
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Automated Proxy Injection for
Redistributed Applications

Mihir Gore

Course of Study: INFOTECH

Examiner: Prof. Dr. Frank Leymann

Supervisor: M.Sc. Karoline Saatkamp

Commenced: March 1, 2017

Completed: August 31, 2017

CR-Classification: C.2.4, D.2.11, H.3.4

Abstract

Many businesses and enterprises use cloud platform to host their applications on the
cloud. In the current era of cloud, there are various possibilities to host such applications
on different platforms, for example, it can be hosted on-premise private or public cloud
hosts such as Google App Engine, Amazon AWS, Windows Azure. In other words, it
can be considered that they are distributed over several hosts either on local or on
cloud hosts. It is highly possible that multiple applications communicate with each
other to serve the user’s need. Due to change in business requirements, performance
or cost optimization purposes, these applications may be redistributed to different
hosts and also while redistribution, the underlying communication protocol may be
changed. In such cases, it is important to retain the same communication between these
applications. Proxies are one of the design patterns used to route the communication
between applications. This thesis proposes an approach to automatically generate and
inject such proxies containing translators and adapters between such applications to
handle redistribution of applications and communication protocol change. A goal is to
develop a tool capable of generating and injecting these proxies.

3

Contents

1 Introduction 15

2 Fundamentals 17
2.1 Communication Paradigm . 17
2.2 Host . 18
2.3 Application Redistribution . 18
2.4 Communication Design Patterns . 19

2.4.1 Proxy Pattern . 20
2.4.2 Translator Pattern . 21
2.4.3 Adapter Pattern . 22

2.5 Communication Protocols . 22
2.5.1 HTTP Protocol . 23

2.5.1.1 HTTP Request . 23
2.5.1.2 HTTP Response . 24
2.5.1.3 REST . 26

2.5.2 MQTT Protocol . 27
2.5.2.1 Publish-Subscribe Messaging Pattern 27
2.5.2.2 Broker . 27

2.5.3 HTTP vs MQTT . 27
2.6 Summary . 29

3 Related Work 31
3.1 Usage of Proxy in Distributed Systems 31

3.1.1 The Proxy Principle . 31
3.1.2 Distributed Application Proxy Generator 32
3.1.3 Proxy Injection using Client Runtime Library 34

3.2 Protocol Translation . 34
3.2.1 Application Layer Protocol Conversion 35
3.2.2 HTTP and MQTT Bridging . 36

3.2.2.1 QEST Broker . 36
3.2.2.2 Ponte Project . 38

3.3 Use of Adapters in Application Integration 39
3.4 Summary . 40

5

4 Proxy Generation and Injection Approach 41
4.1 Motivation . 41
4.2 Approaches . 42

4.2.1 Design of Proxy . 42
4.2.2 Scenario 1: Same Communication Protocol After Redistribution of

Application . 43
4.2.2.1 Solution . 44
4.2.2.2 Discussion . 45

4.2.3 Scenario 2: Changed Communication Protocol After Redistribution
of Application . 45
4.2.3.1 Solution . 46
4.2.3.2 Discussion . 47

4.2.4 Proxy Generator (PG) . 48
4.2.4.1 Input to PG . 48
4.2.4.2 Output of PG . 49

4.3 Summary . 49

5 Implementation 51
5.1 Test Environment . 51

5.1.1 Setup . 52
5.1.2 Implementation Details of Web Application 52

5.1.2.1 Requestor . 52
5.1.2.2 Responser . 53

5.2 Implementation Details for Scenario 1: HTTP Communication 56
5.2.1 Implementation Details of Proxy 56

5.3 Implementation Details for Scenario 2: HTTP to MQTT Communication 58
5.3.1 Implementation Details of Requestor Proxy 62
5.3.2 Implementation Details of Responser Proxy 62
5.3.3 Explanation for Setting Up VM 64

5.4 Implementation Details of Proxy Generator (PG) 65
5.4.1 Input to PG . 65

5.4.1.1 Input to PG: HTTP Case 65
5.4.1.2 Input to PG: MQTT Case 67

5.4.2 Output of PG . 67
5.4.2.1 Output of PG: HTTP Case 67
5.4.2.2 Output of PG: MQTT Case 69

5.5 Summary . 70

6 Validation 71
6.1 Validation of Scenario 1: HTTP Case . 72
6.2 Validation of Scenario 2: MQTT Case . 73

6

6.3 Summary . 73

7 Conclusion and Future Work 75
7.1 Future Work . 76

Bibliography 77

7

List of Figures

2.1 Application Redistribution . 19
2.2 Proxy Concept . 20
2.3 Translator Concept . 21
2.4 Adapter Concept . 22
2.5 Publish-Subscribe system based on MQTT protocol 28

3.1 A proxy for a distributed service [Sha86] 32
3.2 Distributed Application Proxy Generation as per invention [Jus07] . . . 33
3.3 Protocol Translation Mechanism as per invention [Ara07] 35
3.4 QEST Broker architecture [CCV12] . 37
3.5 Performance comparison between Mosquitto, RSMB, single QEST node

and double QEST node [CCV12] . 38
3.6 Ponte architecture [Fou13] . 39

4.1 Proxy Design . 43
4.2 Application A and Application B on same Host 44
4.3 Applications A and B are redistributed to different Hosts 44
4.4 Introduction of proxies for same communication protocol 45
4.5 Redistribution of applications along with change of communication protocol 46
4.6 Introduction of proxies for changed communication protocol 47
4.7 Proxy Generator . 48

5.1 Overview of Test Setup . 51
5.2 Web applications communicating over HTTP before redistribution 56
5.3 Web applications communicating through proxy over HTTP after redistri-

bution . 57
5.4 Web applications communicating over MQTT before redistribution . . . 60
5.5 Web applications communicating over MQTT after redistribution 61
5.6 Flowchart of PG Working . 68

6.1 HTTP GET request using REST Client . 71
6.2 HTTP POST request using REST Client 72

9

List of Tables

2.1 Most commonly used HTTP methods . 24
2.2 HTTP vs MQTT comparison . 28

11

List of Listings

2.1 HTTP GET request example . 23
2.2 HTTP POST request example . 24
2.3 HTTP response example for GET request 25

5.1 doGet() of Account.java . 53
5.2 doPost() of Account.java . 54
5.3 doGet() of Billing.java . 55
5.4 doPost() of Billing.java . 55
5.5 web.xml file for Proxy.java . 57
5.6 pom.xml file for Proxy.java . 58
5.7 Proxy.java . 59
5.8 web.xml file for RequestorProxy.java . 60
5.9 web.xml file for ResponserProxy.java . 61
5.10 service() of RequestorProxy.java . 63
5.11 init() of RequestorProxy.java . 64
5.12 messageArrived() of RequestorProxy.java 64
5.13 init() of ResponserProxy.java . 65
5.14 messageArrived() of ResponserProxy.java 66

13

1 Introduction

In recent years, cloud computing has become an important term in IT industry [Ley09].
Cloud computing benefits and it’s several characteristics such as self-service provisioning,
elasticity, and pay-per-use model attracts many people and developers [WBB+13] to
build highly sophisticated and scalable applications. In today’s world, it is apparent that
most of the businesses have their own applications, be it an enterprise application or
web application to achieve their objectives much faster and reach out to their customers.
Such businesses and companies leverage the benefits of cloud computing paradigm.

These applications are distributed in nature and are hosted on different hosts including
numerous on-premise, private, or public cloud platforms such as Google App Engine and
Amazon AWS. Typically, these applications are made up of many interacting software
components and can communicate with each other. Therefore, orchestration and wiring
of such applications is a major issue [ZBL17]. Due to varying nature of business
requirements, applications might have to be redistributed or migrated from one host
cloud provider to another. After such redistribution, it is necessary that the overall
functionality of applications remains the same and they deliver the same results possibly
with improved performance. The Scope of this thesis revolves around handling this
redistribution of applications without affecting the desired communication between
these applications.

The phrase "enterprise application" is used to describe an application or collection
of software components that particular organization uses to solve enterprise problems.
Therefore it is a big business application and these applications are typically designed
to integrate with other enterprise applications [Net17]. These applications may be
deployed across a variety of networks such as the Internet, intranet, and corporate
networks. Various design patterns described in [HW03] are widely adopted in enterprise
integration. Out of these patterns, this thesis uses Proxy Pattern, Translator Pattern, and
Adapter Pattern to handle the re-distribution of applications.

15

1 Introduction

In general, software components or applications that are communicating with each
other may be relocated or redistributed from one host to the other for example an
application may be migrated from one cloud host to another cloud host. There is also a
possibility that underlying protocol for communication is changed due to change of hosts.
Reasons for such change being the change in business requirements, cost reduction,
optimization in performance, new cloud platform offerings, hardware or operating
system upgrades etc. In such scenarios, the application needs to be modified in order to
support such changes and maintain the orchestration. Modifying the application is a
manual process that requires rebuilding the application by making changes to its source
code to facilitate communication based on new protocol and to update communication
endpoints to retain same communication as before. For complex applications, the manual
process may result in a cumbersome and time-consuming task. Hence there exist a need
for automation process that handles this redistribution. This thesis attempts to provide an
automation approach in such scenarios by injecting proxy components containing address
routing component, translators, and adapters by requiring as minimum information as
possible and thus solving the problem of maintaining the same communication between
redistributed applications.

The rest of this thesis is structured as follows:

Chapter 2-Fundamentals: It includes the basic and important concepts that are necessary
for understanding the terms related to the thesis.

Chapter 3-Related Work: It includes literature work related to automatic proxy genera-
tion, protocol translation mechanism, and adapters.

Chapter 4-Proxy Generation and Injection Approach: It describes the suggested approach
of proxy generation and injection for application redistribution scenarios.

Chapter 5-Implementation: It states technical details regarding the prototype built in
this thesis work. In general, it describes the setup of a working environment, built web
application details and design of Proxy Generator (PG) tool.

Chapter 6-Validation: It states the validation results of implemented prototype in terms
of response time measured as per scenarios described in Chapter 5.

Chapter 7-Conclusion and Future Work: It includes the summary of thesis work and
discusses the possible extensions and improvements for this thesis.

16

2 Fundamentals

This chapter includes all the important concepts that are necessary to understand the
content of this thesis. The concepts of application redistribution and design pattern are
discussed in this chapter. This chapter also discusses application layer protocols HTTP
and MQTT for supporting the prototypical implementation involved in this thesis.

2.1 Communication Paradigm

There are many definitions of distributed system. Tanenbaum [TS06], defines the
distributed system as a collection of independent computers that appear to the users of
the system as a single computer. These computers or nodes work independent of each
other and are connected to each other by a network. An application running on such
computers is treated as a distributed application. These applications can communicate
with each other over a network by adhering to communication paradigms such as

• Remote Procedure Calls (RPC): RPC is a communication paradigm that is used
by one program to invoke the procedure or service from another program located
in another computer on a network.It follows client-server architecture pattern
wherein client machine invokes the procedure which is located at server machine.
Examples are CORBA, Java RMI, DCOM (Object based), DCE, Sun RPC (Data-
based)

• Message Oriented Communication: In this paradigm, messages, which corresponds
to events are used for communication between processes. Tanenbaum [TS06],
classifies the message oriented communication as synchronous or asynchronous
communication and transient or persistent communication. Examples are Socket
Programming, Message-passing interface (MPI), Message-oriented middleware
(MOM), Publish-subscribe communication.

• Stream Oriented Communication: RPC and message-oriented communication are
based on the exchange of discrete messages but in stream oriented communication
continuous stream of media is exchanged e.g. audio, video, or animated images.

17

2 Fundamentals

• Multicast Communication: The basic idea of this communication paradigm is to
support sending of data from one sender to multiple receivers. The example is
Peer-to-Peer System.

The approach proposed in Chapter 4 can be superficially applied to RPC, Message
Oriented Communication, and Multicast Communication paradigms. The approach
needs some modification for Stream Oriented Communication due to its different
characteristic.

2.2 Host

In terms of networking, a host is a computer node that is connected to other computer
nodes in a network. Every host is identified by its unique hostname which is then mapped
to an IP address followed by a port number. Hostname and port number forms the
communication endpoint also called as Uniform Resource Locator (URL) for a particular
host in a network. A host may be client or server or both. There is a fine distinction
between host and server. Every server can be treated as host but every host may or
may not be a server. If you run a web server on your local machine and access it via
a browser of the same machine then you can treat that host as a localhost. There are
various cloud hosts like Amazon EC2, Google App Engine, Windows Azure.

2.3 Application Redistribution

Cloud computing model attracts many enterprises and developers due to its myriads
of advantages. There are many cloud providers and cloud service offerings available
for hosting applications in the cloud. An application consists of many interacting
components. It is completely possible to host some of the components on the cloud
(off-premise) and remaining of the application remains on-premise [ABLS13]. Therefore,
cloud applications are distributed in nature. Due to different types of cloud services
and options available to the developers, choosing the appropriate cloud service and
model becomes an important decision. Developers are required to think about various
deployment options, adoption strategies, and selection of cloud offerings. Research such
as [SALS14] and [GAWM14] has been carried out to guide the developer for taking
appropriate decisions. The nature of enterprise cloud applications or any business is
such that their requirements change over the time as per customer needs. Therefore, it
becomes crucial to accommodate these requirements by making changes to applications
and redeploying or redistributing them. This redistribution process may involve a change
of application’s host which may lead to host splitting as shown in figure 2.1. Applications

18

2.4 Communication Design Patterns

Figure 2.1: Application Redistribution

A and B were residing on same host namely HOST X, but due to change in requirements
of application B, it is moved to new cloud host namely HOST Y. The figure depicts the
scenario where the underlying communication protocol is unchanged but there may be
a possibility where protocol may also be changed to some new protocol.

2.4 Communication Design Patterns

The concept of pattern takes a different meaning in different context [Cop14] such
as in object oriented software development field, building architecture, education
and cloud computing. In general, a pattern or more specifically a design pattern is
a written document that describes a problem-solution pair to a design problem that
occurs repeatedly. Every design pattern describes the problem formally and discusses its
solution. With reference to various design patterns stated in [HW03][FLR+14], three

19

2 Fundamentals

Figure 2.2: Proxy Concept

design patterns namely proxy, translator, and adapter are used in order to implement an
approach for handling redistribution of applications. These patterns are discussed in
following sections.

2.4.1 Proxy Pattern

In general, a Proxy is an entity that acts on behalf of some other entity. In computer
networks, a Proxy server is an entity that acts on behalf of the actual server. Nowadays,
use of proxy servers is common in the case of web applications with client server
architecture consisting of the web client that makes a request and an actual application
server that serves such request. A proxy server sits between such client and application
server as shown in Figure 2.2 which is capable of serving the client’s request. Such proxy
server can actually forward the request to the actual application server as well and may
not process the request at all [Bea]. Such proxies involve address routing mechanism to
forward the request to the actual application server.

It is necessary for a proxy to know the communication endpoint of actual application
server so that it can forward the client request. Here by communication endpoint, we
mean the hostname and the port number of the actual application server. The advantages
and disadvantages of using proxies are as listed below.

Advantages

1. Improved performance: Proxies have the ability to save the contents that are
frequently retrieved by clients. These contents are called as a cache. Therefore,
client’s requests can be quickly served if the contents requested are found in the
cache of the proxy. This reduces the waiting time for a client for its response.

2. Anonymity: Since proxy sends a request to the application server on client’s behalf,
client’s identity such as geographical location and IP address will not be disclosed.

20

2.4 Communication Design Patterns

3. Filtering: It can filter the client’s requests. The proxy server can be set up to block
malicious and inappropriate web sites.

Disadvantages

1. Security: If the proxy is compromised then data theft can happen easily.

2. Cache consistency: Proxy cache needs to be consistent with the application server.
If not then the data served to the clients may not be the latest which gives rise to
data inconsistency issues.

3. Maintenance: Since proxy is an additional component, it has its own cost for
installing and monitoring.

2.4.2 Translator Pattern

Figure 2.3: Translator Concept

In the case of messaging systems, translator is one of the enterprise integration
patterns that transform the messages from one format to the other [Hoh16][HW03].
In this thesis, translator is a generic component used that should be able to perform
protocol conversion. Messages from one protocol format are to be converted to another
protocol format as shown in figure 2.3. There exists a number of application layer
protocols over which applications can communicate with each other. It is possible that
two applications have support for two different protocols and we want to establish
communication between them. In such scenarios, there arises a need for translating the
protocol from one format to other. For example, consider an application A is supporting
HTTP and some other application B is working over MQTT protocol. In that case, if we
want to transmit some data from A to B or from B to A then translator must be able to
convert data formats to and from HTTP and MQTT. There can also be a situation where
in two applications support HTTP protocol but the messages are exchanged over MQTT
protocol. The prototype implemented for this thesis covers such scenario. Therefore, the
code that maps HTTP requests/responses to MQTT messages and vices-a-versa is treated
as a translator code. More details about how we have used translator design pattern can
be read in Chapter 4 and Chapter 5.

21

2 Fundamentals

2.4.3 Adapter Pattern

Figure 2.4: Adapter Concept

Normally an adapter has a different meaning in different contexts. In a case of
hardware, an adapter is a physical device that allows one electronic interface to be
adapted to the other electronic interface. In terms of software engineering, an adapter
is a design pattern that is used when you want to convert one interface of a class to
another interface so that incompatible classes can work together. In a case of messaging
systems, adapter or to be more specific channel adapter is enterprise pattern that allows
an application to connect to the messaging system as shown in the figure 2.4. So the
adapter act as a client to messaging system [Hoh16] [HW03]. In this thesis, an adapter
is a component that has a similar function to that of channel adapter which allows
messages to be transferred on the channel so that they can reach appropriate destination.
For example, in a case of MQTT protocol, the process of connecting publishers or
subscribers to MQTT broker will be treated as an adapter code. Realization of such an
adapter pattern is explained in Chapter 4 and Chapter 5.

2.5 Communication Protocols

Multiple applications can communicate with each other and exchange data over the
Internet. This communication is governed by application layer protocols defined in
TCP/IP protocol model [For02] and ISO OSI protocol model [Zim88]. There are various
application layer protocols such as HTTP, FTP, MQTT, SMTP, SNMP etc. used for various
types of communication. In this thesis, HTTP and MQTT protocols are discussed in
details in order to understand the prototypical implementation of the concepts. These
protocols are explained in detail in following sections. Section 2.5.3 provides comparison
between these two protocols.

22

2.5 Communication Protocols

2.5.1 HTTP Protocol

HTTP stands for Hyper Text Transfer Protocol. It is most commonly used Internet pro-
tocol and serves as a foundation of data communication for the World Wide Web(WWW).
In this thesis, HTTP is referring to as HTTP/1.1 as defined in RFC2616 specification
[Fie99]. It is based on request-response mechanism between client and server. When
you type any URL in your web browser e.g. http://www.google.com, you are making
an HTTP request to Google web server. The web server then receives the request and
sends HTTP response back to the client which is nothing but a Google web page. HTTP
protocol works on port number 80 by default. Since HTTP is based on TCP, it is reliable
and connection oriented protocol. But HTTP is stateless meaning no state is maintained
between two request-response pairs. Following sections shortly describes HTTP Requests
and HTTP Response structure.

2.5.1.1 HTTP Request

HTTP Request is HTTP message sent by the client to the server. Such HTTP message
consists of:

• request line

• (General|Request|Entity) headers (zero or more)

• An empty line i.e. CRLF

• message body (optional)

Listing 2.1 HTTP GET request example
1 GET /WebApp1/index.html HTTP/1.1

2 HOST: www.testhost.com

An example of simple HTTP request is shown in Listing 2.1. The first line is called
as request line and it contains HTTP method i.e. GET, a request Uniform Resource
Identifier(URI) i.e. /WebApp1/index.html and HTTP version i.e. HTTP/1.1. The next line
contains request header called host i.e. www.testhost.com where the resource index.html
can be found. We are not sending any data through message body as we just want
to retrieve the web page index.html from the web server on testhost.com. There are
various HTTP methods but most commonly used are GET, POST, PUT and DELETE as
they represent read, create, update and delete operations on data shown in Table 2.1.

23

2 Fundamentals

Method Action
GET Retrieves data from the server
POST Sends the data to the server and create new entity
PUT Sends the data to the server and update the existing entity
DELETE Deletes an entity from server

Table 2.1: Most commonly used HTTP methods

Listing 2.2 HTTP POST request example
1 POST /WebApp1/welcome HTTP/1.1

2 HOST: www.testhost.com

3 Content-Type: text/plain

4
5 hello

Another example of simple HTTP POST request is shown in Listing 2.2. Listing 2.2
shows how to send the data to the server in a message body via HTTP POST method.
Here, the plain text data hello is sent. The Listing 2.2 indicates that it is an HTTP POST
request to HOST testhost.com. Content-Type is one of the Entity Header that indicates
sent data is plain text form.

2.5.1.2 HTTP Response

Once the server receives the HTTP request as shown in the previous section, it processes
the request solely based on request contents and generates the HTTP response. HTTP
response is made up of:

• status line

• (General|Response|Entity) headers (zero or more)

• An empty line i.e. CRLF

• message body (optional)

24

2.5 Communication Protocols

Listing 2.3 HTTP response example for GET request
1 HTTP/1.1 200 OK

2 Date: Mon, 1 Jul 2017 12:00:00 ECT

3 Server: Apache/2.2.30 (UNIX)

4 Last-Modified: Wed, 21 Jul 2016 19:00:56 ECT

5 Content-Length: 70

6 Content-Type: text/html

7 Connection: Closed

8
9 <html>

10 <body>

11 <h1>Hello from index.html</h1>

12 </body>

13 </html>

An example of simple HTTP response with respect to HTTP GET request Listing 2.1
is shown in Listing 2.3. The first line contains HTTP version and status code of 200
indicating successful processing of the request. A status code is a three-digit integer
where the first digit indicates a class of response. There are five categories of status
codes as follows:

• 1xx: Informational- It implies that the request is received and the process is
continuing.

• 2xx: Success- It implies that the request is received, accepted and understood.

• 3xx: Redirection- It implies that some action needs to be taken in order to complete
the request.

• 4xx: Client Error- It implies that some syntax error in the request and hence cannot
be processed.

• 5xx: Server Error- It implies that server has failed to process the request even
though it was a valid request.

Subsequent lines show date, server name, and version, the date when the page was
last modified. Content length indicates the length of returned body in bytes. Content
type shows it is an HTML form and lastly the actual web page is returned in the body
of the response. Some web applications adhering to the same HTTP request-response
mechanism have been implemented in the prototype of this thesis.

25

2 Fundamentals

2.5.1.3 REST

REST stands for Representational State Transfer. The term was first coined and defined
by Roy Fielding in his Ph.D. [FT00]. REST is not a protocol or technology but it is an
architectural style for building distributed applications. REST is not only used with
HTTP but it is mostly implemented based on HTTP. REST is characterized by a set of
constraints such as having a client-server architecture, layered system, statelessness,
having a uniform interface and Cacheability. These constrained are briefly described as
follows:

1. Uniform interface: This is the fundamental principle of REST style. While us-
ing HTTP as a transport protocol, all resources are identified by URIs (Uniform
Resource Identifier). The resources (e.g database) and the representation (e.g.
HTML/XML/JSON) holds different meaning. Manipulation of theses resources
through these representations are possible by the clients. Every message commu-
nicated between client and server is self-descriptive meaning it contains enough
information about how to process the message.

2. Client-Server: Client-Server constraint focuses on separation of concern. By
separating the client (user interface) from the server (web server or application
server), multiple clients can work with the same server and reduces the complexity
of client.

3. Layered system: The client may be connected to the server directly or through some
intermediate components. The position of the client should not affect the overall
behavior of the system. Intermediate components may enforce some security rules.

4. Stateless: Similar to HTTP, no context information of the client is stored on server
side. All the information is contained in request URL.

5. Cacheability: REST enforces the responses to clearly define themselves as cacheable
or not so that clients will come to know whether the response can be stored or not.
This helps to prevent clients from caching stale or inappropriate responses and
improves performance and scalability.

Web application’s functionality is exposed to the outer world by exposing an API (Appli-
cation Programming Interface). The API that adheres to REST constraints stated above is
called as RESTful API. HTTP based RESTful APIs uses same HTTP methods as described
in Table 2.1.

26

2.5 Communication Protocols

2.5.2 MQTT Protocol

MQTT stands for Message Queue Telemetry Transport. It is an open, simple and
lightweight protocol used in Machine to Machine communication and Internet of Things
(IoT) industry. MQTT has now become an OASIS standard [OAS]. In contrast to HTTP’s
request-response pattern, MQTT follows Publish-Subscribe messaging pattern which is
explained in following section.

2.5.2.1 Publish-Subscribe Messaging Pattern

Messaging systems based on Pub-Sub pattern consists of a number of senders called
as publishers of the message and number of receivers called as subscribers of the
message. Publishers publish a message to a particular topic or logical channels without
knowledge of any subscribers. Subscribers, on the other hand, subscribe to one or
more of these topics without knowing the existence of publishers. All subscribers will
receive the messages published to the topics to which they have subscribed. In general,
these publishers and subscribers are treated as clients. Figure 2.5 gives an idea of the
publish-subscribe messaging system working over MQTT protocol.

2.5.2.2 Broker

The clients of the publish-subscribe messaging system require a mediator called as a
broker. The broker is solely responsible for transmitting the messages between the clients.
It decides whom to forward the published messages based on client’s subscription. MQTT
broker can be set up on localhost (private MQTT broker) or can be set up on the cloud
(public MQTT broker). There are many MQTT brokers publicly available but in this
thesis, we are using Mosquitto broker [com]. Mosquitto broker implements MQTT
protocol version 3.1.1 [Lig17]. MQTT works on top of TCP/IP hence both the clients
and the broker must have TCP/IP stack [Hiv17].

2.5.3 HTTP vs MQTT

HTTP is the widely used Internet protocol but for IoT, MQTT is more suitable because
of its less complexity and overhead communication. A comparative study of HTTP and
MQTT has been stated in [YS16], and it is concluded that MQTT performs better than
HTTP. This section will differentiate between the two protocols explained in previous
sections. The comparison is summarized in table 2.2

27

2 Fundamentals

Figure 2.5: Publish-Subscribe system based on MQTT protocol

Parameter HTTP MQTT
Full-form Hyper Text Transfer Protocol Message Queue Telemetry Transport
Architecture Request-Response Pattern Publish -Subscribe Pattern
Use of broker No Yes
Design methodology Document centric Data centric
Security HTTPS is used Yes
Ports used 80 or 8080 1883
Complexity Complex Simple
Data distribution 1 to 1 only 1 to 0/1/N
Underlying protocol UDP TCP
QoS levels None 3 QoS levels

Table 2.2: HTTP vs MQTT comparison

28

2.6 Summary

2.6 Summary

In order to maintain same communication even after redistribution of application and
to support protocol change, this thesis has attempted to generate proxies consisting of
address routing mechanism, translators, and adapters. In general, these patterns are
stand alone patterns but in this thesis, adapter and translator pattern are included in the
proxy pattern. This chapter has stated all the necessary fundamentals needed to support
the suggested approach in order to achieve the goal of this thesis.

29

3 Related Work

This chapter discusses the existing literature related to the thesis work by considering
the fundamentals explained in the previous chapter. In this chapter we will discuss
approaches developed for generating the proxies in a case of distributed applications
in section 3.1 and also some of the approaches for protocol translation are discussed
in section 3.2. This section also includes some of the work that has been done in order
to bridge the communication gap between application layer protocols like HTTP and
MQTT. It guides in implementing the prototype for this thesis. Section 3.3 states the
role of an adapter in application integration scenario.

3.1 Usage of Proxy in Distributed Systems

3.1.1 The Proxy Principle

The proxy pattern described in section 2.4.1 is commonly used in case of distributed
application which follows client-server architectural style. Shapiro [Sha86] has pro-
posed the proxy principle to structure and achieve the encapsulation in the distributed
systems. In client-server architectural style, the client invokes some of the service objects
presented by the server. The structure of these service objects may be complex but such
complexity should not be visible to the client. This encapsulation can be provided by
using proxy objects. The proxy principle states that in order to use some service, a client
must acquire the proxy object first. This proxy is the only visible interface to the service.
Objects represented by a proxy are treated as its principles. The proxy together with its
principles forms a single distributed object, which is treated as a group shown in figure
3.1. Such system must implement following property:

• The proxy will always remain local to the client.

• All communication to server happens through the proxy.

• The proxy is transparent to the client.

• Internals of the proxy are not visible to the client. The proxy has full visibility of
the group.

31

3 Related Work

Figure 3.1: A proxy for a distributed service [Sha86]

It is claimed to be the powerful structure and provides better structuring and encapsula-
tion. By using this proxy principle as the basis, an approach is proposed in Chapter 4 for
application redistribution scenarios.

3.1.2 Distributed Application Proxy Generator

The invention [Jus07] relates to client server architecture pattern in distributed
software applications. A distributed application is one which consists of two or more
computer systems that are connected to each other over a network and one of them act
as a server while others being clients. By using DAC (Distributed application contract)
written in IDL (Interface Definition Language) and configuration file, client side proxies
can be automatically generated between the client application and the server application.
The relation between client, server, and proxy has already been illustrated in Figure 2.2
in the previous chapter. The DAC written in IDL describes the distributed application’s
functionality via its interfaces and method definitions while the configuration file consists
of information regarding server’s location in terms of network addresses such as URL
of server implementation. The DAC and configuration file are the inputs to the proxy
generator which consists of a lexer, parser, and code generator. Figure 3.2 gives an
overall idea of how the proxy is being generated. Java compiler is receiving the outputs
from IDL-to-Java Generator, server code generation function, client code generation

32

3.1 Usage of Proxy in Distributed Systems

Figure 3.2: Distributed Application Proxy Generation as per invention [Jus07]

function together with the output from the proxy generator to generate client application
with proxy and server application.

Such an approach offers many advantages for the rapid development of distributed
application, error handling and lowering the maintenance burden but the invention
under discussion focuses on Java programing language related to CORBA/IDL-based
distributed application [VD98]. Even though it is claimed that it can be extended to
Java/RMI(Remote Method Invocation)-based applications [Gro01] or MICROSOFT’s
DCOM(Distributed Component Object Model) [Cor96], protocol change is not supported.
We are using the similar concept of building the proxy generator to inject the proxies
between applications along with a translator to support protocol conversion and an
adapter component. More details about the design of proxy generator are stated in
Chapter 4.

33

3 Related Work

3.1.3 Proxy Injection using Client Runtime Library

Another approach [AYD+03] of transparently injecting the proxies between client
and server application is invented. Client runtime library is interposed between client
and server application. This library consists of routines which are bound to program and
are executed when the program is running. Such a library is responsible for injecting the
proxies into the system. The generated proxy implements the server interface hence it is
necessary to analyze the server’s functionality via server’s source code. This approach
also requires modifying client application and replacing the call for a remote object
by the call for the proxy. Such an approach provides an advantage in the sense that
proxies can be injected into existing distributed application. Also, the proxies can cache
the server’s object at client side so to serve the request locally and reduce round trips
between client and server application.

In this approach, it is required to have access to the source code of applications under
consideration. The client application is manually configured so that a call for a remote
object is replaced by the call to the proxy. Also, this method does not support protocol
change mechanism, unlike the approach which is presented in the thesis.

3.2 Protocol Translation

As stated in section 2.5, there exist a number of application layer protocols for
communication. The complexity of communication network can vary from the simplest
form such as a single LAN (Local Area Network) to complex form involving multiple
LANs that are connected via WAN (Wide Area Network) such as the Internet. Such
networks involve various nodes such as PCs, workstations, PDAs, server computers,
peripheral devices like printers, scanners, file systems, network components like bridges,
routers, and gateways. These nodes and components might work on different protocols
in different networks and there are increasing demands which require one network to
connect to another network. In such cases, it is necessary to convert from one application
layer protocol to another. Bridge networking component enables to connect two LANs
that run the same protocol. While router interconnects two networks, it works till the
network layer of the protocol model and forwards the message to correct destinations
based on the destination address of the message. On the other hand, the gateway acts as
a protocol converter and works till the application layer of protocol model but designing
a gateway costs lot of time and money. Also, troubleshooting the gateway is a complex
process. Adhering to these facts, there exists a need to design protocol conversion
strategy.

34

3.2 Protocol Translation

Figure 3.3: Protocol Translation Mechanism as per invention [Ara07]

3.2.1 Application Layer Protocol Conversion

A system [Ara07] for converting one application layer protocol to another is described.
A system comprising of Requesting node which can be treated as client, Application
node which can be treated as an application server and Converter node which can be
treated as a translator is shown in figure 3.3. The requesting node and application node
supports different protocols say P1 and P2 respectively and converter node is used to
translate between these protocols. The operation of the system can be explained as
follows:

1. Requesting node sends a request message to application node in protocol P1.

2. Application node receives the request message and forwards it to the converter
node. Protocol dispatcher is responsible for forwarding the request by consulting
protocol table. For every protocol, this protocol table contains an entry for an
address of requesting node and the corresponding address of converter node. The
converter node, after receiving the request message in the format of protocol P1,
performs the translation of request message to protocol P2.

35

3 Related Work

3. The converted message is sent back to the application node by converter node in
protocol P2.

4. Application node, after processing the request, sends the response message to the
converter node. Converter node translates the response message from protocol P2
back to protocol P1.

5. This converted response message is then sent to application node by the converter
node.

6. Finally, the response message is forwarded to original requester node by the
application node.

Another system [KOY98] for application layer protocol conversion is invented. It is
stated that two nodes in two different networks using different protocols can communi-
cate with each other using a protocol conversion system [KOY98].

3.2.2 HTTP and MQTT Bridging

In IoT world, a huge amount of tiny data is transferred between different types IoT
devices per second. MQTT, which is best suitable for IoT communication has gained a
lot of attention in recent years and is being the topic of worldwide interest. On the other
hand, HTTP is the widely used Internet protocol and has been applied for data transfer.
Therefore, a lot of different projects and efforts has been done so that HTTP and MQTT
work together and leverage the advantages of both the protocols. This section discusses
over such projects.

3.2.2.1 QEST Broker

In IoT world, most of the embedded devices have the ability to work with lightweight
protocols and unable to cope with high-level protocols like HTTP. MQTT is one of the
lightweight protocol as mentioned in section 2.5.2. In order to exploit the power of
MQTT, libraries have been provided for major development platforms like Arduino,
Android, and iOS. MQTT is primarily based on the publish-subscribe model of com-
munication and uses a broker as an intermediary element. A new broker called as
QEST Broker [CCV12] is implemented that bridges the gap between HTTP and MQTT
protocol and aims at exposing the MQTT topics as a REST resource. The QEST Broker
architecture is shown in Figure 3.4 and can be explained as follows:

36

3.2 Protocol Translation

Figure 3.4: QEST Broker architecture [CCV12]

1. QEST has both MQTT Server and HTTP Server, therefore when client publishes
the new message via REST front-end or MQTT front-end, writes the new value to
the data layer

2. Redis [Car13] is the key-value pair database used in the implementation of QEST.
The data layer itself stores the value and further writes the update to Redis key.

3. Clients can subscribe to REST or MQTT front-end resulting in changes to the data
layer. Data layer, in turn, is subscribed to a particular Redis key.

4. Whenever a new message is updated on a value of Redis key, the message is
forwarded to the data layer which further notifies the subscribed clients via front-
ends.

37

3 Related Work

Figure 3.5: Performance comparison between Mosquitto, RSMB, single QEST node and
double QEST node [CCV12]

QEST Broker can also be scaled horizontally meaning more than one QEST broker can
be used that can act as a load balancer. The performance of QEST Broker is compared
[CCV12] to other brokers like RSMB (Really Small Message Broker) [IBM] made by
IBM and public open source broker called Mosquitto [com]. As shown in Figure 3.5,
one can deduce that QEST performs is comparable to Mosquitto between 1 to 10
subscribers. Also, double QEST node performs faster than single QEST node as a number
of subscribers increases.

3.2.2.2 Ponte Project

Ponte project [Fou13] bridges the gap between Internet of Things- Application Layer
Protocols like MQTT, CoAP [SHB14] and HTTP. Ponte is a multi-transport IoT/Machine-
to-Machine broker supporting MQTT, CoAP and HTTP [CBVC14]. It allows to have
communication by publishing the messages from MQTT/CoAP enabled clients to HTTP

38

3.3 Use of Adapters in Application Integration

and vice versa. Figure 3.6 shows Ponte’s architecture. Ponte uses some of the publish-
subscribe brokers such as RabbitMQ, MongoDB, Redis, and Mosquitto. Once the data
is published or submitted by one of the clients, it must be stored persistently until it is
received. Therefore, Ponte supports MongoDB, LevelDB, and Redis as persistent storage
engines. In general, Ponte can be deployed on top of various databases and brokers,
and also can be extended to have support for more protocols. Currently, it supports
communication between HTTP, MQTT, and CoAP. Mixing of the protocol can be done,
meaning you can POST or PUT the data via HTTP and subscribe via MQTT. Essentially,
Ponte is a node.js application and is still under development.

Figure 3.6: Ponte architecture [Fou13]

3.3 Use of Adapters in Application Integration

Enterprise Application Integration or EAI is a process of creating a business solution
by combining applications [RBM01]. Resources such as data and functions are brought

39

3 Related Work

from one application program to another. This is achieved by using some middleware
technologies. These technologies are application independent and provide services that
mediate between applications. An adapter component can be a part of such middleware
technologies. In other words, application integration uses integration framework that
is based on adapters which help to integrate your applications into your enterprise.
Before the advent of middleware technology frameworks and various EAI tools, the
task of EAI was followed by an ad-hoc means and included tedious programming with
high scale of efforts. But application integration frameworks reduces this complexity by
providing mechanisms by which applications can communicate with other applications
and exchange of data can happen. Instead of manually wiring the enterprise applications
together, integration frameworks build the adapter. Basically, an adapter is the software
components that help to connect enterprise systems to an application server. Frameworks
are either packaged by a vendor or developed on the custom basis. Most of these
frameworks are based on and implement EAI patterns described in [HW03]. There are
various open-source Java integration frameworks available for example Apache Camel
[Foub], Mule ESB [Mul], and Spring Integration [Sof].

3.4 Summary

By studying the literature, concepts, and related work stated in this chapter, an attempt
is made to propose the generic approach of generating the proxies and converting
one application layer protocol to another. As stated in section 3.3, an adapter is a
software component that is used in application integration process which helps to connect
different applications together. This thesis uses an adapter concept for connecting proxies
to communication channel. The work stated in section 3.2.2 is useful for implementing
the prototype of this thesis. More detailed explanation about the approach followed can
be found in Chapter 4 and Chapter 5.

40

4 Proxy Generation and Injection
Approach

4.1 Motivation

An enterprise or web application consists of many interacting software components.
These applications are distributed in nature. Due to varying nature of business require-
ments, cost optimization purposes, performance improvements, or new offerings in
cloud platforms, it is a high possibility that applications are redistributed. Because
of this, applications can be moved from one host to another and also the underlying
communication protocol may be changed. This redistribution, as also shown in figure
2.1, requires applications to be configured correctly so that they continue to communi-
cate as before. Configuring these applications in terms of handling the communication
endpoints is not an easy task because these applications are quite big and complex in
nature. Also, application modification requires a lot of time and manual efforts. There-
fore it is necessary to address the problem of redistribution and design an automation
approach.

As discussed in Chapter 2, proxies are the design patterns used to forward the requests
or messages to correct destination, translators are the design patterns used for translating
messages from one format to another, and adapters are the design patterns used for
connecting the application to the communication channel. Using these design patterns,
in this thesis, an attempt has been made to suggest an approach of proxy generation
and injection.

This chapter describes an approach of automatically generating proxies consisting of
address routing mechanism, translator and adapter functionality and how they can be
injected between these applications in order to maintain the same communication even
after applications have been redistributed to new hosts or underlying communication
protocol has been changed. The generated proxies are responsible for routing the
requests and messages to the new hostname and new IP address of the redistributed

41

4 Proxy Generation and Injection Approach

application and capable of converting the protocol from one format to other. These
proxies are generated by a tool called Proxy Generator (PG). The internal design and
working of PG are explained in section 4.2.4 of this chapter.

4.2 Approaches

Before diving deep into details of approach, some assumptions are made that are
clearly stated as follows:

1. The technology in which applications are developed is not taken into consideration.
The concept can be superficially applied to solve the problem of redistribution.

2. We are considering client-server architecture in which client makes a request to
the server and server returns a result object as a response to the client.

3. The technical details of the host on which applications are residing are not taken
into consideration.

An approach of proxy generation has been proposed in two broad scenarios as follows:

• Scenario 1: Underlying communication protocol is same after redistribution of
application.

• Scenario 2: Underlying communication protocol is changed after redistribution of
application.

4.2.1 Design of Proxy

The proxy that is being injected into the system takes the design as shown in Figure
4.1. It consists of three components internally

1. Address routing component: It will reroute the message request to correct destina-
tion based on the endpoint given by the user of PG. For example, it will be the new
hostname/IP and port number of the new host where the application is moved
after redistribution.

2. Translator: Every communication protocol governs particular message format.
Therefore, it is necessary to convert the messages to correct format as understood
by the application. The translator will translate the message according to the for-
mat required by the communication protocol. The protocol has to be specified by
the user of PG. Translator component is disabled if the underlying communication

42

4.2 Approaches

Figure 4.1: Proxy Design

protocol is same as there is no need to perform message translation. While trans-
lating the message, the information contained in the message must be retained.
For example, in the case of HTTP protocol, a request message consists of header
information which must not be lost after translating the message to target protocol
format.

3. Adapter: Communication channel connects two applications which may be anony-
mous to each other. Basically, such a channel is some sort of logical address
which is used by senders and receivers to place their data. An adapter serves the
functionality of connecting the proxy component to the underlying channel of
communication. Channel details such as queue name, message topic name, or
intermediate broker ID may be needed, for example in the case of MQTT protocol.

4.2.2 Scenario 1: Same Communication Protocol After Redistribution of
Application

As shown in Figure 4.2 , consider two applications, for example, A and B are located
on same host namely HOST1 and communicating with each other over protocol P1.
Here, the communication can be of type request and response. Application A sending
a request to application B and then application B sending the response back to A. Due
to change in requirements, application A is moved to new host namely HOST2 and

43

4 Proxy Generation and Injection Approach

Figure 4.2: Application A and Application B on same Host

Figure 4.3: Applications A and B are redistributed to different Hosts

application B is now moved to some different host namely HOST3, then Figure 4.3 shows
the desirable scenario after splitting of hosts. Note that the underlying communication
protocol P1 is unchanged.

4.2.2.1 Solution

In order to maintain the same communication in such cases proxies are introduced as
shown in Figure 4.4.

1. The "Proxy for B" will intercept all the requests coming from application A.

2. Since application B is moved to a different host, "Proxy for B" will internally reroute
the request to application B.

3. After receiving the request, application B will respond to this request and hence it
will be caught by "Proxy for B".

4. "Proxy for B" will forward the response back to application A.

5. Similarly, "Proxy for A" will intercept all the requests coming from application B.

6. "Proxy for A" will forward the requests to application A.

44

4.2 Approaches

Figure 4.4: Introduction of proxies for same communication protocol

7. After processing, Web application A will send the response which will be captured
by "Proxy for A".

8. Finally, "Proxy for A" will forward this response to application B.

4.2.2.2 Discussion

In Figure 4.4, the components "Proxy for A" and "Proxy for B" will have only the
address routing mechanism that will forward the requests to the new location where the
other application is listening. These proxies will only need to know the new hostname
and the new port number of moved application. The new host name and new port
number are the input parameters for PG tool. PG will generate desired proxies and inject
them into the system. The applications A and B are unaware of the existence of proxy
components and will continue to communicate as before. Proxies will not process or
modify any original messages of communication.

4.2.3 Scenario 2: Changed Communication Protocol After Redistribution
of Application

In this scenario, along with host splitting, the underlying protocol for communication
between applications A and application B is also changed as shown in Figure 4.5. Note
that the communication protocol is P2. Here, the communication is totally governed by
rules as per protocol P2.

45

4 Proxy Generation and Injection Approach

Figure 4.5: Redistribution of applications along with change of communication protocol

4.2.3.1 Solution

In order to maintain the same communication, in such cases, the proxy component
having design as stated in Section 4.1 is introduced. Figure 4.6 illustrates an approach.

1. "Proxy for B" will intercept the requests coming from application A.

2. Address routing mechanism is needed in order to reroute the requests to correct
destination. The translator will translate the request message to the desired
format required by the communication protocol P2. The adapter will serve the
functionality of connecting the proxy component to the communication channel.
The request is then transferred to channel in the desired format by the proxy.

3. This request is then captured by "Proxy for A".

4. An adapter is needed which connects the "Proxy for A" to the communication
channel. Translator re-translates the message to the original format as understood
by application B. Finally, address routing mechanism serves the functionality of
routing the request to application B. Application B receives the request from "Proxy
for A".

5. Application B processes the request and sends the response which will be captured
by "Proxy for A".

6. After receiving the response, "Proxy for A" needs to perform address routing,
translation of the response message so that it can be sent over communication
protocol P2, and connect to a proper communication channel via an adapter. Such
a response is then sent over communication protocol P2.

7. "Proxy for B" receives the response and reverse process of translating the response
to a format understood by application A is done. Address routing mechanism
serves the functionality of routing the response to application A.

8. Finally, application A receives the response in the expected format.

46

4.2 Approaches

Figure 4.6: Introduction of proxies for changed communication protocol

If application B was requester and application A was responser then the sequence
communication flow would be 5, 6, 7, 8, 1, 2, 3, 4 from Figure 4.6.

4.2.3.2 Discussion

In this scenario, all three proxy components are needed at both, requester as well as
at responser side because translator and adapter mechanism is needed to support new
communication protocol. Address routing mechanism at "Proxy for B" routes the requests
to the correct communication channel over protocol P2. In this case, PG needs new
hostname, the new port number of moved application and also the channel information
for protocol P2. For example, in the case of MQTT protocol, message broker’s IP address
is needed. Then PG will generate the proxies and inject into the system.

47

4 Proxy Generation and Injection Approach

Figure 4.7: Proxy Generator

4.2.4 Proxy Generator (PG)

These proxies are generated by a special tool called Proxy Generator (PG). Figure 4.7
shows Proxy Generator taking some input information provided in a file and producing
the necessary proxy component.

4.2.4.1 Input to PG

The input to PG must contain necessary details for producing the appropriate types
of proxies. The input to the PG is to be given manually. It must have following
information:

• New hostname and port number of application are required for routing the mes-
sages to the correct address. This information is required by address routing
component of proxy.

• It must have source and target protocol name. This information is required for
translator component for converting the protocol from the source format to target
format.

• Channel specific details are required by adapter component so that proxy can
connect to the communication channel. Basically, the channel is some sort of
logical address where senders and receivers place their data. Channel specific
details are required only if the source and target protocols are different.

48

4.3 Summary

4.2.4.2 Output of PG

As shown in figure 4.7, based on the input information appropriate type of proxy
component is produced and injected into the system. The internal design of PG and
detailed information regarding input and output of PG is discussed in more detail in
section 5.4 of Chapter 5.

4.3 Summary

In this chapter, an approach of proxy generation for solving the problem of redistribu-
tion of application is proposed. Two broad scenarios in which the design of generated
proxy differs are discussed. In the case of same protocol, generated proxy only consists of
address routing component but in case if protocol changes then generated proxy involves
translator and adapter in addition to the address routing component. Proxy Generator
(PG) is a tool used for generating these proxies. This chapter has introduced the PG in
brief. In next chapter, all implementation details of PG and considered scenarios are
explained in detail.

49

5 Implementation

5.1 Test Environment

In the previous chapter, proxy generation approach was discussed in following two
scenarios.

1. Same communication protocol after redistribution of application.

2. Changed communication protocol after redistribution of application.

A prototype for implementing these scenarios is built. In implemented prototype,
applications are basically web applications communicating over protocols like HTTP or
MQTT. In this chapter, implementation details of created prototype are discussed.

Figure 5.1: Overview of Test Setup

51

5 Implementation

5.1.1 Setup

We have used Java servlet technology for creating test web applications. One web
application is requester and another serves as a responser. Figure 5.1 gives an overview
of this setup. We have used Eclipse IDE for developing and debugging purpose. These
web applications can be hosted on localhost running on Windows or on Amazon’s EC2
Linux instance. On both the hosts, we have set up Apache Tomcat Server 7.0.75 for
running these web applications. We have used Google Chrome’s Advanced REST Client
for sending requests to web applications and displaying the response. For working with
MQTT protocol, we have used Eclipse Java Paho Client which is an MQTT client library
written in Java for developing applications that run on the JVM or other Java compatible
platforms like Android [Foua]. For MQTT, we have used Mosquitto public broker but
the implementation is independent of any other public MQTT broker.

5.1.2 Implementation Details of Web Application

Since we have used Java servlet technology for building the web applications, both the
web applications are separate servlets themselves namely Account.java and Billing.java.
Account.java is requester while Billing.java is responser. In the prototype, we have
always moved responser web application i.e. Billing servlet.

5.1.2.1 Requestor

Listings 5.1 and 5.2 shows doGet() and doPost() methods implementation for
handling GET and POST method requests from REST Client. The GET method
is designed to handle single parameter named t1, passed through URL. In Listing
5.1, on line 4 we are storing the parameter value in variable str1. Lines 6 to
9 forms the HTTP connection to the responser Biiling and send the data through
URL "http://localhost:8080/WebApp2/Billing?t1=<value-of-str1>". Lines 11 to 25
captures the response from Billing.java. Finally line 27 displays that response on
the REST Client. Similarly, POST method is implemented as shown in Listing
5.2. Lines 7 to 11 forms the HTTP connection to Billing.java through the URL
"http://localhost:8080/WebApp2/Billing". The data from the REST Client is read and
stored in postbody variable on lines 13 and 14. On lines 15 and 16, the DataOutput-
Stream is opened onto the connection and data is sent to Billing Web application. Lines
19 to 31 captures the response for this sent data and finally line 32 displays that response
on REST Client.

52

5.1 Test Environment

5.1.2.2 Responser

Listings 5.3 and 5.4 shows implementation of GET and POST request methods of
responser Billing.java. The main purpose of Billing Web application is to capitalize the
string data sent by the requester. On line 5 of Listing 5.3 parameter t1 is extracted from
the URL and stored in variable str1. On line 6 it is capitalized and sent back as response
to requester on lines 8 to 13. The doPost() is implemented similarly in Listing 5.4.

Listing 5.1 doGet() of Account.java
1 public void doGet(HttpServletRequest req, HttpServletResponse res) throws

ServletException, IOException

2 {

3 try {

4 String str1 = req.getParameter("t1");

5 //SENDING DATA VIA GET METHOD AND RECEIVING RESPONSE

6 URL url = new URL("http://localhost:8080/WebApp2/Billing" + "?t1=" + str1);

7 HttpURLConnection connection = (HttpURLConnection) url.openConnection();

8 connection.setRequestMethod("GET");

9 connection.setConnectTimeout(0);

10
11 InputStream is = connection.getInputStream();

12 BufferedReader rd = new BufferedReader(new InputStreamReader(is));

13
14 String line;

15 StringBuffer response = new StringBuffer();

16
17 while ((line = rd.readLine()) != null)

18 {

19 response.append(line);

20 response.append(’\r’);

21 }

22 rd.close();

23
24 res.setContentType("text/html");

25 PrintWriter out = res.getWriter();

26
27 out.println("Response from Billing "+response.toString());

28 out.close();

29 }

30 catch (Exception e)

31 {

32 e.printStackTrace();

33 }

34 }

53

5 Implementation

Listing 5.2 doPost() of Account.java
1 public void doPost(HttpServletRequest req, HttpServletResponse res) throws

ServletException, IOException

2 {

3 try {

4 //SENDING DATA VIA POST METHOD

5 res.setContentType("text/html");

6
7 URL url = new URL("http://localhost:8080/WebApp2/Billing");

8 HttpURLConnection connection = (HttpURLConnection) url.openConnection();

9 connection.setRequestMethod("POST");

10 connection.setConnectTimeout(0);

11 connection.setDoOutput(true);

12
13 BufferedReader in=new BufferedReader(req.getReader());

14 String postbody = in.readLine();

15 DataOutputStream wr = new DataOutputStream(connection.getOutputStream());

16 wr.writeBytes(postbody);

17 wr.flush();

18
19 InputStream is = connection.getInputStream();

20 BufferedReader rd = new BufferedReader(new InputStreamReader(is));

21
22 String line;

23 StringBuffer response = new StringBuffer();

24 while ((line = rd.readLine()) != null)

25 {

26 response.append(line);

27 response.append(’\r’);

28 }

29 wr.close();

30 rd.close();

31 PrintWriter out = res.getWriter();

32 out.println("Response from Billing "+response.toString());

33 }

34 catch (Exception e)

35 {

36 e.printStackTrace();

37 }

38 }

54

5.1 Test Environment

Listing 5.3 doGet() of Billing.java
1 public void doGet(HttpServletRequest req, HttpServletResponse res) throws

ServletException, IOException

2 {

3 try{

4 //RECEIVING DATA VIA GET METHOD OF ACCOUNT

5 String str1 = req.getParameter("t1");

6 str1=str1.toUpperCase();

7
8 res.setContentType("text/html");

9 OutputStreamWriter writer = new OutputStreamWriter(res.getOutputStream());

10
11 writer.write(str1);

12 writer.flush();

13 writer.close();

14 }

15 catch (Exception e)

16 {

17 e.printStackTrace();

18 }

19 }

Listing 5.4 doPost() of Billing.java
1 public void doPost(HttpServletRequest req, HttpServletResponse res) throws

ServletException, IOException

2 {

3 try{

4 //RECEIVING DATA VIA POST METHOD OF ACCOUNT

5 res.setContentType("text/html");

6
7 BufferedReader in=new BufferedReader(req.getReader());

8 String line = in.readLine();

9 line=line.toUpperCase();

10
11 res.setContentType("text/html");

12 OutputStreamWriter writer = new OutputStreamWriter(res.getOutputStream());

13
14 writer.write(line);

15 writer.flush();

16 writer.close();

17 }

18 catch (Exception e)

19 {

20 e.printStackTrace();

21 }

22 }

55

5 Implementation

Figure 5.2: Web applications communicating over HTTP before redistribution

5.2 Implementation Details for Scenario 1: HTTP
Communication

Figure 5.2 shows setup when two web applications Account and Billing are residing
on same host i.e. localhost and Figure 5.3 shows setup when web application Billing is
moved to EC2. From Figure 5.3 one can see that proxy for Billing has been introduced
by PG on localhost.

5.2.1 Implementation Details of Proxy

The generated code skeleton for the proxy is shown in Listing 5.7. It is a servlet
named Proxy.java. This proxy will intercept all the request coming from Account web
application. The web.xml file, which is the configuration file for Proxy.java is shown
in Listing 5.5. On line 10 of Listing 5.5, we can see that all the requests are accepted
by this proxy. Proxy.java will analyze whether the request is of type GET or POST and
corresponding code will be executed. On lines 7 and 23 of Listing 5.7, we can see that
new HTTP connection is opened to Billing. The URL consists of new host name and new

56

5.2 Implementation Details for Scenario 1: HTTP Communication

Figure 5.3: Web applications communicating through proxy over HTTP after redistribu-
tion

port number which is given as an input to PG. Lines 10 to 16 and 31 to 37 will capture
the response from Billing web application and lines 18 to 19 and 39 to 40 will send this
captured response back to Account web application. Finally, Account sends the received
response back to REST Client.

Listing 5.5 web.xml file for Proxy.java
1 <?xml version="1.0" encoding="UTF-8"?>

2 <web-app id="WebApp_ID" version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

3 <display-name>WebApp2</display-name>

4 <servlet>

5 <servlet-name>proxy</servlet-name>

6 <servlet-class>Proxy</servlet-class>

7 </servlet>

8 <servlet-mapping>

9 <servlet-name>proxy</servlet-name>

10 <url-pattern>/*</url-pattern>

11 </servlet-mapping>

12 </web-app>

57

5 Implementation

Listing 5.6 pom.xml file for Proxy.java
1 <project xmlns="http://maven.apache.org/POM/4.0.0">

2 <dependencies>

3 <dependency>

4

5 </dependency>

6 </dependencies>

7 <build>

8 <finalName>WebApp2</finalName>

9 </build>

10 </project>

The proxy code generated out of PG is basically a maven web application project which
has pom.xml file shown in Listing 5.6. The project consists of WAR (Web application
ARchive) file as an output which is then put into the web apps directory of Apache
Tomcat folder on localhost. The name of WAR file is set as "WebApp2" as shown in
Listing 5.6 on line 8. The same name is provided to PG as an input.

5.3 Implementation Details for Scenario 2: HTTP to MQTT
Communication

In this scenario, the underlying communication protocol is changed to MQTT. The web
applications Account and Billing are unchanged with respect to their implementations
as shown in Listings 5.1, 5.2, 5.3 and 5.4. Figure 5.4 shows setup when both the web
applications are residing on localhost but the underlying communication protocol is
changed to MQTT. In this case, we have separated the workspaces of Account and Billing
by setting up a Virtual Machine on localhost. The reason for such set up is cleared at the
end of this section. Figure 5.5 shows setup when Billing is moved to EC2 instance. Due
to change of protocol, proxies consisting of Translator Tx and Adapter Ar are injected by
the PG as suggested in the previous chapter. The generated requester proxy is a servlet
named RequestorProxy.java and the responser proxy is named as ResponserProxy.java.
Both the proxies act as a client to MQTT Mosquitto broker. Requestor proxy subscribes
itself to response topic upon initialization while responser proxy subscribes itself to
request topic upon initialization. Similar to Listing 5.5, a web.xml file for both the
proxies are generated as shown in Listing 5.8 and 5.9 respectively. On line 7 of both the
files, we can see that these servlets are loaded on startup, therefore, subscribing to their
topics on the start.

58

5.3 Implementation Details for Scenario 2: HTTP to MQTT Communication

Listing 5.7 Proxy.java
1 protected void service(HttpServletRequest req, HttpServletResponse res) throws

ServletException, IOException

2 {

3 String URI=req.getRequestURI();

4 String method = req.getMethod();

5 if (method.equals("GET"))

6 {

7 URL url = new URL("http://52.57.206.31:8080"+URI+"?"+queryparamline);

8 //..

9
10 InputStream is = connection.getInputStream();

11 BufferedReader rd = new BufferedReader(new InputStreamReader(is));

12
13 String line;

14 StringBuffer response = new StringBuffer();

15 while ((line = rd.readLine()) != null)

16 {response.append(line);}

17
18 OutputStreamWriter writer = new OutputStreamWriter(res.getOutputStream());

19 writer.write(response.toString());

20 }

21 if (method.equals("POST"))

22 {

23 URL url = new URL("http://52.57.206.31:8080"+URI);

24 //..

25
26 BufferedReader in=new BufferedReader(req.getReader());

27 String str1 = in.readLine();

28 DataOutputStream wr = new DataOutputStream(connection.getOutputStream());

29 wr.writeBytes(str1);

30
31 InputStream is = connection.getInputStream();

32 BufferedReader rd = new BufferedReader(new InputStreamReader(is));

33
34 String line;

35 StringBuffer response = new StringBuffer();

36 while ((line = rd.readLine()) != null)

37 {response.append(line);}

38
39 OutputStreamWriter writer = new OutputStreamWriter(res.getOutputStream());

40 writer.write(response.toString());

41 }

42 }

43 }

59

5 Implementation

Figure 5.4: Web applications communicating over MQTT before redistribution

Listing 5.8 web.xml file for RequestorProxy.java
1 <?xml version="1.0" encoding="UTF-8"?>

2 <web-app id="WebApp_ID" version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

3 <display-name>Wapp2</display-name>

4 <servlet>

5 <servlet-name>proxy</servlet-name>

6 <servlet-class>com.proxi.RequestorProxy</servlet-class>

7 <load-on-startup>1</load-on-startup>

8 </servlet>

9 <servlet-mapping>

10 <servlet-name>proxy</servlet-name>

11 <url-pattern>/*</url-pattern>

12 </servlet-mapping>

13 </web-app>

60

5.3 Implementation Details for Scenario 2: HTTP to MQTT Communication

Listing 5.9 web.xml file for ResponserProxy.java
1 <?xml version="1.0" encoding="UTF-8"?>

2 <web-app id="WebApp_ID" version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

3 <display-name>Wapp1</display-name>

4 <servlet>

5 <servlet-name>proxy</servlet-name>

6 <servlet-class>com.proxi.ResponserProxy</servlet-class>

7 <load-on-startup>1</load-on-startup>

8 </servlet>

9 <servlet-mapping>

10 <servlet-name>proxy</servlet-name>

11 <url-pattern>/*</url-pattern>

12 </servlet-mapping>

13 </web-app>

Figure 5.5: Web applications communicating over MQTT after redistribution

61

5 Implementation

5.3.1 Implementation Details of Requestor Proxy

RequestorProxy.java contains service() as shown in Listing 5.10 for receiving the
requests from Account. If the request is of type GET, then we are forming a messageString
of format "method,URI,queryparamline" in which method means GET, URI is part of the
URL after hostname and port number and queryparamline contains query parameters
passed via URL. Similarly, if the request is of type POST then, messageString is of format
"method,URI,body" where body is actual data passed in body of POST request method.
Line 20 act as a address routing mechanism in which it is routing the data to broker on
port 1883. Line 21 act as an adapter code that connects this proxy to broker. Line 22 and
23 act as a translator code that converts HTTP data to MQTT message type and finally on
line 24 MQTT message is published to the broker on "req_topic". Lines 26 to 41 belongs
to synchronized block of code that waits till it get notification from messageArrived().
This synchronized block waits to forward the response to Account until response message
is received in messageArrived(). Listing 5.12 shows messageArrived() that receives the
response message from broker. Once the message is received, it notifies the service() on
line 29 of Listing 5.10. RequestorProxy.java contains init() method as shown in Listing
5.11 which serves the functionality of subscribing to response topic named "res_topic"
upon initialization.

5.3.2 Implementation Details of Responser Proxy

The ResponserProxy.java contains init() similar to RequestorProxy.java which sub-
scribes itself to request topic named "req_topic" as shown in Listing 5.13 on line 10.
ResponserProxy.java has messageArrived() shown in Listing 5.14 which includes code for
address routing, translator and adapter. The HTTP request in form of MQTT message
is captured on line 3. Then the message is analyzed to check whether it is of type GET
or POST, according to which the corresponding code is run. If it is of type GET, then
it opens new HTTP connection to Billing via constructing the URL by inserting query
parameters in it and making the GET request to Billing on line 8. This serves as an
address routing mechanism. The host name and the port number are given to PG as
input by the user. The response from Billing is then captured between lines 11 and 12.
Line 15 appends the method type i.e. GET to the response received. Line 19 act as an
adapter code that connects to MQTT broker. This response is then converted to MQTT
message type by translator code (lines 21 and 22). Finally, the response message is
published to MQTT broker on line 23. Similarly, the POST method requests are handled
in lines 26 to 45.

62

5.3 Implementation Details for Scenario 2: HTTP to MQTT Communication

Listing 5.10 service() of RequestorProxy.java
1 protected void service(HttpServletRequest req, HttpServletResponse res) throws

ServletException, IOException

2 {

3 String messageString="";

4 if (method.equals("GET"))

5 {

6 //Read query parameters from GET request URL

7 //.....

8 messageString = method + "," + URI + "," + queryparamline;

9 }

10 else if (method.equals("POST"))

11 {

12 //Read from POST request

13 //.....

14
15 String body = in.readLine();

16 messageString = method + "," + URI + "," + body;

17 }

18
19 //Publish HTTP request as MQTT message to broker

20 client = new MqttClient("tcp://iot.eclipse.org:1883",

MqttClient.generateClientId());

21 client.connect();

22 MqttMessage message = new MqttMessage();

23 message.setPayload(messageString.getBytes());

24 client.publish("req_topic", message);

25 client.disconnect();

26 synchronized(lock)

27 {

28 //service method has to wait until message is received by messageArrived()

29 lock.wait();

30 try

31 {

32 OutputStreamWriter writer = new OutputStreamWriter(res.getOutputStream());

33 writer.write(receivedMsg);

34 writer.flush();

35 writer.close();

36 }

37 catch (Exception e)

38 {

39 e.printStackTrace();

40 }

41 }

42 }

63

5 Implementation

Listing 5.11 init() of RequestorProxy.java
1 public void init()

2 {

3 // defining MQTT subscriber for capturing the HTTP response as MQTT message

4 try

5 {

6 System.out.println("SUBSCRIBED TO res_topic");

7 client = new MqttClient("tcp://iot.eclipse.org:1883",

MqttClient.generateClientId());

8 client.setCallback(new RequestorProxy());

9 client.connect();

10 client.subscribe("res_topic");

11 }

12 catch (MqttException e)

13 {

14 e.printStackTrace();

15 }

16 }

Listing 5.12 messageArrived() of RequestorProxy.java
1 public void messageArrived(String s, MqttMessage mqttMessage) throws Exception

2 {

3 synchronized(lock)

4 {

5 receivedMsg = new String(mqttMessage.getPayload());

6 //Remove method String from received message

7 receivedMsg=receivedMsg.substring(receivedMsg.lastIndexOf(",")+1,

receivedMsg.length());

8 System.out.println("Message received: " + receivedMsg);

9 //Notify the service method that message has been received from broker.

10 lock.notify();

11 }

12 }

5.3.3 Explanation for Setting Up VM

We need to separate the working space of Account and Billing web applications via
setting up a VM because for a setup in which both the web applications are in same
Tomcat directory on localhost, Account can simply make HTTP request to Billing over
HTTP which is not desirable for this scenario as communication must happen over MQTT
protocol.

64

5.4 Implementation Details of Proxy Generator (PG)

Listing 5.13 init() of ResponserProxy.java
1 public void init()

2 {

3 //defining MQTT subscriber for capturing the HTTP request as MQTT message

4 try

5 {

6 System.out.println("SUBSCRIBED TO req_topic");

7 client = new MqttClient("tcp://iot.eclipse.org:1883",

MqttClient.generateClientId());

8 client.setCallback(new ResponserProxy());

9 client.connect();

10 client.subscribe("req_topic");

11 }

12 catch (MqttException e)

13 {

14 e.printStackTrace();

15 }

16 }

5.4 Implementation Details of Proxy Generator (PG)

Proxy Generator is a tool developed in Java language which is capable of generating
the proxies as described in previous sections. Figure 5.6 shows simple flowchart of how
PG works.

5.4.1 Input to PG

In order to generate the proxies, a text file containing the input information is given
to PG. The input file should specify certain details depending upon the type of proxy
that needs to be generated.

5.4.1.1 Input to PG: HTTP Case

Text file containing following information is given as the input to PG for HTTP case:

• CommunicationProtocol:HTTP

• ResponserWebApplicationName:WebApp2

• Hostname:52.57.206.31

• Portnumber:8080

65

5 Implementation

Listing 5.14 messageArrived() of ResponserProxy.java
1 public void messageArrived(String s, MqttMessage mqttMessage) throws Exception

2 {

3 String receivedMsg=new String(mqttMessage.getPayload());

4
5 if(receivedMsg.contains("GET"))

6 {

7 //Send GET request to Billing

8 URL url = new URL("http://52.57.206.31:8080"+URI+"?"+paramline);

9 //...

10
11 //Read the response from Billing

12 //...

13
14 String resMsg=response.toString();

15 resMsg="GET,"+resMsg;

16
17 //Publish response as MQTT message to broker

18 client = new MqttClient("tcp://iot.eclipse.org:1883",

MqttClient.generateClientId());

19 client.connect();

20
21 MqttMessage message = new MqttMessage();

22 message.setPayload(resMsg.getBytes());

23 client.publish("res_topic", message);

24 }

25
26 if(receivedMsg.contains("POST"))

27 {

28 //Send POST request to Billing

29 URL url = new URL("http://52.57.206.31:8080"+URI);

30 //...

31
32 //Read the response from Billing

33 //...

34
35 String resMsg=response.toString();

36 resMsg="POST,"+resMsg;

37
38 //Publish response as MQTT message to broker

39 client = new MqttClient("tcp://iot.eclipse.org:1883",

MqttClient.generateClientId());

40 client.connect();

41
42 MqttMessage message = new MqttMessage();

43 message.setPayload(resMsg.getBytes());

44 client.publish("res_topic", message);

45 }

46 }

66

5.4 Implementation Details of Proxy Generator (PG)

For HTTP case, the text file must have a communication protocol as HTTP. The name of
Responser Web application is set as WebApp2 in our implemented scenario. The text file
must have the new hostname and port number of responser web application.

5.4.1.2 Input to PG: MQTT Case

Text file containing following information is given as the input to PG for MQTT case:

• CommunicationProtocol:MQTT

• RequestorWebApplicationName:Wapp1

• ResponserWebApplicationName:Wapp2

• brokerId:tcp://iot.eclipse.org:1883

• Hostname:52.57.206.31

• Portnumber:8080

For MQTT case, the text file must have a communication protocol as MQTT. The name
of Responser Web application and Requestor Web application is set as WebApp2 and
WebApp1 respectively in our implemented scenario. The text file must have MQTT
broker’s ID. The text file must also have the new hostname and port number of responser
web application.

5.4.2 Output of PG

As stated before the generated proxies are maven web application projects consisting
of WAR (Web application ARchive) file. The name of the web application provided at
the time of input in the text file will be the name of generated WAR file. These WAR
files are to be put into the web apps directory of Tomcat installation folder.

5.4.2.1 Output of PG: HTTP Case

HTTPHandler class of PG is responsible for generating the proxy in case of HTTP
protocol. Following is the sequence of steps followed for generating the proxy:

1. Initially it creates a skeleton of maven project of type web application.

2. It creates a servlet called Proxy.java within the project. This servlet contains the
required functionality of proxy which is address routing mechanism.

67

5 Implementation

Start
(Proxy Generator)

Provide text file containing
input details to PG

PG parses the text
file for information

Check for the
Protocol name

HTTPHandler class
generates the

RequestorProxy WAR file

HTTP Protocol

MQTTHandler class
generates RequestorProxy and

ResponserProxy WAR files

Put the WAR file at
Host location of

Requestor

Put both the WAR files at
respective host locations

End

MQTT Protocol

Figure 5.6: Flowchart of PG Working

68

5.4 Implementation Details of Proxy Generator (PG)

3. It generates the web.xml file also known as deployment descriptor for the web
project similar to Listing 5.5.

4. It generates pom.xml file required for building maven project as shown in Listing
5.6.

5. Finally, it builds the proxy as a WAR file.

5.4.2.2 Output of PG: MQTT Case

MQTTHandler class of PG is responsible for generating the proxy in case of MQTT
protocol. Following is the sequence of steps followed for generating the proxy:

1. Initially it creates a skeleton of maven project of type web application for Requestor
Proxy.

2. It creates a servlet called RequestorProxy.java within the project. This servlet
contains the required functionality of proxy which is address routing mechanism,
translation and adapter function.

3. It generates the deployment descriptor web.xml for the web project similar to
Listing 5.8.

4. It generates pom.xml file required for building maven project for Requestor Proxy
similar to Listing 5.6.

5. It builds WAR file for the Requestor Proxy.

6. It creates a skeleton of maven project of type web application for Responser Proxy.

7. It creates a servlet called ResponserProxy.java within the project. This servlet
contains the required functionality of proxy which is address routing mechanism,
translation and adapter function.

8. It generates the deployment descriptor web.xml for the web project similar to
Listing 5.9.

9. It generates pom.xml file required for building maven project for Responser Proxy
similar to Listing 5.6.

10. Finally, it builds the WAR file for Responser Proxy.

69

5 Implementation

5.5 Summary

In this chapter, the implementation details of created prototype for proof of concept
are discussed. The prototype is based on Java servlet technology. At the start of this
chapter, some assumptions and test environment for the created prototype are mentioned.
The prototype implements the two scenarios stated in Chapter 4. Internal design and
working of PG including it’s input and output form is also stated in this chapter. Created
prototype support only translation between HTTP and MQTT protocol.

70

6 Validation

In this chapter, the built prototype for the two scenarios as mentioned in the previous
chapter is validated. Google Chromes’s Advance REST Client is used for making HTTP
GET and POST requests to web application Account as shown in Figure 6.1 and Figure
6.2 respectively. Account web application forwards the request to Billing web application
directly or via proxy and displays the response.

As we can see from Figure 6.1, a GET request is made to Account web application
through URL "http://localhost:8080/WebApp1/Account?t1=hello_world". Here, the mes-
sage hello_world is sent as query parameter via GET method. The received response

Figure 6.1: HTTP GET request using REST Client

71

6 Validation

Figure 6.2: HTTP POST request using REST Client

which is a capitalized message HELLO_WORLD is displayed at the bottom. The response
time is marked in the figure. Figure 6.2 shows POST method request to Account web
application via URL "http://localhost:8080/WebApp1/Account". The message hello_world
is sent through POST body. In both the cases 200 OK response was received indicating
the successful processing of the requests.

6.1 Validation of Scenario 1: HTTP Case

In order to validate this scenario, firstly both the web applications, Account and Billing
are kept on localhost as shown on Figure 5.2 and ten consecutive GET and POST requests
are made to Account. The underlying communication protocol was set as HTTP. The
time for receiving the response on REST Client is noted. The average time required for
sending the message "hello_world" via GET request is 6.6 milliseconds while via POST
method is 7.3 milliseconds. After recording the response time for this setup, the Billing
web application was redistributed to EC2 instance and the proxy between Account and

72

6.2 Validation of Scenario 2: MQTT Case

Billing was introduced on localhost as shown in Figure 5.3. The response time in this
scenario is recorded. The average response time for GET request was 15 milliseconds
and for POST request was 25.1 milliseconds. From validation results, it is clear that the
response time has been increased due to additional proxy component between the two
web application but proxy has successfully forwarded the request to correct destination
address of Billing and returned the response.

6.2 Validation of Scenario 2: MQTT Case

In order to validate this scenario, Account web application was hosted on localhost
and Billing web application was hosted on VM which was set up on localhost. In order to
access VM network, the port 9000 was forwarded from localhost to VM. For this scenario,
the underlying communication protocol was set as MQTT and Mosquitto was used as
the MQTT broker. Therefore, requestor proxy was injected on localhost while responser
proxy was injected on VM as shown in Figure 5.4. The Same HTTP GET and POST
method requests were made to Account. The average response time for GET request
was noted as 770.2 milliseconds and for POST method it was observed to be 778.9
milliseconds. After recording the response time for this setup, Billing web application
was redistributed to EC2 instance and responser proxy on EC2 was introduced as shown
in Figure 5.5. In this case, average response time for GET request was noted as 775.5
milliseconds while for POST request it was observed to be 773.5 milliseconds. From
validation results, we can conclude that the generated proxy components, translators
and adapters work in a desirable way and returns the correct response.

6.3 Summary

In this chapter, the created prototype was validated by measuring the response times in
two scenarios under discussion. The mapping between HTTP and MQTT is successfully
achieved by the prototype.

73

7 Conclusion and Future Work

The aim of this thesis was to develop an approach to solve the problem of maintaining
the same communication between applications after they have been redistributed. Also,
the approach must support the change of communication protocol over which appli-
cations are communicating with each other without modification of their source code.
In this thesis, the knowledge of some design patterns namely proxy pattern, translator
pattern and adapter pattern was studied to solve the problem of redistribution. An
approach of generating the proxy having address routing mechanism, translators and
adapters was proposed to support maintaining communication between redistributed
application along with support for underlying protocol change. An attempt has been
made to automatically generate these proxies just by knowing the communication end-
point of redistributed application. A tool called Proxy Generator (PG) was developed to
automatically generate these proxy components and inject into the system of communi-
cation. This approach primarily requires the information of hostname and port number
of the redistributed application and intermediate channel details of new communication
protocol, if at all communication protocol is changed. Based on this information which is
given as an input to Proxy Generator, it produces the required proxy and injects into the
system. The approach was demonstrated by creating the prototype for Proxy Generator.
The prototype supported redistribution of web applications that are implemented in Java
servlet technology and communicate over HTTP protocol. The prototype supports the
conversion from HTTP to MQTT and vice-a-versa, to demonstrate the protocol change
scenario.

The biggest advantage of such an approach is that existing application that needs to be
redistributed to some other hosts need not be modified or one need not have an access to
source code of such application. One needs to know only the host name and port number
i.e. communication endpoint of redistributed application. Also suggested approach is
generic in the sense that it should be able to translate from one communication protocol
to other, thereby applications those are developed that rely on single communication
protocol can be adapted to communicate if underlying protocol changes later in the
future.

75

7 Conclusion and Future Work

7.1 Future Work

Currently, the implemented prototype supports web applications developed in Java
servlet technology but there are numerous technologies and programming languages
that are used to develop applications. Therefore, the prototype can be extended to
support several technologies and can be made generic in a true sense. Similarly, in the
case of different communication protocol other than HTTP and MQTT, support can be
added to the implemented Proxy Generator tool.

In this thesis, we have considered only single instance of redistributed application but
in practice, there can be multiple instances of single application. For example, as MQTT
protocol follows publish-subscribe model, it is quite possible to have multiple subscribers
for a single topic. In that case, Proxy Generator might need more input information in
terms of a number of instances of moved application. According to this information, one
proxy component can be generated per instance that act as a subscriber to the request
topic.

The thesis work focuses only on client-server architecture pattern. In practice, there is
three tier architecture pattern involving database as the third tier. The approach can be
extended in future to focus on this third tier as well.

76

Bibliography

[ABLS13] V. Andrikopoulos, T. Binz, F. Leymann, S. Strauch. “How to adapt ap-
plications for the Cloud environment.” In: Computing 95.6 (June 2013),
pp. 493–535. ISSN: 1436-5057. DOI: 10.1007/s00607-012-0248-2. URL:
https://doi.org/10.1007/s00607-012-0248-2 (cit. on p. 18).

[Ara07] K. Arai. Distributed application layer protocol converter for communications
network. US Patent 7,280,559. Oct. 2007. URL: https://www.google.com/
patents/US7280559 (cit. on p. 35).

[AYD+03] S. Ali, P. Yared, B. Daniels, R. Goldberg, Y. Kamen. Transparent injec-
tion of intelligent proxies into existing distributed applications. US Patent
App. 09/997,927. June 2003. URL: https://www.google.com/patents/
US20030105882 (cit. on p. 34).

[Bea] V. Beal. URL: http://www.webopedia.com/TERM/P/proxy_server.html
(cit. on p. 20).

[Car13] J. L. Carlson. Redis in Action. Greenwich, CT, USA: Manning Publications
Co., 2013. ISBN: 1617290858, 9781617290855 (cit. on p. 37).

[CBVC14] M. Collina, M. Bartolucci, A. Vanelli-Coralli, G. E. Corazza. “Internet of
Things application layer protocol analysis over error and delay prone
links.” In: Advanced Satellite Multimedia Systems Conference and the 13th
Signal Processing for Space Communications Workshop (ASMS/SPSC), 2014
7th. IEEE. 2014, pp. 398–404 (cit. on p. 38).

[CCV12] M. Collina, G. E. Corazza, A. Vanelli-Coralli. “Introducing the QEST broker:
Scaling the IoT by bridging MQTT and REST.” In: 2012 IEEE 23rd Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications
- (PIMRC). Sept. 2012, pp. 36–41. DOI: 10.1109/PIMRC.2012.6362813
(cit. on pp. 36–38).

[com] mosquitto community. Mosquitto Broker. URL: https://mosquitto.org/
(cit. on pp. 27, 38).

[Cop14] J. O. Coplien. Software Patterns. 2014. URL: http://hillside.net/patterns/50-
patterns-library/patterns/222-design-pattern-definition (cit. on p. 19).

77

http://dx.doi.org/10.1007/s00607-012-0248-2
https://doi.org/10.1007/s00607-012-0248-2
https://www.google.com/patents/US7280559
https://www.google.com/patents/US7280559
https://www.google.com/patents/US20030105882
https://www.google.com/patents/US20030105882
http://www.webopedia.com/TERM/P/proxy_server.html
http://dx.doi.org/10.1109/PIMRC.2012.6362813
https://mosquitto.org/
http://hillside.net/patterns/50-patterns-library/patterns/222-design-pattern-definition
http://hillside.net/patterns/50-patterns-library/patterns/222-design-pattern-definition

Bibliography

[Cor96] M. Corporation. DCOM Technical Overview. Technical Report. Redmond,
WA: Microsoft Corporation, Nov. 1996. URL: http://msdn2.microsoft.com/
en-us/library/ms809340(d=printer).aspx (cit. on p. 33).

[Fie99] R. Fielding. 1999. URL: https://www.ietf.org/rfc/rfc2616.txt (cit. on
p. 23).

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter. Cloud Comput-
ing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.
Springer Publishing Company, Incorporated, 2014. ISBN: 3709115671,
9783709115671 (cit. on p. 19).

[For02] B. A. Forouzan. TCP/IP Protocol Suite. 2nd ed. New York, NY, USA: McGraw-
Hill, Inc., 2002. ISBN: 0071199624 (cit. on p. 22).

[Foua] E. Foundation. URL: https://eclipse.org/paho/clients/java/ (cit. on p. 52).

[Foub] T. A. S. Foundation. URL: http://camel.apache.org/ (cit. on p. 40).

[Fou13] E. Foundation. Ponte Eclipse Project. Dec. 2013. URL: http://www.eclipse.
org/ponte/ (cit. on pp. 38, 39).

[FT00] R. T. Fielding, R. N. Taylor. Architectural styles and the design of network-
based software architectures. University of California, Irvine Doctoral dis-
sertation, 2000 (cit. on p. 26).

[GAWM14] S. Gómez Sáez, V. Andrikopoulos, F. Wessling, C. C. Marquezan. “Cloud
Adaptation and Application (Re-)Distribution: Bridging the Two Per-
spectives.” In: Enterprise Distributed Object Computing Conference Work-
shops and Demonstrations (EDOCW), 2014 IEEE 18th International. 2014,
pp. 163–172. DOI: 10.1109/edocw.2014.33 (cit. on p. 18).

[Gro01] W. Grosso. Java RMI. Ed. by R. Eckstein. 1st. Sebastopol, CA, USA: O’Reilly
& Associates, Inc., 2001. ISBN: 1565924525 (cit. on p. 33).

[Hiv17] HiveMQ. 2017. URL: http://www.hivemq.com/blog/mqtt-essentials-part-
3-client-broker-connection-establishment (cit. on p. 27).

[Hoh16] G. Hohpe. Enterprise Integration Patterns. 2016. URL: http : / /
www . enterpriseintegrationpatterns . com / patterns / messaging /
MessageTranslator.html (cit. on pp. 21, 22).

[HW03] G. Hohpe, B. Woolf. Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003. ISBN: 0321200683 (cit. on pp. 15,
19, 21, 22, 40).

[IBM] IBM. Really Small Message Broker. URL: http://ibm.co/GQ7vwr (cit. on
p. 38).

78

http://msdn2.microsoft.com/en-us/library/ms809340(d=printer).aspx
http://msdn2.microsoft.com/en-us/library/ms809340(d=printer).aspx
https://www.ietf.org/rfc/rfc2616.txt
https://eclipse.org/paho/clients/java/
http://camel.apache.org/
http://www.eclipse.org/ponte/
http://www.eclipse.org/ponte/
http://dx.doi.org/10.1109/edocw.2014.33
http://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment
http://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageTranslator.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageTranslator.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageTranslator.html
http://ibm.co/GQ7vwr

Bibliography

[Jus07] A. Just. Distributed application proxy generator. US Patent 7,171,672. Jan.
2007. URL: https://www.google.com/patents/US7171672 (cit. on pp. 32,
33).

[KOY98] N. Kimura, T. Onodera, N. Yokoshi. System and method for converting
communication protocols. US Patent 5,778,189. July 1998. URL: https:
//www.google.com/patents/US5778189 (cit. on p. 36).

[Ley09] F. Leymann. “Cloud Computing: The Next Revolution in IT.” In: Photogram-
metric Week ‘09. Wichmann Verlag, 2009, pp. 3–12 (cit. on p. 15).

[Lig17] R. A. Light. “Mosquitto: server and client implementation of the MQTT
protocol.” In: The Journal of Open Source Software 2.13 (May 2017). DOI:
10.21105/joss.00265. URL: https://doi.org/10.21105/joss.00265 (cit. on
p. 27).

[Mul] I. MuleSoft. URL: https://www.mulesoft.com/platform/soa/mule-esb-
open-source-esb (cit. on p. 40).

[Net17] M. D. Network. 2017. URL: https://msdn.microsoft.com/en-us/library/
aa267045(v=vs.60).aspx (cit. on p. 15).

[OAS] OASIS. MQTT. URL: http://mqtt.org/ (cit. on p. 27).

[RBM01] W. A. Ruh, W. J. Brown, F. X. Maginnis. Enterprise Application Integration:
A Wiley Tech Brief. New York, NY, USA: John Wiley & Sons, Inc., 2001.
ISBN: 1590615441 (cit. on p. 39).

[SALS14] S. G. Sáez, V. Andrikopoulos, F. Leymann, S. Strauch. “Design Support for
Performance Aware Dynamic Application (Re-)Distribution in the Cloud.”
English. In: IEEE Transactions on Service Computing (Dec. 2014), pp. 1–14
(cit. on p. 18).

[Sha86] M. Shapiro. “Structure and Encapsulation in Distributed Systems: the
Proxy Principle.” In: Int. Conf. on Distr. Comp. Sys. (ICDCS). Int. Conf. on
Distr. Comp. Sys. (ICDCS). IEEE. Cambridge, MA, USA, United States,
1986, pp. 198–204. URL: https://hal.inria.fr/inria-00444651 (cit. on
pp. 31, 32).

[SHB14] Z. Shelby, K. Hartke, C. Bormann. The Constrained Application Protocol
(CoAP). RFC 7252. June 2014. DOI: 10.17487/RFC7252. URL: https://rfc-
editor.org/rfc/rfc7252.txt (cit. on p. 38).

[Sof] P. Software. URL: https://projects.spring.io/spring-integration/ (cit. on
p. 40).

[TS06] A. S. Tanenbaum, M. v. Steen. Distributed Systems: Principles and Paradigms
(2Nd Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.
ISBN: 0132392275 (cit. on p. 17).

79

https://www.google.com/patents/US7171672
https://www.google.com/patents/US5778189
https://www.google.com/patents/US5778189
http://dx.doi.org/10.21105/joss.00265
https://doi.org/10.21105/joss.00265
https://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
https://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
https://msdn.microsoft.com/en-us/library/aa267045(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa267045(v=vs.60).aspx
http://mqtt.org/
https://hal.inria.fr/inria-00444651
http://dx.doi.org/10.17487/RFC7252
https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc7252.txt
https://projects.spring.io/spring-integration/

[VD98] A. Vogel, K. Duddy. Java Programming with CORBA: Advanced Techniques
for Building Distributed Applications. 2nd ed. New York: Wiley, 1998. ISBN:
978-0-471-24765-4 (cit. on p. 33).

[WBB+13] J. Wettinger, M. Behrendt, T. Binz, U. Breitenbücher, G. Breiter, F. Leymann,
S. Moser, I. Schwertle, T. Spatzier. “Integrating Configuration Management
with Model-Driven Cloud Management Based on TOSCA.” In: Proceedings
of the 3rd International Conference on Cloud Computing and Service Sci-
ence, CLOSER 2013, 8-10 May 2013, Aachen, Germany. SciTePress, 2013,
pp. 437–446 (cit. on p. 15).

[YS16] T. Yokotani, Y. Sasaki. “Comparison with HTTP and MQTT on required
network resources for IoT.” In: 2016 International Conference on Control,
Electronics, Renewable Energy and Communications (ICCEREC). Sept. 2016,
pp. 1–6. DOI: 10.1109/ICCEREC.2016.7814989 (cit. on p. 27).

[ZBL17] M. Zimmermann, U. Breitenbücher, F. Leymann. “A TOSCA-based Program-
ming Model for Interacting Components of Automatically Deployed Cloud
and IoT Applications.” In: Proceedings of the 19th International Conference
on Enterprise Information Systems. SciTePress, 2017 (cit. on p. 15).

[Zim88] H. Zimmermann. “Innovations in Internetworking.” In: ed. by C. Par-
tridge. Norwood, MA, USA: Artech House, Inc., 1988. Chap. OSI Reference
Model&Mdash;The ISO Model of Architecture for Open Systems Intercon-
nection, pp. 2–9. ISBN: 0-89006-337-0. URL: http://dl.acm.org/citation.
cfm?id=59309.59310 (cit. on p. 22).

All links were last followed on August 25, 2017.

http://dx.doi.org/10.1109/ICCEREC.2016.7814989
http://dl.acm.org/citation.cfm?id=59309.59310
http://dl.acm.org/citation.cfm?id=59309.59310

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Fundamentals
	2.1 Communication Paradigm
	2.2 Host
	2.3 Application Redistribution
	2.4 Communication Design Patterns
	2.4.1 Proxy Pattern
	2.4.2 Translator Pattern
	2.4.3 Adapter Pattern

	2.5 Communication Protocols
	2.5.1 HTTP Protocol
	2.5.1.1 HTTP Request
	2.5.1.2 HTTP Response
	2.5.1.3 REST

	2.5.2 MQTT Protocol
	2.5.2.1 Publish-Subscribe Messaging Pattern
	2.5.2.2 Broker

	2.5.3 HTTP vs MQTT

	2.6 Summary

	3 Related Work
	3.1 Usage of Proxy in Distributed Systems
	3.1.1 The Proxy Principle
	3.1.2 Distributed Application Proxy Generator
	3.1.3 Proxy Injection using Client Runtime Library

	3.2 Protocol Translation
	3.2.1 Application Layer Protocol Conversion
	3.2.2 HTTP and MQTT Bridging
	3.2.2.1 QEST Broker
	3.2.2.2 Ponte Project

	3.3 Use of Adapters in Application Integration
	3.4 Summary

	4 Proxy Generation and Injection Approach
	4.1 Motivation
	4.2 Approaches
	4.2.1 Design of Proxy
	4.2.2 Scenario 1: Same Communication Protocol After Redistribution of Application
	4.2.2.1 Solution
	4.2.2.2 Discussion

	4.2.3 Scenario 2: Changed Communication Protocol After Redistribution of Application
	4.2.3.1 Solution
	4.2.3.2 Discussion

	4.2.4 Proxy Generator (PG)
	4.2.4.1 Input to PG
	4.2.4.2 Output of PG

	4.3 Summary

	5 Implementation
	5.1 Test Environment
	5.1.1 Setup
	5.1.2 Implementation Details of Web Application
	5.1.2.1 Requestor
	5.1.2.2 Responser

	5.2 Implementation Details for Scenario 1: HTTP Communication
	5.2.1 Implementation Details of Proxy

	5.3 Implementation Details for Scenario 2: HTTP to MQTT Communication
	5.3.1 Implementation Details of Requestor Proxy
	5.3.2 Implementation Details of Responser Proxy
	5.3.3 Explanation for Setting Up VM

	5.4 Implementation Details of Proxy Generator (PG)
	5.4.1 Input to PG
	5.4.1.1 Input to PG: HTTP Case
	5.4.1.2 Input to PG: MQTT Case

	5.4.2 Output of PG
	5.4.2.1 Output of PG: HTTP Case
	5.4.2.2 Output of PG: MQTT Case

	5.5 Summary

	6 Validation
	6.1 Validation of Scenario 1: HTTP Case
	6.2 Validation of Scenario 2: MQTT Case
	6.3 Summary

	7 Conclusion and Future Work
	7.1 Future Work

	Bibliography

