
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis

Ensuring Data Plane Consistency
in SDN-Based Publish/Subscribe

Systems

Deepak Srinivasan

Course of Study: InformationTechnology/INFOTECH

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: Dr. Adnan Tariq & M.sc. Sukanya Bhowmik

Commenced: 2016-11-01

Completed: 2017-05-03

CR-Classification: C.2.1,C.2.4

Abstract

Content-Based publish/subscribe paradigm is a widely used paradigm which enables applica-
tions to share events, and allow the integrated applications to remain loosely coupled. The
importance of the paradigm increases further with the emergence of IoT applications, a micro
service approach to application development, etc. With the rise in the amount of data being
shared between applications, there is a need to provide high data rate and bandwidth effi-
ciency, and the introduction of Software Defined Networking(SDN)-based pub/sub, it becomes
possible to achieve both.

Content-based pub/sub built on SDN uses the IP address match fields of the flows in Ternary
Content-Addressable Memory(TCAM) as content filters. While such an in-network filtering
offers high data rate, it also involves frequent updates in the data-plane to keep the system
running optimally. Although pub/sub using SDN is efficient, to use it in real-time, it needs
to ensure some level of consistency when updating content-filters in the data plane so that
events are not subjected to black holes, duplicates, loops, etc.

Keeping the requirement of ensuring consistency in mind, the goals of this thesis include an
analysis of the data plane consistency issues related to SDN-based pub/sub, to apply existing
algorithms or implement new algorithms to preserve consistency of the data plane, and to
provide an evaluation comparing all the implemented solutions.

i

Acknowledgements

Working on this thesis with the Institute of Parallel and Distributed Systems has been an
incredible experience. My thanks to Prof. Kurt Rothermel for giving me the opportunity to
work in this department on an interesting and challenging topic.

My deepest gratitude to M. Sc. and soon-to-be Dr. Sukanya Bhowmik for her insights,
patience, and balanced guidance during the duration of this work. It was an enjoyable expe-
rience working under her guidance. I would also like to thank Dr. Muhammad Adnan Tariq
for making time in his busy schedule and providing me with insightful perceptive on pub/-
sub architectures. Special thanks to Jonas Grunert, Himanshu Sharma and for letting me
work on their codebase for workload based indexing. It would be remiss of me not to thank
the developers of floodlight for helping me understand some of the undocumented floodlight
modules.

I cannot put into words the debt I owe my family and friends without whom my life has no
meaning. I thank them for being there for me.

iii

Contents

Abstract i

1 Introduction 1
1.1 Thesis Organization . 3

2 Background 5
2.1 Inter Process Communication paradigms . 5
2.2 Remote procedure call . 5
2.3 Message Oriented Middlewares . 7
2.4 Principles of Publish/Subscribe Paradigm . 7

2.4.1 Components in pub/sub . 7
2.4.2 Operations in pub/sub . 8
2.4.3 Categories in pub/sub . 9
2.4.4 Performance parameters of pub/sub . 11
2.4.5 Related Pub/Sub architectures . 13

2.5 Software Defined Networking . 14
2.5.1 Flow Structure . 16

2.6 Content-Based pub/sub with SDN . 16
2.7 Consistency in SDN . 17

2.7.1 Controller bridge . 19
2.7.2 Stateful Strategies . 20
2.7.3 Stateless Strategies . 21

3 In-Network Content Filtering And Multicast Path Consistency 25
3.1 In-Network Content Filtering . 25
3.2 PLEROMA . 26

3.2.1 Covering relationship of DZ . 27
3.2.2 Spanning Trees In PLEROMA . 27
3.2.3 Handling Advertisements, Subscriptions and Events 28

3.3 Bandwidth Efficient Indexing In PLEROMA 31
3.3.1 Limitation Of Content Filter Expressiveness In PLEROMA 31
3.3.2 Workload-Based Indexing Of Event Space 32
3.3.3 Dimension Selection Algorithms For Events Space Partitioning 33
3.3.4 Workload-Based Indexing As Implemented In PLEROMA 37

4 Problem Statement 39
4.1 QoS Requried in PLEROMA . 39

v

Contents

4.2 Scenarios which require a Consistent Update 39
4.3 Other criteria to consider for consistent data-palne updates 40
4.4 Generic Consistent Update Strategies for PLEROMA 40

4.4.1 Limitations Of Ordered Update Strategy 40
4.4.2 Versioning Strategy . 41

4.5 Problem Statement Definition . 41

5 Consistent Update Algorithms For PLEROMA 43
5.1 Consistent Update Algorithms For Dimension Optimization 43

5.1.1 Versioning . 44
5.2 IP Multicast . 46
5.3 Customized Multicast . 48
5.4 Consistent Update Algorithm For Moving Trees 53

5.4.1 Customized Versioning . 53

6 Implementation and Evaluation 57
6.1 Overview Of Implementation . 57
6.2 Overview of Evaluation Environment . 58

6.2.1 Mininet . 58
6.2.2 Network Topology . 59
6.2.3 Parameters To Evaluate . 59
6.2.4 Evaluation Execution . 60

6.3 Evaluation Results . 61
6.3.1 Consistent Update Algorithms For Dimension Optimization 61
6.3.2 Consistent Update Algorithm For Moving Trees 66

7 Conclusion and Future Work 69

Bibliography 71

vi

List of Figures

2.1 RPC Architecture . 6
2.2 Pub/Sub Architecture . 8
2.3 Topic-Based pub/sub - On top left is an example of channel-based topics-space,

on top right is an example of subject-based topics tree and On the bottom is
an example of type-based topics-graph . 10

2.4 An example of a content-based pub/sub system 11
2.5 An example of partitioning event space in two different ways. 12
2.6 SDN Architecture . 15
2.7 Packet Matching . 15
2.8 Flow Structure . 15
2.9 The figure on the left provides the network topology graph. The figure in the

middle provides rules with existing State A. The figure on the right depicts the
rules for the new State B . 17

2.10 The figures depict intermediate states when transitioning from State A to State
B described in 2.9. The figure on the left shows a blackhole which results when
The outgoing rule in S3 is deleted. The figure on the right shows loop which is
caused because the new state rules are added to S3 and S4. 18

2.11 The figure depicts adding intermediate controller bridge steps 19
2.12 The figure depicts removing old state flow rules 20
2.13 The figure depicts adding new state and removing intermediate state flow rules 20
2.14 The figure on the left depicts the initial State A and one on the right final State

B. 21
2.15 Dependency Tree is calculated as described in 2.7.3 21
2.16 The figure depicts adding new state and removing intermediate state flow rules 22

3.1 The process for appending DZ to an IP address with subnetmask 26
3.2 The figure Depicts PLEROMA data plane with 2 publishers, 2 subscribers, 4

switches. Assume that, it is possible to only append 2 bits to IP address in the
data plane. 29

3.3 The figure on the left depicts an event space with both dimensions ranging from
0-100. The figure on the right depicts an event space with both dimensions
ranging from 0-200 . 32

3.4 K-Means Clustering Algorithm . 33
3.5 Workload-Based Indexing and calculation of MBR 34
3.6 A depiction of dimension selection with Event Variance-based Selection algorithm 35
3.7 A depiction of dimension selection using Subscription matching 36
3.8 A depiction of dimension selection using correlation based selection 36

vii

List of Figures

3.9 An example of dimension selection in the network with one switch, one publisher
and 2 subscribers where PLEROMA has 2 bits available for appending to an
IP address for content filtering. 38

4.1 Current and new multicast paths. 40
4.2 One of the two ordered update solutions for the depicted multicast path in 4.1

causes event duplication . 41
4.3 One of the two ordered update solutions for the depicted multicast path in 4.1

causes events to be dropped . 41

5.1 An example of change of DZs which results from dimension optimization 43
5.2 Publisher and Subscriber which have true overlap of advertisement and sub-

scription event space will lie in the same spanning tree 47
5.3 Paths formed (in green) on using one IP Multicast Tree. Subscriber B gets

message it does not need which results in an increase of false positives 50
5.4 Paths formed (in green) using customized multicast algorithm. Subscriber B is

not in the path, hence reduces unnecessary traffic 50

6.1 PLEROMA Module Structure . 57
6.2 A Torus topology with 9 switches, 9 hosts . 59
6.3 Number flows when updating with versioning and multicast approaches 61
6.4 IP-multicast vs custom-multicast . 62
6.5 Median Increase in the number flows per switch when updating with Reitblatt

and Customized Versioning Approach . 63
6.6 Number of Packets in the network with different order of removal of multicast

flows . 64
6.7 Average Subscriber False Positive Rate vs. Time in seconds before, during, and

after the consistent update of dimension optimization with custom multicast . 65
6.8 Subscriber False Positive percentage when moving spanning tree of a partition 66

viii

List of Algorithms

1 Consistent Update of Dimension Optimization Results 50
2 Calculation Of Multicast Flows . 51
3 Calculate Flows With New DZ . 51
4 Group New Flows, Multicast Flows By Switches 52
5 Sort Switches Based on Distance From Publishers 52
6 Deploy Multicast Flows To Data Plane . 52
7 Deploy New DZ Flows To Data Plane . 52
8 Remove Multicast Flows From Data Plane . 53

ix

1 Introduction

The last two decade has seen an emergence of an ecosystem with a large number of applica-
tions, each integrated with several other applications. These integrations are extremely inflexi-
ble, not fault tolerant if the event sources and consumers need to know each other’s physical lo-
cation(referential coupling) and communicate using synchronous protocol(temporal coupling).
Referential decoupling with asynchronous communication provides the necessary flexibility
for such integrated applications to run independent of each other. Publish-Subscribe(called
pub/sub from here onwards) paradigm is one such solution which makes this loose coupling
possible.

In pub/sub architecture publishers are senders of events and subscribers are receivers of
events they are interested in. An event sent by a publisher can be received by zero or more
subscribers. A subscriber can receive events sent by multiple publishers. In pub/sub archi-
tecture both, publishers and subscribers, are unaware of the other’s network location and
the events are received asynchronously unlike synchronous architectures such as client/server
architecture where a client sends a request to the server and then it waits for the server to
respond. This enables the subscribers to remain free from the burden of needing to maintain
the location of all data sources and publishers from the burden of having to respond to indi-
vidual requests from different subscribers, interested in the same data, by sending the same
data over the network multiple times. Moreover, pub/sub also enables a publisher or sub-
scriber to dynamically join and leave the system without informing the other publishers and
subscribers. Hence pub/sub architectures provide a dynamic many to many asynchronous
communication pattern with referential and temporal decoupling which is used in several
event-driven applications such as an electronic auction, online trading, IoT applications.

In any pub/sub architecture for publishers and subscribers to remain unaware of the other’s
location and yet route events to interested subscriber there needs to be an intermediary. This
role is fulfilled by an intermediary called the Notification service [1]. Subscribers send sub-
scriptions to the Notification service to make it aware of their interests. While the Notification
service is logically centralized, it can be physically partitioned & replicated to make it scal-
able and fault tolerant. For instance, it can consist of multiple nodes called brokers which are
distributed over the network. Hence Notification service forms a logical overlay network over
the existing physical network.

1

1 Introduction

The pub/sub architecture is classified, based how events are matched to subscriptions at
these brokers, into topic-based and content-based[2] pub/sub. In topic-based pub/sub, the
events are tagged with their topic which is used for routing. On the other hand, in content-
based routing the actual content of events are used for routing. The bandwidth efficiency in
the network depends on the effectiveness(called expressiveness) of the filter provided in the
subscriptions and on how expressiveness the filters are at the brokers. A high bandwidth
efficiency can be achieved if the expressiveness of the filters is high and vice versa. Since
in content-based routing the content of the events is directly used for filtering, it is possible
to achieve greater expressiveness with it than with topic-based routing. Another quality
factor which is an indicator for better performance is the speed of filtering[3]. This factor
needs to be comparable to line rate. Both these factors can be optimized only if the filtering
happens in network layer rather than at the application layer and the pub/sub overlay network
has knowledge of the underlying physical network which consists of switches and routers.
Achieving this has become a possibility with the emergence of content-based pub/sub systems
which make use of Software Defined Networking(SDN)[4].

Traditional network is a black box whose switches are closed to any change of its pre-defined
protocols. Each of the switches in the network takes routing decision only based on its own
state and any information it can deduce about other switches & devices connected directly
to it. In SDN all the switches in a network are connected to a central entity which plays the
role of a controller which can gather data about the switches and has the unified view of the
network. Further, the controller can add routing rules and push new protocols to the switch
based on its view of the entire network. For installing a new protocol it makes use of memory
in the switches called Ternary Content Addressable Memory(TCAM). The new rules that are
added are called flows. A Flow consists of two parts one of which is the match field which is
used for matching packets to flow rules and the other is the action which describes the actions
to be preformed on the packet for routing.PLEROMA [5][6] is a pub/sub system which uses
the controller as the notification service and the physical network for actual routing using
rules provided by the controller.

PLEROMA uses the Ternary Content Addressable Memory(TCAM) of the switches to
install a content filter in the form of a flow whose destination IP match field corresponds to
the filter. This enables filtering of events in the physical network and not at the application
layer. Moreover, since the events are handled at the network layer it becomes possible to
achieve line rate performance. Even though content-based pub/subs are supposed to provide
high expressiveness in the case of PLEROMA the expressiveness of the filters were limited
since the number bits in the IP address are limited. This limitation was addressed in [7] which
provides a solution to efficiently convert event content to IP address based workload in the
network. The proposed solution uses the current distribution of events in event spaces & the
subscriptions and then provides a new method for translation of event content to IP address.
Such a change in the SDN data plane needs a deployment plan which ensures the quality of
service required of PLEROMA are not violated (are referred to as network invariants from
here) during the transition. In addition to content address optimization, there are instances

2

1.1 Thesis Organization

such as high network traffic due to which the deployed content filters need to be moved to
other switches. All these changes also need to ensure the necessary quality of service. In
generic terms, these updates need to be consistent. Existing solutions for such consistent
updates are of two categories stateless and stateful algorithm. In stateless algorithms, the
flow changes associated with the update from one consistent state to another consistent state
are ordered so as to ensure that network invariants are not violated. In stateful algorithms,
packets are injected with a version or state identifier to ensure that they are routed with either
old or new state but never a mixture of the two[8].

Most of the existing solutions for consistent updates in the data plane generally deal with
unicast routes which cannot be applied directly(except [8]) to PLEROMA because its content
filtering routes are IP prefix-based multicast routes. The aim of this thesis is to provide
consistent update solution for IP prefix-based multicast routes based on the above-stated
cases in PLEROMA.

1.1 Thesis Organization

The thesis has been organized as described below:

Chapter 2 provides an overview of topics which are necessary for understanding to the thesis.
It includes an overview on pub/sub, SDN, unicast consistent update strategies.

Chapter 3 provides an overview of topics PLEROMA, Workload-based indexing.

Chapter 4 provides the definition and description of this thesis’s problem statement.

Chapter 5 provides a description of algorithms and an observation of the proposed solutions.

Chapter 6 provides an overview of the implementation, evaluations and an analysis of re-
sults.

3

2 Background

This chapter endeavors to provide an adequate background of key concepts that forms the
basis for this thesis. It provides a fundamental overview of pub/sub paradigm, Software-
Defined Networking(SDN), existing pub/sub systems built using SDN and existing consistent
data plane update strategies in SDN.

2.1 Inter Process Communication paradigms

Inter-process communication is a term which covers a wide range of communication paradigms.
In principle, two different processes can communicate with each other as long as there is a
channel between them for them to do so. A channel can be files, pipes, shared memory to
complex middlewares which abstract out the complexities of communication between pro-
cesses in remote machines[9]. Each of following paradigms aims of providing some or all of
the following four criterion [10]

• Access Transparency - Hiding of the heterogeneities that arise due to OS, hardware
and programming language specific differences between the communicating processes.
It also refers to keeping the communicating processes oblivious to the fact that they are
communicating to remote processes.

• Location Transparency - The actual network specific addresses of the processes involved
in communication are hidden from the communicating processes.

• Concurrency Transparency - Several processes may be communicating with the same
process. But the process which initiates such a communication should not be aware of
this concurrency

• Replication Transparency - Called or calling methods can be replicated without breaking
each other

This section is dedicated to such paradigms one of which is pub/sub.

2.2 Remote procedure call

A local method/function call is one in which the called method resides in the same process
address space as the calling method, as a result, both share the same variables, memory space
and system specifications. In contrast, Remote Procedure Call(RPC) provides a paradigm in
which the called method(server) resides in a remote process and may be in a remote machine

5

2 Background

to the calling process(client). The idea of this paradigm is to make RPC behave in a manner
similar to local calls by making method signatures and invocation procedures more akin to
local calls. This follows the typical client/server architecture. Several middlewares such as
Java RMI provide this paradigm. These middlewares provided location transparency - as both
client and server are oblivious to the other’s location. Some these middlewares also provide
asynchronous request-response architecture.[11][12]

Figure 2.1: RPC Architecture

The disadvantage with this paradigm is the violation of access transparency. One main
reason for this is that the latency caused due to communication delays is much higher for
remote calls than with local calls and for remote calls, there are several exception scenarios
such as communication failure, remote process failure, etc., as well. It is not possible or even
prudent to abstract such errors from the calling processes. Another reason for the loss of
transparency is that if the process communicating with each other run on different OS or
use different programming language semantics, it becomes difficult to completely hide the
heterogeneity [10]. Moreover, in RPC the client and server are tightly coupled to the remote

6

2.3 Message Oriented Middlewares

method signature. This makes it difficult for the server to change the remote method signature.
There are scenarios where it is not desirable to use RPC especially when there is many to
many communication involved. For example in information dissemination applications, where
a client may be interested in similar data from multiple servers. If that’s the case, then it must
invoke a remote method from each of them to get the data it desires. This is a burden for the
client because it needs all the servers to be available at the same time and it becomes a burden
for the server because several clients may request separately for the same data. Moreover, A
server cannot start a new conversation as well. Hence, on the whole, the interface of RPC is
not flexible enough to allow the integrated application to change independent of each other
and it is not suitable for many to many communication.

2.3 Message Oriented Middlewares

Message oriented middlewares(MOM) represents a class of middlewares which makes infor-
mation dissemination in large heterogeneous networks possible. The communication between
the nodes in such networks have the following three attributes

• Asynchronous communication or Event-driven communication - This the op-
posite of request-response communication. Here the receivers of information do not
initiate a request and wait for a response.

• Referential Decoupling - The event-senders and event-receivers are unaware of the
network address of the other. This is made possible by using an intermediary which
takes care of routing packets to correct destination. Sometimes, these intermediates are
just simple buffers or queues.

• Generic Data Type Formats - The data type of the events sent in these middle-
wares is independent of sender’s & receiver’s environment. This makes it easier for the
middlewares to handle the events routed by it.

2.4 Principles of Publish/Subscribe Paradigm

A pub/sub is a pattern/flavor of MOMs. It is used in distributed information dissemination
applications in which the membership of the entities in the system are dynamic and many-
many communication is involved. The various components in this pattern are discussed in
the following section 2.4.1.

2.4.1 Components in pub/sub

Publishers

Publishers are event senders/event sources. Every publisher will just send events without
addressing it to any specific destination.

7

2 Background

Subscribers

Subscribers are event receivers/event sinks. A subscriber only receives data which it is
interested in. But it has no idea about the source of a received event.

Notification Serivce

It is an intermediary between the publishers and subscribers. It is responsible for receiving
events and for handing it over to the correct subset subscribers. Notification service also
handles the membership of publishers and subscribers. It is also responsible for maintaining
their respective addresses. In general, a notification service can comprise of a network of
distributed nodes called the brokers which can span a wide area network. This broker network
forms an overlay network on the physical network by handling the actual routing of events
based on pub/sub rules. The exact method used for routing the packets depends on two
factors, namely the type of pub/sub architecture and the quality of service offered for event
delivery by the same. The various classes of pub/sub are described in 2.4.3 and the quality
of service of a pub/sub based delivery of events are - at-least once, atmost-once , or exactly
once semantics. The implementation of these semantics require the use of queues and may
require the queues to maintain a history of past event in notification service. 2.2

Figure 2.2: Pub/Sub Architecture

2.4.2 Operations in pub/sub

This list of operations in pub/sub are listed below:-

8

2.4 Principles of Publish/Subscribe Paradigm

• A new publisher entering pub/sub - A new publisher enters the pub/sub system
by sending a special message called the advertisement to the notification service or
the nearest broker. The content of advertisements must contain information regarding
the type of data it wishes to publish. The structure of the advertisement can be a
simple string label, a range of values with multiple dimensions, or a complex expression
depending on the type of pub/sub system. Only after a publisher sends an advertisement
the notification service will handle events sent by the publisher.

• A new subscriber entering pub/sub - A subscriber can receive events only after it
subscribes to the events. A subscriber uses the subscription messages for this purpose.
The structure of a subscription event can be a simple label or a condition similar to
SQL condition depending on the type of pub/sub system.

• An existing publisher leaving pub/sub - A publisher can withdraw itself from the
pub/sub system by sending an unadvertisement message to the notification service or
nearest broker.

• An existing subscriber leaving pub/sub - A subscriber can stop receiving events
by sending an unsubscription message to the notification service or to its nearest broker.

2.4.3 Categories in pub/sub

A pub/sub system can be classified based on how packets are filtered and routed by the
notification service. The events can be filtered either based on the actual content of the
packets or based a label attached to the packet by the publishers [13]. The first is called a
topic-based pub/sub and the second is called a content-based pub/sub.

Topic-Based Pub/Sub

Topic-based pub sub can be further subdivided into 2.3

• Channel-based - Here all the publishers and subscribers belong to one or more chan-
nels. A published event is published to exactly one of the channels and will be received
by all the subscribers of that channel. In channel-based pub/sub, there is no relation-
ship between two channels. There is a one-one correspondence between publishers and
subscribers. This can be directly used with IP-multicast where each multicast address
corresponds to a channel. In this case, no advertisement are required. Example :-
CORBA [14].

• Subject-based - The topics of a subject-based pub/sub are related to each other. The
relationship diagram can be represented by a tree. There is more decoupling between
publishers and subscribers in subject-based pub/sub than in channel based pub/sub.
Example :- Apache TIBCO [15].

9

2 Background

Figure 2.3: Topic-Based pub/sub - On top left is an example of channel-based topics-space,
on top right is an example of subject-based topics tree and On the bottom is an
example of type-based topics-graph

• Type-based - Type-based pub/sub is based on the idea of inheritance of an object
oriented approach. Each type can be inherited and/or inherit from one or more types. It
is more flexible and more decoupled than both channel and subject based architectures.

The advertisements of a publisher in topic-based pub/sub will be of the format : {top-
ics:[topic1,topic2...]}. While subscriptions will be of the format : {topics:[topic2,...]} and
events of the format {data:{}, topic:topic1}.[13].

Content-Based Pub/Sub

Content-based pub/sub performs routing by using the actual content of the events. This
enables the subscribers to be more granular about their subscriptions and advertisements.
This allows subscribers and publishers to be completely decoupled. However, the actual
granularity of the subscriptions depends on the expressiveness and flexibility allowed for by
the intermediate filters at the brokers. The filters can be a simple equality checking condition
or can be as complex as a SQL statement. As the expressiveness of the filters increases so
does the corresponding complexity. In general, more complex a filter higher is the latency
for handling each packet. This is especially true for distributed brokers as the actual set of
subscribers for each event is dynamic depending on the content of the packets. As a result, it
becomes difficult to achieve as high a performance in content-based pub/sub as compared to
topic-based architectures. 2.4

10

2.4 Principles of Publish/Subscribe Paradigm

Figure 2.4: An example of a content-based pub/sub system

One method of filtering in content based pub/sub is to calculate a content address from
the entire content. This is similar to labeling an event where the label is calculated from
the content of the event. A concrete methodology to do this is spatial indexing proposed by
Tariq et al. in [16]. In this methodology, the assumption is that each event belongs to an
n-dimensional event space. The entire event space is represented by *. When this event space
is divided into two parts along one of the dimensions each of the resulting partition will be 0
and 1 respectively. On further division of, say partition 0, into two sub-partitions they will be
prefixed with label of their parent partition and suffixed with an additional 0 and 1 at the end
respectively. The partitioning can then proceed along any of the n-dimensions. The binary
address calculated with this method is called DZ from here on. DZ of these partitions can be
used to represent an event space used in advertisements and subscriptions. The granularity
of these subscriptions depends on the maximum number of bits per DZ that can be used in
the particular pub/sub architecture. A DZ can be calculated for each of the published events,
using which each an event can be routed. One thing of note about forming the DZ address
is that there are several ways to partition the event space even along just one dimension as
depicted in 2.5. The specific method of partitioning is chosen based on the distribution of
events and subscriptions in event space to achieve the necessary performance parameters2.4.4
of the pub/sub system.[17] 2.4

2.4.4 Performance parameters of pub/sub

Performance of a pub/sub can be measured with the following parameter [16]

11

2 Background

Figure 2.5: An example of partitioning event space in two different ways.

Bandwidth efficiency

Any pub/sub system has some unnecessary traffic in its network links. This can be due to
multiple reasons, some of which are listed below.

• Events can be passed around in the physical network where it may traverse the same
link multiple times because the brokers are an overlay network and have knowledge of
the underlying physical network. Hence two logically neighboring brokers can be in
different parts of a wide area network causing events to be pinged back and forth.

• Duplicate events may be delivered to subscribers multiple times.

• Events which are delivered to a subscriber may be contained in the subscription of a
subscriber but is not actually needed by the subscriber. This happens if the subscriptions
are not expressive enough. These events are called false positives.

Due to the above reasons, it becomes necessary to measure bandwidth efficiency. It is the
ratio of useful bandwidth which is characterized by the number of true positive (opposite of
false positives) to the totally utilized bandwidth which is characterized by the total number
of events. In general, network false positives is good indicator of bandwidth inefficiency and
subscriber false positives a good indicator of the expressiveness of subscriptions.[16]

Linerate performance

This is a measure of how fast the events are transmitted from publisher to subscriber. An
important observation about the complexity of filtering method is that it affects scalability
and line-rate performance of a pub/sub architecture. In general, more complex the filtering
process less scalable the pub/sub architecture. Hence, the complexity of filtering process is
directly proportional to the expressiveness of the filters and inversely proportional to line-rate
performance. This result in a scenario where a compromise is necessary between expressiveness
and scalability.[16]

12

2.4 Principles of Publish/Subscribe Paradigm

2.4.5 Related Pub/Sub architectures

SIENA

Scalable Internet Event Notification Architecture(SIENA)[1] is a wide area content-based
pub/sub. The Notification Service of SIENA is made up of a distributed set of brokers. An
event in SIENA is a set of attribute-value pairs. An attribute has a type and value. To
receive events, a subscriber has to send a subscription message. A subscription message is a
conjunction of predicates. A predicate is a condition on an attribute which is compared to a
value in comparison conditions. Similarly, an advertisement is also a conjunction of predicates
and it is a message used by publishers to let the brokers know that a publisher publishes a
certain group of events which satisfies the condition sent as part of the advertisement.

A version of SIENA works without advertisements, in this case, when a subscription is
received by a broker it is flooded to all the brokers. In the other version, with advertisements,
SIENA floods advertisement to all brokers and the advertisement information is used to
send the new subscriptions only to a subset of the brokers. This method leads to a more
cleaner content filtering approach because information on publishers is also available. Once
a subscription/advertisement is received by a local broker, it forwards the subscription or
advertisement if and only if it is not already covered by a previous subscription/advertisement.
A sub A content filter is added to a broker if it receives a subscription/advertisement not
covered before. A subscription/advertisement covers another subscription/advertisement if
the condition of the former is completely covered by the condition of the latter. For example,
a>10 is completely covered by a>9. This is represented as a>10 � a>9. A content filter is
a conjunction of predicates. A publisher sends an event to its local broker. The local broker
checks if the event is covered by a content filter. If so, then the event is passed along to the
next broker or subscriber. If not, it is dropped.

SIENA provides an example pattern of components and techniques to create a scalable
content-based pub/sub. Its obvious disadvantage is that the content filtering takes place on
the application layer and it supports only small set predefined types and predicates.[18]

LIPSIN

LIPSIN[19] is a topic-based pub/sub which perform in-network filtering. The major chal-
lenge of performing in-network filtering is that the applications running on the application
layer are unaware of the network topology in traditional networks. To make this a reality, it
divides the notification services into two layers controller plane and data plane. The func-
tion of the control plane includes topology system which obtains a distributed knowledge of
the network topology at the routers and another module called the rendezvous system which
contains a cache of topics of subscriptions, and advertisements.

13

2 Background

When the topology system collects the information of links, each link is associated with two
Ids - one for the forward direction and another for the reverse direction. These link ids is a
unique binary string for each link. Once all the links are associated with the Link Id, LIPSIN
gets ready to handle subscriptions and advertisements. When there is a new publisher with
a topic to publish events in, the rendezvous system checks if there are active subscribers for
that topic. If there are active subscribers, a multicast path connecting publisher to all active
subscriber is computed. The resulting tree path is represented by a concatenation of all the
link Ids in the path. The concatenated result is hashed using bloom filters called zFilters [20].
The hashed result is sent to the publisher. The publisher now uses this hashed result as a
label for the events it sends. An event with the bloom filter value as the label received by any
node between the subscribers and publisher ANDs the filter value with all the outgoing link
Ids of that node. If the result of this AND operation is the Link Id then the event is sent out
along that link.

While LIPSIN provides in-network filtering, it suffers from the obvious problem of higher
false positive rate inherent to most topic based systems. Moreover, the network knowledge
obtained by the topology system is only as dynamic as any routing protocol. Hence, the
system cannot react to changes in network traffic. The following section describes a well-
known approach of making the network more flexible.[19]

2.5 Software Defined Networking

In the traditional network, the protocols supported by the network depends on the protocols
defined by the individual components of the network, namely, the switches and routers. The
traditional network has no centralized component and it is a distributed network of devices.
As a result of its distribution, it is not easy to introduce a new protocol in this network
because if a new protocol is to be implemented then all firmware in the devices or the devices
themselves need to be replaced.

Software Defined Networking(SDN) is an approach to bring a degree of flexibility into this
network by adding a higher plane called the control-plane to the so-called data-plane in which
switches, hosts, and links between them exist. The control-plane contains one logical entity
called the controller. The switches are connected to this controller. They send can packets
they receive, statistics about themselves to the controller using the connection. As a result,
the controller obtains knowledge of the switches, topology of the network and various statistics
about the switches. It can use this combined knowledge to deploy new protocols in the form
flows to the switches.[21][22][23]

2.6 The communication protocol format between data-plane and control-plane is defined by
Openflow standards [21]. The various standards defined by open flow includes,

14

2.5 Software Defined Networking

Figure 2.6: SDN Architecture

Figure 2.7: Packet Matching

Figure 2.8: Flow Structure

1. An interface between the controller and the switches which is called the southbound
interface.

2. An interface between the controller and application for running business specific proto-
cols is called the northbound interface.

3. A definition of the data format and messages used in the northbound interface and
southbound interface.

The decoupling provided by the Openflow standards enables the use of controllers from dif-
ferent vendors and environments. One thing to note is that the exact implementation details
of the various messages and stats are vendor specific. Hence, for a switch to be part of SDN
it should be implementing one of the Openflow standard versions(OF 1.0,1.2 or 1,3 etc).

15

2 Background

One can view what SDN does as network visualization where we can create logically separate
networks which lie in the same physical network. The networks so created are not an overlay
on the existing network from which the physical network was abstracted out but a logical
separation of the same network layer. The topologies of the logical networks can be altered
from the controller in real time.

2.5.1 Flow Structure

The new protocols that are pushed by the controller on to the switches are in the form
flows. These flows reside in the flow table in a memory called the TCAM memory or Ternary
Content Addressable Memory. These flows constitute the rules for handling an incoming
packet[21]. Parts of a flow are shown in 2.8.

• Match Field It is used for matching the data in this field to incoming packets. It can
have ingress & egress ports, source & destination IP addresses, ports, VLAN Ids, etc.,
as the matching criterion.

• Priority This field defines the order in which the incoming packets are matched to flows.
Greater priority flows are matched to incoming packets before lesser priority flows.

• Counters Counters are incremented each time a specific event occurs. An event can be
the matching of a packet to a flow, dropping of a packet, etc.. These meters are useful
to obtain flow specific stats which can be used for further processing at the controller.

• Instructions Specifies the set of actions to be performed when a packet is matched to
a flow.

• Timeouts Time to live for flows either in terms of maximum time to live or idle timeout.

• Cookies Opaque headers for use of the controller

2.6 Content-Based pub/sub with SDN

Distributed pub/sub solutions such as [24], [25] are implemented at the application layer.
The middlewares implemented at the application layer are unable to provide line rate perfor-
mance because

• they are unaware of the underlying physical network. This means that two distributed
brokers of a pub/sub middleware could be on different ends of the globe and packet may
need to be bounced around a lot. The reason for this is that the Internet was meant to
transmit a packet over link based only on the end hosts and the network, paths were
meant to be transparent. Or in other words, the abstraction of the network was by
design rather than a flaw in the traditional internet. But this in the case of network
unaware pub/sub results in higher network traffic

16

2.7 Consistency in SDN

Figure 2.9: The figure on the left provides the network topology graph. The figure in the
middle provides rules with existing State A. The figure on the right depicts the
rules for the new State B

• they operate at the application layer, which means a packet has to be handled by the
sessions, presentation layers before reaching application layer which leads to processing
related latency.

Several topic-based pub/sub solutions which depend on network knowledge for routing
have already been introduced. For example, LIPSIN [19] is a topic-based pub/sub which
uses network topology knowledge & bloom filters to route events. The problem with most of
these solutions is a lower selectivity for subscribers 2.4.3 which is inherent to all topic-based
pub/subs. A network aware content-based pub/sub would rectify this problem and with the
introduction of SDN it became possible to create such solutions. Such pub/sub solutions have
an SDN application on the control plane playing the role of the notification service and the
network switches themselves playing the role of brokers. Hosts connected to switches can
send advertisements and subscriptions to the controller which can add the necessary flows
between the end hosts. Now the events are filtered and routed at the network layer and the
link between the hosts are created by a network aware entity(the controller). One such a
solution is PLEROMA [5] it uses spatial indexing described in 2.4.3 for generating content
address called DZs. PLEROMA is discussed in detail in future chapters.

2.7 Consistency in SDN

Every network needs to ensure some quality of service(QoS) factors at all times. The various
quality factors or network invariants in the network may include the following parameters

17

2 Background

Figure 2.10: The figures depict intermediate states when transitioning from State A to State
B described in 2.9. The figure on the left shows a blackhole which results when
The outgoing rule in S3 is deleted. The figure on the right shows loop which is
caused because the new state rules are added to S3 and S4.

• Loop Freedom - There is should be no transient loops in the network path when
moving from one consistent state to another. An example of a transient network loop
is depicted in 2.7.1

• Packet Drops Freedom & Blackholes - Packets are sent out through a link to a
switch which has no information as to how to handle a packet. An example of a blackhole
is depicted in 2.7.1

• Memory Limit - The TCAM memory of a switch can hold only a limited number of
flow rules. Hence some SDN controllers may add a limitation on the switch flow count.

• Packet Coherence - It refers to a requirement which states that a packet should see
only the rules of only one of the consistent states and never a mix of two.

• Others - Additional factors can be added or existing factors can be relaxed depending
upon the requirement of the applications. For example, pub/sub can provide additional
factors such as durability and non duplication of events.

SDN controller sometimes needs to change flow rules(from one state to another) in switches
for reasons such as high traffic in some links. The network needs to ensure that the necessary
network invariants are preserved at all times even when changing from old rules(old state)
to new rules(new state). Even if the old and new states ensure necessary Quality, it does
not follow that the intermediate states also will provide the necessary Quality. Example how
network invariants are violated are is shown in 2.7.1.

18

2.7 Consistency in SDN

Figure 2.11: The figure depicts adding intermediate controller bridge steps

Sometimes specific strategies are needed for updating from one state to another to ensure
QoS. Any update strategy which does not violate network invariants is called a consistent
update strategy example [26], [8]. The complexity of preserving each of the network invariants
is dependent on the particular strategy used. In general, these update strategies fall under
two categories - Stateful and Stateless strategies. The following section discuss the various
strategies in detail.

2.7.1 Controller bridge

This is a naive solution for providing a consistent update which uses the controller as the
intermediary for routing when moving from one consistent state to another. When the new
rules for routing are available - randomly removing the old rules and adding new ones could
lead to the network invariants being violated . First, in this strategy, the controller adds
intermediate rules to all ingress port connecting hosts to switches 2.11. This intermediate
rule sends all the incoming packet to the controller and the controller then sends the packets
to the destination switch port using a command called the packetout command. This process
is depicted in 2.12. Thus all the intermediate switches between the source and destination
switches are replaced by the controller instead.

Next, all the old rules can be expired once the controller has taken over routing and old
flows can be made to expire with an idle timeout to make sure that all packets that are routed
with old rules have left the network 2.12. Once the old rules have expired new rules are added
and then intermediate rules are removed 2.13.

This strategy provides packet drop freedom, loop freedom, and packet coherence. The
obvious disadvantage of the approach is that the controller becomes overloaded and line rate
performance cannot be achieved.

19

2 Background

Figure 2.12: The figure depicts removing old state flow rules

Figure 2.13: The figure depicts adding new state and removing intermediate state flow rules

2.7.2 Stateful Strategies

These strategies inject a state into each of the packets which enter the network at the border
switches and the routing rule applied are based on the state of the packet.

Versioning

The strategy described in [8] ensures that all the network invariants are preserved. In this
method, all the rules associated to ingress ports connecting host(called ingress gateway ports)
and switches inject a VLAN Id to the packets when they are forwarded through these flow
rules. All the other flow rules in the network match the packets with the VLAN Id in addition
to other match field criteria. Next, new flow rules of the new state are edited have a different
VLAN Id in the match field and are added to the switches. Note that at this point no packet
would match the flows with new VLAN Id as the packets are tagged with the old VLAN Id.
Next, the rules associated with ingress gateway ports are modified to inject the new VLAN
Id. This step is atomics to individual rules. Hence the packets which enter the networks with
new VLAN Id are routed only with new rules and packets with old VLAN Id with old rules.

This strategy works for both unicast, multicast paths and provides packet coherence prop-
erty during the transition. However, it may require more than twice the number of flows per

20

2.7 Consistency in SDN

Figure 2.14: The figure on the left depicts
the initial State A and one on
the right final State B.

Figure 2.15: Dependency Tree is calcu-
lated as described in 2.7.3

switch hence its can be overload on the limited TCAM space. A solution for TCAM space
constraints have been addressed in suggested in [27] using iterative update strategy. However,
this comes with the disadvantage of increased time required for updating. This strategy also
does not provide any lesser level of consistency than packet coherence.

2.7.3 Stateless Strategies

The stateless strategies update the network flow rules from the old state to the new state
by deploying the flows in a specific order so that the network invariants remain unaffected.
Unlike with the Versioning strategy, the packets are not tainted with a state for the purpose
of updates in this strategy.

Ordered Updates

The approach described in [26] has provided a stateless update strategy which can ensure
non-violation of different levels and combinations of network invariants. 2.14 represents the
first consistent state A and 2.14 represents the new consistent state B. To move from state
A to state B, first a destination rooted in-tree as depicted in 2.15 is constructed. Then the
updates are executed from destination switch to the source switches updating in parallel along
the branched paths. This ensures loop freedom because a switch is updated with new rules
only after all the downstream switches are updated.

[26] describes a minimalistic solution using multiple dependency trees(called dependency
forest) where multiple nodes can be updated in parallel. The algorithm for loop freedom is
given below

• The old state is taken up as the initial state for this algorithm. Then old rules are
removed, new rules are added to each switch and a test is run to check if loop results.

21

2 Background

Figure 2.16: The figure depicts adding new state and removing intermediate state flow rules

If not, then the switches are taken as a root of dependency tree and moved to a state
called limbo. If yes, then the switch is added to a state called old.

• Next, all children of this dependency tree nodes discovered in the previous step are taken
up at the next iteration and the again new rules are added to these switches and it is
checked if adding the new rule results in a loop. If yes, then the node is labeled as limbo
and added as a child to the corresponding parent. If not, it is labeled as old.

• The above step is run until all the switches with new rules are in limbo. This generates
a forest of dependency trees.

• Once the dependency forest has been generated all the new rules can be added and old
rules removed in parallel in individual dependency trees.

2.16 also provides different levels of complexity associated with providing different levels of
consistency. Notice that 2.16 mentions that this algorithm cannot provide a solution for a
maintaining packet coherence.

Dionysus

Dionysus is a consistent update strategy with a goal to achieve high consistent update
speeds. The ordering of updates into the following phases - dependency graph based on
the current state of the network, then the update scheduler schedule the flow updates and
recompute the dependency graph based on the current state of the network. The dependency
graph of Dionysus is an extension of the dependency graph provided by [26] as described in
the previous section. But instead of ordering update to achieve consistency it uses versioning
approach for providing packet-coherence, while the dependency graph is formed based on
network traffic, memory utilization during transitions. The scheduling of the updates is based
on the dependency graph generated. [28]

22

2.7 Consistency in SDN

All the stateless strategies outlined above ensures the consistent update of unicast paths
but not multicast paths or for IP-prefix based routing. The aim of this thesis is to provide
a consistent update solution for such multicast paths which use IP-prefix based routing in a
content-based pub/sub built on SDN. The following chapter provides a deeper description of
this content-based pub/sub, various categories of updates in relation to this application.

23

3 In-Network Content Filtering And Multicast
Path Consistency

The goal of this chapter is to provide a brief description of content-matching, routing in
PLEROMA and different case of network updates which arise in its operations and optimization[5].
This chapter provides an overview of the environment and immediate background for the prob-
lem statement discussed in the next chapter.

3.1 In-Network Content Filtering

Content filtering at switches requires two factors- namely

• A storage unit which can persist this filtering information. The filtering logic is described
in the form of flows in tables called flow tables as mentioned in 2.5. The storage unit
which contains the flow tables is called the TCAM or Ternary Content Addressable
Memory. All SDN-compatible switches have TCAM as mentioned in 2.5. An important
property of any Ternary memory unit is that it can contain three states 0, 1, and X.
The ’X’ state of TCAM represents a wild card entry ie., it can refer to any of the states.

• A strategy to express content filters in the form of flows. One such strategy to achieve
this goal is described in 2.4.3. This strategy provides a method to express multidimen-
sional event spaces as a binary string called DZs. The DZ of an event-space/event can
be appended to an of IP address with a subnet mask. When a DZ string is appended
to an IP address, it is prefixed with the IP subnet corresponding to an IP multicast ad-
dress. An IPv4 multicast address can be anything between 224.0.0.0 to 239.255.255.255.
Thus, when a DZ is appended to an IPv4 address, atmost the first 8 bits correspond
to the multicast subnet and is common for any resulting IP address formed after DZ is
appended, while the remaining 24 bit can be reserved for the DZ string. For example,
the IP multicast subnet can be 224.0.0.0/8. When the event space {00} is appended to
this IP multicast address the resulting IP address is 224.0.0.0/9. This process is depicted
in 3.1

The IP address formed by appending DZ to IP multicast subnet is added as the match
field(called the destination IP field) of a flow. This flow can then be added to the flow table
of a switch. An incoming event is matched to the flows of the flow table based on the logic
provided in 2.7 and each event can be output through multiple ports. However, for the above
content filtering to work, all the events should have a destination IP address which is calculated

25

3 In-Network Content Filtering And Multicast Path Consistency

Figure 3.1: The process for appending DZ to an IP address with subnetmask

the same way the destination IP match field of a flow is calculated. Line rate performance
of such in-network filtering is very high because the content filters are in the switches at the
network layer and because the TCAM memory is specialized to find a matching flow for events
at packet rate.[5]

PLEROMA described in 3.2 uses the above approach for specifying its content filters in the
data plane. An important point to mention here is that the event space can be partitioned
in more than one way 2.4.3 and PLEROMA uses this flexibility to optimize its performance
parameters such as bandwidth efficiency.

3.2 PLEROMA

PLEROMA[5][6] is a content-based pub/sub which provides in-network content filtering.
The model of PLEROMA is based on the model described in [4]. It consists of a controller
playing the part of the notification service and switches playing the part of distributed brokers
whose function is to route and filter events. In PLEROMA, the DZ representation of event
space is used by advertisers in their advertisements to indicate the event-subspace to which
events they will publish belongs and subscribers also use the DZ in their subscriptions to
indicate their regions of interest in the event space. These subscriptions and advertisements are
sent to pre-defined IP address which corresponds to the controller’s location in this network.
On receiving the advertisements and subscriptions, the controller uses its knowledge of the
network topology to compute the content filters(flow rules) for the switches so that there is
a path between each of the advertisers and interested subscribers so the events can reach all
interested subscribers. Once advertisements are sent, advertisers can publish events whose
destination IP address is calculated from DZ of the event content. The events are routed to
interested subscribers using the flow rules deployed by the controller in switch Flow tables.
The following section describes the functionality of PLEROMA in more detail.

26

3.2 PLEROMA

3.2.1 Covering relationship of DZ

The most important property of DZ which is necessary for IP prefix based routing is - a
shorter DZ ’A’ covers a longer DZ ’B’ if and only if ’A’ is the prefix of ’B’. For example,
DZ {0} covers DZ{01} which in turn covers {011}. This covering relationship is maintained
even when a DZ is converted to an IP address. For example, consider a DZ{0} ’A1’ with a
corresponding IP address 224.0.0.0/9 and DZ01 ’A2’ with an IP address 224.64.0.0/10. Now
a DZ ’A3’ 010000000000000100000001 with an IP 224.64.1.1 is covered by both DZs A1, and
A2 and in prefix based routing, an event with event address as A3 has its destination IP set to
A3’s IP will be matched to both IP addresses of A1 and A2. Hence this covering relationship
is extremely useful for routing.

Another important property of DZ is granularity. A shorter DZ covers more event space than
longer DZ. Hence the granularity of a DZ increases with its length. However, the expressive
of DZs cannot be utilized to their maximum potential as the number of bits of a DZ that can
be appended to an IP address is limited.[5]

3.2.2 Spanning Trees In PLEROMA

In PLEROMA, the network controller divides all available event space based on DZ into
Partitions and assigns a spanning tree of the network graph to each of the partitions. Since
partitions are formed based on DZ, each of the partitions is associated with a DZ, say 0
or 01, etc. The entire event space should be covered by the union of the DZs of all the
partitions, and none of the DZs assigned to partitions can overlap. For example, 0, and 01
cannot be DZs assigned to different partitions of PLEROMA. Now, when an advertisement
or subscription is received by the controller, one of the following cases is true - either DZ
of the advertisement/subscription is completely covered by the DZ of a partition or the DZ
of the advertisement/subscription covers DZs of several partitions. In case of the former,
advertisement/subscription is handled by the partition which covers its DZ. In case of the
latter, the DZ of advertisement/subscription is split up so that it is covered by the individual
partitions independently and the resulting set of advertisements/subscriptions are handled as
separate advertisements/subscriptions by the individual partitions.

Having logically separate partitions has several advantages. For instance, the paths con-
necting publishers to interested subscribers are along the spanning tree of the partition to
which the subscribers and publishers belong. Hence, the flows of different partitions can
never match to the same event even if all the partitions use the same spanning tree in the
network. Another advantage is that the flows would never result in loops when using a tree
topology. A disadvantage of this approach is that when there is high network traffic along
some links in network some partitions may need to be moved to a different spanning tree.
Obviously, the network invariants must not be affected when such move takes place. We
provide a consistency algorithm for this case as part of the thesis in subsequent chapters.[5]

27

3 In-Network Content Filtering And Multicast Path Consistency

The following sections describe how these partitions handle advertisements and subscrip-
tions.

3.2.3 Handling Advertisements, Subscriptions and Events

Any publisher must declare its intent to publish events by sending an advertisement mes-
sage. The advertisement messages are addressed to a pre-defined controller IP address and it
contains the DZ of the event sub-space to the events the publisher intends publish will belong.
For understanding how the controller processes advertisements let us consider a Network of
4 switches with a topology graph as shown in fig 3.2. As shown in the figure, this topology
is divided into two partitions P1, P2 having DZs {0},{1} each with a spanning tree. Now,
when the controller receives advertisement messages A1{00}, and A2{01} from hosts H1, H2
respectively, as shown in 3.2, it starts searching for the partition that can handle the adver-
tisements with the strategy described in 3.2.2. In our example, both A1 and A2 are handed
over to P1. Next, it checks if there are any matching subscriptions. For our example, there
are no subscriptions yet, so it stores the advertisements in respective partitions. Now the
publisher can publish data since it has sent its advertisement.[6]

To receive interested events a subscriber has to send a special message called subscription to
the same pre-defined IP like the publishers. On receiving a subscription, the controller again
assigns it to one of the partitions based on the DZ of the subscription as described in 3.2.2. 3.2
depicts hosts H3 , and H4 which sends subscriptions S1{000}, and S2{0} respectively. In both
cases, the controller lets P1 handle the subscriptions. Next, the controller finds advertisers
which match the subscriber using the DZ of advertisement and subscription messages. For
this purpose, it needs to find overlapping DZs. A DZ, say DZ1, overlaps with another DZ,
say DZ2, if DZ1 equals DZ2 or DZ1 covers DZ2 or DZ2 covers DZ1. So, In our example, S1 is
matched to A1 and S2 to both A1 and A2. In case there are overlaps found, the next step is
the calculation of flows for connecting publishers to subscribers. This step is used to handle
only one subscription at a time. For each subscription with overlapping advertisements, the
controller fetches the list of switches in the path from publishers to the subscriber. For each
switch in the calculated path, the controller checks if there is a flow with the same ingress
port as in the path and a DZ(destination IP address) which overlaps with the DZ of the
subscription. The overlap can cause one of the following cases

• The DZ of a flow completely covers or is equal to the DZ of the subscription, has the
same input port and output ports as in the current path. In this case, there are no flows
to be added to the switch.

• The DZ of a flow completely covers or is equal to the DZ of the subscription and has
the same input port but not the same set of output ports as in the current path. In
this case, a new flow with a destination match criteria as the IP address formed from
subscription DZ, ingress port as the source port match criterion, a priority higher than
the matched flow’s priority and output ports as the union of the output port of the
matched flow, and the path is created. The new flow is then added to the switch.

28

3.2 PLEROMA

Figure 3.2: The figure Depicts PLEROMA data plane with 2 publishers, 2 subscribers, 4
switches. Assume that, it is possible to only append 2 bits to IP address in the
data plane.

29

3 In-Network Content Filtering And Multicast Path Consistency

• The DZ of a flow only partially covers the DZ of the subscription and has the same
ingress port as in the path. Then, the DZ of the flow is subtracted from DZ of the
subscription. This results in a list of DZs. Each of these DZs is sent through the same
algorithm with the ingress port. For example if DZ of the flow is {01} and DZ of
subscription is {0} then {0} is subtracted from {01} which results in [{00}]

• The DZ of the subscription completely covers the DZs one or more flows, it has the
same ingress port for as the flows, and all the output ports of all the matched flows
are contained in the path. In this case, all the old flows are removed from the switch.
Then, a new flow is created with subscription’s DZ(in the form of IP address) as the
destination IP match criterion, ingress port as source port match criterion, and output
ports as the outgoing port of the paths. The new flow is then added to the switch.

• The DZ of the subscription completely covers the DZs of one or more flows, it has
the same ingress port for as the flows but not all the output ports of all the matched
flows are contained in the outgoing ports of the current path. In this case, a new flow
is created with destination IP address formed from subscription DZ as the source IP
match criterion, ingress port as the source port match criterion, a priority lower than all
the matched flows, and output ports as the outgoing ports in the path. The new flow is
then added to the switch and all the matched flows are edited to also output along the
outgoing ports of the current path.

• There is no overlap with any of the flows found because there are no flows with same
ingress port or there is no match to DZ of any of the flows. In this case, a new flow
is created with a subscription DZ as the source IP match criterion, ingress port as the
source port match criterion, a priority lower than all the matched flows, and output
ports as the outgoing ports in the path.

The above cases are checked for each of the switches in the calculated path. In case there
are no overlaps then the subscription is stored in the partition for future advertisements.
3.2 depicts the paths calculated for A1,A2,S1,S2 using the above algorithm. One thing of
note here is that, although the above algorithm is matching subscription to advertisements
the opposite is also possible in case there are already subscriptions in the system. After
subscriptions have been processed by the controller and the corresponding flows are pushed
to the switches, subscribers will start receiving events. 3.2 depicts an example of an event
being transmitted through the network using prefix based routing.

[5] proves that the rate of packet handling is extremely high. But PLEROMA suffers from
bandwidth inefficiency as described in [29] [7]. This bandwidth inefficiency is observed as false
positives in the network and at the subscribers as described in 2.4.4. The following section
provides a brief overview of a strategy to improve the bandwidth efficiency as described in
[29].

30

3.3 Bandwidth Efficient Indexing In PLEROMA

3.3 Bandwidth Efficient Indexing In PLEROMA

The objective of this section is to provide a brief overview of the solution proposed in [7], [29]
to improve bandwidth efficiency of PLEROMA and describe the scenario why this solution is
a case which requires a consistent update strategy in PLEROMA.

3.3.1 Limitation Of Content Filter Expressiveness In PLEROMA

The expressiveness of a content filter in PLEROMA depends on the length of the DZ that
can be appended to an IP address which is used as the filter at the switch. This limitation of
DZ length leads to a limited expressiveness of content filters. The actual granularity of the
content filter then depends on the number of dimensions and the range of each dimension in
the event space. Greater the number or range of dimensions lesser is the effective granularity of
content filters. For example, consider a 2-dimensional event space as shown in 3.3. The figure
on the left(called Case A) has range 0-100 for both dimensions and figure on the right(called
Case B) has range 0-200 for both dimensions. The partitioning method used for both the
event spaces is to allocate the same number of bits, ie 1, for each dimension and within each
dimension to partition the range equally. Hence the event space of the resulting partitions is
shown in 3.3. The figures 3.3 also depicts a subscription S (dim1:[10-20], dim2:[10-20]) which
is interested in the same event-subspace in both Case A and Case B. Of note here is the fact
that the content filter DZ which is used at the switches in both the cases is {00} because the
length of content filters is limited 2 bits. Hence, a subscriber subscribing to S will receive
all events from bigger event space in Case B than in Case A. This in turn results in higher
false positive rate for Case B that Case A. From the above stated example, it is clear that
granularity of the content filters and bandwidth efficiency depends on the size of event-space
because of the fixed limitation on DZ length.

As another example, consider if in Case A the length of DZ that can be appended to an
IP address is reduced from 2 bits to 1 bit. Then for the same subscription S the events space
covered by the content filter will be the event space represented by {0}. This results in a
higher false positive rate because a subscriber subscribing to S will receive all events from
bigger event space. This example makes it clear that there is a direct correlation between
length of DZ and bandwidth efficiency.

In PLEROMA, the bounds of all the dimensions of the event space in PLEROMA is a
constant and the length DZ that can be appended to IP address is also constant. With the
above preconditions in place, [7] suggests the following possibilities to improve bandwidth
efficiency.

• Minimizing the size of the event space available for partitioning through some method

• Using the flexibility of partitioning event space in more than one way as described in
2.4.3.

31

3 In-Network Content Filtering And Multicast Path Consistency

Figure 3.3: The figure on the left depicts an event space with both dimensions ranging from
0-100. The figure on the right depicts an event space with both dimensions ranging
from 0-200

[29], [7] suggests strategies to improve bandwidth efficiency based on the above stated possibil-
ities. However, the solutions proposed in [7] require further information about subscriptions,
and event distribution in event space. The following section discusses those solutions in de-
tail.

3.3.2 Workload-Based Indexing Of Event Space

Workload based indexing as described in [7] proposes to improve bandwidth efficiency by
reducing the event space available for partitioning. This strategy proposes to partition only
the part of event space covered by subscriptions. This consists of two steps - clustering the
subscriptions in events space and partitioning within the clusters. The algorithm is as follows.

• Let event space be represented by ES.

• ES is populated with subscriptions.

• The subscriptions are grouped using similarity based clustering as described in [30].
Such clustering algorithms are used for grouping individual data points for different
purposes. The actual clustering algorithm used for this purpose is k-mean clustering.
In K-means clustering, K is a user defined value which corresponds to the number of
clusters the data points are grouped into. First, K number of means are initialized as
centroids. Then, the data points for the cluster are calculated based euclidean distance
of the data points from the centroid. The actual centroid for each cluster is re-calculated.

32

3.3 Bandwidth Efficient Indexing In PLEROMA

Figure 3.4: K-Means Clustering Algorithm

The calculated centroid of each cluster is then is made the new set of k-means. The
above steps of grouping data points into clusters and recalculating centroids are repeated
until k-means between two successive iterations remains constant. 3.4 depicts k-means
algorithm.

• Once the subscriptions are clustered, they are enclosed into one or more hyperrectan-
gles(rectangles for higher order of dimensions). The set of hyperrectangles enclose all
the subscriptions and are called minimum bounding rectangles(MBRs) in [7]

• Next, each MBR is associated with a unique binary id and the partitioning now takes
place only within the MBRs and DZs of each MBR is prepended with the unique binary
id of the MBR to make the DZs of different MBRs unique. The MBRs are depicted in
3.5.

Hence the overall size of events space is reduced to a much smaller region which covers all
the subscriptions. Thus the granularity of content filters is increased because the size of event
space considered for partitioning is effectively reduced.[7]

3.3.3 Dimension Selection Algorithms For Events Space Partitioning

Dimension selection algorithms proposed in [7] are based on the observation that not all
dimensions are equally important when it comes to content filtering ie., it not necessary
to allocate the same number bits to each dimension when partitioning or rather, greater

33

3 In-Network Content Filtering And Multicast Path Consistency

granularity can be achieved if more bits are assigned to some dimensions than others and
some dimensions need not be allocated with any bits at all.

Event Variance-Based Selection

This algorithm decides the dimensions which are necessary to have better granularity for
content filtering than just using all the dimensions based on event distribution in the event
space. The algorithm is as follows

• Let event space be represented by ES.

• Let D be the set of all Dimensions in ES. DS be the subset of D.

• Populate ES with all the events and let E represent the set of all events.

• The sum of the variance of the value of each event along each of the dimensions is
calculated with the formula Σ(xi−xm)2/|E| where xi is the value of the event along ith
dimension. The calculated value is called the selectivity factor of that dimension. This
selectivity factor is higher for a dimension if the events are distributed more along the
entire length of that dimension.

• Only those dimensions with higher selectivity factor are added to DS.

• Then, Event space partitioning takes place only with DS instead of D which means
that more bits are allocated now for the dimensions in DS than they were before. This
increases the granularity of content filter because dimensions with higher selectivity
factor have more events distributed along its length. Hence, increasing the number of
partitions along the length of a dimension by increasing the number of bits allocated to
it also increases the granularity of that dimension as depicted in 3.6.

Figure 3.5: Workload-Based Indexing and calculation of MBR

34

3.3 Bandwidth Efficient Indexing In PLEROMA

Figure 3.6: A depiction of dimension selection with Event Variance-based Selection algorithm

Both the figures in 3.6 depicts a 2-Dimensional event space with event distribution in which
the maximum number of bits that can be appended to an IP address is 2 bits. 3.6 also depicts
a subscription sub1 in both the figures. The figure on the left depicts a partitioning strategy in
which an equal number of bits are allocated to both dimensions and the one on the right depicts
event space partitioned using the Event Variance-Based Selection algorithm. In the latter
case, the 2 available bits are allocated to the horizontal dimension which increases selectivity
because sub1 now match an event subspace which causes lesser number false positives as the
number of unnecessary events is obviously lesser.

Subscription Matching and Event Count-Based Selection

An interesting observation noted in [7] is that, if a large number of subscriptions overlap
along one of the dimensions then an event matching a subscription along that dimension
has a higher probability of matching several more subscriptions. If this happens to be the
case, then that dimension has lesser granularity for content filtering and hence its ability to
reduce false positive is low. This concept is depicted in 3.7. The following algorithm decides
the dimensions to which bits need to be allocated for calculating DZs(content filter) based
subscription overlap and the total number events which are matched to these subscriptions.
The algorithm is as follows

• Let the event space be represented by ES. Let E be the set of all events and S be the
set of all subscriptions.

• Then, for each event e in E, the subset of S which matches the event along each dimension
d is added as an element to the set Se

d

• Next, the importance of a dimension d is calculated with the formula Σ(Se
d)/(|E| ∗ |S).

This formula gives a value between the interval [0,1] which denotes how important a
dimension is for granularity of content filters. Greater the value greater is its importance.
This value is called the selectivity factor.

• Then, event space partitioning takes place only with a subset of D whose selectivity
factor is high. This means more bits are allocated for the selected dimensions than they
were before.

35

3 In-Network Content Filtering And Multicast Path Consistency

Figure 3.7: A depiction of dimension selection using Subscription matching

Figure 3.8: A depiction of dimension selection using correlation based selection

Correlation-Based Selection

This strategy is based on the fact that often multi-dimensional dataset has several di-
mensions which are related to each other. For example, consider a sensor which collects
temperature and pressure in a room. It can be shown that the dimensions are positively(in
case of sealed room) or negatively (in case of rooms with lots of windows) correlated to each
other. When the dimensions are related to each other in this manner, it becomes redundant
to allocate the same number of bits to all the dimensions. Allocating the redundant bits to a
subset of unrelated dimensions increases the overall granularity of the content filters.[7]

3.8 depicts a 2-Dimensional event space where both the dimensions are positively correlated
and event space is allocated with 2 bits.for appending with IP address. The figure on the left
depicts an event space where all dimensions are partitioned using the same number of bits
and the one on the right with an event space where only one dimension is allocated with both

36

3.3 Bandwidth Efficient Indexing In PLEROMA

bits. It can be seen that the subscription in the latter case has more granularity than the one
in the former case.

3.3.4 Workload-Based Indexing As Implemented In PLEROMA

[29] implements the solutions suggested in [7] for improving the bandwidth efficiency in
PLEROMA. The implemented solution samples the current subscriptions and events over
a time interval in the PLEROMA controller. Whenever the controller detects a change in
the distribution of the sent events or subscriptions in the event space, it tries to optimize the
allocation of bits to the dimensions(called Dimension Optimization or DO from here on) using
a combination of above stated algorithms. Once the dimensions have been optimized the DZs
of advertisements and subscriptions are recalculated with the new partitioning technique. An
example of how the dimension optimization affects the flows in a switch is depicted in 3.9.

As shown in 3.9, the resulting DZs are invariably different than they were before, the
flows whose destination IP addresses are calculated from old DZs are also no longer valid
and new flows are calculated with new DZs. Next, they are deployed to switches by the
controller. However, this transition as implemented in [29] is not consistent with the Quality
of Service promised by PLEROMA which requires that the PLEROMA should not introduce
loops, blackholes, and event duplicates in the network layer when deploying the new DZs.
The following chapter discusses the need for consistent update solution for the implemented
Workload Based Indexing.

37

3 In-Network Content Filtering And Multicast Path Consistency

Figure 3.9: An example of dimension selection in the network with one switch, one publisher
and 2 subscribers where PLEROMA has 2 bits available for appending to an IP
address for content filtering.

38

4 Problem Statement

Before we can provide the problem statement for this thesis which deals with consistent
update strategies in PLEROMA. We need to answer the following questions

• What is the QoS promised by PLEROMA or rather, what are the network invariants
that need to be protected from violation?

• Are there scenarios which would require a consistent update in PLEROMA?

• Why not use generic consistent update strategies described in 2.7.2, 2.7.3?.

4.1 QoS Requried in PLEROMA

PLEROMA promises the following QoS in the data-plane.

• Loops freedom - refers to freedom from transient loops in the data plane when transi-
tioning from one consistent state to another. For examples refer to the section 2.7.

• Blackhole Freedom - During network updates some switches do not have information
of how to handle events and drops the events. Under normal circumstance, the events
would have been output along one of the switch’s outgoing links. This scenario is called
black hole freedom. Such scenarios should be avoided

• Duplication freedom - An event should not be duplicated in the network.

4.2 Scenarios which require a Consistent Update

The various scenarios in PLEROMA which require a consistent update strategy in the data
plane are

• when a spanning tree of a partition needs to be moved to a different partition - The
Network Invariants to be preserved by PLEROMA during this update are - no loops,
blackholes, and no event duplication.

• when the flows for new subscriptions/new advertisements are to be added - The Network
Invariants to be preserved by PLEROMA during this update are - loop freedom and
no event duplicates. This case is not discussed in detail since using spacing trees for
individual partitions when calculating paths precludes loops and duplication.

39

4 Problem Statement

• when the DZs are changed as a result of dimension optimization - The Network Invariants
to be preserved by PLEROMA during this update are - no loops, blackholes, and no
event duplication.

4.3 Other criteria to consider for consistent data-palne updates

Before we discuss any consistent update algorithms, we need to understand the nature
of the paths formed by the flows in the data-plane by PLEROMA. PLEROMA, like any
other pub/sub architecture, provides many-many communication pattern and since it does
in-network filtering, the paths from publishers to subscribers are multicast paths. In addi-
tion, these paths use IP-prefix based routing in the data plane. This is another important
criterion to consider when choosing a consistent update strategy for PLEROMA because it
adds additional constraints to some consistent update strategies. [5][31]

4.4 Generic Consistent Update Strategies for PLEROMA

4.4.1 Limitations Of Ordered Update Strategy

Figure 4.1: Current and new multicast paths.

The ordered update strategy discussed in 2.7.3 provides a generic update solution for unicast
paths. However, with this strategy it is impossible to provide the QoS required by PLEROMA
because for some multicast paths, it is impossible to find an ordering of flow updates which
can ensure duplication freedom and packet drop freedom at the same time. This observation
was made in [31]. An example for this claim is provided in 4.1, 4.2, 4.3.

40

4.5 Problem Statement Definition

Figure 4.2: One of the two ordered update
solutions for the depicted mul-
ticast path in 4.1 causes event
duplication

Figure 4.3: One of the two ordered update
solutions for the depicted mul-
ticast path in 4.1 causes events
to be dropped

In 4.1 let the figure on the left represent the old state and let the figure on the right
represent the new state. 4.2, 4.3 and depicts how irrespective of the order in which the old
state is updated to the new state, it results either in the events being duplicated or event being
dropped. It becomes impossible to find a solution which offers both packetdrop-freedom and
duplication if and only if there is a shift of the switch which multicasts events. Such a shift
is called replicator shift. Only a replicator shift would result in the impossibility solution.
As result of the above scenario we cannot use an ordered update solution in PLEROMA for
scenarios such as moving to a new tree.

4.4.2 Versioning Strategy

The versioning strategy discussed in 5.1.1 provides a strong consistency of packet coherence.
Hence, it can be used for all the update scenarios of PLEROMA. But the disadvantage of
using this approach is that the number flows per switch is nearly doubled during transition.
This can prove burdensome when TCAM memory usage needs to be kept to a minimum.
Hence solutions which require lesser TCAM memory usage are required.[27][8]

4.5 Problem Statement Definition

The objective of this thesis is to provide a consistent update strategy for various update
scenarios in PLEROMA such as moving the tree of a partition and change of DZ during

41

4 Problem Statement

dimension optimization. Having taken into consideration the QoS required by PLEROMA
and the generic update strategies already available, we proceed to describe the consistent
update algorithms for different scenarios in PLEROMA in the following chapters. Future
chapter described the advantages and disadvantages associated with each of the strategies.

42

5 Consistent Update Algorithms For
PLEROMA

The consistent update algorithms proposed for the different scenarios are not the same. The
algorithms described in this chapter are optimized for the individual needs of each case. They
fall into two categories - one set of algorithms for the consistent update of dimensions during
dimension optimization and another set of algorithms for moving the trees of a partition.

5.1 Consistent Update Algorithms For Dimension Optimization

Figure 5.1: An example of change of DZs which results from dimension optimization

When the dimension optimization algorithm described in 3.3.4 is executed, it returns a
more optimal partitioning technique for the current distribution of subscriptions and events
in event space. Hence a new set of DZs is available to PLEROMA controller as depicted in
5.1.

43

5 Consistent Update Algorithms For PLEROMA

A change of DZs which results because of dimension selection/optimization can be un-
derstood better using a translation analogy. For example consider a small region in an n-
dimensional event space represented with a DZ which is a binary representation calculated
using the partitioning represented in the figure on the top in 5.1. This DZ(called old DZ) can
be considered to be a content address written in a particular language, say Lang A. Another
DZ(called new DZ) can represent the same region of the same event space when a different
partitioning technique, as shown in the figure on the bottom in 5.1, is used. The new DZ is
an address of the same location described using another language which has same alphabets
as the original language. The alphabets, in this case, is 0 and 1. Since the content filters in
the switches are represented using the IP addresses formed from DZs, the IP address for an
old and new DZ will be different even though logically they may be representing the same
region in the event space. What all this means to the publishers and subscribers is that while
the publishers are publishing the same content they did before but the content address should
be formulated with the new partitioning method, subscribers are interested in the same event
space, and the filters(Flows) in the SDN switches between the publishers and subscribers
will be different after dimension optimization. Hence, when the controller moves from one
partitioning technique to another, at the very minimum the publishers need to be notified of
the change in the partitioning method(called a change of DZs from here onwards) because
they need to calculate the DZ of event-content with the new partitioning method. Hence, any
algorithm which proposes a consistent change of DZs must be able to

• Calculate the flows which comply with new DZs

• Send notification of the change in partitioning technique to publishers.

• Preserve the network invariants such as loop freedom, blackholes, and event duplication
freedom during the transition from the old state with old DZs to the new state with
new DZs.

The following algorithms either describe an existing solution(versioning) or proposes new
ones to fulfill the three above criteria during a change of DZs.

5.1.1 Versioning

This method is based on versioning algorithm described in 2.7.2. The steps in this algo-
rithms are explained below [8]

1. The publishers send events injected with version id in VLAN field of the IP packets which
corresponds to events. The version id corresponds to the old partitioning technique(or
rather old DZ version)

2. All the flows deployed to a switch match all incoming events with VLAN Id in addition
to the destination IP address(content filter) and ingress port. Hence the routing and
filtering of the events are based on the version of the DZ in addition to their content
address.

44

5.1 Consistent Update Algorithms For Dimension Optimization

3. Once the DZ optimization module of PLEROMA described in 3.3.4 performs a dimension
optimization based existing distribution of subscriptions, and events and returns the
optimized partitioning of the event space.

4. Using the optimized partitioning method, new Flows with IP address corresponding to
the new DZs for existing advertisements, and subscriptions are calculated by creating a
new logical partition for the same event space partition in the controller with the same
spanning trees as before and re-advertising/re-subscribing using existing advertisements,
and subscriptions of the original partition with new DZs. The calculated set of flows
with new DZs is not deployed to the switches.

5. A new version Id is designated for the new partitioning technique. All the new flows are
tagged with a VLAN Id match fields using the new version Id as the match criterion.

6. Next, all the flows with the new DZs are pushed to the switches.

7. No event sent by any publisher at this point will match the new flows because of VLAN
field of the new flows have a different value than the ones used by the events published
by the publishers.

8. A change of DZ version notification is sent to all publishers so that they can calculate
the event content address(DZ) with the new partitioning scheme and tag the events with
the new version Id in their VLAN field.

9. Once all the events published with the old VLAN id are out of the network, the old flows
can be removed. This is achieved by using the idle timeout property of the flows which
instructs the switches to delete a flow if the flow has not been matched to an event for
the specified period.

This procedure ensures that there is a seamless transition between the two consistent states.
Unlike in [8] we cannot inject VLAN tag at the borders switches. Instead, the publishers tag
the events with the VLAN Id because otherwise, when DZ version is changed the following
two actions would need to take place atomically

• The publishers would need to change their content address calculation technique to use
the new partitioning methodology.

• The flows at border switches would then need to inject the new VLAN tag to the events
with new DZs. But it is impossible for the border switches to tell whether these events
have the new or the old DZ.

It is impossible for both the actions to occur simultaneously and hence, whichever order
we choose for the change there could always be events sent with old DZs from publishers
which will be routed in new DZ paths or vice versa. Hence there is always a state associating
the flows and publishers in PLEROMA when Dimension Optimization is used and in this
algorithm, we use this to our advantage to tag the event with VLAN Ids at the publishers.

45

5 Consistent Update Algorithms For PLEROMA

The obvious drawback with this approach is that the number flows at each of the switches
during the transition is the sum of number old flows with the old VLAN Id and number new
flows with the new VLAN Id at these switches. Hence it causes a burden on TCAM memory.
The following two approaches does not place a such a huge burden on TCAM memory.

5.2 IP Multicast

The idea behind this approach is to use channel based pub/sub like approach as the interme-
diate state. Here, each partition can be considered to be a channel in channel based pub/sub
approach, and they are assigned an IP multicast address each. IP multicast is described in
RFC 1112 [32]. It is a many-many to communication standard used to send IP packets to
multiple hosts using a single pre-defined destination IP address. According to this standard,
there are groups to which hosts can join and each one of the groups is associated with an IP
address and packets with this IP as the destination address will be routed to all the members
of the group. Senders of the packets need not belong to the group.

A consistent transition from one partitioning technique(old DZs) to another(new DZs) can
be achieved through the use of IP multicast as an intermediate state. As stated previously in
3.2.2, the event space in PLEROMA is divided into several non-overlapping partitions. Each
of these partitions is associated to a DZ, and a spanning tree. Since the trees are associated
to a DZ through the partition they are called prefix trees. In this approach, we assign each
of these prefix trees with an IP multicast address and all subscribers of a partition are added
as members of the multicast group of that partition. So, any event sent addressed with a
multicast IP address will be routed to all the subscribers of that partition. The algorithm
described below uses the IP multicast address assigned to a prefix tree to provide a consistent
update during DZ change.

1. The prefix tree of each of the partitions is assigned to a multicast IP address. All the
subscribers belonging to a partition is a member of the multicast group of the IP address
of that partition.

2. When the DZ optimization module of PLEROMA described in 3.3.4 performs a dimen-
sion optimization based existing distribution of subscriptions, and events and returns
the optimized partitioning of the event space this algorithm is triggered.

3. Using the optimized partitioning method, new Flows with IP address corresponding to
the new DZs for existing advertisements, and subscriptions are calculated by creating a
new logical partition for the same event space partition in the controller with the same
spanning trees as before and re-advertising/re-subscribing using existing advertisements,
and subscriptions of the original partition with new DZs. The calculated set of flows
with new DZs is not deployed to the switches.

4. Then a publish using multicast address message is sent to all the publishers. Once
publishers receive this message they will start publishing events using their designated
multicast address instead of the content address. If there is a path from a publisher to

46

5.2 IP Multicast

Figure 5.2: Publisher and Subscriber which have true overlap of advertisement and subscrip-
tion event space will lie in the same spanning tree

47

5 Consistent Update Algorithms For PLEROMA

a subscriber and if such a path is not caused due to the loss of granularity stemming
from the limitation on the length of DZ. Then, such a publisher and subscriber will
always belong to the same partition in PLEROMA even if the partitioning technique
is changed. For example, consider the figure 5.2 it depicts an event space with 2 bits
that can be appended to IP address. The figure shows a subscriber S1 which subscribed
to {x[0,10], y[0,10]}, subscriber S2 subscribed to {x[25,50], y[0,10]} and advertiser ad-
vertising {x[0,10], y[0,10]}. In partitioning technique shown on the left S1, S2, and A1
all belong to the same partition {00} but with the partitioning technique shown on the
right, S1 and A1 belong to {00} partition while S2 belongs {01} partition. This is be-
cause S1, and A1 truly overlap with each other while S2 has no overlap but sometimes
belongs to the same partition because of the loss of granularity. Hence it is always true
that, if there is true overlap between a subscriber and publisher they will belong to the
same partition even when the DZs are optimized.

5. Keeping the above observation in mind, we can be sure that using the IP multicast
address will ensure that, all the subscribers of the same partitions will receive all the
events they are interested in.

6. Next, The old flows are deleted and new flows are added.

7. A change of DZ version notification is sent to all the publishers so that they can publish
events with the new content address(new DZs) calculated using the new partitioning
scheme.

The disadvantage of this approach is a high rate of network false positives caused in the
network. There is a higher overhead of maintaining IP multicast groups. But on the other-
hand, the number of extra flows in a switch is the sum of number multicast group flows and
the number of old flows with old DZ, which is orders of magnitude less than 5.1.1 approach.

5.3 Customized Multicast

The previous approach has an extremely high network false positive rate during transition
period because in stable states (old or new DZ states) not all subscribers of a partition are
connected to all publishers of that partition. The goal of this approach to reduce the network
false positives while also maintaining the advantage of reduced number of flows over the 5.1.1
approach.

The solution described in this approach is based on the following behavior of a PLEROMA.
PLEROMA’s correctness requires that if a publisher publishes events in which a subscriber is
interested in, and the events are not entirely false positives, then there will be a path between
such a publisher and subscriber even if the DZs are changed. System correctness also requires
that if there is no path between a publisher and subscriber with one partitioning technique
and there is a path with another partitioning technique of the same event space, then such

48

5.3 Customized Multicast

a path contributes entirely to false positives at the subscriber. This is depicted in 5.2. The
path to S2 in the figure on the top contributes to false positives entirely.

Keeping the above observations in mind, we propose the following solution 2.

1. This algorithm is triggered when the DZ optimization module of PLEROMA described in
3.3.4 performs a dimension optimization based on existing distribution of subscriptions,
and events and returns the optimized partitioning of the event space.

2. The following steps are applied iteratively to all the partitions one at a time.

3. For each switch in the prefix tree of the partition, we fetch all the source ports specified
in the flows of that switch and the corresponding set of out-ports for each ingress-
ports. We then add one flow for each ingress port with match fields for ingress port and
destination IP address as the IP address with a subnet mask, which is calculated from
the DZ of the prefix tree. We then deploy these multicast flows in per switch basis and
immediately remove all the old flows of that switch.

4. With the above step, all the subscribers will receive all the events they are interested
in, but the false positive will be higher than normal but lesser than for 5.2. Because
unlike, 5.2 not all the subscribers of the prefix tree receive all the events published into
the prefix tree because of how the output ports of the flows are decided in the above
step.

5. Next, the controller deploys the new DZ flows, and then the controller sends a change of
DZ version notification request to all the publishers to use the new DZs when sending
events.

6. Once all the publishers have complied, the multicast flows can be removed after a time-
out. The order in which the multicast flows are removed impacts the network false
positives. There three different algorithms we have tried for this removal. The evalu-
ation section describes this ordering in detail and provides an analysis of which of the
approaches provide a better result.

Procedural representation of the above algorithm is described in 2. The disadvantage of
this approach when compared to versioning 5.1.1 is the false positive rate. But the number
extra flows per switch required by this approach is orders of magnitude less than versioning
approach 5.1.1, because if there are N source ports, there are at most N multicast flows extra
per switch. This approach is comparable to IP-Multicast5.2 with regards to the number of
flows and the false positives rate of this approach is much lower than that of IP Multicast5.2.
This approach has better false positive performance than IP-Multicast because unlike IP-
Multicast in this approach not all subscribers receive all the events during this multicast
period. This is depicted in 6.4.

49

5 Consistent Update Algorithms For PLEROMA

Figure 5.3: Paths formed (in green) on
using one IP Multicast Tree.
Subscriber B gets message it
does not need which results in
an increase of false positives

Figure 5.4: Paths formed (in green) us-
ing customized multicast algo-
rithm. Subscriber B is not in
the path, hence reduces unnec-
essary traffic

Algorithm 1 Consistent Update of Dimension Optimization Results
0: procedure changeDZ(newAdvtHostTuples,newSubHostTuples,mode)
switches← getSwitchesWithF lows()
mulitcastF lows← calculateMulticastFlows(switches)
newDZFlows← calculateFlowsWithNewDZ(newAdvtHostTuples, newSubHostTuples)

newDZFlowsPerSwitch,multicastPerSwitch← flowsGroupBySwitches(newDZFlows,mulitcastF lows)

if mode is sourceQunich then
sortedSwitches← sortSwitchesByPublisherDistance(switches, newAdvtHostTuples)

else if mode is filterRate then
sortedSwitches← sortSwitchesByFilterRate(switches)

else if mode is transmissionRate then
sortedSwitches← sortSwitchesByTransmissionRate(switches)

else if mode is random then
sortedSwitches← shuffel(switches)

end if
deployMulticastFlows(switches,multicastPerSwitch){Deployingmulticastflows}
deployNewDZFlows(switches, newDZFlowsPerSwitch)
sendChangeDZNotifcationToPublishers(newAdvtHostTuples.getHosts())
onAcknowledge :
deleteMulticastFlows(sortedSwitches,multicastPerSwitch)

50

5.3 Customized Multicast

Algorithm 2 Calculation Of Multicast Flows
0: function calculateMulticastFlows(switches)
1: multicastF lows← []
2: for each switch in switches do
3: srcPorts←switch.getSroucePorts()
4: for each srcPort in srcPorts do
5: flow.match.srcIp← 227.0.0.0/24
6: flow.match.srcPort← srcPort
7: flow.action.outPoPorts←switch.getOutportPorts(srcPort)
8: multicastF lows.add(flow)
9: end for

10: end for
11: return multicastF lows

Algorithm 3 Calculate Flows With New DZ
0: function calculateFlowsWithNewDZ(advtHostTuples,subHostTuples)
1: newFlows← []
2: for each advtHostTuple in advtHostTuples do
3: dz, host← advtHostTuple.dz, advtHostTuple.host
4: trees← findResponsibleTrees(advtHostTuple.dz)
5: for each tree in trees do
6: newFlows← newFlows+ tree.processAdvt(dz, host)
7: end for
8: end for
9: for each subHostTuple in subHostTuples do

10: dz, host← subHostTuple.dz, subHostTuple.host
11: trees← findResponsibleTrees(dz)
12: for each tree in trees do
13: newFlows← newFlows+ tree.processSub(dz, host)
14: end for
15: end for
16: return newFlows

51

5 Consistent Update Algorithms For PLEROMA

Algorithm 4 Group New Flows, Multicast Flows By Switches
0: function flowsGroupBySwitches(newFlows,multicastFlows)
1: groupedNewFlows← [][]
2: groupedMulitcastF lows← [][]
3: for each newFlow in newFlows do
4: switch← newFlow.getSwitch()
5: groupedNewFlows[switch]← groupedNewFlows[switch] + newFlow
6: end for
7: for each multicastFlow in multicastFlows do
8: switch← multicastF low.getSwitch()
9: groupedMulitcastF lows[switch]← groupedMulitcastF lows[switch] +multicastF low

10: end for
11: return groupedNewFlows, groupedMulitcastF lows

Algorithm 5 Sort Switches Based on Distance From Publishers
0: function sortSwitchesByPublisherDistance(switches, advtHosts)
1: sortedSwitches← []
2: numberOfHops← 0
3: while size(sortedSwitches) != size(switches) do
4: tempSwitches← getSwitchesByDistance(advtHosts, numberOfHops)
5: unAddedSwitches← tempSwitches− sortedSwitches
6: sortedSwitches← sortedSwitches+ unAddedSwitches
7: numberOfHops← numberOfHops+ 1
8: end while
9: return groupedNewFlows, groupedMulitcastF lows

Algorithm 6 Deploy Multicast Flows To Data Plane
0: function deployMulticastFlows(switches, multicastFlows)
1: for each switch in switches do
2: flowsToDelete← switch.getF lows()
3: flowsToAdd← multicastF lows[switch]
4: switch.addF lows(flowsToAdd)
5: switch.deleteF lows(flowsToDelete)
6: end for
7: return

Algorithm 7 Deploy New DZ Flows To Data Plane
0: function deployNewDZFlows(switches, newDZFlows)
for each switch in switches do
flowsToAdd← newDZFlows[switch]
switch.addF lows(flowsToAdd)

end for
return

52

5.4 Consistent Update Algorithm For Moving Trees

Algorithm 8 Remove Multicast Flows From Data Plane
0: function deleteMulticastFlows(switches, multicastFlows)
for each switch in switches do
flowsToDelete← multicastF lows[switch]
switch.deleteF lows(flowsToDelete)

end for
return

5.4 Consistent Update Algorithm For Moving Trees

There are scenarios where the spanning trees of a partition needs to be moved to a new
tree. This can be because of link failure, high traffic in certain links of the spanning tree, etc.
Such a change entails that all the paths between the publishers and subscribers belonging
to a partition needs to be moved to the new tree. It becomes impossible to use an ordered
update strategy to preserve network invariants for shifting tree when it involves a replicator
move 4.4.1 and using versioning 5.1.1 approach can cause a strain of the TCAM memory. So
we propose a strategy which utilizes a stateful approach which does not place such a heavy
strain on the TCAM memory. This algorithm is described in the following section.

5.4.1 Customized Versioning

This strategy falls under the category of stateful update strategies. It does not require
all the non-border switches to do a check on VLAN Id of the events unlike [8]. Consider a
multicast path A moving to a new multicast path B. There are three categories of switches
during such a transition -

1. Switches which are linked to the same neighbors in the initial and final tree are called
overlapping switches.

2. Switches which are linked to some of the same neighboring switches but not all neighbors
are the same in both the tree. These switches are called partially overlapping switches.

3. Switches which have no neighbors which are the same in both the trees. These switches
are called non-overlapping switches.

Duplicates or loops are caused during a transistion if and only if an event which was routed
initially using the flows of one tree is routed to a path which is not a part of the original tree
but is a part of the other tree. To prevent the above case, we need to be sure that events would
not leave the bounds of a tree which it belongs to. An event could move from the bounds of one
tree to another tree only in the case of the second category of switches(partially overlapping
switches). Hence, In this algorithm, we need to make sure events are kept within the bounds
of the trees it belongs to at the switches. To know which event belongs to which tree we
propose to use VLAN Id as a versioning field match field at partially overlapping switches.
These VLAN Ids are injected at the border ports of switches when an event enters the network

53

5 Consistent Update Algorithms For PLEROMA

and the VLAN Ids are removed when the events are sent to subscribers and at the partially
overlapping switches, the events are kept within the bounds of one tree or the other based on
the VLAN Id of the events. The exact algorithm is as follows

1. Whenever the tree of a partition needs to be moved, a new spanning tree is calculated.

2. All the flows are calculated for the new tree by adding advertisers and subscribers of
the old tree to the new tree by re-advertising/re-subscribing in the new tree using the
algorithms described in 3.2.3.

3. The overlapping, non-overlapping, and partially overlapping switches between the trees
are calculated. The old and new trees are each associated with a unique version Id of
their own.

4. All the flows which have an ingress port directly connected to a publisher are edited to
have an additional action which tags the incoming events with a VLAN Id corresponding
to the version Id of the old tree.

5. At this point, the VLAN Id has no meaning as it is not used for routing/filtering in any
of the subsequent flows.

6. A sufficient amount of time is allowed to pass so that all events with no VLAN Id to
leave the network.

7. For each new flow of the new tree for partially overlapping switches, we fetch all the
source ports specified in the flows of that switch and the corresponding set of out-ports
for each ingress-ports. We then compute one flow for each ingress port with match fields
for ingress port and destination IP address as the IP address with a subnet mask, which
is calculated from the union of DZ of the flows for this ingress port, and a VLAN match
field where the match value is version Id of the new tree. The flows are deployed no
to the switches. The flows in partially overlapped switches which have ingress ports
directly connected to publishers are left out of the step.

8. All the old flows of the old tree that are in the partially overlapping switch are replaced
with a multicast flows, calculated for each ingress port which belongs to the old tree
like in the previous step. The flows with ingress ports which are connected directly to
publishers or subscribers are not taken into consideration for this multicasting. All the
old flows which are covered by the multicasted flows are deleted from the switch.

9. The multicasting in the above two steps cause some false positives in the network. But
the maximum number extra flows at any point of time in a partially overlapping switch
is at most equal to the number ports in the old/new tree for that switch.

10. All the flows for non-overlapping switches are then deployed to the switches. There
can be no port in nonoverlapping switches connected to a publisher because all ports of
the switches connected to a publisher or subscribers can only be partially or completely
overlapping switches. The reason for this is that all the switches directly connected to
a publisher/subscriber have at least the link connecting publisher/subscriber to that
switch in common in both the spanning trees.

54

5.4 Consistent Update Algorithm For Moving Trees

11. The new flows of the new tree for completely overlapping switches is combined with the
existing flows of the old tree. This union would not always cause twice the number of
flows because some of the existing flow’s IP address and output ports already would
cover the new flows of the new tree. Such new flows are not added. In some cases,
new flows which completely cover the older flows would also exist. Such older flows are
immediately removed after adding the new flows. Hence this step does not cause twice
the number of flows in TCAM memory like in versioning strategy. But this step causes
a slightly increased false positive rate.

12. Next, the flows corresponding to border ports directly connected to publishers in the
new tree are added, and they inject new VLAN Id. All the flows which inject old VLAN
Id are deleted.

13. After allowing sufficient time for the events with old VLAN Id to leave the network
we can remove the flows with old VLAN Id from partially overlapping switches using
the idle timeout expiration value of the flows. In the case of completely overlapping
switches, first a single flow which covers the IP address of all the flows in that switch
for each ingress port which outputs through all the output link in the new tree is added
and all existing flows of the switch are removed and new flows of the new tree are added.
This is because the complete overlapping switches have a mix flows from old and new
trees.

14. Any flow having VLAN match field is edited so that the VLAN match field is removed.

15. All the border flows injecting and removing VLAN Id is divested of that action.

16. In the controller, now, the new tree takes the place of the old tree in the partition in
handling all incoming advertisements and subscriptions.

The compromise between complete versioning(reitblatt [8]) and this algorithm is that this
algorithm causes a lesser number of flows per switch than versioning while having a slightly
higher number of false positives rate.

55

6 Implementation and Evaluation

For evaluating the performance of consistency algorithms described in the thesis, a working
implementation of PLEROMA, workload based indexing, deployment module which imple-
ments the consistency algorithms, and a network with OpenFlow-enabled switches to run the
evaluations is required. The following sections provide a brief description of the evaluation
setup and a discussion of the performance of the proposed algorithms based on the results of
the evaluations.

6.1 Overview Of Implementation

Figure 6.1: PLEROMA Module Structure

57

6 Implementation and Evaluation

Floodlight is an opensource, and OpenFlow based SDN controller implementation. It is
implemented in Java. Floodlight allows new modules and new services to be added to the
floodlight controller which extends the features provided by the controller. A floodlight mod-
ule can receive events passed along to the Floodlight controller from the dataplane. It can
deploy new flows onto switches using a service called the static flow pusher service. It is also
possible to provide new services. For instance, a new service which collects statistics from
the network switches has been implemented by us for the purpose of evaluations. PLEROMA
and Workload-based Indexing(Dimension Optimizer) is implemented as separate modules in
Floodlight. The PLEROMA module is responsible for listening to advertisements, subscrip-
tions, and creating paths between publishers and subscribers. The Dimension Optimizer
module is responsible for listening to changes in event/subscription distribution in the data-
plane and triggering dimension optimization. Consistent deployment algorithms for changing
DZs, and moving to a new spanning tree is implemented as consistent deployment service
which uses static flow pusher service for deploying/deleting flows in the network switches and
a custom statistic service for collecting information about the switches. Dimension Optimizer
and PLEROMA uses the consistent flow pusher service to deploy the changes in a manner
which can preserve the network invariants. A simplified overview of PLEROMA on Floodlight
controller is depicted in 6.1

6.2 Overview of Evaluation Environment

To validate the efficiency of the algorithms proposed in the previous sections and to com-
pare the various algorithms, an evaluation of the algorithms were carried out on a working
PLEROMA implementation, and a network of OpenFlow-enabled switches emulated using
Mininet. The following section discusses Mininet and network topology setup used for evalu-
ation.

6.2.1 Mininet

Mininet creates a virtual network emulating a network of switches, and links. The emulated
switches can be connected to SDN controller either on the same or remote machine. Mininet
provides a python API to create a network with various topologies with differing number
hosts, and switches. The APIs are used to set-up certain percentage of hosts as publishers
and the remaining as subscribers by starting the publisher/subscriber application at the hosts
which listens on a port for commands sent in UDP packets. It is possible to send UDP
packets with a string command using mininet python API. This ability is used for controlling
a publisher/subscriber by commanding it to send advertisements/subscriptions, send/listen
to events, etc. For our evaluations, we use Mininet API for setting up the datapalne with
different amount of switches, publishers, and subscribers.[33]

58

6.2 Overview of Evaluation Environment

Figure 6.2: A Torus topology with 9 switches, 9 hosts

6.2.2 Network Topology

For the purpose of evaluating loop-freedom during an update, a topology with loops is
necessary. While an evaluation of packetdrops or blackholes in a multicast network would
require a topology with atleast a single branched path. Hence for all our evaluation we
have chosen a 2 dimensional torus interconnect topology. An example of 2-Dimensional torus
topology is depicted in 6.2.

6.2.3 Parameters To Evaluate

To compare the efficiency of the various update algorithms, the effect each algorithm has on the
system can be used for comparison. In our case, the algorithms have different requirements of
flows required per switch and cause different levels of unnecessary traffic in the network. Hence
for comparing different algorithms we monitor the follow parameters when the algorithms are
executed

1. Number of flows - This parameter gives an overview of the number flows in the
dataplane when transitioning from one state to another. Lesser the number of flows
caused by an algorithm lesser is the burden on TCAM space.

2. True Positives - If a subscriber was interested in the event that it received, then such
an event is called a true positive. This parameter corresponds to the necessary traffic
in the network.

3. False Positives - If a subscriber was not interested in an event that it received, then
such an event is called a false positive. This parameter corresponds to the unnecessary

59

6 Implementation and Evaluation

traffic in the network in PLEROMA. It is generally caused due to a lesser granularity
of the content filters. However, during updates higher false positive rate is caused by
the multicasting algorithms. Hence a measure of this parameters gives an inference of
the unnecessary traffic caused in the network by different algorithms.

4. False Negatives - If a subscriber does not receive an event that it is interested in,
such an event is called a false negative. This parameter provides the validity check for
the implementation of the proposed algorithm. This parameter should be zero in the
network.

6.2.4 Evaluation Execution

For our evaluations, the evaluation platform is setup as follows,

1. The floodlight controller with PLEROMA, workload based indexing module and con-
sistent deployment service are started.

2. The controller collects switch statistics of the number packet transmitted/received dur-
ing each 30 milliseconds interval.

3. Next, the Mininet script for setting up the network is run. This script starts up the
publishers and subscribers. The network can have 8,16,32 or 64 switches and as many
hosts. The publisher to subscriber ratio is around 1:1. For example, with a network of
8 switches, there are four publishers and four subscribers.

4. Once the network is set up, the publishers and subscribers are commanded to send
advertisements and subscriptions respectively.

5. Once publishers have sent advertisements, they start publishing events and subscribers
listen to events after subscribing to a region of the event space. The events sent by
publishers have dimensions that are positively correlated with each other.

6. The publishers and subscribers have logs of events sent by publishers and received by
subscribers. The false positives received by subscribers are measured for each interval
of 3 seconds.

7. To evaluate the dimension optimization and consistent update of the change of DZ, the
existing distribution of events is changed to be negatively correlated in some dimensions.
Then dimension optimization is performed. The results of optimization are pushed onto
the switches using one of the proposed algorithms described in 5.2.

8. The spanning tree of one of the partitions is then forced to change when the traffic in
link reaches a certain threshold. The change is executed first by using Reitblatt [8] and
next by using the algorithm proposed in 5.4. All the above steps are repeated 3 times.

9. Next, The experiment is repeated using a different consistent DZ change algorithm to
make the deployment.

60

6.3 Evaluation Results

Figure 6.3: Number flows when updating with versioning and multicast approaches

The above experiment is repeated for networks of different size, 8, 16, 32, 64 switches.
Once the above steps are carried out, the information of false positives at the subscriber with
respect to time, total number events in the entire network with respect to time, and number
flows in the network with respect to time is available to us for comparing and contrasting all
the algorithms.6.2.3.

6.3 Evaluation Results

6.3.1 Consistent Update Algorithms For Dimension Optimization

The following section compares different Consistent Update Algorithms For Dimension Opti-
mization using the results of evaluation.

TCAM requriement - Reitblatt Vs IP-Multicast Vs Our Multicast

6.3 depicts the number of flows in the entire network during the transition from one partition-
ing method to another after Dimension Optimization. Since the TCAM requirements directly
correspond to the number of flows in a switch, lesser the number of flows lesser is the burden

61

6 Implementation and Evaluation

Figure 6.4: IP-multicast vs custom-multicast

on TCAM memory. It is clear that the number flows required during the transition is much
higher for versioning (reitblatt)[8] as compared to using the multicast algorithms. However,
the performance of both the multicast algorithms is similar in this aspect.

False Positives - IP-Multicast Vs Custom Multicast

6.4 depicts the number of packets in the network during the transition from a change of
DZs for networks of different sizes. Since the same event distribution is used for both the
multicast algorithms and the events are published at the same rate, the number of packets
sent into the network is comparable during the change of DZ using each of the two algorithms
separately. Any appreciable difference in the traffic of the network for the different approaches
is caused due to the fact that the number false positives introduced by the different algorithms
are different. Hence, from 6.4 it clear the performance of topology-aware custom multicast
described in 5.3 is much better that using out of the box IP-multicast described in 5.2.

Impact of order of removal of multicast flows in Custom Multicast

One of the final steps of using the custom Mutlicast Algorithm(5.3) for consistently changing
from one partitioning technique to another is the removal of intermediate multicast flows from

62

6.3 Evaluation Results

Figure 6.5: Median Increase in the number flows per switch when updating with Reitblatt
and Customized Versioning Approach

63

6 Implementation and Evaluation

the switches. Does the order of removal of multicast flows from switches have an impact on
unnecessary the traffic in the network? To answer this question we performed consistent
update of dimension optimization using custom multicast 5.3 but on the final step of the
algorithm where multicast flows are deleted from the switch, we ordered the deletion of the
flows using based on one one of the following approaches

Figure 6.6: Number of Packets in the network with different order of removal of multicast
flows

• Transmission rate of the switches - From the switch statistics collected at the
controller, we sort the switches based on the number of the packets transmitted by the
switch in descending order. The multicast flows are removed based on the transmission
rate of the switches.

• Filter rate of the switches - This rate corresponds to the ratio of the number packets
dropped to the number of packets handled by the switch. Higher this value higher, higher
is the filtering rate of the switch. Hence during the change of partitioning technique,
we use this value to order the deletion of multicast flows from switches with the highest
value to the lowest.

• Source quenching - Start removing multicast flows from the switches directly con-
nected to publishers(called border source switches) and move to the other switches
based on their distance from the border source switches.

64

6.3 Evaluation Results

• Random - Remove multicast flows in random order.

From the figure 6.6, it is clear that transmission and filter rate based approach provides
much better performance than a random strategy or source quenched approach because the
actual filtering of events takes place rarely at the border switches in the case of networks with
large number switches and subscribers.

Subscriber False Positives During Dimension Optimization

The subscriber false positives rate is given by

false_postive_rate = false_postives_count_per_10_ms/total_events_per_10_ms
(6.1)

Figure 6.7: Average Subscriber False Positive Rate vs. Time in seconds before, during, and
after the consistent update of dimension optimization with custom multicast

We monitored the false positives at the subscriber before, during, and after the consistent
update of dimension optimization with custom multicast. The figure depicted in 6.7 shows the
increase in false positive rate during the transition period. This spike is due to intermediate
multicast flows added during the transition. A similar result is obtained when using IP
multicast during the transition as well but the total number of false positive in IP multicast is
much higher. Hence the compromise between a multicast approach and versioning approach
is between the number of flows and the false positive rate introduced in the network.

65

6 Implementation and Evaluation

6.3.2 Consistent Update Algorithm For Moving Trees

The following section compares two stateful strategies - reitblatt [8] and customized ver-
sioning 5.4 when consistently moving the spanning tree of a partition to another spanning
tree.

Figure 6.8: Subscriber False Positive percentage when moving spanning tree of a partition

Subscriber False Positives - Customized Versioning vs Reitblatt

The graph 6.8 depicts subscriber false positive percentage when moving the spanning tree of
a partition using versioning [8] and customized versioning (5.4). It can be seen that rietblatt
causes no new false positives in the network but on the other hand customized versioning
causes a slightly higher positive rate during the update than in the consistent state. The
reason for the higher false positive rate is the multicasts used in the algorithm. The false
positive rate of customized versioning depicted in 6.8 is the worst case false positive rate we
encountered during our evaluations. So why should we use customized versioning even if it
could have a slightly higher false positive percentage? The following section provides the
answer to the above question.

TCAM requirement - Customized Versioning vs Reitblatt

The TCAM requirements directly correspond to the number of flows in a switch. Lesser
the number of flows lesser is the burden on TCAM memory. The graph depicted in 6.5 shows
that reitblatt places a much higher burden on TCAM memory than customized versioning

66

6.3 Evaluation Results

(5.4). Hence the comprise between the two algorithms is the number flows per switch and the
false positive rate introduced in the network

67

7 Conclusion and Future Work

Middleware is an application which acts as a communication channel between two/more
applications. Such an entity must assure a certain level of Quality to the applications which
connects to it. Hence, PLEROMA being a pub/sub middleware needs to ensure a certain
quality of services or rather ensure a certain level of consistency to its end-users during its op-
eration. This thesis has proposed and implemented algorithms to maintain one such promised
quality of services of PLEROMA during optimization operations.

Specifically the questions answered by this thesis are

• What is the nature of the data-plane consistency problem in PLEROMA - a content-
based pub/sub environment build on SDN?

• What are scenarios which require consistency when PLEROMA is dynamically opti-
mized based event traffic, subscription distribution?

• How well would existing "SDN data plane consistent update solutions" fit the for the
scenarios specific to PLEROMA?

• On what basis can we compare different solutions and hence, understand the compro-
mises involved?

• Are there other algorithms which better fit the specific scenarios in PLEROMA than
generic consistent update solutions?

The chapters on the existing update solutions, algorithms and evaluations have been written
with the aim of answering those questions. The chapter on in-network filtering discusses the
nature of data-plane consistency in PLEROMA and the problem statement provides a brief
description of what the existing solutions are lacking. The proposed multicast algorithms
for consistent update of Dimension Optimization , and customized versioning algorithms for
shifting trees both make use of the IP-prefix based routing property of PLEROMA to propose
a consistent update solution which reduces the strain on TCAM memory and evaluations
show that the TCAM memory usage is indeed reduced but with an increase in network and
subscriber false positives. The evaluation chapter also provides a basis to compare the different
solutions based on the resource which affects the performance, correctness, and efficiency of
PLEROMA to understand the factors which could shed light on the compromises involved
when choosing a specific solution to provide consistency.

69

7 Conclusion and Future Work

However, there are some limitations to the implemented solutions. It does not provide
different levels of consistency for PLEROMA. Also, the proposed algorithm for providing
consistency are for the most part context-specific, i.e., the algorithm for different scenarios
is different. The proposed solutions also do not take control plane scalability into consid-
eration. Hence a possibility for the extension of this thesis work can include work on how
the update consistency can be decoupled from the pub/sub context to sufficiently make sure
that PLEROMA scenarios can change independently of consistency algorithms. To achieve a
true decoupling between data plane consistency and pub/sub optimization operations, there
should be a way for the PLEROMA modules to generically communicate the required level
of consistency and scenarios. Another avenue for development is to consider actual resource
utilization in the data plane based on traffic and memory utilization into consideration in the
algorithms.[5] [33]

An important point to consider before inferring the evaluation is that the results of the
evaluations in this thesis have been carried out using Mininet with the basic assumption
that there are no link failures between the switches and the controller. The evaluation does
not cover the time taken for executing updates because actual latency can have different
causes most of which are environment dependent. For instance, controller response times is
dependent on the hosting machine and the latency of communication between switches, and
controller. Hence, any such evaluation needs to be performed on a real network infrastructure
with OpenFlow-enabled switches.

70

Bibliography

[1] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation of a wide-area
event notification service,” in ACM Trans. Comput. Syst., pp. 332–383, Aug 2001.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces of
publish/subscribe,” ACM Comput. Surv., vol. 35, pp. 114–131, June 2003.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Challenges for distributed event ser-
vices: Scalability vs. expressiveness,” in Engineering Distributed Objects ’99, pp. 155–166,
May 1999.

[4] B. Koldehofe, F. Dürr, M. A. Tariq, and K. Rothermel, “The power of software-defined
networking: line-rate content-based routing using Openflow,” in Proceedings of the 7th
Workshop on Middleware for Next Generation Internet Computing, MW4NG ’12, (New
York, NY, USA), pp. 3:1–3:6, ACM, 2012.

[5] M. A. Tariq, B. Koldehofe, S. Bhowmik, and K. Rothermel, “PLEROMA: a sdn-based
high performance publish/subscribe middleware,” in Middleware ’14 Proceedings of the
15th International Middleware Conference, pp. 217–228, December 2009.

[6] M. A. Tariq, B. Koldehofe, S. Bhowmik, and K. Rothermel, “High performance publish/-
subscribe middleware in software-defined networks,” pp. 3–169, IEEE/ACM Transactions
on Networking, December 2016.

[7] S. Bhowmik, M. A. Tariq, J. Grunert, and K. Rothermel, “Bandwidth-efficient content-
based routing on software-defined networks,” in 10th ACM International Conference on
Distributed and Event-based Systems DEBS ’16 New York, NY, USA, p. 137–144, May
2016.

[8] M. Reitblatt, “Abstractions for network update,” in SIGCOMM, MAY 2012.

[9] R. H. Arpaci-Dusseau, Arpaci-Dusseau, and C. Andrea, Introduction to Distributed Sys-
tems (PDF). Arpaci-Dusseau Books, pp, 2014.

[10] A. S. Tanenbaum and M. V. Steen, Distributed Systems - Principle and Paradigms.
Prentice Hall, 2014.

[11] Wikipedia, “Remote procedure call - wikipedia.” http://en.wikipedia.org/wiki/
Remote_procedure_call, 2013.

[12] T. O. Group, “DCE 1.1: Remote procedure call. technical standard C706.” The Open
Group, Cambridge, MA, USA, 1997.

71

http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Remote_procedure_call

Bibliography

[13] P. Eugster, R. Guerraoui, and J. Sventek, Type-based publish/subscribe. Technical Report
DSC ID:200029, EPFL Lausanne., 2000.

[14] Object Management Group, CORBA Event Service Specification, version 1.0. OMG
Document formal, 2000.

[15] Apache, “Tibco.” https://docs.tibco.com/?_ga=1.88791323.1035077876.
1490629495, 2013.

[16] M. A. Tariq, B. Koldehofe, G. G. Koch, I. Khan, and K. Rothermel, “Meeting subscriber-
defined QoS constraints in publish/subscribe systems,” Concurrency and Computation:
Practice and Experience, vol. 23, pp. 2140–2153, Dec. 2011.

[17] G. Mühl, Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis, Darmstadt
University of Technology., June 2002.

[18] H. Holbrook and B. Cain, “Source-specific multicast for ip,” 2006. RFC 4607.

[19] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikander, “LIPSIN:
line speed publish/subscribe inter-networking,” in Proceedings of the ACM SIGCOMM
2009 conference on Data communication, SIGCOMM ’09, (New York, NY, USA),
pp. 195–206, ACM, 2009.

[20] Z. Jerzak and C. Fetzer, “Bloom filter based routing for content-based publish/sub-
scribe.,” in In DEBS ’08, 2008.

[21] OpenFlow, “SDN standards.” https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.
1.pdf, 2015.

[22] Cisco, “Internetworking basic.” https://www.cisco.com/cpress/cc/td/cpress/fund/
ith/ith01gb.htm, 2015.

[23] Wikipedia, “Software-defined networking – wikipedia..” http://en.wikipedia.org/
wiki/Software-defined_networking, [Accessed : October, 2017].

[24] P. R. Pietzuch, A scalable event-based middleware. PhD thesis, University of Cambridge,
June 2004.

[25] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE: A large-scale
and decentralized application-level multicast infrastructure,” IEEE Journal on Selected
Areas in Communications (JSAC), vol. 20, no. 8, pp. 1489–1499, 2002.

[26] R. Mahajan and R. Wattenhofer, “On consistent updates in software defined networks,” in
Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks, pp. 1–7, NOVEM-
BER 2013.

[27] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates.” https://www.
cs.princeton.edu/~dpw/papers/incremental-updates-hotnets-2013.pdf, 2013.

72

https://docs.tibco.com/?_ga=1.88791323.1035077876.1490629495
https://docs.tibco.com/?_ga=1.88791323.1035077876.1490629495
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.cisco.com/cpress/cc/td/cpress/fund/ith/ith01gb.htm
https://www.cisco.com/cpress/cc/td/cpress/fund/ith/ith01gb.htm
http://en.wikipedia.org/wiki/Software-defined_networking
http://en.wikipedia.org/wiki/Software-defined_networking
https://www.cs.princeton.edu/~dpw/papers/incremental-updates-hotnets-2013.pdf
https://www.cs.princeton.edu/~dpw/papers/incremental-updates-hotnets-2013.pdf

Bibliography

[28] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford, and
R. Wattenhofer, “Dynamic scheduling of network updates.,” in In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM’14, p. 539–550, 2014.

[29] H. Sarhma, “Workload-enabled content-based routing in software-defined networks,”
Master’s thesis, Universität Stuttgart, Germany, November 2016.

[30] A. Riabov, Z. Liu, J. L. Wolf, and L. Zhang, “Clustering algorithms for content-based
publication-subscription systems.,” in In Proc. of the 22nd Int. Conf. on Distributed
Computing Systems, 2002.

[31] T. Kohler, F. Dürr, and K. Rothermel, “Update consistency in software-defined network-
ing based multicast networks.,” in IEEE Conference On Network Function Virtualization
and Software Defined Networks, pp. 177–183, NOV 2015.

[32] IETF, “Ipv4 multicast.” https://www.ietf.org/rfc/rfc1112.txt, [Accessed : April,
2017].

[33] Mininet, “Mininet-the network emulator..” http://mininet.org/, [Accessed : Novem-
ber, 2016].

73

https://www.ietf.org/rfc/rfc1112.txt
http://mininet.org/

Bibliography

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

75

	Abstract
	Introduction
	Thesis Organization

	Background
	Inter Process Communication paradigms
	Remote procedure call
	Message Oriented Middlewares
	Principles of Publish/Subscribe Paradigm
	Components in pub/sub
	Operations in pub/sub
	Categories in pub/sub
	Performance parameters of pub/sub
	Related Pub/Sub architectures

	Software Defined Networking
	Flow Structure

	Content-Based pub/sub with SDN
	Consistency in SDN
	Controller bridge
	Stateful Strategies
	Stateless Strategies

	In-Network Content Filtering And Multicast Path Consistency
	In-Network Content Filtering
	PLEROMA
	Covering relationship of DZ
	Spanning Trees In PLEROMA
	Handling Advertisements, Subscriptions and Events

	Bandwidth Efficient Indexing In PLEROMA
	Limitation Of Content Filter Expressiveness In PLEROMA
	Workload-Based Indexing Of Event Space
	Dimension Selection Algorithms For Events Space Partitioning
	Workload-Based Indexing As Implemented In PLEROMA

	Problem Statement
	QoS Requried in PLEROMA
	Scenarios which require a Consistent Update
	Other criteria to consider for consistent data-palne updates
	Generic Consistent Update Strategies for PLEROMA
	Limitations Of Ordered Update Strategy
	Versioning Strategy

	Problem Statement Definition

	Consistent Update Algorithms For PLEROMA
	Consistent Update Algorithms For Dimension Optimization
	Versioning

	IP Multicast
	Customized Multicast
	Consistent Update Algorithm For Moving Trees
	Customized Versioning

	Implementation and Evaluation
	Overview Of Implementation
	Overview of Evaluation Environment
	Mininet
	Network Topology
	Parameters To Evaluate
	Evaluation Execution

	Evaluation Results
	Consistent Update Algorithms For Dimension Optimization
	Consistent Update Algorithm For Moving Trees

	Conclusion and Future Work
	Bibliography

