
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Scalable Hypergraph Partitioning

Heiko Geppert

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: Dipl.-Inf. Christian Mayer

Commenced: 2016-11-7

Completed: 2017-5-9

CR-Classification: C.2.4, E.1, G.2.2

Abstract

The interest in graph partitioning has become quite huge due to growing problem sizes.
Therefore more abstract solutions are desirable. In this thesis, hypergraph partitioning is
investigated since hypergraphs provide a better level of abstraction than normal graphs.
Further, restreaming approaches are examined because the partitioning results of real
time strategies are often not satisfiable. It will be shown that they can perform up to
15% better than real time approaches and can sometimes even hold up to polynomial
approaches. By putting more thought into the restreaming, the partitioning results
become even better. This is shown empirical when proposing Fractional Restreaming
a novel ’Partial Forgetting’ strategy. Meanwhile, the additional runtime needed is
negligible compared to polynomial strategies. Finally SHP, a novel graph partitioning
and evaluation framework is introduced.

3

Contents

1 Introduction 15

2 Foundation & Problem Definition 19
2.1 Hypergraphs . 19
2.2 Graph partitioning . 19

2.2.1 Metrics . 20

3 Background 23
3.1 All On One . 23
3.2 Random . 23
3.3 Greedy . 23
3.4 Balance big . 24
3.5 Prefer Big . 24

4 Own Approaches 27
4.1 Real Time Approaches . 27

4.1.1 Greatest Topic Intersection . 27
4.1.2 Smallest Non Topic Intersection 28
4.1.3 Never Max . 29
4.1.4 Degree Aware . 29

4.2 Restreaming Approaches . 30
4.2.1 Two Pass . 30
4.2.2 Vertex Correction . 31
4.2.3 Meta Restreaming . 31
4.2.4 Fractional Restreaming . 31
4.2.5 Topic Correction . 32
4.2.6 Topic Correction Narrow Scope 34
4.2.7 Adaptive Balance . 34

5 Evaluation 35
5.1 Evaluation Survey . 36
5.2 Real Time Strategy Evaluation . 42

5.2.1 Greatest Topic Intersection . 42

5

5.2.2 Smallest Non Topic Intersection 43
5.2.3 Degree Aware . 45

5.3 Restreaming Strategy Evaluation . 50
5.3.1 General Restreaming . 50
5.3.2 Partial Forgetting . 51
5.3.3 Adaptive Balancing . 54

5.4 Decision Guidance . 60

6 Simple Hypergraph Partitioner 63
6.1 Architecture . 63
6.2 Data Model . 65
6.3 Algorithms and Extensibility . 66
6.4 Usage . 68
6.5 Automation . 70

7 Conclusion 73

Bibliography 75

6

List of Figures

5.1 Survey I on the Amazon graph considering the Cut Size 37
5.2 Survey I on the Amazon graph considering the execution time 37
5.3 Survey I on the Amazon graph considering the Max Edge metric 38
5.4 Survey I on the small MovieLens graph considering the Cut Size 38
5.5 Survey I on the MovieLens 20m graph considering the Cut Size 39
5.6 Survey II on the Book-X graph considering the Cut Size 40
5.7 Survey II on the Amazon graph considering the Cut Size 40
5.8 Survey II on the MovieLens 20m graph considering the Cut Size 41
5.9 Survey II on the Book-X graph considering the Max Edge 41
5.10 Survey II on the MovieLens 20m graph considering the Max Edge 41
5.11 Survey II on the Book-X graph considering the execution time 42
5.12 Survey II on the MovieLens 20m graph considering the execution time . 42
5.13 GTI’s Cut Size with different parameters on the ml20m graph 43
5.14 GTI’s Cut Size with different parameters on the Amazon graph 44
5.15 GTI’s Cut Size with different parameters on the mlSmall graph 44
5.16 GTI’s Cut Size with different parameters on the mlSmall graph when

setting the balance constraint border to 50 45
5.17 Cut Size on mlSmall, SNTI vs Greedy . 46
5.18 Cut Size on amazon, SNTI vs Greedy . 46
5.19 Cut Size on ml20m, SNTI vs Greedy . 47
5.20 Max Edge on ml20m, SNTI vs Greedy . 47
5.21 Execution Time on ml20m, SNTI vs Greedy 48
5.22 Cut Size of Degree Aware vs Greedy & GTI on Book-X 48
5.23 Max Edge of Degree Aware vs Greedy & GTI on Book-X 49
5.24 Cut Size of Degree Aware vs Greedy & GTI on amazon 49
5.25 Execution Time of Degree Aware vs Greedy & GTI on amazon 50
5.26 Cut Size of restreaming vs real time on the Book-X graph 51
5.27 Max Edge of restreaming vs real time on the Book-X graph 51
5.28 Execution Time of restreaming vs real time on the Book-X graph 52
5.29 Cut Size of restreaming vs real time on the MovieLens 20m graph 52
5.30 Cut Size of Fractional Restreaming with different parameters on Book-X 53
5.31 Cut Size of Partial Forgetting strategies vs Meta Restreaming on Book-X . 54
5.32 Max Edge of Partial Forgetting strategies vs Meta Restreaming on Book-X 54

7

5.33 Execution Time of Partial Forgetting strategies vs Meta Restreaming on
Book-X . 55

5.34 Cut Size of GTI, Meta Restreaming, Adaptive Balance and hMetis on Book-X 56
5.35 Cut Size of GTI, Meta Restreaming, Adaptive Balance and hMetis on

Amazon . 56
5.36 Max Edge of GTI, Meta Restreaming, Adaptive Balance and hMetis on

Book-X . 57
5.37 Max Edge of GTI, Meta Restreaming, Adaptive Balance and hMetis on

Amazon . 57
5.38 Execution Time of GTI, Meta Restreaming, Adaptive Balance and hMetis

on Book-X . 58
5.39 Cut Size when balancing vertices . 59
5.40 Max Edge when balancing vertices . 59

6.1 Layered architecture of SHP with packages and accesses 64
6.2 Program pipeline . 65
6.3 Data model of SHP . 66
6.4 Abstraction of partitioning strategies . 67

8

List of Tables

5.1 Systems running the evaluations . 35
5.2 Hypergraphs used for evaluating . 36
5.3 Adaptive Balance on the Book Rating graph with 105282 vertices with

several starting balances monitoring the Cut Size and number of relocated
vertices after each pass . 58

6.1 SHP parameter survey . 69
6.2 SHP implemented strategies . 70

9

Listings

2.1 Example build-up of a vertex list . 20

6.1 Build-up of the results.csv . 68
6.2 Build-up of the resultsHR.txt . 69

11

List of Algorithms

1 Greedy strategy from Alistarh et al. 24

2 Balancing in GTI . 28

3 Fractional Restreaming . 32

4 Topic Correction . 33

13

1 Introduction

Nowadays, large data structures are common in many aspects of modern life. Social
media platforms like Facebook or Twitter have millions of users [staa; stab] and services
as Netflix or Amazon Instant Video provide large amounts of media, ratings and rec-
ommendations. Wikipedia stores endless numbers of pages [Wik] but also moderator
elections and communications. Instant messenger like WhatsApp or Facebook Messenger
have more than a billion users and billions of communications [staa; stac]. With the rise
of the Internet of Things (IOT), the produced amount of data is expected to grow even
bigger [Gar16]. To put these data to the maximum usage it is necessary to process it
quickly in a scalable way. Otherwise providing real-time responding systems like instant
messengers or user optimized online shops would not be possible for a large number of
users.

Using larger computers and servers is not feasible for modern systems. Hence, the usage
of distributed systems - server clusters - has become state of the art. Therefore, the
data has to be spread over several machines. This makes it quite easy to provide more
space and computation power. The challenge thereby is scattering the data as disjoint
as possible while still having a balanced workload. If the disjoint scattering is violated,
there is more overhead needed. For example, all machines could store the complete
dataset. However, the machines would then either calculate redundant (so the cluster is
useless, one machine would be enough) or they would split the computation. Because
of the splitting they would have an enormous communication overhead which machines
calculates which part of the data. If the data is distributed well but the load balance is
violated, some machines need much more computation time than others. This results
in much idle time for iterative distributed algorithms. Consequently a balanced data
scattering without many replications is indispensable for distributed systems.

Finally the data structure itself has to be considered. Large tables like they are used
in SQL databases can not be distributed easily. By partitioning the tables the machines
would have a gigantic communication overhead and by partitioning the tables the
overhead would still persist because join operations would cause the machines to match
the whole data between them. Taking this into account another data structure has to
be used. A widespread solution are graphs. Graphs are easy to understand for the
programmers and provide intuitive computation paradigms (e.g. ’think-like-a-vertex’

15

1 Introduction

[Mal+10; May+16a; May+16b]). Moreover, a partitioned graph provides additional
benefit considering distributed systems. Every machine can store a part of the graph and
compute the vertices stored on its own memory. To realize the links to adjacent graph
areas some communication to other machines is necessary. However the cuts can be
minimized by cutting the graph in a clever way.

A classical graph consists of a set of vertices and several edges each connecting two
vertices. To represent a group based community (like Facebook groups or group chats in
instant messengers), bipartite graphs can be used. Those have two groups of vertices (in
this case users and groups) and each vertex can only be linked to vertices of the other
group. This however has the disadvantage of having different semantics in the vertices.
A more abstract way to represent such data are hypergraphs. Hypergraphs consist also
of a vertex set and edges connecting them. But every edge can connect an arbitrary
number of vertices. That way groups can be represented as hyperedges. The advantage
gained from hypergraphs is a better abstraction level and clear semantics for edges and
vertices.

Considering general purpose graph processing systems [HZY15a; HZY15b; Mal+10]
there are many ways to use the benefits of graphs by providing different algorithms
which are executed on the graph. Depending on the graph size (web graphs can easily
go into billion scale [Man]), the change rate (e.g. constant growth of the internet) and
the algorithm to be performed it is crucial to be able to partition the graph quickly. The
input data could either be so huge and because of changes needed to be recalculated
frequently so it would not be feasible anymore to use offline partitioning strategies like
hMetis [KK00]. Furthermore using a partitioning with a runtime larger than O(n) would
not be satisfiable when the graph algorithm executed afterwards is linear or even sub
linear. For these reasons this thesis will take a look at linear graph partitioning strategies
- both real time strategies and restreaming strategies. Real time strategies can be used
to perform a very fast partitioning or as part of a larger meta strategy. They read the
data input only once and their partitioning choices are irreversible. The restreaming
strategies on the other hand read the input data several times and reassign the vertices
when they find better placements. Restreaming still has a linear runtime and can be an
excellent choice if the partitioning can take more time. However, a fast scattering is still
guaranteed

Arrangement & Contributions

In this thesis, the impact of restreaming compared to real time strategies is examined.
Thereby, several novel real time and restreaming strategies are proposed. Strategies

16

which have proven to provide good results are examined in detail like Fractional Re-
streaming. In particular, the following contributions are provided:

• a survey of hypergraph partitioning strategies having linear runtime,

• a proposal of new strategies with linear runtime,

• an evaluation of all the strategies and a resulting decision guidance,

• an empirical evidence that restreaming significantly improves partitioning up
to 15% while still maintaining feasible runtimes and does not have to fear the
competition with polynomial strategies,

• a further improvement of the partitioning by adding more logic into the restreaming
resulting in Fractional Restreaming,

• Scalable Hypergraph Partitioner - a novel partitioning and evaluation framework
which can be used to evaluate partitioning strategies and is expendable with
further strategies easily.

This thesis is structured as follows:

Chapter 2 – Foundation & Problem Definition: Providing background knowledge
and defines the problem attended

Chapter 3 – Background provides a survey over linear algorithms provided from other
sources

Chapter 4 – Own Approaches provides a survey over the linear algorithms created
while working on this thesis based on the strategies from Chapter 4

Chapter 5 – Evaluation Own approaches are evaluated and the results discussed in
this section.

Chapter 6 – Simple Hypergraph Partitioner introduces the hypergraph partitioning
and evaluation framework implemented during this thesis

Chapter 7 – Conclusion concludes the thesis, covers related work and provides
prospects to future work

17

2 Foundation & Problem Definition

This section covers the theoretical background necessary to understand the topic and
provides a formal problem definition. It also covers the metrics used to evaluate the
quality of a partitioning strategy.

2.1 Hypergraphs

Hypergraphs are a more abstract form of graphs. An undirected, unweighed graph G is
defined as pair (V, E) with V being a set of vertices and E being a set of edges which
are defined as 2-tuple with two vertices. An undirected, unweighed hypergraph H can
be defined as pair (V, E) with V still being a set of vertices and E being a set of edges.
However an edge is now defined as (e ⊆ V |e ̸= ∅) [Dev+15].

Alternatively, hypergraphs can be seen as a set of items (vertices) N = {1, 2, .., n}, a set
of topics (hyperedges) M = {1, 2, .., m} and a demand matrix D = (di,t) ∈ {0, 1}n×m

[AIV15]. The demand matrix shows which items and topics are connected.

di,t =

1 , if item i ∈ topic t

0 , otherwise
(2.1)

By connecting only two vertices, hypergraphs can also be used to represent classical
graphs. Those on the other hand can be seen as bipartite graphs to represent hyperedges
meaning hypergraphs and classical graphs are equal in function [AIV15].

2.2 Graph partitioning

The graph partitioning problem is the task to split a graph G into k subgraphs
(P1, P2, .., Pk) with G = P1∪P2∪ ...∪Pk. This means each partition holds an own smaller
graph with a set of Items Nk = {n1, n2, .., nk}, a set of topics Mk = {m1, m2, .., mk} and
an demand matrix Dk = (dk_i,t) ∈ {0, 1}nk,mk .

19

2 Foundation & Problem Definition

Thereby, the goal is to optimize several quality attributes discussed in 2.2.1. Graph
partitioning is known to be NP-Complete [Pet+15]. Thus, when partitioning a graph (or
hypergraph) in linear runtime only a local optima will be found with high probability.
Therefore, different quality aspects have to be weighed up against each other. By having
a much longer execution time, the strategy can find better solutions in terms of other
quality metrics like balancing or replication. When ignoring replicas the partitioning,
time and balancing can be optimized. Far large-scale real-world applications, it is crucial
to find a balance between several goals.

Within this thesis it is assumed the graph size is not known beforehand. Neither does the
partitioning strategy know the number of vertices nor the number of hyperedges before
the partitioning. This restriction has to be kept in mind since making assumptions about
the graph size becomes impossible for real-time strategies. Furthermore, the graphs will
be read (and therefore streamed to the partitioning strategy) as vertex list. An example
for a vertex list can be seen in Listing 2.1. The first number of each line is the vertex
ID, the following numbers are the IDs of the connected hyperedges. It is important to
mention that vertices and hyperedges have separate IDs. For example the ID ’1’ is given
to the first vertex and the first hyperedge. A single exception to this input format will be
hMetis [KK00] which is used as benchmark.

Listing 2.1: Example build-up of a vertex list
1:1,2,3,4;

2:1,4,5;

3:2,5,6,7;

4:1,7,8,9,10,11,12,13,14;

5:3,8,10;

6:9;

...

2.2.1 Metrics

In the following, several hypergraph partitioning metrics used in this work are presented.
Here, the metrics mostly focus on low network communication overheads in the later
graph processing. However a balanced partitioning is also necessary to avoid uneven
calculation times after the partitioning. This also includes using all given partitions.
If partitions stay empty, a server of the computing cluster will not participate the
calculation. This would mean a server of the cluster using the graph afterwards would
not participate and therefore be useless.

20

2.2 Graph partitioning

Cut Size

Replicating edges on several partitions causes the need of network communication.
Therefore, minimizing the number of edges which have to be split at least once and
minimizing the number of edge splits in general is the main goal to reduce the overall
network traffic. There are several possibilities to measure the number of edge cuts
[KK00]. For example the sum of external degrees (SOED), which counts the number
of partitions an edge is spanned by if the edge is placed on more than one partition.
Another metric is the (K − 1) metric also calculating the number of partitions spanned
by each edge but subtracting the number of edges since every edge has to be placed on
at least one partition. Hence, this metric is more straight forward to calculate since no
distinction of cases has to be made while the information value is the same to SOED.
Since (K − 1) is the only metric used to determine the number of edge cuts it will be
called ’Cut Size’ in this thesis. The Cut Size is defined as follows:

CutSize = (
∑

k

Mk)− |M | (2.2)

Max Edge (Maximum number of hyperedges on a single partition)

The partition with the most edges connected to it is the bottleneck in iterative graph
computation algorithms [Che+15; ST04]. Therefore, optimizing this bottleneck is
another goal. However this bottleneck could be dissolved by using strong hardware.
Hardware constraints though are not part of this work. The maximum number of
hyperedges on a single partition is defined as Max Edge.

MaxEdge = max(|
⋃

i∈Nk

hk(i)|) (2.3)

hk(i) defines the set of topics the item i in partition k is connected with.

hk(i) = {x|dk−i,x = 1} (2.4)

Balance

The balance tells how well the graph is distributed over the partitions. Alistarh et al.
tried to minimize the maximal number of hyperedges [AIV15]. In their approach the
balancing was done based on hyperedges. Therefore, the approaches introduced in this
thesis will also use hyperedges as load metric to be balanced. So each partition should
have about the same number of hyperedges. Most strategies have the ability to set a

21

2 Foundation & Problem Definition

balance via parameter. If the balance can be given in a percentage then 5% seem to
be a good balancing goal because it restricts the balance not be be to lax and at the
same time should provide a high degree of freedom. This means the load difference
between the least loaded and the most loaded partition should not be greater than 5%.
Strategies which have no percentage parameter but a fixed value use a load difference
of 100 edges what is suggested [AIV15].

In contrast to this balance matric, hMetis balances the number of vertices and does not
use the least loaded partition for the calculation but the average partition load [KK00].
Thus, some evaluations will be made with the own approaches balancing the vertices. It
will be mentioned when these changes are applied to the strategies.

Execution time

The more time is given to perform a graph partitioning, the better results are possible.
Hence, the execution time of the tested strategies has to be kept in mind. However,
the precise execution time is quite insignificant because the complexity of all tested
strategies is except for hMetis at most O(n) and therefore fast enough.

Metric summary

The previous metrics can be rated as follows: A partitioning has to be balanced to be
valid. This does not strictly mean a partitioning is invalid if the load difference between
two partitions is higher than 100 edges. Some graphs are way to hard to partition totally
balanced (e.g. if a large hub - vertex with many topics - appears at the end of the graph
stream). If the partitioning is valid the Cut Size is the primary metric determining the
quality. The Max Edge metric serves as a secondary quality attribute to have a fair and
realistic view on the partitioning. The execution time is used to classify the strategies in
different runtime classes. It is also used as tie breaker if the previous metrics show no
significant difference.

22

3 Background

This chapter presents some strategies proposed in [AIV15] which will be compared
with the own approaches developed during this thesis. Therefore, the strategies will be
explained in short.

3.1 All On One

The All On One strategy is a trivial algorithm assigning all incoming vertices on one
partition. Therefore, the Cut Size metric is optimal and although the number of hyper-
edges on the partition is at maximum, no network traffic would be needed. However
the balancing is not valid. The results of this strategy will be used as an upper bound as
less trivial strategies have to perform better in order to justify the additional effort.

3.2 Random

The random strategy spreads the vertices randomly over the partitions. Thus, the
Random strategy is probably almost perfectly balanced with high probability. However
the Cut Size is far worse than the Cut Size of other strategies since no logic is put into
the assignment. Like All On One, this strategy it is used as upper bound benchmark
which has to perform worse in every case.

3.3 Greedy

Alistarh et al. presented the Greedy approach as their best real time strategy [AIV15].
Greedy is a fast strategy which is also used by several other strategies presented in this
thesis. The algorithm tries to map incoming vertices on the partition having the highest
topic intersection while maintaining a balancing constraint. Every partition which does
not meet the constraint is not considered for the assignment. The constraint checks for

23

3 Background

every partition if the number of assigned vertices is higher than the number of edges on
the least loaded partition plus a fixed number of edges. This number is determined with
a parameter and was introduced as slack.

First the empty partitions (S1, ..., Sk) are created. Then the vertices of the graph are
streamed into the algorithm. For each incoming vertex, the following steps are taken.
First the vertex (v) and all its topics (R) are read. Next the balancing constraint is
checked by considering only the partitions having less topics than the partition with least
topics plus the slack (100 has been proven to be good). For the remaining partitions,
the intersection sizes of the partition’s and vertex’s topics are calculated. The vertex is
finally stored on the partition having the greatest intersection size. If several partitions
have the greatest intersection size, the partition load is used as tie breaker storing the
vertex on the least loaded partition.

Data: a hypergraph as vertex list and a capacitiy slack c

Result: partitioning into k parts
Set initial partitions P1, P2, ..., Pk to be empty sets ;
while vertices are left do

Receive the next vertex v and its topics R ;
I ← i : |Pi| ≤ min |Pj|+ c ;
Compute ri = |Pi ∩R| ∀i ∈ I;
j ← argmaxi∈Iri;
Pj ← Pj ∪R

end
return P1, ..., Pk

Algorithm 1: Greedy strategy from Alistarh et al.

3.4 Balance big

The balance big strategy treads the incoming vertices in two different ways depending
on the vertices. Small vertices are assigned according to the Greedy strategy. Big vertices
are placed on the least loaded partition. A vertex is considered as big if it has more than
100 topics.

3.5 Prefer Big

Prefer Big is an extension to the balance big strategy. It uses a vertex buffer which can
hold up to 100 small vertices. Incoming big vertices are placed on the least loaded

24

3.5 Prefer Big

partition (like Balance Big). Small vertices are stored in the vertex buffer. As soon as the
buffer is full, all small vertices in it are assigned according to the Greedy strategy.

25

4 Own Approaches

Most of the strategies proposed in Chapter 3 seem insufficient considering the unknown
input data and their partitioning performance was not very good [AIV15]. Consequently,
a set of novel partitioning strategies developed during this thesis addressing these draw
backs will be proposed in this chapter.

4.1 Real Time Approaches

The following strategies address the insufficient partitioning quality of the strategies
proposed in Chapter 3 while maintaining real time partitioning times. Further, they
provide parameter independent partitioning solutions which perform with constant
quality for every input size.

4.1.1 Greatest Topic Intersection

Greatest Topic Intersection (GTI) is the attempt to modify the Greedy strategy to be
less parameter dependent. Greedy has a slack parameter telling the algorithm how
much imbalance is allowed. This parameter defines the imbalance as the difference in
the number of connected hyperedges. This metric is independent from the graph size.
Hence, the strategy could possibly perform worse if the parameter is chosen poorly (e.g.
to small for large graphs or to large for small graphs). This can easily happen when
the size of the input graph is unknown. Therefore, GTI uses a percentage balance to be
dependent from the graph size.

GTI works similar to Greedy. An intersection size of the partition and the incoming edge
is calculated for every partition. Afterwards the balancing constraint is checked. Thereby
a percentage is used to determine the allowed edge imbalance. The vertex is finally
placed on the valid partition which is least loaded. At the beginning of the stream the
percentage can not be used. E.g. if 5% imbalance would be allowed, it would take 20
edges per partition to allow one edge difference. For this reason the balancing is not
considered at the beginning. The decision process whether a partition is considered

27

4 Own Approaches

balanced or not is shown in algorithm 2. So the first 100 topics per partition can be
assigned without considering the balance. As soon as the 100 topics have been exceeded
the next vertex to be assigned has to fulfil the balancing constraint.

Data: the number of edges connected with the partition n,
the allowed imbalance λ (for 5% imbalance enter 1.05)
Result: boolean if the partition is considered as balanced
if n < 100 then

// no balancing at the beginning

return true;
else if n > λ ∗min |P | then

// balancing constraint is met

return true;
else

// balancing constraint is not met

return false;
end

Algorithm 2: Balancing in GTI

4.1.2 Smallest Non Topic Intersection

Inverting the previous idea, the Smallest Non Topic Intersection strategy (SNTI) calcu-
lates the difference of partition and vertex (number of hyperedges they do not share),
trying to minimize it.

SNTI was developed during this thesis as an evolution of GTI because its first results
were not promising and other viewpoints were considered. Instead of maximizing the
same metric as Greedy (topic intersection) the strategy reverses the metric and tries to
minimize it (difference). This way each vertex is not placed on a partition it has not much
in common and consequently assigned to a partition sharing many of its hyperedges.
The vertex assignment and the optimization goal is shown in Equation 4.1.

v → arg min
p∈P

diff_size(v, p) (4.1)

diff_size(v, p) = |p| − (p ∩ v.topics) (4.2)

SNTI solves the balancing problem native. The more vertices are assigned, the more
topics are on the partition. Hence, the probability for future vertices to have a lot of

28

4.1 Real Time Approaches

topics it is not connected to it is much higher. Therefore, no balancing parameter is
required. The first vertices are automatically hashed because the partitions without
assignments minimize the assignment goal. This results in a possible bad assignment at
the beginning but the strategy is totally independent from the graph size.

4.1.3 Never Max

Considering the Max Edge metric, the approach of assigning anywhere but the maximal
loaded partition was developed. The strategy checks for every partition if the assignment
of the next vertex would negatively effect the Max Edge metric and considers all options
which would not affect the metric for an assignment with Greedy. If every assignment
would affect the Max Edge metric, all partitions are considered as valid options for the
Greedy strategy.

The goal of the strategy is to keep the bottleneck (partition with the highest number
of connected edges) in equally distributed systems as low as possible. This however
can result in suboptimal assignments considering the Cut Size if the Max Edge metric
would be violated. This may happens even if the assignment preferring the Cut Size
would not violate the general balancing constraint. Hence, this strategy is not optimizing
the Cut Size with first priority and should be used with caution and awareness for the
optimization goal. However this trade-off could be a good choice when using meta
strategies to optimize the Max Edge metric at the last part of the stream, while aiming
for a good Cut Size beforehand.

4.1.4 Degree Aware

Looking at real-world graphs, many of them have a power law distribution of the vertex
degree. This means there are few nodes with a very high degree and many nodes
with a low degree. Albert et al. proposed that deleting these high degree vertices
(hubs) partitions a power law graph in independent subsets [AJB00]. Later Petroni et al.
designed the HDRF strategy [Pet+15] to partition power law graphs with remarkable
results.

Inspired by these insights the Degree Aware strategy tries to gain a benefit from con-
sidering the vertex degree. Therefore, the strategy is designed as meta strategy which
uses other strategies as parameters. It uses one strategy to handle low degree vertices
and one for high degree vertices. The definition of high and low degree vertices is done
via a parameter and based on the vertices seen at runtime. This means it is possible to
define a percentage of x% which shall be considered as low degrees. While the graph

29

4 Own Approaches

is streamed, the strategy creates a percentile list holding the received degrees and the
number of their appearance. Based on this information the incoming vertices are either
assigned by the high or the low degree strategy. When receiving the vertices sorted by
their degree the strategy would ’crash’ because all vertices would be handled as high/low
degree vertices. However, this problem is not relevant because such orders would not be
feasible and can therefore be neglected.

4.2 Restreaming Approaches

The potential of real time strategies is very limited because information is still gathered
while assigning. Many vertex assignments are made uninformed especially the first ones
suffer from the cold start problem1. Hence, a higher degree of freedom is necessary to
achieve better partitionings. Consequently, the input data has to be accessed several
times so the previously gained knowledge can be put to better use. When at the same
time trying not to break the runtime boundaries of linear algorithms restreaming is the
only option. Restreaming means the input data is read several times and the knowledge
of previous streams is available. A simple example would be to assign every vertex when
it is read and reassigning the vertex to a partition it fits better when reading it again in a
later pass.

4.2.1 Two Pass

Taking the idea of Albert et al. [AJB00] and Petroni et al. [Pet+15] further it should
be promising to have more knowledge about the high degree vertices and to be able to
spread them over the partitions first. Therefore, a fair balancing can be obtained since
the high degree vertices which could crash the partitioning at the end of the stream
are already assigned. Furthermore, it offers the possibility to assign the remaining
independent clusters properly.

The required information can only be gained by restreaming the graph. Therefore, the
strategy streams the graph three times. Two of the streams are used for actual vertex
placement giving the strategy its name. The first steam is for counting the number of
vertices. This run could be avoided if the graph size (number of vertices) was known
beforehand. But the assumptions of this thesis collide with this requirement. At the
second stream a given percentage of the high degree vertices (x% of the vertices with
the highest degree) are searched and afterwards distributed via SNTI 4.1.2. This ensures

1cold start problem: making bad decisions at the begin of the stream because of a lack of information

30

4.2 Restreaming Approaches

a fair distribution of the hubs which still tries to perform a good partitioning. The last
stream assigns the missing low degree vertices based on the given strategy.

4.2.2 Vertex Correction

The lack of information at the beginning of the partitioning leads to suboptimal place-
ments. All previous ideas suffer from the cold start problem (even two pass does not
completely avoid the problem). The Vertex Correction strategy tries to compensate the
problem by replacing vertices through a better informed placement later. The strategy
streams the graph several times reassigning every vertex with every stream consulting
the old placement.

The first stream uses the Greedy strategy for an initial placement. Every following pass
creates a candidate set of partitions for every incoming vertex. A candidate partition
is a partition with more than 90% edge intersection with the edges of the vertex. The
maximal loaded partition (in terms of the number of edges) is no candidate because
the strategy tries to shift load from this partition to maintain a good balancing. Finally,
the vertex is assigned to the best candidate partition. Those iterations are made several
times according to a parameter.

A disadvantage of this strategy is the high memory usage because the strategy has to
keep two placements in memory.

4.2.3 Meta Restreaming

Another idea to avoid the cold start problem is a general restreaming. Therefore, the
Meta Restreaming strategy was implemented. The strategy takes an arbitrary number
of strategies and their parameters which are executed consecutively. From the second
strategy on every vertex is deleted from the partitioning before it is reassigned. This
is due to avoid a complete matching at the old partition which would not change the
assignment in the end. Therefore, better results can emerge since the cold start problem
can be minimized and the global knowledge can be used to improve the partitioning
even further.

4.2.4 Fractional Restreaming

Restreaming tries to benefit from the knowledge of the previous passes. However, bad
assignment decisions affect later passes. Fractional Restreaming forgets some gained

31

4 Own Approaches

assignment information after each pass. Furthermore, Fractional Restreaming is a meta
strategy which uses several other strategies. Those are defined via a parameter similar
to the Meta Restreaming strategy.

Data: a hypergraph as vertex list, a percentage p how many vertices shall be
forgotten, a list of strategies with their parameters

Result: partitioning into k parts
Set initial partitions P1, P2, ..., Pk to be empty sets ;
foreach strategy s do

assign all vertices according to s;
if not the last strategy then

foreach Partition do
delete p% of the vertices with min ExternalF itness;

end
end

end
return P1, ..., Pk

Algorithm 3: Fractional Restreaming

The rating which vertices are considered bad is done with a metric called
’ExternalF itnessScore’ (cf. Equation 4.3). The score determines how well the ver-
tex could fit to any other partition. If the score is high the strategy will forget the vertex
with high probability so it can be reassigned in the next pass. In each pass the p% with
the highest score are forgotten. When reassigning the vertex is placed on the partition
it fits best. As the ExternalF itnessScore was quite high the probability the vertex is
reassigned to a better location is also quite high.

ExternalF itness(v, Pi) = maxp∈P \{Pi} p.topics ∩ v.topics

degree(v) (4.3)

4.2.5 Topic Correction

Since the main metric in this work is the Cut Size, deleting vertices rather than hyper
edges does not necessarily lead to better results. This is due to the fact that many hyper
edges have a lot of vertices and the Cut Size metric can only improve if all vertices of an
edge are removed and placed elsewhere.

The Topic Correction strategy (TC) uses Greedy for vertex assignment and takes a
number of passes as parameter determining how often the Topic Correction phase shall
be executed. In the Topic Correction phase q% of the edges having the worst edge score

32

4.2 Restreaming Approaches

(Equation 4.4) and w% random edges are removed by forgetting all connected vertices.
In the next pass all vertices are reassigned according to the Greedy strategy. When
reassigning a vertex which was not deleted before, it has to be removed from the model
right before the assignment. Otherwise the old location would have a perfect matching
and the strategy would not be able to improve the placement of not deleted vertices.
However the probability to reassign such a vertex to the old partition is quite high since
the matching was not totally bad before.

edge_score(e, p) = edge_binding(e, p)∑
vi∈P edge_binding(e, pi)

∗ size(e, p)
max_edge_size

(4.4)

edge_binding(e, p) = |e.vertices ∩ p.vertices| (4.5)

size(e) = |e.vertices| (4.6)

max_edge_size = max
e∈E

size(e) (4.7)

Data: a hypergraph as vertex list, a percentage q for bad edges, a percentage w

for random removal, a number of passes (internal it uses passes + 1 for
initial assignment)

Result: partitioning into k parts
Set initial partitions P1, P2, ..., Pk to be empty sets ;
foreach pass do

assign all vertices with Greedy;
if not the last pass then

foreach Partition do
delete q% of the edges with min edgescore;
delete w% random edges;

end
end

end
return P1, ..., Pk

Algorithm 4: Topic Correction

33

4 Own Approaches

4.2.6 Topic Correction Narrow Scope

Topic Correction Narrow Scope strategy (TCNS) is an enhancement of the Topic Correc-
tion strategy. While TC had removed the same amount of topics in every single restream,
TCNS removes less topics with each pass.

At the beginning of the stream the partitioning performs not best due to uninformed
decisions. Hence, the result of the pass is not trustworthy. Consequently, most of the
assignments will be removed and only the very best remain. In each following pass the
partitioning becomes more trustworthy since the partitioning was made based on more
information. As only the very best information was kept the information for the next
pass should become better with each pass.

The number of topics to be removed is dependent on the pass (passCounter) and the
number of passes in total (numberOfPasses). Equation 4.8 shows the interaction of
these parameters to the percentage of edges which are removed. When implementing
index shifts may be necessary if the pass counting starts with 0 (removing all edges
after the first pass will help nothing). After the removal of the untrustworthy edges all
vertices are restreamed. This way even the vertices which where not removed may be
reassigned if another placement looks more promising.

percentage = 100− passCounter

numberOfPasses
∗ 100 (4.8)

4.2.7 Adaptive Balance

Inspired by the idea of changing a parameter over the passes the Adaptive Balance
strategy was invented. It adjusts the balance for each pass allowing big imbalance at the
first passes and becoming more strict at the later passes.

The strategy takes three parameters. At first the allowed imbalance at the last pass
named λlast. Then, the allowed imbalance at the first pass (λfirst). Finally, the number
of passes to be made (k). Since the strategy aims to a specific percentage of imbalance
the GTI strategy is used for the vertex assignment. Therefore, the allowed imbalances
are given in the same way as the balance in GTI: (λ ∈ R|λ ≥ 1). The balancing (λ) for
the passes is calculated with Equation 4.9. The decremented k is due to the fact that
the pass counting starts with 0 and therefore the maximal value i can reach is k − 1.
However, it is necessary that λ is in [λfirst, λlast] and reaches both marginal values.

λ(i) = λlast + k − 1− i

k − 1 ∗ (λfirst − λlast) (4.9)

34

5 Evaluation

This chapter covers the evaluation of the previously introduced strategies. For evaluating
two systems were used. A server system and a notebook. The specifications can be
seen in Table 5.1. Hence, the execution time evaluations should only be compared with
other evaluations within the same graphic. For the other benchmarks the choice of the
system is not relevant since the evaluations are deterministic with the exception of the
randomized algorithms.

For evaluating the strategies several hypergraphs have been used. All data sets are
available online but were modified to match the needs of this thesis (e.g. reading the
input as a vertex list). The MovieLens graph occurs in two versions: the small mlSmall
graph and the large ml20m graph [Gro]. Both graphs were created by GroupLens
Research from collected movie ratings. Users represent items and the movies they rated
(independent from the rating itself) are their topics. The Amazon graph comes from the
Stanford Large Network Dataset Collection which is part of Stanford Network Analysis
Project [Les]. Since the original data set had a lot of information it was modified for this
thesis. It now represents the articles (items) and the customer who rated them (topics).
The rating itself was not considered. The Book-Crossing (Book-X) contains book ratings
collected by Cai-Nicolas Ziegler from the Book-Crossing community [Zie]. The user
(items) who rated a book (topic) were represented in the resulting graph. Again the
rating itself was not considered. Table 5.2 provides a short survey.

Table 5.1: Systems running the evaluations
System cores clock rate RAM OS
Server 32 2,3 GHz 280 GB CentOs 6.8
Notebook 2 2,3 GHz 8 GB Windows 10

35

5 Evaluation

Table 5.2: Hypergraphs used for evaluating
Graph name #Vertices #Hyperedges Source
mlSmall 670 9 066 [Gro]
ml20m 138 492 26 744 [Gro]
Amazon 402 723 1 555 170 [Les]
Book-X 105 282 340 552 [Zie]

5.1 Evaluation Survey

A comparison of all introduced strategies will be the subject of the following section.
The Figures 5.1 to 5.3 compare several real time strategies on the Amazon graph. The
strategies parameters are displayed in the graphics in square brackets and runtimes are
given in milliseconds.

Except for the Greedy strategy the strategies presented [AIV15] perform bad especially
on the Cut Size metric. However, the optimization goal in the paper was the Max Edge
metric [AIV15]. Yet even on this metric, their performance is not compelling. The same
results can be seen when looking at the Figures 5.4 and 5.5 presenting the Cut Size
for the MovieLens graphs. Hence, most of them are not considered as benchmarks
furthermore.

The Greedy and Never Max strategy show mostly even results considering the Cut Size
and Max Edge. Greedy provides minimal better results. Therefore, the additional compu-
tation overhead of the Never Max strategy does not pay off in the direct comparison.

When comparing Greedy with GTI the results are as expected. Due to a more lax
balancing the GTI strategy has a better Cut Size (cf. Figure 5.1). On the MovieLens
graphs GTI is only slightly better than Greedy. Considering the Max Edge GTI is just
minimal better and they can be called even. The improvement of the Cut Size comes
besides the lax balancing with additional costs in the execution time

Additionally to the strategies evaluated in the Figures 5.1 to 5.3, the remaining strategies
are evaluated in Figures 5.6 to 5.12. In the following the strategies performance will be
discussed in detail.

The Two Pass strategy sticks up in Figure 5.6 since the Cut Size is much worse than
the other strategies evaluated on Book-X. The bad performance also applies on the
Amazon graph (cf. Figure 5.7). When partitioning the MovieLens 20m graph shown in
Figure 5.8, Two Pass performs about as well as some other strategies. This is due to the
fact that Two Pass only restreams the graph three times and assigns the vertices only
once. Hence, the benefits of restreaming are hardly exploited. On the other hand this

36

5.1 Evaluation Survey

0 5 10 15 20 25 30 35
Partitions

0

500000

1000000

1500000

2000000

2500000

3000000

C
u

t
S

iz
e

Amazon

GTI [1.05]

Greedy [100]

All On One

Random

Balance Big [100]

Prefer Big [100]

Never Max

Figure 5.1: Survey I on the Amazon graph considering the Cut Size

0 5 10 15 20 25 30 35
Partitions

0

20000

40000

60000

80000

100000

R
u

n
ti

m
e

Amazon

GTI [1.05]

Greedy [100]

All On One

Random

Balance Big [100]

Prefer Big [100]

Never Max

Figure 5.2: Survey I on the Amazon graph considering the execution time

37

5 Evaluation

0 5 10 15 20 25 30 35
Partitions

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000

M
a
x

E
d

g
e

Amazon

GTI [1.05]

Greedy [100]

All On One

Random

Balance Big [100]

Prefer Big [100]

Never Max

Figure 5.3: Survey I on the Amazon graph considering the Max Edge metric

0 5 10 15 20 25 30 35
Partitions

0

10000

20000

30000

40000

50000

C
u

t
S

iz
e

MovieLens small

GTI [1.05]

Greedy [100]

All On One

Random

Balance Big [100]

Prefer Big [100]

Never Max

Figure 5.4: Survey I on the small MovieLens graph considering the Cut Size

38

5.1 Evaluation Survey

0 5 10 15 20 25 30 35
Partitions

0

100000

200000

300000

400000

500000

C
u

t
S

iz
e

MovieLens 20m

GTI [1.05]

Greedy [100]

All On One

Random

Balance Big [100]

Prefer Big [100]

Never Max

Figure 5.5: Survey I on the MovieLens 20m graph considering the Cut Size

limitation of streams benefits the execution time. Like Two Pass the Topic Correction
strategy performs quite bad on the Amazon graph (cf. Figure 5.7). On the other graphs
Topic Correction also performs not well but not as worse. Since Two Pass and Topic
Correction performs way worse than GTI and take more execution time than GTI the
strategies are not feasible.

Fractional Restreaming and Vertex Correction perform most of the time as well as GTI
while using restreaming. On the MovieLens graph (cf. Figure 5.8) Topic Correction
seems to outperform every other strategy. This is due to an invalid balancing which can
be seen by the resulting Max Edge in Figure 5.10. Thus, Fractional Restreaming and
Vertex Correction seem also not feasible since the computational overhead did not pay
off in this evaluation.

In contrast to most other strategies in Figures 5.6 to 5.12 Degree Aware is no restreaming
strategy. Nevertheless it performs surprisingly well and even outperforms some of the
worse performing restreaming strategies. The Degree Aware strategy will be further
discussed in Section 5.2.3.

Meanwhile Meta Restreaming and Adaptive Balance outperform all other evaluated
restreaming strategies on Book-X, Amazon and MovieLens 20m in terms of the Cut Size.
Considering the Max Edge metric they also clearly outperform the other strategies on the
MovieLens 20m graph (cf. Figure 5.10) and perform slightly better on the Book-X graph
(cf. Figure 5.9). The results of the Max Edge metric on the Amazon graph had been
the same as on the Book-X Graph for all strategies and consequently the graphics are
not listed. Meanwhile the execution time of Meta Restreaming and Adaptive Balance is

39

5 Evaluation

0 5 10 15 20 25 30 35
Partitions

0

100000

200000

300000

400000

500000

600000

700000

C
u

t
S

iz
e

Book-X
GTI [1.05]

Fractional Restreaming [0.1, 8x GTI[1.05]]

Two Pass [0.2, GTI[1.05]]

Vertex Correction [8]

Degree Aware [0.9, Never Max, GTI[1.05]]

TC [8]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

Figure 5.6: Survey II on the Book-X graph considering the Cut Size

0 5 10 15 20 25 30 35
Partitions

0

200000

400000

600000

800000

1000000

1200000

1400000

C
u

t
S

iz
e

Amazon
GTI [1.05]

Fractional Restreaming [0.1, 8x GTI[1.05]]

Two Pass [0.2, GTI[1.05]]

Vertex Correction [8]

Degree Aware [0.9, Never Max, GTI[1.05]]

TC [8]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

Figure 5.7: Survey II on the Amazon graph considering the Cut Size

within the span of the other restreaming strategies. So when using these two strategies
the computational overhead of restreaming seems to pay off. The two strategies will be
further investigated in Sections 5.3.1 and 5.3.3.

40

5.1 Evaluation Survey

0 5 10 15 20 25 30 35
Partitions

0
50000

100000
150000
200000
250000
300000
350000
400000

C
u

t
S

iz
e

MovieLens 20m
GTI [1.05]

Fractional Restreaming [0.1, 8x GTI[1.05]]

Two Pass [0.2, GTI[1.05]]

Vertex Correction [8]

Degree Aware [0.9, Never Max, GTI[1.05]]

TC [8]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

Figure 5.8: Survey II on the MovieLens 20m graph considering the Cut Size

0 5 10 15 20 25 30 35
Partitions

0

50000

100000

150000

200000

250000

M
a
x

E
d

g
e

Book-X
GTI [1.05]

Fractional Restreaming [0.1, 8x GTI[1.05]]

Two Pass [0.2, GTI[1.05]]

Vertex Correction [8]

Degree Aware [0.9, Never Max, GTI[1.05]]

TC [8]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

Figure 5.9: Survey II on the Book-X graph considering the Max Edge

0 5 10 15 20 25 30 35
Partitions

0

5000

10000

15000

20000

25000

M
a
x

E
d

g
e

MovieLens 20m
GTI [1.05]

Fractional Restreaming [0.1, 8x GTI[1.05]]

Two Pass [0.2, GTI[1.05]]

Vertex Correction [8]

Degree Aware [0.9, Never Max, GTI[1.05]]

TC [8]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

Figure 5.10: Survey II on the MovieLens 20m graph considering the Max Edge

41

5 Evaluation

0 5 10 15 20 25 30 35
Partitions

0

50000

100000

150000

200000

250000

300000

350000

R
u

n
ti

m
e

Book-X
GTI [1.05]

Fractional Restreaming [0.1, 8x GTI[1.05]]

Two Pass [0.2, GTI[1.05]]

Vertex Correction [8]

Degree Aware [0.9, Never Max, GTI[1.05]]

TC [8]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

Figure 5.11: Survey II on the Book-X graph considering the execution time

0 5 10 15 20 25 30 35
Partitions

0

500000

1000000

1500000

2000000

R
u

n
ti

m
e

MovieLens 20m
GTI [1.05]

Fractional Restreaming [0.1, 8x GTI[1.05]]

Two Pass [0.2, GTI[1.05]]

Vertex Correction [8]

Degree Aware [0.9, Never Max, GTI[1.05]]

TC [8]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

Figure 5.12: Survey II on the MovieLens 20m graph considering the execution time

5.2 Real Time Strategy Evaluation

The real time strategies which had promising results in Section 5.1 are evaluated in
more detail in the following section. These are GTI, SNTI and the Degree Aware strategy
in particular. In case of GTI the graph size independence is shown and some parameter
tuning performed. The SNTI section will cover the parameter independence. The
potential of the Degree Aware strategy will be touched in the last section.

5.2.1 Greatest Topic Intersection

In the following the graph size independence and balancing of the GTI strategy will
be shown. Figures 5.13 to 5.15 show the impact of GTI’s balancing parameter on the

42

5.2 Real Time Strategy Evaluation

0 5 10 15 20 25 30 35
Partitions

0
50000

100000
150000
200000
250000
300000
350000
400000

C
u

t
S

iz
e

MovieLens 20m
GTI [1.05]

GTI [1.5]

Greedy [100]

GTI [1.15]

GTI [1.2]

GTI [1.01]

GTI [1.001]

GTI [1.1]

Figure 5.13: GTI’s Cut Size with different parameters on the ml20m graph

Cut Size. On the MovieLens 20m graph the balancing factor has nearly no impact. This
can be explained with the graph itself. The MovieLen 20m Graph (Figure 5.13) has
a lot of items with a huge amount of topics. As soon as such a hub is assigned, the
partition is imbalanced and not considered for a while. Thereby it does not make a
huge difference if the balancing constraint says 5% or 50% allowed imbalance. On the
Amazon graph (Figure 5.14) the Cut Size perfectly scales with the allowed imbalance as
it is expected by the trade off. Figure 5.15 shows that GTI has some problems creating
balanced partitionings for very small graphs. For more than 8 partitions the Cut Size
does not change. This is due to the fact that not more than 7 partitions are loaded. So
the balancing can not be met native for such small graphs. However, the Cut Size acts
normal and the balancing is met when looking at Figure 5.16 where the border of GTI’s
balancing constraint was set to 50 (from 100 before). Therefore, the 5% imbalance
seems to be a valid parameter choice for having been compared to other approaches in
Section 5.1.

5.2.2 Smallest Non Topic Intersection

The parameter independence of SNTI will be evaluated in this section. Furthermore, the
results of SNTI will be compared to Greedy. The Figures 5.17 to 5.19 show the Cut Size
on different graphs. In general SNTI’s Cut Size is slightly worse than Greedy’s. This can
be explained by the implicit hashing SNTI is doing at at the beginning of the partitioning.

43

5 Evaluation

0 5 10 15 20 25 30 35
Partitions

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000

C
u

t
S

iz
e

Amazon
GTI [1.05]

GTI [1.5]

Greedy [100]

GTI [1.15]

GTI [1.2]

GTI [1.01]

GTI [1.001]

GTI [1.1]

Figure 5.14: GTI’s Cut Size with different parameters on the Amazon graph

0 5 10 15 20 25 30 35
Partitions

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

C
u

t
S

iz
e

MovieLens small
GTI [1.05]

GTI [1.5]

Greedy [100]

GTI [1.15]

GTI [1.2]

GTI [1.01]

GTI [1.001]

GTI [1.1]

Figure 5.15: GTI’s Cut Size with different parameters on the mlSmall graph

44

5.2 Real Time Strategy Evaluation

0 5 10 15 20 25 30 35
Partitions

0

10000

20000

30000

40000

50000

C
u

t
S

iz
e

MovieLens small
GTI [1.05]

GTI [1.5]

Greedy [100]

GTI [1.15]

GTI [1.2]

GTI [1.01]

GTI [1.001]

GTI [1.1]

Figure 5.16: GTI’s Cut Size with different parameters on the mlSmall graph when
setting the balance constraint border to 50

Considering the Max Edge metric shown in Figure 5.20 on the ml20m graph (the other
graphs showed similar resultls) both strategies can be regarded as equal. However SNTI
needs more computation time (cp. Figure 5.21). Again the other graphs showed similar
results and are not listed for that reason.

5.2.3 Degree Aware

Even though the degree aware strategy has not become the focus of the thesis since
restreaming seemed more promising, it is evaluated against other real time strategies
because its results had been quite good. With Degree Aware being a real time Meta
Strategy it can benefit from the additional complexity while still maintaining a very
short runtime. For revision: Degree Aware uses two strategies trying to give special
attention to hubs. It was evaluated with GTI and Greedy while using the Never Max
strategy based on Greedy for low degree vertices and GTI for high degree vertices with
the percentile being set to 0.9.

Figures 5.22 and 5.23 show the evaluation on the Book-X graph. In terms of the Cut Size
they perform almost equally with GTI being slightly better and Greedy being slightly
worse. The Max Edge metric is also nearly equal which also had been the case in other
evaluations.

45

5 Evaluation

0 5 10 15 20 25 30 35
Partitions

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

C
u

t
S

iz
e

MovieLens small

Greedy [100]

SNTI

Figure 5.17: Cut Size on mlSmall, SNTI vs Greedy

0 5 10 15 20 25 30 35
Partitions

0

200000

400000

600000

800000

1000000

1200000

1400000

C
u

t
S

iz
e

Amazon

Greedy [100]

SNTI

Figure 5.18: Cut Size on amazon, SNTI vs Greedy

46

5.2 Real Time Strategy Evaluation

0 5 10 15 20 25 30 35
Partitions

0

50000

100000

150000

200000

250000

300000

350000

C
u

t
S

iz
e

MovieLens 20m

Greedy [100]

SNTI

Figure 5.19: Cut Size on ml20m, SNTI vs Greedy

0 5 10 15 20 25 30 35
Partitions

0

5000

10000

15000

20000

M
a
x

E
d

g
e

MovieLens 20m

Greedy [100]

SNTI

Figure 5.20: Max Edge on ml20m, SNTI vs Greedy

47

5 Evaluation

0 5 10 15 20 25 30 35
Partitions

0

10000

20000

30000

40000

50000

R
u

n
ti

m
e

MovieLens 20m

Greedy [100]

SNTI

Figure 5.21: Execution Time on ml20m, SNTI vs Greedy

0 5 10 15 20 25 30 35
Partitions

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

C
u

t
S

iz
e

Book-X

GTI [1.05]

Greedy [100]

Degree Aware [0.9, Never Max, GTI[1.05]]

Figure 5.22: Cut Size of Degree Aware vs Greedy & GTI on Book-X

It is very interesting to investigate the Cut Size when looking at the Amazon graph
seen in Figure 5.24. GTI outperforms Greedy by far but is kind of unstable. With 20
and 24 partitions the Cut Size increases way more than at other points and having a
spike downwards at 6 partitions. However, GTI’s Cut Size is all the way through better
than the one performed by Greedy. When looking at the Degree Aware strategy it is
revealed that it performs without such spikes and outperforms GTI with higher number
of partitions. This is especially remarkable since most of the placement logic is done via
Greedy and only a part of it is done with GTI. However, this cooperation results in a Cut
Size which can be compared with GTI while having a more strict balancing for most

48

5.2 Real Time Strategy Evaluation

0 5 10 15 20 25 30 35
Partitions

0

50000

100000

150000

200000

250000

M
a
x

E
d

g
e

Book-X

GTI [1.05]

Greedy [100]

Degree Aware [0.9, Never Max, GTI[1.05]]

Figure 5.23: Max Edge of Degree Aware vs Greedy & GTI on Book-X

0 5 10 15 20 25 30 35
Partitions

0

200000

400000

600000

800000

1000000

1200000

1400000

C
u

t
S

iz
e

Amazon

GTI [1.05]

Greedy [100]

Degree Aware [0.9, Never Max, GTI[1.05]]

Figure 5.24: Cut Size of Degree Aware vs Greedy & GTI on amazon

vertices provided from Greedy. Furthermore, the spikes from GTI are avoided but also
more positive spikes are missed.

Figure 5.25 shows a runtime comparison of the strategies. As expected Greedy and
GTI are almost equal with Greedy being a little bit faster. Moreover, it is no surprise
that the execution time of the Degree Aware strategy is a bit longer and increases a bit
faster. Nevertheless, Degree Aware is a real time strategy outperforming the runtime of
restreaming strategies.

49

5 Evaluation

0 5 10 15 20 25 30 35
Partitions

0
5000

10000
15000
20000
25000
30000
35000
40000

R
u

n
ti

m
e

Amazon

GTI [1.05]

Greedy [100]

Degree Aware [0.9, Never Max, GTI[1.05]]

Figure 5.25: Execution Time of Degree Aware vs Greedy & GTI on amazon

5.3 Restreaming Strategy Evaluation

Real time strategies have an insufficient Cut Size due to a very limited degree of freedom.
Hence, strategies with more potential have to be considered. Restreaming strategies
are able to exploit more information from the data streams. Their performance will be
evaluated in the following sections.

5.3.1 General Restreaming

In Section 5.1 some restreaming approaches stood out. That is the reason why the basic
idea of restreaming will be further investigated in the following. Therefore, the real
time strategies Greedy and GTI will be evaluated against the Meta Restreaming running
Greedy/GTI five and eight times.

On the MovieLens 20m graph the restreaming improves the results by a few percent
(cf. Figure 5.29). It is remarkable that restreaming Greedy five times just slightly
outperforms the results of one GTI run. In contrast to the Book-X graph (cf. Figure 5.26)
restreaming has a more positive impact on the Cut Size (up to 15%). However, it should
be mentioned that using eight restreams instead of five improves the outcome only
slightly. Considering the Max Edge, restreaming Greedy ends up in better results while
when restreaming GTI the Max Edge seems to be nearly equal to the real time strategy.
Though, the difference between the Max Edge evaluations in Figure 5.27 are minimal
so they could be regarded as equal (even the Greedy runs). However, the additional
runtime of restreaming is quite heavy. It is notable that the runtime of restreaming
GTI increases way more with more partitions than the one of restreaming Greedy. This
is due to the fact that GTI’s runtime increases faster than Greedy’s (cf. Figure 5.28).

50

5.3 Restreaming Strategy Evaluation

0 5 10 15 20 25 30 35
Partitions

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

C
u

t
S

iz
e

Book-X

GTI [1.05]

Meta Restreaming [5x GTI[1.05]]

Greedy [100]

Meta Restreaming [8x Greedy[100]]

Meta Restreaming [5x Greedy[100]]

Meta Restreaming [8x GTI[1.05]]

Figure 5.26: Cut Size of restreaming vs real time on the Book-X graph

0 5 10 15 20 25 30 35
Partitions

0

50000

100000

150000

200000

250000

M
a
x

E
d

g
e

Book-X

GTI [1.05]

Meta Restreaming [5x GTI[1.05]]

Greedy [100]

Meta Restreaming [8x Greedy[100]]

Meta Restreaming [5x Greedy[100]]

Meta Restreaming [8x GTI[1.05]]

Figure 5.27: Max Edge of restreaming vs real time on the Book-X graph

With several passes this delta adds up of course. The increased runtime at the first
few partitionings can be explained with scheduling. The evaluation was made on the
notebook system which was used simultaneously.

5.3.2 Partial Forgetting

In contrast to the Meta Restreaming multiple restreaming strategies in Chapter 4 are
based on the idea of forgetting pieces of the assignment. The idea of forgetting bad
assignments to avoid bad decisions based on bad previous assignment decisions will
be evaluated in the following section. All strategies following this basic idea can be
summarized as ’Partial Forgetting strategies’. Thereby, the different realizations of the

51

5 Evaluation

0 5 10 15 20 25 30 35
Partitions

0
10000
20000
30000
40000
50000
60000
70000
80000

R
u

n
ti

m
e

Book-X

GTI [1.05]

Meta Restreaming [5x GTI[1.05]]

Greedy [100]

Meta Restreaming [8x Greedy[100]]

Meta Restreaming [5x Greedy[100]]

Meta Restreaming [8x GTI[1.05]]

Figure 5.28: Execution Time of restreaming vs real time on the Book-X graph

0 5 10 15 20 25 30 35
Partitions

0

50000

100000

150000

200000

250000

300000

350000

C
u

t
S

iz
e

MovieLens 20m

GTI [1.05]

Meta Restreaming [5x GTI[100]]

Greedy [100]

Meta Restreaming [8x Greedy[100]]

Meta Restreaming [5x Greedy[100]]

Meta Restreaming [8x GTI[1.05]]

Figure 5.29: Cut Size of restreaming vs real time on the MovieLens 20m graph

Partial Forgetting strategies introduced in this thesis will be compared to each other.
Further Topic Correction will also be evaluated even if it is no Partial Forgetting strategy
because the basic idea is quite similar.

Fractional Restreaming

At first only the Fractional Restreaming will be evaluated to find a good parameter
configuration (percentage to forget) to be comparable to the remaining strategies. For
evaluating Fractional Restreaming runs on Book-X with five restreams forgetting 10%,
30%, 50%, 70% and 90% of the placement. Figure 5.30 reveals that the less of the
placement is forgotten the better the Cut Size becomes. Comparing the Max Edge or the

52

5.3 Restreaming Strategy Evaluation

0 5 10 15 20 25 30 35
Partitions

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

C
u

t
S

iz
e

Book-X

Fractional Restreaming [0.1, 5x GTI [1.05]]

Fractional Restreaming [0.7, 5x GTI [1.05]]

Fractional Restreaming [0.5, 5x GTI [1.05]]

Fractional Restreaming [0.9, 5x GTI [1.05]]

Fractional Restreaming [0.3, 5x GTI [1.05]]

Figure 5.30: Cut Size of Fractional Restreaming with different parameters on Book-X

execution time was not illuminating since the configurations did not produce significant
differences. Consequently these evaluations are not displayed here. For the further
evaluations the Fractional Restreaming forgetting 10% will be used since it has the best
results (delta to 30% is quite minimal and therefore it is hard to see the data points in
Figure 5.30).

Survey on Partial Forgetting

The Figures 5.31 and 5.32 provide a comparison of the strategies which forget assign-
ments and Meta Restreaming as benchmark. Thereby Meta Restreaming and Fractional
Restreaming use Greedy as basic strategy to provide a better comparability since TC,
TCNS and Vertex Correction all internally use Greedy for vertex assignment.

TC, TCNS and Vertex Correction are outperformed by Meta Restreaming. When looking
at the Max Edge (cf. Figure 5.32), they are also slightly outperformed by Meta Restream-
ing. This means the evaluated partitionings from TC, TCNS and Vertex Correction are
truly worse in the evaluated environment than a simple restreaming approach.

Fractional Restreaming however can hold up to the performance of Meta Restreaming
and produces even minimal better results. Thereby the parameter configuration is crucial
as was shown in Section 5.3.2. In terms of the Max Edge metric both strategies produce
equal results. The improved Cut Size is bought with additional runtime. Figure 5.33
provides a survey of the runtime of the Partial Forgetting strategies. Meta Restreaming
has some spikes which can be explained with the simultaneous usage of the hardware.
Apart from that it can be seen that the Meta Restreaming has a better runtime than
all Partial Forgetting strategies and scales better with a higher number of partitions.
Consequently a consideration has to be made if the additional runtime needed by

53

5 Evaluation

0 5 10 15 20 25 30 35
Partitions

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

C
u

t
S

iz
e

Book-X

TC [5]

Meta Restreaming [5x Greedy[100]]

Vertex Correction [5]

Fractional Restreaming [0.1, 5x Greedy[100]]

TCNS [5]

Figure 5.31: Cut Size of Partial Forgetting strategies vs Meta Restreaming on Book-X

0 5 10 15 20 25 30 35
Partitions

0

50000

100000

150000

200000

250000

M
a
x

E
d

g
e

Book-X

TC [5]

Meta Restreaming [5x Greedy[100]]

Vertex Correction [5]

Fractional Restreaming [0.1, 5x Greedy[100]]

TCNS [5]

Figure 5.32: Max Edge of Partial Forgetting strategies vs Meta Restreaming on Book-X

Fractional Restreaming is worth the minimal benefit in the Cut Size compared to Meta
Restreaming. Exploiting the idea of Partial Forgetting might be a promising field of study
for future work.

5.3.3 Adaptive Balancing

Bad assignments can prevent good assignments later because the good assignments
might hurt the balancing. To avoid these the bad assignments could be forgotten as in
Section 5.3.2. Another approach would be to allow the bad assignments but prevent
them from having such an impact on good assignments. This could be done by a more
lax balancing. The Adaptive Balancing strategy implements this idea. In the following
the results are evaluated and discussed.

54

5.3 Restreaming Strategy Evaluation

0 5 10 15 20 25 30 35
Partitions

0

10000

20000

30000

40000

50000

60000

R
u

n
ti

m
e

Book-X

TC [5]

Meta Restreaming [5x Greedy[100]]

Vertex Correction [5]

Fractional Restreaming [0.1, 5x Greedy[100]]

TCNS [5]

Figure 5.33: Execution Time of Partial Forgetting strategies vs Meta Restreaming on
Book-X

Since the Adaptive Balance is besides Fractional Restreaming one of the best approaches
in this thesis (cf. Section 5.1) it will also be evaluated with hMetis. hMetis is a
hypergraph partitioning Framework [KK00] within a much higher complexity class and
therefore a longer runtime. It is a very successful approach and consequently a good
benchmark as lower bound for the best approaches. However it is important to keep in
mind that hMetis has different balancing constraints than the approaches of this thesis
as already mentioned in Section 2.2.1. hMetis also uses a different input data format.
The strategy knows the graph size (number of vertices and hyperedges) and the graph
is read as hyperedge list. This differences should be kept in mind when comparing the
results of hMetis with other strategies introduced in this thesis.

The Figures 5.34 and 5.35 show the evaluation concerning the Cut Size. As expected
hMetis has a better Cut Size in Figure 5.34 and every runtime class has its own domain.
The restreaming approaches are up to 15% better than the real time approach and hMetis
outperforms the streaming strategies by up to 12,5%. Very interesting is the comparison
of Meta Restreaming and Adaptive Balance. Their performance is quite similar, but
both have minimal spikes of a few percent. However, the cut size looks different on the
Amazon graph (Figure 5.35). GTI’S Cut Size is still the worst but Adaptive Balance and
Meta Restreaming can hold up to hMEtis and in some cases even outperform it. When
looking at the Max Edge metric in Figures 5.36 and 5.37 both restreaming strategies
perform equally well. At the same time hMetis is way worse - another trade off made
by the strategy. When finally looking at the runtime (cf. Figure 5.38) hMetis takes
much more time than required by Adaptive Balance or Meta Restreaming. In fact, the
difference is that big that the runtime of GTI and the restreaming approaches seem to be
equal (compare with Figure 5.28 for delta between Meta Restreaming and GTI). Hence,
the runtime hMetis uses additionally has a worse exchange rate in terms of Cut Size.
Especially when thinking of the hMetis performance on the Amazon graph.

55

5 Evaluation

0 5 10 15 20 25 30 35
Partitions

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

C
u

t
S

iz
e

Book-X

GTI [1.05]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

hMetis

Figure 5.34: Cut Size of GTI, Meta Restreaming, Adaptive Balance and hMetis on Book-X

0 5 10 15 20 25 30 35
Partitions

0

200000

400000

600000

800000

1000000

C
u

t
S

iz
e

Amazon

GTI [1.05]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

hMetis

Figure 5.35: Cut Size of GTI, Meta Restreaming, Adaptive Balance and hMetis on
Amazon

The results of Adaptive Balance in the direct competition with Meta Restreaming are not
outstanding but also not worse. The strategy has the potential of better results which
could be part of future work since no extensive parameter tuning was done yet. Also the
Adaptive Balance offers a higher degree of freedom which could end up in better results
on certain data inputs. If there are close clusters scattered over the stream the greater
imbalance in the first passes will enable the strategy to find and handle these clusters
earlier.

56

5.3 Restreaming Strategy Evaluation

0 5 10 15 20 25 30 35
Partitions

0

50000

100000

150000

200000

250000

M
a
x

E
d

g
e

Book-X

GTI [1.05]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

hMetis

Figure 5.36: Max Edge of GTI, Meta Restreaming, Adaptive Balance and hMetis on
Book-X

0 5 10 15 20 25 30 35
Partitions

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

M
a
x

E
d

g
e

Amazon

GTI [1.05]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

hMetis

Figure 5.37: Max Edge of GTI, Meta Restreaming, Adaptive Balance and hMetis on
Amazon

Restreaming Deltas

When restreaming the changes between each pass may not be to extensive. Reassigning
too many vertices to a new location can easily lead to bad (or not optimal) results. This
is due to the fact that the old assignment is hardly used to benefit from the knowledge if
most vertices are relocated.

Table 5.3 shows the impact of relocating vertices in the Book Rating graph. When
looking at the run with λfirst = 2 it can be seen that when reassigning 58160 (55% of
the graphs) vertices the Cut Size became worse. In comparison at the same time the run

57

5 Evaluation

0 5 10 15 20 25 30 35
Partitions

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000

R
u

n
ti

m
e

Book-X

GTI [1.05]

Adaptive Balance [1.05,1.5,8]

Meta Restreaming [8x GTI[1.05]]

hMetis

Figure 5.38: Execution Time of GTI, Meta Restreaming, Adaptive Balance and hMetis
on Book-X

Table 5.3: Adaptive Balance on the Book Rating graph with 105282 vertices with several
starting balances monitoring the Cut Size and number of relocated vertices
after each pass

λfirst 1.2 1.5 2.0 3.5
Pass #reloc Cut Size #reloc Cut Size #reloc Cut Size #reloc Cut Size
0 105282 256456 105282 250072 105282 246408 105282 225072
1 44433 235152 44378 231704 47280 228248 46127 212880
2 29276 227904 43800 228256 58160 235776 71649 252136
3 17535 222776 29072 217496 28886 226512 28075 244024
4 15218 218632 25547 212504 26077 222472 25472 239912
5 12209 215752 20437 210040 20050 218712 22052 233264
6 11799 214520 25075 206184 20240 216408 24850 227832
7 11637 213776 21169 203184 17933 215400 26126 221816

with λfirst = 1.5 reassigned only 43800 (40%) vertices which resulted in a better Cut
Size. A run with λfirst = 3.5 relocated in pass two 71649 vertices (70%) and resulted in
a way worse Cut Size. This setback could not be settled in the following passes.

Of course the deltas may not be too small since the Cut Size can not be improved very
much otherwise. This can also be seen in Table 5.3 when looking at λfirst = 1.2. The
number of relocated vertices is not big enough to have a larger impact in the later
passes.

58

5.3 Restreaming Strategy Evaluation

0 5 10 15 20 25 30 35
Partitions

0

50000

100000

150000

200000

250000

300000

350000

C
u

t
S

iz
e

Book-X

hMetis

Adaptive Balance [1.05,1.5,8]

Figure 5.39: Cut Size when balancing vertices

0 5 10 15 20 25 30 35
Partitions

0

50000

100000

150000

200000

250000

300000

350000

M
a
x

E
d

g
e

Book-X

hMetis

Adaptive Balance [1.05,1.5,8]

Figure 5.40: Max Edge when balancing vertices

Balancing The Vertices

HMetis balances the vertices instead of the edges. Therefore, comparing hMetis with
one of the own approaches is always a bit tricky. For this section the balancing of GTI
was changed so instead of balancing the number of edges per partition the number of
vertices is balanced. The rest still works as known. With GTI modified the Adaptive
Balance strategy will also balance the vertices.

As it is shown in Figure 5.39 the Cut Size of Adaptive Balance is lower than the one
of hMetis for all tested number of partitions. Meanwhile the Cut Size of GTI is a bit
worse than the performance of hMetis. At the same time the execution time of hMetis is

59

5 Evaluation

enormous compared to Adaptive Balance (cp. Figure 5.38) and even more compared to
GTI. This is due to the fact that hMetis is no linear time algorithm and because of the
higher runtime class needs much more time for large inputs. Of course this benefit of
Adaptive Balancing comes with a price. The number of vertices is indeed balanced but
the number of edges per partition in not controlled anymore. Hence, adaptive balancing
results in mapping hubs on the same partition and small subgroups on other partitions.
Finally the Max Edge metric is significantly worse in Adaptive Balance than in hMetis
(cp. Figure 5.40). GTI performs thereby slightly better than Adaptive Balance but still
not as good as hMetis.

5.4 Decision Guidance

Purpose of this section is to provide a guideline about hypergraph partitioning strategies.
Many approaches and implementations have been evaluated, discussed and rated in the
previous sections. However, always without clear recommendation.

This thesis covers linear strategies but this runtime class can be divided in two subclasses
which have been addressed: real time strategies which use only a single pass over
the input data and restreaming strategies using several passes and therefore gaining
additional information. Obviously these two subclasses can be used to address different
problems. The real time strategies should be used for quick partitionings where the
algorithm afterwards has short linear or even sub linear runtime. They are also suitable
if the partitioning has to be redone frequently or is growing continuously. In the last case
it should be considered to make an initial partitioning with a slower but more informed
strategy and assign the continuously arriving deltas with a real time strategy if there is
enough initial data.

As soon as the algorithms executed after the partitioning have a runtime which is
higher than linear there is no need for real time partitionings any more. In this case a
restreaming approach has a better influence on the runtime afterwards and is the better
choice than real time strategies. This may also apply for periodically repartitioned data
sets when the frequency is not too high. A large data set could be repartitioned daily
within a few minutes using restreaming where slower strategies sometimes would take
all day.

When looking at specific strategies in the real time class Greedy and GTI where out-
standing. Thereby, Greedy is the better choice for strict balancing while GTI can grant a
better partitioning due to a higher degree of freedom in a less strict balancing. When
indecisive the Degree Aware stratgy using Never Max and GTI did hold good results
combining benefits of Greedy and GTI. SNTI had an outstanding performance regarding

60

5.4 Decision Guidance

the balance. If balance is the most important attribute and the input size is completely
unknown (and could probably be very small) while the partitioning has to be performed
in real time SNTI is the right choice.

In terms of restreaming strategies there are three strategies which have provided good
results: Meta Restreaming, Fractional Restreaming and Adaptive Balance. Since Meta
Restreaming and Adaptive have basically the same results the decision is quite simple.
Meta Restreaming needs less parameter optimizing and should therefore be the choice
for quick configuration while Adaptive Balance should be used when the configuration
time is not that important but the partitioning afterwards should be optimized as much
as possible with the same runtime. Fractional Restreaming can improve the partitioning
further but has a longer runtime which is needed to evaluate the assigned vertices and
delete the worst of them.

61

6 Simple Hypergraph Partitioner

In this chapter the partitioning framework named Simple Hypergraph Partitioner (SHP)
which was developed during the thesis is introduced. The framework was used to create
the evaluations previously seen in the thesis. SHP can be used to get partitionings,
however the main purpose was evaluating the strategies. It is written in Java and will
be made SHP open source.

The chapter will first provide an architectural overview of SHP. Then the data model
will be examined. Next the algorithms and the extensibility are displayed followed
by a section about the usage of SHP including the output data format. Finally, some
automations will be shown which can be used to run SHP for multiple configurations.

6.1 Architecture

An outline of the architecture of SHP and the program pipeline is content of this section.
The basic architecture is shown in Figure 6.1. As it can be seen the system has some sort
of layered design.

The Launcher component is on the top layer and has two major tasks. First it is the
interface for the user to the system. Meaning the configuration given by the user is
handled and mostly interpreted here. The parameters concerning the used strategy are
send to a factory class in the Algorithms component. The second task is the program
sequence. The launcher calls the other components and passes the information if
necessary. It invokes the algorithm and feeds it with the data needed from the file
input which is handled by another component. Furthermore, the Launcher starts the
evaluation after the partitioning and if needed also the file output to write the final
assignment to the Hard Drive Disk (HDD).

The next layer has two components: The Algorithms and the Evaluation. Algorithms
holds the strategies which can be used by the framework. With a factory class an
interface to the Launcher is provided. It creates the strategy objects used in the Launcher.
The strategies themselves have an inheritance structure which is explained further in
section 6.3.

63

6 Simple Hypergraph Partitioner

Figure 6.1: Layered architecture of SHP with packages and accesses

The Evaluation component takes the data from the Model and exerts the metrics on it
(Section 2.2.1). Afterwards the results are send to a file output.

The final layer contains the Model. It is only used for data management. The Model
holds information about partitions, vertices and hyperedges. While partitioning the input
graph this information is modified constantly. It is further discussed in section 6.2.

An exception to the layered model is the Util component. It is a cross layer component
providing general purpose functions for the other components. The links to the general
Util component are not modelled in Figure 6.1 for a better overview. Functions provided
are for instance methods to calculate intersection or union sizes. Those are used by some
strategies. The component also provides methods for timestamps to improve console
outputs. Another part of the component is a config class which holds default values
for the system and a list of valid strategies. Besides the Util component includes two
sub components for file interactions. First the File In component which reads input
graphs and transforms it into a vertex stream. Second the File Out component to write
evaluation results and the final partitioning to the HDD.

64

6.2 Data Model

Figure 6.2: Program pipeline

The system works as a pipeline which is operated by the launcher. It consists of four
phases shown in Figure 6.2. First the initialization, where the environment is created
and the configuration is handled. Afterwards the partitioning takes place. This phase can
be repeated several times if a restreaming is performed. The third phase is the evaluation
where the assignment is rated and the results of the rating is printed (and also written
to the HDD). The last phase is the output. This is an optional phase depending on the
configuration. If selected, the vertex assignment is written to the HDD.

6.2 Data Model

The data model and its implementation is examined in the following. Figure 6.3 shows
the objects and their knowledge about each other. The memory object manages all stored
data. It acts as an interface to the layers above. When a new vertex is assigned to a
partition, the information is given to the memory which stores the vertex and additionally
transfers it to the concerning partition. The memory also holds high level information
about the current partitioning like most/least loaded partition. This information can the
be used from the algorithms. Additionally the memory has knowledge about the vertex
mapping and has a list of the hyperedges already seen. Finally it organizes the remove
procedures for vertices and edges.

65

6 Simple Hypergraph Partitioner

Figure 6.3: Data model of SHP

The partitions have their own vertex lists with the vertices assigned and a list with the
connected hyperedges.

The vertex and hyperedge classes are simple data storages. They have a list with the
IDs of the connected edges/vertices but no object reference. This decision was made to
avoid reference circles.

The EdgeWrapper is used to realize reference counting for the hyperedges. That way
every partition can notice instantly if a vertex is no longer connected to it and remove it
from the edge list if this is the case. The memory works the same way. It can remove a
hyperedge if it is not connected to a single partition anymore. This way the data stored
in the memory and partition is always up to date.

6.3 Algorithms and Extensibility

This section covers the different types of algorithms supported by the framework and
will explain how further strategies can be added. There are three types of algorithms,
in the following named strategies. Figure 6.4 shows the inheritance between the three
types.

First of all, there are simple streaming strategies which extend the AbstractPartitioningAl-
gorithm. Those are strategies which have only one data pass and assign the input vertex

66

6.3 Algorithms and Extensibility

Figure 6.4: Abstraction of partitioning strategies

read immediately to an partition. The assignment logic of each strategy is written
in a method named ’calculateNextVertex’ which is called repeatedly during the pass.
It determines on which partition the given vertex is assigned. Examples are Greedy,
Random, GTI or SNTI.

Secondly WindowedStrategies extend the AbstractWindowbasedAlgorithm. These strate-
gies also have only one pass, but they do not coercively assign the vertex they just
read. They can store vertices in a window and assign them at any time during the
partitioning. So the ’calculateNextVertex’ method still holds the assignment logic but has
the assignment calls inside because the given vertex does not need to be the assigned
one. After the input graph is read, a ’finish’ method is called. The ’finish’ method is a
second method holding strategy logic to ensure all given vertices are assigned. So the
task of the ’finish’ method is to assign all vertices left in the window. An example for a
window based strategy is the Prefer Big strategy.

Finally, there are the restreaming strategies extending the AbstractMultiPassAlgorithm.
These strategies read the graph several times. They have also two methods holding their
logic. The ’calculateNextVertex’ method which is called repeatedly during all passes
and works like the one of the windowed strategies (assignment call inside). This is
due to the fact that some restreaming strategies may use a pass only for counting or
finding maxima and are not assigning anything. Besides, they have a method called
’endPass’. Here the logic deviating from simple restreaming like removing bad topics is
done. The ’endPass’ Method is called always if a pass finished. This also applies for the
last pass even if many strategies like Topic Correction are not using the last endPass call.

67

6 Simple Hypergraph Partitioner

Examples for these kind of implementations are TC, Meta Restreaming and the Two Pass
strategy.

To add further strategies into the framework the matching Abstract class has to be
extended and the methods implemented. Furthermore, the strategy has to be added
into the StrategyFactory so the framework is able to create an instance of it. Finally, the
strategy has to be added into the list of valid strategies in the config class. It informs the
framework about the strategies existence. Furthermore, it holds information whether
the strategy uses parameters and if yes, how much or if the number is dynamic.

6.4 Usage

How SHP can be used will be explained in this section. The program takes a number of
parameters and executes a single run. This means there is no way to configure multiple
partitionings and run them all in SHP at once. To take several runs external scripts have
to be used, more about automation in section 6.5. SHP is a shell program and provides
no graphical user interface.

The parameters and their domain are shown in Table 6.1. The number of partitions (-n)
has to be a natural number greater than 0. Inserting the input graph (-in) has to be
done as path to its txt file and the results are written to the directory given in the output
(-out) parameter. The user can determine if the vertex assignment shall be stored on
the HDD with the save (-save) parameter which takes a boolean value. True means the
assignment is stored, false it will be discarded. The evaluation will be stored on the HDD
anyway. SHP creates (or uses if they already exist) two files for the evaluation results.
First a csv file containing the raw data shown in Listing 6.1. Each partitioning fills one
line containing information as the timestamp of the partitioning run, the partitioned
graph, the number of partitions, the used strategy and it’s parameters, the number of
vertices and edges in the graph, the result of the Max Edge metric, the average number
of edges per partition, the execution time and finally the edge and vertex load. The
Cut Size metric can be calculated with the values given and is therefore not stored
additionally. Second a txt file holding the information formatted like the shell output
which is readable for humans displayed in Listing 6.2. In this format all values from
the previous file are also written but each metric gets an on line, the time stamp is also
given as ’dd.MM.yy HH.mm.ss.SSS’ format and the Cut Size is printed. The begin and
end of a partitioning entry is made visible by special lines.

Listing 6.1: Build-up of the results.csv
timestamp, graph, number of partitions, strategy, [parameters], #vertices, #edges,

max_vertex, max_edge, avg_edge, execution time, [edge load], [vertex load];

68

6.4 Usage

Table 6.1: SHP parameter survey
Parameter Description Domain
-n determines the number of partitions to be produced N+

-in the path of the input graph path to a txt file

-out the path where the results shall be saved. Path will
be created if not existent

-

-save
determines if the assignment choices shall be stored
to the HDD, pass ’false’ if you are only interested in
the evaluation

boolean value

-h
prints an overview about the commands on the shell
can also be called with -help

-

-<x> <y>* use strategy x with parameters y
valid strategy
valid parameters

Listing 6.2: Build-up of the resultsHR.txt
=====start=====

timestamp: <value>

Timestamp as dd.MM.yy HH:mm:ss:SSS

graph name: <name>

number of partitions: <number>

strategy name: <strategy>

Parameters: [<parameter>]

number of vertices in graph: <number>

number of hyper edges: <number>

vertex maximum: <number>

hyper edge maximum: <number>

average number of hyperedges: <number>

Cut Size: <number>

execution time: <number>

edge load: [<number>]

vertex load: [<number>]

=====end=====

The strategies available in the current version are listed in Table 6.2. Note that passing
several algorithms will cause SHP to use only the first one. Exceptions are meta strategies
which need other algorithms. Thereby it has to be mentioned that not all strategies are
currently compatible with each other. Meta strategies have currently some problems with
running window based or restreaming strategies. This will be fixed in future versions.

69

6 Simple Hypergraph Partitioner

Table 6.2: SHP implemented strategies
Strategy Parameters

-adaptive_balance

allowed imbalance at the end: λlast ∈ R|λlast ≥ 1
allowed imbalance at the beginning:
λfirst ∈ R|λfirst ≥ 1
number of passes: N+

-all_on_one -
-balance_big balance (intern Greedy): N

-degree_aware
percentile: [0,1]
low degree Strategy: valid strategy
high degree strategy: valid strategy

-fractional_restreaming
percentage: [0,1]
number of strategies: N+
n strategies: valid strategy

-greatest_topic_intersection allowed imbalance: x ∈ R|x >= 1.0
-greedy balance: N

-meta_restreaming
number of strategies: N+
n strategies: valid strategy

-never_max balance (intern Greedy): N
-prefer_big balance (intern Greedy): N
-random -
-vertex_correction number of passes: N+

-smallest_non_topic_intersection -
-topic_correction number of passes: N+

-topic_correction_narrow_scope number of passes: N+

-two_pass
percentage [0,1]
strategy: valid strategy

6.5 Automation

Automating the usage will be the issue of this section. In the content of the thesis various
scripts have been written to automate SHP calls and to visualize the evaluations. These
scripts will be published with SHP as a toolbox. Of course every user shall feel free to
write own automation tools. The scripts are written in python using python 2.7.10 with
mathplotlib 1.4.3 and numpy 1.9.2.

70

6.5 Automation

The provided tool contains scripts for SHP calls, for looping through these calls and
several visualizations. This includes line graphs with the partitions on the x-axis and an
arbitrary metric from the file output on the y-axis, arbitrary metrics as bar chart for a
single number of partitions and a visualization of the balancing of a single partitioning
as bar charts. The tool automatically creates a file named ’visLog.txt’ containing all
visualization calls made. Hence, the graphics can be recreated with the visualization log
and results.csv easily without rerunning the partitioning.

When changes in the SHP frameworks are made (e.g. new strategies implemented)
these have to registered in the tool as well in order to use the tool on the adapted
SHP. Therefore, there is a python file named ’Util’ containing the information about
valid strategies. If the output data is modified the ’EvaluationSet’ file has to be adapted.
Further information about the tool and its usage will be provided with the code.

71

7 Conclusion

In this thesis hypergraph partitioning for unknown input sizes has been examined.
Thereby the goal was to minimize the number of edges which had to be cut while
maintaining a balanced edge load. A second class goal was minimizing the maximal
number of edges on a single partition. The strategies examined where restricted to be of
linear runtime.

A survey of the proposed strategies was given. With its help the strategies can be judged
based on the different metrics. Afterwards parameter independent real time strategies
have been proposed. These can be used when absolutely no information about the input
data is given and a real time partitioning is needed.

The most important part of the thesis was the evaluation of the restreaming strategies.
It was shown that restreaming in general can outperform real time strategies easily
while the trade off between Cut Size and runtime is feasible. Furthermore, Fractional
Restreaming had proven that putting more logic in the restreaming by removing bad
assignments before starting the next pass can improve the results even further than the
simple knowledge about previous streams. Restreaming works for the partitioning of
hypergraphs and can sometimes even outperform polynomial strategies.

Afterwards a decision guidance was given. With its help problem domains can be mapped
to the most fitting real time or restreaming strategy. Besides, the SHP framework for
hypergraph partitioning and evaluation was proposed. The usage and build up was
explained so the framework can be either used or extended.

Related Work

The min-max hypergraph partitioning from Alistarh et al. [AIV15] addresses an analogue
problem but uses Max Edge as metric and only considers real time strategies. The
strategies proposed in Chapter 3 had already been proposed in [AIV15]. An approach
not considered in this thesis is the usage of neuronal networks even if it has proven to be
a valid option [VDBM90]. Finally, there are much more problem domains than the one
described in the introduction. This can go as far as reducing other problems on graph

73

7 Conclusion

partitioning like done by Fern et al. in [FB04]. Of course these related fields which had
been touched during the thesis are just a small number of related works in the whole
research area.

Future Work

During the work on this thesis several approaches have provided the possibility of further
investigation. However, due to time constraints not all of them could be explored. Hence,
there is a list of promising tasks for future work. First, there is the Degree Aware strategy
which holds much more potential than shown in the evaluation. These potential can
be exploited by parameter tuning and considering more real time strategies to achieve
different goals (like optimizing other metrics). Furthermore, the extensive study of the
Degree Aware strategy would be a good addition to the decision guidance and could hold
answers to many problem instances of hypergraph partitioning. Next, the idea of Partial
Forgetting can be explored further and more strategies like Fractional Restreaming be
developed. This also includes a parameter tuning for Fractional Restreaming on even
more data sets. The Topic Correction Strategy could also be investigated further. A study
which topics are removed and how big the impact really is could be illuminating for
future studies. Finally, the Adaptive Balance strategy has much more potential than
shown in this thesis. The strategy has a large degree of freedom which could be explored
and the domain of the input data is not perfectly found yet.

74

Bibliography

[AIV15] D. Alistarh, J. Iglesias, M. Vojnovic. “Streaming Min-max Hypergraph
Partitioning.” In: Advances in Neural Information Processing Systems 28.
Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett.
Curran Associates, Inc., 2015, pp. 1900–1908. URL: http://papers.nips.
cc/paper/5897-streaming-min-max-hypergraph-partitioning.pdf (cit. on
pp. 19, 21–23, 27, 36, 73).

[AJB00] R. Albert, H. Jeong, A.-L. Barabási. “Error and attack tolerance of complex
networks.” In: nature 406.6794 (2000), pp. 378–382 (cit. on pp. 29, 30).

[Che+15] R. Chen, J.-X. Shi, H.-B. Chen, B.-Y. Zang. “Bipartite-Oriented Distributed
Graph Partitioning for Big Learning.” In: Journal of Computer Science and
Technology 30.1 (2015), pp. 20–29. ISSN: 1860-4749. DOI: 10 .1007/
s11390-015-1501-x. URL: http://dx.doi.org/10.1007/s11390-015-1501-x
(cit. on p. 21).

[Dev+15] M. Deveci, K. Kaya, B. Uçar, Ü. V. Çatalyürek. “Hypergraph partitioning for
multiple communication cost metrics: Model and methods.” In: Journal of
Parallel and Distributed Computing 77 (2015), pp. 69–83 (cit. on p. 19).

[FB04] X. Z. Fern, C. E. Brodley. “Solving Cluster Ensemble Problems by Bipar-
tite Graph Partitioning.” In: Proceedings of the Twenty-first International
Conference on Machine Learning. ICML ’04. Banff, Alberta, Canada: ACM,
2004, pp. 36–43. ISBN: 1-58113-838-5. DOI: 10.1145/1015330.1015414.
URL: http://doi.acm.org/10.1145/1015330.1015414 (cit. on p. 74).

[Gar16] Gartner. Gartner Says 6.4 Billion Connected "Things" Will Be in Use in 2016,
Up 30 Percent From 2015. Nov. 10, 2016. URL: http://www.gartner.com/
newsroom/id/3165317 (cit. on p. 15).

[Gro] GroupLens. MovieLens. URL: https://grouplens.org/datasets/movielens/
(cit. on pp. 35, 36).

[HZY15a] J. Huang, R. Zhang, J. X. Yu. “Scalable hypergraph learning and process-
ing.” In: Data Mining (ICDM), 2015 IEEE International Conference on. IEEE.
2015, pp. 775–780 (cit. on p. 16).

75

http://papers.nips.cc/paper/5897-streaming-min-max-hypergraph-partitioning.pdf
http://papers.nips.cc/paper/5897-streaming-min-max-hypergraph-partitioning.pdf
https://doi.org/10.1007/s11390-015-1501-x
https://doi.org/10.1007/s11390-015-1501-x
http://dx.doi.org/10.1007/s11390-015-1501-x
https://doi.org/10.1145/1015330.1015414
http://doi.acm.org/10.1145/1015330.1015414
http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3165317
https://grouplens.org/datasets/movielens/

Bibliography

[HZY15b] J. Huang, R. Zhang, J. X. Yu. Technical Report: HyperX A Framework for
Scalable Hypergraph Learning. Tech. rep. 2015 (cit. on p. 16).

[KK00] G. Karypis, V. Kumar. “Multilevel k-way Hypergraph Partitioning.” In: VLSI
Design (2000), pp. 285–300. URL: http://dx.doi.org/10.1155/2000/
19436 (cit. on pp. 16, 20–22, 55).

[Les] J. Leskovec. Amazon product co-purchasing network metadata. URL: https:
//snap.stanford.edu/data/amazon-meta.html (cit. on pp. 35, 36).

[Mal+10] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
G. Czajkowski. “Pregel: A System for Large-scale Graph Processing.” In:
Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’10. Indianapolis, Indiana, USA: ACM, 2010,
pp. 135–146. ISBN: 978-1-4503-0032-2. DOI: 10.1145/1807167.1807184.
URL: http://doi.acm.org/10.1145/1807167.1807184 (cit. on p. 16).

[Man] U. of Mannheim. Web Data Commons - Hyperlink Graphs. URL: http :
//webdatacommons.org/hyperlinkgraph/ (cit. on p. 16).

[May+16a] C. Mayer, M. A. Tariq, C. Li, K. Rothermel. “Graph: Heterogeneity-aware
graph computation with adaptive partitioning.” In: Distributed Computing
Systems (ICDCS), 2016 IEEE 36th International Conference on. IEEE. 2016,
pp. 118–128 (cit. on p. 16).

[May+16b] R. Mayer, C. Mayer, M. A. Tariq, K. Rothermel. “GraphCEP: real-time
data analytics using parallel complex event and graph processing.” In:
Proceedings of the 10th ACM International Conference on Distributed and
Event-based Systems. ACM. 2016, pp. 309–316 (cit. on p. 16).

[Pet+15] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, G. Iacoboni. “HDRF: Stream-
Based Partitioning for Power-Law Graphs.” In: Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management.
CIKM ’15. Melbourne, Australia: ACM, 2015, pp. 243–252. ISBN: 978-1-
4503-3794-6. DOI: 10.1145/2806416.2806424. URL: http://doi.acm.org/
10.1145/2806416.2806424 (cit. on pp. 20, 29, 30).

[ST04] Z. Svitkina, É. Tardos. “Min-Max Multiway Cut.” In: Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques:
7th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2004, and 8th International Workshop on
Randomization and Computation, RANDOM 2004, Cambridge, MA, USA, Au-
gust 22-24, 2004. Proceedings. Ed. by K. Jansen, S. Khanna, J. D. P. Rolim,
D. Ron. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 207–
218. ISBN: 978-3-540-27821-4. DOI: 10.1007/978-3-540-27821-4_19.
URL: http://dx.doi.org/10.1007/978-3-540-27821-4_19 (cit. on p. 21).

76

http://dx.doi.org/10.1155/2000/19436
http://dx.doi.org/10.1155/2000/19436
https://snap.stanford.edu/data/amazon-meta.html
https://snap.stanford.edu/data/amazon-meta.html
https://doi.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184
http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/
https://doi.org/10.1145/2806416.2806424
http://doi.acm.org/10.1145/2806416.2806424
http://doi.acm.org/10.1145/2806416.2806424
https://doi.org/10.1007/978-3-540-27821-4_19
http://dx.doi.org/10.1007/978-3-540-27821-4_19

[VDBM90] D. E. Van Den Bout, T. K. Miller. “Graph partitioning using annealed neural
networks.” In: IEEE Transactions on neural networks 1.2 (1990), pp. 192–
203 (cit. on p. 73).

[Wik] Wikipedia. Statistics. URL: https://en.wikipedia.org/wiki/Special:Statistics
(cit. on p. 15).

[Zie] C.-N. Ziegler. Book-Crossing. URL: http://www2.informatik.uni-freiburg.
de/~cziegler/BX/ (cit. on pp. 35, 36).

[staa] statista. Statistics and facts about Facebook. URL: https://www.statista.
com/topics/751/facebook/ (cit. on p. 15).

[stab] statista. Statistics and facts about Twitter. URL: https://www.statista.com/
topics/737/twitter/ (cit. on p. 15).

[stac] statista. Statistics and facts about WhatsApp. URL: https://www.statista.
com/topics/2018/whatsapp/ (cit. on p. 15).

All links were last followed on May 08, 2017.

https://en.wikipedia.org/wiki/Special:Statistics
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
https://www.statista.com/topics/751/facebook/
https://www.statista.com/topics/751/facebook/
https://www.statista.com/topics/737/twitter/
https://www.statista.com/topics/737/twitter/
https://www.statista.com/topics/2018/whatsapp/
https://www.statista.com/topics/2018/whatsapp/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Foundation & Problem Definition
	2.1 Hypergraphs
	2.2 Graph partitioning
	2.2.1 Metrics

	3 Background
	3.1 All On One
	3.2 Random
	3.3 Greedy
	3.4 Balance big
	3.5 Prefer Big

	4 Own Approaches
	4.1 Real Time Approaches
	4.1.1 Greatest Topic Intersection
	4.1.2 Smallest Non Topic Intersection
	4.1.3 Never Max
	4.1.4 Degree Aware

	4.2 Restreaming Approaches
	4.2.1 Two Pass
	4.2.2 Vertex Correction
	4.2.3 Meta Restreaming
	4.2.4 Fractional Restreaming
	4.2.5 Topic Correction
	4.2.6 Topic Correction Narrow Scope
	4.2.7 Adaptive Balance

	5 Evaluation
	5.1 Evaluation Survey
	5.2 Real Time Strategy Evaluation
	5.2.1 Greatest Topic Intersection
	5.2.2 Smallest Non Topic Intersection
	5.2.3 Degree Aware

	5.3 Restreaming Strategy Evaluation
	5.3.1 General Restreaming
	5.3.2 Partial Forgetting
	5.3.3 Adaptive Balancing

	5.4 Decision Guidance

	6 Simple Hypergraph Partitioner
	6.1 Architecture
	6.2 Data Model
	6.3 Algorithms and Extensibility
	6.4 Usage
	6.5 Automation

	7 Conclusion
	Bibliography

