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Abstract

Nowadays studies about the quality of life in major cities are often published in the
daily news. These contain ranked list according to the quality of living with indicators
representing various aspects. Typical indicators are crime level, transport, health care
etc. Along with the flourishing of different social medias, a huge amount of information
could be collected from the Internet. Moreover, machine learning as a branch of artificial
intelligence becomes more and more prominent. The recent advances in machine learning
had found usage in a wide range of applications. One of such application is that of text
categorization and sentiment analysis. Relying on these conditions, this thesis aims to
create a classifier to predict the sentiment about places of living.

In this thesis a ranking list of cities of Mercer is taken use. As a result of the quality
of living survey 230 cities of the world are ranked in the list. Text form information
of microblogging is chosen as our testbed. Specifically, tweets, microblogging messages
from the popular website Twitter, are studied. The tweets chosen for this study are those
about cities living standard and contain rich sentiment information. Classification label
is assigned to cities under study by their position in the ranking list. After sentiment
related features are extracted, machine learning techniques are then applied on the
collected tweets. As a result, a classifier with a strong baseline for predicting sentiment
about places of living is trained using logistic regression model.
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1 Introduction

1.1 Motivation

Usually, there are many reviews of the quality of life of cities could be seen in news or on
the Internet. People concerns more and more about the quality of life in a city. Based
on the rich information from these resources numerous studies about the quality of life
in major cities are made every year. Regarding various aspects of daily life in a city such
as the crime rate, health care, entertainment and satisfaction, public transport etc., and
relying on analysis of this textual data through various process technologies many study
results are published in a form of ranking list, of which city is good for living or not.

The information about the life of a city can be collected in a textual form from various
of data sources, such as news, articles, Twitter, government reports, Wikipedia etc. The
basic idea of this study is that based on the ranking list of the cities and the large
collectible textual information about the quality of life in a city, is that possible to take
use of machine learning algorithm making computer to predict the life quality of a city
automatically?

On one hand, since the quality of life of a city is always combined with the satisfaction
of people, whereas the microblogging is considered as online word-of-mouth branding,
which contains rich sources of data about people’s opinions on different aspects of life.
Table 1.1 shows the tweets that the words like“love”,“good moment” and “fabulous
show” are used to express the emotion like glorification and so on.

Table 1.1: Examples of Tweets

City Tweet

Paris “The next time I come to Paris it will be with my man.
love boyfriend gay paris france @mateoitis https:// insta-
gram.com/p/8RijRysUu4/”

Beijing Moderate pollution (39) at 5AM. Really low for Beijing .
Good moment to go running at Summer Palace http://
buff.ly/1Usm44V airpollution

London “What a fabulous showit was...!!!! Soldout in three days
times London . Great job done by kudosmusic and... http://
fb.me/4z6056iOs”

Moreover Twitter offers officially API which enables the user to collect information from
tweets easily, collecting the textual data on Twitter could be seen as a collection of
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1 Introduction

sentiment about a city held by its inhabitants. Thus textual information from Twitter
are chosen as the testbed of this thesis.

On the other hand, since 1990’s machine learning as a subfield of artificial intelligence
developed rapidly. The classification technologies cooperated with natural language
processing enable the computer to process textual data, explore the data and learn from
the text.

Aggregating these features this thesis tends to train a classifier, which could automat-
ically predict the sentiment of living in a city through applying machine learning tech-
nology on collected information from Twitter.

All sorts of the text form information of tweets are considered as study objects, in which
the most important is the words appeared in tweets, URLs, hashtags and emoticons are
also taken into account. A ranking list of cities as a result of a survey on quality of
living in 2016 is exploited, cities on the top position of the ranking list are considered as
positive sentiment for living and cities on the bottom of the ranking list are considered
as negative sentiment for living. Through this way the ranking problem is casted into a
two sentiment classification problems.

1.2 Objectives and Benefites

This project addresses the challenge of creating a classifier for predicting sentiment
about places of living, associated with managing large volumes of textual data from the
Internet. In particular, the task of this thesis focuses on the classification technologies of
machine learning and the natural language processing of textual data. Therefore, main
objectives of this thesis are listed as the following:

• collecting the necessary data from Twitter, analyzing the structure of text data,
with respect of linguistic analysis processing the data and generating the dataset.

• extracting features and applying suitable classification technologies to training
models.

• performing the trained classifier on the test data, comparing the results and eval-
uating the classifier with proper measure method.

• enhancing the performance of the trained classifier through analyzing feature weights
and improving the features, based on the feature weights analyzing the aspects of
living standard which impact the classification model.

This Study will deliver benefits on following aspects:

• collecting data of cities from Twitter and generating a dataset for training classi-
fication models, which are not provided or published by official organizations and
also could be reused for further research.

• conducting an automatic classification system for predicting a place of living, based
on microblogging information from a social platform, which is not presented in
previous and ongoing works.

2 Predicting Sentiment about Places of Living
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• contribution to a more economic classifier for automatically predicting the changes
of quality of life, since the cost of conducting frequent surveys on qualifying the
city life is expensive.

• investigating analysis about the information of the most and the least impact to
predicting of the city of live through training classifier, which also has its realistic
significance. From this side of view, it enables us to do further analyze on which
social aspects may of most importance or influence more on the live in a city or of
more interests of users.

1.3 Outline

This diploma thesis is structured in 8 chapters. As seen in figure 1.1 the remaining 7
chapters are presented as following:

Studies of Quality of Life
Studies of Sentiment Analysis
Studies of Text classification

Methodology of the 
work

Dataset

Conclusion

Methodology 

Implementation

Experiments Setup and Evaluation 

Related Works

Background
Fundamentals
Machine Learning 
Classification

Query Term Definition
Data collection
Label

Data preprocessing
Features Extraction
Classification

Cross Validation
Result Evaluation
Feature Analysis

Chpt.6

Chpt.5

Chpt.3

Chpt.7

Chpt.8

Chpt.2

Chpt.4

Figure 1.1: Thesis Layout

• Chapter 2 – Background: The fundamentals of machine learning will be ex-
plained, the algorithms of classification, which are ground stones of this thesis will

Predicting Sentiment about Places of Living 3
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be presented, and the principle of evaluating a classifier will be interpreted in this
chapter, which related studies about classification could be seen in chapter 7.

• Chapter 3 – Dataset: Data collection process will be presented, particular on
query terms definition, data selection and marking labels.

• Chapter 4 – Methodology: The workflow of machine learning process and
the methodology specific for creating classification model for predicting will be
presented.

• Chapter 5 – Implementation: Based on the specific methodology how the
classification model is implemented is described step by step.

• Chapter 6 – Experiments Setup and Evaluation: First introduces the exper-
iments setup used in this thesis and then the results of the performance of classifiers
is compared, at last the improved features and enhanced results of classifiers are
presented.

• Chapter 7 – Related Works: Introduces the previous works, which concerns
more on the sentiment of microblogs and also related with the life quality of places.

• Chapter 8 – Conclusion: A summary of this thesis is concluded and the sug-
gestions on how to further improve the results in the future work are presented.

4 Predicting Sentiment about Places of Living



2 Background

This chapter introduces the technical fundamentals about machine learning and classifi-
cation. With respect to the characteristics of the thesis, the theoretical training models
are explained and the TwitterAPI used for collecting data is introduced.

2.1 Machine Learning

Machine learning is a subfield of computer science that involved from the study of pattern
recognition and computational learning theory in artificial intelligence.1 There are sorts
of definition of machine learning in which [MFH+13] provided a more formal and widely
quoted definition: “A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its performance at tasks in T , as
measured by P , improves with experience E.”

The principle of machine learning is to explore the study and construction of algorithms
that can learn from and make predictions on data. A model is built by executing the
algorithms from an example training set of input observations in order to make data-
driven predictions or decisions expressed as outputs. Generally, there are three types of
tasks of machine learning, depending on the nature of the learning “signal” or “feedback”
available to a learning system in [RNC+03]:

• Supervised learning: Simply to say is the task of inferring a function from
labeled training data.

Specifically supervised learning is a type of machine learning which refers to give
the algorithm a data set in which the “right answers” were given. The “right
answers” are called labels of the data, which are marked by the specialist. [Anz12]
In supervised learning there are two main terminologies which present two types
of problems it solves:

– Regression: The goal of regression is to predict the value of one or more
continuous target variables t given the value of a D-dimensional vector x of
input variables. The variables t is presented simply the vector of real numbers
whose values wish to be predicted. [Anz12]

– Classification: The goal in classification is to take an input vector x and
to assign it to one of K discrete classes Ck where k = 1, ...,K. In the most
common scenario, the classes are taken to be disjoint, so that each input is
assigned to one and only one class. In contrast, there are many ways of using
target values to represent class labels. For probabilistic models, in the case of

1https://www.britannica.com/technology/machine-learning
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2 Background

two-class problems is the binary representation of t the most convenient with
t ∈ {0, 1} where t = 0 represents class C1 and t = 1 represents class C2.

– Ranking: Learning to rank is a task to automatically construct a ranking
model using training data, such that the model can sort new objects according
to their degrees of relevance, preference, or importance. Ranking algorithms
in machine learning are called “learning-to-rank”methods which specifically
learn how to combine predefined features for ranking. [L+09]

• Semi-supervised learning: Compared to supervised learning semi-supervised
learning model is trained through a given training set with some of the target
outputs missing.

• Unsupervised learning: In contrast to supervised learning, unsupervised learn-
ing works with a dataset which no labels are given to the learning algorithm, leaving
it on its own to find structure from the input. The most common algorithm to
solve this problem is clustering.

2.2 Classification

2.2.1 Classifiers for text classification

[Seb02] introduced the main ideas underlying the Machine Learning approach to text
classifications. In particular, many classifiers are theoretically presented: Probabilistic
Classifiers in which Näıve Bayes approaches is one of the best-known method, Deci-
sion Tree Classifiers, Decision Rule Classifiers, On-Line Methods, The Rocchio Method,
Neural Networks, Example-Based Classifiers which includes the k-NN method, Support
Vector Machine.

The following three classifiers are most used algorithms for processing text:

• k-NN Classifier: This classifier is memory-based, and require no model to be
fit. Given a query point x0, the k training points x(r), r = 1, ..., k closest are found
in distance to x0, and then classify using majority vote among the k neighbors.
[JL10]

• Näive Bayes: This is a popular technique that especially appropriate when the
dimension p of the feature space is high, making density estimation unattractive.
The naive Bayes model assumes that given a class G = j, the features Xk are
independent:[JL10]

fj(X) =

p∏
k=1

fjk(Xk) (2.1)

While this assumption is generally not true, it does simplify the estimation dra-
matically:

6 Predicting Sentiment about Places of Living
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– The individual class-conditional marginal densities fjk can each be estimated
separately using one-dimensional kernel density estimates. This is, in fact a
generalization of the original naive Bayes procedures, which used univariate
Gaussians to represent these marginals.

– If a component Xj of X is discrete, then an appropriate histogram estimate
can be used. This provides a seamless way of mixing variable types in a
feature vector.

• MaxEnt: Stands for maximum entropy classifier, which prefers the most uniform
models that also satisfy any given constraints.[NLM99]

2.2.2 Logistic Regression

Despite of the name Logistic Regression is a linear classification model rather than
regression.[Anz12] It is also known as logit regression or maximum-entropy classifica-
tion or the log-linear classifier in the literature. This model takes use of probabilities
to describe the possible outcomes of a single trial which are modeled with a logistic
function.

• Logistic function: Logistic function is a common “S” shape with formula:

f(x) =
L

1 + e−k(x−x0)
(2.2)

where e is the natural logarithm base, x0 is the x-value for sigmoid’s midpoint,
L is the curve’s maximum value and k is the steepness of the curve. x is a real
number range from negative infinite to positive infinite.

• Sigmoid function: special case of logistic function which is also called standard
logistic function, where L = 1, k = 1, x0 = 0 with formula:

S(t) =
1

1 + e−t
(2.3)

Since the sigmoid function has a standard “S” shaped curve, which means that the
function can take any real input whearas the output always distributed between
zero and one.

• Logistic Regression: The goal of logistic regression is to find the parameters
that best fit the formula:

y =

{
1 β0 + β1x+ ε > 0

0 else
(2.4)

where ε represent an error distributed.

For linear logistic regression with the real input t (t ∈ R), taking use of the standard
logistic function (2.3) and assuming t is a linear function of a single explanatory
variable x, which is expressed as:

t = β0 + β1x (2.5)

Predicting Sentiment about Places of Living 7
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and then logistic function can now be written as a function of x:

F (x) =
1

1 + e−(β0+β1x)
(2.6)

where the terms are :

– F (x) is the probability of the dependent variable equaling “1”, which also
means “success” rather than “unsuccess” or “0”, since the distribution of
probability of P (Yi|X) differs from Xi.

– β0 is the intercept from the linear regression equation (the value of the crite-
rion when the predictor is equal to zero)

– β1 is the regression coefficient, which is multiplied by some value of the pre-
dictor.

– e denotes the exponential function.

Furthermore, as an extension the linear function t could be of multiple variables x
with multiple factors β, where is presented as vector θT . Thus the function F (x)
could be presented as:

F (x) =
1

1 + e−(θT x)
(2.7)

• Cost function: The cost function is used to measure the accuracy of hypothesis
function hθ. Ideally, the best situation is when the cost function equals to 0, which
means the hypothesis of each input x is perfectly matched to each class label y.

Cost(hθ(x), y) =

{
−log(hθ(x)) if y = 1

−log(1− hθ(x)) if y = 0
(2.8)

where hθ(x) is the hypothesis Representation of logistic regression which is another
form of (2.6), where θ is the collection of all parameters of the model such as β.
F function is represented as a hypothesis function with h. In binary classification
case, Cost(hθ(x), y) = 0 if hθ(x) = y, Thus the equation has:

– Cost(hθ(x), y)→∞ if y = 0 and hθ(x)→ 1

– Cost(hθ(x), y)→∞ if y = 1 and hθ(x)→ 0

which guarantees that the cost function of logistic regression is convex without
waving, so that it is easy to reach its global optimal .

Until now the Logistic regression is introduced as linear using a linear function of
input x like θTx, whereas it can also be a nonlinear function.

• Regularization: Fitting the training data too well can lead to overfitting prob-
lem, which degrades the risk on future predictions.[JL10] Regularization is a method
to reduces overfitting by adding a complexity penalty to the cost function. Using
λ‖θ‖2 as a penalty the equation (2.8) can be presented as:

8 Predicting Sentiment about Places of Living
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Cost(hθ(x), y) =

{
−log(hθ(x)) + λ‖θ‖2 if y = 1

−log(1− hθ(x)) + λ‖θ‖2 if y = 0
(2.9)

where ‖θ‖2 = θT θ and λ is a parameter to tune the regularization strength, the
bigger the value of λ the regularization degree is higher. Regularization may cause
worse predicting result when choosing an inappropriate λ.

2.2.3 Support Vector Machine

Support Vector Machine is a very useful classification model. Comparing to the regular
linear classification models, it has the advantage of dealing with infinite features dataset.
The most used area of SVM is in Information Retrieval.

The support vector classifier is to find linear boundaries in the input feature space.
As with other linear methods, its procedure can be more flexible by enlarging the
feature space using basis expansions such as polynomials or splines. Generally linear
boundaries in the enlarged space achieve better training-class separation, and translate
to nonlinear boundaries in the original space. Once the basis functions hm(x),m =
1, ...,M are selected, We fit the support vector classifier using input features h(xi) =

(h1(xi), h2(xi), ..., hM (xi)), i = 1, ..., N, and produce the (nonlinear) function ˆf(x) =

h(x)T β̂ + β̂0, where the classifier is Ĝ(x) = sign( ˆf(x)).

The support vector machine classifier is an extension of support vector classifier, where
the dimension of the enlarged space is allowed to get very large, infinite in some cases.
[JL10]

• Kernel Function: Used for computes inner products in the transformed space,
K should be asymmetric positive (semi-) definite function.

K(x, x′) = 〈h(x), h(x′)〉 (2.10)

• SVM polynomial kernel: One of the popular choices for SVM, the kernel func-
tion K is a dth-Degree polynomial function:

K(x, x′) = (1 + 〈x, x′〉)d (2.11)

• SVM rbf kernel: Uses radial basis function as kernel function K:

K(x, x′) = exp(−γ‖(x− x′)‖2) (2.12)

Predicting Sentiment about Places of Living 9
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2.3 Evaluation of Classifiers

Evaluating classifiers is the end phase of the whole process of supervised machine learn-
ing, which tends to measure the performance achieved by a learning algorithm. In a
real-world application of supervised learning, the purpose is to predict examples with-
out known labels through applying the learning models trained with labeled examples.
In contrast, the research needs a set of data with labels for evaluating a classifier exper-
imentally. In this section the main concepts and evaluating methods are introduced:

• The goal of Evaluation: Evaluation of classifiers is typically conducted experi-
mentally rather than analytically. The experimental evaluation of a classifier usu-
ally measures its effectiveness rather tan its efficiency, which means that the ability
of a classifier to take the right classification decisions. Furthermore, there are also
some issues need to be considered, the efficiency of an algorithm, robustness of a
classifier and also the scalability. [Seb02]

• Data set for Evaluation: From section 2.3 introduced there are usually Training
set with marked labels used for training and Test set also with labels independent
on the training set used for the test. Sometimes the training set and test set are
given already. Other times there is only one database contains all training data. In
this case, the whole dataset needs to be divided into two datasets, experimentally
take a certain percentage of data for training set (usually 70% ) , and the left for
testing (usually 30%).[Elk]

Besides these two datasets, validation sets are usually used in some studies. Dur-
ing training models there are always some choices for the user to manipulate the
settings of the parameters of an algorithm, then the results are compared and the
best algorithm with optimized performance is picked for applying on the validation
set. Because the performance which trained on training set is not always consistent
with the result of applying on the validation set. A set of labeled examples which
are used to pick settings of an algorithm is called a validation set. In this case, an
independent test set is also necessary for evaluating classifier.

• Cross Validation: For test dataset, the most studies take use of a certain per-
centage (usually 70%) of the dataset to training models, and the left (30%) are
used as test dataset to examine the performance of classifier experimentally. This
approach is called train-and-test. An alternative way is the k-fold cross-validation,
which is shown in algorithm 1.

The whole dataset M is splitted into k equal parts, each time one part Mi is using
as test data Mtest, the left M \Mi then is used to train classifier, the test dataset
Mi is rotated iteratively as i = 1, 2...k.

If there are n labeled examples available, the largest possible number of folds is
k = n. The special case is called leave-one-out cross-validation(LOOCV). However,
the time complexity of cross-validation is k times that of running the training
algorithm once, so often LOOCV is computationally infeasible. Experimentally
the most common choice for k is 10. [Elk]

10 Predicting Sentiment about Places of Living
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Algorithm 1 Cross Validation

1: procedure CrossValidation(M , SM , k)
2: shuffling the rows of matrix M
3: a := 0
4: b := SM/k
5: for i = 0 to i = k − 1 do
6: Mi := M[a:b]

7: a := b
8: b := b+ b
9: Mtest := Mi

10: Mtrain := M \Mi

11: end for
12: end procedure

Table 2.1: The Utility Matrix of Two-Class Classifier

Expert Prediction

positive negative

Prediction of Classifier
positive tp fp

negative fn tn

• Evaluating methods: There are different methods of measuring classifier’s per-
formance. In [Elk] a measuring method for two possible classes based on four basic
numbers is introduced. The four basic numbers are obtained from applying the
classifier to the test set, which called true positives tp, false positives fp, true neg-
atives tn and false negatives fn. The sum of the four entries tp+fp+ tn+fn = n,
the number of whole test examples.

A utility table is conducted based on these four basic numbers as table 2.3, where
the four numbers in this context have the meanings:

– True positive tp is the number of examples that are predicted as positive by
the classifier, which is consistent with annotation of the expert.

– False positives fp is the number of examples that are predicted as positive
by the classifier, whereas they are not annotated in the positive class by the
expert, which means inconsistent with the real annotation.

– True negative tn is the number of examples that are predicted as negative by
the classifier, which is consistent with annotation from expert.

– False negative fn is similar to fp, is the number of examples that are predicted
as negative by the classifier, which are inconsistent with real annotation of
the expert.

Predicting Sentiment about Places of Living 11
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Depending on the application, many different summary statistics are computed
from these entries. In particular:

– calculating accuracy of the classifier on the whole evaluation dataset:

accuracy =
N(correct classifications)

N(all classifications)
(2.13)

here equals to

accuracy =
(tp+ tn)

n
(2.14)

where n = tp+ tn+ fp+ fn.

– calculating the precision of the classifier :

precision =
tp

(tp+ fp)
(2.15)

– calculating the recall of the classifier:

recall =
tp

(tp+ fn)
(2.16)

– further more measuring the accuracy across the classifier’s decision:

decision =
N(retrieved documents)

N(all documents)
(2.17)

This function is used in [PP10] for document classification, where the classes
are predefined and only retrieved documents are classified. From this point
of view this function is similar like accuracy.

– Examine the impact of the dataset size on the performance of the classification
system using F -measure [MS99]:

F = (1 + β2)
precision · recall
β2 · recall + recall

(2.18)

where β could be set different depending on which results people concerned
more.

2.4 Twitter APIs

Many studies about sentiment analysis have chosen tweets from the platform of Twit-
ter as research subjects, because the tweets are known of the following characteristics.
[GBH09],[PP10],[JYZ+11],[MFH+13], [DWT+14] [VZ15]

• constraints of 140 characters

• expressions are flexible and sometimes without aspects.
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• could be posted everywhere and at any time.

• rich of all sorts of information.

• easy to collect by using TwitterAPI.

This section introduces the Twitter API. For purpose of research, Twitter offers APIs to
access their data for developers. There are Twitter Libraries for different programming
languages, which enable us easily to collect data which are needed from Twitter.

2.4.1 OAuth

Before starting to gather the data from Twitter, the first requirement is to get authen-
tication and authorization.

OAuth is an open protocol to allow secure authorization in a simple and standard method
from web, mobile and desktop applications.2 The OAuth 2.0 authorization framework
makes it possible that the third-party application to obtain limited access to an HTTP
service.

Since OAuth is secure for third-part and compatible with many libraries, Twitter chooses
OAuth to send authorized requests to the Twitter API to access its API.

There are two models for authentication in Twitter:

• User authentication: It is the common way of authentication. The user signed
request both identifies the applications identity and the users access token, which
represents the identity accompanying permissions of the end-user.

• Application-only authentication: A manner of authentication where the ap-
plication makes API requests on its own behalf without a user context. Not all
API methods support this model since some methods require user context. The
methods which support application-only authentication has two rate limits, one is
per user and the other is per app.

2.4.2 Objects

There are four main “Objects” may be encountered in the API: Tweets, Users, Entities
and Places.3

• Tweets: Tweets are messages posted on a user’s page on Twitter, it is the funda-
mentals of Twitter and could be updated to change one status, embedded, replied,
liked, disliked and deleted by user.

• Users: Users could be an individual, an organization, or even an automated sys-
tem. They could tweet, create lists, follow someone or be followed by someone,
mention or be mentioned by any user, moreover each user has a timeline.

2https://oauth.net/
3https://dev.twitter.com/overview/api
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• Entities: Entities provide metadata and additional contextual information about
content posted on Twitter, like hashtags with “#”, media like photos and videos,
user mentions with “@”, and the URLs.

• Places: Places are specific, named locations with corresponding geo-coordinates.
This information is not necessary required fields when tweeting, but it could be
embedded with a tweet.

Each of the “Objects” contains its own fields, which are of different data types. Searching
through setting these fields it is easy to get the needed information.

2.4.3 Connecting APIs

There are two types of APIs offered by Twitter, one is REST APIs, another is Streaming
APIs.

• REST APIs: REST APIs allows user programmatic access to read and write
Twitter data. It identifies Twitter applications and users using OAuth. All the
responses are in JSON format.

• Streaming API: Streaming API offers samples of the public data flowing through
Twitter, it enables monitoring or processing Tweets in real-time. Connecting to a
streaming endpoint Twitter allows for each account only one standard connection,
if the connecting request is sent again from the same account, the old connec-
tion will be released Once the connection is set up between applications and the
streaming endpoint, a feed of Tweets delivered without REST API rate limits.

The Twitter API website offers a list of Twitter libraries of different platforms such as
C, C++, ASP, .NET, Java, Javascript, Objective-C, Perl, PHP, Qt on HTML and so
on, which support Twitter API. Official libraries are built and maintained by Twitter in
Java. There are also a huge amount of libraries working with Python.

2.4.4 Limitations

As previously introduced through the object fields the needed information could be
obtained by setting the query term when connecting Twitter APIs. For example, the
timestamp of a user’s tweet when is published is recorded in Twitter, then this tweet
could be gathered by searching the user at this time point. From this point of view, it
seems to be able to get all the needed useful information. Indeed there is a restriction
not only for connecting REST APIs but also Streaming API.

Twitter official API denied accessing the tweets over one week. It means that the needed
old data could not be gathered but only be collected from now on. That means if some
needed tweets of one query term are of a period of time, the tweets could be only collected
day by day or once a week since now, which costs lots of time.

As a solution, there is an application called “GetOldTweets” offered in GitHub, which
enables us to bypass the problem programmatically. It has two versions one is built in
Java and one is in Python.
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The working principle of “GetOldTweets-python” is similar to the scenario of Twitter
searching on browser. When browsing on Twitter, the page of Twitter is scrollable and
the tweets of the page will be loaded continually along with scrolling down the websites.
These tweets are shown up through calls to a JSON provider at the back-end 4

The “GetOldTweets-python” has three main Components:

• Tweet: A class model contains specific members which enable us to construct
tweet.

• TweetManager: A class with getTweets() method, which manages construct
collected tweets in tweet class model.

• TwitterCriteria: A criteria use for accessing specific informations form tweets, in
which setUsername() query via username is enabled, setSince() and setUntil()

pairs for setting query time, setQuerySearch() for matching any query terms and
setMaxTweets() setting the maximum numbers of Tweets need to be retrieved.

Otherwise “GetOldTweets” also has some weakness, it is unstable and handles errors
by running out of work. So it is essential to supervise it for getting good results and
dataset construction still involves a bit more manual labor.

4https://github.com/drat/GetOldTweets-python
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In this chapter, specifications about dataset are introduced: definition of query terms,
the process of collecting data from Twitter, the problems we meet during this process
and marking classification labels.

3.1 Query Terms

In this thesis, a ranking list from Mercer1 is exploited. This list is a result of a scientific
survey made by Mercer in 2016. 230 cities from different countries are evaluated for
their quality of life. In figure 3.1 the distribution of all cities on ranking list is shown on
the world map.

Since the ranking list has only 230 cities, although the ranking list is regarding various
aspects of living in a city, for the original database, all information of a city are concerned,
thus tweets need to be collected for each city separately and in this thesis they are stored
separately in CSV files.

In section2.2.2 the tool for collecting tweets from Twitter is introduced. Taking use of
the class TwitterCriteria any tweets with the predefined query terms and appropriate
parameters can be accessed. The details about query processing are as following:

• City name: The exact “city name” in ranking list is taken use as our main query
terms.

• Period: In order to make the original data are collected under as much as the
same conditions, we have chosen the same period settings for each city, which is
from 01.09.2015 to 31.08.2016. Because we don’t know how many tweets will be
collected for a year, the collection is processed month by month periodically.

• Query Form: Class TwitterCriteria offers these five methods for us. We use the
definition in list 3.1 for collecting the tweets.

Listing 3.1: GetOldTweets Settings for Collecting Tweets

1 for index in range (230):

2 n = Citylist[index]

3 times = ["2015 -09 -01","2015 -10 -01","2015 -11 -01","2015 -12 -01","

2016 -01 -01","2016 -02 -01","2016 -03 -01","2016 -04 -01","2016 -05 -01

","2016 -06 -01","2016 -07 -01","2016 -08 -01","2016 -09 -01"]

4 tweetCriteria = got3.manager.TweetCriteria ().setQuerySearch(’#’+ n

+" lang:en").setSince(times[i]).setUntil(times[i+1]).

setMaxTweets (100000)

1https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html
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city ranking on world map

Figure 3.1: Distribution of Cities on Ranking List. The blue points show the cities on
top of the ranking list, which means the place is good for living, the bluer the
better, whereas the red points present the cities on the bottom of the ranking
list, the redder the worse of the place for living. The cities with positive
sentiment for living are most in Europe and north American, whereas the
cities with positive sentiment for living are most in west Africa.

In list 3.1 the collection criteria is set, taking city Vienna as an example, the
settings are as following:

– n presents one city name in Citylist, which is a list of 230 city names. Here
the city name “Vienna” is given, where n is Vienna.

– setQuerySearch() is for setting the query term. “#Vienna lang:en” is the
query term where using hashtag “#” plus city name “Vienna” like “#Vienna”,
and “lang:en” means that only tweets in English are searched.
Then setQuerySearch(#Vienna lang:en) is set.

Defining the query term in the form with hashtag enlarges the collection
range of all tweets referred to the city, but not only the city name showed
up in tweets. Since English is the worldwide languages comparing to other
languages, using this language as searching language has two advantages, one
is the guarantee to get tweets of the query term as most as possible, another
is text form in English is easy to dealing in natural language processing.

– setSince() and setUntil() are for setting collecting period. From times

list the timestamp is taken used for presenting period of collection, which is
set month by month iteratively.

– setMaxTweets(100000) means that each time maximum 100,000 tweets are
allowed to be by collected.
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During the process of collecting tweets some limitations are encountered:

• Before using this application to collect tweets a connection must be set up with
Twitter server first, sometimes the connection is limited or interrupted during the
process, so it makes the collecting progress slowly.

• Some cities’ mother tongue is English, such as “Chicago”, “London”, “New York
City”, so the tweets of these cities are much more than other cities, in this case
the maximum tweets setting has priority than time setting, so we increased the
limitation of maximum settings.

• Some city names has more than two words, like “New York City”, there is space
between two words, but inhabit people sometimes forget to type the space while
tweeting, due to this reason we have collected for these cities twice by using
“NewYorkCity”.

• Some cities with English name, but people used to tweet with city name in mother
language. For example “Ashkhabad”is English name of the city, but people living
there often use “Ashgabat”. City like “Bandar Seri Begawan”, formerly called
Brunei Town and people in the city used to tweet with name “BSB” or others.
These problems cause the collecting work difficult and the less than 200 of tweets
have been collected over one year for these cities.

3.2 Data Selection

The last section describes the collection of tweets using GetOldTweets in Python. Through
this method tweets for each of 230 cities between the period from 01.09.2015 to 31.08.2016
are all collected. As a result, the city with most tweets is Toronto, with 1,259,569 tweets,
and the city with least tweets is Jilin with 154 tweets.

Figure 3.2 shows the distribution of the number of all cities related with the loge number
of collected tweets. From this histogram, it could be find that the most density part is
distributed in the interval from 8 to 12, which means round 154 to 15,000 tweets, and
there are round 30 cities stand between 12 and 13 corresponding from 15,000 tweets to
40,000 tweets, and round 12 cities are with more than 40,000 tweets.

As introduced in section 2.4 GetOldTweets enables us to collect tweets with these 10
fields: username, date, retweets, favorites, text, geo, mentions, hashtags, id and perma-
link. Thus the structure of collected tweets which stored in a CSV file are shown in table
3.1.

Based on the collected tweets the work turns to focusing on data selection. In order to
select the most proper data for training our classifier, the most same amount of tweets
is needed to be chosen as the training data,

We have compared the cities with most tweets and least tweets. Table3.3 and table3.2
show the ranking of the top 10 cities with most tweets and the last 10 cities with least
collected tweets.
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Figure 3.2: Distribution of Cities with Tweets

Table 3.2: City List of Least Tweets

City Name Tweets
No.

1 Jilin 154

2 Bandar Seri Begawan 169

3 Pointe-a-Pitre 204

4 Nouakchott 377

5 Ashkhabad 388

6 Port Louis 429

7 Niamey 432

8 Banjul 448

9 Phnom Penh 449

10 Antananarivo 583

Table 3.3: City List of Most Tweets

City Name Tweets
No.

1 Toronto 1,259,569

2 Chicago 903,891

3 Paris 857,485

4 Boston 838,170

5 Houston 719,694

6 Detroit 669,845

7 Miami 652,859

8 Dallas 597,571

9 Los Angeles 581,043

10 Atlanta 574,897

The difference between the number of tweets in city Toronto and in Jilin is more than
1,259,000 tweets. Facing this unbalance of data we have compared the distribution of
all cities and made the decision that choosing 5,000 tweets from each city files randomly
as our basic data set.

After random selection of data the distribution of selected tweets is shown in figure 3.3,
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Table 3.4: City List of Least Selected Tweets

City Name Tweets
No.

Jilin 152

Bandar Seri Begawan 167

Pointe-a-Pitre 202

Nouakchott 375

Ashkhabad 386

Port Louis 427

Niamey 430

Banjul 446

Phnom Penh 447

Antananarivo 581

Lome 646

Shenyang 652

Noumea 707

Cotonou 745

Conakry 844

Dushanbe 853

San Salvador 1019

Tegucigalpa 1043

Port of Spain 1068

Libreville 1087

Blantyre 1090

Asuncion 1153

Nurnberg 1179

Gaborone 1300

Managua 1519

Yaounde 1624

Guatemala City 1681

Tashkent 1681

N’Djamena 1720

City Name Tweets
No.

Bishkek 1729

Douala 1729

Brazzaville 1732

Manaus 1779

Qingdao 1897

Vientiane 1978

Luanda 2036

Taichung 2126

Maputo 2216

Bangui 2241

Ouagadougou 2320

Khartoum 2390

Jeddah 2402

Johor Bahru 2484

Abidjan 2908

Dares Salaam 3100

Kuwait City 3285

Lusaka 3294

Windhoek 3328

Algiers 3729

Kinshasa 3881

Tirana 4141

Almaty 4276

Montevideo 4665

Skopje 4668

La Paz 4701

Chengdu 4779

Ho Chi Minh City 4889
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Figure 3.3: Distribution of Cities of Selected Tweets

in which more than 160 cities are with 5,000 tweets, whereas round 60 cities with less
than 5,000 tweets as shown in table 3.4.

3.3 Classification Labels

In this study, the aim is to predict sentiment of places for living through building a
classifier based on a ranking list of cities. Before machine learning, the dataset needs to
be labeled first. The step of defining labels is described as following:

• First, binary classification is chosen in the thesis. The sentiment analysis is regard-
ing positive sentiment, negative sentiment and in some studies also have neutral
sentiment. In this thesis, the ranking list of Mercer is taken use for labeling. It
contains 230 cities, in which each city has a ranking number, the first city is at the
first place good for living and so on until the 230th city is at the first place not
good for living. In this case, it is really hard to set a line to define which cities are
of neutral sentiment. Moreover, for two-class classification problem, it is relatively
easy to learning by using binary class classification.

• Second, the binary “1” is defined for positive sentiment and “0” is for the negative
sentiment of living in a place. From the ranking list the first 115 cities are marked
for positive sentiment, and the left 115 cities are marked for negative sentiment.
Table 3.5 shows a part of the ranking list with labels.
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Table 3.5: Ranking List with label

Ranking City Name Country Name Label

1 Vienna Austria 1

2 Zurich Switzerland 1

3 Auckland New Zealand 1

4 Munich Germany 1

5 Vancouver Canada 1

6 Dusseldorf Germany 1

7 Frankfurt Germany 1

8 Geneva Switzerland 1

9 Copenhagen Denmark 1

10 Sydney Australia 1

11 Amsterdam Netherlands 1

12 Wellington New Zealand 1

13 Berlin Germany 1

14 Bern Switzerland 1

15 Toronto Canada 1

15 Melbourne Australia 1

...
...

... 1

115 Sofia Bulgaria 1

116 Rabat Morocco 0

...
...

... 0

215 Ouagadougou Burkina Faso 0

216 Tripoli Libya 0

217 Niamey Niger 0

218 Antananarivo Madagascar 0

219 Bamako Mali 0

220 Nouakchott Mauritania 0

221 Conakry Guinea 0

222 Kinshasa Congo, Democratic Republic of 0

223 Brazzaville Congo, Republic of 0

224 Damascus Syria 0

225 N’Djamena Chad 0

226 Khartoum Sudan 0

227 Port-au-Prince Haiti 0

228 Sana’a Yemen 0
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Table 3.5: Ranking List with label

Ranking City Name Country Name Label

229 Bangui Central African Republic 0

230 Baghdad Iraq 0
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4 Methodology

This chapter introduces the methodology of the thesis. An overview of a general ma-
chine learning process is described first and the concrete approaches for this thesis are
presented specifically.

4.1 Workflow

The main concepts of machine learning and classification are introduced in chapter 2,
now the aim is to present the learning process.

Automatic Class 
Prediction

Generating 
Dataset Evaluation

Figure 4.1: General Flowchart of Machine Learning

Figure 4.1 shows a general flowchart of a machine learning process. This flowchart
contains three main steps:

• Generating Dataset: In this thesis the basic idea is making use one of the
ranking list. We take use of a certain percentage (usually 70%) of the ranking
information of the cities contributing to training data set. These cities are selected
randomly. Regarding the distribution of the cities in the ranking list, one possible
way to choose the training dataset and test dataset is that partitioning the cities
of the list one by one to different data sets, which means that the first three good
city to the training set, and the fourth good city to test set and so on.

Based on the list of cities which are already selected as a training set, the training
data of each city is tend to be collect through the Twitter API. After finishing
collection of the data, the data for classification needs to be processed for preparing
to train, where the most important are referred as cleaning data:

– dealing with the stopwords, punctuations, emoticons.

– dealing with the multimedia data, like URL, Graphics and so on.

– dealing with redundant data, like Retweets.
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• Automatic Class Prediction: With the goal of categorizing whether the quality
of life in a city is good for living or not, one possible method is to create two
classes namely positive sentiments and negative sentiments. Furthermore, in order
to create a ranker a class of neutral sentiments could be added.

In the feature extraction phase which machine learning model is of the best result
and the features for improving the model need to be analyzed. In the context
of text classification problems, through analyzing the relation between words, the
n-gram method, bag of words method, term frequencyinverse document frequency
method could be chosen to implement.

In the classification phase based on the existed studies, linear classifier such as
logistic regression classifier, naive bayens, SVM and the maximum entropy all
have their own advantages for text classification, in addition nonlinear classifier
such as boosting also have good performance. So to categorize the data a range of
classifiers could be chosen to training model so that a proper classifier is obtained.

• Evaluation: At first the data of the cities which are selected as test set is in-
troduced. In the thesis, this data is used for evaluating the classifier. Actually
this test data set is already labeled, but we consider them as “unlabeled” first.
After applying the classifier on this data, the result will be taken to compare with
these already known labels, so that we could easily evaluate the accuracy of the
classifier.

There are different ways of measuring classifier’s performance, which based on the
four basic numbers obtained from applying the classifier to the test set. (sec-
tion 2.3) In this thesis the accuracy and the variance of each classifier have been
compared.

4.2 Machine Learning Approaches

In section 4.1, the workflow of a general machine learning process has been discussed.
Through combining the specifications of the dataset, the working process for generating
a classifier to predict sentiment of a living place is improved.

As shown above figure 4.2 presents an overview of the predicting system. Matching to
procedures shown in figure4.1, the three phases can be divided as flowing:

• Tweets about city information are collected and stored in CSV files. The details of
collection process is already described in chapter3. Thus the processes of generating
a dataset from Tweets are as following:

– reading the CSV files from dataset to Dataset 1, where the information of
tweets are selected and structured and be loaded in a dictionary form.

– linguistic processing the data from Dataset 1 and then loading the tweets into
Dataset 2, in which the tweets need to be tokenized.

• For automatic predicting phase, it contains the stages of preparing data, extracting
features, training models and predicting data.
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Figure 4.2: System Overview

– preparing data stage takes charge of cleaning data, which means the redun-
dant data, useful less information will be deleted, and on the linguistic level,
the corpus will be generated. This process is combined with feature extrac-
tion.

– extracting features process is important for training data, there are many
methods of natural language processing method for extracting features, the
most common way is to calculate the occurrence of the words which means
using bag-of-words method or n-gram method.

– training models is the key step for creating a classifier. Based on different
data specifications various of algorithms could be applied to the training data.
In this thesis SVM classifier and logistic regression classifier are chosen for
training models.

– predicting data is through fitting the already trained model to the test dataset
to see the predicting result. Based on the results the baseline could be defined
by comparing the performance of each classifier.

• Evaluation phase is not only the phase which aims to evaluate the classifier, but
also to improve the performance of the classifier. To improve the performance of
classifier this phase are not executed singly but with three other steps together,
from the executing level these steps sometimes are not executed repeatedly:

– performing classifier to predict the class of test data, evaluating the perfor-
mance of the classifier through parameters like accuracy, deviation of the
classifier etc.

– electing useful feature information, adding or deleting some features are nec-
essary, in another word it is a stage of feature engineering, the correlations
between each features are observed and the feature weights need to be ana-
lyzed, some features are improved and collected based on common knowledge.
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– retraining the classification model with new features.

There are many program languages and corresponding libraries could be used to im-
plement the system, but considering the convenient and flexibility for processing data
of text form and languages, Python has been chosen as the main program language, in
additions there are also much more specific packages available in Python for the realm
of machine learning.
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Specific methodology of creating the classifier of the study have been presented in chapter
4, this chapter aims to introduce the implementation details and the problems during
building this classifier for predicting the sentiment of a place of living.

5.1 Preprocessing

In data collecting process the database has been already constructed, in which the form
is as introduced in CSV files. Now the need is to generate the dataset of the study.
The methodology of generating dataset has been presented in section 4.2 and now the
implementation of generating dataset in the study will be introduced.

As table 3.1 shown in section 3.1 all collected tweets are stored with these information in
a CSV file. The city list contains 230 cities, which means there are 230 CSV files in the
database. Now how to generate data set from these CSV files preparing for automatic
predicting, the processes are shown in figure 5.1.

London
Stuttgart
(csv files)

Dictionary  of all Cities

Vienna

Zurich

Auckland

Munich

...

...

...

Bangui

Baghdad

List of Tweets

Auckland

Zurich

Vienna

tweet 1

tweet 2

tweet 3

tweet 4

… … 

tweet 5000
tweet 4999

1

1

1

1

1

1

0

0

0

Label
tweet 3

tweet 2

tweet 1

date
text
username
mentions
hashtag
id
mentions

token

 … 

token

token

List of Tokens

tokenization

Figure 5.1: Overview of Data Processing

• Loading all tweets from csv files into a organized form: At first with aim
to load all information of all tweets of all city files into one processable data form
a tweet class is designed. The diagram of Class Tweet is shown in figure 5.2. It
contains:
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– Class members: date, text, username, mentions, id, hashtags, links and
list of tokens and tags.

– Class methods: load tweets() which used to load the tweets from CSV
files, load tweet tokens() used to load the tokens of text of tweet into list
tokens .

• Tokenization the text of each tweet: Since this work focuses on analyzing the
tweets with sentiment and the tweet has its own characteristics, the tokenization
process is implemented separately by using Tweet NLP1.

Tweet NLP is a specific tool for natural language processing of tweets, in which the
emoticons could be recognized so that the sentiment information will not be lost,
whereas they usually be recognized as normal punctuations by general tokenization.
Furthermore through applying Tweet NLP for tokenization process, the POS tags
are also generated for each token.

Tweet

date: string
text: string
username: string
mentions: string
id: string
hashtags: string
links: string
tokens: list
tags: list

load_tweets ()
load_tweet_tokens ()

Figure 5.2: Class Diagram of Tweet

Table 5.1 shows the structure of tokens of tweets. The abbreviations of Part of
Speech tags of Tweet NLP which particularly mark for tweets are as shown in table
5.2

• Loading all tokens into a list: Object Tweet contains two members tokens

and tags, using load tweet tokens() method the tokens of each tweet could be
loaded into a list, thus for city with 5,000 tweets means 5,000 lists of tokens are
loads for the city.

• Generating dataset: Aims to prepare training data for next step, as introduced
in chapter4, the training dataset is a dataset with labels. How the labels for
each city marked is already described in section3.3, the labels of all 230 cities are
presented as a vector. Then We need to create a matrix to match the tweets of all
cities with the vector of city labels, these are done with the extraction of features.

1 http://www.ark.cs.cmu.edu/TweetNLP/
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Table 5.1: Example of Tokenization Tweet

Text of Tweet Tokens POS tags

#receptionist #jobs Clerical
Receptionist: Before applying
for this job, it is important
that you re... http://
bit.ly/1R8n7l0 #Aberdeen

#receptionist #

#jobs #

Clerical A

Receptionist N

: ,

Before P

applying V

for P

this D

job N

, ,

it O

is V

important A

that P

you O

re V

... ,

http:// U

bit.ly/1R8n7l0 U

#Aberdeen #

5.2 Automatic Class Prediction

Automatic class prediction phase always cooperates with Evaluation phase together.
This part of processing includes many possibilities, the executed processes in this work
will be introduced. The whole Evaluation phase will be introduced separately in chapter
6 with analysis.
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Table 5.2: Twitter Part-of-Speech Tagging

Type Tag Annotation

Nominal N common noun

O pronoun (personal/WH; not possessive)

ˆ proper noun

S nominal + possessive

Z proper noun + possessive

Other open-class words V verb incl. copula, auxiliaries

A adjective

R adverb

! interjection

Other closed-class words D determiner

P pre- or postposition, or subordinating con-
junction

& coordinating conjunction

T verb particle

X existential there, predeterminers

Twitter/online-specific # hashtag (indicates topic/category for tweet)

@ at-mention (indicates another user as a recip-
ient of a tweet)

˜ discourse marker, indications of continuation
of a message across multiple tweets

U URL or email address

E emoticon

Miscellaneous $ numeral

, punctuation

G other abbreviations, foreign words, possessive
endings, symbols, garbage

Other compounds L nominal + verbal (e.g. im), verbal + nominal
(lets, lemme)

M proper noun + verbal

Y X + verbal
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Table 5.3: Principle of Creating Matrix

featu
re

1

featu
re

2

featu
re

3

featu
re

4

featu
re

5

. . . fea
tu

re
k
−

1

featu
re
k

tweet1 1 2 3 4 3 . . . 0 0

tweet2 0 15 0 1 0 . . . 0 0
...

...
...

...
...

...
...

...
...

tweetn 1 0 3 4 3 . . . 0 0

5.2.1 Feature Extraction

In section 4.2 the process of automatic predicting is described. Feature extraction is
one of the most important parts of the whole classification processing. In this process
extracting the features from the text and preparing the data for training is needed.

Since how the features will impact on classifying is unknown, at the beginning a feature
list is generated with the aim to keep the original information as most as possible, thus
the bag-of-words model is used, choosing all tokens of the dataset as features, which is of
1,943,828 dimensions. Then the count of occurrence of each token in a city file composes
the original matrix for predicting like table 5.3.

For generating the data matrix DictVectorizer which imported from library
sklearn.feature extraction is exploited, in which a sparse matrix for each city is
created. In order to match the matrix with the labels, the matrix of each city have been
zipped into one vector using sparse.vstack() method.

Furthermore, the classifier has been improved by using improved features base on analysis
of feature weights of logistic regression model. For the improvement, these features have
been used for first step:

• Cityname: The city names of Mercer ranking list is taken use again. Since the
tweets are collected city by city and using the query term of the city name, so for
each city the city name is a domain feature impact the classification, so they need
to be removed.

• Stopwords and Punctuations: There is an existed English stopwords list from
library NLTK2, which contains 127 stopwords. Before using this word list it need
to be download first and then is useful by importing wordpunct tokenize from
library nltk.tokenize.

2www.nltk.org
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Table 5.4: Sentiment Wordlist Examples

Sentiment Word Examples

positive wonder,warm,welcome,trendy,succes

negative threaten, thumb-down,trash,unclean,unlucky

Meanwhiles all punctuations are removed by checking POS tags of each token. As
described in section 5.1, the tokenization processing has already tagged all tokens
with Part of Speech Tags, in which the tag with “.” means that the token is a
punctuation.

• Lowercase: Since the tokenization processing is not case sensitive, there are many
features of same words but in different case. To solve this problem all tokens are
converted into lowercase.

For feature engineering, in order to see how features impact the classification, the fol-
lowing attempts for improving features are presented as second step:

• URLs: All appeared URLs in tweets are considered as a whole entity. Since the
links are tokenized by tagging with “U”, all URLs are removed through taking use
of the POS tags.

• Hashtags: Since the query terms are combined with hashtags, with the aim to see
the influence of hashtags, POS tag “#” is taken used to remove all tokens with
Hashtag.

• Country names: Since the country names often appear on both top and last 100
feature weight list, in order to avoid over weighted on these features the country
names need to be removed. Removing the tokens with country name We exploit
country list of ISO 31663, in which contains 249 countries.

5.2.2 Sentiment Analysis

In order to further improve the model, sentiment word list4 is imported for sentiment
analysis. This sentiment word list consists of two parts, one is word list of positive
sentiment, which contains 2,006 words, the other is word list of negative sentiment,
which contains 4,783 words.

The occurrence of positive words and the occurrence of negative words are counted for
each city file, so that feature space can be extended with count(positive words) and
count(negative words), furthermore the combination of these two features are extended:
count(positive words − negative words) and count(positive words/negative words). The
reason why a combination of the two counts is added as extended feature is to solve
the problem that the same feature weight of p and n working on different tweets may

3http://www.iso.org/iso/home/standards/country_codes.htm
4https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
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Table 5.5: Sentiment Features Examples

Tweet counts of counts of p-n p/n

p-words n-words

We love this pretty blue embroidered
dress worn by WendyNguyen in Paris !

2 0 2 none

The Bia in light natural tan, looking beau-
tiful on a photoshoot in Stockholm! stock-
holm

0 0 0 none

The frozen Northeast China.. travel jilin
dongbei china

0 1 -1 0

No reason to be bored this week in Shen-
zhen

0 1 -1 0

influence to the classification differently. Since the logistic regression classifier is linear,
each feature is added together for training models, in this case, the p/n can keep the
relation between positive counts p and negative counts n the same.

Table 5.5 shows examples of counting the sentiment words of a single tweet, where
four tweets of different cities are shown up. Since tweet has limited of 140 characters,
each tweet is short and sometimes contains only one sentiment, which may cause the
problems:

• the value of p − n may be as same as p or −n, which in context of using linear
logistic regression classifier contributes almost the same as feature p or n.

• no value of p/n is calculated or p/n = 0, thus the feature of sentiment words is
counted in city.

5.2.3 Logistic Regression

Nowadays there are many libraries offering tools for classification. Scikit-learn is a
particular library for machine learning in Python, it offers simple and efficient tools for
data mining and data analysis, especially it is accessible to everybody, and it is reusable
in various contexts, open source and very popular. Thus the library of scikit-learn.org5

is taken use for the thesis.

Logistic regression classifier is taken use for this work since it has outperform result for
text classification. To avoid overfitting there are also L1 and L2 regularization method
for turning the parameters. The class LogisticRegression is first imported from library
sklearn.linear model.

For training the classification model, these steps are executed:

5http://scikit-learn.org
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• Creating an object of the class:
logistic = linear model.LogisticRegression(C=1e5), where parameter
C=100000.0 is set for L2 regularization.

• Creating the model by training each fold of training dataset:
logistic.fit(city X train, city y train), where city X train is the train-
ing dataset of each fold, and city y trai is the corresponding label set. By
learning these data the logistic regression model is trained.

• Using the classifier to predict data: logistic.predict(city X test), where
city X test is each fold of test dataset. By predicting the test data the perfor-
mance of the classifier could be measured.

As a result the classifier is trained as the baseline of the study.
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In this chapter, the experimental setup of the system is described. The evaluation of the
classifier is tested, especially for logistic regression model and SVM model. On the basis
of the baseline, attempts to enhance the performance of the classification are done, while
features of the training dataset are improved through the analysis of feature weights of
each model.

6.1 Cross-validation

In chapter 3 how data in the thesis are collected from Twitter is presented. Since
there are only 230 labeled examples available for both training and testing classifier, the
dilemma that all the examples are needed for training dataset, on the other hand, all
examples are necessary for the testing dataset is faced. The solution is to use cross-
validation, which is described in section 2.3.

In this thesis Mercer ranking list has 230 cities, so the Matrix M contains 230 rows, the
study does 10 splits, where k = 10 leading to fold size 23 (230/10 = 23) rows, while
the left 207 rows are used to train the classifier. Since the ranking list of Mercer is
in an order and so is the whole dataset, to ensure the labeled examples are randomly
distributed in each training set and testing set, the order of the matrix have been messed
up before applying the algorithm.

Table A.1 shows the city list for testing the classifier of each fold. As Using cross-
validation each fold devotes for testing data, and the left 90% of data devote to training
classifier.

6.2 Evaluation

In the thesis, average accuracy score is used as an evaluation method of the classifier. For
each fold dataset of applying a classifier is scored and the performance of this classifier
by calculating average value of these 10 scores is measured.

6.2.1 Baseline

The logistic regression model and SVM are introduced in chapter 2, both of them show
the advantages of handling text classification. Since many studies present the SVM and
logistic regression have the outperform of other classifiers in text categorization, which
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is introduced in section 7.3. In the thesis, these two types of classifiers are chosen for
training the models firstly.

Table 6.1: Logistic Regression vs SVM Classifiers

Logistic SVM SVM SVM

Regression linear polynomial rbf

Average Score 0.795652 0.7391303 0.7260868 0.6086954

Variance 0.009849 0.011342 0.003800 0.004915

Table 6.1 shows the comparison of the results of applying logistic regression classifier
and the SVM classifier to training data. The average score reflects the accuracy of a
classifier. We calculate the accuracy for each classifier 10 times, and then the mean value
as the average score is gained.

The results of all SVM classifiers are worse than logistic regression classifier with 0.795652.
Based on the analysis of SVM in existed studies, the reason may be caused by the high
dimensions of extracted features (1,943,828) than the labeled examples (230).

At the end, the result of applying logistic regression classifier on original dataset have
been chosen as Baseline.

6.2.2 Improving Baseline

Based on the baseline the features and the performance of the classifier have been im-
proved. Relying on the analysis of features introduced in section 5.2.1 the following steps
are then processed on the original dataset:

• Removing City names

• Removing Stopwords

• Converting all words to lowercase

These steps are first implemented individually, then the compositions of each condition
are further implemented.

The table 6.2.2 shows the improved average score of the classifier for combining with each
condition. For individual conditions, the result of logistic regression classifier working
with out city name improved the baseline, which gets the best with 0.834782, whereas
the classifier without stop words shows worst result at 0.769565 which decreases the
baseline. It seems that the Stop words plays an insignificant role.

For the combination of the conditions, the best improved result of 0.873913 are gained
when the classifier work with the combination of the dataset without city names, stop
words and also converted into lowercase, and the deviation of this combination is also
relatively stable. In contrast the classifier works without stop words and with all tokens in
lowercase most unstable and its average score is the worst at 0.743478 of all combinations
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Table 6.2: Comparision of the Performance of the Classifiers

Logistic Regression Classifier in Conditions Avarage Score Variance

0 Baseline 0.795652 0.009849

1 No Cityname 0.834782 0.005974

2 In Lowercase 0.791304 0.007486

3 No Stopwords 0.769565 0.010605

4 In Lowercase and No Cityname 0.839130 0.004934

5 No Cityname and Stopwords 0.847826 0.008034

6 In Lowercase and No Stopwords 0.743478 0.010605

7 No Cityname and No Stopwords in Lowercase 0.873913 0.006975

which are also under baseline. Both features of removing stop words and using lowercase
combining with removing city names have increased the performance of singly using the
feature without city name.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Fold
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Comparison of Scores by Fold under Different Conditions

Baseline
No Citynames
No Stopwords
In Lowercase
No Citynames and No Stopwords
No Citynames in Lowercase
No Stopwords in Lowercase
No Citynames and No Stopwords in Lowercase

Figure 6.1: Scores of Logistic Regression Classifiers by Fold under Different Conditions
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Figure 6.1 shows the accuracy scores of logistic regression classifier for each fold coop-
erated with all conditions showed in the legend box. From figure 6.1 it could be seen
that the accuracy scores of different classifiers applying on the same fold of dataset have
a similar trend. For example, all classifiers work well for the 9th fold dataset with the
score round 0.9 and obviously work badly for the data of 1st fold.

6.2.3 Sentiment Analysis Result

In section 5.2.2 the sentiment analysis is discussed. By extending the sentiment analysis
features with logistic regression, the following results are obtained.

• Table 6.3 shows the result of using single features of sentiment word list applying
to the original dataset. This attempt uses only the p− n as combination features,
it could be seen that average scores of using p, n and p−n as a single feature with
logistic regression classifier has decreased the baseline score, where only using the
counts of negative words as one feature with the worst result at 0.539130. Using a
combination of p−n has the highest scores but is only slightly increased the score
of other combinations to 0.713043.

Table 6.3: Result Table of LR Model with Sentiment Analysis Feature

Baseline p-words n-words p-n words average scores
√

0.795652
√

0.630435
√

0.539130
√

0.713043
√ √

0.708696
√ √ √

0.708696

Specially the result of using p and n is as same as the composition of p, n, p− n,
which is consistent with the analysis that p − n may not a proper combination
way of the two basic features in logistic regression model. In this case, the feature
combination of p/n is extended instead of p− n for further improvement.

• Table 6.4 shows the result of improving the extra features of sentiment analysis on
the improved baseline. The best result is using p/n at 0.865217 which also declined
the improved baseline slightly. Combining all possible features with max abs scale
the result is stable at 0.856522.

6.2.4 Feature Engineering

Based on the best result by improving the baseline, many further attempts are made
with the goal of further improving the classifier, as described in section 5.2.1.
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Table 6.4: Result Table of Using Sentiment Analysis Based On Improved Baseline

nocn sw lc p-words n-words p-n words p/n words maxabs scale average
scores

√
0.873913

√ √
0.847826

√ √
0.847826

√ √
0.856522

√ √
0.865217

√ √ √
0.847826

√ √ √ √
0.843478

√ √
0.856522

√ √ √
0.856522

√ √ √
0.856522

√ √ √
0.856522

√ √ √
0.856522

Table 6.5 shows part of the results of the accuracy score of the logistic regression classifier
under variance conditions and the combinations of them.

“B” is the abbreviation of baseline and this row shows the score of baseline gained
through the original data set. The first combination with “no cn sw lw” is the best
result of improved baseline, in which the tokens are without city names, without stop
words and in lower case. The abbreviations of each condition are shown in table6.6.

Table 6.5: Best Result under Conditions Based on Best Baseline

no
cn
sw
lc

no
url

no
hash-
tag

no
coun-
try
name

p-
words

n-
words

p/n
words

maxabs
scale

average
scores

B 0.795652

0
√

0.873913

1
√ √

0.821739

2
√ √ √

0.821739

3
√ √ √ √ √ √

0.873913

4
√ √ √ √ √

0.830435
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Table 6.5: Best Result under Conditions Based on Best Baseline

no
cn
sw
lc

no
url

no
hash-
tag

no
coun-
try
name

p-
words

n-
words

p/n
words

maxabs
scale

average
scores

5
√ √ √ √

0.873913

6
√ √ √

0.830435

7
√ √ √ √

0.873913

8
√ √ √

0.830435

9
√ √ √ √

0.873913

10
√ √ √

0.834783

11
√ √ √ √ √

0.873913

12
√ √ √ √

0.830435

13
√ √ √ √ √

0.873913

14
√ √ √ √

0.830435

15
√ √

0.856522

16
√ √ √

0.856522

17
√ √ √ √ √ √

0.856522

18
√ √ √ √ √

0.847826

19
√ √ √ √

0.856522

20
√ √ √

0.865217

21
√ √ √ √

0.856522

22
√ √ √

0.856522

23
√ √ √ √

0.856522

24
√ √ √

0.856522

From table A.6 it is trivial to find that all combinations have better results than base-
line. But no better score are obtained than the already improved best result. In spite of
the influence of sentiment analysis features with scaling, the highest score is as same as
the best results at 0.873913, which with combinations of the improved baseline without
URLs. Since the analysis in section 5.2.2 the improved baseline with sentiment features
with scaling shows the stable result of 0.856522, from this point of view the feature with-
out URLs has improved the performance slightly. Comparing the results of combining
the features singly with improved baseline and keep the matrix scaling, removing the

44 Predicting Sentiment about Places of Living



6 Experiments Setup and Evaluation

Table 6.6: Conditions for Further Improvement LR Model

Abbreviation Condition Name

no url removing the tokens with url

no hashtag removing all the tokens with hashtags.

no country name removing all possible country name from a country name
list.

p-words adding counts of occurence of positive words.

n-words adding counts of occurence of negative words.

p/n-words adding percentage of counts of occurence of positive words
to negative words.

country names and removing hashtags both have the same score at 0.856522, which is
better than just removing URLs at 0.821739.

Feature Weights Analysis

After training logistic regression model on the original dataset, the feature weights are
analyzed based on tables A.2 and A.3 in Appendix. These two tables present the top
100 features of positive weights and top 100 features of negative weights after applying
the classifier on 10th-fold of the training set.

Figure 6.2: Top Features Weights of LR Models

Figure 6.2 shows a snapshot of tables A.2 and A.3, on which some significants are
marked:

• The city name “#bandarseribegawan” and “#BandarSeriBegawan” both have high
positive feature weights, but they are only different with capitals. Similar to this
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characteristics there are “#brunei”, “#Brunei” and “Brunei”, “#Nurnberg” and
“#nurnberg”,“#noumea”,“#Noumea”and “Noumea”.

• The city names is a significant characteristic dominating in the top features list.
“#Changchun”,“#jakarta” and “#PortOfSpain” are all of the ranking list.

Table 6.7 shows the analysis of the feature weights. The feature characteristics of these
200 features are summarized as following: First more than half of the samples are city
names some are with hashtags some not, and without considering the Capital form;
Second 10% of the samples has shown up the same features but in different forms, some
with capital and some in lower case; Third the frequency that the country name is shown
up for 5% of all samples.

Table 6.7: Comparison the Feature Weights of Logistic Regression Model

Feature character-
istics

Top 100 features
with positive

weights

Top 100 features
with negative

weights

City names 54 52

Stop words 5 2

punctuations 2 3

lower cases 10 12

links 2 2

special charactor 4 2

Country names 5 4

Relying on the comparison of the features, the feature extraction process has been im-
proved by removing the features of city names, removing the stop words using English
stopwords list extension with punctuations together, while all the tokens are used in
lower cases. After these works, the feature space is reduced from 1,943,828 to 1,802,722.
The performance of the classifier on training this dataset has been obviously improved.

Further analysis is made based on tables A.4 and A.5, where the snapshot are shown in
figure 6.3 These two tables show the top 100 and last 100 feature weights of the improved
logistic regression model. The comparison of these features is shown in table 6.8.

Figure 6.3 shows a snapshot of tables A.4 and A.5, on which some significants are
marked:

• The number of city names are reduced obviously.

• More features are country names like “#brazil”, “#indonesia”, “#peru”, “#alba-
nia”, “#ecuador”, “#belgium”, “#pakistan” and so on.

• “#explosion”and “explosion” both have high negative feature weights, but the
difference is only a hashtag “#”. Similarly is “#panama” and “panama”.
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Figure 6.3: Top Features Weights of Improved LR Models

• Some interesting features are shown up such as “#jobs” “#airquality”, “#airpollu-
tion” with positive feature weights, and “explosion” with negative feature weights.
Further more some adjectives are shown up in the top feature list.

• Some city names still are shown up but without hashhtag, like “noumea”,“brussels”
and “jakarta”.

Table 6.8: Comparison the Feature Weights of Best Improved LR Model

Feature character-
istics

Top 100 features
with positive

weights

Top 100 features
with negative

weights

City names 16 12

City names with # 4 1

Stop words 0 0

punctuations 0 1

lower cases 0 0

links 2 2

special charactor 8 3

Country names 12 24

In spite of the reduced features space, the conditions for analyzing feature weights are
all the same, these features are analyzed based on the 10th-fold training dataset and the
top 100 features with positive weights and 100 with negative weights.

From table 6.8 it is shown that the city names are still in the top feature list but not
the unique dominate characteristic anymore, whereas more country names appeared in
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the list. The stop words, punctuations are almost removed.

Correlation between features and living standard sentiment

By analyzing the features of the top 100 positive feature weights and top 100 nega-
tive feature weights of applying improved classifier on 1st fold dataset, table 6.11 is
constructed.

Despite the summarized characteristics of these features (country names, city names,
links and special characters) 30 features are selected and shown in table 6.11. These
features include nouns, adjectives, adverbs and some with hashtags.

Based on table 6.11 an analysis of the aspects of the living standard which impact model
to associate positive sentiment or negative sentiment of living is provided. The following
issues are summarized:

Table 6.9: Interference Features

Sentiment Feature Name

positive attacks pollution bad #airpollution

negative good

• As shown in table 6.9, some of the features that indicated positive sentiment in
natural language is associated with negative weight, this is probably due to noise
in the collected data, but further study or larger dataset would be required for
more in-depth investigation.

• A categorization exercises are performed to group most positive features and most
negative features from table 6.11 into various aspects of the living standard. This
is shown in table 6.10. This illustrates how the model learns the impact of features
on the classification.

Table 6.10: Categorization of Features Based on Living Standard Aspects

Aspects Category Positive Feature Negative Feature

time and date today weekend christmas day
tomorrow current night pm

time minutes utc

weather pollution #airpollution
#airquality forecast weather

wind #sunrise
#weather sun

job #jobs president business leader president

war related attacks alert explosion
#explosion
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• Based on table 6.10 the model tends to associate positive sentiment with features
about time and date, job and business. In contrast, war-related features such as
“explosion” are associated with negative sentiment.
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Table 6.11: Comparison of Feature Sentiments

Feature name Feature weights

new 0.008840

#jobs 0.006836

today 0.006827

#airpollution 0.006681

see 0.006052

#airquality 0.006017

forecast 0.005615

high 0.005585

attacks 0.005504

current 0.005432

weather 0.005081

great 0.004966

feeling 0.004845

moderate 0.004790

live 0.004612

pollution 0.004354

tomorrow 0.004327

business 0.004236

day 0.004210

little 0.004053

cn 0.004040

bad 0.004039

view 0.004004

like 0.003945

weekend 0.003811

starting 0.003765

feel 0.003750

christmas 0.003709

night 0.003701

best 0.003588

Feature name Feature weights

plant -0.004589

partly -0.004659

rejoint -0.004737

#dating -0.004764

youth -0.004851

capital -0.004879

html -0.005018

explosion -0.005139

president -0.005181

#events -0.005270

#explosion -0.005300

breaking -0.005438

leader -0.005644

rise -0.006154

wind -0.006481

#weather -0.006658

#sunrise -0.006914

sun -0.007436

alert -0.008705

score -0.008823

minutes -0.008987

good -0.009042

utc -0.009114

#livescore -0.009133

city -0.010295

#photo -0.010361

time -0.010927

pm -0.011716

local -0.014346

province -0.021025
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This chapter is structured in three parts: first, researches relating to the study of quality
of life are presented, in which the factors which impact the quality of life are studied
in many studies, and then studies about the quality of life are introduced. Second, the
studies related to text categorization and sentiment analysis applying to the textual
data of various media resources which motivate this thesis are presented. At last a short
overview of the related studies is summarized.

7.1 Researches about Quality of Life

7.1.1 Studies Dedicating to Quality of Life

Since the definition of quality of life are various and is always determined by many factors,
different country succeeds at individual characteristics, and with various of objects, the
researches of the quality of life are always aspect-related.

• The Organization for Economic Cooperation and Development (OECD)1 releases
its Better Life Index of countries with the best quality of life annually. To do this,
the OECD studied 34 countries across different parameters of well-being, including
work-life balance, financial wealth, and quality of the environment.

• In Eurostat2 the Quality of Life indicators which used to measuring quality of life
are presented in 8+1 dimensions, namely material living conditions, productive or
main activity, Health, Education, Leisure and social interactions, Economic and
physical safety, Governance and basic rights, Natural and living environment and
Overall experience of life.

• Mercer3 releases a report about Mercers Quality of Living Rankings cover 230
prevalent cities. Living conditions are analyzed according to 39 factors, grouped
in 10 categories, which are similar as the Eurostat, which contains aspects of Polit-
ical and social environment, Economic environment, Socio-cultural environment,
Medical and health considerations, Schools and education, Public services and
transportation, Recreation, Consumer goods, Housing, Natural environment. The
scores attributed to each factor, which is weighted to reflect their importances to
expatriates, permit objective city-to-city comparisons. The result is a quality of
living index that compares relative differences between any two locations evaluated.

1http://oecdbetterlifeindex.org/#/55555555555
2http://ec.europa.eu/eurostat/statistics-explained/index.php/Quality_of_life_indicators
3https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html
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• Numbeo4 also offers a result of Quality of Life ranking, it contains much quality
of life indices, each index presented an aspect of life. The Quality of Life Index
is an estimation of overall quality of life by using empirical formula which takes
into account purchasing power index, pollution index, house price to income ratio
(lower is better), cost of living index (lower is better), safety index, health care
index, traffic commute time index (lower is better) and climate index.

7.1.2 Studies of Predicting Quality of Life

As studies shown in section 7.1.1 the quality of living in a city is always with respect
of various of social aspects. Considering these factors [MFH+13] investigated on how
geographic place correlates with and potentially influences societal levels of happiness.
In this work, the happiness of different urban of the United States is leveled and ana-
lyzed with similarities in word expression, demographics, message length associated with
education levels and obesity rates.

They combined a geo-tagged data set which consists of over 80 million words generated
from over 10 million tweets posted in Twitter in 2011, which covered approximately 1%
of the whole messages of the year, and characteristics of all 50 states and close to 400
urban populations. From the geographic level since that urban area boundaries often
agglomerate small towns together, particularly when there are small towns close to larger
urban or cities, the more details about these cities are also described in the thesis.

The method they used to measure sentiment is using LabMT word list [DHK+11], these
individual words are scored for their average happiness independently by users of Ama-
zon’s Mechanical Turk service on a scale from 1 the saddest to 9 the happiest [KDH+12].
In order to measure the overall average happiness of people located in cities, they calcu-
late the average happiness for a given text T containing N unique words based on word
frequency distributions by:

havg(T ) =

∑N
i=1 havg(wi)fi∑N

i=1 fi
=

N∑
i=1

havg(wi)pi (7.1)

where fi is the frequency of the ith word wi in T for which happiness score is havg(wi)

of the word, and pi = fi/
∑N

i=1 fi is the normalized frequency. More important to be
noticed is that this thesis is implemented without respect on dependency between each
words.

The variation of happiness across different cities is then analyzed on how individual word
usage correlates with happiness and various social and economic factors.

A most recent related work presented a study of targeted aspect-based sentiment analysis
dataset for urban neighborhoods.[SBLR16] Different to [MFH+13] this study gathered
test data from a question answering (QA) platform where is far less constrained than
review specific platforms. Only the QA data about urban neighborhoods which discussed
by users are collected, because the content of these sentences is sometimes referring to
more than one location, the sentiment analysis on this data are more complicated than

4http://www.numbeo.com/quality-of-life/rankingscurrent.jsp
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other studies. The label of the sentiment of each sentence is annotated both towards
the target (locations) and aspects (safety or transit-location), while SentiHood dataset
is generated with 5215 sentences, in which 3862 sentences containing a single location
and 1353 sentences containing multiple locations.

The main task of this study is a three-class classification for each aspect. They provide
a list of tuples {l, a, p}Tt=0 for interpreting the label of each given sentence s, where p is
the polarity expressed for the aspect a of location l, which may be “Positive”,“Negative”
and “None”. Each sentence can have maximum T number of labels.

During aspect-based sentiment analysis, the four aspects namely Price, Safety Transit,
General are chosen for features. For classification logistic regression combined with
three feature selection methods are trained, as well as LSTM models a choice of neural
networks is used to training model. Both of them developed strong baselines:

• For sentiment predicting result, the Logistic Regression classifier with n-gram and
POS tags has gained the highest score with 0.875 for accuracy and the 0.905 for
AUC scores, while the LSTM methods also have higher accuracy round 0.820 and
round 0.840 for AUC.

• For aspect-based sentiment predicting result by using average AUC scores for each
aspect, the logistic regression classifier with n-gram and POS tags has reached
highest scores with 0.940 for “Price”, 0.960 for “Safety”, 0.879 for “Transit” and
LSTM-Final gained 0.869 for “General”.

• For target sentiment predicting result by using average AUC scores for predicting
sentence with one location or multi locations, the logistic regression classifier with
n-gram and POS tags has the highest score at 0.916 for “Single Location” and
0.907 for “Multi”.

7.2 Researches about Text Categorization

At the early stage, researchers attempt to applying various algorithms to text catego-
rization which is now considered as classification technologies in Machine Learning:

• With the rapid growth of online information, people concerns more on benefits
delivered from these information. Manually analyzing and categorizing this infor-
mation is much more difficult, thus building the classifier from examples for text
categorization is advantageous.

Support Vector Machines, which is a new learning technique introduced in many
studies, is selected in [Joa98] as examine objects for text categorization. The
study was done on two datasets, one is Reuter corpus generated on 9,603 training
documents and 3,299 test documents of Reuters-21578 dataset, the other one is
from the Ohsumed corpus, which 10,000 training documents in contract with 10,000
testing documents

The performance of SVMs polynomial and SVMs RBF kernels both showed better
results compared with four other conventional learning methods, namely Bayes,
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Rocchio, C4.5 and k-NN, in which k-NN classifier always outperformed. The anal-
ysis based on the result shows that the advantage of SVMs applying on higher
dimensional feature spaces.

• In [NLM99] the performance of using Maximum Entropy for Text Classification is
shown as a competitive algorithm. Maximum entropy it is a general technique for
estimating probability distributions from data, which has been widely used for a
variety of natural language tasks. In this study, the task of text classification is
document based. Each document is represented by a set of word count features,
maximum entropy estimates the conditional distribution of the class label given a
document.

The datasets of this work are three datasets from previous studies 5, one is the
WebKB dataset contains web pages gathered from university computer science
departments, in which 4,199 pages of student, faculty, course and project four
most populous categories results in 23,830 words, the second data set is Industry
Sector, in which 6,440 web pages of company 6classified in 71 classes results in
29,964 vocabularies are selected, the third is Newsgroups dataset contains about
20,000 articles results in 57,040 words after removing redundant and meaningless
text.

This thesis using Improved Iterative Scaling to calculate the parameters of the
maximum entropy classifier given a set of constraints. The Performance of applying
maximum entropy compared with Scaled Naive Bayes and Regular Naive Bayes
algorithm to these three datasets are different, on WebKB it showed lower error
but for the other two datasets where maximum entropy performs worse than scaled
naive Bayes. At the end of the work, the reasons of the results is explained that
maximum entropy may be sensitive to poor feature selection

7.3 Researches about Sentiment Analysis

Along with the flourishing of artificial intelligence, applying the technology of machine
learning as well as natural language processing technologies to analyze the sentiment
of text information of different text resources like the Internet, newspaper, product re-
views and so on, becomes available and mature. The development from studies for text
categorization using Machine Learning technologies to analyze the social network infor-
mation of textual form and to further extension for the sentiment analyze is presented
as following.

Early researches about sentiment came up in [DC01] and [MYTF02]. In this period
the work for sentiment analysis focuses on identifying the overall sentiment or polarity
of a given text. [SBLR16] [Ana03] first mentioned the term sentiment analysis. Based
on text categorization technologies it becomes a popular research realm and attracted
more attentions. Until now the most studies for sentiment analysis are categorized into
two fields: one is targeted sentiment analysis, which analyses opinion polarities towards

5http://www.cs.cmu.edu/~TextLearning
6www.marketguide.com
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certain target of the given sentence like a tweet, the other one is aspect-based sentiment
analysis, which takes the aspects of one sentence into account to deciding the polarities,
which is also very practice due to its contribution to reviews of a product in some
aspect.

The testbed of sentiment analysis comes out not only from social media but also news,
financial reports etc. from where it originates, thus it is more meaningful to society, many
researchers devote to improving the technical approaches for analyzing the sentiment of
text in the last decade:

• [GBH09] represented results of machine learning algorithms for classifying the sen-
timent of Twitter messages using distant supervision. In contrast to other studies,
this is the first study building classifier based on tweets since tweets are abundantly
available and can be obtained by automated means.

In this work, all the tweets are collected for the first time. The researchers have
scraped this information by their own with queries through Twitter API to access
them. Because the Twitter messages contain more or less emoticons, which ex-
pressed positive or negative emotion, the tweets are all gathered with emoticons
from the period between April 6, 2009 to June 25, 2009. At the post-processing
stage considering emoticons will impact classifier, this study labeled them as noisy
and stripped them off. Moreover, any tweets contain both positive and negative
emoticons are removed, as well as Retweets are all removed. At the end, a training
dataset is generated with total 1,600,000 tweets, in which 800,000 tweets which
with positive emoticons are labeled as positive, and 800,000 tweets which contain
negative emoticons are labeled as negative. Test data is collected regardless of
emoticons by using selected query terms of seven domains, which contains 177
negative tweets and 182 positive tweets labeled manually.

Associating Unigrams, the combination of Unigrams and Bigrams and Parts of
speech tags as features with machine learning algorithms like Näıve Bayes, Maxi-
mum Entropy and SVM, the performance of the classifier has above 80% accuracy
when trained with emoticon data. As the main contribution of this work, the
emoticon is taken into account for text categorization.

• [PP10] is an improvement of [GBH09], it presented an improved method for an
automatic collection of a corpus that can be used to train a sentiment classifier.
The corpus is collected of 300,000 text posts from Twitter. These collected corpus
are divided into three classes: positive sentiments, negative sentiments, and a
set with no sentiments, in which the tweets of negative and positive sentiment
are collected in the same manner of [GBH09], which use positive emoticon and
negative emoticon as query term, for the objects without sentiment are collected
by querying 44 newspapers’ names. Test dataset is selected as the same way as
[GBH09], which contains total 216 samples included with 108 positive posts, 75
negative posts and 33 neutral posts.

Before training classifier the corpus is analyzed for its frequency distributions of
words, the result is consistent with Zipf’s law, furthermore they used Tree Tagger
for tag all the posts in the corpus in order to observe the distributions of tags
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of three datasets. They also used a function to calculate the P value for further
comparison of positive and negative posts:

pT1,2 =
NT

1 −NT
2

NT
1 +NT

2

(7.2)

where NT
1 and NT

2 are numbers of tag T occurrences in the first and second sets
respectively. Based on Parts of speech tags, the analysis focus on analyzing the dis-
tribution of words with different POS-tags of the two datasets which one contains
sentiment and the other has no sentiment.

During the feature selection processing, the URL in the text is replaced as “URL”,
text is split into segments by spaces and punctuation marks, stopwords are removed
and N-gram is constructed, especially for negation words. Next SVMs classifier,
CRF classifier and Näıve Bayes classifier are built and applied to test dataset, in
which the multinomial Näıve Bayes classifier associated with bigram and POS-tags
as features gained the best result. At the end they evaluated the performance of
the classifier and proved that their technique is efficient and better than previously
proposed methods, while the accuracy of the classifier in [GBH09] has obviously
worse results when using it applying to the three-class dataset.

7.4 Summary

Previous the related studies of text categorization, sentiment analysis and predicting
quality of lifes have been introduced. A brief comparison of the technologies these
existed works used are shown in table 7.1.

From table 7.1 the trends of development of machine learning and the changes of research
object could be found obviously.

• At the 1990s the studies are more about the improvement of the classifiers, re-
searchers concerned more on the efficiency of a classifier for categorizing the text,
SVM are introduced as a new outperform algorithm, Maximum Entropy is exam-
ined versus many conventional algorithms like k-NN, Naive Bayes etc. The Object
of the research is on how to categorize documents into different classes.

• At the 2000s, the research object changed and the purpose is subdivided. They
turn to analyze the text from social media, which may contain opinions of users,
in this case, the categorization task becomes an analyze of positive, negative and
even neutral opinion of an entity, which also called sentiment. The text formed
data of social media resources contains not only products reviews, QA platform,
but also microblogs like tweets. According to different content and characteristics
of these text form, target sentiment analyze and aspect-based sentiment analyze
are shown up for a different purpose. Target sentiment analysis is an analysis of
a target of a sentence, which is good for analyzing short simple sentence with a
single subject. Aspect-based sentiment analysis is good for analyzing the reviews
of a product. The customers who have reviews of one article are always written
around different aspects, from this side of view aspect-based sentiment analyze is
meaningful for the special area.
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Table 7.1: Comparison of Related Works

Name Contributions Datasets Machine Learning
Technology

Others

Text Categorization
with Support Vector
Machines: Learning
with Many Relevant
Features [Joa98]

Analysis of
Performance of
SVMs to other
conventional
algorithms

Reuters
Corpus,
Ohsumed
Corpus

SVMs polynomial
kernels, SVMs RBF
kernels, Bayes,
Rocchio,C4.5, k-NN

Using Maximum
Entropy for Test
Classification
[NLM99]

Provement of
Maximum Entropy
as a competitive
algorithm for text
categorization

WebKB,
Industry
Sector,
News-
groups

Maximum Entropy,
Scaled Naive Bayes,
Regular Naive Bayes

Twitter Sentiment
Classification using
Distant Supervision
[GBH09]

Classifying the
sentiment of
Twitter messages
by using Distant
Supervision

Tweets Naive Bayes, Maximum
Entropy, SVM

Emoticons
as noisy
labeled

Twitter as Corpus
for Sentiment
Analysis and
Opinion Mining
[PP10]

Sentiment analysis
based on linguistic
analysis

Tweets Multinomial Naive
Bayes, SVM, CRF

introduces
methods
dealing
with
emoticons

The Geography of
Happiness:
Connecting Twitter
Sentiment and
Expression,
Demographics, and
Objective
Characteristics of
Place [MFH+13]

Analysis of
happiness of
urbans based on
Tweets, correlated
with social factors

Tweets None Word list
with score
of
happiness

SentiHood: Targeted
Aspect Based
Sentiment Analysis
Dataset for Urban
Neighborhoods
[SBLR16]

Improvement of
Targeted as well as
Aspect based
Sentiment Analysis
on reviews of
Urban
Neighborhoods of
QA platform

SentiHood
dataset
collected
from QA
platform

Logistic Regression,
Long Short-Term
Memory

• From the 2010s the research became more diversified, the sentiment analyze are
applying to wider fields, researchers didn’t only satisfy with the task of sentiment
analyze itself but also concerned on the relation between classification result and
various factors, thus they are doing more on feature analysis and text processing,
moreover they tends to analyse complicated text towards both target and aspects.
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8 Conclusions

8.1 Summary

Along with the development of artificial intelligence, machine learning becomes more
and more popular. A main application of machine learning is to teaching a computer
to categorize things, which means classifying things through learning from proper data.
This diploma thesis described a study of creating a classifier based on the data of Twitter,
which could predict the sentiment of a living place. In order to implement this work the
following issues are presented in the study:

• In the preparing stage the related works about sentiment analysis, text classifica-
tion and quality of life are studied and analyzed. (chapter 7) Based on studying
related fundamentals of machine learning, classification and evaluation method,
general workflow of machine learning and the methodology of this thesis is defined
specifically. (Chapter 4)

• In the data collecting stage, based on the ranking list of living quality in 230 cities
offered by Mercer, more than 100,000 tweets of each city of most recent period
from 01.08.2015 to 31.08.2016 from Twitter have been collected as raw data, which
guarantees that the tweets are not only enough for learning, but also in real-time
status and reflect the most sentiment of a city. comparing to the unbalance of
the amount of collected tweets for each city 5,000 tweets of each city are selected
randomly as the original dataset. (chapter 3)

• Based on this methodology, data is preprocessed and the tweets are tokenized by
taking use of a natural language processing tool TweetNLP. Then logistic regression
models and SVM models are trained. The extracted features are using bag of
words method. The evaluation is implemented by calculating the accuracy of
each classifier. Comparing to SVM classifier the best result of logistic regression
classifier with 0.795652 has been chosen as baseline.

Improving the baseline through removing city names, most stopwords and punc-
tuations, tokens are also transformed into lowercase to avoid repeated features,
where the data matrix is also scaled. As a result of using this method, a strong
baseline has been improved with accuracy score 0.8793913.

Further attempts have been implemented for improving the classifier and A senti-
ment analysis word list is used to generate three extra features to improving the
models are also described in this section. Unfortunately, the effect of using these
three features individually declined the baseline. (chapter 5)
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Table 8.1: Analysis of URLs

URL Feature Weights Categorization Tokenizations

https://www 0.012809 unknown none

getluckyhotels.com/

travel-all-hot

0.004395 advertisement get lucky hotels tranvel
all hot

map-game.com/

nouakchott

-0.001414 game map game nouakchott

twitter.com/

photoschedule/
-0.010277 unknown photo schedule

btc2bid.com/Deals/

China/Bu

-0.001099 unknown btc2bid Deals China Bu

• Cross-validation method was used to split the dataset into training part and testing
part to prepare the data for training model, the features are analyzed by comparing
the feature weights before and after improving the classifiers.

In analysis of features stage, the feature weight of each classifier has been com-
pared. Besides of the most impacting features like city names, stop words and
punctuations the country names, hashtags, URLs were found that influenced the
classifier to varying degrees. (chapter 6)

8.2 Future Work

In section 8.1, the whole work of this thesis have been summarized. From the anthro-
pological and sociological dimensions the predicting of a city life is more meaningful.
During the implementation procedure some aspects could be improved in the future:

• Generating Dataset: In data collecting phase tweets have been chosen as data
set, considering the characters of these short text and uncontrolled, it contains
more individual sentiments of users, sometimes they are without specific aspects
and could not reflect the life of a city completely, combining the data with other
data source such as data from government are more reliable.

The query terms used for collecting city data are city names, from this point of
view, the query terms may be more detailed with objects, such as collecting data
from users who live in the city.

In this thesis tweets for each city have been gathered, the sentiment of all tweets
of each city are considered as a whole, another choice is that consider sentiment of
each tweet of a city and label them individually.

• Automatic Class Prediction: logistic regression model and SVM model have
been used to train data. For SVM model since high dimension features space

60 Predicting Sentiment about Places of Living

https://www
getluckyhotels.com/travel-all-hot
getluckyhotels.com/travel-all-hot
map-game.com/nouakchott
map-game.com/nouakchott
twitter.com/photoschedule
twitter.com/photoschedule
btc2bid.com/Deals/China/Bu
btc2bid.com/Deals/China/Bu


8 Conclusions

versus little samples, its performance is not better than logistic regression model.
In order to improve the performance, the logistic regression classifier regularization
may be attempted by tuning the parameters.

Another improvement is to train a ranker, the similar working principle of clas-
sifying based on probability theory could be used to make grading the quality of
living a place.

• Feature extraction: Feature extraction stage is more important for improving
the performance of a classifier through analyzing the features. By now the analysis
of features presented in section 6.2 is based on natural language processing, one
improvement could be done is to take a look at the URLs.

Instead of removing all URLs, We could analyze the information contained in the
URLs by comparing them and further tokenization. As shown in table 8.1 the URLs
have high feature weights, which means that they impact more to classification.
Some of them have no special meanings, but some like “urlgetluckyhotels.com”
may contain more information, from which it is possible to extract extra features
and its influence to classification is unknown.
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Appendix

A.1 Overview of City List for Cross-Validation

A.2 Feature Weights of Logistic Regression Model

Table A.2: First 100 Features of LR Model on 10th Fold Dataset

No. Feature Names Feature Weights

1 #bandarseribegawan 0.026052

2 Pitre 0.020225

3 #BandarSeriBegawan 0.019729

4 #brunei 0.015174

5 #PortLouis 0.013826

6 Pointe 0.013253

7 Guadeloupe 0.012672

8 Pointe-a-Pitre 0.012561

9 https://www 0.011197

10 #noumea 0.010076

11 #Noumea 0.009705

12 #Mauritius 0.009516

13 A 0.009323

14 #Brunei 0.008283

15 #portlouis 0.008278

16 #Nurnberg 0.007041

17 @Pointe 0.007026

18 a 0.006506

19 to 0.006333
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Table A.2 – continued from previous page

No. Feature Names Feature Weights

20 Brunei 0.006007

21 #Shanghai 0.005937

22 New 0.005881

23 at 0.005875

24 Gualdeloupe 0.005748

25 #Luxembourg 0.005465

26 #Tunis 0.005393

27 #nurnberg 0.005042

28 -à- 0.004897

29 éa 0.004612

30 = 0.004490

31 #newcaledonia 0.004482

32 Norwegian 0.004475

33 Noumea 0.004414

34 #mauritius 0.004140

35 #Bamako 0.004054

36 #TelAviv 0.004050

37 #Geneva 0.003822

38 #Baghdad 0.003821

39 #Noum 0.003818

40 Caledonia 0.003777

41 Paris 0.003776

42 #Damascus 0.003771

43 Flight 0.003694

44 #Montevideo 0.003554

45 #Helsinki 0.003522

46 . 0.003474

47 #Job 0.003464

48 #Ljubljana 0.003437
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Table A.2 – continued from previous page

No. Feature Names Feature Weights

49 #jobs 0.003418

50 Sanaa 0.003387

51 #Athens 0.003367

52 #PanamaCity 0.003329

53 #Brussels 0.003248

54 http:// 0.003243

55 #Bucharest 0.003158

56 Seri 0.003151

57 Begawan 0.003149

58 #Victoria 0.003109

59 from 0.003040

60 #Tripoli 0.002938

61 Air 0.002925

62 #Nairobi 0.002909

63 Louis 0.002894

64 #Karachi 0.002837

65 #Belfast 0.002815

66 @ 0.002787

67 #Vienna 0.002770

68 PITRE 0.002768

69 POINTE 0.002768

70 Pointe-A-Pitre 0.002768

71 #Kolkata 0.002762

72 #Warsaw 0.002749

73 #Djibouti 0.002748

74 hotel 0.002738

75 #AddisAbaba 0.002731

76 ¿ 0.002721

77 #Brasilia 0.002709
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Table A.2 – continued from previous page

No. Feature Names Feature Weights

78 #Johannesburg 0.002685

79 #giwbrunei 0.002577

80 #bruneidarussalam 0.002576

81 nonstop 0.002561

82 #Perth 0.002555

83 #Vilnius 0.002533

84 #Singapore 0.002513

85 #HongKong 0.002490

86 #NewCaledonia 0.002461

87 Mauritius 0.002404

88 #Berlin 0.002373

89 ’ 0.002339

90 #Skopje 0.002326

91 Bandar Seri Begawan&country 0.002290

92 Brunei&source 0.002290

93 #Syria 0.002275

94 #mosque 0.002263

95 #Dallas 0.002256

96 #Monterrey 0.002227

97 #victoria 0.002132

98 #Minneapolis 0.002115

99 #Nassau 0.002106

100 #Panama 0.002099
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Table A.3: Last 100 Features of LR Model on 10th Fold Dataset

No. Feature Names Feature Weights

1 #Quito -0.002770

2 #betabookings -0.002773

3 #Livescore -0.002794

4 ALERT -0.002797

5 #hostel -0.002818

6 SCORE -0.002836

7 #Basketball -0.002862

8 #Casablanca -0.002871

9 @ScoresPro -0.002891

10 #NewDelhi -0.002907

11 #Changchun -0.002926

12 #ElSalvador -0.002943

13 #jakarta -0.002948

14 #Jeddah -0.003000

15 #africa -0.003016

16 Sun -0.003019

17 #Riyadh -0.003056

18 #Trinidad -0.003070

19 #antananarivo -0.003077

20 #Windhoek -0.003082

21 Xian -0.003083

22 #myunjobs -0.003088

23 .. -0.003098

24 @http -0.003103

25 Ashgabat -0.003106

26 #Bogota -0.003119

27 #saopaulo -0.003131

28 minutes -0.003144
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Table A.3 – continued from previous page

No. Feature Names Feature Weights

29 30 -0.003229

30 UTC -0.003276

31 https:// -0.003315

32 #Brazil -0.003316

33 #Guatemala -0.003329

34 pm -0.003338

35 Phnom -0.003396

36 html -0.003418

37 #Lima -0.003431

38 #Mauritania -0.003432

39 #Vientiane -0.003450

40 #Manila -0.003495

41 twitter.com/PhotoSchedule/ -0.003505

42 Nouakchott -0.003516

43 #Madagascar -0.003520

44 #Photo -0.003688

45 city -0.003706

46 #Gaborone -0.003747

47 #PortOfSpain -0.004020

48 Province -0.004043

49 #Jakarta -0.004135

50 #SaoPaulo -0.004156

51 #Lom -0.004165

52 #Gambia -0.004186

53 #Benin -0.004209

54 China -0.004262

55 #Qingdao -0.004280

56 #Douala -0.004341

57 Good -0.004376
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Table A.3 – continued from previous page

No. Feature Names Feature Weights

58 #Phnom -0.004438

59 #Togo -0.004446

60 #Bangkok -0.004521

61 #Turkmenistan -0.004575

62 local -0.004753

63 #riodejaneiro -0.004755

64 Salvador -0.004768

65 #cotonou -0.004864

66 #Africa -0.005043

67 #PortofSpain -0.005181

68 , -0.005455

69 #Niger -0.005463

70 Spain -0.005482

71 City -0.005612

72 #Dushanbe -0.005681

73 #Conakry -0.005754

74 #Blantyre -0.005764

75 #manaus -0.005930

76 #santodomingo -0.005964

77 #SantoDomingo -0.006029

78 : -0.006221

79 #portofspain -0.006239

80 #china -0.006603

81 #Managua -0.006713

82 é -0.006867

83 #sansalvador -0.006877

84 #Lome -0.006900

85 ; -0.007047

86 Penh -0.007194
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Table A.3 – continued from previous page

No. Feature Names Feature Weights

87 #Manaus -0.007366

88 #jilin -0.008189

89 #Antananarivo -0.009048

90 of -0.010064

91 #Shenyang -0.010533

92 #Niamey -0.011569

93 #SanSalvador -0.011580

94 #Cotonou -0.011818

95 #Ashgabat -0.012155

96 #Nouakchott -0.012605

97 #China -0.012883

98 #Banjul -0.013017

99 in -0.013555

100 #Jilin -0.032227

A.3 Feature Weights of Best Improved Logistic Regression
Model

Table A.4: First 100 Features of Improved LR Model on 10th Fold Dataset

No. Feature Names Feature Weights

1 #brunei 0.055305

2 #mauritius 0.028817

3 pitre 0.024389

4 shanghai 0.022281

5 pointe 0.017676

6 pointe-a-pitre 0.017329
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Table A.4 – continued from previous page

No. Feature Names Feature Weights

7 #newcaledonia 0.015670

8 brunei 0.014463

9 guadeloupe 0.013928

10 https://www 0.012809

11 new 0.011475

12 # 0.010425

13 éa 0.010260

14 noumea 0.010117

15 #noum 0.009274

16 seri 0.009233

17 begawan 0.009217

18 #tunisia 0.008954

19 #panama 0.008858

20 caledonia 0.008563

21 ı́lia 0.008527

22 #bras 0.008508

23 #germany 0.008420

24 chongqing 0.008157

25 #southafrica 0.008032

26 #jobs 0.007938

27 today 0.007572

28 nanjing 0.007470

29 #bsb 0.007460

30 #bruneidarussalam 0.007242

31 #switzerland 0.007188

32 @pointe 0.007071

33 #beijing 0.006968

34 c 0.006592

35 nurnberg 0.006535
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Table A.4 – continued from previous page

No. Feature Names Feature Weights

36 ¿ 0.006451

37 #slovenia 0.006439

38 see 0.006412

39 #australia 0.006330

40 current 0.005972

41 #belgium 0.005946

42 high 0.005938

43 #giwbrunei 0.005925

44 mauritius 0.005794

45 gualdeloupe 0.005776

46 #melbourne 0.005776

47 panama 0.005719

48 #airpollution 0.005702

49 paris 0.005688

50 #uruguay 0.005658

51 #cbr 0.005641

52 aqi 0.005627

53 kong 0.005579

54 business 0.005526

55 #airquality 0.005481

56 attacks 0.005456

57 forecast 0.005305

58 brussels 0.005271

59 #bandar 0.005267

60 bandar seri begawan&country 0.005267

61 brunei&source 0.005267

62 | 0.005249

63 -á- 0.005134

64 great 0.005115
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Table A.4 – continued from previous page

No. Feature Names Feature Weights

65 weather 0.004864

66 hong 0.004813

67 feeling 0.004779

68 #mosque 0.004749

69 like 0.004691

70 #bern 0.004665

71 #nuremberg 0.004659

72 live 0.004605

73 geneva 0.004554

74 tomorrow 0.004538

75 norwegian 0.004508

76 getluckyhotels.com/travel-all-hot 0.004395

77 moderate 0.004343

78 truth 0.004291

79 malicious 0.004095

80 #london 0.004076

81 propaganda 0.004043

82 #nouvellecaledonie 0.003972

83 incident 0.003960

84 bandar 0.003954

85 week 0.003921

86 #taiwan 0.003916

87 #foxnews 0.003912

88 france 0.003909

89 the 0.003907

90 @ 0.003905

91 it’s 0.003884

92 little 0.003870

93 weekend 0.003842
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Table A.4 – continued from previous page

No. Feature Names Feature Weights

94 massacre 0.003819

95 #chongqingjobs 0.003814

96 #uae 0.003813

96 christmas 0.003812

98 #nbc 0.003805

99 #abc 0.003796

100 feel 0.003794

Table A.5: Last 100 Features of Improved LR Model on 10th Fold Dataset

No. Feature Names Feature Weights

1 experiences -0.004984

2 #property -0.005157

3 breaking -0.005199

4 #albania -0.005204

5 domingo -0.005217

6 #kyrgyzstan -0.005220

7 nicaragua -0.005246

8 capital -0.005260

9 shenyang -0.005267

10 #pakistan -0.005283

11 jakarta -0.005318

12 pour -0.005343

13 severe -0.005369

14 #ecuador -0.005426

15 plant -0.005439

16 #c -0.005484
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Table A.5 – continued from previous page

No. Feature Names Feature Weights

17 apply -0.005494

18 #photography -0.005647

19 leader -0.005768

20 #brasil -0.005790

21 #turkmenistan -0.005852

22 #phnom -0.005872

23 #events -0.005932

24 #brazil -0.006096

25 partly -0.006111

26 petersburg -0.006164

27 #next420 -0.006212

28 el -0.006214

29 manaus -0.006306

30 rise -0.006319

31 explosion -0.006329

32 #explosion -0.006516

33 next420.info -0.006538

34 #togo -0.006546

35 :// -0.006567

36 #indonesia -0.006805

37 #weather -0.006810

38 #san -0.006849

39 #peru -0.006864

40 #malawi -0.006933

41 é -0.006987

42 #lebanon -0.007104

43 #india -0.007117

44 #amazonas -0.007175

45 #myunjobs -0.007235
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Table A.5 – continued from previous page

No. Feature Names Feature Weights

46 wind -0.007311

47 #dominicanrepublic -0.007330

48 ne -0.007372

49 #thailand -0.007492

50 @http -0.007512

51 #vietnam -0.007591

52 #portofspain -0.007602

53 banjul -0.007787

54 #sunrise -0.007792

55 sun -0.007810

56 penh -0.007889

57 & -0.007907

58 #laos -0.007971

59 kingston -0.007984

60 @pdchina -0.008186

61 #philippines -0.008317

62 #trinidad -0.008709

63 #guinea -0.008789

64 minutes -0.009125

65 : -0.009184

66 30 -0.009624

67 spain -0.009633

68 utc -0.009635

69 good -0.009666

70 time -0.009669

71 vs -0.009822

72 gambia -0.009839

73 #tajikistan -0.010034

74 #photo -0.010136
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Table A.5 – continued from previous page

No. Feature Names Feature Weights

75 twitter.com/photoschedule/ -0.010277

76 alert -0.010347

77 #livescore -0.010606

78 score -0.010714

79 (-) -0.010749

80 https:// -0.010966

81 nouakchott -0.011114

82 #basketball -0.011362

83 @scorespro -0.011650

84 #madagascar -0.011878

85 #nicaragua -0.011959

86 pm -0.012412

87 #mauritania -0.012992

88 city -0.013353

89 #ashgabat -0.014536

90 jilin -0.015019

91 local -0.015170

92 salvador -0.016637

93 #elsalvador -0.016684

94 #benin -0.017346

95 #gambia -0.018379

96 #changchun -0.019460

97 #africa -0.021010

98 #niger -0.023081

99 province -0.024933

100 #china -0.030837
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A.4 Result Table under All Conditions Based on Best Baseline

Table A.6: Result Table of All Conditions Based on Best Baseline

no
cn
sw lc

no
url

no
hash-
tag

no
coun-
try
name

p-
words

n-
words

p/n
words

maxabs
scale

average
scores

B 0.795652

0
√

0.873913

1
√ √

0.821739

2
√ √ √

0.821739

3
√ √ √ √ √ √

0.873913

4
√ √ √ √ √

0.830435

5
√ √ √ √

0.873913

6
√ √ √

0.830435

7
√ √ √ √

0.873913

8
√ √ √

0.830435

9
√ √ √ √

0.873913

10
√ √ √

0.834783

11
√ √ √ √ √

0.873913

12
√ √ √ √

0.830435

13
√ √ √ √ √

0.873913

14
√ √ √ √

0.830435

15
√ √

0.856522

16
√ √ √

0.856522

17
√ √ √ √ √ √

0.856522

18
√ √ √ √ √

0.847826

19
√ √ √ √

0.856522

20
√ √ √

0.865217

21
√ √ √ √

0.856522

22
√ √ √

0.856522

23
√ √ √ √

0.856522

24
√ √ √

0.856522

25
√ √ √ √ √

0.856522

26
√ √ √ √

0.852174

27
√ √ √ √ √

0.856522

28
√ √ √ √

0.856522

29
√ √

0.856522

30
√ √ √

0.856522
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Table A.6: Result Table of All Conditions Based on Best Baseline

no
cn
sw lc

no
url

no
hash-
tag

no
coun-
try
name

p-
words

n-
words

p/n
words

maxabs
scale

average
scores

31
√ √ √ √ √ √

0.847826

32
√ √ √ √ √

0.847826

33
√ √ √ √

0.847826

34
√ √ √

0.847826

35
√ √ √ √

0.847826

36
√ √ √

0.843478

37
√ √ √ √

0.847826

38
√ √ √

0.856522

39
√ √ √ √ √

0.847826

40
√ √ √ √

0.847826

41
√ √ √ √ √

0.847826

42
√ √ √ √

0.847826
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Table A.1: Random City Lists of Cross-Validation

k-th
Fold

Testing City List

0 Bamako, Dallas, Lahore, Kinshasa, San Salvador, Cape Town, Abu Dhabi,
St. Louis, Bishkek, Lima, Brazzaville, Havana, Sydney, Santo Domingo,
Monterrey, Beirut, Djibouti, Bangui, Port of Spain, Luxembourg, Manila,
Houston, Perth

1 Windhoek, Milan, Dar es Salaam, Tallinn, Hong Kong, Auckland, Kiev,
Shanghai, Bangalore, Buenos Aires, Hyderabad, Damascus, Geneva, Paris,
Athens, Blantyre, Singapore, Vancouver, Budapest, Bucharest, Almaty,
Hamburg, Berlin

2 Ouagadougou, Miami, Calgary, New Delhi, N’Djamena, Nassau, Kingston,
Philadelphia, Phnom Penh, Jakarta, Wroclaw, Xi’an, Johor Bahru,
Chengdu, Maputo, Sana’a, Warsaw, Skopje, Libreville, Aberdeen, Hanoi,
Birmingham, Cairo

3 Brisbane, Vientiane, Niamey, Manaus, Abidjan, Nouakchott, Quito, Tel
Aviv, Munich, San Jose, Santiago, Douala, Abuja, Port-au-Prince, Saint
Petersburg, Bandar Seri Begawan, Shenyang, Belgrade, Victoria, New York
City, Sao Paulo, ’Colombo’, Mumbai

4 Khartoum, Yerevan, Detroit, Guatemala City, Bern, Lyon, Vienna, Pointe-
a-Pitre, Port Louis, Yokohama, Toronto, Prague, Stockholm, Seattle,
Tehran, Dakar, Pittsburgh, Wellington, Gaborone, Lisbon, Addis Ababa,
Los Angeles, Busan

5 Kuwait City, Nanjing, Banjul, Nairobi, Lome, Sarajevo, Vilnius, Taipei,
Canberra, Panama City, Caracas, Kuala Lumpur, Montreal, Adelaide, Jed-
dah, Riga, Boston, Algiers, Yaounde, Tbilisi, Moscow, Minsk, Tirana

6 Cotonou, Minneapolis, Melbourne, Dushanbe, Beijing, Glasgow, Belfast,
Bogota, Rio de Janeiro, Sofia, Ashkhabad, Stuttgart, Islamabad, La Paz,
Zagreb, Tunis, Lusaka, Bangkok, Taichung, San Juan, Brussels, Honolulu,
Pune

7 Qingdao, Riyadh, Durban, Amsterdam, Mexico City, Chicago, Tripoli,
Noumea, Montevideo, Rabat, Karachi, Helsinki, Baku, Ljubljana, Oslo,
Ottawa, Dhaka, Brasilia, Casablanca, Johannesburg, Nagoya, Jilin, Nurn-
berg

8 Luanda, Madrid, Managua, Accra, Tokyo, Amman, Frankfurt, Chongqing,
Conakry, Shenzhen, Chennai, Dubai, Zurich, Edinburgh, Manama, Kobe,
Muscat, Antananarivo, Bratislava, Baghdad, Yangon, Kigali, Kolkata

9 Kampala, Harare, Seoul, Asuncion, Atlanta, London, Tegucigalpa,
Barcelona, Doha, Rome, Leipzig, Guangzhou, Lagos, San Francisco, Osaka,
Ho Chi Minh City, Tashkent, Dusseldorf, Limassol, Dublin, Copenhagen,
Washington, Istanbul
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