
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis Nr. 0838-013

Designing a Context-Aware
Discovery Service for IoT Devices

Muhammad Arsalan Khan

Course of Study: Information Technology (INFOTECH)

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisors: Dr. rer. nat. Uwe Breitenbücher
M.Sc. Kalman Kepes

Commenced: 4. August 2016

Completed: 25. January 2017

CR-Classification: C.0, C.3, D.2.11, H.3.4

Abstract

Internet of Things (IoT) is in a continuous expansion phase, from millions of devices
to tens of billions in upcoming years, which will have major impacts on infrastructure,
business models, and industry standards throughout the entire IT ecosystem. It is
expected that several diverse devices to invade by 2020. Depending on different
application domains, IoT applications require devices, sensors, middlewares, networks
and other enabling technologies to be integrated e.g., the high-level central control of
IoT applications can be deployed on the cloud while others are running close to the
"edge", forming a unified, scalable and feasible system. One of the important integration
aspects in IoT ecosystem is discovering devices and sensors based on a particular context
regardless of their heterogeneity.

In this thesis, we propose Context-Aware Discovery Service for Internet of Things (CAD-
sIoT) that deals with devices and sensors installed in IoT environments, streamlining
the process of registration, management and dynamic discovery of devices based on
contextual information. CADsIoT allows device and sensor registration, attaching them
with particular context and leverage subscription features to enable dynamic discovery
based on the attached context. Additionally, real-time notifications are triggered when
new devices are discovered. For the validation of our concept, we discuss the require-
ments and a descriptive motivation scenario, which is followed by a discussion of the
prototypical implementation. The prototype consists of CADsIoT Core, a Representational
State Transfer (REST) based middleware and Navigator, an Android mobile application
as a client.

3

Contents

1 Introduction 15
1.1 Problem Definition and Motivation . 16
1.2 Objective . 16
1.3 Structure . 18

2 Foundation and Concepts 19
2.1 Internet of Things: Interconnecting Everything 19
2.2 IoT Five Layered Architecture . 20
2.3 Fog Computing Platform: An Extension 21

2.3.1 Characterization of Fog Computing 22
2.3.2 Fog Computing Architecture . 23

2.4 Application Domains: Fog and Cloud . 25

3 Related Work 27
3.1 Middlewares and Frameworks . 27

3.1.1 Global Sensor Network - GSN . 27
3.1.2 OpenIoT . 28
3.1.3 Xively . 29
3.1.4 Dynamix . 31
3.1.5 Eclipse IoT Frameworks and Services 32

3.2 Messaging Standards and Protocols . 33
3.2.1 MQTT . 33
3.2.2 CoAP . 34
3.2.3 XMPP . 34
3.2.4 RESTful Web Services over HTTP 35

3.3 Technology Comparisons . 36

4 Requirements and Use Case 39
4.1 Overview . 39
4.2 Requirements . 40

4.2.1 Functional Requirements . 41
4.2.2 Non-Functional Requirements . 43

5

4.3 Use Case . 44
4.3.1 Background . 45
4.3.2 Solving the Business Problem . 47
4.3.3 Benefits . 50

5 CADsIoT: Proposed Solution 53
5.1 Architecture . 53

5.1.1 CADsIoT Core . 53
5.1.2 CADsIoT Navigator . 55

5.2 CADsIoT Core REST API . 58
5.2.1 Resources . 58
5.2.2 Representations . 62
5.2.3 URI Patterns . 65
5.2.4 Interactions . 66

6 CADsIoT: Implementation and Validation 71
6.1 Core Features . 71

6.1.1 Registration . 72
6.1.2 Subscriptions . 73
6.1.3 Device Discovery . 74
6.1.4 Real Time Notifications . 75

6.2 CADsIoT Core: Backend Service . 76
6.2.1 Java Persistence API (JPA) . 76
6.2.2 Java API for RESTful Web Services (JAX-RS) 77
6.2.3 Anatomy of Components . 77

6.3 Navigator: Smartphone Client . 81
6.3.1 Discovery Service . 81
6.3.2 Google Volley API . 84
6.3.3 Anatomy of Components . 84

6.4 Validation . 85

7 Discussion and Future Work 91
7.1 Discussion . 91
7.2 Future Directions . 92

A CADsIoT Core REST API Documentation 95
A.1 Device Resource . 95

A.1.1 Device- Show All devices . 96
A.1.2 Device- Show Device . 97
A.1.3 Device- Add new Device . 98
A.1.4 Device- Modify Device . 99

6

A.1.5 Device- Partial Modify Device . 100
A.1.6 Device- Delete Device . 101

A.2 Sensor Resource . 102
A.2.1 Sensor- Show All sensors . 103
A.2.2 Sensor- Show Sensor . 104
A.2.3 Sensor- Add new Sensor . 105
A.2.4 Sensor- Modify Sensor . 106
A.2.5 Sensor- Partial Modify Sensor . 107
A.2.6 Sensor- Delete Sensor . 108
A.2.7 Sensor- Show Subscribed Sensors 109
A.2.8 Sensor- Show Nearest Sensors . 110

A.3 Context Resource . 111
A.3.1 Context- Show All Contexts . 112
A.3.2 Context- Show Context . 113
A.3.3 Context- Add New Context . 114
A.3.4 Context- Modify Context . 115
A.3.5 Context- Partial Modify Context 116
A.3.6 Context- Delete Context . 117

A.4 Subscription Resource . 118
A.4.1 Subscription - Show All Subscriptions 118
A.4.2 Subscription- Show Subscription 119
A.4.3 Subscription- Add New Subscription 120
A.4.4 Subscription- Modify Subscription 121
A.4.5 Subscription- Partial Modify Subscription 122
A.4.6 Subscription- Delete Subscription 123
A.4.7 Subscription- Show All Subscriptions by subscriber 124

List of Abbreviations 125

Bibliography 127

7

List of Figures

1.1 Concept Overview . 17
1.2 Research Structure . 18

2.1 Internet of Things Layered Architecture [AKA14] 20
2.2 Fog Computing and Internet of Things Architecture Proposed By Cisco . 23
2.3 Analytics performed on Fog Computing [BFR12] 24
2.4 Fog and Cloud Computing Scenario . 26

3.1 Global Sensor Network-GSN Architecture 28
3.2 OpenIoT Architecture . 29
3.3 Xively Commercial Platform Architecture 30
3.4 Dynamix Context based Architecture . 31
3.5 Eclipse Kura Architecture . 32
3.6 Common Protocols of IoT versus traditional TCP/IP [ISE15] 33
3.7 MQTT Architecture [ISE15] . 34

4.1 Solution Functionalities . 42
4.2 Company A Current Process . 45
4.3 CADsIoT proposed solution as per given scenario 48
4.4 Truck within Region A Proximity . 49
4.5 Company A Process Comparison . 50

5.1 CADsIoT Core Architecture . 54
5.2 Navigator Architecture . 56
5.3 ER-Diagram for Resource Design . 58

6.1 CADsIoT Core Features . 71
6.2 Registered Devices . 72
6.3 Sensors and associated devices subscriptions 73
6.4 Discovered devices as the user entered the region 74
6.5 Real Time Notification . 75
6.6 CADsIoT Core Internal Components Communication 78
6.7 Navigator Application Components . 84
6.8 Device and Sensor Subscription . 89

9

List of Tables

3.1 Internet of Things Middlewares and Frameworks Comparison 37
3.2 Protocols and Standards Comparison . 37

5.1 Device Resource properties . 59
5.2 Sensor Resource properties . 60
5.3 Context Resource properties . 61
5.4 Subscription Resource properties . 62
5.5 CADsIoT Core REST URI Patterns . 66
5.6 HTTP Verbs and CRUD Operations Relationships 66

6.1 Device Registration REST Interactions 86
6.2 Sensor Registration REST Interactions 87

A.1 Devices REST Endpoints . 95
A.2 Sensors REST Endpoints . 102
A.3 Contexts REST Endpoints . 111
A.4 Subscriptions REST Endpoints . 118

11

Listings

5.1 Device Representation in JSON . 63
5.2 Sensor Representation in JSON . 64
5.3 Context Representation in JSON . 65
5.4 Subscription Representation in JSON . 65

6.1 Sensor HTTP GET Request . 79
6.2 Code Snippet for handling GET Request 79
6.3 Code Snippet for Sensor Service . 80
6.4 Code Snippet for Sensor DAO . 81
6.5 Code Snippet for Discovery Service . 83
6.6 Devices Request Response using GET . 86
6.7 Sensors Request Response using GET . 87
6.8 Attach Context using Partial Update . 88
6.9 Subsription Request . 88
6.10 Nearest Devices . 90

A.1 Show ALL Devices . 96
A.2 Show Device . 97
A.3 Add New Device . 98
A.4 Modify Device . 99
A.5 Partial update Device . 100
A.6 Delete Device . 101
A.7 Show ALL sensor . 103
A.8 Show Sensor . 104
A.9 Add New Sensor . 105
A.10 Modify Sensor . 106
A.11 Partial Update Sensor . 107
A.12 Delete Sensor update Device . 108
A.13 Show Subscribed Sensors . 109
A.14 Show Nearest Sensors based on current location 110
A.15 Show ALL Context . 112
A.16 Show Context . 113
A.17 Add New Context . 114

13

Listings

A.18 Modify Context . 115
A.19 Partial Update Context . 116
A.20 Delete Context . 117
A.21 Show ALL Subscriptions . 118
A.22 Show Subscription . 119
A.23 Add New Subscription . 120
A.24 Modify Subscription . 121
A.25 Partial Update Subscription . 122
A.26 Delete Subscription . 123
A.27 Show All Subscriptions By Subscriber . 124

14

1 Introduction

Internet has already made a significant impact in education, information technology and
communication, business, government and social fields. The future aim of the internet is
to connect physical and virtual objects by providing an infrastructure for immediate and
easy access to information. The vision IoT is the next big step in the internet where the
physical world, consisting of real devices and the virtual world of information interacts
together. This interaction contributes to a common layer that enables the collection,
analysis, storage and management of data and functions, providing high-level knowledge
from aggregated and/or derived data.

Internet of Things, a novel paradigm was first introduced by Kevin Ashton [PI11]
and is defined as: "all things are connected to the internet via sensing devices e.g.
Radio Frequency Identification Device (RFID) to achieve intelligent identification and
management". In IoT, "Things" 1 refers to any object. This includes everything from cell
phones, coffee makers, washing machines, refrigerators, wearable devices and anything
else you can think of which can eventually become part of the internet. IoT operates on
the basis of Machine-to-Machine (M2M) interaction where no human intervention is
required. At the same time, IoT involves non-connected entities which are empowered
with RFID or barcodes, sensed through a device e.g., smartphones and eventually become
part of the internet.

The speedy advancement of IoT and pervasive computing are contributing significantly in
daily life which produces massive amount context related data, representing a continuous
change of states taking place in the surroundings. The generated contextual data can
further utilize to infer valuable insights e.g., weather and traffic patterns. However,
context-aware services require a reliable computing paradigm to store, analyze, compute
contextual data on large scale. Therefore, it is significantly important to discuss a
paradigm which can absorb such massive amount of data generated by IoT, enabling
connection of things in a wider sense. Hence, the notion of Cloud Computing (CC) is
considered. It is not only a concept describing how we live but also, how we work every
day. In order to provide more granularity of sensors and devices closer to the Fog or Edge

1The term Things and IoT devices are interchangeable in this research and represent physical devices,
capable of generating data which are connected to some middleware.

15

1 Introduction

discussed in Chapter 2, IoT will extend cloud, big data and social networks which will
have more applications and scenarios that will accelerate entirely new business models
and revenue opportunities.

1.1 Problem Definition and Motivation

Internet of Things is in a continuous expansion phase, from millions of devices to tens of
billions in upcoming years which will have major impacts on infrastructure, business
models, and industry standards throughout the entire IT ecosystem. It is expected
that several diverse devices to invade by 2020 [AKA14]. Gartner predicts by 2020, the
estimated growth i.e., 21 billion of devices connected to the internet, will exceed the
number of people exist on earth [Gartner16]. The vision “IoT” is the future and this
vision derives the new rule: whatever can be connected will be connected.

Several services and solutions are proposed to deal with context based discovery of
growing number of heterogeneous devices, manufactured by various vendors, designed
with particular specifications, protocols and architectures. However, current approaches
entail discovery of devices and sensors manually which makes the life of the non-
technical user more complicated. For instance, agriculture scientists often need to
measure crops performance cultivated in the fields. They are interested to know what
functions are available in a particular location in terms of Global Positioning System
(GPS) coordinates, which sensor provides interesting information such as environment
temperature, humidity level and so on.

With few hundreds of devices, discovering devices manually with the existing approaches
works up to some extent. However, with the evolution of IoT era embedded with
contextual information where the number of devices connected to the internet will be
greater than the people, the proposed approaches discussed later, lacks in providing
appropriate solutions to such non-technical users. Hence, a distinction between the user
needs and the current available solutions.

1.2 Objective

In this thesis, we aimed to come up with a service that allows automatic discovery of
various IoT devices based on a particular context2. The proposed concept will mainly

2The thesis focuses mainly on location feature rather than complete context computing paradigm.
Therefore, the terms "context" and "location" are interchangeable.

16

1.2 Objective

focus on the discovery of available devices and sensors automatically, primarily based
on location used as contextual data. However, additional information about devices
and sensors are also considered which includes unique identifiers, manufacturer and
current status. It should be noted that the proposed solution does not address all the
requirements and issues of IoT and context-aware computing platform.

The proposed system can be used in various disciplines. However, a consideration of
particular use case is done as discussed in Chapter 4. Figure 1.1 depicts a high-level
scenario in which a user is passing by a particular building and interested to know
available sensors on a mobile device that are installed inside the building. It is important
to mentioned that the building is further classified into floors and rooms. Upon reaching
within the proximity of the installed devices and sensors, the user is notified on his
smartphone about the discovery of available devices. In addition, whenever the user
passes from the same building, an automatic notification is generated on the mobile
device which identifies the device and its details.

Figure 1.1: Concept Overview

17

1 Introduction

The main research objective is outlined as follows:

To design and develop a context-aware IoT Discovery Service by analyzing
state-of-art standards, protocols and technologies

Additionally, the following constitutes the entire objective.

– Designing of device registry, capable of maintaining the device and sensor
related information.

– Consideration of motivation use case where the proposed concept can be
applied.

1.3 Structure

The thesis is structured to provide a smooth flow of information, keeping state-of-
art, proposed concepts and implementation of our solution in sync. The first three
chapters give an understanding about research objective, problem statement, concepts,
terminologies, existing solutions and their comparisons. Chapter four discusses about
the requirements and the motivational use case of the proposed solution. Design aspects
and proposed architectural details, followed by RESTful Web Services are outlined in
chapter five. Lastly, chapter six explains the implementation and validation details of
the proposed solution. Figure 1.2 summarizes the overview about each chapter.

Figure 1.2: Research Structure

18

2 Foundation and Concepts

This chapter explains Internet of Things and Fog computing concepts in detail, followed
by high level architectures and characterization of Fog Computing. Additionally, possible
application scenarios utilizing Internet of Things and Fog Computing paradigm are also
highlighted.

2.1 Internet of Things: Interconnecting Everything

Internet of Things, an evolving technology offers promising solutions which connect
physical objects to the digital world. It is interconnected by a network of self-configuring
nodes (things) in a dynamic and global infrastructure, enabling ubiquitous and pervasive
computing scenarios through its most disruptive and bundled technologies. Before we
go further, it is important to know, what these two terms means— Internet and Things.

The term "Internet" identifies the network related vision and "Things" are generic physical
objects that become part of the internet. As discussed in Chapter 1, Things can be
physical or virtual objects which can be sensed and connected with IoT networks. IoT
was initially discussed by Kevin Aston in 1999, a founder of the original MIT Auto-ID
center [SGP10]. Due to its frequent use, the whole term i.e., IoT became the one-liner
word similar to Big Data, Cloud Computing. Semantically, IoT illustrates a “world-wide
network of interconnected objects uniquely addressable, based on standard communication
protocols” [AG-EPoSS08; AIA10]. Later on, researchers relates IoT with more sensors,
actuators, GPS and mobile devices. However, a widely accepted definition of IoT in
today’s world can be viewed as:

"a dynamic global network infrastructure with self-configuring capabilities based
on standard and interoperable communication protocols where physical and
virtual ’Things’ have identities, physical attributes, and virtual personalities,
and use intelligent interfaces, and are seamlessly integrated into the information
network." [KD08]

19

2 Foundation and Concepts

2.2 IoT Five Layered Architecture

Manufacturers are in the continuous development process to connect things with the
internet since 1990 [JCIoT13]. At the same time, consumers are using connected
devices e.g., thermostats, energy meters, lighting control systems, remote monitoring
and irrigation systems typically using TCP/IP protocol stack. Due to the increase in
the number of IoT devices, it is difficult to store and maintain a large amount of data
generated [KSR12]. Therefore, a sophisticated architecture for IoT is required [AKA14].
Hence, IoT architecture is divided into five layers as depicted in figure 2.1.

Figure 2.1: Internet of Things Layered Architecture [AKA14]

Perception Layer

The lowest layer in IoT architecture, also called Things or Device layer consists of
physical objects and sensor devices such as RFID tags, barcode labels, GPS, cameras.
The goal of this layer is to identify things/objects and collect data by the sensor devices.
Typical examples of data include temperature, location, orientation, motion, vibration,
acceleration, humidity, weather conditions etc. Finally, the collected information is
transferred to the higher level called Network Layer.

20

2.3 Fog Computing Platform: An Extension

Network Layer

This layer also called Transmission or Gateway layer. It behaves quite similar to Network
and Transport layer in Open Systems Interconnection (OSI) model, as it is responsible
for transferring information from the sensor devices to the internet using communication
technologies such as 3G, 4G, UMTS, Wifi, Bluetooth, Infrared, ZigBee, etc. Gateways
can also be included on this layer with one end connected to the sensor network and
other to the internet. Thus, Network layer sends the information to middleware layer.

Middleware Layer

This layer is responsible for processing data from the Network layer where service
management, storing data in appropriate data storage system tasks are performed.
This layer is also responsible for automatic decision making based on the results. The
generated output is then passed to the Application layer.

Application Layer

Application layer receives the processed information from the Middleware layer and
performs final presentation of the information. It also provides global management
of the application. According to the user requirements and the purpose of devices on
the Perception layer, this layer delivers the data in various forms, enabling services for
application domains e.g., smart home, smart cities, smart health.

Business Layer

Business layer is more about predicting and defining business strategies based on the
services provided by Application layer. These services are modeled into meaningful
services, turning information into knowledge and wisdom, through efficient means of
usage. The output of this layer typically includes business models, graphs, flowcharts.
Hence, Business layer provides numerous opportunities to service providers.

2.3 Fog Computing Platform: An Extension

Cloud Computing, an extension of distributed, parallel and grid computing, allow users
to access on-demand services whenever required. This concept has evolved dramatically
in recent years and according to National Institute of Standards and Technology (NIST),
CC is defined as:

"cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications and services) that can be rapidly

21

2 Foundation and Concepts

provisioned and released with minimal management effort or service provider
interaction."[CC-NIST11]

Cloud computing offers a flexible pay-as-you-go model, helping IoT in providing virtual
infrastructure for utility computing integrating applications, monitoring and storage
devices, analytics tools, visualization platforms and client delivery, enabling users to
access applications on-demand anytime and anywhere. The traditional cloud approach—
process all data on cloud give rise to latency, bandwidth, mobility and geo-distribution
issues which are essential requirement for IoT. Notably, the cloud platform serves as
an abstraction layer between the low-end devices and the application services. This is
because that the cloud platform does not leverage various IoT protocols and mainly
communicates over Internet Protocol (IP). It is suitable to analyze and process data
generated by sensors close to the vicinity where devices are located. Thus, a notion of
Fog or Edge Computing is used.

What is Fog Computing

Fog Computing extends traditional Cloud paradigm close to the ground where "Things"
are located. For instance, they are also called fog nodes, which can be deployed in
a vehicle, in the forest, top of an electric pole etc. Any device can be fog node if it
compasses computing, storage and networking capabilities. The interplay between Cloud
and Fog enables new application services especially in the area of data analytics.

2.3.1 Characterization of Fog Computing

It is already understood that Fog Computing is an extension of Cloud Computing
paradigm as it offers a virtualized platform. It possesses the main building blocks which
are already present in the traditional model namely compute, storage and network
services for IoT devices. Being located at the edge of the network is the key differentiator
of Fog Computing. This distinguishes and gives rise to a number of notable characteristics
[BFR12]. Some of them are listed below.

• Edge location, positioning, and low latency matters when data need to be analyzed
in milliseconds closer to the edge. For instance, if power lines of a manufacturing plant
shutdowns, the circumstances can be devastating. Fog supports applications which
require rich services with low latency requirements e.g., video streaming, weather
forecasts, gaming.

• Geographical distribution of the IoT devices varies on the type of deployment. As
Fog services demand widely distributed deployments, it can be beneficial to provide
streaming services in highly harsh environments e.g., railways, roadways, moving
vehicles.

22

2.3 Fog Computing Platform: An Extension

• Mobility support must be provided to Fog applications, enabling seamless commu-
nication between other mobile devices e.g., using LISP protocol1, a technique that
separates hosts identity from a location identity [BFR12].

• Interoperation and federation services must be available for Fog components to
enable robust and seamless integration, allowing access to services across various
domains.

2.3.2 Fog Computing Architecture

Due to a large amount of data generated which might be needed on real-time basis, a
rich interplay between the edge (ground) and the core (cloud) of the network can be
observed in several use cases. In order to enable context awareness and low latency, Fog
nodes provide localization, while global centralization is provided by the (traditional)
cloud. In the context of analytics and Big data, several applications require both Fog
localization and Cloud centralization. A Fog computing architecture performs edge
analytics on any object from the network center to the edge, since fog or edge analytics
may perform analytics at devices closer to the edge of the network. Figure 2.2 depicts
the Fog architecture as proposed by Cisco [JM16].

Figure 2.2: Fog Computing and Internet of Things Architecture Proposed By Cisco

1http://www.lispmob.org

23

2 Foundation and Concepts

Typically, M2M interaction is done on the first level of the Fog architecture. It collects,
process data and allow actuators to perform their tasks upon receipt of control commands.
Additionally, filter the data for local use and send the remaining to the next higher
level.

The visualization and reporting Human-Machine-Interaction (HMI) and M2M are per-
formed on second and third levels. It is important to consider the interaction times for
real-time analytics (seconds to minutes) and for transactional analytics (even days).
Hence, Fog must support various types of storage on the levels.

Figure 2.3 shows that the time scale becomes longer on the higher level with wider
geographical coverage[BFR12] while the global coverage is provided by Cloud which
behaves as a long-term storage repository.

Figure 2.3: Analytics performed on Fog Computing [BFR12]

24

2.4 Application Domains: Fog and Cloud

2.4 Application Domains: Fog and Cloud

Fog Computing provides location and context based services through Fog nodes. It
is an ideal platform to provide safety, mobility, location awareness, low latency and
heterogeneity. In this context, a thorough literature is reviewed in order to discuss the
best use cases involving IoT, Fog and Cloud concepts [BFR12; LGZ15]. These use cases
are outlined below.

Smart Traffic Lights and Connected Vehicles

Ambulances are used to transfer patients to the nearest health care centers and provide
first aid services, if necessary. This transfer must be done as quickly as possible to
avoid patient’s critical conditions. Therefore, roads should have less traffic allowing
ambulances to pass through. How about busy lanes surrounded by vehicles? One
solution would be to change street lights automatically based on the video captured that
senses the ambulance flashing lights, allowing other vehicles to free up the lane.

In context to road accidents and its prevention, smart traffic lights communicate with
the local sensors installed along the roadways, detecting the presence of the pedestrians
and bikers. Additionally, distance is measured between the pedestrian’s location and
approaching vehicles and a warning signal is sent to the vehicles. Fog nodes perform real-
time analytics e.g., changing the timings of the cycles in response to traffic conditions.
Finally, data is collected from Fog servers/nodes and sent to Cloud where long term
analytics are performed.

Tourist Locations

Tourists are interested to know about certain attractive locations. Therefore, information
should be delivered at the right place and on the right time. A location-based tourist
application enabled by Fog Computing can be beneficial for the tourist. Fog nodes can be
deployed in a particular tourist location. For instance, at the entrance or at sightseeing
location of a scenery park. A pre-cache information can be stored by the Fog nodes
including maps and tourist guide while the other nodes can interact with sensor network
for environment monitoring providing alerts to the tourist.

Restaurants

People are often interested to know about the kind of meals available at a particular
restaurant. Also, when the user is inside the restaurant, the food servers (waiters)
sometimes takes a time to explain what is currently available with respect to the time.
Figure 2.4 depicts the scenario how Fog and Cloud environments behave when a localized
request about meals is made. Figure 6.8a shows that a customer is near the restaurant
and requests localized meal menu. However, the request takes time as it fetches the

25

2 Foundation and Concepts

response from the cloud which is location unaware of the user and presents a pool of
information to the user.

In figure 6.8b, a Fog Computing environment is placed by the restaurant which allows
users to access localized menu information stored on Fog servers.

(a) Cloud Computing

(b) Fog Computing

Figure 2.4: Fog and Cloud Computing Scenario

26

3 Related Work

This chapter delivers understanding about current work and associated technologies
in IoT domain. It describes different middlewares, standards, and protocols currently
used, focusing features related to the discovery of devices followed by a technology
comparison.

3.1 Middlewares and Frameworks

Middlewares play an important role in the deployment of IoT infrastructure. They are
often bundled with components such as different services and protocols. There is no
doubt that IoT devices are heterogeneous in nature, providing different functionalities
and capabilities. Therefore, an integration between heterogeneous devices and mid-
dlewares is required which enables seamless access to the device data, encapsulating
low-level communication aspects. In this section, a discussion on selected solutions is
carried out, highlighting the aspects of the discovery of IoT devices. At the same time,
an analysis of the state-of-the-art protocols, promoting IoT together with middleware
solutions is carried out.

3.1.1 Global Sensor Network - GSN

Global Sensor Network (GSN) 1 offers middleware platform services to ease flexible
integration and network deployment [AKM06]. The project was initiated in 2005 with a
concept that different sensors in a deployment require a software system which gathers
data from sensors. Hence, GSN provides an abstraction layer to hide implementation
and complicated structures of the sensors through a concept called virtual sensors.

Figure 3.1 describes that GSN is built on container-based architecture which provides
hosting and managing support for virtual sensors at runtime. GSN architecture com-
prises of several layers. At the lower level, several virtual sensors are hosted in the

1https://github.com/LSIR/gsn/wiki/GSN-in-a-nutshell

27

3 Related Work

GSN container which are managed by Virtual Sensor Manager (VSM), a component
which is responsible for providing the sensor data and necessary underlying infrastruc-
ture through provided set of wrappers. The sensor discovery and live data feed are
accomplished by these wrappers. The top three layers provide access to GSN container
functions through web services. In contrast, our approach is based on location aware
services which allow users to discover devices for a particular location on the fly.

Figure 3.1: Global Sensor Network-GSN Architecture
[AKM06]

3.1.2 OpenIoT

OpenIoT 2, a joint contribution by the European Union’s Seventh Framework Programme
is a open source middleware, based on Utility-based IoT model in a cloud platform,

2https://github.com/OpenIotOrg/openiot/wiki

28

3.1 Middlewares and Frameworks

allowing information about sensors, actuators and smart devices. OpenIoT leverages
X-GSN as discussed in [CJA14], an extension of the GSN project in order to embed
semantic information on virtual sensors by SSN ontology. X-GSN facilitates the device
discovery and helps to interpret and understand the device data easily.

Figure 3.2 shows the architecture of the OpenIoT middleware. Sensor data management
is provided using X-GSN technologies while the semantic data management is available
through Linked Sensor Middleware (LSM) for storing and processing data streams.

Figure 3.2: OpenIoT Architecture
[CJA14]

3.1.3 Xively

Xively 3 is a commercial IoT platform offering services for developing applications
which require IoT devices to be connected to the Internet. The project aims to provide

3www.xively.com

29

3 Related Work

flexible communication with each other through a common ground. It leverages industry
standards communication methods namely Message Queue Telemetry Transport (MQTT),
REST, HyperText Transport Protocol (HTTP) and sockets. Libraries are provided for
various multiple platforms e.g., Arduino, Raspberry, C, Java, Android to communicate
with the low-end devices. Xively offer Web-based interfaces through which several
environments can be configured and managed.

Figure 3.3 shows high-level Xively architecture where devices including things, legacy ap-
plications are connected to Xively platform through its provided APIs. On the other hand,
our solution also applies the same approach to connect devices. However, automatic
context based discovery of devices is the key differentiator of our solution.

Figure 3.3: Xively Commercial Platform Architecture

30

3.1 Middlewares and Frameworks

3.1.4 Dynamix

Ambient Dynamix 4 is an open source context-based framework that runs as a background
service on Android devices. Its lightweight pluggable context discovery mechanism
helps in understanding the environment of the user. Dynamix is enriched with context
discovery services and it is achieved through provided plugins which are automatically
discovered. These plugins are installed on the user’s device to interact with the physical
world, enabling sensing and actuation tasks. A large collection of plugins are available
and more can be build using open Software Development Kits (SDK).

In Figure 3.4, customized drivers helps to communicate with the sensors while pre-
defined plugins stored in the plugin repository assist in understanding the contextual
information of the user’s environment.

Figure 3.4: Dynamix Context based Architecture

4http://ambientdynamix.org

31

3 Related Work

3.1.5 Eclipse IoT Frameworks and Services

Eclipse Foundation 5 provides set of services and frameworks for the development of
IoT. Eclipse Kura, a Java/OSGi based framework that provides underlying support
for hardware, management of network configurations, interaction between M2M/IoT
platforms though its robust APIs which are not generally available in embedded agents.
Kura provides advanced device and remote management features at the gateway level.
Beside its basic gateway connectivity, network configuration and delivery services,
its remote management capabilities help to monitor devices at the edge, providing
configuration and deployment benefits. Additionally, Eclipse Kura also includes switching
serial on or off, wifi management and remote data processing. Figure 3.5 illustrates
Kura architecture.

Figure 3.5: Eclipse Kura Architecture

Two of the popular projects, built on open standards are Mosquitto and Paho, offered
by eclipse community. Eclipse Mosquitto, an open source message broker is pervasively
used to transmit sensor data via a publish-subscribe protocol MQTT. Publishers usually
send messages to a queue or a topic endpoint without knowing the destination of

5www.iot.eclipse.org

32

3.2 Messaging Standards and Protocols

messages whereas, the subscribers receive the messages (published) by waiting for the
information in which they are interested in (queue or topic). Eclipse Paho is the first
open source MQTT client implementation. It’s Java based version is used to connect
several MQTT brokers and offers synchronous and asynchronous APIs to give full control
to the developers in order to implement MQTT logic in their business applications.

3.2 Messaging Standards and Protocols

Communication in IoT networks is done through messaging using standards and pro-
tocols. Variety of applications leverage appropriate features offered by higher level
protocols for IoT . For instance, SNMP and DDNS protocols can be used fo managing
and configuring home devices. Therefore, a clear understanding is required to select
available standards and protocols for desired solution. In this section, a discussion on
mostly commonly used standards and protocols has been done e.g., MQTT, CoAp, HTTP
and XMPP.

Figure 3.6: Common Protocols of IoT versus traditional TCP/IP [ISE15]

3.2.1 MQTT

Message Queue Telemetry Transport abbreviated as MQTT, is a lightweight messaging
protocol was introduced by IBM in 1999 and became the OASIS standard in 2013
[KCVA15]. It is a publish/subscribe messaging protocol in contrast with request/response,
in which client request the server for some data. However, publish/subscribe systems
publishes the content to all its subscribers who are interested in the particular content. It
is designed for low-end network devices, minimizing network bandwidth and ensuring
message delivery.

33

3 Related Work

Figure 3.7 describes the components of a publish/subscribe architecture which consists
of publishers, mostly the low-end sensors/devices that connect to the message broker,
sends data and sleep, a message broker which receives the data published by devices
and subscribers who are listening on particular data. The notion of topics is used in the
message broker as it behaves as the central data repository and classifies sensor data
in topics and pass them to subscribers. TCP/IP Port 1883 is used for MQTT protocol
communication.

Figure 3.7: MQTT Architecture [ISE15]

3.2.2 CoAP

Constrained Application Protocol (CoAp) is a synchronous request/response application
layer protocol. It was designed by Internet Engineering Task Force (IETF) and adheres to
the concepts of the HTTP protocol. Similar to HTTP, CoAP is document transfer in nature,
utilizing GET, POST, PUT and DELETE commands, making it interoperable for resource
constrained devices. CoAp works on UDP based application protocol which removes
TCP overhead and bandwidth requirements. The protocols aims to interact with M2M
applications [CoAp16]. It also supports dynamic discovery of IoT devices. It is evident
that clients (sensors) and server (e.g IoT platform) require native support for CoAp
protocol. However, such support is not provided by most of the sensor manufacturers.

3.2.3 XMPP

Extensible Messaging and Presence Protocol (XMPP), a IETF standardized messaging
protocol initially designed for instant messaging applications. The protocol is quite old

34

3.2 Messaging Standards and Protocols

and has been used in various internet applications. Recently, it has again received an
importance in IoT applications with its easy to use XML data format. XMPP provides
publish/subscribe and request/response messaging systems and runs on TCP. Therefore,
it is up to application developer which messaging system is applicable for desired
application. The protocol also supports low latency small message formats which are
well suited for near real-time applications [BTDA13].

3.2.4 RESTful Web Services over HTTP

RESTful services abbreviated as Representational State Transfer is an architectural style
rather than a protocol. REST requires use of HTTP methods to interact with the message-
oriented system using simplified synchronous request response model. REST supports
Extensible Markup Language (XML) and Javascript Object Notation (JSON) as the
commonly used types. Most IoT cloud platforms are highly dependent on REST due to
its ease of use interactions, caching, content negotiation and authentication mechanisms
[UZL11]. RESTful Web Services are efficient and fast and is being used very widely in the
internet world. REST consists of the basic principles discussed by [FRT00], [PCL08].

- Stateless: RESTful Web Services needs to scale to meet high performance demands,
decrease request response time and fulfill requests as quickly as possible. To cope such
demands, intermediary load balancing, fail over and gateway servers are placed that
transfer requests to one another and send the response back. REST requests are stateless,
meaning that each request consists of self-contained and sufficient information so that
intermediary servers can forward and route these requests without any state being saved
locally in the entire request path. HTTP and body of the request contains parameters,
context and data need to be fulfilled by appropriate servers.

- Uniform Interface: RESTful Web Services require the use of the HTTP protocol as the
de-facto standard. The protocol provides generic interfaces as described in RFC 2616
6. The REST design guidelines recommend the explicit use of HTTP methods e.g., GET,
POST, PUT and DELETE. Create, retrieve, update and delete (CRUD) operations are
mapped to HTTP generic methods, to manipulate resources in a uniform manner. Each
method has its own behavior, standards and status codes. POST transfer a new state
onto resource. GET retrieve the current state of the resource. PUT is used to change or
update the state of the resource. DELETE is used to delete or remove a resource.

- Representations: Representations in REST refers the format and structure of messages
exchanged in request/response fashion. These representations can be in variety of
formats e.g., JSON, XML, PDF. Typically, clients are not aware of the internal format

6https://www.ietf.org/rfc/rfc2616.txt

35

3 Related Work

of a resource available on the server. Therefore, clients negotiate the server to provide
an appropriate format of a response at the time of the request is made. The agreement
on the format of a resource between the server and the client is referred as Content
Negotiation. Usually, Content-Type and Accept headers are used. Content-Type header
provides the information about the format e.g., application/json being used in HTTP
message whereas the Accept header is used by clients, which tells the server to send
a response back in a format that client expects. Upon unavailability of the requested
format at the server, a response code of 406 (Not Acceptable) is sent to the client.

- Resource Addressability: RESTful Web Services exposes resources (data and func-
tionality) via Universal Resource Identifier (URI). Each resource can be accessed using
directory structured like URI that are unique and exactly one for each resource. The
hierarchical structure of URI helps to understand specific resources and can be accessed
anytime even if implementation details changes, allowing resources to be straightfor-
ward, predictable and easily understandable.

3.3 Technology Comparisons

Nearly, all discussed middlewares utilize some sort of agents, gateways, wrappers
and standard protocols to enable device connection. Xively supports RESTful services,
sockets and MQTT protocol while GSN uses customized wrappers along with HTTP. On
the other hand, OpenIoT and Dynamix leverage semantic annotations through X-GSN,
customized drivers and plugins respectively. With respect to communication techniques,
OpenIoT and Xively employs client/server, GSN works on peer-to-peer and Dynamix
uses plug and play communication models. All of the surveyed proposals provides
device discovery features. Table 3.1 illustrates the comparisons among different IoT
middleware technologies.

Table 3.2 depicts the most common protocols used in IoT environments and their compar-
isons. It can be obverse that CoAp and REST/HTTP possesses request/response approach.
However, CoAp is the only protocol that works on UDP which makes it lightweight and
reduces communication overhead. REST/HTTP can suitable if constrained communica-
tion and power consumption are not considered, allowing interaction with the internet
using HTTP protocol. In contrast, MQTT is the most efficient protocol if power is consid-
ered. The importance of the MQTT can be determined that Facebook messenger and
other known players use MQTT which proves that MQTT is a reliable publish/subscribe
protocol especially when a huge amount of information is to be updated.

36

3.3 Technology Comparisons

Table 3.1: Internet of Things Middlewares and Frameworks Comparison

Table 3.2: Protocols and Standards Comparison

37

4 Requirements and Use Case

This chapter highlights the concept of Context-Aware Discovery Service for Internet
of Things (CADsIoT) by defining context and context-aware system. Furthermore,
functional and non-functional requirements are identified. Finally, a motivational end-
to-end use case related to logistics is discussed, showing how the automatic discovery
of devices based on context can help in reducing process cycles and enable better
decisions.

4.1 Overview

The evolution of IoT has made a significant impact on infrastructures, business models,
and industry standards. Current trends shows that devices and sensors deployments has
been increased at large extend and predicts significant growth in coming years [SGP10].
Dealing with billions of devices which will be connected with network of networks,
distributed across everywhere, data management and availability of such heterogeneous
devices requires a sophisticated solution that can simplify not only managing devices but
also enables efficient discovery of the devices on the fly. Attaching context-aware com-
puting techniques can significantly provide flexibility in device management, discovery
and reading valuable data from sensors.

Although, successful prototypes and solutions are implemented by researchers and
engineers using context-aware computing techniques in which data sources are fairly
static and remained unchanged. However, such developed solutions are not suitable in
collecting information from billions of devices, connected to the internet. Hence, context-
aware solutions will play an important role in discovering devices, their management
and data availability. It is important to describe context-aware terminology used in
this thesis. Several definitions have been proposed for context by Dey [DAB01], Hull
[HRP97], Brown [BP95] and Ward [WAH97]. However, these definitions were unable to
deal with identification of the context at a large scale and hence, the following definition
for context is defined:

"Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant

39

4 Requirements and Use Case

to the interaction between a user and an application, including the user and
applications themselves."[AGD99]

Similarly, the understanding about context awareness was too specific and do no comply
on a broader level. Hence, Perera [PZA14] and Abowd [AGD99] defined context
awareness as:

"A system is context-aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task."[PZA14]

In this thesis, the above discussed definitions are considered where the location is used
as a primary category of context and do not focus on entire context-aware computing
platform.

The CADsIoT is a concept that emphasizes to deal with large amount of devices and
sensors installed in IoT environments, streamlining the process of registration, manage-
ment and dynamic discovery of devices based on contextual information 1. The solution
allows registration of devices and sensors, attaching them to particular context and
leverage subscription feature to enable dynamic discovery based on attached context.
Additionally, notifications are triggered when new devices are discovered. To understand
the concept better, an example scenario is discussed in section 4.3.

4.2 Requirements

This section details the requirements of the proposed solution. These requirements
are carried out by considering the aspects of device discovery features, together with
contextual information. Solution requirements are categorized as functional and non-
functional requirements. Functional requirements often called capabilities, are the
ones which must be met by the proposed system. Non-functional requirements are
often termed as constraints or qualities on the system functionality e.g., scalability,
heterogeneity, context, security and privacy.

Requirements for collecting data from physical sensors e.g., temperature, motion, smoke
detectors are out of the scope of this thesis. However, dealing with the sensor is discussed
in several literatures. Some of them has been identified in this section as below.

Bhatt in his literature [BAJ16] presented a solution for connecting home appliances with
IoT, enabling monitoring of devices deployed in a home environment. Bhatt showed

1The term contextual information and context refers to the current location of devices, sensors and users,
collected by Global Positioning System

40

4.2 Requirements

designing and implementation process in a home automation scenario, utilizing MQTT,
middleware technologies including techniques to read sensor data.

Silvia [SGA15a] investigates the use of IoT in health discipline with wireless sensor
networks for Ambient Assistant Living (AAL) environments. The literature proposed an
implementation on how the data e.g., temperature and humidity can be collected from
devices deployed in the living environments. This data helps in monitoring indicators
for patients having respiratory problems.

Thakre in [TSJ14] presented a prototype of alert generation system based on the tem-
perature sensors, transmitting data at regular intervals. The system allows monitoring of
abnormalities found in the equipments and take necessary actions based on the timely
notification received by the alert system. Hence, techniques on how to read sensor data
along with middleware technologies are explained.

4.2.1 Functional Requirements

The proposed solution aims to provide a service which enables users to discover devices
and sensors deployed in IoT environments. The discovery is done based on the context,
allowing users to automatically find devices with respect to their current location. In
order to describe the functional requirements, use case diagram in figure 4.1 is depicted
which shows major functionalities covered by the system. These functionalities can be
provided by the proposed solution, which includes registration, context attachment,
subscribe and discover devices. The functionalities are further discussed in this section.

1. Registration: Registering IoT assets e.g., devices, sensors, context in a device reg-
istry is one of the fundamental requirement in IoT based solutions. Interaction
with these assets can be done via simple protocols such as HTTP. Operations
such as addition, modification, retrieval and deletion of assets can be performed.
Moreover, meta-data for each type of asset can be defined such as device identifier,
description, creation and modification date, current status and context of the
device.

2. Attach Context: Context plays integral part in the disruptive change in IoT environ-
ments. As discussed earlier in section 4.1, the thesis uses location as a primary
category of context and do not focuses on the entire context-aware computing
platform. Context defines the current location of devices and sensors, expressed
in GPS. Users and applications can attach context with devices based on the fact
that appropriate sensors are attached with devices available in the same vicinity.
For instance, sensors are deployed in a university building on different floors and
these sensors are connected with atleast one device via internet. Whenever sensor

41

4 Requirements and Use Case

Registration

Sensor Registration

Context
Registration

Device RegistrationAttach Context

«uses»

«uses»

«uses»

Subscribe Devices

Discover devices

CADsIoT System

«uses»
Periodic

Notifications

«uses»

User,
Application

Navigator

Figure 4.1: Solution Functionalities

location is requested, the device context is fetched and associated sensors provide
their location information where they are placed inside the building.

3. Subscribe Devices: Use case deals with the subscription of devices and sensors. A
subscription is a collection of devices and sensors in which user is interested to
allow periodic monitoring of devices. Normally, users who subscribe to devices
are called subscribers. Subscriptions are applied on sensors directly. However, its
parent device is also subscribed based on the inheritance rule. These subscriptions
are used by clients to facilitate automatic discovery of devices and sensors based
on context.

42

4.2 Requirements

4. Discover Devices: Discovering heterogeneous devices is a challenging task. CAD-
sIoT locates nearby devices in a region based on user current location. This use
case allows periodic notifications which are provided by the clients. Assume, a
security guard is interested to know about the indoor temperature of the building.
Using the client, firstly he subscribed to the temperature device and then reaches
the region where temperature device is located. The region is the spherical dis-
tance from the location of the device and the current location of the user. Hence,
as soon security guard enters the region lets say at a distance of 500m, real-time
notification is triggered on the client application that a new device is discovered
along with its context and the discovered device is displaced on the map.

4.2.2 Non-Functional Requirements

1.Heterogeneity: The amount of devices connecting to the internet and contributing
to IoT environments is increasing. These devices and sensors are designed by
different vendors with proprietary technologies and standards. According to the
European Union, IoT solutions should provide context-aware services by 2020
[VFG11]. Hence, CADsIoT enables a context-aware discovery service in which
newly added devices are located based on the subscribed context. An ideal device
discovery service should be able to discover devices according to their capabilities
e.g., type of sensors, services offered.

2. Scalability and Extensibility: It is evident that more and more devices and sensors
will be used in the coming years by different industries for monitoring and tracking
purposes. This requirement fosters more sophisticated solutions utilizing the
IoT. New and useful functionalities will be added without altering components.
CADsIoT solution is built on industry standards and allows developers to scale and
extend to cater future needs.

3. Security and Privacy: As Internet of Things connects several devices together, this
gives a way for potential loopholes and entry points from where a malicious attack
can be made. The devices in IoT are supposed to obtain and share a huge amount
of sensitive data and this is where the main security risk arises. Most of the IoT
devices uses the normal public internet, we can visualize the risk of sensitive
data flowing around and doubling the risk for consumers and providers. A recent
study was conducted [SMD14] and the results suggested that almost 70 percent
of IoT devices contains security vulnerabilities in the form of password security,
encryption and authentication. Hence, designing efficient security and privacy
strategies for discovering devices accordingly is challenging.

43

4 Requirements and Use Case

4. Context: Context information is highly important to understand IoT environments.
It characterizes the situation of an entity e.g., person, place or object relevant to
the interaction [BSM11]. The frequency of changing the physical positions and
the contextual information are related to each other. An ideal approach should
be taken to collect data from sensors for understanding the environment better.
Hence, CADsIoT leverages location e.g., GPS as a primary category of contextual
information in order to discover nearby devices.

5. Usability: The usability of CADsIoT system allow users to subscribe devices, display
attached sensors and discovery of devices without any programming efforts. The
user enters only the meta data required for the registration and enables subscription
to discover devices dynamically. However, the service also provides flexible REST
APIs, enabling developers and communities with the rich set of functionalities
offered by CADsIoT solution.

4.3 Use Case

Internet of Things promises its benefits for businesses, enterprises, and consumers. While
some businesses are still considering to employ IoT solutions, transportation and logistic
industry is way ahead than others and actually the real beneficiary of IoT [DHL-Cisco15].
Logistics providers deal with millions of shipments moved from one place to another and
share various real-time information provided by the vast network of devices and sensors,
spread across the geographical regions, enabling higher levels of operational efficiency
and automated services for their customers. Due to the economy of devices and sensors,
logistic providers strive to leverage full IoT capabilities to provide value-added services
to end users, not only to earn business benefits but also enables IoT potential to reshape
logistic industry over the next decade.

To better understand CADsIoT solution and its features, an example scenario is taken
from logistic industry due to its emerging information networks, deployed across several
geographical regions. It is the requirement of IoT applications to dynamically integrate
the network of "Things" into emerging information networks. Ideally, IoT application
should provide feasible and scalable architecture, powered by enabling technologies
such as cloud computing. Catering such integration in which "Things" are dynamically
discovered and configured is a challenging task. In this thesis, aspects of device discovery
based on contextual information are taken into consideration.

44

4.3 Use Case

4.3.1 Background

With the evolution of e-commerce, parcel volumes are increasing their popularity and
thus, are in high demands. This trend envisions that traditional letter volume will be
minimized and more parcels and packages will be moving around. As a result, companies
are planning to provide efficient services to cater future customer requirements. With
this vision in mind, Company A, a global logistic provider headquartered in Germany
with offices worldwide, is interested to improve its business process and to streamline
inefficiency encountered during shipment to end users. The company follows a regular
process which is partially manual, consumes more time and do not provide context-based
information to facilitate better decisions and efficient package delivery.

Imagine, region A comprises of several recipients and five packages should be delivered
within two hours. Although, the recipients belongs to the same region A, however, they
are distant to each other e.g., 200m, 300m etc. The delivery centers 2 are equipped with
smart postal boxes which include sensors giving information about the status of the box,
the current temperature inside the box (in the case of environment friendly items).

Figure 4.2 shows company A current process in which two simple cases are considered.

Figure 4.2: Company A Current Process

2the term delivery centers, recipients, and receivers mean end users who have ordered items and have
smart postal boxes installed

45

4 Requirements and Use Case

Case 1 - Happy Customer

This case includes the normal process of company A in which items are delivered
smoothly and the customer is also satisfied. The process is detailed as follows.

Step 1 - Collect item from Warehouse: In this step, all ordered items from different
suppliers are collected and sorted in the warehouse. These items should be delivered in a
single day according to the coverage region. It is assumed that each truck is responsible
for delivering items in defined regions as per business policy.

Step 2 - Load items in the Truck: Items are loaded into corresponding boxes, available
in the truck, allowing the delivery person to locate items as quick as possible at the time
of delivery.

Step 3 - Delivery on the way: Now, the truck has left the warehouse and out for
delivery in region A, Region B and so on. At this time, the delivery person carries a
handheld device which contains information abut the delivery centers and respective
recipients.

Step 4 - Reach Delivery Center: Shipment is ready to be delivered to the recipient.
However, no information about the availability of the delivery center/recipient is com-
municated. Delivery person should go and check physically the availability of smart
postal box and decide that the items should be delivered or not.

Step 5 - Delivered: Based on the information collected in the previous step, requested
items are delivered as the smart post box is available. Once delivered, relevant status
details are entered in the handheld to keep track of the shipment and then upload the
information to centralized shipment tracking system of company A.

Case 2 - Unhappy Customer

In contrast to case 1, this case is slightly different where shipments need to be delivered
at two delivery centers which are available in region A. At the end of the process, one of
the delivery center receives requested items. Steps 1 to 4 are executed as described in
case 1 in section 4.3.1. However, remaining steps are detailed as follows:

46

4.3 Use Case

Step 5 - Delivery center unavailable: In this step, the delivery person came to know
that the smart postal box is not available and its inactive at delivery center A. This
activity urge the delivery person to go physically and check if the smart postal box is
available. Additionally, the availability of the recipient is also ensured as the ordered
items are sensitive. Hence, the items should not be delivered.

Step 6 - Next Delivery: This step plans the item to be delivered in region A. The truck
took its way towards the next region and finally arrived in delivery center B.

Step 7 - Delivered: The requested items are now delivered as the smart postal box and
recipient are available. However, the recipient claims that the items are not delivered on
the time promised by company A. Therefore, the customer is unhappy and not satisfied
with the service.

Business challenges posed by current process

Major problems are highlighted during the current shipment process followed by com-
pany A.

- No real-time contextual information to decide, items should be delivered or not

- Physical effort to examine availability of smart postal boxes

- Increase maintenance cost of the truck such as fuel, time etc

- Decrease in daily delivery targets

- Items not delivered to a customer in a timely manner

4.3.2 Solving the Business Problem

Future computation, storage, and communications services will be ubiquitous and highly
distributed. Things such as devices, sensors, machines, smart objects when integrated
together, will create a decentralized and loosely coupled architecture, connected by
dynamic networks. Notably, the data streams coming from these devices will contribute
to the Big data paradigm. Prior to dealing with data, Things should be dynamically
discovered and configured which provide comfort in device discovery and data collection
challenges. Therefore, the thesis aims to solve the problem of discovering devices while
leveraging contextual information.

47

4 Requirements and Use Case

Letter
Box

Presence

Temperature
Humidity

200m

1

On the way
to delivery

Presence

Temperature
Light

- Discovered Devices
- Recipient Present
- Expected dispatch notification

Within
Proximity (0.5km)

Device Information
Weather Conditions
Suggest Optimal Route

Vaccinations, chocolates loaded
Recipients are available
No Traffic Jams
Pleasant weather

Region B

2

3

4

CADsIoT Core

Delivery Center A

Delivery
Center B

Figure 4.3: CADsIoT proposed solution as per given scenario

Figure 4.3 illustrates the end-to-end solution of the discussed scenario in section 4.3.1. As
Company A needs to streamline inefficiencies in the process, case 2 (Unhappy Customer)
is considered as most of the dependencies lies in case 2.

1 - At the Warehouse

As soon as the ordered items details are conveyed to the delivery person, relevant device
information, placed at delivery centers are also fetched which are called subscriptions.
These subscriptions include information about available devices and sensors e.g., device
status, availability, location etc. placed at recipient’s shipping location.

2 - Out for delivery

Besides delivery centers and recipients information, the delivery person also has the
knowledge about smart postal boxes placed at delivery centers. Now the truck is on
the way for daily deliveries, context based environmental information such as weather
conditions are collected. These information suggests truck to take best route in order to
avoid traffic jams and can be pushed to delivery person mobile device.

48

4.3 Use Case

3 - Within Proximity

This step is of utmost importance as it enables the delivery person for efficient decision
making. Context-based information is collected to decide whether the delivery should
be done or not. The decision to deliver items are based on contextual information such
as delivery person current location, presence of recipient, smart postal box status. The
truck reaches the proximity of the delivery centers A and B as they are the recipients
of the shipments. The following two situations arise which are also depicted in figure
4.4.

Delivery Center A

As soon as the truck reaches the proximity of delivery center A in region A, in
our case 0.5km distant from delivery center A, the solution notifies the delivery
person that he has arrived in the region A based on the subscription done in step
1. Also, nearby devices are discovered and displayed on the map. At this time,
client can make a connection with the delivery center A to read smart postal box
(device) availability. If the smart postal box device is not available, delivery person
skips data collection e.g., recipients availability directly from the current location
(delivery center A). Since the smart postal box is not active and the recipient is not
present, the delivery cannot be done to the delivery center A and hence, delivery
center B is the next delivery point.

Figure 4.4: Truck within Region A Proximity

49

4 Requirements and Use Case

Delivery Center B

Now, the next delivery of items is targeted to delivery center B. In fact, delivery
center B is located in region A at a distant of 200m from delivery center A.
Therefore, the devices are already discovered while the truck enters in a region A.
Navigator only makes a secure connection with delivery center B, to read smart
post box (device) availability. Based on the contextual information read from the
delivery center B, the smart postal box is active and the recipient is also present.
Hence, the delivery can be made to delivery center B.

4.3.3 Benefits

CADsIoT helps company A not only decrease inefficiencies but also reduce unnecessary
steps in the shipment process by leveraging context-based information for efficient
decision making.

Figure 4.5: Company A Process Comparison

Figure 4.5 depicts the comparison between the previous process and the process when
CADsIoT is employed. As shown, once the truck reaches the delivery center’s region,
the solution discovers smart postal boxes while remaining within the proximity and
query them for their availability. In case, the devices are not available, the delivery is
scheduled to next recipient. With the newly employed process supported by contextual
information, Company A can now make better decisions and meet their defined targets.
Additionally, some of the benefits are also listed below:

50

4.3 Use Case

• Better decisions: Delivery person can now plan to dispatch goods to other recipi-
ents on time.

• Saves time: as the delivery person only concentrates where the smart postal boxes
are available.

• Save Energy and heavy luggage: With the pre-informed information about the
receiver, the delivery person does not have to carry the goods and walk.

• Increase in daily delivery targets: More packages can be delivered to receivers.

• Saves Cost: This will reduce costs by optimizing the truck’s route and enables for
more efficient delivery.

51

5 CADsIoT: Proposed Solution

This chapter portrays the design aspects of CADsIoT solution. It describes the overall
architecture, comprising of CADsIoT Core and Navigator and the services available at
different layers. Finally, the specification of CADsIoT Core resources, representations,
URI patterns and interactions are also discussed.

5.1 Architecture

CADsIoT provides a discovery service for IoT environments. This section details the
architectural view of CADsIoT. As discussed earlier, this thesis focuses on the discovery
of IoT devices with the proposed architecture.

CADsIoT comprises of two main components: a backend service called CADsIoT Core and
a smartphone client Navigator. The backend service acts as the centralized repository
for devices, sensors, contextual information and other associated assets. Navigator
communicates with the backend service via RESTful APIs. Both these components are
discussed in this section.

5.1.1 CADsIoT Core

CADsIoT Core has a muti-layered architecture, built on RESTful Web Services. It includes
loose coupling principle which provides benefits in the same way as in most dynamic
web applications. With its loosely coupled architecture, business rules defined via
business logic are separated from the type of database being used. The REST based
implementation provides operations to manage IoT assets e.g., devices, sensors, context
and subscriptions. CADsIoT Core facilitates to create, modify and manage assets via
simple HTTP methods.

53

5 CADsIoT: Proposed Solution

Figure 5.1 depicts five layered architecture, describing various components and services
at each layer supported by CADsIoT Core.

Figure 5.1: CADsIoT Core Architecture

Presentation Layer

CADsIoT Core exposes REST-based interfaces that allow Navigator and external REST
clients to access corresponding assets. Device, sensor, context and subscription informa-
tion can be managed via HTTP requests. The self-contained requests uses HTTP methods
e.g., POST, GET, PUT and DELETE which are mapped to the corresponding operations
of the resources and then requests are delegated to the Service Layer.

54

5.1 Architecture

Service Layer

The service layer defines business rules for each type of service and acts as a mediator
between presentation layer and persistence layer to exchange data. This layer comprises
of four core services available in CADsIoT Core component: device, sensor, context and
subscription. Services can be invoked through provided HTTP interfaces through pre-
sentation layer. Requests sent through uniform interfaces are mapped to corresponding
services, perform business rules (business logic) and sends required functionality to the
requester. These services are implemented as individual service components, leading to
flexible and scalable architecture, enabling developers and system integrators to leverage
devices and sensors functionalities through provided RESTful APIs.

Data Access Layer

Data access layer is an abstraction layer which provides a seamless interface to access
data from one or more data stores. This layer hides the complexity of the underlying
storage mechanism being used. The layer is responsible for fulfilling data related
requests, requested by appropriate services, defined at the service layer. The real benefit
of this layer is to separate business logic from different data store technologies.

Data Stores

This layer usually consists of persistence storages, directory servers, legacy and enterprise
systems. IoT data is typically distributed across various data storage mechanisms
e.g., Binary Large Object (BLOB) for unstructured data, Key-value storages, relational
database management systems. When combining, a consolidated and integrated view
of data is presented to appropriate request/system. Through CADsIoT Core flexible
architecture, enterprise data stores can be accessed through unified RESTful APIs,
encapsulating the complexities of underlying storage mechanisms.

5.1.2 CADsIoT Navigator

CADsIoT Navigator is an Android based prototype that is capable of discovering devices
and sensors automatically (discussed in the common layer of Navigator architecture,
5.1.2) deployed in a particular environment, regardless of their heterogeneity. Navi-
gator interacts with CADsIoT Core to receive registered devices, contextual data and
subscription information to provide real-time notifications which tells, where the devices
are installed. In general, Navigator implementation demonstrates the feasibility of the
proposed approach rather than developing a complete IoT application. Figure 5.2 depicts
the high-level architecture of Navigator, outlining various building blocks.

55

5 CADsIoT: Proposed Solution

Figure 5.2: Navigator Architecture

User Interface Layer

User Interface Layer also called presentation layer provides a user experience in order to
interact with different services provided by the application. This layer consists of several
components which are native to Android platform and serves as the building blocks.
These components include activities, fragments, layouts, services when integrated
together, provides a rich user interface. Navigator leverage Android platform user
interface assets to enable seamless interaction with devices and sensors for dynamic
discovery as discussed in the common layer of Navigator architecture. The interfaces
for devices, sensors, subscriptions helps to perform various associated tasks using a
consistent user experience.

56

5.1 Architecture

Common Layer

Common layer deals with various Android components e.g., adapters, services. Adapters
are data storage holders which bind to specific UI to display data on the interface.
Android services are application components that perform long running requests and do
not provide any user interface. These services have its own lifecycle and can be invoked
by different application components e.g., activities, fragments. Navigator provides a
discovery service that resides between the user interface and domain layer to discover
devices automatically. The service uses proactive Location Based Services (LBS), better
known as Geofencing [GSD15] which allows remote monitoring of objects. Navigator’s
discovery service notifies the user about the location-based information provided by
GPS if the user enters or leaves dedicated circular regions, called geofence. It then
matches the positioning information provided by mobile devices with the devices and
sensors locations (fetched by backend service), represented by geofences and trigger
notifications about the discovered devices.

Domain (Model) Layer

One of the important layer is a domain layer which interacts with the network layer to
request data and includes business logic and data model. Respective services at this
layer correspond to CADsIoT Core (backend service) and request required data. The
services work with data models for devices, sensors, context and subscriptions. Once
required information is retrieved into appropriate data models, objects are sent to upper
layers, where information can be served by data adapters and associated application
components.

Network Layer

The network layer as the name says, performs network related tasks required by the
application. In Navigator architecture, this layer is responsible for communicating with
the backend service in order to perform HTTP operations. Google Volley 1 is used as
an HTTP library to enable this interaction. It also manages scheduling of requests and
provides caching facilities, eliminating developers to write caching code again. Upon
successful communication with backend service, raw data is parsed to appropriate data
models. Furthermore, mappers e.g., date formats are also considered at this layer.

1https://developer.android.com/training/volley/index.html

57

5 CADsIoT: Proposed Solution

5.2 CADsIoT Core REST API

CADsIoT Core is a RESTful application and exposes data and functionality as resources,
enabling consumers to perform create, retrieve, update and delete actions using HTTP.
This section outlines the design and development considerations of CADsIoT Core. The
most common ingredients used for CADsIoT Core development are resources along with
its representations, URIs and interactions are considered in this section.

5.2.1 Resources

CADsIoT Core deals with four main resources to fulfill the requirements. These resources
comply with the two basic characteristics, defined by RESTful Web Services: a) URI is
required to access each resource b) each resource has at least one representation for
the external world. Figure 5.3 is a Entity Relationship Diagram (ERD) which helps in
designing REST resources and their relationships. Furthermore, description of each
resource is also outlined in this section.

Figure 5.3: ER-Diagram for Resource Design

58

5.2 CADsIoT Core REST API

Device Resource : A device resource is used to create, retrieve, update and delete
devices from the system. Devices have a physical context which specifies the physical
location where they are found. The contextual object consists of GPS and some relevant
information. It is assumed that devices connect to one or more sensors in the system.
Table 5.1 depicts properties of device resource.

Table 5.1: Device Resource properties

59

5 CADsIoT: Proposed Solution

Sensor Resource : A sensor resource represents an object that is capable of providing
data and is connected to a device or microcontroller e.g., Raspberry, Arduino etc.
Likewise devices, sensors also have physical locations which show the indoor locations
where the sensors are installed. Normally, the global contextual information e.g., city,
area, street is determined by its associated device. It is assumed that sensors do not
work alone by themselves but requires a device which signals to perform some action
e.g., reading data. Table 5.2 depicts properties of sensor resource.

Table 5.2: Sensor Resource properties

60

5.2 CADsIoT Core REST API

Context Resource : Context resource represents a physical location e.g., building,
school, office, universities, warehouses etc. The context is identified mainly using GPS
coordinates that can be used to discover relevant devices in a particular region. Context
provides location information to devices. It is assumed that a particular device has
exactly one context at a given time.

Table 5.3: Context Resource properties

61

5 CADsIoT: Proposed Solution

Subscription Resource : Subscription resource allows sensors to be subscribed. A
subscriber can be a system, service or a user who is interested in interacting with
subscribed sensors. However, CADsIoT Core subscription module considers users as the
subscribers. When a sensor is subscribed, the device attached to subscribed sensors is
also subscribed based on the parent-child rule.

Table 5.4: Subscription Resource properties

5.2.2 Representations

Data requires some representation to flow on the internet and is often expressed in
some type of format. These formats are classified as MIME types which are standards
and conventions to exchange data over the internet in a convenient manner. In REST
world, resources have data associated with them and are commonly expressed in two
media types: JSON and XML. CADsIoT Core also leverages JSON representation due to
its expressiveness and broader availability.

62

5.2 CADsIoT Core REST API

Device Resource : Listing 5.1 depicts complete representation in JSON which includes
context and sensor objects.

{

"id": 1,

"name": "Raspberry PI 2",

"description": "This device is capable to provide sound and motion information",

"manufactureName": "Element Design",

"creationDate": "2016-08-27T10:47:042Z",

"modifiedDate": "2016-08-29T13:45:025Z",

"active": true,

"networkAddress": "192.168.0.9",

"contextInfo": {

"id": 2,

"name": "FIUS",

"description": "University",

"streetName": "university street",

"streetNo": "38",

"city": "Stuttgart",

"zipcode": "70569",

"country": "Germany",

"lat": 48.744552,

"lon": 9.106863,

"creationDate": "2016-08-24T17:00:015Z",

"modifiedDate": "2016-08-24T17:00:015Z",

"deviceId": null

},

"sensors": [

{

"id": 2,

"name": "Temperature Sensor",

"description": "Temperature Sensor",

"manufactureName": "Texas Instruments",

"creationDate": "2016-08-23T14:53:006Z",

"modifiedDate": "2016-08-23T14:53:006Z",

"active": true,

"location": "Building38/Floor1/Room23",

"category": "temperature",

"connectionType": "wired",

"topicId": "topicId",

"device": {

"id": 1

}

}

]

}

Listing 5.1: Device Representation in JSON

63

5 CADsIoT: Proposed Solution

Sensor Resource : Listing 5.2 depicts the complete JSON representation which also
includes subscriptions objects.

{

"id": 2,

"name": "Temperature Sensor",

"description": "Temperature Sensor",

"manufactureName": "Texas Instruments",

"creationDate": "2016-08-23T14:53:006Z",

"modifiedDate": "2016-08-23T14:53:006Z",

"active": true,

"location": "Building38/Floor1/Room23",

"category": "temperature",

"deviceId": null,

"subscriptionId": null,

"connectionType": "wired",

"topicId": "topicId",

"subscriptions": [

{

"id": 7,

"name": "Allan Mark",

"description": "Allan Mark",

"email": "allan.mark@gmail.com",

"creationDate": "2016-09-24T14:27:031Z",

"modifiedDate": "2016-09-24T14:27:031Z",

"sensorId": 2

},

{

"id": 12,

"name": "Karim Khan",

"description": "Karim Khan",

"email": "karim.khan@gmail.com",

"creationDate": "2016-09-24T15:52:055Z",

"modifiedDate": "2016-09-24T15:52:055Z",

"sensorId": 2

}

]

}

Listing 5.2: Sensor Representation in JSON

64

5.2 CADsIoT Core REST API

Context Resource : Listing 5.3 depicts the complete JSON representation.

{

"id": 1,

"name": "University of Stuttgart Campus Vaihingen",

"description": "State University",

"streetName": "Pfaffenwaldring",

"streetNo": "7",

"city": "Stuttgart",

"zipcode": "70569",

"country": "Germany",

"lat": 48.745727,

"lon": 9.104995,

"creationDate": "2016-08-24T17:00:015Z",

"modifiedDate": "2016-08-24T17:00:015Z",

"deviceId": null

}

Listing 5.3: Context Representation in JSON

Subscription Resource : Listing 5.4 depicts the complete JSON representation. Sub-
scriptions are user objects which represents the relationship with the sensors.

{

"id": 4,

"name": "Andreas Schmid",

"description": "Andreas Schmid",

"email": "andreas.schmid@gmail.com",

"creationDate": "2016-09-20T17:00:022Z",

"modifiedDate": "2016-09-20T17:00:022Z",

"sensorId": 4

}

Listing 5.4: Subscription Representation in JSON

5.2.3 URI Patterns

The addressability aspect of RESTful APIs is covered by resource identifiers often called
URIs. Interesting information provided by the server is exposed as resources, can be
located using URIs. Every resource has its own unique identifier for its identification.
These URIs typically conforms as Universal Resource Locator (URL) in RESTful world,
consisting of the unique pattern, scheme, authority, path, query and fragment [MR97].
Since resources do have lifecycle and changes over time, defining URL patterns is
very important. This enables locating resources directly through static paths anytime,
enabling predictability, hierarchical structure for better understandability and usability.

65

5 CADsIoT: Proposed Solution

CADsIoT Core REST resources follows industry best practices for defining URI patterns
[MM12]. REST clients e.g., Navigator request resources using defined URI patterns with
JSON payload. Table 5.5 illustrates URI patterns for corresponding resources available
in CADsIoT Core.

Table 5.5: CADsIoT Core REST URI Patterns

5.2.4 Interactions

Resources are managed by uniform interfaces required by RESTful architecture. Each
representation implements create, retrieve, update and delete (CRUD) operations corre-
sponding to HTTP verbs – POST, GET, PUT, DELETE. Table 5.6 depicts the commonly
used operations and their relationships with HTTP verbs.

Table 5.6: HTTP Verbs and CRUD Operations Relationships

66

5.2 CADsIoT Core REST API

This section provides an understanding on how create, retrieve, update and delete
(CRUD) operations can be performed to manipulate CADsIoT resources using HTTP
verbs. However, the complete listing of request and response for each type of resource is
discussed in REST API documentation, Appendix A.

Creating Resources

HTTP verb "POST" is frequently used to create resources. In fact, it adds the new resource
within the entire collection and a new identifier (ID) is assigned by the service. On
successful creation of a resource, the server sends back a "Location" header containing a
link of the newly created resource with response code 201 (CREATED). According to
HTTP specification [FRJ14], POST should be used to make non idempotent requests as
it is neither safe and nor idempotent. Performing two identical POST requests will result
in creating two resources with the same information.

The examples show adding new CADsIoT asset e.g., devices, sensors, context and
subscriptions in the system using HTTP POST method. On successful creation, the
server returns a response code of 201 (CREATED) and a "Location" header containing
a URL, embed with the newly created ID of the resource. The POST request accepts
JSON as payload to define respective resource properties in the system. The POST
request follows a URL pattern which typically includes baseURL2 and resourceURI3 e.g.,
baseURL/resourceURI. Here are the examples of individual resource types defined in
CADsIoT system.

Examples:

Device — POST baseURL/devices
Sensor — POST baseURL/sensors
Context — POST baseURL/locations
Subscription — POST baseURL/subscriptions

Retrieving Resources

Representation of a resource can be fetched or read using HTTP verb "GET". The method
returns the collection of a resource or a particular resource in an accepted representation
e.g., JSON or XML with a response code of 200 (OK). When a required representation
is not found, it often returns 404 (NOT FOUND) or 400 (BAD REQUEST) to the client.
According to HTTP design specification, GET allows reading data only and considered
as a safe operation as it does not modify or alter data in the system. Making several GET

2Represent the actual URL where the service is deployed e.g http://www.example.com/
3Represent URI of the target resource

67

5 CADsIoT: Proposed Solution

requests to the same URI will result in the same output as with single request. Hence,
GET operation is idempotent.

CADsIoT Core leverage HTTP GET to read required information from the system. Upon
completion of a request, the server sends a JSON representation of a required resource
with a response code of 200 (OK). If a resource is not found, a response code of 404
(NOT FOUND) is returned to the client. Additionally, GET requests also accept query
parameters which allow filtered data to be returned by the server by following typical
URL patterns e.g., baseURL/resourceURI/ and baseURL/resourceURI/id. Some of the
examples of GET requests defined in CADsIoT system are listed below.

Examples:

Device — GET baseURL/devices
Sensor — GET baseURL/sensors/2
Context — GET baseURL/locations
Subscription — GET baseURL/subscriptions/1

Modifying Resources

HTTP verb "PUT" is mainly used to update existing resources in the system. It takes
a newly updated representation of the original resource in the body of the request.
Sometimes, PUT is also used to create a new resource in case if the existing resource is
not available. In a such a case, a new resource gets created with provided representation
along with the resource identifier (ID) in the request URI. On successful update, a
response code of 200 (OK) or 204 (NO CONTENT) is returned by the server. Due to
network requirements, the body in the response is optional.

CADsIoT Core provides partial and complete modification of a resource. Partial update
refers to modify parts (not complete) of the resource whereas complete (full) modi-
fication allows replacing the existing state with the newly updated representation of
the original resource. HTTP PUT is used to provide complete modification semantics
against a specified request URI which accepts a complete representation of a resource.
However, HTTP POST is used to partially update the resource in the proposed system. If
the update is successful, 200 (OK) is returned by the server with the status description
of the resource representation in the response body. To avoid the creation semantics of
PUT operation, the system returns 404 (NOT FOUND) if the requested resource does
not exist.

Examples:

Device(full update) — PUT baseURL/devices/1
Device (partial update) — POST baseURL/devices/2
Context — PUT baseURL/locations/2

68

5.2 CADsIoT Core REST API

Subscription — PUT baseURL/subscriptions/1

Deleting Resources

Resources can be deleted using HTTP verb "DELETE". It allows the resource to be deleted
identified by a URI. Once the server has successfully deleted the resource, 200 (OK)
response code with the status description of the representation or 204 (NO CONTENT)
without the response body is returned. According to HTTP specification [FRJ-RFC14],
deleting a resource is idempotent. If several delete requests are performed against the
same URI, the result will be the same since the resource has already been deleted in the
first request. Additionally, a response code of 404 (NOT FOUND) is sent to the client.

CADsIoT Core uses HTTP DELETE to remove a resource from the system. Upon successful
deletion, 200 (OK) response code is returned by the server. If the resource is not found,
a response code of 404 (NOT FOUND) is sent to the client. Some of the examples are
listed below.

Examples:

Device — DELETE baseURL/devices/1
Sessor — DELETE baseURL/sensors/2
Context — DELETE baseURL/locations/2
Subscription — DELETE baseURL/subscriptions/1

69

6 CADsIoT: Implementation and
Validation

This chapter outlines technical details of the CADsIoT solution. Starting with core fea-
tures, it explains how the proposed concept is transformed into technical specifications,
resulting in two prototypes: CADsIoT Core and Navigator. Furthermore, necessary tech-
nical concepts and anatomy of each prototype, leading to validation are also considered
in this chapter.

6.1 Core Features

CADsIoT is designed to be simple and overcomes device discovery pitfalls based on
particular context. It leverages state-of-the-art tools and technologies to implement and
validate the proposed concept as discussed in Chapter 4 and Chapter 5. The prototype
comprises of two main implementations i.e., building a scalable backend service notably,
CADsIoT Core and a smart mobile implementation serving as a client called Navigator.
Both prototypes contribute to achieve the desired goal. As we move further, the concepts
discussed will get clarified in architecture and validation section. Figure 6.1 shows the
four major features provided by CADsIoT.

Figure 6.1: CADsIoT Core Features

71

6 CADsIoT: Implementation and Validation

6.1.1 Registration

Registration and connection of devices is a vital process for any IoT enabled application.
Users continuously search access to devices for weather, surveillance, agricultural and
other context data. Hence, CADsIoT provides a registration module where IoT assets
e.g., devices, sensors and contextual information can be registered and managed. Figure
6.2 shows two registered devices with their current status, deployed location and the
number of sensors attached to the particular device.

Figure 6.2: Registered Devices

72

6.1 Core Features

6.1.2 Subscriptions

Subscriptions facilitate control over particular assets in which the user is interested in.
These subscriptions are applied on sensors which are attached to respective devices. If
a user subscribes to a particular sensor, then its associated device will automatically
be subscribed, following a parent-child relationship principle. Let say, a user wants to
know information e.g., temperature, aggregated from a group of sensors, he can do so
by subscribing respective sensors and perform the desired operation. Figure 6.3 shows
that a particular user has subscribed to three different sensors.

Figure 6.3: Sensors and associated devices subscriptions

73

6 CADsIoT: Implementation and Validation

6.1.3 Device Discovery

Device discovery is a crucial step for the resource usage and data generated by IoT
environments. This is because, these devices are deployed in heterogeneous and widely
distributed environments, where discovering and management of devices is challenging.
CADsIoT leverages location information through GPS as a primary category of contex-
tual information, in order to discover nearby devices. Navigator communicates with
CADsIoT Core to collect registered devices, context and subscription information and
allows dynamic discovery based on Geofencing approach as discussed in the Navigator
architecture. Figure 6.4 depicts discovery of devices found in a region.

Figure 6.4: Discovered devices as the user entered the region

74

6.1 Core Features

6.1.4 Real Time Notifications

CADsIoT facilitates users to know which devices are available in the current region.
This information is provided by Navigator application. The devices are located by
matching user’s current context and device context, facilitated by real-time notification
and a map. Furthermore, whenever the user reaches the same region again, appropriate
notifications are triggered. Figure 6.5 illustrates notification feature provided by CADsIoT
via Navigator.

Figure 6.5: Real Time Notification

75

6 CADsIoT: Implementation and Validation

6.2 CADsIoT Core: Backend Service

CADsIoT Core is a service that provides a set of functionalities to enable device registration
and discovery features in an IoT environment. Due to a variety of tools and technologies
currently available, the selection for its implementation includes ample amount of
research. CADsIoT Core is built on REST, an architectural style to develop scalable
and reliable applications. The REST style is often used with HTTP, an application level
protocol that provides operations to exchange representation between clients and servers.
In contrast to the techniques such as COBRA, SOAP, REST is lightweight, consumes
less bandwidth, allows many different data formats, scalability and flexibility to write
web services which require small learning curve. Therefore, keeping in view to build
a scalable architecture, additional set of technologies are also used together with Java
programming environment and are discussed below. It should be noted that detail
explanation of technologies can be reviewed in the given references.

6.2.1 Java Persistence API (JPA)

Almost every application requires objects to be persisted in some storage devices e.g.,
database management system. Traditional CRUD operations on relations which are
represented in the form of tables in relational database systems are performed using
SQL and JDBC. These techniques become even worse if complex SQL queries are written
as the complexity of the application increases. As a result, extraordinary efforts are
required to manage the application. Treating queries as objects combining with object
oriented principles can certainly provide an abstraction between application code and
persistence mechanism. In order to provide abstraction to perform database operations,
a solution called Object/Relational Mapping (ORM) is commonly used in the industry.
This model forms a bridge to map database relations to objects using the specification
JSR-0003381 and tools like Hibernate 2. Java Persistence API(JPA) is a standard Java
API that simplifies data persistence and allows database relations to be mapped as Java
objects. It provides various annotations e.g., @Entity, @ID, @Column to persist data
using services of the entity manager.

1http://download.oracle.com/otndocs/jcp/persistence-2.0-fr-oth-JSpec/
2an open source implementation of JPA, http://hibernate.org/orm/

76

6.2 CADsIoT Core: Backend Service

6.2.2 Java API for RESTful Web Services (JAX-RS)

The Java API for RESTful Web Services (JAX-RS) 3 is a java programming API specifi-
cation (JSR-311) that allows creating web services using REST architectural pattern.
Its uses annotations to help in mapping resources (java classes) as a web resource e.g.,
@Path, @Produces, @Consumes. Jersey 4 is a reference implementation of JAX-RS
and is used to hide low-level details and exposed resources in several representations
such as JSON, XML etc. JAX-RS provides the semantics of annotations e.g., @GET,
@POST etc while Jersey facilitates with request parsing, invoking right methods etc.
CADsIoT Core provides JSON as the primary media type. It uses Jersey and Jackson
API 5 to convert objects from Java and JSON (vice versa). Jersey also supports Spring
constructs, dependency Injection in particular 6. Spring encapsulates transactions, per-
sistence, and security efficiently and its integration with jersey allows Spring beans
to be used as JAX-RS components (resources, provides). Spring provides annotations
such as @Component, @Repository, @Service that enable JAX-RS to work with Spring
functionality.

6.2.3 Anatomy of Components

Earlier, the high-level architectural details in section 5.1.1 are discussed. This section
covers the internal application design and implementation of CADsIoT Core. The im-
plementation consists of several components which ensures its loosely coupled design,
separating business logic from the type of storage mechanism being used.

To better understand interactions by different HTTP clients e.g., Postman, OKHTTPClient
and even Navigator (discussed later), a pictorial representation is done to explain each
component and its responsibility. Each resource e.g., device, sensor, subscription and
context follows consistent interaction pattern. REST clients requests for services which
are responsible to provide relevant functions to fulfill the request. These functions
collaborate with the data access layer to retrieve persistence information from the
datastore. For the sake of simplicity, only one resource type with important component
details are highlighted here. The complete listing of resources, methods, response codes
are discussed in REST API documentation Appendix A.

Figure 6.6 shows the application process and how different components interact together
when a new request is received. These details are discussed below:

3https://jax-rs-spec.java.net/
4https://jersey.java.net/
5https://jersey.java.net/documentation/latest/media.html
6(http://projects.spring.io/spring-framework/)

77

6 CADsIoT: Implementation and Validation

Figure 6.6: CADsIoT Core Internal Components Communication

78

6.2 CADsIoT Core: Backend Service

HTTP Client

Any HTTP client can perform operations on resources within CADsIoT Core using four ba-
sic HTTP operations: GET, POST, PUT and DELETE. In figure 6.6, the client is interested
to get a collection of e.g., sensor resource. In such a case, a GET request is issued by
HTTP client with a specific URL http://127.0.0.1:8080/discover-iot/rest/api/v1/sensors.
Listing 6.1 shows a self-contained request for a sensor resource and invokes GET method.
Upon completion of a request, a response code of 200 (OK), including a collection of
sensors represented in JSON is sent back to the requester.

GET /discover-iot/rest/api/v1/sensors/ HTTP/1.1

Host: 127.0.0.1:8080

Cache-Control: no-cache

Listing 6.1: Sensor HTTP GET Request

@GET

@Produces({MediaType.APPLICATION_JSON})

public List<Sensor> getSensors(@Context UriInfo info) throws AppException {

List<Sensor> sensorList = null;

//find all sensors at uri /sensors

if (info.getQueryParameters().size() == 0){

log.info("Getting all sensors...");

sensorList = sensorService.getSensors();

}// /sensor?<queryString>

else if (info.getQueryParameters().size() > 0){

Map<String, String> filterMap = new HashMap<String, String>();

filterMap.put("subscriber",info.getQueryParameters()

.getFirst("subscriber"));

if (info.getQueryParameters().getFirst("lat") != null &&

info.getQueryParameters().getFirst("lon") != null){

filterMap.put("lat",info.getQueryParameters().getFirst("lat"));

filterMap.put("lon",info.getQueryParameters().getFirst("lon"));

}

sensorList = sensorService.filterSensors(filterMap);

}

log.info("returning available sensors");

return sensorList;

}

Listing 6.2: Code Snippet for handling GET Request

Listing 6.2 shows the corresponding implementation of reading sensors in a sensor
resource. It can be noted that certain annotations are injected which are applied on the

79

6 CADsIoT: Implementation and Validation

method level. However, there are also class level annotations which are necessary to
bind corresponding services with the resources.

- @GET – correspond to HTTP GET requests.
- @Produces – defines the response of this request to be produced. In our case, the
response is presented in JSON representation.

Services

CADsIoT Core services reside at the service layer discussed in section 5.1.1. These
services are defined by business rules (logic). Once requests are accepted by appropriate
resources, associated services invoke the desired operation. In our case, sensor service is
responsible for providing a collection of sensors.

@Override

public List<Sensor> getSensors() throws AppException {

List<SensorEntity> sensors = sensorDao.findAllSensors();

if(sensors == null){

throw new AppException(Response.Status.NOT_FOUND.getStatusCode(),

404,

"No sensors found in the database",

"Please add some sensors in the database",

Constants.HELP_URL);

}

return getSensorsFromEntities(sensors);

}

Listing 6.3: Code Snippet for Sensor Service

Listing 6.3 shows the corresponding method invoke by the resource. It should be noted
that sensor service is automatically bound to the sensor resource through spring provided
dependency injections. The service talks to the persistence layer, responsible to fetch
required data from the data store. Upon receipt, relevant Java Persistence API (JPA)
entities are collected and transform to normal Plain Old Java Objects (POJOs). These
POJOs simplify JPA and JSON annotations, making code more cleaner.

Data Access Object(DAO)

CADsIoT uses Data Access Object on a persistence layer, a design pattern responsible
to abstract the details of the persistence mechanism. This pattern allows changes to be
made only at the persistence level if underlying storage mechanism changes.

80

6.3 Navigator: Smartphone Client

@Override

public List<SensorEntity> findAllSensors() {

String sqlString = "SELECT s FROM SensorEntity s";

TypedQuery<SensorEntity> query = entityManager.createQuery(sqlString,

SensorEntity.class);

return query.getResultList();

}

Listing 6.4: Code Snippet for Sensor DAO

Listing 6.4 shows to fetch sensors from the data store. JPA entities are user defined
classes and maps the properties as defined in the database. Hibernate, a reference
implementation of JPA is used as a provider to implement more granularity and leverage
hibernate specific features e.g., lazy and eager loading when dealing with relation-
ships.

As discussed above, every resource, component communicates in the same fashion as
shown in figure 6.6. The complete listing of resources, methods, response codes are
discussed in REST API documentation Appendix A.

6.3 Navigator: Smartphone Client

Navigator is Android based mobile application acting as the client in order to interact
with the backend service. Navigator’s contribution to dynamically discover devices is of
significant importance. It allows users to discover devices and sensors automatically and
also serves as HTTP client as it interacts with CADsIoT Core.

This section highlights the implementation aspects of Navigator which consists of Android
native libraries, services and their interactions in the application. Our focus is to describe
main components/libraries adhering to the proposed concept rather than discussing the
complete Android platform and known services which can be reviewed through Android
documentation.

6.3.1 Discovery Service

As discussed in section 5.1.2, Geofencing is an approach to monitor geographical areas
remotely and triggers notifications when a mobile object enters or exits these areas
[RFD09]. Monitoring and tracking of objects are surrounded by location services. This
is one of the reasons, most context-aware applications make use of the location features
provided by mobile objects.

81

6 CADsIoT: Implementation and Validation

Navigator also makes use of geofencing approach, supporting the discovery of devices
and sensors with automatic notifications. Navigator discovery service is a background
service and is implemented using Android native Geofence libraries 7. This service
defines circular regions, also called fences based on the certain radius with respect to
device contexts (locations). The user subscribes to interested devices which he wants to
be notified upon entering the device region.

Listing 6.5 depicts how the service responds to transitions. The background service
will get handled once the user enters in the device region and identifies the type of
transitions e.g., entering a region, staying in a region, exiting from a region. Based
on the transition type, it triggers real-time notification providing information of the
discovered devices, which are also shown on the map.

7https://developer.android.com/training/location/geofencing.html

82

6.3 Navigator: Smartphone Client

@Override

protected void onHandleIntent(Intent intent) {

Log.d(TAG, "onHandleIntent hasBundle: "+intent.hasExtra("myBundle"));

Bundle bundle = intent.getExtras().getBundle("myBundle");

Log.d(TAG, "devices List: "+bundle.getParcelableArrayList("devices"));

ArrayList<Device> devices = bundle.getParcelableArrayList("devices");

GeofencingEvent geofencingEvent = GeofencingEvent.fromIntent(intent);

if(!geofencingEvent.hasError()) {

int transition = geofencingEvent.getGeofenceTransition();

String notificationTitle;

switch(transition) {

case Geofence.GEOFENCE_TRANSITION_ENTER:

notificationTitle = getString(R.string

.geofence_transition_notification_text_entered);

Log.v(TAG, "Region Entered");

break;

case Geofence.GEOFENCE_TRANSITION_DWELL:

notificationTitle = getString(R.string

.geofence_transition_notification_text_dwell);

Log.v(TAG, "Dwelling in Region");

break;

case Geofence.GEOFENCE_TRANSITION_EXIT:

notificationTitle = getString(R.string

.geofence_transition_notification_text_exited);

Log.v(TAG, "Geofence Exited");

break;

default:

notificationTitle = "Geofence Unknown";

}

Log.d(TAG, "getTriggeringGeofences: "+ getTriggeringGeofences(intent));

sendNotification(this, getTriggeringGeofences(intent),

notificationTitle, devices);

}

}

Listing 6.5: Code Snippet for Discovery Service

83

6 CADsIoT: Implementation and Validation

6.3.2 Google Volley API

Navigator communicates with CADsIoT Core to exchange information on the network
layer. Volley API is used to enable this interaction. Volley is a Google offering which
performs HTTP based operations in an efficient manner. It provides networking for
Android application easier as a lot of boilerplate code is also catered by the API. It also
manages scheduling of requests and provides caching facilities, eliminating developers
to write caching code again. A detailed discussion about the API is out of the scope of
this research. However, readers can refer to Google Android documentation 8.

6.3.3 Anatomy of Components

Likewise any other Android application, Navigator comprises of several internal appli-
cation components. These components interact each other at different levels. While
developing the application, the focus to achieve the desired goal i.e., discovering devices
based on context automatically is considered rather focusing on user experience.

This section outlines the basic components pattern of Navigator application such as
activities, fragments, adapters, listeners and communication with CADsIoT Core back-
end service. Navigator can be extended by making use of its reusable components
to incorporate more features. Figure 6.7 shows application components involved in
Navigator.

Figure 6.7: Navigator Application Components

8https://developer.android.com/training/volley/index.html

84

6.4 Validation

The top level component in an Android application are activities. These activities are
the entry points to serve different functions that a user can perform. They have their
own lifecyle and have different states e.g., onCreate, onResume, onDestroyed. Navigator
makes use of the device, sensor, discovery activities which serve as the user interface
and displays relevant data.

Navigator activities contain fragments. These fragments are a portion of user interfaces
that reside in an activity. Navigator internal application architecture make use of these
fragments to avoid reinventing the wheel and connect corresponding fragments with
designated activity.

Adapters are data holders which provide data access and acts as a bridge between the
fragments (a viewable component) and the data items. Adapters work on a collection of
data items as well as single data item which contributes to a viewable component.

Navigator makes use of listener pattern which allows asynchronous callbacks when an
event occurs. Volley API as discussed earlier, communicates with CADsIoT Core backend
service in an asynchronous manner. Volley acting as a REST library sends requests to
backend service and register appropriate listeners along-with callback functions. Upon
receipt of HTTP response, parsing of data into appropriate model e.g., device, sensor,
context and subscription is performed. This parsed data, in the forms of domain objects
are passed to associate callbacks (implements as part of the listener pattern). These
callbacks are responsible for loading data in corresponding adapters.

6.4 Validation

The section outlines the validation of proposed solution as discussed in the requirements
section, Chapter 4. Two prototypes constitute to CADsIoT solution: CADsIoT Core and
Navigator which needs to be validated. For simplification reasons, REST APIs provided
by backend service and discovery service developed by Navigator are considered for
validation as both correlates with the functional requirements. The complete details
of REST endpoints are out of the scope of this section. Readers can refer to REST API
documentation, Appendix A.

Registration

One of the requirement, as mentioned earlier, is to have a device registry, acting as
the centralized repository where all devices and sensors are registered and maintained.
Hence, CADsIoT Core provides registration module along with metadata information.
Table 6.1 and 6.2 depicts the REST endpoints with respect to device and sensors.
Additionally, listing 6.6 and 6.7 shows the response of HTTP requests.

85

6 CADsIoT: Implementation and Validation

Device URI – /devices

HTTP Method Message Body Response Code
Add Device POST Yes 201(Created)
Retrieve Device GET No 200(OK)
Update Device PUT Yes 201(Created)
Delete device DELETE No 204(No Content)

Table 6.1: Device Registration REST Interactions

GET /discover-iot/rest/api/v1/devices HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Cache-Control: no-cache

{

"id": 7,

"name": "Air Pollutant Device",

"description": "Air Pollutant Device",

"manufactureName": "Element Design",

"creationDate": "2016-11-23T12:32:047Z",

"modifiedDate": "2016-11-23T12:32:047Z",

"active": true,

"networkAddress": "192.168.5.8",

"contextInfo": {

"id": 5,

"name": "Trattoria Da Franco",

"description": "Resturant",

"streetName": "Adolf-Engster-Weg",

"streetNo": "10",

"city": "Stuttgart",

"zipcode": "70569",

"country": "Germany",

"lat": 48.748605,

"lon": 9.082285,

"creationDate": "2016-11-23T14:33:018Z",

"modifiedDate": "2016-11-23T14:33:018Z",

"deviceId": null

},

"sensors": []

}

Listing 6.6: Devices Request Response using GET

86

6.4 Validation

Sensor URI – /sensors

HTTP Method Message Body Response Code
Add Sensor POST Yes 201(Created)
Retrieve Sensor GET No 200(OK)
Update Sensor PUT Yes 201(Created)
Delete Sensor DELETE No 204(No Content)

Table 6.2: Sensor Registration REST Interactions

GET /discover-iot/rest/api/v1/sensors HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Cache-Control: no-cache

{

"id": 3,

"name": "Temperature III",

"description": "Temperature Sensor",

"manufactureName": "ABM Electric Ltd",

"creationDate": "2016-08-23T14:53:031Z",

"modifiedDate": "2016-08-23T14:53:031Z",

"active": false,

"location": "Building38/Floor1/Room24",

"category": "temperature",

"deviceId": null,

"subscriptionId": null,

"connectionType": "wired",

"topicId": "topicId",

"subscriptions": [

{

"id": 13,

"name": "Bernd Wagner",

"description": "Bernd Wagner",

"email": "bernd.wagner@gmail.com",

"creationDate": "2016-10-05T16:00:048Z",

"modifiedDate": "2016-10-05T16:00:048Z",

"sensorId": 3

}

]

}

Listing 6.7: Sensors Request Response using GET

87

6 CADsIoT: Implementation and Validation

Attach Context

CADsIoT Core supports attaching context with devices and eventually with sensors. The
context details primarily define the description of the place where devices are actually
placed. It is assumed that sensors e.g., motion sensor, temperature sensor are attached
to the particular device. Locating device context allows sensor positions to be located.
CADsIoT provides partial update facility via HTTP POST to attached particular context
with a device. Multiple different devices can have the same context. Assuming context
is already created (ID=5) but it is not yet attached to any device. Listing 6.8 describes
this behavior and shows how HTTP clients can attach context with devices.

POST /discover-iot/rest/api/v1/locations/5 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Cache-Control: no-cache

Postman-Token: 71fcaece-e377-fd10-66a4-ab1524cc9b0d

{ "deviceId": 7 }

Listing 6.8: Attach Context using Partial Update

Subscribe Devices

Device and sensor subscription requirement is fulfilled by CADsIoT Core and Navigator.
The subscription is basically a user object who is interested to be informed by certain
devices. Subscription of devices and the discovery service communicates each other to
enable locating devices automatically. CRUD operations can be performed on subscrip-
tions via REST endpoints. Additionally, Navigator allows any device to be subscribed
or unsubscribed. Listing 6.9 shows subscription request along with message body and
figure 6.8 illustrates how the same operation can be performed by Navigator.

POST /discover-iot/rest/api/v1/subscribers HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

{

"name": "Bernd Wagner",

"description": "Bernd Wagner",

"email": "bernd.wagner@gmail.com",

"creationDate": null,

"modifiedDate": null,

"sensorId": 4

}

Listing 6.9: Subsription Request

88

6.4 Validation

(a) Subscription Requested (b) Subscription Completed

Figure 6.8: Device and Sensor Subscription

Discover Devices

One of the core requirement and heart of this thesis is, how to discover devices based
on context. The requirement is fulfilled by CADsIoT Core and Navigator. The backend
service provides REST endpoints which give subscribed nearest devices and sensors using
Harvestine formula 9. On the other hand, Navigator utilizes geofencing approach as
discussed in section 6.3.1. The discovery service implemented in Navigator enables users
to locate devices when they are entering a region. The region is defined by latitudes,
longitudes, and a radius. The service triggers real-time notifications when the user
enters in a region and informs about the context (location) of the device.

9determines distance between two GPS coordinates https://en.wikipedia.org/wiki/Haversine_formula

89

https://en.wikipedia.org/wiki/Haversine_formula

6 CADsIoT: Implementation and Validation

GET /discover-iot/rest/api/v1/sensors?lat=48.745&lon=9.1065 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Cache-Control: no-cache

Listing 6.10: Nearest Devices

Listing 6.10 shows HTTP request for nearby sensors based on current location.

90

7 Discussion and Future Work

This chapter summaries the overall work done in this thesis, allowing readers to under-
stand different aspects in a convenient manner. Later, a brief overview of possible future
work and open challenges related to the proposed concept are also highlighted.

7.1 Discussion

This work has presented a concept on how heterogeneous IoT devices can be discovered
based on the context with the help of possible scenarios and applications. As a result,
two prototypes are designed and implemented. The work contributes to different aspects
of the concepts and hence laid down in three parts, each of these are discussed below.

In the first part of the thesis, a background about the general concepts involved in
Internet of Things has been discussed as a starting point. Herein, the motivation behind
proposing context-aware discovery service followed by thesis objective, the evolution of
Internet of Things and how cloud platforms and their extensions such as Fog Computing
can help IoT by outlining possible application scenarios has been examined. Then,
the state-of-the-art technologies has been reviewed, focusing on available middlewares
and frameworks, communication standards and protocols. This extensive research
of various literature and journals benefited to restructure the idea of context-aware
discovery service by reviewing concepts, reusable design and enabling technologies,
used in practice.

The second part of the thesis contributes to realize the proposed concept (CADsIoT) by
defining requirements, motivational use case followed by technical design requirements.
Herein, functional and non-functional requirements are defined emphasizing on the key
specifications (adheres to the CADsIoT solution) rather than complete context-aware
computing platform. However, the functional requirements are provided by the system.
The work ensures that sensor data manipulation e.g., reading data from sensors is
kept aside and not part of the thesis. However, relevant literature reviews dealing
with sensor data are highlighted. Furthermore, a real life scenario is considered in the
logistic industry with various illustrations, facilitating readers to understand the possible
application of the concept.

91

7 Discussion and Future Work

In the last part of the thesis, the design and implementation aspects of CADsIoT comprises
of CADsIoT Core, a backend service and Navigator, a smartphone application has been
introduced. The required functionalities, layered architecture details for each component
and the formulation of CADsIoT Core REST API design guidelines are explained. Later,
technical details for both components, highlighting technologies and libraries used in
order to realize the concept i.e., discovering devices based on context automatically.
The explanations are backed up by code snippets, interaction diagrams, depicting the
implementation of the concept, both at backend and client levels. Finally, the two
prototypes are validated based on the functional requirements discussed in section 4.2
and associated REST endpoints.

All in all, talking about the world of devices where millions of devices will contribute to
businesses growth, CADsIoT approach can play a significant role in discovering devices
automatically, adhering to device availability based on the context.

7.2 Future Directions

This section briefly highlights current challenges and possible future directions which
are closely related to the work presented in this research.

Context Discovery

Context based applications are gaining more and more attraction. As discussed in section
4, context describes the current situation of an object. CADsIoT leverages location as
the primary category of context. However, an ideal context-aware application considers
different levels of context e.g., who, where, when and what of objects to understand the
change of current environment [SGA15b]. Combining such levels of context awareness
in CADsIoT concept can significantly improve device discovery features. Sensor data is
another important aspect to enrich IoT data with contextual information. Automatic
tagging on such data according to different application domains provides a better
understanding of sensor data but leads to a challenging task. The current development
in semantic technologies and context-aware computing leads to future directions.

Security and Privacy

As Internet of Things connects several devices together, this gives a way for potential
loopholes and entry points from where a malicious attack can be made. Current
research efforts are not capable to deal with IoT security issues. Discovery of devices
based on context is a cumbersome process i.e, securing all the components involved
in the discovery process. Security model should be made at each level of participating
entities dealing with authorization to discover devices, security threats to a network,

92

7.2 Future Directions

enabling user trust. Roman [RNL11] describes certain security and privacy aspects
in IoT environments. Data security is another important direction to protect devices
from vulnerabilities. Devices in IoT are supposed to obtain and share a huge amount of
sensitive data and this is where, the main security risk arises. Most of the IoT devices
uses the normal public internet, we can visualize the risk of sensitive data flowing
around and doubling the risk for consumers and providers.

Standardization

Internet of Things ecosystem involves several enabling technologies. The integration of
these technologies opens new doors to the researchers. Multiple contributions has been
made to bring up standards in order to realize IoT paradigm. However, there is still a
necessity to bring architectures, standards and APIs to interconnect smart objects which
are heterogeneous in nature. By now, most of the smart objects are connected through
web interfaces provided by cloud community which increases the rapid development
process but at the same time, introduces network load, latency and data processing
overhead. Enabling efficient machine-to-machine communications will reduce additional
overheads.

93

A CADsIoT Core REST API
Documentation

Base URL : http://127.0.0.1:8080/discover-iot/rest/api/v1/

A.1 Device Resource

Table A.1: Devices REST Endpoints

95

A CADsIoT Core REST API Documentation

A.1.1 Device- Show All devices

o URL: /devices

o Method: GET

o URL Params: None

o Data Params (Payload): No

o Success Response:

o Code: 200

o Content: {

"id": 1,

"name": "Video Surveillance",

"description": "Microcontroller device for Video Surveillanc",

"manufactureName": "Element Design",

"creationDate": "2017-01-04T11:34:051Z",

"modifiedDate": "2017-01-04T11:34:051Z",

"active": true,

"networkAddress": "192.168.0.6",

"contextInfo": null,

"sensors": []

}

o Error Response: None

o Sample Call:

GET /discover-iot/rest/api/v1/devices HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.1: Show ALL Devices

96

A.1 Device Resource

A.1.2 Device- Show Device

o URL: /devices/{id}

o Method: GET

o URL Params:

o Required: id=[integer]

o Data Params (Payload): None

o Success Response:

o Code: 200

o Content: {

"id": 1,

"name": "Video Surveillance",

"description": "Microcontroller device for Video Surveillanc",

"manufactureName": "Element Design",

"creationDate": "2017-01-04T11:34:051Z",

"modifiedDate": "2017-01-04T11:34:051Z",

"active": true,

"networkAddress": "192.168.0.6",

"contextInfo": null,

"sensors": []

}

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The device you requested with id 15 was not found in the

database",

"link": null,

"developerMessage": "Verify the existence of the Device with the id 15

in the database"

}

o Sample Call:

GET /discover-iot/rest/api/v1/devices/1 HTTP/1.1

Host: 127.0.0.1:8080

Cache-Control: no-cache

Listing A.2: Show Device

97

A CADsIoT Core REST API Documentation

A.1.3 Device- Add new Device

o URL: /devices

o Method: POST

o URL Params: None

o Data Params (Payload):

o Payload: {

"name": "Video Surveillance",

"description": "Microcontroller device for Video Surveillanc",

"manufactureName": "Element Design",

"active": true,

"networkAddress": "192.168.0.6"

}

o Success Response:

o Code: 201

o Content: {

"id": 1,

"name": "Video Surveillance",

"description": "Microcontroller device for Video Surveillanc",

"manufactureName": "Element Design",

"creationDate": "2017-01-04T11:34:051Z",

"modifiedDate": "2017-01-04T11:34:051Z",

"active": true,

"networkAddress": "192.168.0.6",

"contextInfo": null,

"sensors": []

}

o Header: Location -- http://127.0.0.1:8080/discover-iot/rest/api/v1/devices/1

o Error Response: None

o Sample Call:

POST /discover-iot/rest/api/v1/devices HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Cache-Control: no-cache

Listing A.3: Add New Device

98

A.1 Device Resource

A.1.4 Device- Modify Device

o URL: /devices/{id}

o Method: PUT

o URL Params:

o Required: id=[integer]

o Data Params (Payload):

o Payload: {

"name": "Video Surveillance",

"description": "Microcontroller device for Video Surveillance",

"manufactureName": "Element Design",

"active": true,

"networkAddress": "192.168.0.6"

}

o Success Response:

o Code: 201

o Content: {"message": "Device has been updated"}

o Header: Location -- http://127.0.0.1:8080/discover-iot/rest/api/v1/devices/1

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The device you requested with id 2 was not found in the

database",

"link": null,

"developerMessage": "Verify the existence of the Device with the id 2

in the database"

}

o Sample Call:

PUT /discover-iot/rest/api/v1/devices/2 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.4: Modify Device

99

A CADsIoT Core REST API Documentation

A.1.5 Device- Partial Modify Device

o URL: /devices/{id}

o Method: POST

o URL Params:

o Required: id=[integer]

o Data Params (Payload):

o Payload: {

"active": true,

"networkAddress": "192.168.0.2"

}

o Success Response:

o Code: 200

o Content: {"message": "Device has been successfully updated" }

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The device you requested with id 2 was not found in

the database",

"link": null,

"developerMessage": "Verify the existence of the Device with the

id 2 in the database"

}

o Sample Call:

POST /discover-iot/rest/api/v1/devices/1 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.5: Partial update Device

100

A.1 Device Resource

A.1.6 Device- Delete Device

o URL: /devices/{id}

o Method: DELETE

o URL Params:

o Required: id=[integer]

o Data Params (Payload): None

o Success Response:

o Code: 204

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The device you requested with id 2 was not found in the

database",

"link": null,

"developerMessage": "Verify the existence of the Device with the id 2

in the database"

}

o Sample Call:

DELETE /discover-iot/rest/api/v1/devices/1 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.6: Delete Device

101

A CADsIoT Core REST API Documentation

A.2 Sensor Resource

Table A.2: Sensors REST Endpoints

102

A.2 Sensor Resource

A.2.1 Sensor- Show All sensors

o URL: /sensors

o Method: GET

o URL Params: None

o Data Params (Payload): No

o Success Response:

o Code: 200

o Content: {

"id": 1,

"name": "Humidity Sensor",

"description": "Humidity Sensor (multi purpose)",

"manufactureName": "ABM Electric",

"creationDate": "2017-01-04T14:34:043Z",

"modifiedDate": "2017-01-04T14:34:043Z",

"active": true,

"location": "Building38/Floor1/Room23",

"category": "temperature",

"deviceId": null,

"connectionType": "wired",

"topicId": "demoTopic",

"subscriptions": []

}

o Error Response: None

o Sample Call:

GET /discover-iot/rest/api/v1/sensors HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.7: Show ALL sensor

103

A CADsIoT Core REST API Documentation

A.2.2 Sensor- Show Sensor

o URL: /sensors/{id}

o Method: GET

o URL Params:

o Required: id=[integer]

o Data Params (Payload): None

o Success Response:

o Code: 200

o Content: {

"id": 1,

"name": "Humidity Sensor",

"description": "Humidity Sensor (multi purpose)",

"manufactureName": "ABM Electric",

"creationDate": "2017-01-04T14:34:043Z",

"modifiedDate": "2017-01-04T14:34:043Z",

"active": true,

"location": "Building38/Floor1/Room23",

"category": "temperature",

"deviceId": null,

"connectionType": "wired",

"topicId": "demoTopic",

"subscriptions": []

}

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The sensor you requested with id 15 was not found in the

database",

"link": null,

"developerMessage": "Verify the existence of the sensor with the id 15

in the database"

}

o Sample Call:

GET /discover-iot/rest/api/v1/sensors/1 HTTP/1.1

Host: 127.0.0.1:8080

Cache-Control: no-cache

Listing A.8: Show Sensor

104

A.2 Sensor Resource

A.2.3 Sensor- Add new Sensor

o URL: /sensors

o Method: POST

o URL Params: None

o Data Params (Payload):

o Payload: {

"name": "Humidity Sensor",

"description": "Humidity Sensor (multi purpose)",

"manufactureName": "ABM Electric",

"creationDate": null,

"modifiedDate": null,

"active": true,

"location": "Building38/Floor1/Room23",

"category": "temperature",

"connectionType": "wired",

"topicId": "demoTopic"

}

o Success Response:

o Code: 201

o Content: {

"id": 1,

"name": "Humidity Sensor",

"description": "Humidity Sensor (multi purpose)",

"manufactureName": "ABM Electric",

"creationDate": "2017-01-04T14:34:043Z",

"modifiedDate": "2017-01-04T14:34:043Z",

"active": true,

"location": "Building38/Floor1/Room23",

"category": "temperature",

"deviceId": null,

"connectionType": "wired",

"topicId": "demoTopic",

"subscriptions": []

}

o Header: Location -- http://127.0.0.1:8080/discover-iot/rest/api/v1/sensors/1

o Error Response: None

o Sample Call:

POST /discover-iot/rest/api/v1/sensors HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Cache-Control: no-cache

Listing A.9: Add New Sensor

105

A CADsIoT Core REST API Documentation

A.2.4 Sensor- Modify Sensor

o URL: /sensors/{id}

o Method: PUT

o URL Params:

o Required: id=[integer]

o Data Params (Payload):

o Payload: {

"name": "Humidity Sensor",

"description": "Humidity Sensor (multi purpose)",

"manufactureName": "ABM Electric",

"creationDate": "2017-01-04T14:34:043Z",

"modifiedDate": "2017-01-04T14:34:043Z",

"active": true,

"location": "Building38/Floor1/Room1",

"category": "temperature",

"connectionType": "wired",

"topicId": "demoTopic",

}

o Success Response:

o Code: 201

o Content: {"message": "Sensor has been updated"}

o Header: Location -- http://127.0.0.1:8080/discover-iot/rest/api/v1/sensors/1

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The sensor you requested with id {id} was not found in the

database",

"link": null,

"developerMessage": "Verify the existence of the sensor with the id

{id} in the database"

}

o Sample Call:

PUT /discover-iot/rest/api/v1/sensors/1 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.10: Modify Sensor

106

A.2 Sensor Resource

A.2.5 Sensor- Partial Modify Sensor

- Updates sensor resource partially.
- Attach sensor to devices.

o URL: /sensors/{id}

o Method: POST

o URL Params:

o Required: id=[integer]

o Data Params (Payload):

o Payload: { "deviceId": 1 }

o Success Response:

o Code: 200

o Content: {"message": "sensor has been successfully updated"}

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The sensor you requested with id {id} was not found in the

database",

"link": null,

"developerMessage": "Verify the existence of the sensor with the id

{id} in the database"

}

o Sample Call:

POST /discover-iot/rest/api/v1/sensors/1 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.11: Partial Update Sensor

107

A CADsIoT Core REST API Documentation

A.2.6 Sensor- Delete Sensor

o URL: /sensors/{id}

o Method: DELETE

o URL Params:

o Required: id=[integer]

o Data Params (Payload): None

o Success Response:

o Code: 204

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The sensor you requested with id 2 was not found in the database",

"link": null,

"developerMessage": "Verify the existence of the sensor with the id 2 in the

database"

}

o Sample Call:

DELETE /discover-iot/rest/api/v1/sensors/1 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.12: Delete Sensor update Device

108

A.2 Sensor Resource

A.2.7 Sensor- Show Subscribed Sensors

o URL: /sensors?subscriber={email_address}

o Method: GET

o URL Params:

o Required: subscribers=[email_address]

o Data Params (Payload): None

o Success Response:

o Code: 200

o Content : [

{

"id": 1,

"name": "Humidity Sensor",

"description": "Humidity Sensor (multi purpose)",

"manufactureName": "Texas Instruments",

"creationDate": "2017-01-04T14:34:043Z",

"modifiedDate": "2017-01-04T15:30:059Z",

"active": false,

"location": "Building9/Floor1/Room1",

"category": "temperature",

"deviceId": 1,

"subscriptionId": null,

"connectionType": "wired",

"topicId": "topicId",

"subscriptions": [

{

"id": 1,

"name": "Bernd Wagner ",

"description": "Bernd Wagner (Stuttgart)",

"email": "bernd.wagner@gmail.com",

"creationDate": "2017-01-04T16:25:004Z",

"modifiedDate": "2017-01-04T16:29:011Z",

"sensorId": 1

}

]

}

]

o Error Response: None

o Sample Call:

GET /discover-iot/rest/api/v1/sensors?subscriber=bernd.wagner@gmail.com HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.13: Show Subscribed Sensors

109

A CADsIoT Core REST API Documentation

A.2.8 Sensor- Show Nearest Sensors

o URL: /sensors?subscriber={email_address}&lat={lat}&lon={lon}

o Method: GET

o URL Params:

o Required: subscribers=[email_address] ,

o Optional : lat=[double], lon=[double], this gives all nereast (subscribed) senors

within 1km region

o Data Params (Payload): None

o Success Response:

o Code: 200

o Content : [

{

"id": 1,

"name": "Humidity Sensor",

"description": "Humidity Sensor (multi purpose)",

"manufactureName": "Texas Instruments",

"creationDate": "2017-01-04T14:34:043Z",

"modifiedDate": "2017-01-04T15:30:059Z",

"active": false,

"location": "Building9/Floor1/Room1",

"category": "temperature",

"deviceId": 1,

"subscriptionId": null,

"connectionType": "wired",

"topicId": "topicId",

"subscriptions": [

{

"id": 1,

"name": "Bernd Wagner ",

"description": "Bernd Wagner (Stuttgart)",

"email": "bernd.wagner@gmail.com",

"creationDate": "2017-01-04T16:25:004Z",

"modifiedDate": "2017-01-04T16:29:011Z",

"sensorId": 1

}

]

}

]

o Error Response: None

o Sample Call:

GET /discover-iot/rest/api/v1/sensors?subscriber=bernd.wagner@gmail.com

&lat=48.744552&lon=9.106863 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.14: Show Nearest Sensors based on current location

110

A.3 Context Resource

A.3 Context Resource

Table A.3: Contexts REST Endpoints

111

A CADsIoT Core REST API Documentation

A.3.1 Context- Show All Contexts

o URL: /locations

o Method: GET

o URL Params: None

o Data Params (Payload): No

o Success Response:

o Code: 200

o Content: {

"id": 1,

"name": "Trattoria Da Franco",

"description": "Hotel",

"streetName": "Adolf-Engster-Weg",

"streetNo": "10",

"city": "Stuttgart",

"zipcode": "70569",

"country": "Germany",

"lat": 48.748605,

"lon": 9.082285,

"creationDate": "2017-01-04T16:03:023Z",

"modifiedDate": "2017-01-04T16:03:023Z",

"deviceId": null

}

o Error Response: None

o Sample Call:

GET /discover-iot/rest/api/v1/locations HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.15: Show ALL Context

112

A.3 Context Resource

A.3.2 Context- Show Context

o URL: /locations/{id}

o Method: GET

o URL Params:

o Required: id=[integer]

o Data Params (Payload): None

o Success Response:

o Code: 200

o Content: {

"id": 1,

"name": "Trattoria Da Franco",

"description": "Hotel",

"streetName": "Adolf-Engster-Weg",

"streetNo": "10",

"city": "Stuttgart",

"zipcode": "70569",

"country": "Germany",

"lat": 48.748605,

"lon": 9.082285,

"creationDate": "2017-01-04T16:03:023Z",

"modifiedDate": "2017-01-04T16:03:023Z",

"deviceId": null

}

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The ContextInfo you requested with id {id} was not found in

the database",

"link": null,

"developerMessage": "Verify the existence of the ContextInfo with the

id {id} in the database"

}

o Sample Call:

GET /discover-iot/rest/api/v1/locations/1 HTTP/1.1

Host: 127.0.0.1:8080

Cache-Control: no-cache

Listing A.16: Show Context

113

A CADsIoT Core REST API Documentation

A.3.3 Context- Add New Context

o URL: /locations

o Method: POST

o URL Params: None

o Data Params (Payload):

o Payload: {

"name": "Trattoria Da Franco",

"description": "Hotel",

"streetName": "Adolf-Engster-Weg",

"streetNo": "10",

"city": "Stuttgart",

"zipcode": "70569",

"country": "Germany",

"lat": 48.748605,

"lon": 9.082285,

"creationDate": null,

"modifiedDate": null,

}

o Success Response:

o Code: 201

o Content: {

"id": 1,

"name": "Trattoria Da Franco",

"description": "Hotel",

"streetName": "Adolf-Engster-Weg",

"streetNo": "10",

"city": "Stuttgart",

"zipcode": "70569",

"country": "Germany",

"lat": 48.748605,

"lon": 9.082285,

"creationDate": "2017-01-04T16:03:023Z",

"modifiedDate": "2017-01-04T16:03:023Z",

"deviceId": null

}

o Header: Location -- http://127.0.0.1:8080/discover-iot/rest/api/v1/locations/1

o Error Response: None

o Sample Call:

POST /discover-iot/rest/api/v1/locations HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.17: Add New Context

114

A.3 Context Resource

A.3.4 Context- Modify Context

o URL: /locations/{id}

o Method: PUT

o URL Params:

o Required: id=[integer]

o Data Params (Payload):

o Payload: {

"name": "Trattoria Da Franco",

"description": "Comnunity Hotel",

"streetName": "Adolf-Engster-Weg",

"streetNo": "10",

"city": "Stuttgart",

"zipcode": "70569",

"country": "Germany",

"lat": 48.748605,

"lon": 9.082285,

"creationDate": null,

"modifiedDate": null

}

o Success Response:

o Code: 201

o Content: {"message": "context Info has been updated"}

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The ContextInfo you requested with id {id} was not found in

the database",

"link": null,

"developerMessage": "Verify the existence of the ContextInfo with the

id {id} in the database"

}

o Sample Call:

PUT /discover-iot/rest/api/v1/locations/1 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.18: Modify Context

115

A CADsIoT Core REST API Documentation

A.3.5 Context- Partial Modify Context

- Updates context resource partially.
- Attach context to devices.

o URL: /locations/{id}

o Method: POST

o URL Params:

o Required: id=[integer]

o Data Params (Payload):

o Payload: {

"description" : "Community Hotel Stuttgart",

"deviceId": 1

}

o Success Response:

o Code: 200

o Content: {"message": "Context Info has been successfully updated"}

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The ContextInfo you requested with id {id} was not found in

the database",

"link": null,

"developerMessage": "Verify the existence of the ContextInfo with the

id {id} in the database"

}

o Sample Call:

POST /discover-iot/rest/api/v1/locations/1 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.19: Partial Update Context

116

A.3 Context Resource

A.3.6 Context- Delete Context

o URL: /locations/{id}

o Method: DELETE

o URL Params:

o Required: id=[integer]

o Data Params (Payload): None

o Success Response:

o Code: 204

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The context you requested with id {id} was not found in the

database",

"link": null,

"developerMessage": "Verify the existence of the sensor with the id

{id} in the database"

}

o Sample Call:

DELETE /discover-iot/rest/api/v1/locations/1 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.20: Delete Context

117

A CADsIoT Core REST API Documentation

A.4 Subscription Resource

Table A.4: Subscriptions REST Endpoints

A.4.1 Subscription - Show All Subscriptions

o URL: /subscriptions

o Method: GET

o URL Params: None

o Data Params (Payload): No

o Success Response:

o Code: 200

o Content: {

"id": 1,

"name": "Bernd Wagner",

"description": "Bernd Wagner",

"email": "bernd.wagner@gmail.com",

"creationDate": "2017-01-04T16:25:004Z",

"modifiedDate": "2017-01-04T16:25:004Z",

"sensorId": null

}

o Error Response: None

o Sample Call:

GET /discover-iot/rest/api/v1/subscriptions HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.21: Show ALL Subscriptions

118

A.4 Subscription Resource

A.4.2 Subscription- Show Subscription

o URL: /subscriptions/{id}

o Method: GET

o URL Params:

o Required: id=[integer]

o Data Params (Payload): None

o Success Response:

o Code: 200

o Content: {

"id": 1,

"name": "Bernd Wagner",

"description": "Bernd Wagner",

"email": "bernd.wagner@gmail.com",

"creationDate": "2017-01-04T16:25:004Z",

"modifiedDate": "2017-01-04T16:25:004Z",

"sensorId": null

}

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The subscriber you requested with id {id} was not found in

the database",

"link": null,

"developerMessage": "Verify the existence of the subscriber with the id

{id} in the database"

}

o Sample Call:

GET /discover-iot/rest/api/v1/subscriptions/1 HTTP/1.1

Host: 127.0.0.1:8080

Cache-Control: no-cache

Listing A.22: Show Subscription

119

A CADsIoT Core REST API Documentation

A.4.3 Subscription- Add New Subscription

o URL: /subscriptions

o Method: POST

o URL Params: None

o Data Params (Payload):

o Payload: {

"name": "Bernd Wagner",

"description": "Bernd Wagner",

"email": "bernd.wagner@gmail.com",

"creationDate": null,

"modifiedDate": null

}

o Success Response:

o Code: 201

o Content: {

"id": 1,

"name": "Bernd Wagner",

"description": "Bernd Wagner",

"email": "bernd.wagner@gmail.com",

"creationDate": "2017-01-04T16:25:004Z",

"modifiedDate": "2017-01-04T16:25:004Z",

"sensorId": null

}

o Header: Location --

http://127.0.0.1:8080/discover-iot/rest/api/v1/subscriptions/1

o Error Response: None

o Sample Call:

POST /discover-iot/rest/api/v1/subscriptions HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.23: Add New Subscription

120

A.4 Subscription Resource

A.4.4 Subscription- Modify Subscription

o URL: /subscription/{id}

o Method: PUT

o URL Params:

o Required: id=[integer]

o Data Params (Payload):

o Payload: {

"name": "Bernd Wagner ",

"description": "Bernd Wagner (Stuttgart)",

"email": "bernd.wagner@gmail.com",

"creationDate": null,

"modifiedDate": null

}

o Success Response:

o Code: 201

o Content: {"message": "Subscription 1 has been updated"}

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The subscriber you requested with id {id} was not found in

the database",

"link": null,

"developerMessage": "Verify the existence of the subscriber with the id

{id} in the database"

}

o Header: {Location --

http://127.0.0.1:8080/discover-iot/rest/api/v1/subscriptions/1

o Sample Call:

PUT /discover-iot/rest/api/v1/subscriptions/1 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.24: Modify Subscription

121

A CADsIoT Core REST API Documentation

A.4.5 Subscription- Partial Modify Subscription

- Updates subscription resource partially.
- Attach subscription to sensors.

o URL: /subscriptions/{id}

o Method: POST

o URL Params:

o Required: id=[integer]

o Data Params (Payload):

o Payload: { "sensorId": 1 }

o Success Response:

o Code: 200

o Content: {"message": "subscription 1 has been successfully updated"}

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The subscriber you requested with id {id} was not found in

the database",

"link": null,

"developerMessage": "Verify the existence of the subscriber with the id

{id} in the database"

}

o Sample Call:

POST /discover-iot/rest/api/v1/subscriptions/1 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.25: Partial Update Subscription

122

A.4 Subscription Resource

A.4.6 Subscription- Delete Subscription

o URL: /subscriptions/{id}

o Method: DELETE

o URL Params:

o Required: id=[integer]

o Data Params (Payload): None

o Success Response:

o Code: 204

o Error Response:

o Code: 404

o Content: {

"status": 404,

"code": 404,

"message": "The resource you requested with id {id} was not found in

the database",

"link": null,

"developerMessage": "Please verify existence of data in the database

for the id - {id}""

}

o Sample Call:

DELETE /discover-iot/rest/api/v1/subscriptions/1 HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.26: Delete Subscription

123

A CADsIoT Core REST API Documentation

A.4.7 Subscription- Show All Subscriptions by subscriber

o URL: /subscriptions?subscriber={email_address}

o Method: GET

o URL Params:

o Required: subscribers=[email_address]

o Data Params (Payload): None

o Success Response:

o Code: 200

o Content : {

"id": 1,

"name": "Bernd Wagner ",

"description": "Bernd Wagner (Stuttgart)",

"email": "bernd.wagner@gmail.com",

"creationDate": "2017-01-04T16:25:004Z",

"modifiedDate": "2017-01-04T16:29:011Z",

"sensorId": 1

}

o Error Response: None

o Sample Call:

GET /discover-iot/rest/api/v1/subscriptions?subscriber=bernd.wagner@gmail.com

HTTP/1.1

Host: 127.0.0.1:8080

Content-Type: application/json

Listing A.27: Show All Subscriptions By Subscriber

124

List of Abbreviations

Abbreviation Meaning First occurrence

AAL Ambient Assistant Living 41
BLOB Binary Large Object 55
CADsIoT Context-Aware Discovery Service for Internet of

Things
3

CC Cloud Computing 15
CoAp Constrained Application Protocol 34
ERD Entity Relationship Diagram 58
GPS Global Positioning System 16
GSN Global Sensor Network 27
HMI Human-Machine-Interaction 24
HTTP HyperText Transport Protocol 30
IETF Internet Engineering Task Force 34
IoT Internet of Things 3
IP Internet Protocol 22
JPA Java Persistence API 80
JSON Javascript Object Notation 35
LBS Location Based Services 57
LSM Linked Sensor Middleware 29
M2M Machine-to-Machine 15
MQTT Message Queue Telemetry Transport 30
NIST National Institute of Standards and Technology 21
ORM Object/Relational Mapping 76
OSI Open Systems Interconnection 21
POJOs Plain Old Java Objects 80
REST Representational State Transfer 3
RFID Radio Frequency Identification Device 15
SDK Software Development Kit 31
URI Universal Resource Identifier 36
URL Universal Resource Locator 65

125

List of Abbreviations

(continued)

Abbreviation Meaning First occurrence

VSM Virtual Sensor Manager 28
XML Extensible Markup Language 35
XMPP Extensible Messaging and Presence Protocol 34

126

Bibliography

[AG-EPoSS08] G. H. A. Bassi. Internet of Things in 2020: A Roadmap for the future.
2008. URL: http://www.sztaki.hu/~pbakonyi/bme/kieg/Internet-of-
Things_in_2020_EC-EPoSS_Workshop_Report_2008_v3.pdf (visited
on 08/13/2016) (cit. on p. 19).

[AGD99] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, P. Steggles.
“Towards a better understanding of context and context-awareness.”
In: International Symposium on Handheld and Ubiquitous Computing.
Springer Berlin Heidelberg. 1999, pp. 304–307 (cit. on p. 40).

[AIA10] L. Atzori, A. Iera, G. Morabito. “The Internet of Things: A Survey.” In:
Comput. Netw. 54.15 (Oct. 2010), pp. 2787–2805. ISSN: 1389-1286.
DOI: 10.1016/j.comnet.2010.05.010. URL: http://dx.doi.org/10.1016/
j.comnet.2010.05.010 (cit. on p. 19).

[AKA14] M. Aazam, I. Khan, A. A. Alsaffar, E. N. Huh. “Cloud of Things: Integrat-
ing Internet of Things and cloud computing and the issues involved.” In:
Proceedings of 2014 11th International Bhurban Conference on Applied
Sciences Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January,
2014. Jan. 2014, pp. 414–419. DOI: 10.1109/IBCAST.2014.6778179
(cit. on pp. 16, 20).

[AKM06] K. Aberer, M. Hauswirth, A. Salehi. “A Middleware for Fast and Flexible
Sensor Network Deployment.” In: Proceedings of the 32Nd International
Conference on Very Large Data Bases. VLDB ’06. Seoul, Korea: VLDB
Endowment, 2006, pp. 1199–1202. (Visited on 08/08/2016) (cit. on
pp. 27, 28).

[BAJ16] A. Bhatt, J. Patoliya. “Cost effective digitization of home appliances
for home automation with low-power WiFi devices.” In: Advances in
Electrical, Electronics, Information, Communication and Bio-Informatics
(AEEICB), 2016 2nd International Conference on. IEEE, 2016, pp. 643–
648. URL: http://ieeexplore.ieee.org/abstract/document/7538368/
(visited on 12/04/2016) (cit. on p. 40).

127

http://www.sztaki.hu/~pbakonyi/bme/kieg/Internet-of-Things_in_2020_EC-EPoSS_Workshop_Report_2008_v3.pdf
http://www.sztaki.hu/~pbakonyi/bme/kieg/Internet-of-Things_in_2020_EC-EPoSS_Workshop_Report_2008_v3.pdf
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/IBCAST.2014.6778179
http://ieeexplore.ieee.org/abstract/document/7538368/

Bibliography

[BFR12] F. Bonomi, R. Milito, J. Zhu, S. Addepalli. “Fog Computing and Its
Role in the Internet of Things.” In: Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing. MCC ’12. New York,
NY, USA: ACM, 2012, pp. 13–16. ISBN: 978-1-4503-1519-7. DOI: 10.
1145/2342509.2342513. URL: http://doi.acm.org/10.1145/2342509.
2342513 (visited on 08/03/2016) (cit. on pp. 22–25).

[BP95] P. J. Brown. “The stick-e document: a framework for creating context-
aware applications.” In: ELECTRONIC PUBLISHING-CHICHESTER- 8
(1995), pp. 259–272. URL: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.8.7472&rep=rep1&type=pdf (visited on
12/06/2016) (cit. on p. 39).

[BSM11] Soma Bandyopadhyay, Munmun Sengupta, Souvik Maiti, Subhajit
Dutta. “Role Of Middleware For Internet Of Things: A Study.” In:
International Journal of Computer Science & Engineering Survey 2.3
(Aug. 2011), pp. 94–105. ISSN: 09763252. DOI: 10.5121/ijcses.2011.
2307. URL: http://www.airccse.org/journal/ijcses/papers/0811cses07.
pdf (visited on 12/04/2016) (cit. on p. 44).

[BTDA13] S. Bendel, T. Springer, D. Schuster, A. Schill, R. Ackermann, M. Ameling.
“A service infrastructure for the Internet of Things based on XMPP.” In:
2013 IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PERCOM Workshops). Mar. 2013, pp. 385–388.
DOI: 10.1109/PerComW.2013.6529522 (cit. on p. 35).

[CC-NIST11] G. Swenson. Final Version of NIST Cloud Computing Definition Published.
Text. Oct. 2011. URL: https://www.nist.gov/news-events/news/2011/
10/final-version-nist-cloud-computing-definition-published (visited on
09/27/2016) (cit. on p. 22).

[CJA14] J.-P. Calbimonte, S. Sarni, J. Eberle, K. Aberer. “XGSN: an open-source
semantic sensing middleware for the web of things.” In: 2014. URL:
http://ceur-ws.org/Vol-1401/tc-ssn2014-complete.pdf#page=53
(visited on 08/08/2016) (cit. on p. 29).

[CoAp16] CoAP — Constrained Application Protocol | Overview. 2016. URL: http:
//coap.technology/ (visited on 08/10/2016) (cit. on p. 34).

[DAB01] A. K. Dey, G. D. Abowd, D. Salber. “A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-aware Appli-
cations.” In: Hum.-Comput. Interact. 16.2 (Dec. 2001), pp. 97–166.
ISSN: 0737-0024. DOI: 10.1207/S15327051HCI16234_02. URL: http:
//dx.doi.org/10.1207/S15327051HCI16234_02 (cit. on p. 39).

128

http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.7472&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.7472&rep=rep1&type=pdf
http://dx.doi.org/10.5121/ijcses.2011.2307
http://dx.doi.org/10.5121/ijcses.2011.2307
http://www.airccse.org/journal/ijcses/papers/0811cses07.pdf
http://www.airccse.org/journal/ijcses/papers/0811cses07.pdf
http://dx.doi.org/10.1109/PerComW.2013.6529522
https://www.nist.gov/news-events/news/2011/10/final-version-nist-cloud-computing-definition-published
https://www.nist.gov/news-events/news/2011/10/final-version-nist-cloud-computing-definition-published
http://ceur-ws.org/Vol-1401/tc-ssn2014-complete.pdf#page=53
http://coap.technology/
http://coap.technology/
http://dx.doi.org/10.1207/S15327051HCI16234_02
http://dx.doi.org/10.1207/S15327051HCI16234_02
http://dx.doi.org/10.1207/S15327051HCI16234_02

Bibliography

[DHL-Cisco15] DHL, Cisco Consulting Services. “Internet of Things In Logistics: A
Report.” In: (2015). URL: http://www.dpdhl.com/content/dam/dpdhl/
presse/pdf/2015/DHLTrendReport_Internet_of_things.pdf (visited on
01/02/2017) (cit. on p. 44).

[FRJ-RFC14] R. Fielding, J. Reschke. “Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content.” In: (2014). URL: http://tools.ietf.org/html/
rfc7231 (visited on 12/21/2016) (cit. on p. 69).

[FRJ14] R. Fielding, J. Reschke. “Hypertext transfer protocol (HTTP/1.1): Mes-
sage syntax and routing.” In: (2014). URL: http://tools.ietf.org/html/
rfc7230 (visited on 12/20/2016) (cit. on p. 67).

[FRT00] R. T. Fielding. “Architectural styles and the design of network-based
software architectures.” PhD thesis. University of California, Irvine,
2000. URL: http : / / jpkc . fudan . edu . cn / picture / article / 216 / 35 /
4b/22598d594e3d93239700ce79bce1/7ed3ec2a-03c2-49cb-8bf8-
5a90ea42f523.pdf (visited on 12/12/2016) (cit. on p. 35).

[Gartner16] Gartner: 21 Billion IoT Devices To Invade By 2020. 2016. URL: http:
//www.informationweek.com/mobile/mobile-devices/gartner-21-
billion-iot-devices-to-invade-by-2020/d/d-id/1323081 (visited on
08/06/2016) (cit. on p. 16).

[GSD15] S. R. Garzon, B. Deva. “Infrastructure-Assisted Geofencing: Proactive
Location-Based Services with Thin Mobile Clients and Smart Servers.”
In: IEEE, Mar. 2015, pp. 61–70. ISBN: 978-1-4799-8977-5. DOI: 10.
1109/MobileCloud.2015.31. URL: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7130870 (visited on 01/01/2017)
(cit. on p. 57).

[HRP97] R. Hull, P. Neaves, J. Bedford-Roberts. “Towards situated computing.”
In: Wearable Computers, 1997. Digest of Papers., First International
Symposium on. IEEE, 1997, pp. 146–153. URL: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=629931 (visited on 12/06/2016)
(cit. on p. 39).

[ISE15] U. Isikdag. Enhanced Building Information Models. SpringerBriefs in
Computer Science. Cham: Springer International Publishing, 2015.
ISBN: 978-3-319-21824-3. URL: http://link.springer.com/10.1007/978-
3-319-21825-0 (visited on 08/10/2016) (cit. on pp. 33, 34).

[JCIoT13] Jim Chase. The Evolution of the Internet of Things. White Paper. Texas
Instruments, 2013. URL: http://www.ti.com/lit/ml/swrb028/swrb028.
pdf (cit. on p. 20).

129

http://www.dpdhl.com/content/dam/dpdhl/presse/pdf/2015/DHLTrendReport_Internet_of_things.pdf
http://www.dpdhl.com/content/dam/dpdhl/presse/pdf/2015/DHLTrendReport_Internet_of_things.pdf
http://tools.ietf.org/html/rfc7231
http://tools.ietf.org/html/rfc7231
http://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc7230
http://jpkc.fudan.edu.cn/picture/article/216/35/4b/22598d594e3d93239700ce79bce1/7ed3ec2a-03c2-49cb-8bf8-5a90ea42f523.pdf
http://jpkc.fudan.edu.cn/picture/article/216/35/4b/22598d594e3d93239700ce79bce1/7ed3ec2a-03c2-49cb-8bf8-5a90ea42f523.pdf
http://jpkc.fudan.edu.cn/picture/article/216/35/4b/22598d594e3d93239700ce79bce1/7ed3ec2a-03c2-49cb-8bf8-5a90ea42f523.pdf
http://www.informationweek.com/mobile/mobile-devices/gartner-21-billion-iot-devices-to-invade-by-2020/d/d-id/1323081
http://www.informationweek.com/mobile/mobile-devices/gartner-21-billion-iot-devices-to-invade-by-2020/d/d-id/1323081
http://www.informationweek.com/mobile/mobile-devices/gartner-21-billion-iot-devices-to-invade-by-2020/d/d-id/1323081
http://dx.doi.org/10.1109/MobileCloud.2015.31
http://dx.doi.org/10.1109/MobileCloud.2015.31
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7130870
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7130870
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=629931
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=629931
http://link.springer.com/10.1007/978-3-319-21825-0
http://link.springer.com/10.1007/978-3-319-21825-0
http://www.ti.com/lit/ml/swrb028/swrb028.pdf
http://www.ti.com/lit/ml/swrb028/swrb028.pdf

Bibliography

[JM16] J. McKendrick. Fog Computing: a New IoT Architecture. Web Resource.
RTInsights, 2016. URL: https://www.rtinsights.com/what- is- fog-
computing-open-consortium/ (cit. on p. 23).

[KCVA15] V. Karagiannis, P. Chatzimisios, F. Vázquez-Gallego, J. Alonso-Zárate.
“A Survey on Application Layer Protocols for the Internet of Things.”
In: Transaction on IoT and Cloud Computing 1.1 (Jan. 2015). DOI: 10.
5281/zenodo.51613. URL: http://dx.doi.org/10.5281/zenodo.51613
(cit. on p. 33).

[KD08] R. van Kranenburg, S. Dodson. The Internet of Things: A Critique of
Ambient Technology and the All-seeing Network of RFID. Network note-
books. Institute of Network Cultures, 2008. ISBN: 9789078146063.
URL: https://books.google.de/books?id=PilgkgEACAAJ (visited on
08/13/2016) (cit. on p. 19).

[KSR12] R. Khan, S. U. Khan, R. Zaheer, S. Khan. “Future Internet: The Internet
of Things Architecture, Possible Applications and Key Challenges.”
In: IEEE, Dec. 2012, pp. 257–260. ISBN: 978-0-7695-4927-9. DOI:
10.1109/FIT.2012.53. URL: http://ieeexplore.ieee.org/document/
6424332/ (visited on 01/01/2017) (cit. on p. 20).

[LGZ15] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, L. Sun. “Fog Computing:
Focusing on Mobile Users at the Edge.” In: arXiv:1502.01815 [cs] (Feb.
2015). arXiv: 1502.01815. URL: http://arxiv.org/abs/1502.01815
(visited on 08/03/2016) (cit. on p. 25).

[MM12] M. Massé. REST API design rulebook: [designing consistent RESTful Web
Service Interfaces]. eng. Beijing: O’Reilly, 2012. ISBN: 978-1-4493-1050-
9 (cit. on p. 66).

[MR97] R. Moats. URN syntax. Tech. rep. 1997. URL: https://www.rfc-editor.
org/rfc/pdfrfc/rfc2141.txt.pdf (visited on 12/20/2016) (cit. on p. 65).

[PCL08] C. Pautasso, O. Zimmermann, F. Leymann. “Restful web services vs.
big’web services: making the right architectural decision.” In: Proceed-
ings of the 17th international conference on World Wide Web. ACM,
2008, pp. 805–814. URL: http://dl.acm.org/citation.cfm?id=1367606
(visited on 12/12/2016) (cit. on p. 35).

[PI11] P. Parwekar. “From Internet of Things towards cloud of things.” In:
2011 2nd International Conference on Computer and Communication
Technology (ICCCT). Sept. 2011, pp. 329–333. DOI: 10.1109/ICCCT.
2011.6075156 (cit. on p. 15).

130

https://www.rtinsights.com/what-is-fog-computing-open-consortium/
https://www.rtinsights.com/what-is-fog-computing-open-consortium/
http://dx.doi.org/10.5281/zenodo.51613
http://dx.doi.org/10.5281/zenodo.51613
http://dx.doi.org/10.5281/zenodo.51613
https://books.google.de/books?id=PilgkgEACAAJ
http://dx.doi.org/10.1109/FIT.2012.53
http://ieeexplore.ieee.org/document/6424332/
http://ieeexplore.ieee.org/document/6424332/
http://arxiv.org/abs/1502.01815
https://www.rfc-editor.org/rfc/pdfrfc/rfc2141.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc2141.txt.pdf
http://dl.acm.org/citation.cfm?id=1367606
http://dx.doi.org/10.1109/ICCCT.2011.6075156
http://dx.doi.org/10.1109/ICCCT.2011.6075156

Bibliography

[PZA14] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos. “Context Aware
Computing for The Internet of Things: A Survey.” In: IEEE Communica-
tions Surveys & Tutorials 16.1 (2014), pp. 414–454. ISSN: 1553-877X.
DOI: 10.1109/SURV.2013.042313.00197. URL: http://ieeexplore.ieee.
org/document/6512846/ (visited on 12/05/2016) (cit. on p. 40).

[RFD09] F. Reclus, K. Drouard. “Geofencing for fleet & freight management.”
In: Intelligent Transport Systems Telecommunications,(ITST), 2009 9th
International Conference on. IEEE, 2009, pp. 353–356. URL: http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5399328 (visited on
12/26/2016) (cit. on p. 81).

[RNL11] R. Roman, P. Najera, J. Lopez. “Securing the internet of things.” In:
Computer 44.9 (2011), pp. 51–58. URL: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=6017172 (visited on 01/01/2017) (cit. on
p. 93).

[SGA15a] M. P. Silva, A. L. Goncalves, M. Dantas, B. Vanelli, G. Manerichi,
S. A. d. Santos, M. Ferrandim, A. Pinto. “Implementation of IoT for
Monitoring Ambient Air in Ubiquitous AAL Environments.” In: IEEE,
Nov. 2015, pp. 158–161. ISBN: 978-1-5090-0182-8. DOI: 10.1109/
SBESC.2015.37. URL: http://ieeexplore.ieee.org/document/7423232/
(visited on 12/04/2016) (cit. on p. 41).

[SGA15b] S. Sukode, S. Gite, H. Agrawal. “Context Aware Framework in IoT: A
survey.” In: International Journal 4.1 (2015). URL: https : / / www.
researchgate . net / profile / Shilpa _ Gite / publication / 273456830 _
International_Journal_of_Advanced_Trends_in_Computer_Science_
and_Engineering/links/55090dba0cf26ff55f849128.pdf (visited on
01/01/2017) (cit. on p. 92).

[SGP10] H. Sundmaeker, P. Guillemin, P. Friess, S. Woelfflé, European Com-
mission, Directorate-General for the Information Society and Media.
Vision and challenges for realising the Internet of things. English. OCLC:
847355368. Luxembourg: EUR-OP, 2010. ISBN: 978-92-79-15088-3
(cit. on pp. 19, 39).

[SMD14] S. Mansfield-Devine. “Lack of security in Internet of Things devices.”
In: Network Security 2014.8 (2014). ISSN: 1353-4858. DOI: http://
dx.doi.org/10.1016/S1353-4858(14)70075-3. URL: http://www.
sciencedirect.com/science/article/pii/S1353485814700753 (cit. on
p. 43).

131

http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://ieeexplore.ieee.org/document/6512846/
http://ieeexplore.ieee.org/document/6512846/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5399328
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5399328
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6017172
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6017172
http://dx.doi.org/10.1109/SBESC.2015.37
http://dx.doi.org/10.1109/SBESC.2015.37
http://ieeexplore.ieee.org/document/7423232/
https://www.researchgate.net/profile/Shilpa_Gite/publication/273456830_International_Journal_of_Advanced_Trends_in_Computer_Science_and_Engineering/links/55090dba0cf26ff55f849128.pdf
https://www.researchgate.net/profile/Shilpa_Gite/publication/273456830_International_Journal_of_Advanced_Trends_in_Computer_Science_and_Engineering/links/55090dba0cf26ff55f849128.pdf
https://www.researchgate.net/profile/Shilpa_Gite/publication/273456830_International_Journal_of_Advanced_Trends_in_Computer_Science_and_Engineering/links/55090dba0cf26ff55f849128.pdf
https://www.researchgate.net/profile/Shilpa_Gite/publication/273456830_International_Journal_of_Advanced_Trends_in_Computer_Science_and_Engineering/links/55090dba0cf26ff55f849128.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/S1353-4858(14)70075-3
http://dx.doi.org/http://dx.doi.org/10.1016/S1353-4858(14)70075-3
http://www.sciencedirect.com/science/article/pii/S1353485814700753
http://www.sciencedirect.com/science/article/pii/S1353485814700753

[TSJ14] S. S. Thakre, P. S. Jain. “Temperature Monitoring and Alert Generation
System–An IoT Implementation.” In: (2014). URL: https://www.ijsr.
net/archive/v4i11/NOV151294.pdf (visited on 12/04/2016) (cit. on
p. 41).

[UZL11] B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, A. Lau. “Migration of SOAP-
based services to RESTful services.” In: 2011 13th IEEE International
Symposium on Web Systems Evolution (WSE). Sept. 2011, pp. 105–114.
DOI: 10.1109/WSE.2011.6081828 (cit. on p. 35).

[VFG11] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker,
A. Bassi, I. S. Jubert, M. Mazura, M. Harrison, M. Eisenhauer, et al.
“Internet of things strategic research roadmap.” In: O. Vermesan, P.
Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, et al., Internet
of Things: Global Technological and Societal Trends 1 (2011), pp. 9–52.
(Visited on 12/04/2016) (cit. on p. 43).

[WAH97] A. Ward, A. Jones, A. Hopper. “A new location technique for the active
office.” In: IEEE Personal Communications 4.5 (1997), pp. 42–47. URL:
http:// ieeexplore . ieee.org/xpls/abs_all . jsp?arnumber=626982
(visited on 12/06/2016) (cit. on p. 39).

All links were last followed on Jan 2017.

https://www.ijsr.net/archive/v4i11/NOV151294.pdf
https://www.ijsr.net/archive/v4i11/NOV151294.pdf
http://dx.doi.org/10.1109/WSE.2011.6081828
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=626982

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Problem Definition and Motivation
	1.2 Objective
	1.3 Structure

	2 Foundation and Concepts
	2.1 Internet of Things: Interconnecting Everything
	2.2 IoT Five Layered Architecture
	2.3 Fog Computing Platform: An Extension
	2.3.1 Characterization of Fog Computing
	2.3.2 Fog Computing Architecture

	2.4 Application Domains: Fog and Cloud

	3 Related Work
	3.1 Middlewares and Frameworks
	3.1.1 Global Sensor Network - GSN
	3.1.2 OpenIoT
	3.1.3 Xively
	3.1.4 Dynamix
	3.1.5 Eclipse IoT Frameworks and Services

	3.2 Messaging Standards and Protocols
	3.2.1 MQTT
	3.2.2 CoAP
	3.2.3 XMPP
	3.2.4 RESTful Web Services over HTTP

	3.3 Technology Comparisons

	4 Requirements and Use Case
	4.1 Overview
	4.2 Requirements
	4.2.1 Functional Requirements
	4.2.2 Non-Functional Requirements

	4.3 Use Case
	4.3.1 Background
	4.3.2 Solving the Business Problem
	4.3.3 Benefits

	5 CADsIoT: Proposed Solution
	5.1 Architecture
	5.1.1 CADsIoT Core
	5.1.2 CADsIoT Navigator

	5.2 CADsIoT Core REST API
	5.2.1 Resources
	5.2.2 Representations
	5.2.3 URI Patterns
	5.2.4 Interactions

	6 CADsIoT: Implementation and Validation
	6.1 Core Features
	6.1.1 Registration
	6.1.2 Subscriptions
	6.1.3 Device Discovery
	6.1.4 Real Time Notifications

	6.2 CADsIoT Core: Backend Service
	6.2.1 Java Persistence API (JPA)
	6.2.2 Java API for RESTful Web Services (JAX-RS)
	6.2.3 Anatomy of Components

	6.3 Navigator: Smartphone Client
	6.3.1 Discovery Service
	6.3.2 Google Volley API
	6.3.3 Anatomy of Components

	6.4 Validation

	7 Discussion and Future Work
	7.1 Discussion
	7.2 Future Directions

	A CADsIoT Core REST API Documentation
	A.1 Device Resource
	A.1.1 Device- Show All devices
	A.1.2 Device- Show Device
	A.1.3 Device- Add new Device
	A.1.4 Device- Modify Device
	A.1.5 Device- Partial Modify Device
	A.1.6 Device- Delete Device

	A.2 Sensor Resource
	A.2.1 Sensor- Show All sensors
	A.2.2 Sensor- Show Sensor
	A.2.3 Sensor- Add new Sensor
	A.2.4 Sensor- Modify Sensor
	A.2.5 Sensor- Partial Modify Sensor
	A.2.6 Sensor- Delete Sensor
	A.2.7 Sensor- Show Subscribed Sensors
	A.2.8 Sensor- Show Nearest Sensors

	A.3 Context Resource
	A.3.1 Context- Show All Contexts
	A.3.2 Context- Show Context
	A.3.3 Context- Add New Context
	A.3.4 Context- Modify Context
	A.3.5 Context- Partial Modify Context
	A.3.6 Context- Delete Context

	A.4 Subscription Resource
	A.4.1 Subscription - Show All Subscriptions
	A.4.2 Subscription- Show Subscription
	A.4.3 Subscription- Add New Subscription
	A.4.4 Subscription- Modify Subscription
	A.4.5 Subscription- Partial Modify Subscription
	A.4.6 Subscription- Delete Subscription
	A.4.7 Subscription- Show All Subscriptions by subscriber

	List of Abbreviations
	Bibliography

