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Abstract

Many geographic information systems share the common task of mapping positional
data given as trajectories onto a given map, the so-called map-matching. One category
of approaches to solve this problem are geometric map-matching algorithms utilizing
the Fréchet metric. To find the optimal match, these approaches either use parametric
search and depth-first search or a modified version of Dijkstra’s algorithm.

In this thesis a weak Fréchet based map-matching algorithm for undirected graphs
is developed, which avoids the above-mentioned techniques with the objective of
computation speed improvements. Furthermore, this algorithm is designed to support
parallelization through its incremental nature.

The proposed approach is evaluated by comparing theoretical complexities as well as
experimental evaluation against the Dijkstra basted approach of Wenk et al.[WSP06].
The evaluation, however, only yielded indications for positive results under heavy use
of parallelization.

Zusammenfassung

Viele geografische Informationssysteme haben die Aufgabe Positionsdaten in Form
von Verläufen auf eine gegebene Karte abzubilden, das sogenannte Map-Matching.
Eine Kategorie von Ansätzen zur Lösung dieser Problemstellung sind geometrische
Algorithmen, die sich der Fréchet Metrik bedienen. Diese Verfahren nutzen entweder
eine Kombination von Parameter- und Tiefensuche oder eine modifizierte Variante des
Dijkstra-Algorithmus, um den besten Match zu finden.

In dieser Arbeit wird ein Algorithmus auf Basis der Weak Fréchet Metrik entwickelt,
welcher diese Techniken umgeht, um eine Beschleunigung der Match-Berechnung zu
erreichen. Der vorgestellten Algorithmus ermöglicht eine einfache Parallelisierung
aufgrund seines inkrementellen Vorgehens.

Die Evaluierung des vorgestellten Algorithmus wurde auf Basis der theoretischen
Laufzeiten sowie einer experimentellen Gegenüberstellung des Ansatzes von Wenk et
al.[WSP06] vollzogen, zeigte jedoch nur bei starker Parallelisierung positive Ergeb-
nisse.
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1 Introduction

This chapter aims to give an overview of the subject and the context of this thesis. In
section 1.1 the objective of this thesis is explained and supported by scientific and
personal motivations. Eventually, the overall structure of this paper will be described
in section 1.2.

As devices and applications capturing positional data like smart phones, car navigation
systems or GPS trackers for sports and health applications are widespread nowadays,
the usage of positional data has become important in order to maintain a high quality
standard for services and applications like routing applications, fleet management
systems or traffic estimation and control [GDM+12; QON07]. Many of them use some
kind of map and GPS as their source of positional data. However, the combination of
positional and map data is not as straight forward as it may seem. All positional data
that was created by some kind of measurement, for example through GPS, contains
some deviation. In addition, maps also contain deviation. Nevertheless, for most
applications it is crucial to combine these to datasets correctly. For example, imagine a
map with two parallel streets and a sequence of positional measurements of a car that
are located somewhere between these streets. For a navigation-system it is important
to know the correct street the car is driving on in order to generate the correct driving
instructions.

The task of projecting positional measurements onto a given map is called map-
matching problem. The goal of map-matching algorithms is, given a sequence of
positional measurements, to compute a path within the given map such that it is as
close as possible to the unknown real path. This task can be tackled in a variety of
ways, however, this thesis focuses on geometric approaches using the Fréchet metric.
In contrast to other approaches, which embed the usage of other information, such as
the type of movement or velocity, the algorithms of interest only consider geometric
features regarding to the combination of map and positional measurements.

The Fréchet metric can be used to quantify the distance between two curves. In this
thesis the weak Fréchet metric will be used to measure how well a path in the map
fits the given positional measurement sequence.
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1 Introduction

1.1 Motivation

The goal of this thesis is to develop a weak Fréchet distance based algorithm, which
solves the map-matching problem in an incremental fashion, such that it undercuts
the running times of known approaches. The incremental property of the algorithm
should be established by a segment after segment construction of the match output as
well as through parallel computation of the main data structure.

As mentioned above, map-matching algorithms are employed in a variety of use cases.
For applications that rely on geometrical matching approaches a speed improvement
would be desirable. Furthermore, the computation hardware has developed towards
more parallelization, hence, a parallel approach could be beneficial. However, the
subject of this thesis is not only interesting due to its applications, but also because of
its questions on weak Fréchet computation.

1.2 Structure of Work

First of all, the preliminaries are explained in chapter 2. Section 2.1 introduces
the definition of the map-matching problem, which is to be solved by the proposed
algorithm. The Fréchet distance is the core metric used by the developed algorithm
and is defined in section 2.2. Mathematical models for the representation of the earth’s
surface as well as coordinate systems within these models are given in section 2.3.
The spherical model is discussed in more detail, as it is the model of choice for this
thesis. Additionally, some important calculations within this model, such as distance
calculation, are explained. All important data structures that are used by the proposed
algorithm are explained and discussed in section 2.4. The preliminaries chapter ends
with a short introduction to the OpenStreetMap project and map data, which is later
used in the evaluation process.

In chapter 3 related work is mentioned starting with the explanation of some map
matching approaches using completely different techniques compared to those used
by the approach suggested/used in this thesis. For example, the interactive voting
based approach by Yuan et al. [YZZ+10]. The second part of the chapter is dedicated
to the known approaches that are conceptionally close to the algorithm proposed in
this paper. The usage of the Fréchet distance is one main common factor of these
approaches.
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1.2 Structure of Work

Chapter 4 finally describes the algorithm developed in this thesis. This chapter is
structured along the algorithm’s main stages. These stages are map extraction 4.1,
free space graph computation 4.2, and match search 4.3. The map extraction section
explains why one could not use the whole map graph within the later stages and how
to extract the needed subgraph. The free space graph computation section describes
how the main structure of the algorithm is created by combining the map subgraph
and a given position trace. The final step that extracts the algorithm’s result out of the
previously created structure is explained in the match search section. An overview on
the algorithm’s complexity is given in section 4.4.

The evaluation procedure and its results are described in chapter 5. The algorithm
is examined according to performance and match quality. Later on, an experimental
comparison is done in order to classify the quality and performance. This thesis ends
with a conclusion and possible future work on this topic.
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2 Preliminaries

The preliminaries chapter introduces subjects and definitions, which are imported for
the understanding of the algorithm developed in this thesis. Furthermore alternative
models and data structures that could have been used are described and discussed.
First of section 2.1 explains and defines the map-matching problem, followed by the
definition and computation strategies of the Fréchet distance. The mathematical base
model for all geometrical operations needed is introduced in section 2.3. Some of
the most important data structures used in the proposed algorithms are explained in
section 2.4. Finally the OpenStreetMap project is named in section 2.5, it is later used
for evaluation purposes.

2.1 Map-Matching

Map-matching or map adaptation describes the projection of movement data into a
given way network. This projection is considered to be non-trivial due to errors in the
movement data.

Movement data is mostly defined as a sequence of position measurements. A position
measurement itself is defined as a tuple (la, lo) consisting of the components latitude
and longitude. The tracked object’s movement is then approximated by a polygonal
curve, which is created by using linear interpolation on those point measurements.
These curves are often called trajectories. Each measurement can be augmented with
additional information such as the current time or error radius [EFH+11].

The error radius can be adjusted according to the used measurement technology.
The most commonly used position measurement technology is the Global Positioning
Systems (GPS). Such measurements are distorted by two types of errors. The first
error source is the measurement technology itself. Every technology comes with a
certain accuracy and, therefore, a deviation in its measurements. The deviation of
GPS positions can be described as a bivariate normal distribution in three dimensional
space. This distribution is assumed to be Gaussian, see figure 2.1. Within this
model the accuracy of GPS measurements can be described in terms of standard
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2 Preliminaries

Figure 2.1: Measurement derivation of GPS [PJ99]

deviation.[LRT15] Another reason for inaccurate measurements has its origin in the
used sampling rate, which is the time interval between consecutive measurements. In
[PJ99] Pfoser and Jensen showed that the sum of measurement and sampling error
can be seen as a lenticular probability distribution.

The way network is formally defined as graph G

w

= (V, E) with V ™
{(la, lo)|la latitude, lo longitude} and E ™

1
V

2

2
. Ways of any kind are represented

by paths v1, v2, . . . , v

n

with {v

i

, v

i+1} œ E were 0 Æ i < n. The application domain
may require the use of a directed graph, for example if a system considers one-way
streets.

Definition 2.1 (Map-Matching Problem). Let G

w

= (V, E) the way graph and p =

p1, p2, . . . , p

n

a sequence of position measurements be given. Furthermore, let w

r

be the
actually traversed way while recording p in G

w

. The map-matching problem can then be
stated as finding a way w

m

in G

w

such that w

m

is as close to w

r

as possible.

An abstract map-matching example can be seen in figure 2.2. The picture is composed
out of three differing lines or segments. The first type defines the way-graph or road-
map and is illustrated by segments with dotted segment ends. Secondly, the trajectory
to be matched is coloured red, has square ends, and is named p. The actual path that
was travelled while recording this trajectory is indicated by dotted segments, named
w

r

. A possible match w

m

produced by a map-matching algorithm might be the track
shown as green line segments. In this example the map-matching algorithm is quiet
close to the correct path but fails to find the proper end-segment. A categorization
and description of such algorithms is given in chapter 3.
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2.2 Fréchet Distance

Figure 2.2: Example match

2.2 Fréchet Distance

This section introduces the Fréchet and weak Fréchet distance for two polygonal
curves, which was originally invented by Fréchet in 1906 [Fré06]. Furthermore, the
calculation of these distance metrics will be discussed. In this context the definition of
free space and the free space diagram of two curves will be given [AG95].

The most common illustration of the Fréchet distance borrows the picture of a dog
owner walking his dog. The dog owner as well as the dog want to follow an individual
path while doing there walk, but these two paths could be restricted by the used leash.
The Fréchet distance can now be described as the length of the shortest leash, so that
both individuals are able to walk along their paths without ever going backwards. By
interpreting the paths as curves the Fréchet distance is the length of that leash.

Definition 2.2 (Fréchet distance). Given two polygonal curves f : [0, n] æ R2 and
g : [0, n

Õ
] æ R2 with n, n

Õ œ N number of segments as well as two continues monotone
increasing parametrisations – and — with –(0) = —(0) = 0 · –(1) = n · —(1) = n

Õ then
the Fréchet distance can be defined as follows:

”

F

(f, g) := inf

–:[0,1]æ[0,n]
—:[0,1]æ[0,n

Õ]

max

tœ[0,1]
||f(–(t)) ≠ g(—(t))|| (2.1)

To define the weak Fréchet distance ˜

”

F

(f, g) the monotonic property of the parametri-
sations is omitted. For the intuitive description this would result in both the dog owner
and the dog to be able to walk backwards on their paths.
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2 Preliminaries

Figure 2.3: Two polygonal curves anyd their free space regarding Á. [BPSW05]

The calculation of the Fréchet distance can be achieved by using the free space concept.
The free space of two curves is defined as the set of all pairs of points belonging to
these curves such that their distance is less or equal to some given Á. The whole free
space F

Á

can be viewed as the union of all segment-segment free spaces.

Definition 2.3 (Free space). Let two polygonal curves f, g with dom(f) = [0, n] and
dom(g) = [0, n

Õ
] for n, n

Õ œ N as well as a distance function d be given. Then the free
spaces for some fixed Á is given by:

F

Á

:= {(x, y) œ [0, n] ◊ [0, n

Õ
]|d(f(x), g(y)) Æ Á}

=

€

0Æi<n

0Æj<n

Õ

{(x, y) œ [i, i + 1] ◊ [j, j + 1]|d(f(x), g(y)) Æ Á} (2.2)

The following results achieved by Alt and Godau lead to their decision algorithm for
”

F

(f, g) Æ Á. Firstly, for two segments of polygonal curves f

Õ
, g

Õ it holds that ”

F

(f

Õ
, g

Õ
)

is convex. Secondly, for two polygonal curves f, g the following holds: ”

F

(f, g) Æ Á is
true if and only if there is a monotone curve from (0, 0) to (n, n

Õ
) in F

Á

.

By calculating all segment transitions, it is possible to detect whether a monotone
curve, as mentioned in the second result, exists in F

Á

. If there are monotone increasing
transitions for cells from (0, 0) to (n, n

Õ
) then the convex property of each segment-

segment cell ensures that there is a monotone curve between these consecutive
transitions. When these curves are composed, they form a monotone curve from
(0, 0) to (n, n

Õ
), which, hence, decides whether ”

F

(f, g) Æ Á by directly inducing two
parametrisations – and —. An example can be seen in figure 2.3. On the left side two
polygonal curves are shown in combination with some value Á, the corresponding
free space is given as free space diagram on the right side. The calculation of ”

F

(f, g)

can now be solved by using parameter search on the decision problem, which is
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2.3 Spherical Geometry and Coordinate Systems

possible because F

Á

contains another F

Á

Õ if Á

Õ
< Á. The search space of critical Á values

that must be included in the parameter search is of size O(n

2
n

Õ
+ nn

Õ2
) and contains

three types of Á values. Type one are the minimal Á values which add (0, 0) or (n, n

Õ
)

or both to the free space, type two are minimal Á values that open the free space
between two adjacent free space cells, and type three are minimal Á values such that a
new horizontal or vertical passage opens in the free space. This approach results in
an asymptotic running time of O((n

2
n

Õ
+ nn

Õ2
) log(nn

Õ
)), which is dominated by the

need to sort the critical values. By processing critical Á of type tree separately and
applying techniques presented by Cole one could achieve O(nn

Õ
log nn

Õ
) running time

[Col87].[AG95]

By omitting the constraint of monotonicity, meaning the only requirement is connec-
tivity between (0, 0) to (n, n

Õ
) within the free space, this approach can be adapted to

the weak Fréchet distance. Every test within the parametric search uses a depth-first
search run to test for connectivity in the free space defined by the current Á. The
critical Á values relevant to the weak Fréchet distance are those of type one and two.
Type three is not relevant as such passages are already open in terms of weak Fréchet
distance due to being non-monotonic. Hence, the amount of critical Á values reduces
to O(nn

Õ
). The running time for every depth-first search run is O(nn

Õ
), thus calculating

˜

”

F

(f, g) takes O(nn

Õ
log nn

Õ
) time.[AG95; BPSW05]

2.3 Spherical Geometry and Coordinate Systems

This section will introduce geographic coordinate systems such as the latitude-
longitude system and the cartesian ECEF (Earth-Centered Earth-Fixed) system. In
addition the calculation of surface distances in spherical geometry will be explained.
These calculations will later be used for various operations within the proposed
algorithm.

A variety of mathematical models can be employed to represent the earth’s shape.
For instance, one can define a model in which the earth’s surface is just a plane.
Due to the object’s size, those models can be accurate enough for some applications.
There is the possibility of advancing the approximation by using a spherical model.
However, the shape of the earth rather fits those of an ellipsoid, so that a carefully
defined ellipsoid is currently the most accurate way to define a geographical model.
As an example, the World Geodetic System (WGS) 84 defines such an ellipsoid. The
algorithms proposed in this paper, however, involve relatively small fractions of the
earth’s surface, in the range of a few kilometers. Hence a trade-off between accuracy
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2 Preliminaries

Figure 2.4: Latitude-Longitude Coordinate System [Jon14]

and complexity is picked by using the spherical model for all geographical calculations
within this paper.[Jon14]

Probably one of the most known systems to represent geographical positions within a
spherical model is defined around the values of latitude, longitude, and altitude. A
pair of latitude and longitude values determine the position on a sphere, whereas the
altitude defines the height by means of a reference value. For the usage in this paper
the altitude component will be neglected as we assume a spherical shape, as justified
above. Figure 2.4 illustrates this system as well as the ECEF system.

Definition 2.4 (Latitude-Longitude System). In the latitude-longitude system every
coordinate c is defined as a tuple („, ⁄) of angles between the coordinate and the cor-
responding reference plane. Subsequently, the latitude value „ is the angle between the
coordinate and a reference plane through the equator which is orthogonal to the earth’s
rotation axis. Its domain is „ œ [≠90

¶
, 90

¶
], with the equator defined as 0

¶ and increasing
value towards the north. Whereas, the latitude angle ⁄ is constructed using the meridian
which passes through Greenwich, London. Its domain is ⁄ œ [≠180

¶
, 180

¶
], with the

Greenwich meridian defined as 0

¶ and increasing value towards the east.

Another seemingly natural representation of positions in three dimensional space is
given by any three dimensional Cartesian system. One of these systems is the Earth-
Centered Earth-Fixed system, with which the calculation of position measurements is
convenient [KH05, p. 28]. It is presumably the most used coordinate reference system
in mathematics and geographic information systems, as its vectorial nature allows
further calculations based on these coordinates [Gal06, p. 142].
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2.3 Spherical Geometry and Coordinate Systems

Definition 2.5 (Earth-Centered Earth-Fixed). The Earth-Centered Earth-Fixed system
is defined as a three dimensional Cartesian coordinate system composed of the axis x, y,
and z. The center (0, 0, 0) is given by the earth’s center of mass, thus Earth-Centered. The
x ≠ axis points in the direction of 0

¶ longitude, whereas the y ≠ axis is directed towards
90

¶ longitude. Finally, the z ≠ axis is normal to the equatorial plane and therefore points
to the geographical north pole. As a result the coordinate system is bound to the earth’s
rotation, thus it is called Earth-Fixed. Now every coordinate c can be defined as a triple
(x, y, z) œ R3 denoted as a certain distance unit. [Gal06; KH05]

Position measurements are mostly given in terms of the latitude and longitude.
Whereas, the proposed algorithms calculate within the Cartesian system. Hence, there
is a need to convert forth and back between those systems.

Calculation 2.1 (Coordinate System Conversion [TM12; Wei16]). Coordinates can be
converted between the Latitude-Longitude and Earth-Centered Earth-Fixed systems. The
transformation from latitude and longitude („, ⁄) into the Cartesian model (x, y, z) is
given by the following equation:

c =

S

WWU

x

y

z

T

XXV =

S

WWU

cos ⁄ cos „

sin ⁄ cos „

sin „

T

XXV (2.3)

By using the inverse functions one could obtain the reverse transformation:

(„, ⁄) = (arcsin z, arctan(y, x)) (2.4)

One of the basic operations within almost every geographic information system is the
distance calculation between two given coordinates. If one takes the spherical model
as a basis, the shortest line between any two points is an arc of a so-called great circle.
Great circles are all circles on the sphere’s surface that have the same radius as the
underlying sphere. The shortest distance can, therefore, be calculated by finding the
great circle arc between demanded coordinates, calculating it’s angle, and multiplying
it by the sphere’s radius.

Calculation 2.2 (Great Circle Distance [Wei16]). The great circle distance d of two
given coordinates c̨1 = (x1, y1, z1) and c̨2 = (x2, y2, z2) can be calculated by using the dot
product and the sphere’s radius r. Recap that the dot product in three dimensional space
can be defined as c̨1 · c̨2 = |c̨1||c̨2| cos^(c̨1, c̨2). Subsequently, the great circle distance is
calculated as follows:

d = r · arccos

A
c̨1 · c̨2
|c̨1||c̨2|

B

(2.5)
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2 Preliminaries

Another geometrical problem that will be useful later on is the calculation of great
circle intersections. This loosely corresponds to finding intersections of lines in
planar space but with the difference that for two great circles there are always two
intersections. Unless, they are identical. A great circle is defined by a plane that cuts
through the sphere’s center, this can be expressed by a normal vector n̨ of that defining
plane. Every Cartesian coordinate c̨ that satisfies n̨ · c̨ = 0 lies on that great circle
when assuming that all vectors are normalized.

Calculation 2.3 (Great Circle Intersection). Given two pairs of coordinates (ą1, ą2) and
(

˛

b1, ˛

b2). The intersection points of great circles implied by those coordinate pairs can be
calculated using the representation of each circle as an equation.

n̨

a

· x̨ = 0, with n̨

a

= ą1 ◊ ą2

n̨

b

· x̨ = 0, with n̨

b

=

˛

b1 ◊ ˛

b2
(2.6)

Those normal vectors n̨

a

and n̨

b

itself span a plane orthogonal to the searched intersection
points. Hence, the calculation of intersection points i, i

Õ can be completed as follows:

˛

i = n̨

a

◊ n̨

b

˛

i

Õ
= n̨

b

◊ n̨

a

(2.7)

2.4 Data Structures

There are three types data structures that are essential to the proposed algorithms.
These data structures are disjoint-sets, heaps, and structures for graph representation.
This section will provide definitions as well as complexity information on each of
those data structures. In addition, some applications will be mentioned, particularly
these which are closely relate to their use within the proposed algorithm, as described
in section 4.

2.4.1 Disjoint-Sets

Disjoint-set data structures or union-find data structures are used to operate on
disjoint subsets of a given set of elements. Three operations are commonly provided
to manipulate these subsets. The make-set-operation takes a new element and creates
a subset, a singleton. Whenever the union-operation is invoked, the given subsets are
thrown together and handled as one for the rest of the execution. In order to determine
if two given elements are in the same subset one could use the find-operation. These
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2.4 Data Structures

structures are often used within greedy algorithms. For example, Kruskal’s algorithm
for minimal spanning trees uses a disjoint-set data structure to detect edges in a graph
that would close a cycle. [DMS14; OW11]

Definition 2.6 (Disjoint-Set Data Structure ( [DMS14; OW11] ) ). Let B be a set of
elements and P = {B1, . . . , B

k

} a partition of B. Therefore B

i

flB

j

= ÿ for 1 Æ i < j Æ k

and B1 fi . . . fi B

k

= B. Hence, P is the quotient set of a equivalence relation ≥
P

on B.
Substantially, an element b

r

œ B

l

œ P is called representative of B

l

, [b

r

] = {b œ B|b
r

≥
P

b}. A disjoint-set data structure is defined by providing the following operations:

makeSet(b):
Adding a new element to the structure, P

new

= P

old

fi {{b}}. In terms of the
equivalence relation ≥

p

is extended by (b, b).

find(b):
Retrieves a representative b

r

of the class [b] that is unique within the data struc-
ture. So that for every pair b1, b2 œ [b] the find-operation satisfies the condition
find(b1) = find(b2) = b

r

.

union(b, b

Õ
):

Union the two subset [b] and [b

Õ
] within P , therefore ≥

P

is extended by [b] ◊ [b

Õ
] fi

[b

Õ
] ◊ [b].

Most of the time disjoint-set data structures are implemented as a forest of trees which
represent the subsets. Adding an element is done by introducing a new tree of size
one to the forest. A unique representative is defined by the root vertex of every tree.
The union of two subsets, and therefore two trees, is achieved by attaching one vertex
to the other as parent.

A simple implementation of such a forest is given by storing the information in two
arrays. The first one i[] holds all elements and is used to index these elements. The
second array p[] holds the index of the parent vertex within the tree. Adding an
element b is now done by appending it to the first array i[x] = b and setting the
reflexive parent link p[x] = b. For every element its unique representative can be found
by traversing along the parent link until p[i[b]] = b. Union of two trees is accomplished
by resetting the parent link of one vertex such that it points to the other vertex. It can
easily be seen that the makeSet-operation and union-operation are in O(1) and that
the find-operation has O(n) time. The whole structure needs O(n) space as there are
two arrays of size n.[OW11]
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2 Preliminaries

There are two known modifications which result in much better performance regarding
the time needed to find a representative. One improvement is to union the trees
according to their size and height, called union by rank. By utilizing this method
the trees are restricted in height by O(log n). Hence, the time complexity of the
find-operation also shrinks to O(log n). The second improvement is called path-
compression. A new functionality is added to the find-operation in order to further
shorten the paths to the root vertices. Every vertex along the path from starting
vertex to representative vertex gets its parent link reset such that it points to the
representative vertex. The amortized time complexity of m find- and n ≠ 1 union-
operations is given by O(m–(m, n)) where – is the extremely slow growing inverse
Ackermann function. For all practical uses one could assume –(m, n) < 5 and,
therefore, assume that every single operation takes practically constant time.[DMS14;
OW11; Tar83]

The union-find data structure will later be used to determine, whether there is a path
between two vertices in a given graph.

2.4.2 Priority Queue

Quite often algorithms need to process data based on associated priority values. One
data structure to deal with such requirements is the priority queue. It offers the insert-
operation to insert a new element, the getMax-operation to retrieve the element
of highest priority, and removeMax-operation to retrieve and remove the element
of highest priority. This section will give a definition for priority queues, state one
implementation approach, and sketch some application cases.

Definition 2.7 (Priority Queue ([Knu98; OW11])). Let (D, Æ) be a totally ordered set
and let A ™ D be the set of elements handled by the priority queue. The operations of a
priority queue are then defined as follows:

insert(d):
Adds the element d œ D to the set of elements handled by the queue, A

old

=

A

new

fi {d}.

getMax():
Returns an element a

min

such that for every a œ A the condition a Æ a

max

holds.

removeMax():
Returns an element a

min

such that for every a œ A the condition a Æ a

max

holds
and a

min

is removed from A.
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Figure 2.5: Heap example as binary tree and array

A common implementation uses a heap to maintain the data. A heap can be viewed
as a nearly complete binary tree T = (V, E). Where the operation right(v) returns
the right child and left(v) returns the left child of v. By invoking parent(v) one could
retrieve the parent vertex. In order to be a heap T has to satisfy the heap condition:

’v œ V : v Æ parent(v)

This tree is mostly stored as a dynamic or fixed array A, in which the tree vertices
are stored top to bottom and left to right. Every vertex is, therefore, mapped to an
index within the array. The array itself stores the priority. Hence, right(v) = 2v + 1,
left(v) = 2v, and parent(v) = Âv

2Ê. See figure 2.5 for an illustration. Given a
correct heap the insert operation of an element v is implemented by appending
the new element to A and then switching it with its parent(v) vertex as long as
A[perent(v)] < A[v]. Due to the binary tree structure the traversed path has maximal
length of log n and the insert-operation a time complexity of O(log n). The maximal
element of the heap is always the root vertex and, therefore, the first element in A.
The first element of A is exchanged with the last element of A, then A[A.length] is
deleted. However, now the heap condition is violated at the root vertex. This is fixed
by invoking the often called heapify-operation. It takes the array A and an index v

as arguments and assumes that the subtrees rooted at left(v) and right(v) are valid
heaps. It compares the priority A[v] to A[left[v]] and A[right[v]]. Then v is swapped
with the vertex of highest priority. This is done recursively until both A[left[v]] and
A[right[v]] are lower than A[v]. A path traversed by v is again bounded by log n.
Hence, removeMax() can be executed in O(log n) time, the included retrieval of the
maximal element, however, only took O(1) time due to its root position.[Cor09]

The insert performance can be improved by implementing the heap as Fibonacci heap,
see [OW11]. All of the definitions and implementations would also work for minimal
priorities by exchanging the order relation. Therefore, heaps are distinguished as min-
or max-heap. One prominent use of heaps can be found in Heapsort, see [Cor09]. In
this paper, it will be crucial that one could retrieve minimal elements until a certain
point and that it is not necessary to sort the whole set.
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Figure 2.6: Example graph

2.4.3 Graph Data Structures

Graphs are a natural representation for map data and also for the free space of
section 2.2. There are many ways of storing such graphs which differ in space
complexity, support for certain graph types, and operations. In this section three of
these representations will be described and discussed in regard of map and free space
graphs. For each representation the graph of figure 2.6 will be used as an example.

One of the simplest ways to represent a graph is by storing an unordered list of edges.
This approach needs O(|E|) space. However, it is not trivial to retrieve adjacent
vertices, therefore, this representation is mostly used to store graphs but not used as
the algorithms work piece. [DMS14] The example graph shown in figure 2.6 could be
represented as follows:

G = ({a, b}, {c, b}, {d, b}, {d, e}, {e, c}, {a, c}).

An ordered variant using a heap implementation is used in the proposed algorithm to
store the free space graph.

The second graph data structure is called adjacency matrix. For a graph G = (V, E)

every edge (i, j) œ E becomes an entry a

i,j

= true of a boolean |V | ◊ |V | matrix. The
space needed to store this representation is, therefore, O(n

2
). This structure is only

appropriate for highly connected directed graphs. A undirected graph would result in
a symmetric matrix, wasting a lot of space. However, a sparsely connected directed
graph would also be wasting space as there are only a few entries switched to true
in that case. Moreover, operations such as retrieving outgoing or ingoing edges of a
given vertex need O(|V |) time. Due to the matrix initialisation most algorithms will
take O(|V |2) time [OW11]. With respect to map or free space graphs, this properties
would result in bad performance, as these graphs are undirected and share the same
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Figure 2.7: Adjacency list for the example graph shown in figure 2.6

low degree of incident edges. The adjacency matrix for the running example would
look like this:

G =

Q

cccccca

a b c d e

a 0 1 1 0 0

b 1 0 1 1 0

c 1 1 0 0 1

d 0 1 0 0 1

e 0 0 1 1 0

R

ddddddb
.

A better way to store undirected graphs is the adjacency list. This data structure holds
all vertices as field or list entries, which are pointing to a list of adjacent vertices.
This representation needs ◊(|V | + |E|) space and it is possible to implement efficient
retrieval operations. Hence, an implementation of this structure is later used to store
the map graph within the proposed algorithm. Figure 2.7 illustrates an adjacency list
for an example graph.[OW11]

2.5 OpenStreetMap

The OpenStreetMap (OSM) project is a big community of volunteers aiming to create
a free map of the whole world. An excerpt of the map is shown in figure 2.8. The
community is backed up by the OpenStreetMap Foundation, which mainly performs
fund-raising.[Fou16a]

However, the map data is not owned by the foundation, but available under Open
Data Commons Open Database Licence (ODbL). Hence, it is necessary to use the same
licence if one changes the data. In addition the cartography included in the map tiles
and the documentation are licensed under the Creative Commons (CC).
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Figure 2.8: OSM map excerpt of Hannover

If the creator and/or the distributor uses OSM-data, he/she has to indicate the usage of
OSM-data by adding "© OpenStreetMap-Contributors" in a prominent place [Fou16b],
which is hereby assigned for this thesis.

The map data can be downloaded in two formats, namely in xml- and pbf-format.
The pbf-format is a compressed format that is used by the implementation described
in this paper to initialise the algorithms map data. The download source used in this
work is provided by the company Geofabrik GmbH, a member of the OSM-Foundation
[Kar16].
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A variety of way more than 30 map-matching algorithms and approaches have been
proposed by the research community till now [QON07]. This chapter will inform about
simple categorizations of these approaches and will describe briefly some algorithms
in section 3.1. Whereas, two closely related approaches will be presented in more
detail in section 3.2.

One possible categorization was described by Mohammend A. Quddus et al. [QON07],
defining the categories of geometric, topological, probabilistic, and advanced map-
matching approaches. The geometric-category includes all approaches which use the
geometric properties of the trajectory and the road network such as the coordinates of
positional measurements and vertices of the road network. A very simple approach
is to match each vertex of the trajectory with the closest vertex of the road network
by means of the chosen distance metric. This is also called point-to-point matching.
Another geometric method is point-to-curve matching, in which every trajectory vertex
is compared to a curve of the road network. Taking it one step further by comparing
the whole trajectory curve to any curve within the road network, we get curve-to-
curve matching. As described later on, the proposed algorithm is a member of this
category. Topology is meant to name properties of the road network such as adjacency,
connectedness, or curvature. Approaches of this category define closeness by similarity
of those properties. Furthermore, Quddus et al. defined the category of probabilistic
algorithms, these algorithms consider the error distribution of measurement system,
sample rate, and context. Eventually the category of advanced approaches contains
algorithms that may combine techniques of the other categories and use more complex
methods like fussy logic.[QON07]

All map-matching algorithms can also be differentiated into the two other categories.
Incremental algorithms expand their results based on already matched parts of the
trajectory. Incremental approaches are, therefore, greedy algorithms. The second
category contains algorithms that calculate the matches in a global manner and,
therefore, are called global algorithms. Main differences between these classes are
performance and result related. Incremental algorithms are faster but produce inferior
matching results. [WSP06]
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Map-matching approaches of both classes are presented later in this chapter. This
categorization also matches the headings of real-time and post-processed matching
requirements. In case of real-time applications such as a navigation system that is
matching a currently driving car in order to display the correct position, an incremental
algorithm is needed. Whereas, global algorithms are better suited for post matching
trajectories, because of more precise results.

3.1 Map-Matching Approaches

In this section two map-matching approaches will be described that utilise techniques
different from the ones used in this paper. Whereas, section 3.2 will present algorithms
that are closely related in terms of the techniques.

An interactive voting based algorithm was proposed by Yuan et al. in [YZZ+10]. It
is specially targeted at the problem of low sampling rates. Low sampling rates are
defined to have measurement intervals greater than one minute. Their approach
uses three insides. The topology and context of the road network, as defined earlier,
relations between measurement points, and a weighting factor. The weight for
topology, context, and point relation influences is weighted dependent on distance
to the measured point. For example, a topological property like a turn is weighted
utilizing the euclidean distance between this property and the currently considered
measurement. This situation can be seen in figure 3.1 for point f . Point relation
influences are nicely illustrated by the points a, b, c, d, e. Here points a, b, d, and e

clearly suggest that c should be matched to the E Yesler Way. All of the insides are
combined in a voting manner. Hence, measurements a, b, d, and e are voting for the E
Yesler Way each weighted by the distance to c. Due to the use of related points not
only previous to the considered point but also subsequent, the algorithm needs to
have a global view. Hence, it is a global map-matching approach as defined previously.

The algorithm consists of the four main phases candidate preparation, score matrix
building, interactive voting, and path finding. The first step of the candidate prepara-
tion is to collect all segments of the road network which are located within a fixed
radius. This set is called candidate road segments. Candidate points are retrieved by
geometric projection of the measurement point onto each segment. If the projection
is between the end points of the segment the projection point becomes a candidate
otherwise the closest end point will be picked as candidate. Secondly, the static score
matrix is build by using a so-called candidate graph. This graph connects every point
of subsequent candidate sets and annotates transitions by a spatial analysis function
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Figure 3.1: Example for the weighted insides [YZZ+10]

that combines the Gaussian observation probability with a transition probability. The
transition probability function utilizes the distance between measurement points and
candidate points, as well as the shortest path between consecutive candidate points,
which is based on the assumption that the real path is most likely the shortest one.
Using the static score matrix and the distance between sampling points matrices are
build in order to model the weighted influence of each candidate point. Voting is
done as follows. For every sampling point the weighted score matrix is calculated.
The weighted score matrix contains all candidates for the current sampling point,
for all of these candidates an optimal path is calculated that passes through this
candidate. Every candidate that lies on this path is voted up. The matching result is
then constructed by including the elected candidate for each candidate set.

The time complexity is stated to be O(nk

2
m log m) where n denotes the number of

measured points in the trajectory, m the number of road segments, and k is assumed to
be the maximum number of candidates per sampling point. The nk

2 factor originates
from the matrix building, whereas the m log m factor is caused by finding shortest
paths using the Dijkstra algorithm. Evaluation was done using 26 trajectories from the
GeoLife Dataset [ZCXM09]. The stated overall result is that the voting based approach
is appropriate for low sampling rate matching.

Another theoretical model that is used to develop map-matching algorithms is the
Hidden Markov Model (HMM). A HMM consist of hidden states, observations, transi-
tions probabilities, emission probabilities, and the probability for any given state to be
the initial state. Hidden states are connected through transitions probabilities. Obser-
vations are connected to hidden states via emission probabilities. After constructing
a HMM one could use observation sequences to infer knowledge about the hidden
states of the model.
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Figure 3.2: Sliding window of online HMM approach [GDM+12]

One approach that applies HMM in map-matching was proposed by Dauwels et al.
in [GDM+12]. It is targeted at delivering a map-matching algorithm that suits the
needs of low latency real time applications. The basic idea is to construct a HMM
such that the candidate road segments of measured points are represented as hidden
states with an associated emission that relates to the probability of being the true
position. Intuitively, one could choose these emissions according to the distance
between measurement and candidate point. The transition probability is computed
for every pair of subsequent hidden states such that it follows the Markov assumption.
The goal of finding a match can then be translated to finding the Markov chain with
highest joint emission and transition probability.

The algorithm starts for every new trajectory point by selecting candidate segments
within a fix radius of 50 meters around the measured point. In the next step the
emission probability for these candidates are calculated by using a Gaussian function.
A speeding penalty is also included, assuming that the speed of observed objects
does not greatly exceed the speed limit. Transition probabilities of adjacent states are
calculated using the shortest path assumption together with the two scoring functions
distance discrepancy T and momentum change M . The T function compares the
measured travelling distance to the distance interpolated by the current path in the
HMM. The Momentum function M is used to infer a vehicle heading. Backtracking is
then used to derive a partial solution for the current progress. In order to calculate
a global optimal match by incremental steps a variable sliding window technique
is used. The sliding window contains the part of the HMM that will be considered
when the next trajectory point is processed. Hence, the window expands with every
new trajectory point. It shrinks whenever a convergence point is found in the HMM.
Convergence points are points such that every subsequent path convenes in at that
point and, thus, share a common prefix path [BR08].

This process is illustrated by figure 3.2. However, it may be the case that no con-
vergence point appears, therefore, a bounded version of the variable sliding window
is proposed. This version of the algorithm will restrict the window size to a given
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threshold. As not all relevant states are considered in this version, it will lead to
suboptimal solutions. The algorithm terminates after the last trajectory point. This
algorithm can be classified as advanced, incremental, and real time.

Evaluation was done using four bus routes of Singapore, two urban and two rural
tracks. Due to the known real track, it is possible to compare it to the matching
result. The trajectories were collected using GPS enabled smartphones configured
to sampling intervals between 1 to 3 seconds. In order to simulate other sampling
intervals the original data was sub-sampled ranging from 10 seconds to 5 minutes.

3.2 Weak Fréchet Map-Matching

This paper proposes a map-matching algorithm which is based on the weak Fréchet
distance. In this section two related papers which make use of this distance metric, as
well as similar calculation techniques, will be described.

In "On Map-Matching Vehicle Tracking Data" [BPSW05] Brakatsoulas et al. presented
two algorithms to solve the map-matching problem. The incremental algorithm is
designed to process portions of trajectories rather than the whole instance. In contrast,
the global algorithm is working on complete trajectories. The differences regarding
computation speed and accuracy will be stated after a detailed description of the
algorithms.

A greedy point after point strategy is used by the incremental algorithm. For every
measured point the matching is done based on the previously matched road segment.
The candidate selection is done by selecting all segments adjacent to the previously
matched road segment, this includes reflexivity. The final match is then selected
from these candidates utilizing the two similarity measurements orientation and
distance. The distance is calculated by projecting the trajectory point onto the great
circle defined by the road segment. If the projection lies between the segments
endpoints, the perpendicular line distance is used, otherwise the distance to the
closest endpoint is chosen. Higher orientation difference or distance results in less
similarity. Consequentially, the nearest candidate under these two metrics is chosen as
matching segment. If the projection of the current trajectory point onto the matched
road segment is not within the endpoints the algorithm will not continue with the next
point but advance on the road network. Road segments that are matched this way
are called traversed segments, as they are only matched due to a direct or transitive
following segment. The algorithm initialisation is done by a range query of fix distance
around the starting point and evaluation of all found candidate segments.
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Figure 3.3: Example situation for the incremental approach [BPSW05]

An example can be seen in figure 3.3. The current point to be matched is p

i

. The
candidates are all adjacent segments of the last match c3 of point p

i≠1, those are
c1, c2, c3. Due to lower distance and orientation difference the candidate c1 is chosen
as matching segment.

One proposed modification of this simple algorithm is to use a fixed look-ahead. The
matching changes by adding a new score function, which uses the best sub-path of all
points in look-ahead distance. This modification adds computation time in a trade
with accuracy. In regard of time complexity this leads to O(na

l+1
) running time. Here

a denotes the number of adjacent road segments and l the number of segments in the
look-ahead. It is stated that a and l are essentially constant and that the initialisation
is dominated by the actual computation, thus a complexity of O(n) is assumed.

Another goal was targeted by the global algorithm proposed in [BPSW05]. In contrast
to the fast incremental algorithm, the global approach aims to deliver guaranteed
quality. The weak Fréchet metric was used to select a match as the curve in the road
network which is closest to the curve described by the trajectory. The free space
definition 2.3 and the corresponding free space diagram are extended by [BPSW05]
to model the free space between the road network and the trajectory. The extension is
called free space surface.

Definition 3.1 (Free space surface). The free space surface is the union of all free spaces,
which in turn are formed by the combination of road and trajectory-segments. A single
vertex v of the road network and a trajectory point form a one dimensional free space.
Hence, given a road segment, all adjacent segments share a one dimensional free space at
v, thus, these vertices can be seen as connecting points.

The example free space surface in figure 3.4 helps to understand this model by
visualising it in a similar way as the free space in section 2.2. On the left, one can
see a graph representing a road network and on the right a corresponding free space
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Figure 3.4: Example free space surface [BPSW05]

surface is shown. Presented in bold are the connecting one dimensional points which
are created by the combination of vertices i, l and a trajectory show indirectly by the
white areas of the free space surface.

The global algorithm uses depth-first search to find a path from any lower left corner
to any upper right corner given some Á. As described in section 2.2, an existing or
non-existing path corresponds to the solution of the following decision problem: Does
any curve with weak Fréchet distance at most Á exist? Parametric search is then used
to find the smallest Á and its corresponding curve. This curve is then returned as
match for the given trajectory. Every time the decision problem has to be solved an
O(mn) factor of computation time is added. Here m denotes the total amount of
vertices and edges contained in the road network and n the number of points in the
trajectory. Due to logarithmic parameter search, the algorithm solves the matching
problem in O(mn log mn).

An empirical evaluation was performed to show differences between the two algorithm
in terms of speed and quality. They used 45 vehicle tracks recorded around the Greek
city of Athens. Those trajectories are recorded using a sampling rate of 30 seconds.
The conclusion regarding computation speed is rather simple, as stated above the
incremental algorithm is faster, as its time complexity is essentially linear. Brakatsoulas
et al. used two quality measurements to compare the quality of computed matches.
The first metric used was the average Fréchet distance, which takes the average of
certain Fréchet distances, see [BPSW05] for further definitions. Additionally the
basic Fréchet distance was used as a quality indicator. The average Fréchet distance
indicated far better results for the global algorithm while the less strict average Fréchet
distance only showed a smaller advantage. Another important result stated in this
paper is that the global algorithm and a variant using the basic Fréchet distance
delivered the exact same match results. This implies that every match computed using
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Figure 3.5: Example free space graph [WSP06]

weak Fréchet distance resulted in monotone curves through the free space surface.
Hence, one could use the faster to compute weak Fréchet distance.

In "Addressing the Need For Map-Matching Speed: Localising Global Curve-Matching
Algorithms" [WSP06] Wenk et al. presented an incremental and output-sensitive
algorithm named Adaptive Clipping Algorithm. The main goal of this paper was to
deliver a fast algorithm to solve the map-matching problem without sacrificing match
quality.

One essential part of the algorithm is the free space surface representation. Free space
is modelled as a graph called free space graph. For every white/open interval of a
free space cell a vertex is introduced. Furthermore, all vertices of the same cell are
connected by graph edges. This model is shown in figure 3.5. This representation
is modified to allow incremental computation of the free space graph, and therefore
the free space surface, to meet the algorithm’s needs. Every pair (e, v), where e is a
road network segment and v a point of the trajectory, is a possible edge of the free
space graph. The algorithm calculates the smallest Á such that the corresponding
interval is non-empty and annotates the free space graph vertex with this value. This
Á is equivalent to the minimal distance between the road segment and the trajectory
point. Let v

s

be the point created through geometric projection of v onto the great
circle defined by the segment e. If v

s

is located between the end points of e, the
smallest Á is given by the distance between v and v

s

. Alternatively v

s

is located outside
of the segment and the minimal distance, and therefore the smallest Á, is given by
the distances between v and the closest segment end point. By defining the weight
of a path as the maximum Á that is encountered, the weight of a path from any
lower left corner to any upper right corner of the free space surface corresponds
to the weak Fréchet distance between the trajectory and the curve implied by the
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path. Wenk et al. then used Dijkstra’s shortest path algorithm to create an output-
sensitive algorithm. This was achieved by running Dijkstra on the free space graph
and calculating free space cells and there minimal Á values as needed. In contrast to
all other global algorithms using weak Fréchet distance, the free space surface is only
calculated partly. This approach leads to a time complexity of O(K log K) were K is
the calculated part of the free space surface. Hence, K has an upper bound of nm,
which is the complexity of the whole free space surface.

A modified version of this algorithm is also presented in order to localize global weak
Fréchet map-matching, called Adaptive Clipping algorithm. Active regions are used
to split the free space surface into intersecting parts. The active region for start and
end points of the trajectory are defined as a circle with fix radius around the point.
Intermediate active regions are defined by an ellipse which is constructed using two
consecutive trajectory points. The radius and ellipse calculation are chosen according
to the knowledge about measurement errors. However, the implementation was done
using bounding boxes as an approximation. The modified algorithm runs through the
following stages. Stage one begins by execution of the Dijkstra based approach within
the first and second active region. All start vertices are defined by (p1, e) where p1 is
the first track point and e is any edge within the first active region. Target vertices
are defined in the same manner as (p2, e). Every remaining stage uses the resulting
shortest path of its preprocessor stage to construct the new and extended shortest
path. Hence the last stage computes the shortest path between active regions n ≠ 1

and n and is seeded with the shortest path from region 1 to region n ≠ 1. The runtime
of this localized approach is stated as O(M log M) + n with M =

q
n≠1
i=1 M

i

and M

i

the
number of edges and vertices of active region i. This time complexity can be simplified
to O(n log n) under the assumption that only adjacent regions intersect and that M

i

is
essentially constant.

This approaches are conceptionally close to the approach described by this paper.
They share the same underlying distance measure and also the usage of some kind
of free space surface. But they heavily differ in their ways to construct the resulting
match. While the approaches described in this section use Dijkstra’s algorithm or
the decision problem and parametric search to find a match, the approach proposed
by this paper will use a union find structure to construct a match. In contrast to all
algorithms of this section it will be easy to extend the proposed algorithm to facilitated
parallelization.
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This chapter presents the developed incremental weak Fréchet map-matching algo-
rithm. Firstly an overview of the general idea behind the algorithm is given. This
overview is followed by the description of several necessary subroutines. All steps will
be exemplified by the example match show in figure 4.1. A parallel variation of the
algorithm is introduced. Then the incremental weak Fréchet map-matching algorithm
is illustrated as pseudo code and analysed in terms of time complexity.

Overview

As already mentioned in section 2.1, the input of the map-matching problem is a
graph representing some kind of map and a sequence of positional measurements
often called track or trajectory. The map-matching problem is solved by computation
of a curve within the map that is as close as possible to the trajectory by means of
some distance function, which, in context of this work, is the Fréchet distance.

In order to give an overview over the algorithms inner workings one can divide it into
its main tasks. Referring to the map-matching algorithm proposed in this thesis, the
main four task are the following:

1. Extracting the required part of the map graph

2. Computing the free space graph

3. Finding a conditioned connection

4. Constructing the match

The first task is to extract a part of the map graph such that it contains just enough
information. A map part contains enough information for the map-matching algorithm
as long as it includes the theoretically best solution, which, in this context, is the
closest curve compared to the given trajectory. However, it is also not feasible to just
use the whole map, although it certainly contains enough information. The whole
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Figure 4.1: Example track (red) and its corresponding match (green)

map is most likely to big for the next steps of the algorithm, such that they would not
be able to produce a result at an acceptable speed.

Henceforth, the extracted map graph is combined with the trajectory to compute the
free space graph, which represents the free space surface as introduced in definition
3.1. Every free space cell becomes a vertex of the free space graph and for every pair of
adjacent free space cells their corresponding vertices get connected via an annotated
edge in the free space graph. The annotation contains the minimal distance Á such
that the two cells are connected by free space in the free space diagram. Additional
start and end vertices are added while constructing the free space graph. Every vertex
that had its origin in a cell that is made up on the first segment of the trajectory and
any map segment receives one start vertex. Analogue for end vertices.

Now, one can find a path through this free space graph from any start vertex to any
end vertex such that there is no other path within the free space graph from any start
vertex to any end vertex that has a lower maximum of annotated distances Á. This
path, as described in 2.2, directly leads to a parametrisation for the weak Fréchet
distance and, therefore, delivers a path through the map graph. This path is, due
to the stated condition, the closest curve compared to the trajectory under the weak
Fréchet distance.

Finally, the found path must be projected back to the original map graph and converted
into the desired format.

36



4.1 Map Extraction

Figure 4.2: Roadmap graph of Wathlingen

4.1 Map Extraction

As stated in the overview, it is necessary to reduce the map to an excerpt that contains
enough information and is, at the same time, sufficiently small to produce acceptable
computation times. The map graph of the given example is illustrated in figure 4.2. It
contains more information than needed, because the track only covers a small part of
the map. This part is indicated by the red rectangle.

Due to the measurement and sample errors described in section 2.1, the area of interest
can be formalised as a sequence of ellipsoids around the measured trajectory. [WSP06]
This representation, however, is computationally hard to handle and, therefore, not
appropriate for the proposed algorithm. Hence, the same approximation is used as
in [WSP06]. Every measured point is interpreted as the center of a square which
contains all the possible actual positions, those squares are called bounding boxes.

In order to construct a square of the desired length a somewhat related problem to
the distance calculation described in 2.3 is used, the problem to find the coordinates
of a point which has a desired great circle distance in respect of some already given
reference point. The result is highly ambiguous due to the fact that there are infinite
coordinates around the reference point which would form a circle with a center in the
reference point. For most use cases, a bearing will also be given and, therefore, reduce
the range to an unambiguous result coordinate. As stated by Chris Veness [Ven16]
these can be calculated as described below.
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Figure 4.3: Bounding box

Calculation 4.1 (Point in given distance [Ven16]). Given a start point („, ⁄), a de-
manded distance d, an initial bearing ◊, and the earth’s radius r one can calculate the
end point („

Õ
, ⁄

Õ
) as follows
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Õ
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(4.1)

The desired square is constructed by calculating the coordinates of the top left and bot-
tom right corners and constructing the top right and bottom left out of the calculated
latitude and longitude pairs. As illustrated in figure 4.3, the top left point p1 = (la, lo)

is calculated with the parameters 2d desired diagonal and the initial bearing — of
115

¶. The second point p4 = (la

Õ
, lo

Õ
), located bottom right, is calculated using an

initial bearing – of 45

¶. The missing corners are then arranged as p2 = (la, lo

Õ
) and

p3 = (la

Õ
, lo), again shown in figure 4.3. The side length of the constructed square

is given by a = r · arccos(

Ò
cos(

2d

r

)), which can be obtained through the Pythagorean
theorem for spheres.

The bounding box size has to be big enough such that the resulting subgraph does not
fall apart at sections needed by the match. However, it should be as small as possible.
The size used in this papers evaluation was chosen as the smallest possible per test
set. Note that this parameter is highly dependent on the underlying map graph and
track properties. After calculating all bounding boxes the resulting subgraph of the
given example turns out as shown in figure 4.4.
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4.2 Free Space Graph Computation

Figure 4.4: Roadmap within bounding boxes (d = 0.15 km)

4.2 Free Space Graph Computation

After the extraction of the relevant map graph, the free space graph has to be calcu-
lated. As stated in the overview, the vertices of the free space graph are the free space
cells of the free space surface, which can be constructed by combining map and track
data. Vertices are connected if the corresponding free space cells are adjacent. Every
edge must be annotated with the minimal distance Á such that there is free space
between those two cells within the free space diagram. In this section, the detailed
definition of those vertices and edges is given. In addition, the construction procedure
for the free space graph will be explained.

Every free space cell and, therefore, free space vertex v is made up of one map and
track edge, v = ((v

m

, v

Õ
m

), (v

t

, v

Õ
t

)). All the map edges have to be orientated in one
direction corresponding to one start vertex in order to guarantee connectivity of the
resulting free space graph. This restriction originates from the calculation method,
which will be described later. Track edges are constructed by starting at one end of
the track and creating one edge for every subsequent pair of measurement points,
(t1, t2), (t2, t3), . . . , (t

n≠1, t

n

).

There are two types of adjacent cells and, therefore, vertices, Right and Upper-Cells.
The Right-Cell and the current cell share the same map edge but the Right-Cells track
edge is shifted one position towards the end of the track. Hence, a transition from the
current cell to its Right-Cell does not add a new map edge to the match result and
only advances on the track. Another interpretation is that the added track point is
matched to the same map edges as the previous track point. Every cell has exactly one
Right-Cell except cells containing the track end (t

n≠1, t

n

). Transitions to Upper-Cells
are advances on the map part of the free space graph. Hence, these transitions extend
the match result by one map edge. The number of Upper-Cells n connected to a
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Figure 4.5: Calculated free space graph

current cell v

c

= ((v

m

, v

Õ
m

), (v

t

, v

Õ
t

)), therefore, corresponds to the degree of the "upper"
vertex of the map edge contained in the current cell, n = |vÕ

m

| ≠ 1.

The free space graph is constructed from the lower left to the upper right. The
starting point can be found by taking a random start edge e

s

= (v, v

Õ
) of the map

graph. In order to avoid separation of the created graph the start edge has to be
processed in both orientations, (v, v

Õ
) and (v

Õ
, v). Then breadth-first search is used on

the map graph starting at e

s

. This guarantees the needed orientation of map edges.
For every encountered map edge (v

m

, v

Õ
m

) all track edges (t1, t2), (t2, t3), . . . , (t

n≠1, t

n

)

are traversed and all corresponding vertices ((v

m

, v

Õ
m

), (t1, t2)), . . . , ((v

m

, v

Õ
m

), (t

n≠1, t

n

))

are created. For each of these vertices their Right and Upper-Cells are calculated,
connected and annotated with the minimal Á such that these cells are connected by
free space in the free space surface.

Additional Start and End-Vertices are added to the graph as follows: For each vertex
v = ((v

m

, v

Õ
m

), (t1, t2)) that contains the first track point t1 a new Start-Vertex v

s

=

((v

m

, v

m

), (t1, t1)) is introduced. Edges (v

s

, v, dist(v

m

, t1)) are added to connect the
Start-Vertices to the graph. In a similar way End-Vertices are added and connected to
all vertices that contain the last track point using the second tuple elements. The free
space graph of the given example can be seen in figure 4.5.

One main task, while building the free space graph, is to calculate the minimal Á

values. For transitions from a current cell v

c

= ((v

m

c

, v

Õ
m

c

), (t

i

, t

i+1)) to the Right-
Cell v

r

= ((v

m

c

, v

Õ
m

c

), (t

i+1, t

i+2)) these values correspond to the minimal distance
between the segment (v

m

c

, v

Õ
m

c

) and the point t

i+1. Transitions towards an Upper-Cell
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4.2 Free Space Graph Computation

Figure 4.6: Minimal distance between point and segment
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i+1)) correspond to the minimal distance between the
segment (t
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i+1) to the point v

Õ
m

c

= v

m

u

, note that the minimal distance is the same
for all Upper-Cells. Hence, all transition values can be determined by calculating the
minimal point-segment distance. Three cases for the minimal point-segment distance
are illustrated in figure 4.6. The segment is defined by the two points v and v

Õ. Case
m1 and m3 are located outside of the area enclosed by the two circles orthogonal to v

and v

Õ, whereas case m2 lies within this area. The minimal distance for m1 and m3 is
given by the great circle distance between the point and the start or end-point of the
segment as described in section 2.3. Therefore, the minimal point-segment distance
for m1 is given by Á1 and m2 has a minimal distance of Á3. For case m3 the minimal
distance is equivalent to the great circle distance between m2 and p, which is the
orthogonal projection of m2 onto the segment.

Calculation 4.2 (Point-Segment Distance). Given a segment defined by two points s̨1
and s̨2 and one point p̨ in vectorial representation, the minimal point-segment distance
can be calculated as follows: Calculate the two intersection points ˛

i1 and ˛

i2 of the great
circle g1 defined by s̨1, s̨2 and the great circle g2 defined by p̨ and the normal of the
first great circle n̨1 = s̨1 ◊ s̨2, see 2.3. These two great circles are orthogonal to each
other, hence, the intersections are lot points of p̨ onto the first circle g1. The intersection
points are calculated using the cross product of the normal vectors n̨1 and n̨2 = n̨1 ◊ p̨,
˛

i1 = |n̨1 ◊ n̨2| and ˛

i2 = |n̨2 ◊ n̨1|. Also calculate the angles a

s1
p

, a

s2
p

from p̨ and the
segments start and end point. Now, one can calculate the minimal point-segment distance
by using the point to point distance calculation described in 2.2:

dist

s

(s1, s2, p) =

Y
]

[
min{dist(i1, p), dist(i2, p)} , a

s1
p

< a

s1
s2 ‚ a

s2
p

< a

s1
s2

min{dist(s1, p), dist(s2, p)} , else

(4.2)
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Figure 4.7: Freespace graph till connectivity

One possibility to speed up the free space graph computation is to parallelize it. It
is also a simple way of improvement due to the free space graph and computation
structure that suggests such a modification. One can divide the free space graph
along the track or the map graph axis in order to package graph parts that can be
created independent. The package size can be adjusted to the execution environment,
for example the track could be partitioned such that it fits the available parallel
computation cores.

4.3 Match Search

The next task of the algorithm is to find a connection in the created free space graph
from the lower left to the upper right, such that the maximal path annotation value
is minimal for the whole free space graph. This corresponds to finding the minimal
Á such that there is free space in the free space surface between the lower left and
the upper right, which in turn states that this Á is the minimal weak Fréchet distance
between the given map and track. This path, therefore, provides the optimal match
under weak Fréchet distance.

While creating the free space graph, it is stored as edge tuples. A priority queue
that considers edges with smaller annotation value to have higher priority is used as
data structure. It supports the retrieval of the next edge with minimal transition Á in
logarithmic time, see section 2.4.2. Due to the same Á value transitions to Upper-Cells
are stored as a single queue entry. A union-find structure is used to detect the desired
connection, see section 2.4.1.
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4.4 Code and Complexity

This union-find structure is build by successively removing free space graph edges
from the priority queue and invoking the union-operation on the corresponding two
vertices. After every processed free space edge, the find-operation is used to test for
connectivity. The find-operation is invoked on the first start and end-vertex that was
found within this process. All start vertices are held within one union class by always
calling the union-operation on the first start vertex and the currently encountered
start vertex. In the same way end vertices are held in one class. Hence, a positive find
call states a connection from the lower left (any start vertex) to the upper right (any
end vertex).

The vertices and edges are not only added to the union find structure but also stored
in an adjacency list based graph structure. This graph is used to extract the match
path by using breadth-first search from the first start vertex to the first end vertex if
the union find structure has detected a connection. For the given example this graph
is shown in figure 4.7.

The final step is to extract the match from the match path in the free space graph. The
match path is traversed from start to end. For every vertex the map part is extracted
and merged to construct the final result. Due to the nature of the free space surface
subsequent vertices may have the same map part. In this situation no new map edges
are added to the match. After this step the final match result can be formatted into
the desired format and returned to the invoker.

4.4 Code and Complexity

In this section the proposed algorithm will be illustrated as Pseudocode. Furthermore,
the time complexity of the algorithm is developed and discussed.

The overall matching procedure is shown in Algorithm 4.1. Every matching process
is started by supplying the two parameters map graph and track sequence. The
map graph G

m

= (V

m

, E

m

) defines the match target, whereas the track sequence
P = (p1, . . . , p

n

) defines the data to be mapped into the match target.

The first hurdle that needs to be cleared is the calculation of the free space graph
from the given input G

m

and P . This task is done in the subroutine freespace, see
algorithm 4.1 line 4 and algorithm 4.2. One important question in order to determine
the complexity is the following: How big does the edge set of the free space graph
get? This value is important as it defines the maximal number of priority queue entries
as well as the maximal number of combined while and for loop passes seen in 4.1.
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Algorithmus 4.1 Matching procedure
1: procedure MATCH(G

m

= (V

m

, E

m

),P = (p1, . . . , p

n

))
2: c

s

, c

e

Ω ÿ
3: G

r

Ω (V

r

= ÿ, E

r

= ÿ)

4: F Ω freeSpace(G, P )

5: while find(c

s

)! = find(c

e

) do

6: (c

i

, C

j

, Á) Ω deleteMin(F )

7: unionPointCells(c

s

, c

e

, c

i

)

8: for c

l

œ C

j

do

9: unionPointCells(c

s

, c

e

, c

l

)

10: V

r

Ω V

r

fi {c

i

, c

l

}
11: E

r

Ω E

r

fi {{c

i

, c

l

}}
12: union(ci, cl)
13: addEdge(ci, cl, Gr)
14: end for

15: end while

16: return shortestPath(G

r

, c

s

, c

e

)

17: end procedure

Algorithmus 4.2 Free space graph creation procedure
1: procedure FREESPACE(G

m

= (V

m

, E

m

),P = (p1, . . . , p

n

))
2: F Ω newPriorityQueue()

3: for e œ E

m

do

4: for p

i

œ P do

5: if i = 1 then

6: add(F, startTransition(e, p

i

))

7: end if

8: if i = n then

9: add(F, endTransition(e, p

i

))

10: end if

11: add(F, rightTransition(e, p

i

, P ))

12: add(F, upperTransitions(e, p

i

, G

m

))

13: end for

14: end for

15: return F

16: end procedure
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4.4 Code and Complexity

Figure 4.8: Critical subgraphs K1,5, P4 + K1, and K2 +

¯

K3

First, the free space graph is defined as G

f

= (V

f

, E

f

). As described in section
4.2, the vertices V

f

are cells of the free space surface V

f

= E

m

◊ P

E

with P

E

=

{(p

i

, p

i+1)|pi

, p

i+1 œ P · 0 Æ i < n}. Hence, free space graph edges are defined as
E

f

µ V

f

◊ V

f

◊R, but they are processed as so called transitions. Transitions are used
to bundle edges from a given start vertex with identical annotation value, therefore,
the transition structure is V

f

◊ P(V

f

) ◊ R. Going back to the original question, the
number of queue entries is maximal if every transition only contains one end vertex.
In this case, the for loop body within the match procedure will always be executed
once. The other extreme would be reached if there was only one transition containing
all edges. In this case, all edges are handled through the for loop. One can see that
the combined number of while and for loop passes is determined by the number of
free space graph edges |E

f

|.
This set can be split up into the three subsets E

f

= E

f

point

fiE

f

right

fiE

f

upper

. The amount
of edges from start cells and to end cells |E

f

point

| can easily be calculated if |E
m

| is
known. One could also divide the whole free space graph into layers. Each layer
G

f

i

= (V

f

i

, E

f

i

) is a subgraph induced by the vertices V

f

i

= {(e

m

, (p

i

, p

i+1)|em

œ E

m

)},
note that all layers are equivalent apart from naming. Now E

f

point

contains 2|V
f

i

|
edges due to the fact that there is one start cell connected to every vertex of layer one
and one connected end cell for every vertex in layer n. The number of edges between
layers |E

f

right

| is given by |V
f

| ≠ |V
f

n

|, because there is exactly one edge between every
equivalent vertex pair per layer.

All missing edges E

f

upper

are now connections within each layer. Every layer G

f

i

is
created by traversing E

m

in breadth first style and exchanging vertices with edges and
vice versa. The resulting layer graph is conceptionally close to the line graph L(G

m

)

but edges are only created along the orientation given by the breadth first traversal.
In fact every layer graph can be interpreted as a subgraph of L(G

m

).

In "Forbidden Subgraphs for Graphs with planar Line Graphs" Greenwell and Hem-
minger proofed that a line graph L(G) is planar if and only if G does not contain
a subgraph homeomorphic to K3,3, K1,5, P4 + K1, or K2 +

¯

K3 [GH72]. Thus, if the
free space graph construction procedure does not create non-planar results for the
subgraphs K1,5, P4 + K1, and K2 +

¯

K3 and the map graph is planar, the resulting
layer graphs will be planar. The forbidden subgraphs are shown in figure 4.8. The
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construction method was tested against these three graphs, always leading to planar
results for all possible traversals. For example the line graph of K1,5 is K5, which
is one of two basic non-planar graphs of Kuratowski’s theorem. However, the layer
graph of K1,5 is K1,4 and thus planar. Any subdivision of these three graphs just leads
to a subdivision of the layer graph produced from the original graph, thus preserving
planarity. As a consequence, all layer graphs are planar if G

m

is planar. In the domain
of matching road-maps and their representation as graphs, it might be sufficient to
assume that the match target G

m

is planar. In this case, a upper bound for the size
of E

f

upper

is given through Euler’s formula [DKR13, p. 146]. Every E

f

i

has an upper
bound of |E

f

i

| Æ 3|V
f

i

| ≠ 6 and the sum of all layer graph edges are therefore bounded
to n(3m ≠ 6), for |V

f

i

| = |E
m

| = m and 0 Æ i Æ n = |P
E

|.
Otherwise it is certainly possible to assume a constant c

d

as the maximal degree of
a map vertex. The map traversal returns |E

m

| edges which are processed along the
orientation and, thus, only adding free space graph edges to upper cells of the leading
vertex. Resulting in a bound of |E

f

i

| Æ |E
m

|c
d

for |E
f

i

|. Hence, the size of |E
f

| can be
bounded as follows:

|E
f

| = |E
f

point

| + |E
f

right

| + |E
f

upper

|
= 2|V

f

i

| + |V
f

| ≠ |V
f

n

| + |P
E

||E
m

|c
d

= 2m + mn ≠ m + nmc

d

œ O(mn)

(4.3)

The operations startTransition, endtransition, and rightTranisition are considered
to be of constant time because of the explanations made above. The sum of all
upperTransitions operation times follows the bound for |E

f

upper

| and, therefore, only
adds a summand of nmc

d

to the time complexity of the algorithm 4.2. Hence, the
time complexity of the free space procedure is given by O(mn) if the priority queue F

supports insertions in constant time. This can be achieved by using a Fibonacci heap,
see 2.4.2.

The next step of the algorithm is to find the conditioned connection as described
in section 4.3. This corresponds to the while loop within the match procedure. As
mentioned above, the combined while and for loop passes are bounded to the amount
of free space graph edges and, therefore, O(mn). While executing those O(mn) passes
the interesting procedure calls are union, find, and deleteMin as they are of non trivial
nature. However, the time complexity of union-find operations can be expressed by
amortized O(m–(m, n)) for m find and n ≠ 1 union operations. As descried in section
2.4.1, one can assume constant time per operation. By using the bound of free space
graph edges this leads to O(mn) time for union and find operations. More expensive
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are the maximal mn deleteMin operations which consume O(mn log mn) time and,
therefore, dominate the loop execution time.

Extracting the final match is done via breadth-first search on G

r

= (V

r

, E

r

), see
algorithm 4.1. In regard of complexity, this adds a time factor of O(|V

r

| + |E
r

|)
[DMS14]. This graph can get almost equal to G

f

implying O(mn + mn) time for the
match search described in section 4.3.

In summary, the time complexities of the algorithm parts are O(mn) free space
building, O(mn log mn) match search, and O(mn + mn) match extraction. Hence, the
match search dominates the resulting time complexity of O(mn log mn). However, it
is important to be aware that one would expect a considerably lower amount of loop
passes in practical cases. This is based on the assumption that connections in the free
space graph will be found much earlier. In contrast, the free space building time can
only be influenced by reducing the considered target graph or track length.
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5 Evaluation

The algorithm developed in this thesis will be evaluated in this chapter based on its
running time and match quality. First of all, the test setup is described in section 5.1.
The evaluation environment explanations include implementation details, hardware,
and software specifications, as well as information about the employed test data. In
section 5.2 the running time is evaluated by comparing it with an implementation of
the Dijkstra based Adaptive Clipping algorithm proposed by Wenk et al. [WSP06],
which is described in section 3.2. The evaluation omits the calculation of the required
map part and concentrates on the free space graph building and match search.
Eventually, the match quality is discussed and exemplified in section 5.3.

5.1 Test Setup

In order to compare the proposed algorithm with the Adaptive Clipping algorithm
described in [WSP06], these algorithms had to be implemented. Furthermore, test
data and a test system is needed. All these aspects are treated in this section.

The algorithms were both implemented in the Java programming language in version
1.8. Furthermore, these implementations are using the same libraries for various
tasks. Both algorithms share the same import method for the map which should
be used to match tracks. The compressed map format pbf, see [Fou16c] for further
information, is used as input format. Pbf files are processes using the osmosis library
in version 0.44.1. The imported map is then stored in an embedded H2 database.
The import implementation extracts all vertices and edges that are part of way’s in
the OpenStreetMap and are tagged as highway. However, the test data is explained
later on. In order to match a given track, the required map excerpt is loaded into the
main memory and stored in an adjacency list implementation of the JGraphT 0.9.2
library [NC16]. All mathematical base operations, such as the dot product and other
vector operations, are implemented by calling the apache commons math library in
version 3.6.1. Another important data structure for both approaches is the priority
queue to store the free space graph transitions. The implementation used for this data
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structure is the java.util.PriorityQueue, which provides O(log n) dequeuing operations.
The disjoint-set data structure needed for the algorithm proposed in this thesis is
implemented through the UnionFind class of the JGraphT library. This implementation
achieves an amortized cost of O(–(n)) per operation call. The resulting matches are
returned in the GPS Exchange Format (GPX). This export functionality is implemented
by using the Java Architecture for XML Binding (JAXB) to generate the class model
from the GPX definition given as XML schema. The schema can be downloaded
from various locations, for example [Fos16]. These GPX files not only contain the
resulting match, but also the input track, information about the map used, and detailed
evaluation information.

The comparison of these algorithms is mainly done with tracks which were extracted
from the planet gps file [Oc16]. The extracted tracks are bounded by the residential
area of Stuttgart and are at least 10 points long. This extraction was done by Martin
Seybold, the supervisor of this thesis. This dataset was then further sampled in
terms of length and density to fit the needs of this evaluation. Thus, the map of
the residential region of Stuttgart was used as the match target. It was downloaded
in pdf-format from the servers provided by the Geofabrik company [Kar16]. The
tracks are described in more detail later on. Some tracks were synthetically created to
evaluate the time complexity and to demonstrate certain quality properties.

All evaluation tests were executed on a single machine. This computer runs a Intel
Xeon E3-1230 v3 processor with 4 cores each running on 3.3 GHz. The build-in main
memory has a size of 2 ◊ 8 Gb and runs in dual channel mode. These components
are connected through a mainboard which runs an Intel Z97 chip set. The operation
system used is a Windows 10 Pro. The installed Java virtual machine is the Oracle
JVM in version 1.8.

5.2 Running Time Comparison

In this section the algorithm proposed in this thesis and its parallel version are
compared to the Adaptive Clipping algorithm proposed by Wenk et al. [WSP06].
Only the running times of the phases free space graph building and match search are
compared. The retrieval of the required map part is not taken into account. However,
the retrieval phase could be implemented in the same way for both algorithms, as
they require the same input. Firstly, all three algorithms are invoked with seven tracks
of size 4, 8, . . . , 256 in order to deliver a first insight to the algorithms running times.
Followed by a detailed comparison of the free space graph building time of the non-
parallel and parallel versions of the proposed algorithm. Finally, the three algorithms
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Figure 5.1: Small test with increasing track length

are compared using 80 tracks of four differed sizes. The results are discussed and
some possible reasons are described.

For the first test seven tracks of sizes 4, 8, . . . , 256 are used to deliver a first insight to
the experimental running times. These tracks were created by cutting a track, from
the dataset mentioned above, of size 300 to the desired sizes. Thus, this test shows the
increasing running times when the given track is extended. The averaged results of five
runs are shown in figure 5.1. On the left side one can see the results of the Adaptive
Clipping algorithm implementation. The algorithm managed to calculate matches for
the first five tracks in under 20 milliseconds. The track of length 128 took an average
of 45 milliseconds, whereas the track with 256 points took 144 milliseconds. On the
right side the results for both the non-parallel and parallel version of the proposed
algorithm can be seen. The non-parallel version took 12 milliseconds for the track
of length four and up to 21,81 seconds for the last track of size 256. However, the
parallel version, which utilizes eight threads, only took 4 millisecond for the first and
8,19 seconds for the last track. Two important observations can be made by looking at
this test. Despite the similar time complexity of O(mn log mn), the first observation is
that the Adaptive Clipping algorithm outperforms the proposed algorithm within this
test by a fairly big magnitude. The other observation is that parallelization of the free
space graph building phase seems to be a good way to improve the overall execution
time of the proposed algorithm. This supports the assumption that a connection is
detected much earlier than after mn free space graph transitions are added to the
union-find structure. This implies that the practical running time is dominated by the
free space graph building phase.
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Figure 5.2: Comparison of non-parallel (grey) and parallel (white) free space graph
computation

In order to further examine the benefit of parallelizing the free space graph building
phase, 80 tracks have been used to evaluate the differences between a single-threaded
and a multi-threaded calculation of the free space graph. The multi-threaded exe-
cutions used eight threads on a four core processor, as mentioned earlier. A part of
the results are visualized in figure 5.2. As one can see, four different track sizes were
tested, 50, 100, 200, and 400 points. The minimal improvement factor encountered
in this test was around 1.3, see track number 6 within the "Track Size 400" chart. A
maximal improvement was measured at track 10 within the same chart, improving
the free space graph building time at a factor of 5.9. The average of all improvement
factors, regarding all 80 tracks, was found to be 3.1 within this test setting. These
numbers show that this phase of the algorithm can be improved considerably by using
parallelization.
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5.2 Running Time Comparison

Figure 5.3: Comparison of the proposed algorithm with the Adaptive Clipping
algorithm

However, the test runs clearly indicate that even the parallel version, using eight
threads, is no rival for the Adaptive Clipping algorithm. Figure 5.3 illustrates the
comparison results of 40 test runs between the parallel version of the proposed
algorithm, left bar, and the Adaptive Clipping algorithm, right bar. For the proposed
algorithm the figure indicates free space graph building time in grey and match search
time in white. This distinction reveals that the free space graph building time is still
the main factor. Additionally, in only 71% of the test runs the match search time was
faster than the whole Adaptive Clipping algorithm. Therefore, in the remaining 29%
an improvement in the building phase would not be enough to surpass the Adaptive
Clipping algorithim. Assuming that one could extrapolate the improvement factor of
parallelization in a linear fashion, one would need at least 40 cores such that in some
cases the proposed algorithm runs faster.
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5 Evaluation

Figure 5.4: Free space graph build by the Adaptive Clipping implementation

The most important reason for this difference in running time can now easily be
located. The advantage of the Adaptive Clipping algorithm is that it only calculates
those parts of the free space graph that it actually traverses. In contrast, the proposed
algorithm has to calculate the whole graph prior to the match search phase. Figure
5.4 shows the graph calculated while running the example match of chapter 4. The
difference between this graph and the one build by the proposed algorithm, see figure
4.5, is conspicuous. Even in this small example the difference in graph size are at a
factor of three.

In conclusion, this evaluation provides evidence that Adaptive Clipping is the fastest
weak Fréchet based algorithm available to solve the map-matching problem for most
cases. Yet, the proposed algorithm may outperform the Adaptive Clipping algorithm
by utilizing heavy parallelization. It is important to note that this statement is based
on the assumption that the parallelization scales as presumed.

5.3 Match Quality

Although the match quality is no focus of this thesis, this section will shortly discuss
one quality issue, as it is closely related to the approach described in this thesis.
The proposed algorithm guarantees to produce a match curve within the map graph
such that it has minimal weak Fréchet distance to the supplied track. However, there
can be more than one curve fulfilling this requirements leading to multiple possible
matches.

An issue arises due to the fact that the map may not only contain one but many curves
that are of minimal weak Fréchet distance to the track. Due to the definition of the
weak Fréchet metric and the algorithms approach of match search, the solution space
is defined by all transitions added until the last free space graph transition that is
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5.3 Match Quality

Figure 5.5: Example matches

necessary to form a connection between any start and end vertex that has been added.
Most of the time the graph formed by these transitions will contain more than one
path from a start to an end vertex and, thus, more than one valid solution.

Figure 5.5 tries to illustrate this issue by showing two pairs of tracks and their matches.
The track and match pair on the top exhibits the situation that a part of the track has
higher distance to any edge of the map and, therefore, influences the solution space
by allowing more transitions to be added before the match search terminates. On
the far left of this match picture, one could see that the track given in blue has a big
distance to any map edge, as it runs across the Büsnauer Wiesental. As a consequence,
more free space graph transitions are added allowing an inferior match path, as can
be seen on the far right of the picture. The bottom track and match pair illustrates
what happens if one removes the track part around the Büsnauer Wiesental, hence,
removing the need to add free space graph transitions up to this outlier in track-map
distance. Thus, this track can be matched resulting in a superior match path, as can
be seen on the far right. This behaviour can be observed due to the fact that the final
match path is created by applying breadth-first search to the solution space.
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6 Summary and Future Work

In this final chapter a summary of this thesis is provided, including the goals, methods,
approaches, and results. Conclusions are drawn based on the results and experi-
ences made while working on this thesis. Furthermore, subjects for future work are
described.

The goal of this thesis was to develop a geometric map-matching algorithm based
on the weak Fréchet metric. The main objective was to deliver a faster algorithm
compared to the known approaches. The developed algorithm should also work in
an incremental way, such that it supports parallelization. These goals have been
evaluated by analysing the time complexity and an experimental evaluation which
compared the developed algorithm with a map-matching algorithm proposed by Wenk
et al. [WSP06].

The first task was to understand and describe the building blocks needed to develop
and implement a map-matching algorithm based on the weak Fréchet metric. Sections
2.1 and 2.2 are describing the general map-matching problem and the Fréchet metrics
including the concept of free space diagrams. These diagrams are the basic idea of the
free space surface and, hence, the free space graph, which is the core structure of the
proposed algorithm. Basic subjects needed to implement a geometric map-matching
algorithm are the geometric models to represent the earth’s shape, coordinate systems,
and calculations within these models. The spherical model was chosen and explained
together with its coordinate systems and calculations in section 2.3. All positional
data used in this thesis, such as trajectories and map data of the OpenStreetMap
project, used the latitude and longitude coordinate system, while all calculations were
implemented using the vector based Earth-Centered Earth-Fixed system. The main
types of data structures needed for the algorithm were examined in section 2.4. These
are the adjacency list graph structure for the map representation, priority queues
for the fast retrieval of smallest transitions in the free space graph, and union find
structures to detect connections in the free space graph.

In order to understand the state of map-matching approaches some related papers
were examined in chapter 3. The paper "On Map-Matching Vehicle Tracking Data" by
Brakatsoulas et al. [BPSW05] introduced the free space surface, which was also a
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main part of the subject of this thesis. Furthermore, Wenk et al. proposed the Adaptive
Clipping algorithm in [WSP06], which solves the map-matching problem by applying
a version of Dijkstra’s shortest-path algorithm. This paper can be seen as a solution to
some initial goals of this thesis, as it solves the weak Fréchet map-matching without
using parametric search, but is not suitable for parallelization. Hence, this algorithm
was the best candidate to compare against the algorithm developed in this thesis,
which was done in the experimental evaluation.

The developed algorithm, described in chapter 4, processes trajectories in three phases.
The first phase extracts a map part such that it contains enough information but not too
much. This is done by calculating bounding boxes of a given size around every point
in the trajectory and extracting the contained map part from the whole map. Secondly,
the algorithm builds up the free space graph. As mentioned earlier, this structure is
based on the free space surface, which has its origins in the free space diagram. Every
vertex of the free space graph represents a combination of one trajectory and one
map edge. An edge in the free space graph is annotated with the minimal distance
between the corresponding trajectory and map edges of the connected vertices. Edges
are introduced along the trajectory and map axis. This graph is stored by putting all
edges into a priority queue such that it is possible to successively retrieve the edges
with minimal annotation value. Thus, the third phase is able to construct a match by
adding edges, retrieved from the queue, to a union find structure until a path from the
lower left to the upper right of the free space graph and, therefore, free space surface
is detected. The last edge added to the union find structure, therefore, contains the
minimal distance such that there is free space from the lower left to the upper right
in the free space surface. In turn, the sub graph removed from the queue contains
at least one curve and all contained curves are of minimal weak Fréchet distance
regarding trajectory and map by definition of the free space surface. The resulting
match is then produced by traversing the sub graph from trajectory start to end in
breadth-first search style and extracting the map edges. The analysis of the algorithm
showed a time complexity of O(mn log mn).

As mentioned before, the evaluation was done by comparing the developed algorithm
with the Adaptive Clipping algorithm proposed by Wenk et al. [WSP06]. The com-
parison was made using 80 trajectories of four different sizes. The results clearly
indicated that the Adaptive Clipping algorithm outperformed the non-parallel version
of algorithm proposed by this thesis. The main factor for this negative result is the
difference in free space graph size that has to be calculated. In contrast to calculating
the whole free space graph, the Adaptive Clipping algorithm only calculates parts of
this graph, as needed by the Dijkstra style traversal, leading to mature running time
differences. Even the parallel version, using eight processing cores, could not surpass
the Adaptive Clipping algorithm. However, one could further reduce the running time
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by adding more cores. Thus, it is possible that the proposed algorithm undercuts the
running time of the Adaptive Clipping algorithm under heavy parallelization.

More work could be made to improve the developed algorithm. The map extraction
phase has a lot of potential for improvements. For example the bounding box sizes
could be calculated dynamically from track and map properties, which may leads
to smaller free space graphs and, therefore, faster computations. Another approach
would be to use some kind of expanding search to retrieve the needed map edges.
Additionally, one could try to push parallelization to the match search phase by
using multiple disjoint-set instances. The current version and further improvements
should be tested extensively in order to verify the results of this thesis, especially
the parallelization scaling assumption. However, due to the imperfections in both
algorithms, being sequentiality for the Adaptive Clipping algorithm and free space
building times for the proposed algorithm, one might also want to allocate future
work on searching for a combination of both algorithms in order to eliminate these
issues.
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