
getopt_long() function call (cf. [Fre]). More details about the available parameters and
their meaning will be provided in the following sections introducing each tool.

CMake was chosen as a build system for the developed tools, because their main
dependency, the Point Cloud Library (PCL), uses CMake as well. CMake is a cross-
platform, multilingual build system, initiated back in 2000 by VTK, Inc. [Kit00].

5.1 Software Components

5.1.1 Point Cloud Library (Tango Device and Back-End)

PCL is an open-source library implemented in C++ which provides data structures and
algorithms for image and point cloud processing [RC11]. It is released under the BSD
license and can thereby be used freely and without charge. The software developed in
the course of this thesis relies heavily on its use.

PCL data structures do neither impose nor convey any information about units associated
with the coordinates of a point and only carry numerical values. In order to convey
information about scale when looking at a – proportionally correct – scene, a base unit
has to be assumed. Since the Tango device uses meter as a base unit for sampling point
clouds, this will be assumed throughout the filtering process as well.

55

5 Implementation

5.1.2 Point Cloud Sampling App (Tango device)

Sampling of point clouds was performed using an Android app which was developed in
the course of the ComNSense project [13]. It integrates depth perception, motion tracking
and area learning, as previously described in Section 2.1.1.

5.1.3 Application of Grammar-Based Model Fitting (Back-End)

Another component used is a tool developed in the course of the ComNSense project [13;
PBD+14]. It allows for deriving indoor maps based on pedestrians’ movement traces. The
software was adapted to perform its calculations based on structural information extracted
from sampled point clouds as opposed to its initial operating on odometric input.

5.2 Software implemented for the Tango Device

5.2.1 Point Cloud Library Cross-Compilation for Android

In order to be able to use the PCL on the Tango device, PCL and all of its dependencies
have to be cross-compiled for the ARM CPU architecture and the Bionic C runtime library
(Tango platform1). The compiler tool set used for this was the Android Native Development
Kit (NDK).

The build process itself was controlled by a CMake project called pcl-superbuild, best
described as an umbrella project. pcl-superbuild itself does not introduce any additional
source code to be compiled. It is merely a set of definitions and instructions which
automate the tasks of fetching and (cross-) compiling the source code of the PCL and all
required components for Android using an NDK [Mar12b].

1 The Android Open Source Project is not limited to the ARM architecture and the term Android platform
does not necessarily imply any particular CPU architecture, although ARM is the most commonly used
for Android-based devices. In contrast, the term Tango platform is intended to imply the Tango device’s
hardware properties and, in particular, the ARM architecture as well.

56

5.2 Software implemented for the Tango Device

The required components comprise:

• PCL itself, [PCL11],
• Boost [Boo00], [Mar12a],
• Eigen [GJ+10],
• FLANN [ML14] and
• VTK [SML06].

pcl-superbuild defines versioned dependencies, which means that, for each dependency, a
well-defined state of the dependency project’s source code will be obtained for compilation
(as opposed to relative version specification like, e.g. “current stable”, “latest” or “master”).
However the most recent activities of this project date back to the end of 2015. Thus,
several adjustments to pcl-superbuild were required for it to work with versions of the listed
dependencies most recent at the time of implementation of this work. These changes will
now be discussed in more detail.

Except for the Eigen library, pcl-superbuild obtains all dependency projects’ sources from
GitHub repositories. For performance reasons, local mirrors of these repositories are
highly desirable. This becomes more obvious when fully automated builds are aimed for
and thus, during the development phase, numerous iterations of the entire process occur.
Hence, all Git [TG05] repositories referenced by pcl-superbuild were mirrored locally on
the development machine, while updating these references accordingly.

So far, pcl-superbuild used to obtain the Eigen library’s source code by downloading a
compressed archive via HTTP. To facilitate a homogeneous dependency management,
Eigen’s source code was required to be kept available in a Git repository as well. The
Eigen project manages the source code in a Mercurial repository, which was easily
importable into a local Git repository using git-remote-hg [Con12]. The reference in
pcl-superbuild was updated to point to the Git commit corresponding with the version
released at the HTTP URL.

Since PCL was going to be used on the Tango device only to perform various calculations,
its visualization component was not required. The build flags of pcl-superbuild were
adjusted accordingly, eliminating the dependency on VTK (and, transitively, OpenGL) all
together.

The Boost libraries were pulled into the build process by boost-build [Mar12a], another
CMake project. It contains both Boost’s source code, initially in version 1.45.0, and the
definitions required to build it using CMake. At this point, an error-free and complete build
of PCL was possible.

57

5 Implementation

The latest NDK version supported by pcl-superbuild was Revision 8d, using the GNU
C Compiler (GCC) v4.6. Adjusting pcl-superbuild to use NDK Revision 13b revealed
two problems. First, the NDK no longer shipped a file called RELEASE.TXT in its root
directory, which was used by pcl-superbuild to detect the NDK’s version and set internal
build flags appropriately, depending on that version. This file was superseded by a file
called source.properties. A quick workaround was to create the missing text file,
containing just one line of text, holding the NDK’s version. Second, the NDK Revision 13b
provides GCC v4.9. This introduced a compilation error caused by an incompatibility with
GCC newer than v4.6. More technical details on the problem and its fix can be found at
[Boo11]. Subsequently, all remaining components were also updated in turn. For Eigen
and FLANN, this only involved updating the Git commits referenced by pcl-superbuild.

After importing the current source code of Boost into the local Git repository and updating
pcl-superbuild’s reference, a new component of Boost, called serialization, had to be
added to boost-build’s CMake definitions for the build to succeed.

Since the GitHub project used for the PCL source code so far had not received any
updates in several years (cf. [Mar12c]), it was replaced by a local mirror of PCL’s upstream
Git repository [PCL11]. Updating pcl-superbuild’s reference to the new location and
revision caused another compilation error. The author’s fix was submitted via GitHub and
got accepted by the project shortly after [Rei11]. PCL and its dependencies could then be
cross-compiled for the Tango platform without build-errors.

5.2.2 Octree compression

For compression of point clouds, a command-line tool called pcl-pcd2octree was imple-
mented. It reads a file (specified by --pcd <file>) containing a PCL point cloud data
structure, whose names usually end in .pcd. The loaded point cloud is then compressed
to a PCL Octree data structure and written to a file. All output files’ names are derived
from the input file and are structured as follows:

<base name of input file>.<compression profile>.pcd-oct2

PCL provides several compression profiles, which parameterize PCL’s Octree compression
algorithm for different usage scenarios and quality requirements. Table 5.1 shows the

2 This extension was chosen arbitrarily and will be used throughout this work to indicate files containing an
Octree data structure.

58

5.2 Software implemented for the Tango Device

Identifier Profile ID
LOW_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 1
LOW_RES_OFFLINE_COMPRESSION_WITH_COLOR -
MED_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 2
MED_RES_OFFLINE_COMPRESSION_WITH_COLOR -
HIGH_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 3
HIGH_RES_OFFLINE_COMPRESSION_WITH_COLOR -
LOW_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 4
LOW_RES_ONLINE_COMPRESSION_WITH_COLOR -
MED_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 5
MED_RES_ONLINE_COMPRESSION_WITH_COLOR -
HIGH_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 6
HIGH_RES_ONLINE_COMPRESSION_WITH_COLOR -

Table 5.1: Pre-defined Octree compression profiles

internal identifiers for all pre-defined compression profiles. For brevity, henceforth the
profile ID assigned therein will be used to reference a certain profile.

There are three categories of parameterization, a combination of which characterizes an
Octree compression profile: quality level, processing mode and color/no color.

5.2.2.1 Color Mode

Color information has no role in the assumed system model, hence models ending in
“_WITH_COLOR” are not assigned an ID.

5.2.2.2 Processing Mode

PCL’s Octree compression algorithm comprises two modes of operation: offline and
online.

In offline mode, the point cloud to be compressed is assumed to be available in its entirety
at the point in time at which compression is started.

Online mode implies, that point cloud data continues to arrive as input, while the com-
pression is being executed. This allows for encoding point cloud data (e.g. arriving from
a range scanner) in near real-time, while, to some extent, preventing data-loss due to
variations in system performance.

59

5 Implementation

Parameter Compression Profile
1 2 3 4 5 6

point resolution [cm] 1.00 0.50 0.01 1.00 0.50 0.01
octree resolution [cm] 1.00 0.50 0.01 1.00 1.00 1.00
execute re-sampling true true true true false false
input frame rate 100 100 100 50 40 30

Table 5.2: Octree compression profiles available in pcl-pcd2octree

5.2.2.3 Quality Level

This parameter directly affects both the achievable compression ratio and the grade of
information loss. Based on it, various parameters internal to the Octree algorithm are
set: point resolution, octree resolution, execute re-sampling, input frame rate and color
resolution.

Profiles eligible for use by pcl-pcd2octree and their pre-defined parameters are listed in
Table 5.2.

5.2.2.4 Internal Parameters

In future work in the field of this thesis, the need for a finer-grained configuration of
Octree compression might arise. For that purpose, pcl-pcd2octree’s source code can
be modified to directly set parameters from Table 5.2 on an instantiated Object of PCL’s
OctreePointCloudCompression class. A more detailed description of these parameters
is available at [PCLa].

5.2.2.5 Profile Selection

The compression profile(s) to be applied when running pcl-pcd2octree can be selected
by the command-line parameter --profile-<n> where <n> denotes a profile ID from
Table 5.2.

The parameter --all is provided as a shortcut for specifying all profiles 1 through 6.

Specification of multiple profile parameters is supported. This is especially useful for
performance evaluation, when pcl-pcd2octree is driven by a shell script to generate
measurements.

60

5.3 Software implemented for the Back-End Server

The parameter --no-output performs compression runs on the input data using the
specified profiles, however it suppresses output files from being generated. This also
targets evaluation. By avoiding overhead of storage I/O, this enables measurements to be
focused on CPU performance.

5.3 Software implemented for the Back-End Server

After pre-processing sampled point clouds on the Tango device, the compressed Octree
data have to be transferred to a back-end server for model extraction. As this thesis did
not focus on complete and seamless integration of all steps in the process, data transfer is
yet a manual step which involves copying the relevant files from the Tango to a back-end
server. In the context of crowdsensing, any method involving wireless networking is
applicable for data transfer. This explicitly excludes wired transfer via an USB cable.

5.3.1 Model Extraction

Obtaining floor plans from sampled point clouds is the task of a command-line tool called
pcl-model-extraction. It implements the filtering chain as described in Section 3, starting
at the box labeled “Decompression”.

5.3.1.1 File Handling

Input data on which to perform model extraction can be passed with the parameters
--octree <file> or --pcl <file> which allow to read .pcd-oct or .pcd files respec-
tively.

For the two most CPU-intensive phases, which are normals estimation and segmentation,
a caching mechanism was implemented. This allows for much quicker iterations during
experimental determination of an efficient set of parameters for normals estimation for,
and segmentation of a given data set. Cached data comprises estimated normals for all
points of the input point cloud and segments detected by the Region Growing algorithm.
By default, a directory called cache/, relative to the specified input file, will be used. An
alternate location can be set with --cache-dir <path>.

61

5 Implementation

Normals are cached in a sub-directory thereof. Both the name of the input file and
parameters pertaining to normals estimation supplied for a particular run are encoded
within the name of said sub-directory. When a run with an identical set of parameters
recurs, normals estimation will be replaced by reading the cached data.

Caching of detected segments works in a similar fashion, only this time the data is stored
in a sub-directory of the previously created normals-cache directory. Again, the set of
supplied parameters is encoded in the name of the sub-directory. On recurring runs with
identical parameters, Region Growing will not be executed, and segments detected in a
previous run will be loaded from cache instead. The hierarchical directory structure allows
for re-use of cached normals when an identical set of parameters is supplied for normals
estimation, but parameters with respect to Region Growing differ.

5.3.1.2 Voxel Grid Filtering

During voxel grid filtering, a given point cloud will be re-sampled. The resolution of the
resulting point cloud is adjustable separately in the direction of the z-axis and the x/y-plane.
Parameters available for specifying the raster size are --xy-distance <distance> and
--z-distance <distance>, respectively. To achieve the intended down-sampling to a
lower resolution than provided by the input data, the raster size has to be greater than the
input raster.

5.3.1.3 Normals Estimation

Normals estimation depends on a radius parameter for the search of nearest-neighbors,
which can be supplied by --radius <radius>. Aimed at batch operation, when
--normals-only is specified, normals estimation is run, the resulting cache data are
written to disk and the tool exits immediately thereafter.

5.3.1.4 Filtering by Normals Angle

Specifying an angle with --max-normals-angle <angle> allows for filtering points by
the normal angle associated with it in degrees. This parameter defines the maximum angle
of a point’s normal against the x/y-plane. Normals with a larger angle will be excluded
from all further computations. A value of 0 means, that only points (of wall sections) which

62

5.3 Software implemented for the Back-End Server

Parameter Type Default value Special value
--curvature <curvature> float 1 test disabled: 0.0
--min-cluster-size <size> positive int 50 -
--neighbor-count <neighbors> positive int 50 -
--smoothness <smoothness> double [°] 3 test disabled: 0.0

Table 5.3: Parameters pertaining to Region Growing

are perfectly perpendicular to the ground plane will be considered. Conversely, a value of
90 disables this filtering step.

5.3.1.5 Segmentation

Segmentation is performed by using an algorithm called Region Growing, which is also
implemented by the PCL. A detailed description thereof is provided in Section 3.2.3.1.
Parameters available to influence the calculations follow the terminology used in the
description. For brevity, the parameters, data types, default and special values are listed
in Table 5.3.

Similar to --normals-only, --region-growing-only is provided for automation pur-
poses to perform no further calculations after Region Growing.

Currently, for each point cloud used as input, a parameter set has to be determined
empirically to yield a result suitable for further processing.

5.3.1.6 Further Processing Steps

Mathematical procedures outlined in Section 3.2.4 were implemented using functionality
provided by either PCL itself or by directly relying on linear algebra features provided by
the Eigen library.

In order to reduce clutter, we perform a merging of segments. A merge occurs, if two
segments A and B are oriented in the same direction (i.e. both horizontally or both
vertically) and the distance d of one of the points A1 or A2 to segment B is less than
a specified threshold distance dth. The threshold can be specified with the command-
line parameter --max-merge-distance <distance>. The actual merging consists of
creating an artificial line segment C1C2, replacing the original segments A and B. Its end
points are chosen from {A1, A2} × {B1, B2} such that the distance C1C2 is maximal.

63

5 Implementation

ID Description
1 3D: original input cloud
2 3D: recognized segments with outliers
4 3D: recognized segments without outliers
8 3D: convex hulls of segments

16 3D: bounding boxes of segment hulls
32 2D: recognized segments without outliers
64 2D: convex hulls of segments

128 2D: bounding boxes of segment hulls
256 2D: line segments
512 2D: line segments (without normals)

1024 2D: line segments (without any annotations)

Table 5.4: Description of available visualizations and their IDs

Since we are operating on a rectangular layout, line segments skewed by a few degrees
are then aligned parallel to the coordinate system’s axes. For horizontal lines, we calculate
the median y-coordinate of the segment’s end points and assign it to both end points.
Conversely, for vertical lines the x-coordinates are replaced accordingly.

5.3.1.7 Visualization

PCL provides a powerful class for visualization purposes called PCLVisualizer. To
render a point cloud, this class has to be instantiated and a point cloud added to the
created object. This displays a window with a canvas rendered by OpenGL and showing
the added point cloud. Possible interactions include positional and angular adjustments of
the point of view. PCLVisualizer provides several methods to add other primitives like
e.g. line segments, polygons or text.

Visualization of the results after each step was implemented by creating a separate
instance of PCLVisualizer and adding the respective data objects to display. Each
visualization provided is assigned a numerical ID, as denoted in Table 5.4. Visualizers
to be displayed can be selected with the parameter --visualize=<selection>. The
argument <selection> is the sum of the IDs of visualizers to be displayed.

At this point, the implementation of extracting a floor plan, according to the basic model
introduced in this work, is finished.

64

5.3 Software implemented for the Back-End Server

5.3.1.8 Extraction of Grammar Rules

An enhancement of the basic model is to extract rules for grammar-based model fitting
from the data model calculated thus far (cf. Section 4.3). In order to obtain a set of
such rules, further processing steps, along with additional command-line parameters, are
required.

To enable execution of these steps, an input file containing definitions for the reference
line segments, and an output file, to which extracted rules will be written, have to be
specified via --reference-lines-file <RLS file> and --write-grammar-rules

<rules file>. The created output <rules file> can then be used to drive grammar-
based model fitting as described in Section 4.3.

The expected format of the provided <RLS file> is a CSV text-file, containing one RLS
definition per line. Each line comprises the RLS’s index and the x/y-coordinates of its
end points. After loading and parsing this file, for each RLS we iterate over the set of line
segments from the basic model and search for branches. A branch then represents a
room’s wall, the distance between branches is used as the rooms’ widths. In order for
a line segment to be recognized as a branch of the current RLS, it must be a) oriented
orthogonally to the RLS and b) be located within a distance threshold. Branches, which
overshoot or intersect with a RLS are recognized without problems. However, some
potential branches may not be connected to a RLS due to incomplete sampling data. The
distance threshold mitigates this and can be specified via the command-line parameter
--max-branch-distance <distance>.

After the branches for all RLSs have been determined, the results are written to the
specified <rules file>. This also is a CSV file, containing one RLS and its branches
per line:

index, Startx, Starty, Endx, Endy, reversed, width #1; width #2; ...; width #n;,

The column reversed contains a Boolean value, indicating whether the room widths are
listed along the reference line segment in a direction leading further away from the origin
(reversed = no) or towards the origin (reversed = yes).

65

6 Evaluation

Following the system model’s structure, the evaluation will be split in two parts. The first
part explains the system setup for sampling point clouds and data transfer to the back-end
server. Extracting a floor plan on the back-end side will be the subject of the second
part.

The area covered in the evaluation was the south-west quadrant on the second floor of
the computer science building, where the offices of the department IPVS are located (see
Figure 6.1).

6.1 Tango Device

6.1.1 Area Learning

As a first step, data required for the Tango platform to perform localization had to be
acquired. The primary idea was to scan the four hallways, surrounding the target area.
This would enable the Tango device to perform localization at any point in the hallway
sections prior to entering a room and beginning the actual sampling of a point cloud for
that particular room. Figure 6.1 shows the starting point and the initial orientation of the
Tango device‘s camera when ADF data acquisition was started. This defines the origin of
the global coordinate system and the orientation of its x/y-axes. The coordinate system’s
x-axis is directed along the left border of Figure 6.1, pointing downwards. Conversely, the
y-axis runs through the depicted arrow at the origin point (0/0).

The functionality for collecting ADF data was provided by the same app, that would later
be used to obtain the actual point clouds for each room. In a real-world setup, in order
for devices participating in point cloud sampling to have the Tango platform’s localization
service available, the collected ADF data would have to be distributed to all devices.

67

6 Evaluation

Figure 6.1: Ground truth of the target area

6.1.2 Sampling Point Clouds

After launching the sampling app, localization is performed based on the ADF data present
on the device. For this, the user has to walk a few meters along the hallway, so that the
Tango device can recognize distinctive markers of the surroundings and compare them
to the ADF data. This usually took only a few seconds, though in areas with only less
distinctive markers available, this also might take a little longer.

The point cloud sampling of all rooms of the target area was performed over the course
of three days, each of which provided different lighting conditions due to sunshine or
cloudiness. We noticed that both efficiency and accuracy of localization were subject to
these conditions. For future experiments, as an improvement, we propose to use different

68

6.1 Tango Device

ADF data, based on the current value of the scanning device’s brightness sensor. Our
theory is, that the more similar the current lighting conditions are to those at the point in
time when area learning was performed, the higher the efficiency and accuracy of the
Tango platform’s localization service should become.

After the device has located its position, the user is supposed to position herself in front of
the door of the room which is about to be scanned. Scanning is initiated by the touch of a
button and the user enters the room. We found it helpful, to not tilt the device too much,
but to try and move the device along walls, holding it upright. Also, a minimum distance to
the walls of about 1m should be kept at all times. Scanning highly reflective surfaces, like
windows or mirrors, does not yield any points for those areas at all.

After all walls are scanned, pressing the save button stops the process, and the point
cloud is saved.

At this point, the sampling app does not yet provide a visual feedback about the scanned
areas. We are planning to enhance the app in the near future to provide the user with
such feedback, so that during scanning, a conclusion can be drawn whether a room is
covered sufficiently and accurately enough.

6.1.3 Octree Compression

After scanning, octree compression is applied to the sampled point cloud. This minimizes
the amount of data having to be transferred to the back-end server and thereby reduces
the amount of energy required for submission. Our goal was, that the energy savings
from transmitting compressed data significantly outweigh the additional amount of energy
required to perform compression.

Using a multimeter to take voltage and current measurements directly at a device’s battery
of course provides the most reliable results. However we could not risk damaging the
Tango device in the process. Thus we resolved to taking measurements in software. The
Linux kernel running on the Tango device provides current values for battery voltage and
drawn current via file entries in the /sys pseudo-filesystem:

• /sys/class/power_supply/battery/current_now [µA]

• /sys/class/power_supply/battery/voltage_now [µV]

During the execution of octree compression runs, these files were read every 100ms
and the values, associated with timestamps, stored to log files. These measurements
include the device’s power consumption with the display on (at 50% brightness level),

69

6 Evaluation

Room Input File Output File Compression Energy
Points Size [KB] # Points Size [KB] Ratio [%] Time [s] [J]

FL011 152057 1794 119599 69 3.87 1.21 3.14
R336 278286 3266 205299 131 4.02 1.60 4.56
ELEV2 334452 3900 125493 38 0.99 1.30 3.48
FL02 373721 4329 224560 87 2.00 1.30 3.82
WC013 380716 4437 204145 67 1.51 1.31 3.77
R360 395085 4548 307981 197 4.33 1.80 5.75
R043 436206 4949 352658 236 4.77 1.50 5.12
R362 453795 5224 262432 115 2.20 1.20 3.84
R041 467631 5482 383066 220 4.01 1.80 5.90
R049 488919 5718 336448 141 2.46 1.50 4.83
R332 520940 6083 391133 212 3.49 1.70 5.74
R366 573838 6632 238737 80 1.20 1.50 4.62
R308 607409 7039 389916 171 2.43 1.80 6.01
R322 635939 7401 378266 140 1.89 1.75 5.69
STCS4 659746 7725 520927 318 4.11 2.30 8.07
R316 716707 8211 535829 284 3.46 2.00 7.12
R342 810227 9510 494277 224 2.36 2.01 7.10
WC03 1187767 13601 454602 138 1.01 2.00 7.29
R356 1450084 16709 536128 199 1.19 2.30 8.67
R352 1588459 18525 835500 273 1.47 2.79 11.21
WC02 1656426 18920 880432 317 1.67 3.00 11.69
R328 1822146 21133 650803 189 0.90 2.80 10.59
All merged 15990554 185051 8819753 3882 2.10 23.71 102.83

Table 6.1: Octree compression statistics using profile #1

WiFi disabled and no other background activity than octree compression and a small
overhead from reading the files in /sys.

Analysis of the log files yields the results depicted in Figures 6.2 and 6.3. The x-axes
show point clouds per each room, ordered ascendingly, by their number of points. The
final data point, 1.599m points, represents a merged point cloud, comprising the point
clouds of all rooms. The values 0s and 0J (profile #3, red line) for this data point stem
from the fact, that the Tango device’s RAM was insufficient to support octree compression

1Small hallways to balcony
2Elevator
3Toilet
4Staircase

70

6.1 Tango Device

1
5
2

2
7
8

3
3
4

3
7
3

3
8
0

3
9
5

4
3
6

4
5
3

4
6
7

4
8
8

5
2
0

5
7
3

6
0
7

6
3
5

6
5
9

7
1
6

8
1
0

1
1
8
7

1
4
5
0

1
5
8
8

1
6
5
6

1
8
2
2

1
5
9
9
0

size of sampled point cloud per each room [1000 points]

0

5

10

15

20

25

30

35

40
T
im

e
 [

s]

Profile 1

Profile 2

Profile 3

Profile 4

Profile 5

Profile 6

Figure 6.2: Octree compression – execution time

of the merged point cloud using this compression profile (cf. Table 5.1). The compression
tool crashed with an out-of-memory error. The complete statistical overview for profile #1
is listed in Table 6.1.

As a result, we chose profile #1 for further experiments. Profiles ##3-6 were excluded
due to the fact, that at the time octree compression starts, we assume the point cloud to
be completely available in memory (cf. Section 5.2.2.2). Compared to profiles #2 and #3,
profile #1 exhibits the best runtime behavior with respect to our goal of minimizing energy
consumption, which in turn implies the requirement of minimal execution time.

As can be seen in in Table 6.1, the achieved compression ratios and execution times are
not strictly monotonically increasing, compared to the number of points of the input clouds.
This can be attributed to different noise levels present in the input clouds. Compression
relies on pattern recognition and finding a more compact, algorithmic, representation
for the provided input. Noise can be seen as random data, which generally is less
compressible than structured data, like e.g. a cluster of points representing a wall.

71

6 Evaluation

1
5

2

2
7

8

3
3

4

3
7

3

3
8

0

3
9

5

4
3

6

4
5

3

4
6

7

4
8

8

5
2

0

5
7

3

6
0

7

6
3

5

6
5

9

7
1

6

8
1

0

1
1

8
7

1
4

5
0

1
5

8
8

1
6

5
6

1
8

2
2

1
5

9
9

0

size of sampled point cloud per each room [1000 points]

0

20

40

60

80

100

120

140

160

180

E
n
e
rg

y
 [

J]
Profile 1

Profile 2

Profile 3

Profile 4

Profile 5

Profile 6

Figure 6.3: Octree compression – energy consumption

6.1.4 Energy Savings during Data Transfer

This section compares the energy consumption for uploading conventional point clouds
(.pcd files) on the one hand, and energy required for performing octree compression
and uploading octree-compressed point clouds (.pcl-oct files) on the other hand. The
term “conventional“ point cloud is used, as opposed to “uncompressed”, since .pcd

files contain a binary representation of point cloud data structures which is also used
internally by the PCL. Saving a .pcd file to disk takes less time, than saving an ASCII
representation of all points’ coordinates since a) less space is required and b) there is
no overhead for performing a conversion of representation. To summarize, .pcd is the
cheapest, somewhat compressed, representation of a point cloud available without any
processing overhead.

During the experiment for taking measurements for the energy required for data submis-
sion, a setup similar to the one described in Section 6.1.3 was used, except for enabled
WiFi networking (IEEE 802.11g). The task was to upload .pcd and .pcl-oct files for

72

6.1 Tango Device

E
LE

V

FL
0

1

FL
0

2

R
0

4
1

R
0

4
3

R
0

4
9

R
3

0
8

R
3

1
6

R
3

2
2

R
3

2
8

R
3

3
2

R
3

3
6

R
3

4
2

R
3

5
2

R
3

5
6

R
3

6
0

R
3

6
2

R
3

6
6

S
T
C

S

W
C

0
1

W
C

0
2

W
C

0
3

m
e
rg

e
d0

5

10

15

20

25

30

35

40

45
T
im

e
 [

s]

conventional

0.2

0.4

0.6

0.8

1.0

T
im

e
 [

s]

octree-compressed

Figure 6.4: WiFi uploads – transfer time

E
LE

V

FL
0

1

FL
0

2

R
0

4
1

R
0

4
3

R
0

4
9

R
3

0
8

R
3

1
6

R
3

2
2

R
3

2
8

R
3

3
2

R
3

3
6

R
3

4
2

R
3

5
2

R
3

5
6

R
3

6
0

R
3

6
2

R
3

6
6

S
T
C

S

W
C

0
1

W
C

0
2

W
C

0
3

m
e
rg

e
d0

20

40

60

80

100

120

140

E
n
e
rg

y
 [

J]

conventional

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
n
e
rg

y
 [

J]
octree-compressed

Figure 6.5: WiFi uploads – energy consumption

73

6 Evaluation

Room Conventional Octree compressed (profile #1)
Size [KB] Upload Time [s] Energy [J] Size [KB] Upload Time [s] Energy [J]

FL01 1794 0.60 2.01 69 0.26 0.61
R336 3266 0.96 3.28 131 0.24 0.65
ELEV 3900 1.15 3.94 38 0.27 0.64
FL02 4329 1.13 4.05 87 0.25 0.63
WC01 4437 1.21 4.40 67 0.23 0.62
R360 4548 1.27 4.09 197 0.27 0.75
R043 4949 1.25 4.61 236 0.29 0.78
R362 5224 1.38 5.04 115 0.25 0.66
R041 5482 1.36 4.98 220 0.28 0.75
R049 5718 1.42 5.36 141 0.25 0.65
R332 6083 1.58 5.36 212 0.25 0.69
R366 6632 1.68 6.41 80 0.24 0.62
R308 7039 1.69 6.55 171 0.27 0.72
R322 7401 2.03 6.14 140 0.26 0.68
STCS 7725 1.92 7.45 318 0.29 0.80
R316 8211 2.17 6.62 284 0.29 0.81
R342 9510 2.61 7.73 224 0.27 0.74
WC03 13601 3.51 10.30 138 0.25 1.69
R356 16709 4.20 12.29 199 0.27 0.75
R352 18525 4.54 13.40 273 0.29 0.81
WC02 18920 4.69 14.08 317 0.30 0.82
R328 21133 5.16 15.50 189 0.27 0.75
All merged 185051 42.63 125.99 3882 1.04 3.78

Table 6.2: Data upload time and energy consumption

all scanned rooms. To keep computational overhead as minimal as possible (e.g. ex-
clude communication overhead stemming from using protocols such as HTTP or even
an SSL-encrypted connection), the tool netcat was used to perform the actual data
transfers over plain TCP connections. The receiving instance of netcat was running on
a computer also running Linux, which was connected to the WiFi access point via a wired
connection. In order to minimize fluctuations in the measurements due to jitter during
radio transmissions, each file was uploaded ten times in a row, and the arithmetic mean
was considered the result. Table 6.2 shows the measurements of absolute upload time
and required energy, while Table 6.3 compares the efforts of conventional uploads with
those of compression plus upload.

74

6.1 Tango Device

Room # Points Energy [J] Savings
Conventional Octree Compr. Energy Percentage

Upload + Upload [J]
FL01 152057 2.01 3.75 -1.74 -86.9
R336 278286 3.28 5.21 -1.93 -58.7
ELEV 334452 3.94 4.12 -0.18 -4.6
FL02 373721 4.05 4.45 -0.40 -9.8
WC01 380716 4.40 4.39 0.01 0.2
R360 395085 4.09 6.49 -2.41 -58.8
R043 436206 4.61 5.90 -1.29 -28.0
R362 453795 5.04 4.50 0.55 10.8
R041 467631 4.98 6.65 -1.67 -33.5
R049 488919 5.36 5.48 -0.12 -2.2
R332 520940 5.36 6.44 -1.08 -20.2
R366 573838 6.41 5.25 1.16 18.1
R308 607409 6.55 6.73 -0.19 -2.8
R322 635939 6.14 6.37 -0.23 -3.7
STCS 659746 7.45 8.87 -1.43 -19.2
R316 716707 6.62 7.93 -1.30 -19.7
R342 810227 7.73 7.84 -0.12 -1.5
WC03 1187767 10.30 7.98 2.33 22.6
R356 1450084 12.29 9.42 2.87 23.4
R352 1588459 13.40 12.02 1.38 10.3
WC02 1656426 14.08 12.51 1.57 11.2
R328 1822146 15.50 11.33 4.17 26.9
All merged 15990554 125.99 106.61 19.37 15.4

Table 6.3: Energy savings by applying octree compression (profile #1)

As can be seen, for small file sizes, energy costs for compression plus upload are even
higher than conventional uploads. However for larger uploads (i.e. room “WC03” and
following), energy savings range between 10% and just above 25%. These results are
to be expected, since every TCP connection suffers from overhead for the protocol’s
three-way handshake to completely establish a connection. Hence we argue, that octree
compression has the potential to save a significant amount of energy, given that further
optimizations, like consolidated transfer of multiple point clouds per one TCP connection,
are also implemented.

75

6 Evaluation

Voxel Raster Neighborhood Normals Estimation
Radius Execution Time

1cm5 10cm 80s
2cm 10cm 9s
3cm 10cm 3s
4cm 10cm 2s
5cm 10cm 1s
1cm 20cm 331s
2cm 20cm 32s
3cm 20cm 8s
4cm 20cm 3s
5cm 20cm 1s

Table 6.4: Execution times of normals estimation

6.2 Back-End Server – Basic Model

Once the .pcl-oct files of all rooms have been transferred to the back-end server, they
can be assembled into a complete model of the target area. During this evaluation, we will
use the octree-compressed point cloud “All merged“ from Table 6.1 for further processing
(cf. Figure 3.1). Unless noted otherwise, all performance metrics refer to this point
cloud.

Decompression of the octree-compressed point cloud is handled implicitly by
pcl-model-extraction, when the file is loaded from disk.

The main problem at this stage is to determine a set of parameters (cf. Section 5.3.1),
both suitable for the given input data to yield a satisfactory result, and to minimize the
overall execution time of the model extraction. The most expensive operations in terms of
processing time are normals estimation and segmentation.

6.2.1 Voxel Rasterization

Using the OpenMP library, PCL supports multi-threaded normals estimation, which is a
huge advantage on – today’s standard – systems using multi-core CPUs and/or multiple
CPUs. Table 6.4 shows some exemplary execution time statistics, pertaining to the
author’s development system: Intel i7-3770K@3.5GHz CPU, 4 cores (Hyper-Threading, 8
virtual cores), 16GB RAM.

76

6.2 Back-End Server – Basic Model

While the time needed for normals estimation is acceptable in any of these cases, the
execution time of region growing is much more susceptible with respect to the input
point cloud’s number of points. Moreover, there is no multi-threaded implementation of
region growing provided by PCL, which makes it a primary concern to reduce the point
count. However this stands in direct conflict with sustaining overall data quality. Therefore
the voxel raster size has to be carefully weighed with respect to the point cloud to be
processed an the system resources at hand. This problem could be alleviated in the
future by also using a multi-threaded implementation of region growing. Parker et al.
[PLL+14] not only introduced a parallel solution, but also leveraged the massive-parallel
computing power of GPU cores using CUDA. PCL itself partially supports CUDA, but only
few algorithms have been ported so far (cf. [PCLb]).

Rasterization is a lightweight operation. Depending on the raster size, on the author’s
system it took between 0.8s (5cm) and 1.7s (2cm).

For further processing, we assume a voxel raster size of 2cm. This reduced the input
cloud’s point count from 8.8 million to 3.6 million.

6.2.2 Normals Estimation

Since a single point does not “have an orientation”, a point’s surface normal actually
represent the orientation of a surface described by its neighboring points. To this end,
a neighborhood radius has to be specified. The effects of this radius on the resulting
surface normals can be viewed as a low-pass (larger radius) or high-pass filter on the
surface corrugations.

Our experiments suggest 0.2m to be a useful value to be used as neighborhood search
radius.

6.2.3 Filtering by Normals Angle

As mentioned in Section 3.2.2, we use this filtering step to further reduce computation
time. This parameter depends both on the quality of the input data, and on the radius
used for the neighborhood search during normals estimation. If wall surfaces are reflected
smoothly in the sampled point clouds, a smaller threshold can be used. Smooth surfaces

5As provided by the octree compression profile #1

77

6 Evaluation

could either be the result of scans with a low amount of flatness imperfections, or they
could stem from a low-pass filtering effect caused by a relatively large radius used for
normals estimation. The more pronounced any corrugations are, the larger the threshold
needs to be selected, in order to not dismiss too much detail required for region growing.

In this evaluation, we used an angle of 10°.

6.2.4 Segmentation: Region Growing

Parameterization of region growing is yet a manual and empiric procedure, which highly
depends on the input data at hand.

As observed during our experiments, larger values for the parameter neighborhood
count lead to more widespread, consecutive segments, while smaller values create more
boundaries and thus yield smaller segments. Also, larger values generally reduce the
execution time of region growing, which might tempt to use too large values. This however
leads to so-called “overgrowing” as shown in Figure 6.6, a typical weakness of the region
growing algorithm. For our purposes, this manifests in region growing detecting a single
segment, when we actually expected two separate segments – for two perpendicular
walls – to be detected.

Figure 6.6: An example of overgrowing

The key parameter of region growing is the smoothness angle. It describes, how much
disparity between the normals of the current seed point and a neighborhood point may
occur, for the neighborhood point to be added to the current region. For straight wall
segments, this parameter needs to be chosen relatively small. However, it is tied strongly
to other parameters, especially the voxel grid size and the neighborhood radius used
for normals estimation. If a coarser grid size or a smaller radius for NE is chosen, the
smoothness needs to be raised, in order to make up for the details lost due to the larger

78

6.2 Back-End Server – Basic Model

grid size or the reduced low-pass filtering effect stemming from a smaller neighborhood
radius. For the set of parameters mentioned so far, a smoothness angle of 1.7° yielded
satisfactory results.

Initial experiments with a very coarse voxel grid size of 10cm showed, that, in addition to
the smoothness angle, the curvature required tuning as well. However, we found, that
for the eventually used grid size of 2cm, adjusting the curvature did not yield notable
improvements. Thus, the maximum curvature was set to 1.0. This means, that, during
region growing, as soon as a neighbor gets added to the current region based on normals
disparity, it will also be considered as an additional seed point.

The final parameter of region growing, --min-cluster-size <size>, can be used to
set a lower boundary for the minimum number of points a segment must contain, for it to
be considered valid. Such a boundary is very useful to dismiss segments, stemming from
noise or clutter, such as small, undesired objects. Note, that this value is an absolute
number and therefore highly depends on the model’s point density. The point density in
turn depends foremost on the voxel grid size and on the amount of points filtered out by
the step filtering by normals angle.

Our model was obtained using a minimum cluster size of 100 points and is shown in
Figure 6.7. Outliers are shown in the left part in red.

6.2.4.1 Deriving Walls from Segments and Refinement

Applying the computations described in Section 3.2.4 yields the model depicted in Fig-
ure 6.8.

Subsequently, segment merging and axes alignment are applied (cf. Section 5.3.1.6).
To get rid of the many segments comprising a partial wall and replace them by a single
segment, segments oriented the same way and located closer to each other than 1m are
merged, which is shown in Figure 6.9.

As can be seen, this implementation’s naive approach of segment merging amplifies the
skew of segments. However, by exploiting the rectangular wall layout, the final processing
step of axes alignment mitigates this effect. This concludes the computation of the basic
model, which is depicted in Figure 6.10.

79

6 Evaluation

Figure 6.7: Segmented model of the target area (with and without outliers)

6.2.5 Discussion

To determine the accuracy of wall positions, we created an overlay between the result
of the basic and enhanced models. Since both use different coordinate systems and
origin points, axes labels were intentionally left out and the origin was defined to align
with the corner of the bottom left room. In Figure 6.11, the basic model is represented
by green lines, the enhanced model by blue lines. Each deviation of the basic model is
annotated with the horizontal or vertical distance in centimeters. A positive value means,
the basic model defines a wall location further away from the origin compared to the
actual location.

80

6.2 Back-End Server – Basic Model

Figure 6.8: Model after projection and inscribing wall segments into OBBs

81

6 Evaluation

Figure 6.9: Model after segment merging

82

6.2 Back-End Server – Basic Model

Figure 6.10: Model after alignment of segments with the coordinate system axes

83

6 Evaluation

0 10 20 30

0

10

20

30

8

-4

-19 -51

19

-100

41

36

-13

44

77
56

44

13 15 18 33 64

5

-8

-16

7

5

27

-64

67

92

69

59

23 -44
-49

-26

-22
-23

56

36

44

33

Figure 6.11: Deviations between the ground truth and the basic model [cm]

84

6.3 Back-End Server – Enhanced Model

6.3 Back-End Server – Enhanced Model

Since the point clouds provided by the Tango-powered devices (cf. Figure 6.1) and the
grammar-based model fitting (cf. Figure 6.12) use different coordinate systems (CS) and
origins, the following conversion has to be applied (point cloud CS→ grammar CS):

• apply origins offset (x: +5.55m, y: -1.65m)
• swap x- and y-axes
• flip sign of x-coordinates

To extract the room widths, we used the reference line segments as provided by the
grammar (<RLS file>, grammar CS):

1,31.58711426,34.05428527,31.58711426,38.82480171

2,26.85685724,38.82480171,7.399808608,38.82480171

3,7.399808608,38.82480171,2.488114265,38.82480171

4,2.488114265,34.05428527,2.488114265,12.19798394

5,2.488114265,7.314924671,7.399808608,7.314924671

6,7.399808608,7.314924671,26.85685724,7.314924671

7,31.58711426,7.314924671,31.58711426,12.19798394

8,31.58711426,12.19798394,31.58711426,34.05428527

The model then generated the following <rules file> (grammar CS):

index,rlsStartX,rlsStartY,rlsEndX,rlsEndY,Reversed,rules,

1,31.587114,34.054287,31.587114,38.824802,No,0.401917;1.427078;,

2,26.856857,38.824802,7.399808,38.824802,No,0.574648;2.353300;9.059029;

↪→ 7.482817;,

3,7.399808,38.824802,2.488114,38.824802,No,0.012743;2.193068;,

4,2.488114,34.054287,2.488114,12.197984,No,0.401915;3.765759;5.068575;1.281284;

↪→ 4.698036;6.511435;,

5,2.488114,7.314925,7.399808,7.314925,No,4.806303;,

6,7.399808,7.314925,26.856857,7.314925,No,0.105389;4.545870;4.538753;5.570040;

↪→ 2.603331;1.876846;,

7,31.587114,7.314925,31.587114,12.197984,No,0.488378;2.522088;2.546655;,

8,31.587114,12.197984,31.587114,34.054287,No,0.674061;4.587387;2.278649;

↪→ 7.412082;7.306042;,

85

6 Evaluation

In addition to the input and output file parameters, we specified the threshold for maximum
branch distance as 0.4m.

Using the aforementioned <rules file> as input for driving our indoors grammar, the
model depicted in Figure 6.12 was generated.

0 20 40 60

0

20

40

60

80

x

y

Figure 6.12: Grammar-enhanced model

6.3.1 Discussion

Table 6.5 shows reference line segments from the <RLS file> and the room sequences
which they are supposed to create (cf. Figure 6.1).

86

6.3 Back-End Server – Enhanced Model

RLS Index Rooms
1 WC2

Maintenance rooms
2 F2

2.308
2.316

3 2.322
Maintenance room

4 2.328
2.332
2.336
2.342

5 WC3
Maintenance rooms

6 2.352
2.356
2.360
2.362
F01

7 2.366
Elevator
WC1

8 Staircase
2.049
2.043
2.041

Table 6.5: RLSs and their associated rooms

As can be seen in the generated <rules file>, the first widths in rules 1-4 and 6-8 are
less than 1m. In a real-world model, it does not make any sense to use such small widths
for any room layout. These stem from the fact, that each first branch of those RLSs did
not line up exactly with their starting point. Since the starting points are well defined by
the RLSs and the grammar is robust enough in this regard, we could simply drop those
values.

However, RLS #4 yielded a room width of 1.28m at the fourth position. This was caused by
a slight displacement of the point cloud scanned for room 2.336 towards the origin, which
is also visible in Figure 6.7. This rule had to be removed, for the grammar to produce a
correct model along the left hallway section, which is shown in Figure 6.12.

87

6 Evaluation

The figure also shows some – manually inserted – dashed lines in the bottom left and right
and the top right corners of the target area. These denote several electrical maintenance
rooms, which we were not able to access. However, even if we had obtained point clouds
for these rooms, the grammar still would not have produced a correct result in these areas.
Currently, there is a limitation in the grammar’s production rules, which prevents it from
generating a layout for “cascaded” rooms. Specifically, room units, that are defined by two
parallel walls branching off of a RLS, can only be split into a sequence of rooms, such
that the additional wall(s) is/are parallel to the two walls defining the initial room unit.

Apart from these three limitations, the model generated for target area (bottom left
quadrant) accurately reflects the ground truth with respect to room sizes and locations.
The model for the remaining quadrants was continued to be generated by a random walk
based on Markov Chains.

88

7 Conclusion and Future Work

7.1 Conclusion

In the course of this thesis, we developed a processing pipeline and the required proof-
of-concept tools for obtaining indoor models from crowdsensed point clouds. To this
end, we used the Google Tango-powered mobile devices to collect the point clouds in a
participatory fashion. These devices provide indoors localization by integrating inertial
motion tracking with area learning to reduce the localization errors. Their depth perception
capability enables sampling of 3D spatial data of the device’s surroundings which then
can be stored as point clouds for further processing.

In crowdsensing scenarios, it is important to motivate volunteers to participate in data
collection. However, energy is a scarce resource in mobile computing environments,
thus energy consumption is an important factor to keep in mind when designing such
scenarios. Depending on the usage pattern, besides CPU usage and display illumination,
mobile communication potentially causes a high impact on overall energy consumption.
Sampled point clouds have a considerable size when viewed in the context of mobile
communication. To this end, we apply Octree compression, which is a highly effective
method of handling sparse 3D data. This helps to significantly reduce the amount of data
having to be transferred to a back-end server. In our evaluation we have shown, that the
energy savings stemming from the reduced data size can outweigh the computational
overhead of Octree compression.

Model extraction is a two-phase process handled by a back-end server. The first phase
comprises a multi-step filtering process, followed by segmentation through region growing.
Afterwards several steps of refinement are taken to reduce clutter and to closer reflect
the ground truth. While the basic model may still contain many deviations and may
miss several details of the target area, these shortcomings are mitigated by using the
extracted information to drive a process called grammar-based model fitting. Such a
formal grammar encodes prior knowledge about the layout of the modeled building in its
attributed production rules.

89

7 Conclusion and Future Work

We developed an algorithm to extract the wall segments and determine the distance
between these segments, i.e. room widths. Afterward, we feed these widths to the
grammar implementation – which relies on random walk on a Markov chain – so that
the transition probabilities are adapted in accordance with the extracted widths. The
resultant model highly outweighs the basic, i.e. grammar-free, one. The grammar not
only rectified errors in room sizes, but also inserts correct rooms into areas, for which no
point clouds were available due to inaccessibility. For the basic model, we had to scan
the rooms several time to compensate for their incompleteness. Alternatively, utilizing the
grammar for fitting the model removes the need to scan an area several times. To sum up,
indoor grammars are found to be highly beneficial while deriving indoor maps from point
clouds.

7.2 Future Work

As an outlook, the work done in this thesis can be extended in several ways, including:

• Improving the Android App so that it automatically switches between different ADF
files.

• Integration of Octree compression into the android app. Due to time restrictions,
we could not yet achieve the integration of the C++-based Point Cloud Library into
the Java-based Android app. After this is accomplished, Octree compression could
be applied in the background, possibly – depending on the devices’ CPU power
– even during the scanning of point clouds. Moreover, the possibility to adjust the
compression parameters during a scan is required.

• Generalizing the proposed model extraction tool so that it can handle non-
rectangular layouts, i.e. support curved and/or slanted walls.

• Refining the filtration stages in order to consider other geometrical semantics such
as windows, doors, cabinets, tables, and chairs.

The next logical step is to undertake efforts in the generation of 3D indoors models. To
that end, algorithms and computations proposed in this thesis which handle planar data
need to be extended to accommodate for spatial data instead. While maintaining the idea
of a two-phase process, grammar-based model fitting could also be extended such that
grammars not only describe planar layouts, but also 3D interiors.

90

Bibliography

[13] The ComNSense Website. Feb. 2013. URL: http : / /www.comnsense.de/
(cit. on pp. 19, 56).

[16a] The Project Tango Website. June 2016. URL: https://developers.google.com/
tango/ (cit. on pp. 19, 28).

[16b] The Project Tango Website - Area Learning. June 2016. URL: https : / /
developers.google.com/tango/overview/area-learning (cit. on p. 30).

[16c] The Project Tango Website - Coordinate Systems. June 2016. URL: https:
//developers.google.com/tango/overview/coordinate-systems (cit. on p. 31).

[16d] The Project Tango Website - Motion Tracking. June 2016. URL: https : / /
developers.google.com/tango/overview/motion-tracking (cit. on p. 28).

[AAB+07] T. F. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin, L. J. Guibas,
A. Kansal, S. Madden, J. Reich. “Mobiscopes for Human Spaces.” In: IEEE
Pervasive Computing 6.2 (2007), pp. 20–29. DOI: 10.1109/MPRV.2007.38.
URL: http://dx.doi.org/10.1109/MPRV.2007.38 (cit. on p. 20).

[AY12] M. Alzantot, M. Youssef. “CrowdInside: Automatic Construction of Indoor
Floorplans.” In: Proceedings of the 20th International Conference on Ad-
vances in Geographic Information Systems. SIGSPATIAL ’12. Redondo
Beach, California: ACM, 2012, pp. 99–108. ISBN: 978-1-4503-1691-0. DOI:
10.1145/2424321.2424335. URL: http://doi.acm.org/10.1145/2424321.
2424335 (cit. on pp. 18, 35).

[Bai15] P. Baier. “Efficient Query Distribution and Positioning in Public Sensing
Systems.” PhD thesis. Institute of Parallel and Distributed Systems, University
of Stuttgart, 2015. DOI: 10.18419/opus-3590 (cit. on pp. 20, 21).

[BB09] A. Budroni, J. Boehm. “Toward automatic reconstruction of interiors from laser
data.” In: Proceedings of Virtual Reconstruction and Visualization of Complex
Architectures (3D-Arch) (2009). URL: http:/ /www.isprs.org/proceedings/
XXXVIII/5-W1/pdf/budroni_boehm.pdf (cit. on p. 36).

91

http://www.comnsense.de/
https://developers.google.com/tango/
https://developers.google.com/tango/
https://developers.google.com/tango/overview/area-learning
https://developers.google.com/tango/overview/area-learning
https://developers.google.com/tango/overview/coordinate-systems
https://developers.google.com/tango/overview/coordinate-systems
https://developers.google.com/tango/overview/motion-tracking
https://developers.google.com/tango/overview/motion-tracking
http://dx.doi.org/10.1109/MPRV.2007.38
http://dx.doi.org/10.1109/MPRV.2007.38
http://dx.doi.org/10.1145/2424321.2424335
http://doi.acm.org/10.1145/2424321.2424335
http://doi.acm.org/10.1145/2424321.2424335
http://dx.doi.org/10.18419/opus-3590
http://www.isprs.org/proceedings/XXXVIII/5-W1/pdf/budroni_boehm.pdf
http://www.isprs.org/proceedings/XXXVIII/5-W1/pdf/budroni_boehm.pdf

Bibliography

[BB10] A. Budroni, J. Boehm. “Automated 3D Reconstruction of Interiors from Point
Clouds.” In: International Journal of Architectural Computing 8.1 (2010),
pp. 55–73. DOI: 10.1260/1478-0771.8.1.55. eprint: http://dx.doi.org/10.1260/
1478-0771.8.1.55. URL: http://dx.doi.org/10.1260/1478-0771.8.1.55 (cit. on
p. 18).

[BDR13] P. Baier, F. Durr, K. Rothermel. “Efficient distribution of sensing queries in
public sensing systems.” In: Proceedings - IEEE 10th International Confer-
ence on Mobile Ad-Hoc and Sensor Systems, MASS 2013 October (2013),
pp. 272–280. DOI: 10.1109/MASS.2013.11 (cit. on p. 32).

[Boo00] Boost Project Community. Boost C++ Libraries. Project Website. 2000. URL:
http://www.boost.org/ (cit. on p. 57).

[Boo11] Boost Project Community. Ticket #6165. Boost Bug Tracker. Nov. 2011. URL:
https://svn.boost.org/trac/boost/ticket/6165 (cit. on p. 58).

[BPDR14] P. Baier, D. Philipp, F. Dürr, K. Rothermel. Quality-based Adaptive Positioning
for Energy-Efficient Indoor Mapping. Englisch. Technischer Bericht Informatik
2014/06. Universität Stuttgart, Institut für Parallele und Verteilte Systeme,
Verteilte Systeme: Universität Stuttgart, Fakultät Informatik, Elektrotechnik
und Informationstechnik, Germany, Nov. 2014, p. 12. URL: http: / /www2.
informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2014-
06&engl=0 (cit. on p. 17).

[CLRQ15] S. Chen, M. Li, K. Ren, C. Qiao. “Crowd Map: Accurate Reconstruction
of Indoor Floor Plans from Crowdsourced Sensor-Rich Videos.” In: 2015
IEEE 35th International Conference on Distributed Computing Systems. June
2015, pp. 1–10. DOI: 10.1109/ICDCS.2015.9 (cit. on p. 18).

[Con12] F. Contreras. Git/Mercurial Bridge. Project Website. Nov. 2012. URL: https:
//github.com/felipec/git-remote-hg (cit. on p. 57).

[DRM14] J. Duribreux, R. Rouvoy, M. Monperrus. An Energy-efficient Location Provider
for Daily Trips. Research Report RR-8586. INRIA, Aug. 2014, p. 18. URL:
https://hal.inria.fr/hal-01058830 (cit. on p. 36).

[Fre] Free Software Foundation, Inc. The GNU C Library. getopt_long() documen-
tation. URL: https://www.gnu.org/software/libc/manual/html_node/Getopt.
html#Getopt (cit. on p. 55).

[GJ+10] G. Guennebaud, B. Jacob, et al. Eigen v3. Project Website. 2010. URL:
http://eigen.tuxfamily.org/ (cit. on p. 57).

92

http://dx.doi.org/10.1260/1478-0771.8.1.55
http://dx.doi.org/10.1260/1478-0771.8.1.55
http://dx.doi.org/10.1260/1478-0771.8.1.55
http://dx.doi.org/10.1260/1478-0771.8.1.55
http://dx.doi.org/10.1109/MASS.2013.11
http://www.boost.org/
https://svn.boost.org/trac/boost/ticket/6165
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2014-06&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2014-06&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2014-06&engl=0
http://dx.doi.org/10.1109/ICDCS.2015.9
https://github.com/felipec/git-remote-hg
https://github.com/felipec/git-remote-hg
https://hal.inria.fr/hal-01058830
https://www.gnu.org/software/libc/manual/html_node/Getopt.html#Getopt
https://www.gnu.org/software/libc/manual/html_node/Getopt.html#Getopt
http://eigen.tuxfamily.org/

Bibliography

[GZY+14] R. Gao, M. Zhao, T. Ye, F. Ye, Y. Wang, K. Bian, T. Wang, X. Li. “Jigsaw: Indoor
Floor Plan Reconstruction via Mobile Crowdsensing.” In: Proceedings of the
20th Annual International Conference on Mobile Computing and Networking.
MobiCom ’14. Maui, Hawaii, USA: ACM, 2014, pp. 249–260. ISBN: 978-1-
4503-2783-1. DOI: 10.1145/2639108.2639134. URL: http://doi.acm.org/10.
1145/2639108.2639134 (cit. on p. 35).

[Ind16] IndoorGML. Geometric Representation of Indoor Space. accessed on De-
cember 2016. 2016. URL: http://docs.opengeospatial.org/is/14-005r4/14-
005r4.html (cit. on p. 22).

[KBBN11] M. B. Kjærgaard, S. Bhattacharya, H. Blunck, P. Nurmi. “Energy-efficient
Trajectory Tracking for Mobile Devices.” In: Proceedings of the 9th Interna-
tional Conference on Mobile Systems, Applications, and Services. MobiSys
’11. Bethesda, Maryland, USA: ACM, 2011, pp. 307–320. ISBN: 978-1-4503-
0643-0. DOI: 10.1145/1999995.2000025. URL: http://doi.acm.org/10.1145/
1999995.2000025 (cit. on p. 37).

[Kit00] Kitware, Inc. CMake cross-platform Build System. Project Website. 2000.
URL: https://cmake.org/ (cit. on p. 55).

[KLGT09] M. B. Kjærgaard, J. Langdal, T. Godsk, T. Toftkjær. “EnTracked: Energy-
efficient Robust Position Tracking for Mobile Devices.” In: Proceedings of the
7th International Conference on Mobile Systems, Applications, and Services.
MobiSys ’09. Kraków, Poland: ACM, 2009, pp. 221–234. ISBN: 978-1-60558-
566-6. DOI: 10.1145/1555816.1555839. URL: http://doi.acm.org/10.1145/
1555816.1555839 (cit. on p. 37).

[LCZ+13] N. D. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li, D. Kim, G. Ding, F. Zhao, H. Cha.
“Piggyback CrowdSensing (PCS): Energy Efficient Crowdsourcing of Mobile
Sensor Data by Exploiting Smartphone App Opportunities.” In: Proceedings
of the 11th ACM Conference on Embedded Networked Sensor Systems.
SenSys ’13. Roma, Italy: ACM, 2013, 7:1–7:14. ISBN: 978-1-4503-2027-6.
DOI: 10.1145/2517351.2517372. URL: http://doi.acm.org/10.1145/2517351.
2517372 (cit. on p. 37).

[LDBL07] H. Liu, H. Darabi, P. Banerjee, J. Liu. “Survey of Wireless Indoor Positioning
Techniques and Systems.” In: IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 37.6 (Nov. 2007), pp. 1067–
1080. ISSN: 1094-6977. DOI: 10.1109/TSMCC.2007.905750 (cit. on p. 17).

93

http://dx.doi.org/10.1145/2639108.2639134
http://doi.acm.org/10.1145/2639108.2639134
http://doi.acm.org/10.1145/2639108.2639134
http://docs.opengeospatial.org/is/14-005r4/14-005r4.html
http://docs.opengeospatial.org/is/14-005r4/14-005r4.html
http://dx.doi.org/10.1145/1999995.2000025
http://doi.acm.org/10.1145/1999995.2000025
http://doi.acm.org/10.1145/1999995.2000025
https://cmake.org/
http://dx.doi.org/10.1145/1555816.1555839
http://doi.acm.org/10.1145/1555816.1555839
http://doi.acm.org/10.1145/1555816.1555839
http://dx.doi.org/10.1145/2517351.2517372
http://doi.acm.org/10.1145/2517351.2517372
http://doi.acm.org/10.1145/2517351.2517372
http://dx.doi.org/10.1109/TSMCC.2007.905750

Bibliography

[LHC+15] C. Luo, H. Hong, L. Cheng, K. Sankaran, M. C. Chan. “iMap: Automatic
inference of indoor semantics exploiting opportunistic smartphone sensing.”
In: 2015 12th Annual IEEE International Conference on Sensing, Communi-
cation, and Networking (SECON). June 2015, pp. 489–497. DOI: 10.1109/
SAHCN.2015.7338350 (cit. on p. 35).

[LHZ+13] H. Liu, S. Hu, W. Zheng, Z. Xie, S. Wang, P. Hui, T. Abdelzaher. “Efficient
3G budget utilization in mobile participatory sensing applications.” In: Pro-
ceedings - IEEE INFOCOM (2013), pp. 1411–1419. ISSN: 0743166X. DOI:
10.1109/INFCOM.2013.6566935 (cit. on p. 36).

[LLY+15] D. Lymberopoulos, J. Liu, X. Yang, R. R. Choudhury, V. Handziski, S. Sen.
“A Realistic Evaluation and Comparison of Indoor Location Technologies:
Experiences and Lessons Learned.” In: Proceedings of the 14th International
Conference on Information Processing in Sensor Networks. IPSN ’15. Seattle,
Washington: ACM, 2015, pp. 178–189. ISBN: 978-1-4503-3475-4. DOI: 10.
1145/2737095.2737726. URL: http://doi.acm.org/10.1145/2737095.2737726
(cit. on p. 17).

[Mar12a] P. Marion. Boost C++ Libraries. GitHub Project (fork). May 2012. URL: https:
//github.com/patmarion/boost-build (cit. on p. 57).

[Mar12b] P. Marion. pcl-superbuild. GitHub Project. June 2012. URL: https://github.
com/patmarion/pcl-superbuild (cit. on p. 56).

[Mar12c] P. Marion. Point Cloud Library. GitHub Project (fork). June 2012. URL: https:
//github.com/patmarion/PCL (cit. on p. 58).

[Mau12] R. Mautz. “Indoor positioning technologies.” Habilitation Thesis. ETH Zurich,
Department of Civil, Environmental, Geomatic Engineering, Institute of
Geodesy, and Photogrammetry, 2012. DOI: http://dx.doi.org/10.3929/ethz-a-
007313554. URL: https://e-collection.library.ethz.ch/view/eth:5659 (cit. on
p. 17).

[Mic17] Microsoft. Kinect for windows sensor components and specifications. 2017.
URL: https://msdn.microsoft.com/en-us/library/ jj131033.aspx?f=255&
MSPPError=-2147217396 (cit. on p. 28).

[ML14] M. Muja, D. G. Lowe. “Scalable Nearest Neighbor Algorithms for High Di-
mensional Data.” In: Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 36 (2014). URL: https:/ /github.com/mariusmuja/flann (cit. on
p. 57).

94

http://dx.doi.org/10.1109/SAHCN.2015.7338350
http://dx.doi.org/10.1109/SAHCN.2015.7338350
http://dx.doi.org/10.1109/INFCOM.2013.6566935
http://dx.doi.org/10.1145/2737095.2737726
http://dx.doi.org/10.1145/2737095.2737726
http://doi.acm.org/10.1145/2737095.2737726
https://github.com/patmarion/boost-build
https://github.com/patmarion/boost-build
https://github.com/patmarion/pcl-superbuild
https://github.com/patmarion/pcl-superbuild
https://github.com/patmarion/PCL
https://github.com/patmarion/PCL
http://dx.doi.org/http://dx.doi.org/10.3929/ethz-a-007313554
http://dx.doi.org/http://dx.doi.org/10.3929/ethz-a-007313554
https://e-collection.library.ethz.ch/view/eth:5659
https://msdn.microsoft.com/en-us/library/jj131033.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/jj131033.aspx?f=255&MSPPError=-2147217396
https://github.com/mariusmuja/flann

Bibliography

[Ope16] OpenStreetMap. Mapping the World via Public Sensing. 2016. URL: https:
//wiki.openstreetmap.org/wiki/Main_Page (cit. on p. 22).

[PBD+14] D. Philipp, P. Baier, C. Dibak, F. Dürr, K. Rothermel, S. Becker, M. Peter,
D. Fritsch. “MapGENIE: Grammar-enhanced indoor map construction from
crowd-sourced data.” In: 2014 IEEE International Conference on Pervasive
Computing and Communications (PerCom). Mar. 2014, pp. 139–147. DOI:
10.1109/PerCom.2014.6813954. URL: ftp://ftp.informatik.uni-stuttgart.de/
pub/library/ncstrl.ustuttgart_fi/INPROC-2014-03/INPROC-2014-03.pdf
(cit. on pp. 18, 35, 53, 56).

[PBF13] M. Peter, S. Becker, D. Fritsch. “Grammar Supported Indoor Mapping.” In:
Proceedings of the 26th International Cartographic Conference. (2013).
URL: http : / / icaci . org / files / documents / ICC _ proceedings / ICC2013 /
_extendedAbstract/283_proceeding.pdf (cit. on p. 49).

[PCLa] PCL Community. Point Cloud Library - Compression. Project Website. URL:
http://pointclouds.org/documentation/tutorials/compression.php (cit. on
p. 60).

[PCLb] PCL Community. Point Cloud Library - CUDA support. Project Website. URL:
http://www.pointclouds.org/blog/gsoc/ioan/pcl_cuda.php (cit. on p. 77).

[PCLc] PCL Community. Point Cloud Library - Region Growing. Project Website.
URL: http : / / pointclouds . org / documentation / tutorials / region _ growing _
segmentation.php (cit. on p. 42).

[PCL11] PCL Community. Point Cloud Library. GitHub Project. Mar. 2011. URL: https:
//github.com/PointCloudLibrary/pcl (cit. on pp. 57, 58).

[PLL+14] S. Park, J. Lee, H. Lee, J. Shin, J. Seo, K. H. Lee, Y.-G. Shin, B. Kim.
“Parallelized Seeded Region Growing Using CUDA.” In: Computational and
Mathematical Methods in Medicine 2014 (2014). DOI: 10.1155/2014/856453
(cit. on p. 77).

[Pow02] J. Power. “Notes on Formal Language Theory and Parsing.” In: National
University of Ireland, Maynooth, Kildare (2002). URL: http://www.cs.may.ie/
~jpower/Courses/parsing/parsing.pdf (cit. on p. 47).

[Pro13] T. C. Project. Indoor Mapping. 2013. URL: http : / / www. comnsense . de /
mapping/index.shtml (cit. on p. 50).

95

https://wiki.openstreetmap.org/wiki/Main_Page
https://wiki.openstreetmap.org/wiki/Main_Page
http://dx.doi.org/10.1109/PerCom.2014.6813954
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2014-03/INPROC-2014-03.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2014-03/INPROC-2014-03.pdf
http://icaci.org/files/documents/ICC_proceedings/ICC2013/_extendedAbstract/283_proceeding.pdf
http://icaci.org/files/documents/ICC_proceedings/ICC2013/_extendedAbstract/283_proceeding.pdf
http://pointclouds.org/documentation/tutorials/compression.php
http://www.pointclouds.org/blog/gsoc/ioan/pcl_cuda.php
http://pointclouds.org/documentation/tutorials/region_growing_segmentation.php
http://pointclouds.org/documentation/tutorials/region_growing_segmentation.php
https://github.com/PointCloudLibrary/pcl
https://github.com/PointCloudLibrary/pcl
http://dx.doi.org/10.1155/2014/856453
http://www.cs.may.ie/~jpower/Courses/parsing/parsing.pdf
http://www.cs.may.ie/~jpower/Courses/parsing/parsing.pdf
http://www.comnsense.de/mapping/index.shtml
http://www.comnsense.de/mapping/index.shtml

Bibliography

[PSA+13] D. Philipp, J. Stachowiak, P. Alt, F. Dürr, K. Rothermel. “DrOPS: Model-
driven optimization for Public Sensing systems.” In: 2013 IEEE International
Conference on Pervasive Computing and Communications (PerCom). Mar.
2013, pp. 185–192. DOI: 10.1109/PerCom.2013.6526731. URL: ftp://ftp.
informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2013-
04/INPROC-2013-04.pdf (cit. on p. 37).

[QM16] C. Qiu, M. W. Mutka. “iFrame: Dynamic indoor map construction through
automatic mobile sensing.” In: 2016 IEEE International Conference on Per-
vasive Computing and Communications (PerCom) (2016), pp. 1–9. DOI:
10.1109/PERCOM.2016.7456500. URL: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7456500 (cit. on p. 18).

[RC11] R. B. Rusu, S. Cousins. “3D is here: Point Cloud Library (PCL).” In: IEEE
International Conference on Robotics and Automation (ICRA). Shanghai,
China, May 2011. URL: http://pointclouds.org/ (cit. on pp. 34, 55).

[Rei11] D. Reichelt. Pull Request #1774. GitHub Project. Mar. 2011. URL: https :
//github.com/PointCloudLibrary/pcl/pull/1774 (cit. on p. 58).

[REL+14] K. K. Rachuri, C. Efstratiou, I. Leontiadis, C. Mascolo, P. J. Rentfrow. “Smart-
phone sensing offloading for efficiently supporting social sensing applica-
tions.” In: Pervasive and Mobile Computing 10, Part A (2014). Selected
Papers from the Eleventh Annual {IEEE} International Conference on Per-
vasive Computing and Communications (PerCom 2013), pp. 3–21. ISSN:
1574-1192. DOI: http : / /dx .doi .org /10 .1016 / j .pmcj .2013 .10 .005. URL:
http : / /www.sciencedirect .com/science/article /pii /S1574119213001296
(cit. on p. 37).

[RLAT16] R. Roberto, J. P. Lima, T. Araújo, V. Teichrieb. “Evaluation of Motion Tracking
and Depth Sensing Accuracy of the Tango Tablet.” In: 2016 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR-Adjunct). Sept. 2016,
pp. 231–234. DOI: 10.1109/ISMAR-Adjunct.2016.0082 (cit. on p. 36).

[RPKL12] M.-R. Ra, B. Priyantha, A. Kansal, J. Liu. “Improving Energy Efficiency
of Personal Sensing Applications with Heterogeneous Multi-processors.”
In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing.
UbiComp ’12. Pittsburgh, Pennsylvania: ACM, 2012, pp. 1–10. ISBN: 978-1-
4503-1224-0. DOI: 10.1145/2370216.2370218. URL: http://doi.acm.org/10.
1145/2370216.2370218 (cit. on p. 37).

96

http://dx.doi.org/10.1109/PerCom.2013.6526731
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2013-04/INPROC-2013-04.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2013-04/INPROC-2013-04.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2013-04/INPROC-2013-04.pdf
http://dx.doi.org/10.1109/PERCOM.2016.7456500
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7456500
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7456500
http://pointclouds.org/
https://github.com/PointCloudLibrary/pcl/pull/1774
https://github.com/PointCloudLibrary/pcl/pull/1774
http://dx.doi.org/http://dx.doi.org/10.1016/j.pmcj.2013.10.005
http://www.sciencedirect.com/science/article/pii/S1574119213001296
http://dx.doi.org/10.1109/ISMAR-Adjunct.2016.0082
http://dx.doi.org/10.1145/2370216.2370218
http://doi.acm.org/10.1145/2370216.2370218
http://doi.acm.org/10.1145/2370216.2370218

[Rus09] R. B. Rusu. “Semantic 3D Object Maps for Everyday Manipulation in Human
Living Environments.” PhD thesis. Computer Science department, Technis-
che Universitaet Muenchen, Germany, Oct. 2009. DOI: 10.1007/978-3-642-
35479-3 (cit. on p. 41).

[SGSM16] M. Sra, S. Garrido-Jurado, C. Schmandt, P. Maes. “Procedurally Generated
Virtual Reality from 3D Reconstructed Physical Space.” In: Proceedings
of the 22Nd ACM Conference on Virtual Reality Software and Technology.
VRST ’16. Munich, Germany: ACM, 2016, pp. 191–200. ISBN: 978-1-4503-
4491-3. DOI: 10.1145/2993369.2993372. URL: http://doi.acm.org/10.1145/
2993369.2993372 (cit. on p. 36).

[SML06] W. Schroeder, K. Martin, B. Lorensen. The Visualization Toolkit. 4th ed.
Kitware, 2006. ISBN: 9781930934191. URL: http://www.vtk.org/ (cit. on p. 57).

[SSHP15] T. Schöps, T. Sattler, C. Häne, M. Pollefeys. “3D Modeling on the Go: In-
teractive 3D Reconstruction of Large-Scale Scenes on Mobile Devices.” In:
2015 International Conference on 3D Vision. Oct. 2015, pp. 291–299. DOI:
10.1109/3DV.2015.40 (cit. on p. 36).

[SZ12] V. Sanchez, A. Zakhor. “Planar 3D modeling of building interiors from point
cloud data.” In: 2012 19th IEEE International Conference on Image Process-
ing. Sept. 2012, pp. 1777–1780. DOI: 10.1109/ICIP.2012.6467225 (cit. on
p. 36).

[TG05] L. Torvalds, Git Community. Git Version Control System. Project Website.
2005. URL: https://www.git-scm.com/ (cit. on p. 57).

[ZML14] D. Zhao, H. Ma, L. Liu. “Energy-efficient Opportunistic Coverage for People-
centric Urban Sensing.” In: Wirel. Netw. 20.6 (Aug. 2014), pp. 1461–1476.
ISSN: 1022-0038. DOI: 10.1007/s11276-014-0687-0. URL: http://dx.doi.org/
10.1007/s11276-014-0687-0 (cit. on p. 37).

All links were last followed on 2017-03-25.

http://dx.doi.org/10.1007/978-3-642-35479-3
http://dx.doi.org/10.1007/978-3-642-35479-3
http://dx.doi.org/10.1145/2993369.2993372
http://doi.acm.org/10.1145/2993369.2993372
http://doi.acm.org/10.1145/2993369.2993372
http://www.vtk.org/
http://dx.doi.org/10.1109/3DV.2015.40
http://dx.doi.org/10.1109/ICIP.2012.6467225
https://www.git-scm.com/
http://dx.doi.org/10.1007/s11276-014-0687-0
http://dx.doi.org/10.1007/s11276-014-0687-0
http://dx.doi.org/10.1007/s11276-014-0687-0

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all di-
rect or indirect statements from other sources contained
therein as quotations. Neither this work nor significant
parts of it were part of another examination procedure.
I have not published this work in whole or in part be-
fore. The electronic copy is consistent with all submitted
copies.

place, date, signature

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Crowdsensing Overview
	1.3 Indoor Mapping
	1.4 Contributions
	1.5 Document Structure

	2 System Overview
	2.1 System Model
	2.1.1 Tango-Powered Mobile Devices
	2.1.1.1 Motion Tracking
	2.1.1.2 Area Learning
	2.1.1.3 Depth Perception

	2.1.2 Crowdsensing Servers
	2.1.3 Communication Facilities

	2.2 Problem Statement
	2.3 Related Work
	2.3.1 Indoor Mapping
	2.3.2 Energy Consumption

	3 Basic Interiors Model
	3.1 Point Clouds
	3.1.1 Octree Compression

	3.2 Voxel Rasterization
	3.2.1 Normals Estimation, Principal Component Analysis
	3.2.2 Filtering by Normals Angle
	3.2.3 Segmentation
	3.2.3.1 Region Growing

	3.2.4 Deriving Walls from Segments
	3.2.5 Refinement

	4 Grammar-Enhanced Mapping
	4.1 Formal Grammars
	4.2 Interiors Grammars
	4.2.1 Split Grammar

	4.3 Grammar-Based Model Fitting
	4.3.1 Discussion

	5 Implementation
	5.1 Software Components
	5.1.1 Point Cloud Library (Tango Device and Back-End)
	5.1.2 Point Cloud Sampling App (Tango device)
	5.1.3 Application of Grammar-Based Model Fitting (Back-End)

	5.2 Software implemented for the Tango Device
	5.2.1 Point Cloud Library Cross-Compilation for Android
	5.2.2 Octree compression
	5.2.2.1 Color Mode
	5.2.2.2 Processing Mode
	5.2.2.3 Quality Level
	5.2.2.4 Internal Parameters
	5.2.2.5 Profile Selection

	5.3 Software implemented for the Back-End Server
	5.3.1 Model Extraction
	5.3.1.1 File Handling
	5.3.1.2 Voxel Grid Filtering
	5.3.1.3 Normals Estimation
	5.3.1.4 Filtering by Normals Angle
	5.3.1.5 Segmentation
	5.3.1.6 Further Processing Steps
	5.3.1.7 Visualization
	5.3.1.8 Extraction of Grammar Rules

	6 Evaluation
	6.1 Tango Device
	6.1.1 Area Learning
	6.1.2 Sampling Point Clouds
	6.1.3 Octree Compression
	6.1.4 Energy Savings during Data Transfer

	6.2 Back-End Server – Basic Model
	6.2.1 Voxel Rasterization
	6.2.2 Normals Estimation
	6.2.3 Filtering by Normals Angle
	6.2.4 Segmentation: Region Growing
	6.2.4.1 Deriving Walls from Segments and Refinement

	6.2.5 Discussion

	6.3 Back-End Server – Enhanced Model
	6.3.1 Discussion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography

