
Institute of Software Technology
Reliable Software Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis

Online Failure Prediction for
Microservice Architectures

Tim Zwietasch

Course of Study: Informatik

Examiner: Dr.-Ing. André van Hoorn

Supervisor: Teerat Pitakrat, M.Sc.

Commenced: February 5, 2017

Completed: August 7, 2017

CR-Classification: I.7.2

Abstract

In many modern software architectures, failure avoidance strategies are already an
integral part of the system since they provide many ways to contribute to software
resilience. Failures are the cause of system downtimes and latencies and often, they
can not be completely prevented. In contrast to fully virtualized servers on which
applications are run, some microservice architectures allow microservies to operate
natively on the underlying OS and they might therefore interact with each other on a
much higher level. Microservices that are deployed on the same node may also affect
each other much more than VM’s, for example by putting a high workload on the
underlying host. Traditional VM’s run their own Operating system, often in an isolated
memory region and a predetiermined, mostly static CPU share whereas microservices
are able to cooperate by sharing the same IP-address and other resources.

The goal of this thesis is to show how and to which degree microservices can affect each
other when they are being executed on the same host and to discuss the effects that
these side effects have on failure predictors. For this, a number of simulations are run
on a selected containerized application that demonstrate the container-induced side
effects. Certain metrics like the CPU-usage of the containers will be evaluated for each
scenario and online failure prediction methods are implemented that try to forecast
failures based on these metrics. The results show, that independent microservices can
affect each other in various ways, for example, by over-utilizing the CPU resources of the
host on which they are deployed on. This effect makes failure prediction with monolithic
approaches that do not consider the architecture of the host very difficult. This thesis
shows and discusses various scenarios in which hierarchical failure prediction methods
show significantly better results than monolithic aproaches when such a side-effect is
introduced into the system.

iii

Kurzfassung

In vielen Softwaresystemen sind Fehlervermeidungs-Techniken mittlerweile ein wichtiger
Teil der Architektur, da sie viele Möglichkeiten zur Ausfallsicherheit bieten. Oft sind
Fehler der Grund für Ausfälle und Störungen und oft können diese nicht komplett
verhindert werden. Im Vergleich zu Virtualisierten Betriebssystemen auf denen Anwen-
dungen betrieben werden, operieren manche Microservices nativ auf dem zugrunde
liegenden Host-System. Daher können diese Systeme sehr viel enger zusammenarbeiten,
können sich gleichzeitig aber auch gegenseitig mehr beeinflussen. Microservices die auf
dem selben Host ausgeführt werden, können sich beispielsweise durch eine hohe CPU-
Auslastung beeinflussen während dies bei voll-virtualisierten Systemen kaum möglich
ist, da diese oft einen abgegrenzten Bereich für CPU-Auslastung und Speichernutzung
besitzen.

Das Ziel dieser Arbeit ist es, aufzuzeigen in welcher Weise und bis zu welchem Level
sich Microservices gegenseitig beeinflussen können und verschiedene Möglichkeiten
zu diskutieren, die dazu verwendet werden können, diese Effekte zu kompensieren.
Hierfür werden einige Simulationen, die verschiedene Szenarien wiederspiegeln, er-
stellt. Anhand diesen werden einige Seiteneffekte von Microservices aufgezeigt und
es werden Methoden entwickelt um diese Seiteneffekte zu erkennen und zu beseit-
igen. Anschließend werden die Ergebnisse verglichen, quantifiziert und dargestellt.
Die Ergebnisse zeigen, dass Monolithische Fehlervorhersagen einigen Fällen wesentlich
schlechtere Vorhersagen treffen als Algorithmen, die die Architektur des Systems in die
Vorhersage miteinbeziehen sobald ein solcher Seiteneffekt in dem System auftritt.

v

Contents

1. Introduction 1

2. Foundations 5
2.1. Containerized Architectures . 5
2.2. Microservices . 6
2.3. Failure Prediction . 9
2.4. Microservice Monitoring . 17
2.5. Fault Injection . 18
2.6. Evaluation Metrics . 19

3. Related Work 23
3.1. Failure Correlation . 23
3.2. Failure Prediction Techniques . 24
3.3. Performance Isolation . 26
3.4. Microservice Resilience . 27

4. Approach 29
4.1. The Workflow . 30
4.2. Basic Architecture . 31
4.3. System Under Test . 35
4.4. Failure Prediction Approach . 38

5. Implementation 41
5.1. Kubernetes Setup . 41
5.2. Netflix RSS-Reader Setup . 41
5.3. Fault Injection Tools . 42
5.4. Data Extraction . 44

6. Evaluation 51
6.1. Evaluation Plan . 52

vii

6.2. Prediction Measurements . 52
6.3. Exploration . 53
6.4. Workload Analysis . 63
6.5. A Hierarchical Approach . 70
6.6. Failure Prediction Results . 79
6.7. Results and Discussion . 81

7. Conclusion 87

A. RSS-Reader Deployment 89
A.1. RSS-Edge Service . 89

Bibliography 91

viii

List of Figures

1.1. CPU-Workload over several Days. 3

2.1. Docker container architecture. The Docker engine separates the appli-
cations from their underlying physical host without requiring a guest
OS. 8

2.2. Docker Architecture overview. 8
2.3. Excerpt of Failure Prediction Methods, based on [SLM10] 11
2.4. Confusion Matrix - actual and predicted results in relation. 20

4.1. Project Workflow . 31
4.2. Hardware Setup. 32
4.3. Interaction between the different containers that are deployed on the

Kubernetes cluster. 34
4.4. Architecture of the RSS Recipes Application. 37
4.5. Sample CPU forecast. 40

5.1. Dependencies of the Maven-Projects. 45
5.2. Interfaces between the projects. 46
5.3. Main classes of the Project K8sfpDataSources. 47
5.4. Main classes of the Project K8sfpEvaluator. 48

6.1. CPU rates of all containers. 54
6.2. Success (status 200)- and failure-rates (status 500, status 0). 54
6.3. Computed Metric for a specific simulation. 56
6.4. Prediction Results and Predicted Metric of the workload scenario. The

prediction forecasts tth = 5 minutes into the future. The prediction is not
shifted, i.e. the forecast at point t should hold for the time t + tth. 57

6.5. Shifted Prediction Results and the simple binary prediction Metric. . . . 58
6.6. Plotted Peval (blue line) and P̂eval (red line). 59
6.7. CPU-usage of the middletier-container and the CPU of the host. 60
6.8. CPU-utilization of the service and the node. 61

ix

6.9. Success- and failure rates. 61
6.10.CPU- and memory-usage of the containers and the host system. 62
6.11.Failure count recorded by the workload generator. 62
6.12.CPU-utilization. 63
6.13.Success- and failure rates. 63
6.14.Simulated user Count for all Scenarios. 64
6.15.CPU utilization for all Scenarios. 64
6.16.Overall successful user requests. 65
6.17.Overall unsuccessful user requests. 65
6.18.Forecasted failure metric. 66
6.19.Average forecasted Pm,avg (red, upper line) and average actual failure

metric Peval,avg (blue, lower line). 66
6.20.ROC for 10 different values of τ . The data point labels show the value of

τ for each point. 67
6.21.Middletier Response-Times. 68
6.22.Middletier CPU, memory, and network measurements. 69
6.23.Success (status 200)- and failure rates (status 500, status 0). 69
6.24.Workload-Dependency Graph. The red lines represent the induced work-

load that affect the behavior of the containers. The middletier- and
stress-containers are hosted on the same node and are therefore CPU-
dependent on each other. The edge service influences the CPU-utilization
of the middletier component and therefore, the middletier-component is
CPU-dependent on the edge service. 70

6.25.CPU-Workload of the physical node (dashed line) and summed up CPU-
workload of all containers that are deployed on the host. 71

6.26.CPU-utilization of all containers and the Host node. 72
6.27.Success- and Failure counts and the computed PH2 Metric. 72
6.28.Dependency Graph of the actual ADM. The containers S1 to S10 and

the container M1 build a complete Graph. The dependencies for the
server and database are not included since in this case, they are not
CPU-dependent on each other. 74

6.29.Dependency Graph of the simplified ADM. The dependencies for the
server and Database are not included since in this case, they are not
CPU-Dependent on each other. 74

6.30.CPU-utilization and the respective HORA prediction for the normal work-
load scenario. 75

6.31.Failures recorded by the workload generator for the normal workload
scenario. 75

6.32.CPU-utilization and the respective HORA prediction for the node-stress
scenario. 75

6.33.Failures recorded by the workload generator for the node-stress scenario. 75

x

6.34.Failure Probabilities for the middletier service while the workload Gener-
ator is simulating 600 users and induces high workload. 76

6.35.Failure Probabilities for the middletier service while the workload Gener-
ator is simulating 0 users and induces no workload. 76

6.36.CFP and FPM prediction for multiple executions of the workload scenario. 78
6.37.Success- and Failure rates for each workload simulation. 79
6.38.Failure Probabilities of the modified HORA algorithm for the middletier

service while 600 users are simulated starting from minute 13. The CFP
and FPM predictions at time t were made at time t− 10 Minutes. 80

6.39.Failure- and Success rates of the modified HORA algorithm. 81
6.40.Failure probabilities and CPU-utilization of the middletier component and

the host. 82
6.41.Failure- and success rates of the modified HORA algorithm. 82
6.42.Shifted Holt-Winters 5-minute forecast. The dotted line represents the

original data, the blue, solid line is the mean of the prediction and the
dashed lines represent the minimum and maximum predictions. 83

6.43.Shifted ARIMA 5-minute forecast. The dotted line represents the original
data, the blue, straight line is the Mean of the prediction and the dashed
lines represent the minimum and maximum predictions. 83

6.44.Mean-Squared-Error for different Sliding Window Sizes. 84
6.45.A more complex Dependency Example. 85

xi

List of Tables

2.1. Conditional probability Table of the Failure Propagation Model. 17

4.1. Sample CSV-File (with a Reduced number of Columns). 39

6.1. Simulated users for a linearly increasing workload. 54
6.2. Execution Parameters. 58
6.3. Execution Parameters. 60
6.4. Execution Parameters. 61
6.5. Architecture Dependency Model. 73
6.6. Simplified Architecture Dependency Model. 73
6.7. Error-Metrics for the prediction in Figure 6.42 and 6.43. 82

xiii

Chapter 1

Introduction

Software dependability is crucial for most large software systems and is for many
companies a key factor for success. Attributes like reliability, availability and survivability
[KSS03] are nowadays default requirements that a system has to fulfill. In order to fulfill
these attributes, software systems have to be made robust against all kinds of different
failures which can arise, may it be network problems, component failures or hardware
errors. In a software system, Faults can arise from a very wide range of causes and
are therefore often hard or even impossible to avoid. Software Faults can occur almost
anytime and in every system. They can be induced by hardware problems which may be
caused by electrostatic discharge, radiation, dust, high temperatures, user errors, bad
hard-drive sectors and other unforeseeable reasons. Software faults can also be caused
by third-party libraries, compatibility problems, network limitations, CPU-overload and
may even be intentionally induced and exploited by attackers that have access to the
system.

However, a system in which a fault occurs does not necessarily suddenly cease to
work. In fact, there are generally three phases that a system undergoes before a failure
noticeably influences the behavior of it. These phases are ([ALR+01]):

1. Faults. As already described, Faults arise from various sources but they do cause
any immediate harm to a system.

2. Errors. When a system is in an invalid state, the error is the part of functionality
that will cause a failure when it is executed. At this point, the fault has established
itself in the system and will cause problems when it is executed.

3. Failures. The moment when a systems action differ from the specified functionali-
ties, the error has propagated in the system to an extent that a user-recognizable
failure has manifested. The failure may be recognized in many ways, e.g. in a
slowed-down system or even a complete system crash.

1

1. Introduction

Fortunately, Faults can often be detected before they cause any serious harm by various
failure avoidance strategies that nowadays are vital in virtually every computer system
available. Most often, a failure is indicated by preceding symptoms that can be observed
in the application. A symptom may be caused by an undetected error and can manifest
as abnormal system behavior [SLM10].

Consider a web service provider which is confronted with a sudden increase of service
requests threatening to overload the systems resources. If the provider is not prepared
for this (e.g. the increase was too sudden and unexpected), the fault (‘Too Many
Requests’) will eventually result in a noticeable failure (‘Service Unresponsive’) which
the users of the service will experience. If however the service provider can predict the
situation beforehand (e.g. they know that every day at a certain time there are going
to be more requests from their customers) and distribute the service for this period on
more machines to cope with the increased demand, they can avoid any major loss of
performance during this time.

As can be seen from this example, a failure can only be avoided if it first can somehow
be predicted. This however first requires a symptom or symptom trend that is reliable
enough to be used as a basis for the prediction. Figure 1.1 shows an example of what
the CPU-workload could look like in this case when recorded over several days. In this
example, the symptom can easily be determined by analyzing the historical CPU-data.
From this data, it would be simple to determine the next CPU-peak and therefore it
would be easy to avoid any resource shortcomings at this time.

01
:0

0:
00

 A
M

04
:0

0:
00

 A
M

07
:0

0:
00

 A
M

10
:0

0:
00

 A
M

01
:0

0:
00

 P
M

04
:0

0:
00

 P
M

07
:0

0:
00

 P
M

10
:0

0:
00

 P
M

01
:0

0:
00

 A
M

04
:0

0:
00

 A
M

07
:0

0:
00

 A
M

10
:0

0:
00

 A
M

01
:0

0:
00

 P
M

04
:0

0:
00

 P
M

07
:0

0:
00

 P
M

10
:0

0:
00

 P
M

01
:0

0:
00

 A
M

04
:0

0:
00

 A
M

07
:0

0:
00

 A
M

10
:0

0:
00

 A
M

01
:0

0:
00

 P
M

04
:0

0:
00

 P
M

07
:0

0:
00

 P
M

10
:0

0:
00

 P
M

01
:0

0:
00

 A
M

04
:0

0:
00

 A
M

07
:0

0:
00

 A
M

10
:0

0:
00

 A
M

01
:0

0:
00

 P
M

04
:0

0:
00

 P
M

07
:0

0:
00

 P
M

10
:0

0:
00

 P
M

01
:0

0:
00

 A
M

04
:0

0:
00

 A
M

07
:0

0:
00

 A
M

10
:0

0:
00

 A
M

01
:0

0:
00

 P
M

04
:0

0:
00

 P
M

07
:0

0:
00

 P
M

10
:0

0:
00

 P
M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hours

C
P

U

Figure 1.1.: CPU-Workload over several Days.

The application and applicability of failure prediction methods have been controversially
discussed ever since the first related articles have been published at around 1970
[OB15]. Over the years, many more articles about this topic were published and lots of
failure prediction algorithms and models have been introduced, enhanced and extended.
Nowadays, failure prediction methods have found widespread application in one form or
another on various system architectures and are crucial for maintaining stability. Failure

2

prediction methods are nowadays used in distributed systems to monitor and maintain
the health of individual components and to take precautious steps to prevent system
failures, in stock market analysis to predict the future trend of a stock, in astrology to
predict the movement of stars and in many more areas [sasalfner2010survey].

Naturally, with modern system architectures such as virtualization, theses failure pre-
diction methods have to be re-evaluated, enhanced and re-developed since they have
to be adapted for the new environment. This also applies to a very recent concept of
virtualization, Microservices. Microservices are encapsulated services that, in contrast to
virtualization can be run very efficiently in parallel on the same host, therefore allowing
for hundreds of Microservices running on a single host. This, in turn, causes several
problem that have not been of much importance in systems that only virtualize a constant
number of services. Normally, microservices are used to compose a complex, distributed
system that consists entirely of independent encapsulated and decoupled components.
One of the advantages of microservices is that they can be relatively easily replicated
and distributed over a cluster of physical hosts. That way, in case of component failure,
resource shortage or similar problems, a microservice application can be scaled to the
new needs within seconds manually by system administrators or even automatically by
respective load balancers that monitor the health of the system.

The goal of this thesis is to evaluate the applicability of current failure prediction
methods in a Microservice environment. The thesis will discuss about how the relevant
monitoring data for Microservice can be acquired from the system, how the data can
be stored and managed and how failure predictors are affected by the Microservice
environment.

Thesis Structure

In Chapter 3 (Related Work), the related work is discussed that might be used to improve
and enhance the approach of this thesis. Chapter 4 (Approach) will discuss the general
approach of this thesis in detail. Afterwards, Chapter 5 (Implementation) will discuss
about the implementation and the setup of the approach and shows the techniques and
tools that were used to construct the environment, inject failures, extract the data and
analyze the results. The results of the thesis will be presented in chapter Chapter 6
(Evaluation). Finally, Chapter 7 (Conclusion) will summarize the work that is done in
this thesis and show potential future work that could be done by a follow-up study.

3

Chapter 2

Foundations

This chapter introduces the basic concepts of the topics discussed in this thesis. Section
2.1 introduces the concept of containerized architectures and compare them with
traditional system architectures. Section 2.2 describes the idea of microservices and
discusses about commonly used platforms that provide implementations of this concept.
In section 2.3, tools, techniques and properties of failure prediction algorithms are
introduced and in section 2.4, the concepts of application monitoring in microservice
environments are discussed.

2.1. Containerized Architectures

Virtualization is often based on system hypervisors that serve as an abstraction layer
between the hardware and the virtualized operating system. These hypervisors use
a number of methods like Hardware Virtualization or Binary Translation to transform
the instruction set of the virtualized system into the instruction set of the host system
[DRK14]. Containers are operating systems that are deployed on a host OS and run
natively on it. Therefore, the overhead that containers put onto the system is usually
lower than a virtualized OS while still providing most of the benefits of a fully virtualized
system [DRK14; FFRR15]. Usually, the memory needed to store a container image is
significantly lower than that of a fully virtualized OS and the startup-time for containers
is relatively low which enables a much easier way of sharing container images over
the network [DRK14]. This is due to the fact that virtualized systems need to store
and install every required library and dependency directly in the image itself while
containers can consist of not much more than a single process.

The overhead in virtual machines can nowadays be very small due to a lot of research
and improvement regarding the instruction transformation. The Linux KVM-feature

5

2. Foundations

(‘Kernel Virtual Machine’), for example, enables the host OS to run unmodified images
of operating systems by using hardware virtualization [FFRR15]. Strategies like Kernel
Same-page Merging (KSM) enable multiple VM’s the use of a single memory page thus
optimizing the overhead that comes from memory-page duplication [XXHW13]. Since
VM’s have a constant, predefined number of virtual CPU’s and their own pre-allocated
RAM region, the resources are strictly limited and a single VM will therefore affect
other VM’s that are hosted on the same machine only in a limited way [FFRR15]. There
are techniques to dynamically change the resource allocation of VM’s (Self-Balooning,
Hotplugging) but these require special hardware support and lead to several other
problems which is why they are often not used in practice [FFRR15].

While virtualized operating systems naturally provide a good level of isolation, a con-
tainerized architecture has to implement special techniques for providing isolation
[FFRR15]. This is usually done by differentiating containers by unique ID’s and en-
hancing the system-call security by new features. The level of isolation depends on
the implementation of the containerized architecture which enables the deployment
of different types of containers. For example, containers can be designed such that
they only run a single process while sharing every other resource with other deployed
containers. Containers can also share a single IP-address since natively, they do not have
an individual network address for themselves [FFRR15].

2.2. Microservices

Microservices are independently running applications with a single responsibility
[Thö15]. They are usually deployed as individual containers within a containerized
architecture and managed by a replication controller like Kubernetes such that they can
easily be scaled up or down by adding or removing instances from the system. Con-
tainerization platforms like Docker [Doc16a] are currently used by many big companies
like Amazon or Netflix [Thö15] and are a powerful tool for developing modularized and
scalable systems.

2.2.1. Docker

Docker1 is a lightweight and open platform that uses containerization to deploy services
that run in a completely isolated environment (container) on a host. A host usually
allows for many parallel executions of these containers, providing virtualization for

1http://docker.com/

6

2.2. Microservices

applications without actually having to virtualize a complete operating system for each
instance. That way, a single host is capable of running hundreds of containers at the
same time, providing a very scalable way of load sharing and load balancing for systems
and services. One of the main problems docker addresses is the transition of a service in
development and a deployed service [And15]. Often, an application is developed on a
machine completely different from the machine on which the application is run later
on. This often causes several problems which are hard to understand and prevent for
the applications developer since they are machine-specific and cannot be created on a
developers machine. By using Docker, the developed application can be directly shipped
and executed within its required, encapsulated environment. That way, the application
can easily be made independent from its real, physical machine and only depend on the
file system provided by the docker container.

Another feature of Docker, or containers in general, is that it eases application clustering,
which is especially important for systems that provide PaaS (“Platform as a Service”)
or any other scalable system. In contrast to hardware clustering which requires the
exchange of physical hardware upon an extension of a system, application clustering
is purely software-based and thus enables a faster and more efficient way to scale a
service. By using containers instead of VM’s, load balancing within a single node can be
performed much more efficient since all containers run on the same host OS. Docker
containers can be managed by application clustering systems such as Docker Swarm
[Doc16b] or Kubernetes [Kub16] which will be described in more detail in the next
section.

Figure 2.1 illustrates the containers created by docker. As can be seen, Docker does not
create any guest operating systems for virtualization. Instead, all containers are run on
the host OS itself.

Figure 2.2 shows the components of a docker system. Basically, there are three Actors
involved:

1. The client represents the user interface to the docker system [Doc16a] which can
be used to configure the service. The client enables the user to communicate with
the docker daemon.

2. The Host executes the docker daemon which is responsible to create and run the
system. The host contains the docker containers and the images which consist of
read-only information on describing how a docker container can be created.

3. The registry enables to share the docker images and can be either public or private.

7

2. Foundations

Figure 2.1.: Docker container architecture.
The Docker engine separates the
applications from their underly-
ing physical host without requir-
ing a guest OS.

Figure 2.2.: Docker Architecture
overview.

2.2.2. Application Clustering

A containerized architecture can be very beneficial for application clustering, which
enables the ability to distribute applications equally within several interconnected
physical hosts. Application clustering can be realized by installing clustering software
on each of these hosts.

For Docker, the currently most popular application clustering managers are Docker
Swarm [Doc16b] and Kubernetes [Kub16].

2.2.3. Kubernetes

Kubernetes2 is an open-source platform for deployment automation and container scaling
written by Google. It allows to deploy Docker containers in a computer cluster and
provides several methods for container replication and scaling. Kubernetes automatically

2http://kubernetes.io/

8

2.3. Failure Prediction

deploys new containers on physical machines based on some criterion, e.g. the current
workload of a specific node. A service deployed in a Kubernetes cluster can be managed
by a replication controller or a deployment which for example enable an automated
restart of a service in case of a failure and automate the deployment on the Kubernetes
cluster. The deployment of a service on a node is by default managed by Kubernetes and
depends on factors like the current workload of a specific physical host.

2.3. Failure Prediction

Now more than ever has failure prediction become a crucial Quality-Of-Service keypoint.
With the ever growing complexity and increasing challenges of modern software solu-
tions, such as high reliability and availability through distribution and replication of
services, the capabilities of current software systems have exploded in recent years. No
longer are modern services simply deployed on a static system architecture. Instead,
current system architectures are much more dynamic and alive, undergoing constant
change and movement in dependencies to other components not only through frequent
updates but also by concepts such as deployment of services on a cluster managed by
automated replication controllers and monitoring systems that are capable of automati-
cally altering the architectural structure of the system by scaling bottleneck components
up, replicating services, adding more physical hosts into the cluster when resources
become scarce, regulating the network bandwidth of different components, migrating
services between hosts for better efficiency and many other automated system balancing
techniques. Not only is failure prediction - the art of detecting problems in a system
before they occur - used to create such a self-aware system, it is often also a direct part
of the system itself and therefore has to cope with the sometimes intriguing complexity
of these systems. Since failure prediction is researched and used for now more than 40
years, it is by no means a new concept and there are many predictors that are simply
not designed for this extent of interactivity and interconnection that newer systems
implement. Very often, failure prediction is used only on single services or components,
considering only measures and metrics that can be observed from within the service itself
and no other aspects such as the software system architecture. These kind of services
will be referred to as monolithic services in the following. The main value of failure
prediction consists in using it to alleviate the consequences of a set of different error
scenarios, such as extremely high workload on a system, a service or a single component
within a service, memory leaks in parts of a service or even deadlocks between different
components.

In practice there is a fairly wide range of different failure prediction techniques available,
each concerning about different problems, using different input data like for example

9

2. Foundations

Figure 2.3.: Excerpt of Failure Prediction Methods, based on [SLM10]

the event-log of applications, time-series data like the CPU-utility over time or other,
more complex metrics. In [SLM10], online failure prediction methods are classified
into

1. Methods that record occurring failures (Failure Tracking) and use them to predict
failures in the later executions. This type of predictors include, for example,
Bayesian or Co-Occurrence predictors.

2. Event-driven Methods (Error Reporting) that try to make sense of the systems
event log. Prediction methods in this area are, for example, Pattern-Recognition
tools that are run over log files to detect faulty behavior based on certain rules,
patterns or other descriptions. Rule-Based predictors derive failures in log files by
gathering rules that indicate failures. For example, a rule may be that if a log entry
V occurs close after another entry W, then the system is in a erroneous state.

3. Symptom Monitoring Methods which try to detect symptoms of failure in the
running applications based on several measurements, metrics or models which are
collected during runtime or defined by the user. Predictors that use time-series data
track, for example, the CPU utilization and the used memory to make assumptions
on the current state of the system. System Model Predictors create a model of the
application (e.g. the different states an application can be in) and make predictions
of failures based on, e.g. the state transitions that an executing application makes.

Figure 2.3 illustrates the most important failure prediction types for this area of applica-
tion and shows their relations between each other.

This thesis will focus mostly on failure prediction that uses Time-Series Data like the
memory and CPU usage of applications or the response time of key-functions within
a component. These measures can easily be observed from an external monitoring
component with the advantage of treating the applications more or less like a black-box.

10

2.3. Failure Prediction

Other prediction techniques like System-Model Predictors are designed to understand
the architecture of individual components by computing a model that represents non-
anomalous execution states, for example by creating a graph that contains nodes and
edges representing valid and invalid transitions of system states which can be obtained
by a preceding training phase of the predictor [SLM10].

2.3.1. Time-Series Failure Prediction

Especially for service providers like data-centers or systems where the workload can
change at any point in time, time-series failure predictors and monitoring techniques
are vital for the stability and quality of the provided service. The term time-series refers
to a set of data points that have been stored successively over a certain amount of time
[Cha00], like the CPU-utilization of a host which is stored every second into a logfile or
a collection of temperature measurements obtained by a temperature-sensor. A more
detailed definition and discussion about time-series can be found in [Cha00], on which
the following is based on.

Consider a set of data points X1:n = {(t1, x1), (t2, x2), ..., (tn, xn)}. If ∀(t, x) ∈ X : t = c

with c ∈ R constant. In this thesis, this kind of data is referred to as a time-series.
The task of time-series forecasting methods is to determine the set of X̂n+1:n+h =
{(c, xn+1), (c, xn+2), (c, xn+h)} with h being defined as the forecasting horizon out of the
set X with the goal of forecasting X̂ such that the continuation of X, X1:n+h and the
set X1:n ∪ X̂n+1:n+h is as similar as possible. The term similar can be interpreted in
many different ways and often depends on the use-case. The Mean Squared Error is
a metric that can be used to measure similarity. There are many different ways of
designing such a forecasting method and there are many factors such as time-efficiency
and resource utilization which makes it impossible to create a predictor that fits the need
of every use-case. Therefore, time-series predictors range from simple linear regression
algorithms to more complex techniques, for instance predictors that combine standard
time-series prediction with the use of neural-networks [Zha03].

Depending on the use-case, failure prediction methods are used over different inputs
and they are often specially designed for a certain pattern of time-series data. Loosely,
they may be classified into supervised, semi-supervised and unsupervised methods
whereas a supervised method would represent a monitoring tool that displays gathered
metrics as a graph and the administrator has to decide which actions to take. An
unsupervised method on the other side is an automated process that is able to self-
determine actions that need to be undertaken in certain situations. Unsupervised
algorithms are for example able to derive classification rules out of labeled training data
and use these rules to classify new data points into two or more categories. Aside from
that, [Cha00] classifies time-series predictors into

11

2. Foundations

1. Subjective forecasts. These forecasts are made from inside-knowledge that cannot
easily be put into mathematical terms and are often subjective. Example: Heuristics,
supervised techniques.

2. Univariate forecasts. These forecasting methods use only one single metric to
determine failures in a system. Example: Regression, Detection of memory leaks
by monitoring memory-usage-time-series.

3. Multivariate forecasts. In cases where failures only arise when multiple criterion
are met, multivariate forecasting methods combine different time-series into one
single forecast. This may be done by using simple mathematical transformations
or more advanced techniques like neural networks. Example: Feature Analysis.

Often, the parameters of forecasting methods are, at least in parts, adjusted subjectively
to individual components since it may very difficult or even impossible to determine the
perfect settings for some cases.

Most of the time, time-series follow a certain repetitive pattern which can be hidden
by random errors and noise within the measurements of the series. There are many
different forecasting algorithms that specialize in making predictions for a certain pattern
type. Some characteristic time-series patterns will be described in the following.

Seasonality Of Time-Series

The term seasonality describes the occurrence of repeating patterns within a time-series
whereas the dataset consists of one or several seasons that are repeated by a period
L [Kal04]. Examples: A web-service which is used only at a certain time every day, a
temperature sensor measuring similar temperatures each day, the network bandwidth of
a host that performs repetitive tasks, etc. Additive Seasonality describes the behavior of
a time-series where the seasonal shift is about constant for every season. Likewise, a
Multiplicative Seasonality represents an increase by a constant factor.

Stationarity Of Time-Series

For time-series prediction it is often required that the dataset is stationary or can be
transformed into a stationary representation. First-order stationarity is true for time-
series where ∀t : E(t) = γ, with γ being constant holds [Kal04]. Second-Order or
covariance-stationarity holds if the data is First-Order Stationary and the covariance
C(ta+i, ta+j) is constant for all variations of a, i.e. given i, j, ∃c∀a : C(ta+i, ta+j) = c and
the variance V (ti) is finite for all i. Often, but depending on the prediction algorithm,
first-order stationarity is sufficient to achieve the desired results. A non-stationary

12

2.3. Failure Prediction

time-series can be transformed into at least a First-order stationary series by applying a
differencing transformation onto the data-points.

2.3.2. Time-Series Failure Prediction Techniques

As could be seen in the previous section, time-series prediction techniques are based
on system or application measurements like the CPU-utilization of a service. Two very
commonly used prediction techniques for time-series are ARIMA and Holt-Winters which
will be discussed in detail in the following.

ARIMA

The Autoregressive Integrated Moving Average forecasting method is one of the standard
tools when it comes to time-series forecasting. The ARIMA Model can be adjusted with
three parameters (p, q, d) ∈ N0+ where p determines the number of data points

⋃p−1
i=0 xt−i

on which the regression is applied on, q represents the Moving-Average degree and d is
the number of differencing operations that is applied onto the data set beforehand.

The ARIMA method first converts the input time-series data into a non-stationary
sequence by applying a differencing algorithm to it (this step is referred to as the
Integrated part in the ARIMA acronym). This can be done by applying the function 2.1
to all datapoints in the series X. In case of d > 1, the function is iteratively applied, i.e.
xd = Diffd(x) = (Diff1 ◦Diff2 ◦ ... ◦Diffd)(x)

Diff(xt) = xt − xt−1 (2.1)

Basically, the method predicts future data points by computing a linear function out of
preceding data points which are assumed to each have an independent random error
ϵt with a variance of σ2 where

∑
t

ϵt

T
= 0 holds (refer to [Zha03] for a more detailed

definition). At any point in time t, the actual input data can therefore be represented as

X̃t =
p∑

i=1
ϕiX̃t−i + ϵt −

q∑
i=1

θiϵt−i (2.2)

where ϕ and θ are parameters determined by the model. As can be seen by equation
2.2, if p is set to 0, the prediction method becomes a pure Moving-Average model
and, respectively, setting q to 0 results in the method becoming purely autoregressive.
In contrast to AR and MA Models, the difficult part of adjusting ARIMA(d, p, q) for
individual scenarios is to decide on the values of d, p and q instead of determining the

13

2. Foundations

coefficients ϕ and θ for X̃. There are however different ways to automatically calculate
the optimal parameters for a given time-series. This can be done for example by using
Akaike’s Information Criterion [HK+07].

Holt-Winters

Especially for seasonal data, the Holt-Winters algorithm is commonly used to apply
exponential smoothing and calculate forecasts for datasets. The forecast values that
are produced by this algorithm are estimated by first smoothing the trend values of the
already known data and then iteratively inferring the future trend continuation of the
time-series (compare to [HK+07]).

The most simple way to smooth a time-series (Single Exponential Smoothing) is by
applying Equation 2.3 to any given set X = x1, x2, ..., xn.

x̂t = αxt + (1− α)x̂t−1, 0 ≤ α ≤ 1, t > 1 (2.3)

by choosing the weight α, it is possible to determine the degree to which the previous
data point influences the smoothed value at the point t. Notice that the initial value of
the smoothing algorithm becomes more important the smaller the parameter α is chosen
and should therefore be selected with care.

The next level of exponential smoothing (Double Exponential Smoothing) is applied to
data sets of which are to be expected to have a certain pattern or trend that they follow.

x̂t = αxt + (1− α)(x̂t−1 + bt−1), 0 ≤ α ≤ 1 (2.4)

bt = γ(xt − xt−1) + (1− γ)bt−1, 0 ≤ γ ≤ 1 (2.5)

Finally, the Holt-Winters exponential smoothing (Triple Exponential Smoothing) consid-
ers additionally to the trend the seasonality of the data set. It is different for an additive
or Multiplicative seasonality.

For the Multiplicative Holt-Winters which can be applied to multiplicative seasonal
data, Equation 2.6 shows the general smoothing function. Equation 2.8 calculates the
the seasonal component of the smoothing. Equation 2.7 represents the trend of the
series and is determined by the difference of the last two data points. The parameters

14

2.3. Failure Prediction

0 < α, β, γ < 1 may be chosen appropriately. p determines the period length of the
seasonal part in the respective time-series.

At = α(xt

St−p

) + (1− α)(At−1 + Bt−1) (2.6)

Bt = β(St − St−1) + (1− β)Gt−1 (2.7)

St = γ(xt

At

) + (1− γ)St−p (2.8)

After computing the exponential smoothing components At, Bt and St, forecasts can be
iteratively made by determining x̂t+T for T > 0.

x̂t+T = (At−1 + T ·Bt−1)St+T −p (2.9)

The Additive Holt-Winters is almost identical to the multiplicative Holt-Winters and
can be determined in almost the same way. Equations 2.10, 2.11 and 2.12 show the
computation of the smoothing components for additive seasonal effects.

At = α(xt − St−p) + (1− α)(At−1 + Bt−1) (2.10)

Bt = β(St − St−1) + (1− β)Gt−1 (2.11)

St = γ(xt − At) + (1− γ)St−p (2.12)

The forecasts for the additive model can be computed by using Equation 2.13.

x̂t = At−1 + Bt−1 + St−p (2.13)

Note that determining the adjustable parameters of the triple exponential smoothing is,
except from determining whether the dataset is additively or multiplicatively seasonal,
another part of the Holt-Winters method. For more information refer to [HK+07].

15

2. Foundations

C2 fails C3 fails C1 fails = true C1 fails = false

false false P(C1) 1-P(C1)
false true 0.4 0.6
true false 0.6 0.4
true true 1.0 0.0

Table 2.1.: Conditional probability Table of the Failure Propagation Model.

2.3.3. Hierarchical Failure Prediction

Time-Series prediction methods like ARIMA can be used to forecast the the future trend
of a a measurement like the CPU-utilization of a service or component. However, if
the system is modularized or distributed over several physical nodes, the detection of
failures becomes harder since it will not suffice to only analyze the failure probability of
a single component. Instead, it becomes necessary to consider every other component
on which an observed component depends on first since failures may propagate along
dependency paths.

Pitakrat et al. [POVG16] proposed a Hierarchical Online Failure Prediction approach
called HORA that combines prediction results of single components by considering the
architecture of the whole system.

First, the Architectural Dependency Model (ADM) is created that describes the depen-
dencies between any observable subcomponents C of the system. The ADM is a set ADM

where for each Entry ADMCi
= (Ci, {(Cj ∈ C, wi,j) : Ci depends on Cj}). The transitive

relation depends on can be defined in various ways, e.g. according to the architectural
dependencies of the system. The weights wi,j ∈ [0, 1] can be automatically computed or
manually defined if required. The sum of weights

∑
j wi,j for every component Ci is 1.

Next, the Failure Propagation Model (FPM) is constructed. Basically, the FPM is
a Bayesian Network that is derived from the ADM. For every combination of com-
ponents, the failure probability is calculated by analyzing the ADM. Let ADM :=
{(C1, {(C2, 0.4), (C3, 0.6)}), (C2, ∅), (C3, ∅)}. The Conditional probability Table (CPT)
for component C1 can be seen in Table 2.1. The FPM is the collection of all CPT’s in the
system.

The failure prediction in the HORA approach is done in two steps. The first step is the
failure prediction for every individual subcomponent Ci ∈ C. This can be done by using
single-component failure predictors like an ARIMA forecast based on the CPU-utilization.
In such a case, the failure probability P (X > α) where α is the CPU-threshold can be
calculated by using a simple probability density function. The failure probability is
constantly updated in the FPM during execution.

16

2.4. Microservice Monitoring

The second step combines the failure probabilities by considering the architectural
dependencies defined in the ADM. This is done by using Bayesian Inference. This way, the
computed failure probability for any component Ci ∈ C considers the failure probability
of every ancestor component Cj ∈ C : Cidepends onCj.

2.4. Microservice Monitoring

There are many ways to monitor a software system. Depending on the microservice
platform, there are also several different tools that can be used for monitoring. Generally,
there are two different ways of monitoring a VM or a container:

1. System-level Monitoring. These tools observe the container without making any
assumptions about the internal structure or dependencies of it. This means, that
those tools can be applied to almost any container but at the same time, they can
only observe measurements that every container has, like the CPU- and memory
utilization of a container.

2. Application-level Monitoring. When it becomes important to consider the internal
structure of a container, application-level monitoring tools can be used in order to
observe specific metrics that may be unique to a single component. An example
for this would be the response-time of a single function in a component.

Often, it is beneficial to only consider system-level monitors as a source of information
since especially for microservices it can soon become very complex the more structure is
included in the monitoring step. Also, since the structure in microservice systems can
change dynamically, often automatically during runtime, application-level monitoring
becomes even harder.

2.4.1. cAdvisor & Heapster

A system-level Monitoring tool for Docker is cAdvisor [cAd17]. cAdvisor can be used
to collect information like the CPU-usage of every deployed container. The monitoring
tool Heapster [Hea17] can be deployed on Kubernetes to fetch data for all deployed
containers in the cluster from cAdvisor.

17

2. Foundations

2.4.2. Kieker Framework

The Open-Source Kieker Framework [HWH12] is a framework that offers techniques
for performance monitoring and software analysis of applications at runtime. The
Kieker Framework is designed to be extensible, flexible and modular and it is based
on a Pipes-and-Filter Framework, meaning that customized components can simply be
plugged into the Kieker Workflow [HWH12]. It can be used as a performance evaluation
framework by for example using performance anomaly detection and other monitoring
techniques.

2.5. Fault Injection

Fault injection methods are often used in scenarios like robustness analysis. A system is
called robust when it can cope with runtime-induced errors and faults to some degree
which may in practice be generated by defect components or intentional attacks on the
system [Sve11]. Fault injection methods can then be used to simulate a certain kind
of malicious behavior by for example injecting defect code into a certain part of the
system.

In [Sve11], a failure category system is defined which evaluates the different fault
injection strategies that can be applied to a software system. The thesis categorizes
injected faults into either Model-Implemented (called MIFI, Model Induced Fault Injec-
tion), Software-Implemented (SWIFI, Software Induced Fault Injection) or hardware
Implemented (HIFI, Hardware Induced Fault injection). Software-based faults can be
implemented for example by directly changing the source code of a software system
such that a failure is triggered while or after the program executes the changed code
fragments. Model-based fault injection can be done by providing special interfaces in the
software project through which a failure can externally be produced. Hardware-based
fault injectors use e.g. radiation bombardment methods to induce hardware faults.

SWIFI is divided into faults injected during or before runtime. Runtime Fault-Injection
tools are used to invoke faults in a system that is being executed. The simplest way to
inject software faults is to change the program during compile time. For this method,
there are no special tools required and it is easy to implement permanent software faults
into the application. The injection at compile-time is however not as flexible as the
injection at runtime.

Runtime failures can be injected through special tools that for example inject the
following types of faults ([HTI97]):

18

2.6. Evaluation Metrics

• Timeouts. This simple type of fault may cause timeout and synchronization failures
in the respective component.

• Exceptions. Throwing exceptions or deliberately perform actions that cause them.

• Foreign Code. It may also be possible to directly inject external code into parts of
the components. This method provides the highest flexibility in regard to injecting
faults but may be very complex.

MIFI techniques on the other hand require the component to implement certain interfaces
through which an external tool can invoke several faults into the execution. In [Sve11],
Svenningsson developed an injector called MODIFI that injects blocks of faulty code into
a Simulink model.

2.6. Evaluation Metrics

Sometimes, it can be quite hard to compare different failure prediction results with
each other. Error metrics can therefore be a useful approach to show the differences of
several different predictions and to make a conclusion about what strategy yields the
best results.

2.6.1. Failure Prediction Evaluation

The degree to which a failure predictor is able to predict a failure can be quantified by
the True Positive Rate (‘Sensitivity’) and True Negative Rate (‘Specificity’) values. Those
metrics can be calculated by using amount of True Positives (TP’s), True Negatives
(TN’s), False Positives (FP’s) and False Negatives (FN’s) that are calculated by comparing
the prediction of the failure predictor with the actual value.

These values can only be calculated upon binary classification functions which either
output TRUE or FALSE. This means, that the result of any non-binary failure predictor
first has to be transformed into a binary prediction which can be done for instance by
using a threshold value.

The True Positives represent the amount of data points that were correctly classified as
being a failure. Respectively, the True Negatives are points that were correctly classified
as non-failure, the False Positives are points that were incorrectly classified as failures
and False Negatives are points that were incorrectly classified as being non-failures.
Figure 2.4 shows the confusion matrix for this relation.

19

2. Foundations

P
re

d
ic

te
d

 V
a

lu
e

Actual Value

P

N

P N

True
Positive
(TP)

False
Negative
(FN)

False
Positive
(FP)

True
Negative
(TN)

Figure 2.4.: Confusion Matrix - actual and predicted results in relation.

The true positive rate can then be calculated in the following way:

TPR = TP

TP + FP
(2.14)

and the True Negative Rate:

TNR = TN

TN + FN
(2.15)

2.6.2. Error Metrics

The result of a time-series prediction can be quantified by comparing the prediction
to the original data set. This can be done for example by calculating the median of
the absolute difference between any two data points (MAD). X hereby represents the
forecast and Y the original data.

MAD(X, Y) = Median(|X − Y |), |X| = |Y | (2.16)

Another failure Metric is the Medium Absolute Percentage Error (MAPE) which calculates
the mean of the absolute percentage error.

MAPE(X, Y) = 100
|X|

|X|∑
i=1

∣∣∣∣Xi − Yi

Yi

∣∣∣∣ , |X| = |Y | (2.17)

20

2.6. Evaluation Metrics

The Mean Square Error (MSE) shows the average squared error of two datasets.

MSE(X, Y) =
∑|X|

i (Xi − Yi)2

|X|
, |X| = |Y | (2.18)

The Mean Squared Deviation (MSD) sums the overall squared deviations of the datasets.

MSD(X, Y) =
|X|∑

i

(Xi − Yi)2, |X| = |Y | (2.19)

21

Chapter 3

Related Work

This chapter discusses topics that are related to this thesis but are not directly considered
in the approach. In chapter 3.1, alternative metrics are discussed that can be used for
failure prediction. Next, chapter 3.2 describes several failure prediction algorithms that
can also be used to predict time series data. In chapter 3.3, studies about performance
isolation are presented and lastly, in chapter 3.4, a few studies about resilience in
microservice architectures are discussed. Note, that the presented articles in this section
do not represent the entire related work for this thesis. Instead, some articles were
picked that are supposed to represent each research area and give insight to the big
variety of research that exists in the context of this thesis.

3.1. Failure Correlation

Most failure prediction methods require some metrics that correlate with a failure that
is to be predicted. A failure metric is supposed to indicate the failure in some way (i.e.
show a failure trend or symptom) such that the predictor only needs to forecast this
metric and evaluate the failure probability based on that forecasted value. A multivariate
failure predictor may use several failure metrics that are then combined in some way to
calculate a failure percentage.

However, what is it actually that causes a failure in a system? This thesis uses mostly
system-level failure metrics like the CPU-utilization of a node to compute the failure
probability. In a different scenario, this metric may not correspond to the number of
failures and other ways to estimate failures need to be developed.

A study by Nagappan et al. [NBZ06] researched two sources of software failure symptoms
in applications - Historical data and the actual program code the software was written
in. For this, they looked at some deployed Microsoft software projects and linked the

23

3. Related Work

failures that were reported after their release to the respective component of the system.
They then tried to create failure metrics that best correlate with these reported failures
in newly added components by using a combination of metrics like the Lines Of Code
(LOC) and combined them using Principal Component Analysis.

The study concluded, that there is no generally best combination of complexity metrics
for all software systems. They have however found evidence, that for instance the
number of classes in a project correlates with the number of failures post-release in some
of the analyzed projects. They concluded that the way the software is designed may
significantly determine which metrics correlate with the failures since often, developers
already use these complexity metrics during development to reduce the amount of
failures in the application. In one of the analyzed projects, almost no metric correlated
with the failure count because the developers considered those metrics throughout the
creation of the project. They state, that, in terms of post-release failures, it might not
be a good idea to build failure predictors that solely consider a static set of complexity
measurements for each application. They were however able to find correlating metrics
for every single analyzed project.

This study focuses mostly on system-level measurements like the CPU- and memory
usage and does not evaluate the results for different metrics. The results and findings
may however be applied to other metrics as well.

3.2. Failure Prediction Techniques

Today, there is a broad variety of failure prediction methods available that cover a
wide area of use. In this thesis, only basic failure prediction techniques have been
used for online time-series forecasting. Higher quality results may be achieved by
selecting a better forecasting method. The results in this study were made by using very
common failure predictors that already exist for many years and are researched quite
well. The prediction quality of the approach could however be improved by using more
sophisticated failure predictors like those that are described in the following.

3.2.1. Neural Networks and ARMA

A study by Rojas et al. [RVR+08] discusses about a time-series predictor that uses a
combination of ARMA (Autoregressive Moving Average) and ANN’s (Artificial Neural
Networks). Their goal was to develop a prediction method which determines the
prediction model without the help of expert knowledge for each scenario by using
artificial intelligence strategies. The study found, that their model is able to reliably

24

3.2. Failure Prediction Techniques

predict time-series data and is at the same time easy to use and potentially faster than
other Neural Network predictors for larger data sets.

Another study by Kasabov and Song [KS02] proposed a Neural Fuzzy Interference System
and showed how it can be applied to time-series forecasting. Their algorithm (called
DENFIS) can be used for adaptive online learning and operates as a hybrid supervised
and unsupervised algorithm. Sotani [Sol02] implemented a neural network predictor for
time-series that uses multiscale-filtering or wavelet-decomposition to create a hierarchy of
time-series datapoints which make classification and prediction easier and remove noise
from the dataset.

3.2.2. Grey System Time Series Prediction

Grey time-series prediction Models, which were introduced by Deng [Jul89] predict
time-series by only considering a subset of recent history data points [KUK10]. Grey
models can help to analyze data sets with only incomplete information and are usually
denoted as GM(n, m) where n is the order of the differential equation and m the variable
count [KUK10]. The study by Kayacan, Ulutas and Kaynak show the applicability of
grey prediction models for time series and compare different Grey predictors with each
other.

3.2.3. Support Vector Machine Time Series Forecasting

Support Vector Machines (SVM’s) are another non-linear prediction technique that can
be used for time-series prediction. Basically, SVM’s are trained with sample data that
enables the classification of newly inserted points by calculating a hyperplane that
separates the training data into two categories. The goal of SVM’s is to construct this
maximum margin hyperplane which is the hyperplane that separates the two classes
maximally [Kim03]. A study by Kim [Kim03] shows that SVM’s can be used to predict
financial time-series and is able to outperform neural network back-propagation models
(BPN) and Case-Based Reasoning Models (CBR).

3.2.4. Bayesian Time-Series Prediction

Especially for noisy, nonstationary data, bayesian neural networks show promising
forecasting abilities [BB04]. Brahim-Belhouari and Bermak [BB04] developed a bayesian
time-series predictor based on a gaussian process that uses different covariance functions
for temporal analyses. They show, that the forecasting results of the predictor are well

25

3. Related Work

suited for non-stationary datasets. The complexity of the prediction algorithm is however
O(n2) where n represents the number of datapoints in the set which might be a problem
in many systems where fast forecasts are required.

3.2.5. Hierarchical Prediction Models

Berliner [Ber96] analyzed a hierarchical time-series predictor that uses bayesian meth-
ods to combine the prediction results of different components. In an article by Hyndman,
Ahmed and Athanasopoulos [Athanasopoulos], a hierarchical forecasting technique
is proposed that combines multiple time-series in a bottom-up or top-down fashion.
They conclude, that the implemented algorithm performs well in forecasts that con-
siders multiple levels of a system to draw conclusions. Rodrigues, Gama and Pedroso
[RGP08] discusses about a time-series prediction method called ODAC - Online Divisive-
Agglomerative Clustering that stores multiple evolving clusters in a binary tree that
represents a hierarchical dependency tree of different components. ODAC is designed
to cope with large amounts of data and categorizes data-points into highly-correlating
sets.

3.3. Performance Isolation

A big advantage of virtual machines in contrast to monolithic systems is, that a single
physical host is capable of running several isolated operating systems at the same time.
Often, data centers and PaaS systems that provide VM’s to customers are required
to grant performance guarantees for every VM they deploy. An important task of
performance isolation is to make sure that these contracts can be guaranteed at any time,
for every virtual machine [GCGV06]. There are many studies that research on how
performance isolation can be achieved. A study by Gupta et. al [GCGV06] proposed two
new techniques to ensure performance isolation in the hypervisor Xen [BDF+03]. They
concluded, that their algorithms can enable performance isolation in various situations.
Shue, Freedman and Shaikh [SFS12] proposed a tool called Pisces that is able to ensure
performance isolation in a data-center environment. Fedorova, Selzer and Smith [FSS07]
discuss about ways to ensure performance isolation on chip multiprocessors.

In microservice environments, the problem of performance isolation also exists and the
effects that result from non-isolated services will be researched in detail in this thesis.

26

3.4. Microservice Resilience

3.4. Microservice Resilience

Microservices have many benefits over monolithic architectures that only deploy appli-
cations on one single unit. The use of microservices enables easy and fast deployment
without the need of hypervisors [Ber14], offers high availability, for example, by check-
point/restore mechanisms [Yan15] and provide a high potential for application scaling
and distribution due to the independence of individual microservices [BHJ16; Has16].

A study by Hasselbring and Steinacker [HS17] evaluated the reliability of a large
microservice system by considering the degree to which the system can be monitored,
scaled, integrated and deployed. They argue that microservices enable a separation-of-
concern policy that can help to define responsibilities amongst team members in the
development phase and conclude, that microservices can in fact achieve reliability and
agility if used correctly.

Another study on learning-based testing (LBT) by Meinke and Nycander [MN15] analyzed
how learning-based tests perform on distributed microservices. They injected faults
into a commercial product and evaluated how LBT tools perform. They showed, that
LBT performs sufficiently well in microservices and that correctness and robustness
properties can be modeled for this type of system architecture.

In this thesis, the resilience of the researched application was established by service
replication, several monitoring tools and Kubernetes, which, for example, automatically
redeploys services that failed.

27

Chapter 4

Approach

In this chapter, the overall approach of the thesis is described in detail. As already
mentioned, the goal of the thesis is to find and evaluate side effects that arise in failure
predictors due to the use of microservice architectures. First of all, this includes creating
a containerized system environment which is capable of logging and monitoring executed
applications in such a way that the extracted information can be used to apply online
failure prediction. Next, an application has to be chosen on which the failure prediction
can be used upon. The last step is then to transform the results into the evaluation
analysis which will be presented at the end of the thesis.

This chapter contains the overall approach of the thesis without too many implemen-
tation details (for implementation details, see chapter 5). Where possible, third-party
open-source software was used over reimplementations in order to demonstrate to which
degree failure prediction on microservices can already be realized with available tools
and, of course, to save time and efforts. This chapter will discuss about the following
points:

• The general microservice architecture used in the implementation. This section
describes the overall system architecture, how different nodes are interconnected
to each other and which advantages and disadvantages this specific architecture
holds.

• The application that is run on the microservice architecture. This part explains the
details of the applications that are deployed and evaluated on the implemented
architecture. It will describe the different parts needed in order to provide the
system, explain the functionality of the applications and show how the components
interact with each other.

• The fault injection methods used to produce errors in the system. In here, it
will be discussed which specific tools are suited for fault injection in the built

29

4. Approach

up environment and how they are used to produce predictable problems in the
components of the application.

• The failure prediction approach. This will explain which specific tools are being
used for online failure prediction and how the prediction tools are run with the
extracted system information.

4.1. The Workflow

Setup Microservice
Environment &

Deploy Application

System Overload

Fault Injection

Apply Workload &
Generate Failures

Extract and Combine
Monitoring Data

Predict Failures Compare &
Evaluate Results

Replication

Bottlenecks

Information Gathering

Filtering

Result CombinationCode InjectionLoad Tests

Variable Selection TP/FP

Result Representation

Metrics

Prediction Methods

S
ub

st
ep

s

Figure 4.1.: Project Workflow

Figure 4.1 shows the overall workflow that is used to create the evaluation results of this
thesis. The microservice architecture is the foundation on which the actual evaluation
can be executed on. As such, it is important, that this system is able to deploy and
replicate multiple containerized applications, enable application clustering and lets
each component interact with other components as needed. As stated in [KJP15], a
microservice should be composable from multiple small services. The first step of the
approach is therefore to set up a test-environment for microservices which includes an
appropriate test-application on which all further experiments can be executed on.

The fault generation step will then evaluate strategies for producing faults in the system.
The main point of this is to apply workload onto the system and evaluate the effects of
different bottlenecks that are induced within the application. For example, it will be
researched what effect a CPU-over-utilization on the physical host has on the deployed
microservices or whether microservices that are deployed on the same host can influence
the behavior of other microservices in any way, and if they can, to what degree.

After this, the data has to be extracted from the microservice environment. Since the
data comes from many different sources (monitoring tools, Kieker Framework, Workload
Generator), a way has to be found to collect all data in a structured manner.

The collected data then serves as an input to failure prediction methods. In this step, it
will be analyzed whether current failure prediction techniques are capable of predicting

30

4.2. Basic Architecture

failures in a containerized system architecture. Any problematic scenarios will be looked
at and possible solutions to them will be discussed.

Based on the failure prediction results, multiple different metrics will be created in order
to compare and discuss about the results.

4.2. Basic Architecture

The hardware system on which the tests will be executed on comprises of four virtual
machines that are managed by an OpenStack service and can be accessed via a proxy
server. The VM’s are hosted on a 64-Bit system with 4 2500mhz CPU’s. The virtual
machines are connected with each other and build the basis of a Kubernetes cluster on
which the microservices are executed on.

Within the Kubernetes cluster, there are several replication controllers and deployments
that are responsible for load balancing and scaling of the Pods that each contain a Docker
image which represents a single microservice.

Figure 4.2.: Hardware Setup.

The microservices that are deployed on the Kubernetes Cluster are

• Monitoring containers (Heapster) that log the current state of the other containers.
Heapster is the default monitoring tool for Kubernetes and logs data like the
CPU-utilization of every running container into an instance of InfluxDB.

• Data storage containers (InfluxDB) that are used to gather and store all relevant
information abut the state of the deployed services.

• The RSS-Reader application which consists of individual containers for the RSS-
Edge service, The middletier service, The RSS-server and Cassandra. In order to
obtain the response-times for the RSS-Reader service, each container is instru-
mented with a Kieker monitoring instance that writes all internally monitored

31

4. Approach

data to a separate Kieker-logging container by using ActiveMQ. Also, the fault
injection tools that are used to manipulate the internal behavior of the containers
are directly installed within each of these containers as well. The functionality of
the RSS-Reader is described in more detail in section 4.3.1.

• An instance of ActiveMQ which is a Message Broker that uses JMS (Java Messaging
Service).

• A Kieker Logging Server (KLS) that receives the logged data from the Kieker
monitoring instances deployed on the RSS-Reader containers through ActiveMQ.

• Locust, which comprises of a Locust-Master container and multiple slave-containers.
Locust is used to deploy workload onto the RSS-Reader.

Figure 4.3.: Interaction between the different containers that are deployed on the
Kubernetes cluster.

Figure 4.3 shows the main containers that are deployed on the cluster. First of all, the
cluster consists of the RSS-Reader components which are designed such that they can
be individually and at runtime scaled up and down by using a discovery mechanism.
Next, The Locust containers are deployed which can be used to create workload on
the system by simulating a certain amount of users that periodically send GET, and
POST commands to the respective edge service. The Heapster container then logs the
generated workload and writes it into InfluxDB where it will later be extracted from and

32

4.3. System Under Test

used as evaluation data. As already mentioned, the Kieker Logging Server is responsible
for writing the internal metrics of the containers like the response times of certain
functions into InfluxDB.

On the basis of this system, several tests will be performed which will be discussed in
more detail in the evaluation chapter. After each test run, the data is gathered and
combined into a CSV-file on which the further evaluation is performed on. In the later
phase of failure prediction, the gathered data is then replayed by using a sliding window
that iterates over the data set. That way, it is ensured that the online failure prediction
algorithms perform identical as if they were running on live data. By storing and
replaying the data, it can be guaranteed that each run of a failure prediction algorithm
is run on the exact same input data.

One problem that was encountered with the use of InfluxDB was, that it is currently
impossible to join different measurements like the CPU and memory of a container into
one dataset. Hence, in order to create a CSV that contains all measurements at once,
a separate tool had to be developed within the thesis that is able to automatically join
these measurements.

4.3. System Under Test

This section describes the application on which the failure predictors were executed on.
The application is chosen on certain key factors. First, it is important, that it is easy
to deploy the Application as a container and that it is possible to scale the individual
components up and down. The application should also not be too complex to change
parts of the program code if required. Also, the deployed containers should be highly
coupled with each other and it should be possible to analyze various different failure
scenarios as well. In order to emulate a system under stress, the application should have
one or more bottleneck components that can easily be stressed to a high degree.

The Netflix RSS-Reader application which is presented in the following meets all of these
requirements and was used as the test subject in this thesis.

4.3.1. Netflix RSS-Reader

The Netflix RSS-Reader application [Net] was developed to show how multiple Netflix
components can interact with each other. The application implements a scalable 3-tier
system for fetching and displaying RSS feeds. The components are written in Java and
completely open source.

33

4. Approach

Middle Tier

Ribbon

Servo

Astyanax

Archaius

Blitz4j

Karyon

Edge

Archaius

Karyon

Hystix &
Karyon

Blitz4j

Cassandra

RSS-Server

Clients

Figure 4.4.: Architecture of the RSS Recipes Application.

In order to deploy the application on microservices, a few actions had to be taken such
as converting the components into microservices, which will be explained after in this
chapter in more detail.

Overview

Figure 4.4 gives an overview of the applications architecture. As can be seen, the system
is separated into mainly three parts: The edge server provides the UI of the service
and accepts REST calls from any client. A client can subscribe to a new RSS server by
providing the URL of the RSS feed to the edge server. The address is then transmitted
to the middletier which stores the URL of the RSS-server in a Cassandra database. The
middletier then subscribes to the RSS-feed by using the Netflix Ribbon component. On a
new request from a client, the middletier collects all available feeds from the RSS-server
and transmits them to the edge server where the data is transformed to HTML.

34

4.3. System Under Test

RSS-Server

The RSS-server is not part of the original Netflix Application. This component simply
represents a RSS provider like one that can be found everywhere in the web. The reason
why no external feed publisher was chosen is to have a consistent access pattern that is
not distorted by any unknown factors like the workload or delay of the external server
or the differing amount of feeds and feed size produced by it. The RSS-server consists
of only a constant amount of feeds that will never be changed throughout the regular
simulations that are performed in the evaluation chapter.

Apache Cassandra

Cassandra is an Open-Source Database that is developed to handle a high number of
requests and operations performed on the data. It is a NoSQL system that is capable
of storing all kinds of data. The data-layout is designed to be column-oriented and of
course the database provides indexing capabilities like Primary Keys to efficiently handle
the stored data. Aside from this, Cassandra offers many techniques that aim to optimize
the stability and performance of the system like a replication mechanism without any
bottleneck or single-point-of-failure components.

In the context of the RSS-Reader, Cassandra is used to store data like the URL’s of the
requested feeds and which users have subscribed to them.

RSS-Middletier

The middletier is responsible for gathering the feeds from the available RSS-servers and
distributing them to the edge instances. The used implementation is however based
on polling which means that the edge instances have to actively request a feed update
in order to receive any data. Moreover, the middletier component does not cache any
feeds whatsoever, which means that for every request that is queried by one of the edge
instances, the middletier first loads the data from the RSS-server, then processes it and
eventually answers the request with a set of feeds for one particular user. Obviously,
this implementation is not very efficient but for the purpose of creating workload on a
system it is sufficient.

RSS-Edge

The edge services represent the endpoint of the RSS-reader to which users can connect
to in order to acquire their feeds. The edge provides a REST-interface that is capable of

35

4. Approach

allowing users to subscribe and unsubscribe to feeds. Again, the feeds are only received
by polling, which means that the user has to send view requests every time he wants
to get updated. Also, every view-request results in the edge returning every subscribed
feed, regardless of whether it has been modified or sent before already.

4.4. Failure Prediction Approach

As already mentioned, the failure prediction is based on the extracted data that has
been obtained from several different scenarios and stored in a file. The CSV file
contains different combined measures that were gathered and joined from InfluxDB. A
sample may look like the set from Table 4.1 which in this case consists of the recorded
measurements for the CPU-usage of a particular container, the CPU-usage of the host
system, the number of simulated users that generate workload by frequently sending
requests, the number of successful requests and the number of unsuccessful requests.
Also some other metrics like the response-time in milliseconds of a particular method of
one or multiple containers is contained in the dataset.

This data can then be directly used for failure prediction since all measurements were
taken once every minute and therefore the data-points are equally spaced. Once this file
is extracted, the next step is to create a sliding window that iterates over the time-series
in order to simulate a live execution of the system. Algorithm 4.1 shows the function
SlidingWindow(X, size, length, slide, f) that creates a sliding-window over a dataset X

that starts at the index start, holds at most size data-points in the window and slides
the window by slide data-points. Each time the window is iterated, the function f(Xt)
is called which performs an action on the current window Xt. The function f is, for
instance, the implementation of a failure prediction algorithm like ARIMA(d, p, q).

Algorithmus 4.1 Sliding-Window Iteration
function SLIDINGWINDOW(X : Set, start, size, slide : Number, f : Function)

R← ∅
i← start

while i ≤ |X| do
Xt ← X[max(i− size, 0) . . . i]
R← R ∪ f(Xt)
i← i + slide

end while
end function

36

4.4. Failure Prediction Approach

Minutes cpu cpuNode users successes fails pView pView
...
24 0.419 0.245 250 11876 3 40.011 39.171
25 0.48 0.247 250 13608 11 38.469 34.23
26 0.52 0.264 250 15593 11 39.984 38.497
27 0.513 0.277 300 17431 155 47.213 43.622
28 0.619 0.279 300 19566 161 48.478 46.412
29 0.647 0.329 300 21935 161 47.364 47.04
30 0.667 0.328 350 24303 169 70.199 64.747
31 0.723 0.347 350 26839 199 68.195 67.276
32 0.752 0.356 350 29599 201 83.675 80.584
33 0.747 0.38 400 32372 201 79.451 79.268
34 0.81 0.377 400 35280 206 93.823 92.129
35 0.865 0.399 400 38446 216 111.275 108.527
36 0.864 0.424 500 41583 234 115.902 109.128
37 0.949 0.42 500 44928 328 169.266 169.185
38 0.967 0.458 500 48615 544 201.121 199
39 0.986 0.469 600 52217 837 194.294 191.301
40 0.991 0.475 600 55843 1125 203.475 202.649
41 0.989 0.479 600 59435 1499 212.767 211.891

Table 4.1.: Sample CSV-File (with a Reduced number of Columns).

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.2

0.4

0.6

0.8

1

1.2

data
forecast

Figure 4.5.: Sample CPU forecast.

37

4. Approach

The forecast of this data then may look like the graph in Figure 4.5. The graph shows at
each point in time t, the predicted value for time t + 5.

Now there are several ways to evaluate the quality of the prediction. It would, for
example, be possible to quantify the prediction quality by taking a similarity measure
like the T-Test or a similar technique. Another important aspect is to prove or disprove a
correlation with the actual number of failure in the application. By taking the number
of actual failures as a point of reference, it can directly be shown, that the respective
metric correlates with the number of failures in the system.

Since failures only start to arise when the CPU-usage is at a higher level, we can quantify
the failure correlation by defining a new metric (see for example equation 6.1) that
considers this threshold on top of the predicted trend-line. Experimental results for this
strategy are discussed in chapter 6.

38

Chapter 5

Implementation

This chapter describes the implementation and the setup of the approach. It describes
each component in detail and discusses about the implementation of the overall system
to give the reader insight to the capabilities and possible shortcomings of this particular
setup. This chapter is supposed to provide sufficient information to reproduce most of
the system such that the evaluation results can easily be proven and understood in more
depth.

Overall, this chapter discusses about the configuration and setup of Kubernetes, the
creation of the containerized services, the setup of the Netflix RSS-Reader application,
the embedding of the fault injection tools into the system and the configuration and
implementation of the used fault injector.

5.1. Kubernetes Setup

The Kubernetes cluster is installed on 4 VM’s that are managed by OpenStack. The
Kubernetes server and client version that was used is 1.5.2. The machines have 4 CPU’s
and 8 GB RAM. The OS installed on the nodes is Fedora Cloud 25 and the architecture is
AMD64 (Kernel Version 4.8).

5.2. Netflix RSS-Reader Setup

The RSS-Reader first had to be transformed into a microservice application. For this, we
containerized the middletier and edge applications by creating a Kubernetes deployment
File. The deployment file for the Edge-container can be seen in the Appendix A.

39

5. Implementation

5.3. Fault Injection Tools

For this thesis, fault injection is used in order to generate workload onto a certain aspect
of the system. In our case, there are two classes of fault injection methods that that each
affect the system in a different way.

1. Workload Generators. A fault injector that applies stress onto the system like Locust
does by simulating a number of users which each query multiple requests over
respective REST-calls can be used to increase the CPU, memory or network of the
bottleneck components to a very high level such that eventually the components
are unable to process any further requests in an adequate time.

2. Internal Fault Injection. Fault injection tools can be used to manipulate the behavior
of a specific part of a targeted component. Such a tool can be used to simulate
several different internal failures that are usually not part of the application itself.
For research purposes it can be convenient to use a fault injector which is able to
dynamically activate and deactivate a specific failure such that the outcome can be
analyzed without having to restart or recompile the application.

As already mentioned previously, this thesis mostly discusses about failures that arise
due to a high CPU- or memory utilization and does not focus on all types of failures that
can occur in the created system.

5.3.1. Locust

Locust can be configured by creating a python file in which it is possible to exactly specify
which requests are generated, how much delay there is between each request and a few
more options. In our case, we specify functions that each request a subscription or a
unsubscription from a feed that is provided by our RSS-server. Overall, there are 8 feeds
stored on the server that each are sent to the client as soon as the subscription command
has been issued. Listing 5.1 shows the code that creates the REST-Call to view the the
ABC-News feed stored on the server.

@task(1)

def addAbc(self):

with self.client.post("/jsp/rss.jsp", {"url":"http://rssserver/abc.xml",

"username":self.user_id}, catch_response=True) as response:

self.log_response(response)

Listing 5.1: REST-call generation by Locust

40

5.3. Fault Injection Tools

The results of this simulation is stored into InfluxDB by using the python Library that
InfluxDB provides. Every minute, the respective variables are stored into the database
(‘test_stats’) by calling the function shown in Listing 5.2.

def writeToInfluxDB():

json_body = [

{

"measurement": "test_stats",

"tags": {

"hostname": hostname

},

"fields": {

"status_200_count": status_200_count,

"status_500_count": status_500_count,

"status_0_count": status_0_count,

"status_other_count": status_other_count,

"hostname": hostname

}

}

]

InfluxDBWriter.write(json_body)

Listing 5.2: REST-call generation by Locust

The function writeToInfluxDB() simply creates a JSON that contains all the status-
information variables and stores them into the database by passing the file to the
InfluxDBWriter class which in turn passes the file to the InfluxDB-Library.

After Locust has been deployed on Kubernetes, the actual workload can then be adjusted
via several different REST-calls.

Locust logs the number of different HTTP-status codes to determine the current successful
and unsuccessful requests. As could be seen in listing 5.2, the status codes that are
produced by the deployed RSS-Reader application are:

1. Status 200, OK. Indicates that the request was successful.

2. Status 500, Internal Server Error. This indicates an unknown server error which
may be caused for example by a system over-utilization.

3. Status 0, Service Unreachable. Server cannot be reached.

In the following, a failure in this context is defined as a request that resulted in a status
code that was unequal to 200.

41

5. Implementation

5.3.2. Byteman

Byteman is used to inject foreign code into the application by manipulating the underly-
ing bytecode of the respective module. Listing 5.3 shows the simple commands that are
needed to inject a foreign function (allocateMemory()) into the beginning of another
function (subscribe()).

RULE allocateMemory

CLASS javax.ws.rs.core.Response

com.netflix.recipes.rss.jersey.resources.MiddleTierResource

METHOD subscribe

AT ENTRY

IF true

DO org.k8sfp.bytemanfi.common.CommonFiUtils.allocateMemory()

ENDRULE

Listing 5.3: memleak.btm. Byteman rule for injecting a foreign function.

This rule can then be injected into any Java package by including

java -javaagent:script:/memLeak.btm

when executing the jar-file. Optionally, it is also possible to inject the failure at runtime
by using the following option.

java -javaagent:byteman.jar=listener:true

The foreign function can then be defined in a separate library (here BytemanFIUtils.jar)
which can be made available by including boot:/BytemanFIUtils.jar into the command
line string.

5.4. Data Extraction

The data extraction and failure prediction part was designed such that the workflow
can be automated easily which might be beneficial when the online failure prediction
method would be used as a part of an application.

Figure 5.1 shows the projects and their dependencies between each other. The Project
K8sfpServiceBridge contains the interfaces that are used for inter-project communication.
As Figure 5.2 shows, the interfaces are mostly different representations of data items or
representations of a failure predictor instance. The Interface IK8sDataElement represents
any data-point and is therefore just an empty interface with no special requirements.
The interface IK8sTimeseriesDataElement is a representation of a distinct time-series

42

5.4. Data Extraction

Figure 5.1.: Dependencies of the Maven-Projects.

Figure 5.2.: Interfaces between the projects.

data-point that each stores a Dictionary of Name-Value Pairs and a timestamp that
indicates when the data point was created. The IK8sArrayDataElement interface is
another representation that only requires the storage of an object array and is therefore
more flexible.

The first step in the workflow is to extract the logged data from InfluxDb. For Java, there
is a special library provided by InfluxDb that can be used for the communication with
the database. However, since there is no option of joining two or more measurements
into a single data-point, this part was implemented within the project as well.

Figures 5.3 and 5.4 show the most important classes of the project K8sfpDataSources.
The class DbFetcher is responsible for gathering and query-joining the requested mea-
surements which were defined within the InfluxDbDataSourceConfig class. Overall, there
are three join-Operations needed:

1. Inter-Query Join.

43

5. Implementation

Figure 5.3.: Main classes of the Project K8sfpDataSources.

2. Measurement Join.

3. Database Join.

The Inter-Query Join is needed to join the data that result from Instructions like the
GROUP-BY clause, which returns multiple datasets for each group. A simple example
would look like this:
SELECT value as network_edge FROM \"network/rx_rate\" WHERE pod_name =~ /edge/ GROUP BY

pod_name ORDER BY DESC

This instruction would return a dataset for each distinct service-name pattern that was
matched by the regular expression .*edge.*. When there are for example two replicated
services that would contain the name ‘edge‘, the instruction would return a results for
both of these services.

A response in InfluxDb is constructed in a similar way - a sequential collection in which
each item contains another collection that contains the relevant measurement results.
The task is now to transform this into a dictionary that maps the measurement name to
a list of values which are the actual results of InfluxDb.

Algorithm 5.1 shows the first join procedure of the response. After this step, the set R

contains pairs of distinct measurement-names and their respective values. Wherever
there was a duplicate measurement that resulted from a GROUP BY Statement, the
measurement name is now simply extended by a sequentially increasing numerical
postfix.

44

5.4. Data Extraction

Figure 5.4.: Main classes of the Project K8sfpEvaluator.

45

5. Implementation

Algorithmus 5.1 Inter-Query Join
function INTERQUERYJOIN(X : DbResponse)

R← ∅
for all g ∈ X.Results do

c← 0
for all s ∈ g.Series do

I ← ∅
for all v ∈ s.V alues do

I ← I ∪ (measureName + c, v)
end for
R← R ∪ (s.Name + c, I)
c← c + 1

end for
end for

end function

After this, the Measurement-Join can be applied onto the result. Assuming we want
to join different measurements like the network and the CPU of a specific service, it is
currently only possible to query the data by issuing two different queries that will be
answered separately by InfluxDb (e.g. RCP U and Rnetwork).
SELECT value as cpu_edge FROM \"cpu/usage_rate\" WHERE pod_name =~ /edge/ GROUP BY

pod_name

SELECT value as network_edge FROM \"network/rx_rate\" WHERE pod_name =~ /edge/ GROUP BY

pod_name

This means, that in order to compute a single time-series Rall = {(t, {RCP U,t, Rnetwork,t, . . .})}
where for every point in time t there is a collection of measurements Rall,t that holds the
value of all defined measurements at time t, another join operation is needed.

The algorithm MeasureJoin(R, join_dist, join_tol) (5.2) shows how this join was imple-
mented. the variable join_dist is the timespan (in milliseconds) in which two different
measurements are to be joined. The variable join_tol defines another timespan in which
measurements are joined if so far no measurement has been found yet. The Function
merge(X, Y) simply combines the measurements by adding X ← X ∪ Y where X and
Y both contain tuples of names and value-sets. Therefore, the merge-function adds all
name-value-set tuples from Y to the tuple-set of X.

The Database Join is required when different measurements from different InfluxDb
instances have to be combined into a single dataset. This had to be done for the logged
data from the workload generator Locust since the other database was already heavily
used by the monitoring tool.

46

5.4. Data Extraction

Algorithmus 5.2 Measurement Join
function MEASUREMENTJOIN(R : Set, join_dist : Integer, join_tol : Integer)

M ← R0
for all N ∈ R\R0 do

for i← 0, i < |NI |, i← i + 1 do
jt←Mi[TIMESTAMP]
before← jt− join_dist

for j ← 0, j < |R|, j ← j + 1 do
jf ← Rj,I [TIMESTAMP]
diff ← jt− jf

if jt > jfandjf > before then
merge(jt, jf)

else if diff < join_tol then
merge(jt, jf)

end if
end for
R← R ∪ (s.Name + c, I)
c← c + 1

end for
end for

end function

The database join can now easily be made on top of the current result-sets Rall,i that
is produced for every database (k-times). The final dataset can be created by com-
puting Rjoined ← dbJoin(Rall,0, Rall,i)∀i ∈ N\{1}. The function dbJoin() simply iterates
over the time-series Rall,0 and Rall,i and joins every item that contains a close enough
timestamp.

47

Chapter 6

Evaluation

This chapter presents and discusses the results which were obtained by the previously
described approach.

The implemented microservice architecture provides a wide variety of different interfaces
on which statements can be made about the quality and value of different failure
prediction strategies. One important research question the evaluation will discuss about
is how individual microservices and a particular failure prediction instance for
this service are affected by other, in parallel running applications. For instance,
consider a system in which several hundred containers are running in parallel. Naturally,
it would be very unpractical to only deploy as much containers on a node such that
the summed up maximum CPU limit of all containers does not exceed the computing
capacity of the respective node since it is unlikely that all containers reach their CPU
limit at the same time. This is due to the fact that in most systems there are certain
bottleneck components through which the performance of the system is limited (critical
path). In the rare case in which the system does reach its limit, despite all the effort
of load balancing and service distribution, it is crucial that failure predictors are not
affected by this circumstance (i.e. they must still be able to predict a faulty application
state in this scenario).

This evaluation will also quantify the degree to which a failure predictor can be influenced
by other, separately running processes that are deployed on the same host and discuss
about the metrics that can be influenced by this or similar side effects. For any shown
side-effect, an alternative prediction strategy will be investigated that may be used in
such scenarios and they will be evaluated for practical use.

49

6. Evaluation

6.1. Evaluation Plan

The strategy of evaluation subdivides into the following steps:

1. Exploration (Section 6.3). In this step, different simple scenarios will be presented
and evaluated that show interesting attributes and unexpected behaviors.

2. Validation (Section 6.4). In this step, certain scenarios that were identified in
the Exploring step will be validated, i.e., it will be shown that this scenario is
repeatable and shows a similar behavior for equal simulations.

3. Calibration of failure predictors (Section 6.4). Here, the used failure predictors
will be calibrated by using control datasets that were created during the previous
steps.

4. Prediction Evaluation (Section 6.6). Next, the failure predictors are executed on
different scenarios. The quality of the prediction results will be discussed for each
individual validated scenario.

6.2. Prediction Measurements

For the analysis of the workload scenarios, we consider the following measurements:

• The CPU-percentage of the containers and the nodes. This measurement can
easily be accessed by any monitoring component and it can easily be used as
well since for every microservice, there is a hard CPU-limit. The CPU is often
used as a metric that determines the time range of possible occurring failures.
For instance, a failure predictor can simple predict the CPU of a component and
increase the likelihood of failures as soon as the CPU hits a threshold limit of 98%.
This threshold limit can be optimized by observation: Controlled scenarios where
the CPU-Workload is increased until failures occur in a certain system can be used
to find the CPU-limit at which failures are likely.

• The Memory-Percentage of the containers and the nodes. This measurement can
be used in a similar way as the CPU-measurement. However, in contrast to the
CPU, if the memory is increased to its limit (i.e. due to a memory leak), in most
cases the application is sure to fail.

• The Network-Usage of the containers and the nodes. The network-usage is limited
by the network capabilities of the hardware setup. Tests have shown that the upper
limit at which the network-bandwidth is at full capacity in our scenario is at around
6 Gbps.

50

6.3. Exploration

• The Response-Times of the most vital functions in some containers. This metric
indicates how long a service needs to process a single request, however, since there
is no hard response-time limit defined for most applications, an upper limit has to
be set manually.

• The simulated User Count. In the context of the RSS-Reader application, the user
count cannot be directly measured if the application would be used by actual users.
It may be possible to count the number of currently subscribed users, but the
number of users that currently access the system could deviate significantly from
this value. Therefore, this measurement cannot be used as a metric for failure
prediction. Instead, the value can be used to validate the results of the prediction
results.

• The Success- and Failure Rates of the workload generator. Identically to the
actual number of users, the success and failure rates cannot be determined by
any monitoring component due to factors like network delay and response-time
deviations. The response-time of a function might not be correlating to the actual
response-time due to queuing or asynchronous propagation of requests. This
metric will be used to determine the quality of the prediction results.

6.3. Exploration

This section evaluates the behavior of the deployed containers and the respective metrics
(like CPU and memory usage) for a generated workload scenario. In section 6.3.1, a
linear workload scenario is presented and prediction ideas are discussed. In section
6.3.2, the scenario is modified by placing a service on a host that has already deployed a
large amount of containers. To show that the observed effect can also be produced in
another part of the application, section 6.3.4 analyzes how the edge-service performs on
a stressed host. Finally, section 6.3.5 shows, that the degree to which a stressed host can
affect a deployed application can be very high and shows that failure predictors should
be able to forecast these scenarios reliably.

6.3.1. Linear Workloads

This scenario analyzes the behavior of the deployed RSS-Reader containers for an
increasing amount of users that want to access the service. The number of users are
simulated with two locust worker nodes which are deployed in the cluster. The number
of users is iteratively increased by the value listed in table 6.1

51

6. Evaluation

Time (Minutes) 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Number of users 3 5 10 20 50 100 150 200 250 300 350 400 500 600

Table 6.1.: Simulated users for a linearly increasing workload.

Overall, one execution takes about 42 minutes and the user count is at first sightly
increased and increases further until it hits 600. Tests have shown that the CPU-
utilization of the application is approximately 1 for every tested scenario when 600
users are simulated. This workload simulation is supposed to emulate a system that gets
increasingly overloaded by user requests and therefore for failure prediction, it should
be possible to find a metric from which the symptom of the failure can be determined.

0 10 20 30 40 50 60 70 80 90
0

0,2

0,4

0,6

0,8

1

1,2

CPU Rates

cpu_middletier
cpu_server
cpu_edge1
cpu_edge2

Minutes

P
e

rc
e

n
ta

g
e

 /
1

0
0

Figure 6.1.: CPU rates of all containers.

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81
0

10000

20000

30000

40000

50000

60000

Status_500

Status_200

Status_0

Minutes

C
o
u
n
t

Figure 6.2.: Success (status 200)- and
failure-rates (status 500, sta-
tus 0).

Figure 6.1 shows the increase of CPU-utilization in each observed microservice. As can
be seen, the increase is linear and therefore corresponds with the increase of users over
time. This scenario was executed after deploying 2 edges and 1 middletier onto the
Kubernetes cluster, which results in the middletier being the bottleneck component of the
application (the CPU-utilization of every other component is significantly lower). Figure
6.2 shows the total number of successful and unsuccessful requests (fails). The number
of fails increases as soon as the CPU-utilization gets high enough. In this simulation,
the number of failures start to increase at minute 54 (5 failures, 66.9% CPU-utilization).
At minute 68, the failure count has increased to over 100 failures (137 failures, 87.8%
CPU) and at minute 76 there are over 1000 failures (1210 failures, 99.0% CPU). At the
end of the simulation, there are 2293 failures and the CPU-usage is 99, 3%.

If there would have been a failure predictor that was monitoring the application, it
should have generated an alert just before the occurrence of the majority of the failures
logged by the workload generator. Hence, for a time-series failure predictor to be
effective at predicting this workload-induced failure, there has to exist a metric that

52

6.3. Exploration

0 10 20 30 40 50 60 70 80 90
0

0,2

0,4

0,6

0,8

1

1,2

Prediction Metric
cpu_middletier
Status_500

Minutes

P
e

rc
e

n
ta

g
e

 /
1

0
0

Figure 6.3.: Computed Metric for a specific simulation.

directly correlates to this failure rate which is, as stated earlier, unaccessible in a real
scenario. Looking alone at this scenario, it would be very simple to create that metric.

Pm(X, τPm) =
|X|⋃
i=1

max(0, (Xi − τ))
1− τ

, 0 ≤ τPm ≤ 1 (6.1)

Equation 6.1 shows a simple function Pm(X, τPm) which computes such a metric based
on the input set X which represents the respective time-series. By setting the threshold-
value τPm = 0.65, The metric in Figure 6.3 can be created only from the CPU time-series.
Of course, in a different scenario, this particular threshold value might not be the best
choice, hence it would require more training data to actually calibrate this function.

Assuming that it is possible to create a metric that correlates to the number of failures
in every scenario, it is also possible to create a failure predictor that can predict this
number by calculating and forecasting this particular metric.

Figure 6.4 shows the results of an ARIMA forecast that was applied to the dataset. At any
time t, the forecast calculates the future CPU-usage-trend for time t + tth where in this
case tth = 5. As can be seen in the graph, at exactly t = 51 the function Pm(XARIMA, 0.65)
starts to increase (actual value: 6.5%) whereas the actual prediction metric increases at
t = 56 to 5.4%.

Prediction metrics like the function Pm can now be used to create a binary failure
prediction function by calculating P̂m(X) = φ(Pm, X, τPm , σPm) where τPm represents
the threshold value of the metric up to which the metric does not correlate to the actual

53

6. Evaluation

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81
0

0,2

0,4

0,6

0,8

1

1,2

cpu_middletier
Status_500
ARIMA
Metric
Predicted Metric

Minutes

P
e

rc
e

n
ta

g
e

 /
1

0
0

Figure 6.4.: Prediction Results and Predicted Metric of the workload scenario. The
prediction forecasts tth = 5 minutes into the future. The prediction is not
shifted, i.e. the forecast at point t should hold for the time t + tth.

failures and σPm is the threshold value that determines when P is significant enough to
be considered a failure.

φ(P, X, τ, σ) =
{

0 for 0 ≤ P (X, τ) < σ

1 for σ ≤ P (X, τ) ≤ 1
, 0 ≤ τ, σ ≤ 1 (6.2)

Figure 6.5 shows the predicted binary metric φ(Pm, X, τ, σ) for τ = 0.65 and σ = 0.01.
Of course, since the prediction function is optimized to this special scenario, the binary
prediction result is perfect in the sense that it would predict a failure exactly tth minutes
before it arises.

To evaluate this prediction result, the first step is to calculate the actual failure percentage
from the actual failure-rate metric which the failure predictors should be predicting.
Equation 6.4 shows how this can be done. The threshold variable τ is set to the constant
τ = 0.01% = 0.0001. X represents in this case the set of successful and unsuccessful
requests (Xeval).

Peval(X, τPeval
) = |Xfails|
|Xfails|+ |Xsuccesses|

(6.3)

P̂eval(X, τPeval
) = φ(Peval, τPeval

, τPeval
) (6.4)

Figure 6.6 shows the functions Peval (blue line) and P̂eval for this particular scenario.

54

6.3. Exploration

1 7 13 19 25 31 37 43 49 55 61 67 73 79
0

0.2

0.4

0.6

0.8

1

1.2

cpu_middletier

Binary Predicted Metric

ARIMA

Metric

Predicted Metric

Status_500

Minutes

P
e

rc
e

n
ta

g
e

Figure 6.5.: Shifted Prediction Results and the simple binary prediction Metric.

1 7 13 19 25 31 37 43 49 55 61 67 73 79
0

0.2

0.4

0.6

0.8

1

1.2

Failure Percentage
Binary Failure Percentage

Minutes

P
e

rc
e

n
ta

g
e

Figure 6.6.: Plotted Peval (blue line) and P̂eval (red line).

For this scenario, P̂eval(Xeval, 0.0001) = P̂m(X) holds and therefore the failure prediction
method is able to make a perfect prediction. Also, TPP̂eval

= |fails| and FPP̂eval
= 0

holds and therefore the area under the ROC curve is 1.

6.3.2. Middletier CPU-Workload

In contrast to the scenario above, the middletier component is now deployed on a host
that already has a high number of containers that consume a lot of CPU-Resources. For

55

6. Evaluation

1 74 10 13 16 19 22 25 28 31 34 37 40
0

0.2

0.4

0.6

0.8

1

1.2

cpu_middletier
cpu_node

Minutes

C
P
U

Figure 6.7.: CPU-usage of the middletier-container and the CPU of the host.

this, stress containers are deployed that each run the Linux command stress with the
parameter –cpu 100. Overall, this brings the CPU-utilization of the host to about 95%.

Parameter Description

Microservice Setup 2 Edges, 1 Middletier, 1 RSS-server, Middletier as bottleneck
Container Configuration Middletier separated on Node C
Node stress > 98% CPU workload on Node C
Container stress None

Table 6.2.: Execution Parameters.

Figure 6.7 shows, that the CPU of the middletier does not increase above a certain
threshold (in this case about 0.4) despite that the CPU-limit of the container is set to 1.
This scenario will be discussed in more detail in section 6.4.3. While in this scenario,
the deployment of the component was intentionally done on the CPU-stressed node,
the same effect could in practice be achieved by multiple containers on a host that
experience a sudden increase of workload that might be induced by users that want to
access the service all at once or by an intentional attack of the system (e.g. Denial Of
Service attack). In such a case, failure predictors are therefore still required to work and
must understand the situation despite of the fact that the CPU-Resources of the service
is seemingly not overloaded.

56

6.3. Exploration

1 74 10 13 16 19 22 25 28 31 34 37 40 43
0

0,2

0,4

0,6

0,8

1

1,2

cpu_middletier
cpu_node
memory_middletier
memory_node

Minutes

P
e

rc
e

n
ta

g
e

 /
1

0
0

Figure 6.8.: CPU-utilization of the service and
the node.

1 74 10 13 16 19 22 25 28 31 34 37 40 43
0

5000

10000

15000

20000

25000

30000

35000

40000

failures
successes

Minutes

C
o
u
n
t

Figure 6.9.: Success- and failure rates.

6.3.3. Middletier Memory-Workload

In this scenario, the effects of memory shortage will be evaluated. Table 6.3 shows the
parameters for the simulation. The middletier, which is the bottleneck component in
this case, was separated on a physical host where 10 memory-stress-containers were
executed on in parallel. The execution of the memory-stress containers also induced a
rather high CPU-utilization on the respective host (>90%).

Parameter Description

Microservice Setup 2 Edges, 1 Middletier, 1 RSS-server, Middletier as bot-
tleneck

Container Configuration Middletier separated on Node D
Node stress None
Container stress > 90% CPU and memory workload on Node D by using

only microservices

Table 6.3.: Execution Parameters.

Figure 6.8 shows the CPU- and memory-utilization of the middletier and the respective
physical host. Figure 6.9 shows the number of successful and unsuccessful requests
over the execution time period. As can be seen, the CPU and memory measures are not
increasing above 60% but failures still arise.

57

6. Evaluation

1 74 10 13 16 19 22 25 28 31 34 37
0

0,2

0,4

0,6

0,8

1

1,2

cpu_middletier
cpu_edge
cpu_node
memory_middletier
memory_node

Minutes

P
e

rc
e

n
ta

g
e

 /
1

0
0

Figure 6.10.: CPU- and memory-usage of the
containers and the host system.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
0

10000

20000

30000

40000

50000

60000

failures
Failures_0
successes

Minutes

C
o
u
n
t

Figure 6.11.: Failure count recorded by the
workload generator.

6.3.4. Service CPU-Workload

The stress can also be put onto another part of the application. In this scenario, the
edge-container is separated and stressed with multiple CPU-stress services. Table 6.4
shows the parameters for the execution.

Parameter Description

Microservice Setup 1 Edge, 1 Middletier, 1 RSS-server, Edge as bottleneck
Container Configuration Edge separated on Node D
Node stress None
Container stress > 90% CPU on Node D by using only microservices

Table 6.4.: Execution Parameters.

Figure 6.10 and 6.11 show the CPU-utilization and Failure-Rate for the scenario. As
can be seen, very little failures could be produced. Failures that were reported in this
simulation were mostly caused by the service being unavailable.

6.3.5. Maximum Workload Complications

This scenario shows to what degree an overloaded system can affect the application.
The system was overloaded by creating multiple stress-containers and every component
was placed onto the same host.

58

6.4. Workload Analysis

1 74 10 13 16 19 22 25 28 31 34 37 40 43 46 49
0

0,2

0,4

0,6

0,8

1

1,2

cpu_middletier
cpu_node
memory_middletier
memory_node
cpu_edge
cpu_server
cpu_edge2

Minutes

P
e

rc
e

n
ta

g
e

/ 1
0

0

Figure 6.12.: CPU-utilization.

1 74 10 13 16 19 22 25 28 31 34 37 40 43 46 49
0

10000

20000

30000

40000

50000

60000

70000

successes
failures
Failures_0

Minutes

C
o
u
n
t

Figure 6.13.: Success- and failure rates.

Parameter Description

Microservice Setup 2 Edges, 1 Middletier, 1 RSS-server, Edge as bottleneck
Container Configuration All on Node D
Node stress None
Container stress > 90% CPU on Node D by using 15 cpu-stress microservices

Figures 6.12 and 6.13 show the CPU-utilization as well as the success- and failure rates
of the application. As can be seen, the failure count can be increased to such a high level
that it exceeds the number of successful requests.

6.4. Workload Analysis

The previous section showed different scenarios for the execution of microservices. In
this section, these scenarios are further analyzed, discussed and evaluated.

6.4.1. Linear Workload Validation

The above discussed scenario will now be used to calibrate the failure prediction method.
For this, there will be multiple executions of the linear workload scenario with slightly
differing simulated users. Algorithm 6.1 is used in order to create multiple linear
workload profiles that are then being sent to the workload generator. The parameter
count determines the amount of workload changes whereas the variable max limits
the maximum simulated user count. The illustrated algorithm increases the amount of
simulated users over time by a random amount. As can be seen, the amount of users
can also slightly decrease and is therefore not entirely monotonically increasing.

59

6. Evaluation

Algorithmus 6.1 Workload Increase Algorithm
function CREATELINEARPROFILE(count, max)

I ← {0}
m, i← 0
while i < count do

m← m + random from1 to 2max
count

I ← I ∪m, i← i + 1
end while
if m > max then

i← 0
while i < count do

Ii ← max(0, Ii − (m−max)(i+1)
count+1)

i← i + 1
end while

end if
if Ii < max then

I ← CreateLinearProfile(count, max)
end if
return I

end function

0 10 20 30 40

0
10

0
20

0
30

0
40

0
50

0
60

0

Minutes

C
ou

nt

Figure 6.14.: Simulated user Count for
all Scenarios.

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Minutes

C
P

U

Figure 6.15.: CPU utilization for all Sce-
narios.

60

6.4. Workload Analysis

0 10 20 30 40

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Minutes

C
ou

nt

Figure 6.16.: Overall successful user re-
quests.

0 10 20 30 40

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
Minutes

C
ou

nt

Figure 6.17.: Overall unsuccessful user
requests.

Figure 6.14 shows the simulated user count for every execution. The user workload in
this execution is based on the function CreateLinearProfile(15, 600), i.e. the maximum
user count is 600 and the user count changes 15 times until it reaches 600 users. Each
user workload is simulated for 3 minutes so the execution of one single scenario takes
about 45 minutes overall. Figure 6.15 shows the plotted CPU-usage for every Execution.
As can be seen, the CPU-usage in most cases reaches its limit at around 500 simulated
users and becomes 50% for a user count of about 300.

In Figure 6.16, the summed up successful requests are shown for each execution. In
most cases, the successful requests are constantly increasing and correlate with the
number of simulated users. Figure 6.17 shows the overall unsuccessful requests which
begin to occur in some executions already at minute 13 and increase to about 6000 at
the end of the execution.

Figure 6.18 shows the function Peval(X, 0.0001) applied to every execution and Figure

6.19 shows the averaged value Peval,avg(x) =
∑n

i
Peval,i(x)

n
along with the average predicted

failure metric Pm,avg(XARIMA, τ) obtained in the same way. The parameter τ is obtained
from Figure 6.20 which shows the TP/FP ratio for several different forecasts that were
done by using the averaged metrics Pm,avg and Peval,avg. As can be seen, τ = 0.9 or
τ = 0.8 is a decent choice for this kind of scenario. Each gray line in the graph shows
a single execution of a scenario with a constant τ . As can be seen, the false positive
rate mostly increase only at the beginning of the simulation when the threshold was set
too high and no failures had occurred yet. Once the threshold CPU-usage is exceeded,

61

6. Evaluation

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Minutes

A
ct

ua
l F

ai
lu

re
 P

er
ce

nt
ag

e

Figure 6.18.: Forecasted failure metric.

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Minutes

W
ei

gh
t

Figure 6.19.: Average forecasted Pm,avg

(red, upper line) and av-
erage actual failure metric
Peval,avg (blue, lower line).

there are no more false positives anymore since in this simulation, the CPU-usage only
increases and never really decreases.

6.4.2. Response-Time Analysis

Other than the CPU-utilization, the response times of the containers might be an inter-
esting metric to look at. The difficulty for response-time datasets are especially

1. No hard upper limit. Unlike CPU- or memory-measurements, the range of
response-times vary from application to application. Therefore, in order to use
them as a failure prediction metric, it is important to find an appropriate limit
before the metric can be used.

2. Requirement of Context-Knowledge. Often, a service provides several different
functions and interfaces for which it is possible to create a separate response-time
dataset. Since it might not be viable to consider all response-time measurements,
a list of important functions has to be found manually.

Figures 6.21a and 6.21b show the response times for the middletier component. As
can be seen, at the start of the execution, the response-times are at an almost equal
level than the response times at the end of the execution. This effect might be caused
by the component allocating memory that was stored onto hard-disk in the idle times.

62

6.4. Workload Analysis

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

●

●●●●

●

●●●

●

●

0

0.10.20.30.4

0.5

0.60.70.8

0.9

1

Figure 6.20.: ROC for 10 different values of τ . The data point labels show the value of
τ for each point.

However, the component itself was never restarted during the executions and there was
only a little time-frame where the component was actually idle.

After this upstarting-phase, the response-times drop to a rather low level and mostly
increase suddenly at time 30 which is the time where failures begin to arise. Aside
from the upstarting-phase, for a failure prediction metric that is created out of this data,
there is the problem that the response-times only really rise up when the failures begin
to occur. This is why the symptom of the failure cannot be predicted easily by only
looking at the response-times of the respective container.

6.4.3. Container-Induced Interferences

Next, it will be evaluated whether the prediction metric remains stable when there are
other microservices that are additionally applying workload onto the physical host on

63

6. Evaluation

0 10 20 30 40

0
20

40
60

80
10

0
12

0

Minutes

M
ill

is
ec

on
ds

(a) Middletier Fetch Response-Time

0 10 20 30 40

0
20

40
60

80

Minutes

M
ill

is
ec

on
ds

(b) Middletier Fetch-Feed Response-Time

0 10 20 30 40

0
10

0
20

0
30

0
40

0

Minutes

M
ill

is
ec

on
ds

(c) Edge 2 View-feed Response-Time

Figure 6.21.: Middletier Response-Times.

64

6.4. Workload Analysis

0 10 20 30 40 50 60
0

0,2

0,4

0,6

0,8

1

1,2

cpuusage_middletier
nodecpu
nodememory
memusage_middletier
network_middletier

Minutes

P
e

rc
e

n
ta

g
e

 /
1

0
0

Figure 6.22.: Middletier CPU, memory,
and network measure-
ments.

1 74 10 13 16 19 22 25 28 31 34 37 40 43
0

5000

10000

15000

20000

25000

30000

35000

40000

Status 500

Status 200

Status 0

Minutes

C
o

u
n

t

Figure 6.23.: Success (status 200)- and
failure rates (status 500,
status 0).

which a monitored service is executed on. This scenario shows that the created failure
predictor is vulnerable against interference from other containers that are running on the
same host. As could be seen in the other scenarios above, a monolithic failure predictor
can always be created by defining a metric that correlates with the actual, hidden failure
metric, which in our case is the number of failures over time logged by the workload
generator.

Parameter Description

Microservice Setup 2 Edges, 1 Middletier, 1 RSS-server, Middletier as bottleneck
Container Configuration Middletier separated on Node D
Node stress None
Container stress > 95% CPU workload on Node D by using only microservices

In this scenario, the CPU-utilization of the middletier component shown in Figure 6.22
does not exceed 45% even though the simulated user count is identical to the normal
scenario (Table 6.1). Instead, the amount of Failures produced are strongly increased
(see Figure 6.23). This behavior occurs since there are no resources available on the
host system which then caps the CPU of all containers to a lower level.

This leads to the fact that the predicted metric Pm with the calibrated τ will never
detect any failures that occur when the host machine becomes the bottleneck of the
system. Only after adjusting τ it would again be possible to detect the errors, however
this would first require the predictor to detect the transition of the bottleneck from the
middletier-component to the host.

What now needs to be found would be a new Metric PH that is able to correlate to
the number of failures in the system regardless of the above described problem. When
looking only at the metrics available within the container, which is 1) The CPU-utilization,

65

6. Evaluation

Figure 6.24.: Workload-Dependency Graph. The red lines represent the induced work-
load that affect the behavior of the containers. The middletier- and
stress-containers are hosted on the same node and are therefore CPU-
dependent on each other. The edge service influences the CPU-utilization
of the middletier component and therefore, the middletier-component is
CPU-dependent on the edge service.

2) The memory-usage and 3) The network usage, Figure 6.22 shows that there there is
no obvious metric that correlates with the number of produced failures. In fact, when
trying to combine one or more of these metrics, it should be clear that it will never be
possible to create an adequate metric that correlates in all discussed cases.

This is the point where it becomes necessary to not only look at the behavior of the
container itself but also on the containers that are influencing the system on which the
container that is to be observed is deployed on.

6.5. A Hierarchical Approach

So far, the failure prediction was only based on measurements that could directly be
obtained without having any knowledge about the function of the container and its
dependencies. It has been shown that in this case, this is not enough to obtain a
sophisticated failure prediction method that covers the problematic of the CPU-overload
in the host system. This problem can also not be solved by simply adding another
system-level predictor such that both the host system and the container that is deployed
on the system are separately observed since in many cases, it is completely fine if the
host system is on a high CPU-workload for a shorter period of time and there would be a
significantly higher amount of false positives in the system compared to only observing
the containers alone. In fact, the above described problem can even be applied to many
other scenarios that can be designed to be a lot more complex than the here discussed
scenario (see section 6.7.1).

Now, we want to figure out a way to create a new metric PH that again correlates with
the number of client-failures by using an hierarchical failure prediction approach.

66

6.5. A Hierarchical Approach

First, a dependency graph needs to be created from which it is possible to conclude
the cause of the container interference problem. When considering the architectural
structure of the application, it is possible to argue that every container that is deployed
on the same host can influence the behavior of every other container within the same
host and therefore there is some type of dependency between each container on the same
host. The other type of dependency comes from the application-defined dependencies
between the services. In this case, the edge-containers put stress on the middletier-
containers as well by propagating the client-requests to them. Figure 6.24 illustrates
this dependency graph.

By using this context-knowledge, equation 6.5 can be created which is a simple metric
that considers the container-interference problem. The idea is that the delta between
the CPU-limit of the host and the summed up CPU-workloads of the deployed containers
on the host (represented as the vector CPUcontainer) except of the container that is to be
observed represents the span in which the observed container can still allocate more
CPU until the host CPU reaches its limit.

PH1 = CPUmiddletier

1−∑
i CPUcontainer,i + CPUmiddletier

(6.5)

Assuming that the sum of the container-CPU equals the amount of CPU-workload that is
put onto the host-CPU, PH1 is a metric that determines for any container on which it is
applied to the relative CPU-usage that is scaled by the overall host-CPU-limit. Assuming
for example, there are 9 containers that each use 10% of the hosts CPU, the 10.th
container can only possibly allocate 10% of the hosts CPU until problems arise. for a
CPU-usage of 9%, PH1(container 10) = 0.09

0.1 = 0.9. This way, the metric Pm could again
be applied on PH1 in order to get a stable failure predictor and since PH1 is scaled like
the original CPU-measurement dataset, the parameter τ needs not to be changed.

However, Figure 6.25 shows that the summed CPU does not equal the actual CPU-
workload of the host system which might be caused by some overhead from context-
switches. Therefore, PH1 cannot easily be applied to an actual system.

Instead, the idea of PH1 can be used to create Equation 6.6:

PH2 = CPUmiddletier

maxi CPUcontainer,i

· CPUhost (6.6)

Now, PH2 uses the relative CPU-ratio of the observed container compared to all other
containers as a weight which is then multiplied by the actual CPU-utilization of the host.
This has two advantages:

1. The host CPU is directly considered. This means that any overhead induced by
non-visible factors can easily be mitigated.

67

6. Evaluation

1 74 10 13 16 19 22 25 28 31 34 37 40
0.75

0.8

0.85

0.9

0.95

1

1.05

nodecpu
cpusum

Minutes

P
e

rc
e

n
ta

g
e

Figure 6.25.: CPU-Workload of the physical node (dashed line) and summed up CPU-
workload of all containers that are deployed on the host.

1 74 10 13 16 19 22 25 28 31 34 37 40 43
0

0.2

0.4

0.6

0.8

1

1.2

cpuusage_middletier
cpuusage_stress1
cpuusage_stress10
cpuusage_stress11
cpuusage_stress2
cpuusage_stress3
cpuusage_stress4
cpuusage_stress5
cpuusage_stress6
cpuusage_stress7
cpuusage_stress8
cpuusage_stress9
nodecpu

Minutes

P
e
rc

e
n
ta

g
e

Figure 6.26.: CPU-utilization of all con-
tainers and the Host node.

1 74 10 13 16 19 22 25 28 31 34 37 40
0

5000

10000

15000

20000

25000

30000

35000

40000

0

0.2

0.4

0.6

0.8

1

1.2

successes
fails
cpu_metric

Minutes

C
o

u
n

t

P
e

rc
e

n
ta

g
e

Figure 6.27.: Success- and Failure counts
and the computed PH2 Met-
ric.

2. The metric scales based on the CPU-usage of all other containers. Tests have shown
that the CPU-usage of a new container can be increased up to a certain threshold
level which causes all other deployed containers a slight decrease of CPU-share the
more the new container requests CPU (i.e. when resources get scarce, all deployed
containers get a similar share of CPU regardless of which container was deployed
first). Therefore, if the CPU is distributed equally for all containers, the relative
CPU serves as an approximate upper CPU-limit in this situation.

Figure 6.26 shows the actual CPU-utilization of the host and the deployed containers.
Figure 6.27 shows PH2 and how it correlates to the client-failure-count. As can be seen,
the CPU increases to 90% at minute 23 which is around the time when failures begin to
arise (134 failures at minute 20, 247 failures at minute 23).

68

6.5. A Hierarchical Approach

Component Dependencies

DB1 ∅
RSS1 ∅
M1 {(S1, 1

10), ..., (S10, 1
10)}

S1 {(M1, 1
10), (S2, 1

10), ..., (S10, 1
10)}

... ...
S10 {(M1, 1

10), (S1, 1
10), ..., (S9, 1

10)}
E1 {(M1, 1.0)}
E2 {(M1, 1.0)}

Table 6.5.: Architecture Dependency Model.

Component Dependencies

DB1, RSS1, N1 ∅
M1, S1 ... S10 {(N1, 1)}
E1, E2 {(M1, 1.0)}

Table 6.6.: Simplified Architecture Dependency Model.

While there are still several problems with the formula PH2, this example shows that
it can get quite complex to manually determine possible metrics that correlate to the
failure rate in such scenarios.

6.5.1. HORA Implementation

The above described problem can be modeled by using the HORA approach described in
Section 2.3.3.

Let C = {E1, E2, M1, DB1, RSS1, S1, ..., S10, N1} be the set of components in the
system (E = Edge, M = Middletier, DB = Database, RSS = RSS-server, S = Stress-
Container, N = Physical Host). The set ADM is then defined as shown in Table 6.5.
Since the middletier and the stress containers are deployed on the same host, they are
each CPU-dependent on each other. The table shows a circular relationship between the
stress and middletier containers, which is not allowed and therefore the ADM set has
to be simplified as shown in Table 6.6. As can be seen, this simplifies the ADM in such a
way, that the middletier-component is only dependent on the physical host on which the
container is executed on. Figures 6.28 and 6.29 show the graphical representation of
the dependencies.

69

6. Evaluation

S1 S2 S3 S4 S5

S6 S7 S8 S9 S10

M1DB1 RSS1

E1 E2

Stress-Cluster

Figure 6.28.: Dependency Graph of the
actual ADM. The contain-
ers S1 to S10 and the con-
tainer M1 build a complete
Graph. The dependencies
for the server and database
are not included since in
this case, they are not CPU-
dependent on each other.

M1DB1 RSS1

E1 E2

N1

Figure 6.29.: Dependency Graph of the
simplified ADM. The depen-
dencies for the server and
Database are not included
since in this case, they
are not CPU-Dependent on
each other.

After creating the ADM, the FPM is automatically inferred by the HORA algorithm. Based
on the FPM, the HORA predictor generates two prediction results which are:

1. The individual forecast for each component (CFP). Currently, the algorithm always
produces ARIMA forecasts for any single component.

2. The combined forecast for each component. This value represents the results of
the Failure Propagation Model (FPM).

First, the evaluation is done with the default workload simulation from section 6.3.1.
Figure 6.30 shows the FPM-prediction result for the observed component and the host.

Next, stress-containers are deployed on the node on which the middletier-container
is executed on such that the node-CPU utilization is above 97%. Figure 6.32 shows
the prediction of HORA. As can be seen, the combined failure probability (FPM) is
strongly influenced by the dependency to the executing Node. At minute 25, the failure
probability increases to 1.0 which is about the time when failures begin to arise.

However, a more detailed analysis has shown, that the results in Figure 6.32 are actually
caused by effects that occur during initialization of the algorithm and therefore, the
forecast does only seemingly correlate to the failures in the application.

Figure 6.35 shows, that the forecast also becomes 1 without any workload that is placed
onto the service. After the forecast starts at minute 2, the FPM failure-probability of the

70

6.5. A Hierarchical Approach

0 10 20 30 40 50 60 70 80 90 100
0

0,2

0,4

0,6

0,8

1

1,2

HORA Prediction

Middletier CPU
Limit
FPM Middletier
FPM Node

Minutes

U
sa

g
e

 /
P

ro
b

a
b

ili
ty

Figure 6.30.: CPU-utilization and the respec-
tive HORA prediction for the
normal workload scenario.

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91
0

500

1000

1500

2000

2500

3000

3500

4000

Failures
Successes

Minutes

C
o
u
n
t

Figure 6.31.: Failures recorded by the work-
load generator for the normal
workload scenario.

1 74 10 13 16 19 22 25 28 31 34 37 40 43 46
0

0,2

0,4

0,6

0,8

1

1,2

HORA Prediction

Limit
Middletier CPU
Cfp
Fpm
CPU Node

Minutes

P
e

rc
e

n
t

/ 1
0

0

Figure 6.32.: CPU-utilization and the respec-
tive HORA prediction for the
node-stress scenario.

1 74 10 13 16 19 22 25 28 31 34 37 40 43 46
0

500

1000

1500

2000

2500

3000

Failures Per Minute

Status 200
Status 500

Minutes

C
o

u
n

t

Figure 6.33.: Failures recorded by the work-
load generator for the node-
stress scenario.

1 74 10 13 16 19 22 25 28 31 34 37 40 43
0

0,2

0,4

0,6

0,8

1

1,2

CPU Middletier
CPU Limit
CPU Node
CFP Middletier
CFP Node
FPM Node
FPM Middletier

Minutes

P
e

rc
e

n
t /

 1
0

0

Figure 6.34.: Failure Probabilities for the
middletier service while
the workload Generator is
simulating 600 users and
induces high workload.

1 3 5 7 9 11 13 15 17 19 21 23
0

0,2

0,4

0,6

0,8

1

1,2

CPU Middletier
CPU Limit
CPU Node
CFP Middletier
FPM Middletier (FPM Node,
CFP Node)

Minutes

P
e

rc
e

n
t /

 1
0

0

Figure 6.35.: Failure Probabilities for the
middletier service while
the workload Generator is
simulating 0 users and in-
duces no workload.

71

6. Evaluation

middletier service increases from about 0.6 to 1 at minute 17 while the workload of the
middletier stays constant and no failures were produced. Figure 6.32 showed the same
failure-probability increase after exactly 15 minutes as well.

The effects that could be observed were caused by a modification that affected the
number of data points in the forecast-buffer during initialization. The HORA algorithm
was started at minute 5 and first needed 20 data points to start with the prediction.

This becomes clear when looking at the actual HORA prediction algorithm that was
described in the the beginning of this thesis. The CFP-prediction of the physical node
solely relies on the respective node-CPU-utilization and as can be seen in Figure 6.32,
the ARIMA algorithm should have no reason to forecast an increase of the node-CPU
since it is almost constantly 100% and since there are no ADM-dependencies for the
node, the CFP prediction has to be similar to the FPM prediction.

Modifications

The previous result has shown, that the HORA-algorithm propagates the failure proba-
bilities of the host correctly. However, the FPM forecast does currently not consider the
reduced CPU-limit that a service experiences when it is deployed on a stressed host that
uses a lot of CPU share on other services.

For this reason, the HORA algorithm is extended by including the idea from section 6.5
into the CFP-prediction of individual components.

Currently, the CFP-threshold value is τPm = 0.9. This value is inadequate for scenarios
where the CPU share is limited to a reduced amount (in the previous scenario it was
limited to 40%) and it has to be reduced in such a case. However, if the threshold is
low enough for this scenario, the forecast in the non-stress scenario would become
invalid since the threshold would be too low. In consequence, the threshold should be
adjusted on-the-fly when a high CPU-workload is observed on the host system. Equation
6.7 shows the new threshold of the algorithm. The constant thCP U needs to be set to
the value where the reduced CPU limit takes effect on a stressed host. On the tested
machine, this threshold was thCP U = 0.92.

τARIMA =
{

τPmwhen CPUancestor > thCP U
3
4maxiCPUcontainer,iotherwise

, 0 ≤ thCP U ≤ 1 (6.7)

The threshold modification was tested by repeatedly executing 5 workload scenarios
where at the peak, the number of simulated users is 600 which increases the CPU-
utilization of the service in a non-stress scenario to 100%. Figure 6.36 shows the FPM

72

6.5. A Hierarchical Approach

1 12 23 34 45 56 67 78 89 10

0
11

1
12

2
13

3
14

4
15

5
16

6
17

7
18

8
19

9
21

0
22

1
23

2
24

3
25

4
26

5
27

6
28

7
29

8
30

9
32

0
33

1
34

2
35

3
36

4
37

5
38

6
39

7
40

8
41

9
43

0
44

1
45

2
46

3
47

4
48

5
0

0,2

0,4

0,6

0,8

1

1,2

FPM Node
CPU Middletier
CPU Limit
CPU Node
CFP Middletier
FPM Middletier

Minutes

P
e

rc
e

n
t /

 1
0

0

Figure 6.36.: CFP and FPM prediction for multiple executions of the workload scenario.

1 11 21 31 41 51 61 71 81 91 10

1
11

1
12

1
13
1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
25
1
26

1
27

1
28

1
29

1
30

1
31

1
32

1
33

1
34
1
35

1
36

1
37

1
38

1
39

1
40

1
41
1
42

1
43

1
44

1
45

1
46
1
47

1
48

1
0

500

1000

1500

2000

2500

3000

Successes
Failures

Minutes

C
o
u
n
t

Figure 6.37.: Success- and Failure rates for each workload simulation.

73

6. Evaluation

1 74 10 13 16 19 22 25 28 31 34 37
0

0,2

0,4

0,6

0,8

1

1,2

CPU Middletier
CPU Limit
CPU Node
CFP Middletier
FPM Node
FPM Middletier

Minutes

P
e

rc
e

n
t /

 1
0

0

Figure 6.38.: Failure Probabilities of the modified HORA algorithm for the middletier
service while 600 users are simulated starting from minute 13. The CFP
and FPM predictions at time t were made at time t− 10 Minutes.

and CFP predictions of the middletier service for the simulated scenario and figure 6.37
shows the respective successful and unsuccessful requests. As can be seen, the threshold
was reduced to a low enough level to classify failures correctly in this scenario. The FPM
forecast of the approach is however still too high and needs to be adjusted as well.

Figure 6.40 show a scaled prediction that combines the results from Figure 6.38 and
Figure 6.36. Figure 6.41 shows the respective failure- and success counts.

The reason why the FPM prediction is constantly high is, that it is too much influenced
by the high CPU load of the ancestor node. Figure 6.38 shows another workload scenario
where the workload is suddenly increased to 600 users at Minute 13. This time, the
failure probabilities are reduced by 1

2 for each forecast.

As can be seen in Figure 6.38, the modified algorithm increases the CFP-prediction of
the service by reducing the CPU-threshold in the case of high CPU-utilization of the
host. Starting at minute 13, the HORA algorithm increases the failure probability of the
middletier service by about 35% due to high CPU-utilization of the host. As soon as the
workload of the service starts to increase, the forecasted CFP failure probability of the
service increases to 45% which leads to an increase of the failure probability in the FPM
prediction to over 60%.

74

6.6. Failure Prediction Results

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
0

500

1000

1500

2000

2500

3000

Successes
Failures

Minutes

C
o
u
n
t

Figure 6.39.: Failure- and Success rates of the modified HORA algorithm.

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
0

0,2

0,4

0,6

0,8

1

1,2

CPU Middletier
CPU Limit
CPU Node
CFP Middletier
FPM Node
FPM Middletier

Minutes

P
e

rc
e

n
t /

 1
0

0

Figure 6.40.: Failure probabilities and
CPU-utilization of the mid-
dletier component and the
host.

1 74 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61
0

500

1000

1500

2000

2500

Failures
Successes

Minutes

C
o
u
n
t

Figure 6.41.: Failure- and success rates
of the modified HORA algo-
rithm.

This algorithm shows, that it is indeed possible to forecast failures on both a stressed and
a not stressed host by using a predictor that considers the architecture of the application
like HORA.

75

6. Evaluation

Holt−Winters Forecast

Time (Minutes)

C
P

U

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ●

●
●

●

● ●
●

●
●

●

●

●
●

● ● ●

●

●
●

●
●

●

●

● ●

●

● ●
● ●

● ● ●
● ● ●

● ● ● ● ● ● ● ● ●

Figure 6.42.: Shifted Holt-Winters
5-minute forecast. The
dotted line represents the
original data, the blue,
solid line is the mean of
the prediction and the
dashed lines represent the
minimum and maximum
predictions.

ARIMA Forecast

Time (Minutes)

C
P

U

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ●

●
●

●

● ●
●

●
●

●

●

●
●

● ● ●

●

●
●

●
●

●

●

● ●

●

● ●
● ●

● ● ●
● ● ●

● ● ● ● ● ● ● ● ●

Figure 6.43.: Shifted ARIMA 5-minute
forecast. The dotted
line represents the origi-
nal data, the blue, straight
line is the Mean of the
prediction and the dashed
lines represent the mini-
mum and maximum predic-
tions.

6.6. Failure Prediction Results

In the above shown simulations, the quality of the failure prediction influences the result
of the correlation metrics. This section gives a short overview about the prediction
quality of the used failure predictors. The Figures 6.42 and 6.43 show the prediction
results of a simulation with increasing workloads. The prediction was done with a
window size of 60, which means that the whole history of the graph at any point in time
t is used to predict the next data point.

Table 6.7 shows the Mean Squared Error and other metrics for this prediction. As can be
seen, the MSE is relatively small for both failure predictors but the value for Holt-Winters
is slightly better than the results from the ARIMA prediction.

Figure 6.44 shows the Mean-Squared-Error for different sliding window sizes. As can be
seen in the graph, the prediction quality of ARIMA is comparatively low with a window
size lower or equal than 5 (which means the algorithm considers the last 5 minutes of

76

6.7. Results and Discussion

0 10 20 30 40 50 60 70
0

0.01

0.01

0.02

0.02

0.03

MSE Holt Winters
MSE ARIMA

Sliding Window Size

Figure 6.44.: Mean-Squared-Error for different Sliding Window Sizes.

history to make the next prediction) and remains more or less the same for any higher
window size.

Metric Holt-Winters ARIMA
Mean Squared Error (MSE) 0.00486 0.00650
Mean Absolute Percentage Error (MAPE) 0.20253 0.26308
Mean Absolute Derivation (MAD) 2.55110 3.06573
Mean Squared Derivation (MSD) 0.23370 0.31237

Table 6.7.: Error-Metrics for the prediction in Figure 6.42 and 6.43.

6.7. Results and Discussion

The main goal of this thesis was to analyze and quantify the degree to which an isolated,
containerized service can affect other services that are executed on the same machine.
For this, different scenarios were evaluated and it has been shown, that containers can
in fact be influenced by other containers that run completely independent from another
in terms of software architecture.

First, a workload scenario was created where the user count for the test service rises
monotonically up to the point where the number of service requests induce failures in
the system.

77

6. Evaluation

After that, a failure metric was developed that derives the failure likelihood from the
CPU-utilization of the service which showed, that those failures do indeed correlate
with the CPU-utilization of the service. In order to compute a general threshold value
for this metric, the workload scenario was extended such that the user count of the
service is not exactly monotonically increasing but is only on average increasing as one
would expect a workload scenario in practice to resemble. The scenario was slightly
randomized and executed 100 times to show the validity of the approach and to analyze
the measurements that can be used for failure prediction. Based on this, the threshold
for failures was estimated for further analyses.

The developed monolithic failure predictor has been shown to forecast service failures
that result from CPU over-utilization in the described workload scenario. Therefore, the
working hypothesis is, that the produced failure predictor is able to forecast most of the
failures that are generated due to CPU over-utilization for any isolated service in the
system.

However, this hypothesis was falsified by deploying several other services on the host
that consume a significant amount of CPU resources. The occurrence of this scenario
in practice cannot be excluded since it would be impractical to only deploy as many
services on a host as the summarized upper CPU-limit of the containers would allow.
The probability of all services consuming their full CPU-utilization share at the same
time may not be high but in times where these services are especially requested, failure
predictors should still be able to forecast a CPU shortage in the system.

The simplest solution to this problem would be to observe the host CPU as well, addi-
tionally to every container within the host. As can be seen for example in Figure 6.22
and 6.23, this may not be appropriate since a high CPU-usage of the node does not
automatically correlate with the number of failures in a container that is executed on
that host. Therefore, this approach would produce a large amount of false positives in
the system which would make it difficult e.g. for unsupervised monitoring systems to
understand the current situation.

The insight that was obtained by this analysis lead to the next hypothesis, which states
that it it possible to forecast CPU-over-utilization failures by considering the indirect
dependencies between the nodes, i.e. the dependency of free CPU-resources on the host.
Therefore, the failure metric was extended by considering architectural components of
the system. The CPU-Dependency can be formulated for all containerized services by
considering the current CPU-utilization of all containers and the CPU-Limit of the host
and by setting them in relation to each other. The analysis of this new failure metric
has shown, that for the given scenario, it would be possible to compute a metric that
correlates with the number of failures again.

78

6.7. Results and Discussion

The problem with the computed metric was, that it was highly dependent on this
particular use-case and that it potentially has to be modified for every other use-case.
Also, it seemed quite artificial and unnatural.

As a consequence, a new approach that also considers architectural dependencies
between components, called HORA was evaluated. The dependencies could however not
be modeled as a graph between containerized services only (circular dependencies) and
therefore the dependency graph has been simplified such that the executing component
is CPU-dependent only from its host and not from any other containers. The results have
shown, that in case of a normal execution without any other containers that affect the
CPU of the host, the HORA forecast is almost identical to the forecast that was created
by the manually computed failure metric. In the case where there are other containers
that additionally stress the host CPU, the HORA forecast is however significantly better
compared to the monolithic approach. Where the monolithic approach had shown a
true positive rate of 0% for any amount of false positives (i.e. no failures were detected
whatsoever), the HORA forecast shows a true positive rate of 80% natively, without any
modifications of the algorithm itself.

6.7.1. Hierarchical Failure Prediction Approaches

The evaluation shows that for microservice environments, there are new challenges like
the existence of interference and interaction of services within a single physical host. We
saw, that failures can propagate along the topological graph of dependencies within a
system - In the scenario where the microservices interfered with each other by inducing
a CPU-shortage on the host system, the dependency graph can be illustrated as shown
in Figure 6.24. In this case, the workload itself can be seen as a structural dependency
induced by the executing system as the behavior of a single container also depends on
the containers that affect the CPU of the host system at the time of execution.

Therefore, this scenario can also be applied to other applications with a different
dependency graph than the one in this study: As an example, consider a system that
consists of multiple services and resources where each service uses one or more resources.
Each use of a resource at time tx fills a slot for the used resource. A resource holds only
a limited number of slots xlim and each filled slot delays any other request from a service
by a time tdelay. Figure 6.45 illustrates such a system for 3 services and 3 resources.

In this system, each request should be answered within a time tth up to which the
response is considered to be non-faulty. Now consider a faulty service B that due to
a failure consistently uses Resource 1, thus always putting workload on the resource.
In order to process a request from one of the clients, service A accesses Resources 1
and 2 where tdelay,A < tth. After this, service D processes the response from service A

79

6. Evaluation

Figure 6.45.: A more complex Dependency Example.

and accesses another Resource. Finally, service E recognizes that the response time
tdelay,E > tth and produces a failure alert.

If a failure predictor is to be deployed onto this system in order to prevent such a failure
by replicating bottleneck resources if needed, it would first have to detect the respective
problematic resource and calculate a metric Ph that correlates to the number of failures
produced by service E.

A global failure predictor would consider the system or parts of it as a black box which
would make it difficult to create such a metric. One possibility would be to measure the
response time of service E but this might not serve as an indication metric for failures
since when service B would detach from Resource 1 occasionally, the response time does
not indicate the moment in time where service B attaches to Resource A again which
actually leads to the high response time. The same problem applies for predictors that
only predict failures on a single service.

A Hierarchical failure predictor on the other hand is capable of considering the architec-
tural structure of the system and might therefore be able to calculate the metric Ph by
forecasting the times where services attach to Resources and estimating the processing

80

6.7. Results and Discussion

time tdelay,critical that goes along the critical path of the system which in this case would
be B 7→ 1 7→ A 7→ D 7→ E.

81

Chapter 7

Conclusion

Containerized system architectures like Docker and Kubernetes have become quite
popular in recent years and are on the rise especially in PaaS areas. In contrast to
services that are executed on a fully virtualized host, microservices are dynamic, small
and independent and can be deployed and removed within seconds. They can be
executed in thousands on a single host and often run completely natively on the CPU of
the host OS.

Failure predictors, which are often used for failure prevention strategies, have been
researched for over 40 years and there are many interesting approaches that can be used
to forecast time-series, system event logs and other data regarding a single application
like for example the actual program code. Many of these failure predictors are designed
for the use in a static environment where the number of components is a known constant.
However, in a microservice architecture, many failure predictors have become obsolete
and new approaches have to be discovered.

This thesis shows, that additionally to the heavy interaction within services in a Mi-
croservice environment, there are also several other effects that have to be considered
in failure prediction algorithms. One effect that is discussed in this thesis is the over-
utilization of CPU resources on a physical host that is induced by a temporary rise of user
requests for the deployed services on a single host. The thesis suggests that forecasting
failures in a system under stress produces invalid results for failure prediction algorithms
that only consider measurements like the CPU-utilization of single services for failure
prediction.

The approach of the thesis can be subdivided into three steps: 1) The Microservice
environment is created. This includes the creation of the system, the choice of the Service
on which further tests are run and the choice of monitoring software and measurements
for further testing. 2) The fault generation. In this step, it is discussed about which
failures will be analyzed and how they can be produced in the deployed microservice.

83

7. Conclusion

3) The data extraction. In this step, a program is developed that automatically extracts
and joins entries from the database on which monitoring data is stored. 4) The failure
prediction. Based on the data that was gathered for the executed service, failure
prediction algorithms and metrics are discussed that can be used for forecasting the
generated failures. 5) failure evaluation. In the last step, the failure prediction results
are compared and a conclusion is drawn.

The results show, that a failure predictor which only analyzes one single component at
a time may not be able to classify the overall state of the system. Likewise, a failure
predictor that tries to analyze the system as a whole may not infer the state of single
components. On the other hand, failure predictors that consider the architecture of the
system and combine failure prediction on single components according to their hierarchy
are capable of predicting failures in this environment and should therefore be preferred
over monolithic failure predictors.

Future Work

This thesis researched the effects of microservices on failure prediction on only a small
set of metrics, measurements, failure prediction algorithms and applications. In order to
study the effects in more depth, further research would require a broader spectrum to
cover more areas and find more implications of Microservice environments. Also, The
example in section 6.7.1 could be implemented and extended to show, that the discussed
problems can in practice be applied to a more complex system structure.

84

Appendix A

RSS-Reader Deployment

A.1. RSS-Edge Service

apiVersion: v1

kind: Service

metadata:

name: edge

labels:

name: edge

spec:

type: NodePort

ports:

- port: 9090

name: http

nodePort: 31000

selector:

name: edge

apiVersion: v1

kind: ReplicationController

metadata:

name: edge

labels:

name: edge

spec:

replicas: 1

selector:

name: edge

template:

metadata:

labels:

name: edge

spec:

85

A. RSS-Reader Deployment

containers:

- name: edge

image: hora/recipes-rss-edge-kieker:0.4

imagePullPolicy: Always

ports:

- containerPort: 9090

resources:

requests:

cpu: "0.5"

memory: 500M

limits:

cpu: "1"

memory: 2000M

nodeSelector:

nodeassignment: 10.0.11.62

Listing A.1: REST-Call Generation by Locust

86

Appendix A

Bibliography

[ALR+01] A. Avizienis, J.-C. Laprie, B. Randell, et al. Fundamental concepts of de-
pendability. University of Newcastle upon Tyne, Computing Science, 2001
(cit. on p. 1).

[And15] C. Anderson. “Docker.” In: IEEE Software 32.3 (2015) (cit. on p. 7).

[BB04] S. Brahim-Belhouari, A. Bermak. “Gaussian process for nonstationary time
series prediction.” In: Computational Statistics & Data Analysis 47.4 (2004),
pp. 705–712 (cit. on p. 25).

[BDF+03] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, A. Warfield. “Xen and the art of virtualization.” In: ACM SIGOPS
operating systems review. Vol. 37. 5. ACM. 2003, pp. 164–177 (cit. on
p. 26).

[Ber14] D. Bernstein. “Containers and cloud: From lxc to docker to kubernetes.” In:
IEEE Cloud Computing 1.3 (2014), pp. 81–84 (cit. on p. 27).

[Ber96] L. M. Berliner. “Hierarchical Bayesian time series models.” In: Maximum
entropy and Bayesian methods. Springer, 1996, pp. 15–22 (cit. on p. 26).

[BHJ16] A. Balalaie, A. Heydarnoori, P. Jamshidi. “Microservices architecture en-
ables DevOps: migration to a cloud-native architecture.” In: IEEE Software
33.3 (2016), pp. 42–52 (cit. on p. 27).

[cAd17] cAdvisor. cAdvisor. https://github.com/google/cadvisor. Accessed: 2017-
06-12. 2017 (cit. on p. 18).

[Cha00] C. Chatfield. Time-series forecasting. CRC Press, 2000 (cit. on pp. 11, 12).

[Doc16a] Docker. Docker. http://www.docker.com. Accessed: 2016-11-01. 2016
(cit. on pp. 6, 7).

[Doc16b] Docker. Docker Swarm. https://github.com/docker/swarm. Accessed:
2016-11-01. 2016 (cit. on pp. 7, 8).

87

https://github.com/google/cadvisor
http://www.docker.com
https://github.com/docker/swarm

Bibliography

[DRK14] R. Dua, A. R. Raja, D. Kakadia. “Virtualization vs Containerization to Sup-
port PaaS.” In: 2014 IEEE International Conference on Cloud Engineering.
Mar. 2014, pp. 610–614. DOI: 10.1109/IC2E.2014.41 (cit. on p. 5).

[FFRR15] W. Felter, A. Ferreira, R. Rajamony, J. Rubio. “An updated performance
comparison of virtual machines and linux containers.” In: Performance Anal-
ysis of Systems and Software (ISPASS), 2015 IEEE International Symposium
on. IEEE. 2015, pp. 171–172 (cit. on pp. 5, 6).

[FSS07] A. Fedorova, M. Seltzer, M. D. Smith. “Improving performance isolation on
chip multiprocessors via an operating system scheduler.” In: Proceedings of
the 16th International Conference on Parallel Architecture and Compilation
Techniques. IEEE Computer Society. 2007, pp. 25–38 (cit. on p. 26).

[GCGV06] D. Gupta, L. Cherkasova, R. Gardner, A. Vahdat. “Enforcing performance
isolation across virtual machines in Xen.” In: Proceedings of the ACM/I-
FIP/USENIX 2006 International Conference on Middleware. Springer-Verlag
New York, Inc. 2006, pp. 342–362 (cit. on p. 26).

[Has16] W. Hasselbring. “Microservices for scalability: keynote talk abstract.” In:
Proceedings of the 7th ACM/SPEC on International Conference on Perfor-
mance Engineering. ACM. 2016, pp. 133–134 (cit. on p. 27).

[Hea17] Heapster. Heapster. https://github.com/kubernetes/heapster. Accessed:
2017-06-12. 2017 (cit. on p. 18).

[HK+07] R. J. Hyndman, Y. Khandakar, et al. Automatic time series for forecasting:
the forecast package for R. Tech. rep. Monash University, Department of
Econometrics and Business Statistics, 2007 (cit. on pp. 14, 16).

[HS17] W. Hasselbring, G. Steinacker. “Microservice Architectures for Scalability,
Agility and Reliability in E-Commerce.” In: Software Architecture Workshops
(ICSAW), 2017 IEEE International Conference on. IEEE. 2017, pp. 243–246
(cit. on p. 27).

[HTI97] M.-C. Hsueh, T. K. Tsai, R. K. Iyer. “Fault injection techniques and tools.”
In: Computer 30.4 (1997), pp. 75–82 (cit. on p. 19).

[HWH12] A. van Hoorn, J. Waller, W. Hasselbring. “Kieker: A Framework for Ap-
plication Performance Monitoring and Dynamic Software Analysis.” In:
Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE 2012). ACM, Apr. 2012, pp. 247–248 (cit. on p. 18).

[Jul89] D. Julong. “Introduction to grey system theory.” In: The Journal of grey
system 1.1 (1989), pp. 1–24 (cit. on p. 25).

[Kal04] P. S. Kalekar. “Time series forecasting using holt-winters exponential
smoothing.” In: Kanwal Rekhi School of Information Technology 4329008
(2004), pp. 1–13 (cit. on p. 13).

88

https://doi.org/10.1109/IC2E.2014.41
https://github.com/kubernetes/heapster

Bibliography

[Kim03] K.-j. Kim. “Financial time series forecasting using support vector machines.”
In: Neurocomputing 55.1 (2003), pp. 307–319 (cit. on p. 25).

[KJP15] A. Krylovskiy, M. Jahn, E. Patti. “Designing a smart city internet of things
platform with microservice architecture.” In: Future Internet of Things and
Cloud (FiCloud), 2015 3rd International Conference on. IEEE. 2015, pp. 25–
30 (cit. on p. 30).

[KS02] N. K. Kasabov, Q. Song. “DENFIS: dynamic evolving neural-fuzzy inference
system and its application for time-series prediction.” In: IEEE transactions
on Fuzzy Systems 10.2 (2002), pp. 144–154 (cit. on p. 25).

[KSS03] J. C. Knight, E. A. Strunk, K. J. Sullivan. “Towards a rigorous definition
of information system survivability.” In: DARPA Information Survivability
Conference and Exposition, 2003. Proceedings. Vol. 1. IEEE. 2003, pp. 78–89
(cit. on p. 1).

[Kub16] Kubernetes. Kubernetes. https://kubernetes.io/. Accessed: 2016-11-01.
2016 (cit. on pp. 7, 8).

[KUK10] E. Kayacan, B. Ulutas, O. Kaynak. “Grey system theory-based models in
time series prediction.” In: Expert systems with applications 37.2 (2010),
pp. 1784–1789 (cit. on p. 25).

[MN15] K. Meinke, P. Nycander. “Learning-based testing of distributed microservice
architectures: Correctness and fault injection.” In: International Conference
on Software Engineering and Formal Methods. Springer. 2015, pp. 3–10
(cit. on p. 27).

[NBZ06] N. Nagappan, T. Ball, A. Zeller. “Mining metrics to predict component
failures.” In: Proceedings of the 28th international conference on Software
engineering. ACM. 2006, pp. 452–461 (cit. on p. 23).

[Net] Netflix. Netflix Rss Recipes. https://github.com/Netflix/recipes-rss. Ac-
cessed: 2017-03-11 (cit. on p. 35).

[OB15] H. Ooghe, S. Balcaen. “Are failure prediction models widely usable? An
empirical study using a Belgian dataset.” In: (2015) (cit. on p. 2).

[POVG16] T. Pitakrat, D. Okanovic, A. Van Hoorn, L. Grunske. “An architecture-aware
approach to hierarchical online failure prediction.” In: Quality of Software
Architectures (QoSA), 2016 12th International ACM SIGSOFT Conference on.
IEEE. 2016, pp. 60–69 (cit. on p. 16).

[RGP08] P. P. Rodrigues, J. Gama, J. Pedroso. “Hierarchical clustering of time-series
data streams.” In: IEEE transactions on knowledge and data engineering 20.5
(2008), pp. 615–627 (cit. on p. 26).

89

https://kubernetes.io/
https://github.com/Netflix/recipes-rss

[RVR+08] I. Rojas, O. Valenzuela, F. Rojas, A. Guillén, L. J. Herrera, H. Pomares,
L. Marquez, M. Pasadas. “Soft-computing techniques and ARMA model
for time series prediction.” In: Neurocomputing 71.4 (2008), pp. 519–537
(cit. on p. 24).

[SFS12] D. Shue, M. J. Freedman, A. Shaikh. “Performance Isolation and Fairness
for Multi-Tenant Cloud Storage.” In: OSDI. Vol. 12. 2012, pp. 349–362
(cit. on p. 26).

[SLM10] F. Salfner, M. Lenk, M. Malek. “A survey of online failure prediction meth-
ods.” In: ACM Computing Surveys (CSUR) 42.3 (2010), p. 10 (cit. on pp. 2,
10, 11).

[Sol02] S. Soltani. “On the use of the wavelet decomposition for time series predic-
tion.” In: Neurocomputing 48.1 (2002), pp. 267–277 (cit. on p. 25).

[Sve11] R. Svenningsson. Model-Implemented Fault Injection for Robustness Assess-
ment. QC 20111205. 2011 (cit. on pp. 18, 19).

[Thö15] J. Thönes. “Microservices.” In: IEEE Software 32.1 (2015), pp. 116–116
(cit. on p. 6).

[XXHW13] J. Xiao, Z. Xu, H. Huang, H. Wang. “Security implications of memory
deduplication in a virtualized environment.” In: Dependable Systems and
Networks (DSN), 2013 43rd Annual IEEE/IFIP International Conference on.
IEEE. 2013, pp. 1–12 (cit. on p. 6).

[Yan15] C. Yang. “Checkpoint and Restoration of Micro-service in Docker Contain-
ers.” In: (2015) (cit. on p. 27).

[Zha03] G. P. Zhang. “Time series forecasting using a hybrid ARIMA and neural
network model.” In: Neurocomputing 50 (2003), pp. 159–175 (cit. on
pp. 12, 14).

All links were last followed on June 17, 2017.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Foundations
	2.1 Containerized Architectures
	2.2 Microservices
	2.3 Failure Prediction
	2.4 Microservice Monitoring
	2.5 Fault Injection
	2.6 Evaluation Metrics

	3 Related Work
	3.1 Failure Correlation
	3.2 Failure Prediction Techniques
	3.3 Performance Isolation
	3.4 Microservice Resilience

	4 Approach
	4.1 The Workflow
	4.2 Basic Architecture
	4.3 System Under Test
	4.4 Failure Prediction Approach

	5 Implementation
	5.1 Kubernetes Setup
	5.2 Netflix RSS-Reader Setup
	5.3 Fault Injection Tools
	5.4 Data Extraction

	6 Evaluation
	6.1 Evaluation Plan
	6.2 Prediction Measurements
	6.3 Exploration
	6.4 Workload Analysis
	6.5 A Hierarchical Approach
	6.6 Failure Prediction Results
	6.7 Results and Discussion

	7 Conclusion
	A RSS-Reader Deployment
	A.1 RSS-Edge Service

	Bibliography

